Unterrichtsmaterial

Skript für MATLAB, 63 Seiten
Lineare Algebra für Analysis, 14 Seiten
Der Transformationssatz, 19 Seiten
2×2, 45 Seiten
Classical Mechanics, 79 pages
Notes on Manifolds, 180 pages

Vorlesungen

HS 2018 Lineare Algebra für die Naturwissenschaften
FS 2018 Differentiable Manifolds
HS 2017 Geometrie und Topologie
FS 2017 Differentiable Manifolds
HS 2016 Advanced Topics in Field Theory
HS 2015 Poisson geometry and deformation quantization
FS 2015 Differentiable Manifolds
HS 2014 Quantum mechanics for mathematicians
FS 2014 Classical mechanics for mathematicians
HS 2013 Field theories on manifolds with boundary
FS 2013 Lineare Algebra II
HS 2012 Lineare Algebra I
FS 2012 On leave
HS 2011 Selected topics in classical and quantum geometry
FS 2011 Quantum mechanics for mathematicians
HS 2010 Analysis III
FS 2010 Differenzierbare Mannigfaltigkeiten
HS 2009 Analysis III
FS 2009 Analysis II
HS 2008 Analysis I
Ergänzungen Analysis I
FS 2008 Cohomological Methods in Symplectic and Poisson Geometry
HS 2007 Symplektische und Poisson-Geometrie
SS 2007 Mathematische Methoden der Physik. II
WS 2006/2007 Mathematische Methoden der Physik. I
SS 2006 Symplectic and Poisson Geometry II
WS 2005/2006 Symplectic and Poisson Geometry I
SS 2005 On leave
WS 2004/2005 Mathematische Methoden der Physik. I
SS 2004
Lineare Algebra II
Ergänzungen Lineare Algebra II
WS 2003/2004
Lineare Algebra I
Ergänzungen Lineare Algebra I
SS 2003 Lie Algebren und Lie Gruppen
WS 2002/2003
Mathematische Methoden der Physik. I
SS 2002 Mathematische Methoden der Physik. II
WS 2001/2002 Topics in Quantisation Theory
SS 2001 Mathematische Grundlagen für Physik und Chemie II
WS 2000/2001 Perturbative 3-Manifold Invariants
SS 2000 Mathematische Methoden der Physik. II
WS 1999/2000 Mathematische Methoden der Physik. I
SS 1999 Geometrical Methods for Physics
WS 1998/1999 Recent Advances on Knot Theory

Classes given by members of my group

HS2018
A. Valentino, Seminar on Elementary Applied Topology
J. Lorand, Seminar: Applied category theory
FS2018
V. Braunack-Mayer, A First Course in Homotopy Theory
S. Kandel, An Introduction to Geometric Quantization
J. Lorand, Seminar: Advanced topics in linear algebra
HS2017
A. Valentino, Introduction to Category Theory and its Application
FS2017
S. Kandel, Quantum field theory from a functional integral point of view
N. Moshayedi, Seminar: Selected topics in Quantum Field Theory
HS2016
A. Valentino, Differential forms in algebraic topology
V. Braunack-Mayer, Seminar: Introduction to Category Theory
FS2016
M. Schiavina, General Relativity for Mathematicians
K. Wernli, Seminar on Euclidean geometry
HS2015
M. Schiavina, Seminar on log-symplectic geometry and applications
FS2015
V. Schlegel and R. Campos, Seminar on Euclidean geometry
M. Schiavina, Seminar on mathematical methods in quantum field theory
E. Latini, Introduction to general relativity and gauge theories for mathematicians
HS2014
S. Monnier, Geometry and Topology
Y. Frégier, Feynman integrals and Grothendieck-Teichmüller group
FS2014
S. Monnier, Quantum groups and geometry
FS2013
E. Latini, Lie groups and Lie algebras
C. Arias Abad, Differential forms in algebraic topology
E. Latini, G.R.avity and beyond,
S. Monnier, Mathematical aspects of anomalies in quantum field theories II
HS2012
S. Monnier, Mathematical aspects of anomalies in quantum field theories
FS2012
C. Arias Abad, Characteristic classes and index theory
P. Rossi, Frobenius manifolds and integrable systems
FS2010
P. Mnev, Perturbative path integrals for mathematicians
HS2009
C. Arias Abad, Introduction to equivariant cohomology
HS2007
M. Zambon, Generalized complex geometry
SS2007
M. Zambon, Introduction to symplectic geometry and topology
SS2006
I. Androulidakis, Differentialgeometrie
WS2005/06
I. Androulidakis, Lie groupoids in geometry and physics