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CHAPTER 1

Recap of Linear Algebra I

This chapter is a summary of the basic concepts introduced in Lin-
ear Algebra I which will be used in this course.

1.1. Groups, rings, and fields

Definition 1.1 (Groups). A group is a set G with a distinguished
element e, called the neutral element, and an operation, called “multi-
plication,”

G×G → G
(a, b) 7→ ab

,

which is associative—i.e., a(bc) = (ab)c for all a, b, c ∈ G—and which
satisfies ae = ea = a. Moreover, for all a ∈ G, there is an element
denoted by a−1, and called the inverse of a, satisfying aa−1 = a−1a = e
for all a ∈ G.

One can show that the inverse is unique, that (a−1)−1 = a and that
(ab)−1 = b−1a−1 for all a, b ∈ G.

Definition 1.2 (Abelian groups). A group G is called abelian if,
in addition, ab = ba for all a, b ∈ G. If G is abelian, one often uses
the additive notation in which the neutral element is denoted by 0, the
multiplication is called “addition” and denoted by

(a, b) 7→ a+ b,

and the inverse of an element a is denoted by −a (and called the “ad-
ditive inverse” or the “opposite” of a).

Examples 1.3. Here are some examples of groups:

(1) Z with the usual 0 and the usual addition is an abelian group
(in additive notation).

(2) Z>0 with e = 1 and the usual multiplication is an abelian
group (not in additive notation).

7



8 1. RECAP OF LINEAR ALGEBRA I

(3) Invertible n×n matrices form the group GLn with e the iden-
tity matrix and the usual multiplication of matrices; this group
is nonabelian for n > 1.1

(4) The set Aut(S) of bijective maps of a set S to itself form a
group with multiplication given by the composition and neu-
tral element given by the identity map. If S = {1, . . . , n} this
group is called the symmetric group on n elements and is de-
noted by Sn (or Sym(n)); its elements are called permutations.

Definition 1.4 (Rings). A ring is an abelian group (R, 0,+) to-
gether with a second associative operation, called “multiplication,”

R×R → R
(a, b) 7→ ab

,

which is also distributive; i.e.,

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc

for all a, b, c ∈ R. A ring R is called:

(1) a ring with one if it possesses a special element, denoted by 1,
such that a1 = 1a = a for all a ∈ R;

(2) a commutative ring if ab = ba for all a, b ∈ R.

Examples 1.5. Here are some examples of rings:

(1) Z—with the usual addition, multiplication, zero, and one—is
a commutative ring with one.

(2) The set 2Z of even numbers—with the usual addition, multi-
plication, and zero—is a commutative ring without one.

(3) The set Matn×n of n × n matrices, with the usual addition
and multiplication, with 0 the matrix whose all entries are
0, and with 1 the identity matrix, is a ring with one. It is
noncommutative for n > 1.

(4) Polynomials form a commutative ring with one.
(5) If I is an open interval, the set C0(I) of continuous functions on

I, the set Ck(I) of k times continuously differentiable functions
on I, and the set C∞(I) of functions on I that are continuously
differentiable any number of times are commutative rings with
one. Recall that the operations are defined as

(f + g)(x) := f(x) + g(x), (fg)(x) := f(x) g(x), x ∈ I.

1We assume, without explicitly recapping, the knowledge of matrices, including
the notion of sum, product, and transposition. We will recap trace and determinant
in Section 1.6.



1.2. VECTOR SPACES 9

The zero element is the function 0(x) = 0 for all x and the one
element is the function 1(x) = 1 for all x.

Definition 1.6 (Fields). A field K is a commutative ring with
one in which every element different from zero is invertible. This is
equivalent to saying that K× := K \ {0} is a commutative group (not
in additive notation).

The only fields we are going to consider in this course are the field
R of real numbers and the field C of complex numbers.

Many of the results we present actually hold for any field, and most
of the results hold for any field of characteristic zero, like R or C, i.e.,
a field K such that there is no nonzero integer n satisfying na = 0 for
a nonzero element a of K.2

Definition 1.7 (Subobjects). A subset of a group/ring/field which
retains all the structures is called a subgroup/subring/subfield.

