Monday, 14:00 – 15:00, in HG G 49.1 or by appointment.
Lecture Notes 1: The Fourier transform.
Lecture Notes 2: Interpolation theory.
Lecture Notes 3: Maximal functions.
Lecture Notes 4: Singular integral operators.
Bonus Lecture Notes: Littlewood-Paley theory.
There is no required textbook for the course. The following references are useful:
Duoandikoetxea, J. : "Fourier Analysis", AMS Graduate Studies in Mathematics, Vol. 29 (2001).
Grafakos, L. : "Classical and Modern Fourier Analysis", Pearson/Prentice Hall (2004).
Stein, E. M., with the assistance of Murphy, T. S. : "Harmonic Analysis, Real-variable Methods, Orthogonality, and Oscillatory Integrals", Princeton University Press (1993).
Stein, E. M. : "Singular Integral Operators and Differentiability Properties of Functions", Princeton University Press (1986).
Stein, E. M., Weiss, G. : "Fourier Analysis on Euclidean Spaces", Princeton University Press (1971).
Stein, E. M., Shakarchi. R. : "Fourier Analysis: An introduction", Princeton Lectures in Analysis I (2003).
Tao, T., "Nonlinear Dispersive Equations: Local and Global analysis", CBMS Conference Series (2006).