1.2. Vector spaces

A vector space over a field K, whose elements are called scalars, is
an abelian group (V,+, 0)—in additive notation—whose elements are
called vectors, together with an operation

K× V → V
(λ, v) 7→ λv

,

called multiplication by a scalar or scalar multiplication,3 satisfying

λ(µv) = (λµ)v, (λ+µ)v = λv+µv, λ(v+w) = λv+λw, 1v = v,

for all λ, µ ∈ K and all v, w ∈ V .

Example 1.8 (Column vectors). The set Kn of n-tuples of scalars,
conventionally arranged in a column and called column vectors, is a
vector space withv1

...
vn

+

w1

...
wn

 :=

v1 + w1

...
vn + wn

 , 0 :=

0
...
0

 ,

and

λ

v1

...
vn

 :=

λv1

...
λvn

 .

2By na one means the sum a+ · · ·+ a with n summands.
3not to be confused with the scalar product a.k.a. the dot product or the inner

product
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The scalars vi are called the components of the column vector, which
is usually denoted by the corresponding boldface letter v.4

Example 1.9 (Row vectors). The set (Kn)∗ of n-tuples of scalars,
conventionally arranged in a row and called row vectors, is a vector
space with(
v1, . . . , vn

)
+
(
w1, . . . , wn

)
:=
(
v1 + w1, . . . , vn + wn

)
, 0 :=

(
0, . . . , 0

)
,

and

λ
(
v1, . . . , vn

)
=
(
λv1, . . . , λvn

)
.

The scalars vi are called the components of the row vector, which is
also usually denoted by the corresponding boldface latter v.4

Remark 1.10 (Components and indices). The scalars forming a
row or column vectors are called its components. We will consistently
denote the components of a column vectors with an upper index and
the components of a row vectors with a lower index. This is a nowa-
days standard convention (especially in physics) that comes in handy
with Einstein’s convention for sums (which we will introduce in Defi-
nition 1.33).

Example 1.11 (The trivial vector space). The vector space V =
{0} consisting only of the neutral element 0 is called the trivial vector
space. It is denoted by 0, but also by K0 (and, if you wish, (K0)∗).

Remark 1.12 (The zero notation). Observe that the symbol 0 is
used for all of the following:

(1) The neutral element of an abelian group in additive notation.
(2) The zero element of a ring or a field.
(3) The zero element of a vector space.
(4) The vector space consiting only of the zero element (0 = {0}).
(5) A constant map having value 0 (e.g., the continuous real func-

tion x 7→ 0 for all x ∈ R, or the map V → W , v 7→ 0, where
V and W are vector spaces).

(6) A matrix whose entries are all equal to 0 (even though we will
prefer the notation 0).

Example 1.13 (Polynomials). The ring K[x] of polynomials in an
undetermined x with coefficients in K (i.e., expressions of the form
p = a0+a1x+· · ·+adxd, for some d, and ai ∈ K for all i) is also a vector
space over K with scalar multiplication λp := λa0 + λa1x+ · · ·+ λadx

d

and the usual addition of polynomials (i.e., addition of the coefficients).

4 Other common notations are ~v and v.
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Example 1.14 (Functions). The rings of functions Ck(I), k ∈ N∪
{∞}, of Example 1.5.(5) are also vector spaces over R with scalar
multiplication (λf)(x) := λ f(x).

Definition 1.15 (Subspaces). A subset W of a vector space V that
retains all the structures is called a (vector) subspace. Equivalently,
W ⊆ V is a subspace iff for every w, w̃ ∈ W and for every λ ∈ K we
have w + w̃ ∈ W and λw ∈ W .

Definition 1.16 ((Direct) sums of subspaces). If W1 and W2 are
subspaces of V , we denote by W1 + W2 the subset of elements of V
consisting of sums of elements of W1 and W2; i.e.,

W1 +W2 = {w1 + w2, w1 ∈ W1, w2 ∈ W2}.
It is also a subspace of V . If W1 ∩W2 = {0}, the sum is called the
direct sum and is denoted by W1 ⊕W2.

Remark 1.17. A vector v ∈ W1 ⊕ W2 uniquely decomposes as
v = w1 + w2 with w1 ∈ W1 and w2 ∈ W2. The vectors w1 and w2 are
called the components of v in the direct sum.

Proof. If v = w̃1 + w̃2 were another decomposition, by taking the
difference we would get w1 − w̃1 = w̃2 − w2. Since the left hand side
is in W1, the right hand side is in W2, and W1 ∩W2 = {0}, we have
w1 − w̃1 = 0 = w̃2 − w2. �

Remark 1.18. Vice versa, if every vector in W1 +W2 has a unique
decomposition v = w1 +w2 with wi ∈ Wi, i = 1, 2, then this is a direct
sum (i.e., W1 ∩W2 = 0).

Proof. Suppose v ∈ W1∩W2. From 0 = v−v, we see that the first
summand, v, is the component of 0 in W1 and the second summand,
−v, is its component in W2. Since we can decompose the zero vector
also as 0 = 0 + 0 (and 0 belongs to both W1 and W2), by the assumed
uniqueness of the decomposition, we then have v = 0. �

Definition 1.19. If W is a subspace of V , a subspace W ′ such
that V = W ⊕W ′ is called a complement.

Every subspace admits a complement, see Lemma 1.27 and Propo-
sition 1.55. This is elementary in the case of finite-dimensional vector
spaces and requires the axiom of choice for infinite-dimensional ones
(see Digression 1.56).

Definition 1.20. We may generalize Definition 1.16 to a sum of
several subspaces W1, . . . ,Wk:

W1 + · · ·+Wk := {v1 + · · ·+ vk, vi ∈ Wi, i = 1, . . . , k}.
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We generalize the notion of direct sum via the property in Re-
mark 1.18:

Definition 1.21. A sum W1 + · · ·+Wk is called a direct sum, and
it is denoted by

W1 ⊕ · · · ⊕Wk or
k⊕
i=1

Wi,

if every vector v in it has a unique decomposition v = w1 + · · · + wk
with wi ∈ Wi, i = 1, . . . , k.

Remark 1.22. An easier criterion is the following. A sum W1 +
· · ·+Wk is a direct sum iff the zero vector has a unique decomposition.

Proof. If the sum is direct, the zero vector has a unique decom-
position by definition, like every other vector.

Vice versa, suppose that the zero vector has a unique decomposition
and that a vector v can be written both as w1 + · · · + wk and as
w′1 + · · · + w′k with wi, w

′
i ∈ Wi. By taking the difference of these

two decompositions, we get (w1 − w′1) + · · · + (wk − w′k) = 0, which
then implies wi = w′i for every i. Therefore, the decomposition of every
vector in the sum is unique. �

Remark 1.23. A consequence of this is that for any 0 < r < k we
have

k⊕
i=1

Wi =
r⊕
i=1

Wi ⊕
k⊕

i=r+1

Wi.

Proof. We have to prove that
⊕r

i=1 Wi ∩
⊕k

i=rWi = 0. If v is
in the intersection, we may uniquely decompose it as w1 + · · · + wr
and as wr+1 + · · · + wk with wi ∈ Wi. Taking the difference, we get
0 = w1 + · · ·+wr−wr+1−· · ·−wk. By uniqueness of the decomposition

in
⊕k

i=1Wi, we get wi = 0 for every i. �

Remark 1.24. Note that, by definition, W1 ⊕W2 = W2 ⊕W1 and
that, by the last remark, (W1 ⊕W2) ⊕W3 = W1 ⊕ (W2 ⊕W3), where
W1, W2 and W3 are subspaces of V . Therefore, the direct sum is
commutative and associative. It also has a “neutral element,” namely
the zero subspace 0 := {0}.

Remark 1.25 (Infinite sums). Let (Wi)i∈S be a, possibly infinite,
collection of subspaces of a vector space V . Their sum is the subspace
of V consisting of all vectors of the form wi1 + · · ·+ wik , wij ∈ Wij for
j = 1, . . . , k and some integer k. This sum is direct, denoted by⊕

i∈S

Wi,
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if each vector in it has a unique decomposition (or, equivalently, if
wi1 + · · · + wik = 0, wij ∈ Wij , ij 6= ij′ for j 6= j′, implies wij = 0 for
all j).

Definition 1.26 (Direct sums of vector spaces). If V1 and V2 are
vector spaces over the same field, we denote by V1 ⊕ V2—and call it
the direct sum of V1 and V2—the Cartesian product V1 × V2 of pairs of
elements of V1 and V2 with the following vector space structure:

(v1, v2)+(ṽ1, ṽ2) := (v1 + ṽ1, v2 + ṽ2), 0 := (0, 0), λ(v1, v2) := (λv1, λv2).

The spaces V1 and V2 are identified with the subspaces {(v, 0), v ∈ V1}
and {(0, v), v ∈ V2} of V := V1⊕V2. Under this identification, V1∩V2 =
{0}, so the notation for the direct sum of the vector spaces V1 and V2

fits with that of the direct sum of the subspaces V1 and V2 of V . This
generalizes to a collection V1, . . . , Vk of vector spaces over the same
field. By

⊕k
i=1 Vi, we denote the Cartesian product V1 × · · · × Vk with

(v1, . . . , vk) + (ṽ1, . . . ṽk) := (v1 + ṽ1, . . . , vk + ṽk),

0 := (0, . . . , 0),

λ(v1, . . . , vk) := (λv1, . . . , λvk).

Again, we may regard Vi as the subspace of
⊕k

i=1 Vi consisting of k-tu-
ples with 0 in each position but the ith.

Note that Kn = K⊕· · ·⊕K with n summands. As a subspace of Kn,
the kth summand consists of vectors in which only the kth component
may be different from zero.

Moreover, Kn = Kr ⊕ Kl for all nonnegative integers r and l with
r+ l = n. In this case, as a subspace of Kn, the first summand consists
of vectors whose last l components are zero, and the second summand
consists of vectors whose first r components are zero. We use this
decomposition (with l = 1) for the following

Lemma 1.27. Every subspace of Kn has a complement.

Proof. Let W be a subspace of Kn. We want to show that we
can always find a subspace W ′ of Kn such that W ⊕W ′ = Kn (i.e.,
W ∩W ′ = {0} and W +W ′ = Kn).

If n = 0, there is nothing to prove, since necessarily W = {0} and
W ′ = {0}.

Otherwise, we prove the lemma by induction on n > 0. If n = 1, the
proof is immediate: In case W = {0}, we take W ′ = K. If, otherwise,
W contains a nonzero vector v, then W = K, since every vector in K
can be written as λv; therefore, W ′ = {0}.
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Now assume we have proved the lemma for Kn, and let W be a
subspace of Kn+1. Let W1 be the subspace of vectors in W whose last
component is zero and let W2 be the subspace of vectors of W whose
first n components are zero. We can view W1 as a subspace of the
first summand, Kn, in the decomposition Kn+1 = Kn ⊕ K and W2 as
a subspace of the second summand, K. By the induction assumption,
there is a complementW ′

1 ofW1 in the first summand and a complement
W ′

2 of W2 in the second. Then W ′
1⊕W ′

2 is a complement of W in Kn. �

1.3. Linear maps

A map F : V → W between K-vector spaces is called a linear map
if

F (λv + µṽ) = λF (v) + µF (ṽ)

for all λ, µ ∈ K and all v, ṽ ∈ V .

Examples 1.28. Here are some examples of linear maps:

(1) The inclusion map of a subspace is linear.
(2) If V is the direct sum of vector spaces V1 and V2—i.e., V =

V1 ⊕ V2 as in Definition 1.26—then we have the linear maps,
called canonical projections, πi : V → Vi, i = 1, 2, given by

πi(v1, v2) = vi.

If we regard V1 and V2 as subspaces of V , we may also regard
the projections as linear maps Pi : V → V :

P1(v1, v2) = (v1, 0) and P2(v1, v2) = (0, v2).

More precisely, Pi = ιi ◦ πi where ιi is the inclusion of Vi into
V .

(3) Multiplication, from the left, by an m × n matrix defines a
linear map Kn → Km.

(4) Multiplication, from the right, by an m × n matrix defines a
linear map (Km)∗ → (Kn)∗.

(5) The derivative defines a linear map Ck(I)→ Ck−1(I), f 7→ f ′

(we assume k ∈ N>0 ∪ {∞}).

Remark 1.29. Here are some facts and notations.

(1) If F is linear, one often writes Fv instead of F (v).
(2) The image of a linear map F : V → W 5 is denoted by imF or

F (V ) and is a subspace of W .

5i.e., the set of vectors w ∈W for which there is a v ∈ V with w = F (v)
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(3) The subset of elements of V mapped to 0 by a linear map
F : V → W is denoted by kerF and is called its kernel. It is
a subspace of V . A linear map F turns out to be injective iff
kerF = {0}.

(4) The composition of linear maps, say, F : V → W and G : W →
Z, is automatically linear. Instead of G ◦ F one often writes
GF .

(5) If a linear map F is linear and invertible, its inverse map F−1

is automatically linear.
(6) A linear map F : V → W is also called a homomorphism from

V to W .
(7) An invertible linear map F : V → W is also called an isomor-

phism from V to W .
(8) If an isomorphism from V to W exists, then V and W are

called isomorphic and one writes V ∼= W .
(9) A linear map F : V → V is also called an endomorphism of V

or a linear operator (or just an operator) on V . If it is invertible,
it is also called an automorphism. The identity map, denoted
by Id or IdV or 1, is an automorphism.

(10) If F is an endomorphism of V , a subspace W of V is called
F -invariant if F (W ) ⊆ W (i.e., F (w) ∈ W for every w ∈ W ).
The restriction of F to an invariant subspace W then yields
an endomorphism of W .

We introduce the following sets of linear maps and their additional
structures:

(1) Hom(V,W ) is the set of all homomorphisms from V to W . If
F,G ∈ Hom(V,W ), we define F +G ∈ Hom(V,W ) by

(F +G)(v) := F (v) +G(v).

We denote by 0 the zero homomorphism 0(v) = 0 for all v ∈
V . With the scalar multiplication (λF )(v) := λF (v), the set
Hom(V,W ) is a vector space over K.

(2) End(V ) = Hom(V, V ) is the set of all endomorphisms of V .
As a particular case of the above, it is a vector space over K.
It is also a ring with one, where the multiplication is given by
the composition and the one element is the identity map.

(3) Aut(V ) ⊂ End(V ) is the set of all automorphisms of V . It is
a group with multiplication given by composition.

Remark 1.30 (Injective linear maps). Note that a linear map F
is injective iff kerF = 0. In fact, if F is injective, then Fv = 0 = F0
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implies v = 0. On the other hand, the equality Fv = Fv′ implies, by
linearity, that v − v′ ∈ kerF , so if kerF = 0 then we have v = v′.

Definition 1.31 (Dual space). The vector space Hom(V,K) is usu-
ally denoted by V ∗ and called the dual space of V . Note that V ∗, like
every Hom space, is itself a vector space. An element α of V ∗ is a
linear map V → K and is usually called a linear functional or a linear
form or a covector. In addition to the notation α(v) to indicate α ∈ V ∗
evaluated on v ∈ V , one often writes (α, v).6

Example 1.32. A row vector α = (α1, . . . , αn) ∈ (Kn)∗ defines a
linear functional on Kn viav1

...
vn

 7→ (α,v) :=
n∑
i=1

αiv
i. (1.1)

One can show that these are all possible linear functionals on Kn, so
(Kn)∗ is the dual of Kn, which justifies the notation.

Definition 1.33 (Einstein’s convention). In these notes we will
follow a very handy convention introduced by A. Einstein according
to which, whenever an index appears twice in an expression, once as
a lower and once as an upper index, then a sum over that index is
understood.

Example 1.34. According to Einstein’s convention, the evaluation
of a row vector α on a column vector v, as in equation (1.1), is simply
written as

(α,v) = αiv
i.

Definition 1.35 (Bidual space). The dual space of the dual space
V ∗ of a vector space V is denoted by V ∗∗ and is called the bidual space
of V .

Remark 1.36. Note that every v ∈ V defines a linear functional
on V ∗ by V ∗ 3 α 7→ v(α) := α(v). Therefore, we may regard V
as a subspace of V ∗∗. We will see (Proposition 1.62) that, if V is
finite-dimensional, one actually has V = V ∗∗.

Remark 1.37 (Direct sum). Suppose V = V1 ⊕ V2 as in Exam-
ple 1.28.(2). Then we have the following relations among the projec-
tions:

P1 + P2 = 1, P 2
1 = P2, P 2

2 = P2, P1P2 = P2P1 = 0.

6This notation actually indicates the induced bilinear map V ∗ × V → K.
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Remark 1.38. More generally, an endomorphism P of V is called
a projection if

P 2 = P.

Note that Q := 1−P is also a projection and that we have PQ = QP =
0. This is related to the previous remark as follows: define V1 := imP
and V2 := imQ. Then we have V = V1 ⊕ V2 and P1 = P and P2 = Q.

Remark 1.39 (The dual map). A linear map F : V → W induces
a dual map F ∗ : W ∗ → V ∗ as follows: an element α of W ∗—i.e., a linear
functional on W—is mapped to F ∗α ∈ V ∗ defined by

(F ∗α)(v) := α(Fv).

Note that F ∗ is also linear. Moreover, F ∗∗ restricted to V is the map
F again. We will see in Section 1.5.2 that the dual of a map is related
to the transposition of matrices.

1.4. Bases

A basis of a K-vector space V is a collection (ei)i∈S of elements of
V such that for every vector v ∈ V there are are uniquely determined
scalars vi ∈ K, only finitely many of which are different from zero, such
that

v =
∑
i

viei.

Note that, by omitting the zero summands, this is a sum of finitely
many terms. The scalars vi are called the components of v in the given
basis. Using Einstein’s convention (see Definition 1.33), we write the
expansion of v in the basis (ei)i∈S as

v = viei.

Remark 1.40. In order to use Einstein’s convention, one has to be
consistent with the positioning of the indices. Typically we will use
lower indices for basis elements and, consequently, upper indices for
components of vectors. In some cases, see below, we use upper indices
for basis elements and, consequently, lower indices for components of
vectors.7

Example 1.41 (The standard bases). The space Kn has the stan-
dard basis (e1, . . . , en) where ei denotes the column vector that has a 1

7As will be explained later, we use upper indices for a basis of a dual space.
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in the ith position and a 0 otherwise. The space (Kn)∗ also has a stan-
dard basis, now with upper indices (e1, . . . , en), where ei denotes the
row vector that has a 1 in the ith position and a 0 otherwise. Namely:

v =

v1

...
vn

 =⇒ v = viei

v =
(
v1, . . . , vn

)
=⇒ v = vie

i

Remark 1.42 (Related concepts). Some important concepts are
related to the notion of basis. All the vectors mentioned in the following
list belong to a fixed K-vector space V .

(1) A linear combination of a finite collection v1, . . . , vk of vectors
is a vector of the form λivi with λi ∈ K. The set

Span{v1, . . . , vk} := {λivi, λi ∈ K}
of all linear combinations of v1, . . . , vk is called their span and
is a subspace of V . If the set contains a single vector v, instead
of Span{v} we also use the notation Kv, so

Kv = {λv, λ ∈ K}.
(2) A linear combination of a collection (ei)i∈S of vectors is by

definition a linear combination of a finite subcollection. When
writing λivi, it is then assumed that only finitely many λis are
different from zero. The set Spani∈S ei of linear combinations
of the vectors in the collection is also a subspace of V .

(3) A collection (ei)i∈S of vectors is called a system of generators for
V if every vector of V can be expressed as a linear combination
of the eis (but we do not require uniqueness of this expression).
In other words, Spani∈S ei = V . Each ei is called a generator.

(4) A collection (ei)i∈S of vectors is called linearly independent if a
linear combination can be zero only if all the coefficients are
zero. That is, if

λiei = 0 =⇒ λi = 0 ∀i.
The collection is called linearly dependent otherwise.

(5) A basis is then the same as a linearly independent system of
generators.

One can easily see that the following hold:

(1) If F : V → W is injective and (ei)i∈S is a linearly independent
family of vectors in V , then (Fei)i∈S is a linearly independent
family of vectors in W .
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(2) If F : V → W is surjective and (ei)i∈S is a system of generators
in V , then (Fei)i∈S is a system of generators in W .

Therefore,

Proposition 1.43. If F : V → W is an isomorphism and (ei)i∈S
is a basis of V , then (Fei)i∈S is a basis of W .

Moreover, one has the

Theorem 1.44. Any two bases of the same vector space have the
same cardinality.

If V admits a finite basis (i.e., a basis (ei)i∈S with S a finite set),
then it is called a finite-dimensional vector space; otherwise, it is called
an infinite-dimensional vector space.

Digression 1.45 (Existence of bases). By definition a finite-dimen-
sional vector space has a basis (actually, a finite one). By the axiom
of choice one can prove that every vector space has a basis (actually,
the existence of bases for all vector spaces is equivalent to the axiom
of choice).

Definition 1.46 (Dimension). If V is finite-dimensional with a
basis of cardinality n (i.e., |S| = n), then we set

dimV = n

and call it the dimension of V . Usually we then choose S = {1, . . . , n}
and denote the basis by (e1, . . . , en). Note that the trivial vector space
V = {0} is zero-dimensional. In particular, we have

dimKn = dim(Kn)∗ = n ∀n ∈ N.

If V is infinite-dimensional, we set

dimV =∞.

Remark 1.47 (Dimension over a field). The same abelian group
V may sometimes be regarded as a vector space over different fields
K. In this case, it is convenient to to remember which field we are
considering when computing the dimension: we will write dimK V for
the dimension of V as a K-vector space.

Remark 1.48 (Complex spaces as real spaces). In particular, a case
we will often encounter is that of a complex vector space V (i.e., a vector
space over C). For every real λ, we still have the scalar multiplication
v 7→ λv, so V may also be regarded as a real vector space (i.e., a vector
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space over R). If BC = (e1, . . . , en) is a basis of V as a complex vector
space, then8

BR = (e1, . . . , en, ie1, . . . , ien)

is a basis of V as a real one. In fact, every v ∈ V may uniquely be
expanded as λiei with λi ∈ C. Writing λi = ai+ibi, with ai and bi real,
we get the expansion v = aiei + biiei, so BR is a system of generators
over R.9 Moreover, if aiei+ biiei = 0 for ai, bi ∈ R, then λiei = 0; linear
independence of BC over C implies, for all i, λi = 0 and, therefore,
ai = bi = 0, which is linear independence of BR over R. Therefore, BR
is basis. We conclude that dimC V = n implies that dimR V = 2n; i.e.,

dimR V = 2 dimC V.

One can prove that a linearly independent collection (e1, . . . , en)
in an n-dimensional space is automatically a basis. This in particular
implies the following

Proposition 1.49. If V is a finite-dimensional vector space and
W is a subspace of V of the same dimension, then W = V .

Remark 1.50 (Direct sums and bases). There is a strong relation-
ship between the notions of direct sums and bases. Namely, by Defini-
tion 1.21, a collection (v1, . . . , vn) is a basis of V iff V =

⊕n
i=1 Kvi.

Remark 1.51 (Union of bases). Another relation is the following.

If V =
⊕k

i=1Wi and Bi = (vi,j)j=1,...,di is a basis of Wi, then

B := ∪ki=1Bi = (vi,j) i=1,...,k
j=1,...,di

is a basis of V . As a consequence,

dim
k⊕
i=1

Wi =
k∑
i=1

dimWi. (1.2)

Proof. By Definition 1.21, every v ∈ V uniquely decomposes as
v = w1+· · ·+wk with wi ∈ Wi. By definition of basis, every wi uniquely
decomposes as wi =

∑di
j=1 αi,jvi,j. Therefore, v uniquely decomposes

as v =
∑k

i=1

∑di
j=1 αi,jvi,j. �

8Here i denotes the imaginary unit, and iej is the scalar multiplication of the
scalar i with the vector ej .

9A standard convention in mathematics is to use italic characters for variables
and roman characters for constants. The imaginary unit, being a constant, is then
denoted by i, whereas i is a variable, like, e.g., the index in ei. By handwriting it
is however better to avoid using a variable i when the imaginary unit also appers.
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Remark 1.52 (The basis isomorphism). A basis B = (e1, . . . , en)
of V determines a linear map

φB : Kn → V

by

φB

v1

...
vn

 := viei.

In particular, we have
φBei = ei

for all i. Note that φB is an isomorphism with inverse φ−1
B : V → Kn

the map that sends v ∈ V to the column vector with components the
components of v in the basis B. The vector φ−1

B v is called the coordinate
vector of v. Note that we then have

dimV = n ⇐⇒ V ∼= Kn.

Remark 1.53. If V and W have the same finite dimension, then,
by composition of the above, we get an isomorphism V → W . Note
that such an isomorphism depends on the choice of bases.

Remark 1.54 (Bases and frames). When we define the isomor-
phism of Remark 1.52, the order in which we take the basis vectors
(e1, . . . , en) matters. This is an additional choice to just the notion of a
basis (which is by definition a collection, i.e., a set, of linearly indepen-
dent generators). A basis with a choice of ordering is more precisely
called a frame. According to a general habit, we will be sloppy about
it and speak of a basis also when we actually mean a frame as, e.g., in
Remark 1.52.

An immediate consequence of the basis isomorphism is the following

Proposition 1.55. Every subspace of a finite-dimensional vector
space has a complement.

Proof. Let V be n-dimensional, and let Z be a subspace of V .
By choosing a basis B, we have the isomorphism φB : Kn → V . Then
W := φ−1

B (Z) is a subspace of Kn. By Lemma 1.27, it has a complement
W ′. Finally, φB(W ′) is a complement of Z. �

Digression 1.56. By the axiom of choice, one can show that a
subspace of any vector space has a complement.

Definition 1.57 (Change of basis). If B and B′ are bases of an
n-dimensional space V , the composition

φB′B := φ−1
B′ φB ∈ Aut(Kn)
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is called the corresponding change of basis.

Remark 1.58. If you have a vector v ∈ V , then φ−1
B v is the column

vector of its components in the basis B. The column vector φ−1
B′ v of its

components in the basis B′ is then related to φ−1
B v by

φ−1
B′ v = φB′Bφ

−1
B v.

Therefore, φB′B maps the coordinate vector in the B basis to the co-
ordinate vector in the B′ basis. (A more descriptive, but also more
cumbersome, notation would be φB′←B instead of φB′B.)

B′ basis

V V

Kn Kn

φB′B

φB′ φB B basis

Remark 1.59 (The dual basis). A basis B = (e1, . . . , en) of V
allows defining uniquely the components vi of any vector v. The map

ei : V → K
v 7→ vi

is linear for every i. The collection B∗ := (e1, . . . , en) of linear function-
als is called the dual basis of V ∗—more precisely, the basis of V ∗ dual
to B—and satisfies, by definition,

ei(ej) = δij :=

{
1 if i = j,

0 if i 6= j,

where δij is called the Kronecker delta. It is indeed a basis of V ∗. In

fact, if α := αie
i = 0, then 0 = α(ej) = αj for every j, so (e1, . . . , en) is

linearly independent. Moreover, given any α ∈ V ∗, we get

α(v) = α(viei) = viα(ei) = ei(v)α(ei) = (α(ei)e
i)(v),

which shows that (e1, . . . , en) is a system of generators and that, in
particular, we can compute the component αi of α as α(ei).

Example 1.60. The basis (e1, . . . , en) of (Kn)∗ is the dual basis to
(e1, . . . , en).

More generally, we have proved the

Proposition 1.61. If V is a finite-dimensional vector space, then

dimV ∗ = dimV.
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This also implies that dimV ∗∗ = dimV . As a consequence of Re-
mark 1.36 and of Proposition 1.49, we get the

Proposition 1.62. If V is a finite-dimensional vector space, then

V ∗∗ = V.

Remark 1.63 (Canonical and noncanonical maps). A linear map is
called canonical if it does not depend on any additional structure. For
example, if W is a subspace of V , the inclusion map is canonical. If
V = W1⊕W2, the projections from V to W1 and W2 are also canonical.
If W is a subspace of V , we can always find a complement W ′, so we
can write V = W ⊕ W ′ and, therefore, get a projection V → W .
This projection is not canonical because it depends on the choice of
a complement. Similarly, we saw that that every element V defines a
linear functional on V ∗, so we have a canonical inclusion map of V into
V ∗∗. If V is finite dimensional, we then have a canonical isomorphism
between V and V ∗∗: we therefore write V = V ∗∗. On the other hand,
by Proposition 1.61 and Remark 1.53, we also have an isomorphism
between V and V ∗, but this is not canonical because it depends on the
choice of a basis. Explicitly, the map V → V ∗ sends viei to

∑n
i=1 v

iei

(note that we cannot use Einstein’s convention in this case).

Example 1.64. With respect to the standard basis, the isomor-
phism Kn ∼−→ (Kn)∗, as at the end of the previous remark, is the trans-
position map v 7→ vT: v1

...
vn

 7→ (v1, . . . , vn).

1.5. Representing matrices

If F : V → W is a linear map and (ei)i∈S is a basis of V , then the
values of F on the eis are enough to reconstruct F ; in fact, every v ∈ V
is uniquely expanded as viei, so by linearity we get

F (v) = viF (ei).

Vice versa, we can define a linear map F : V → W by specifying wi :=
F (ei) ∈ W for all i ∈ S.

If (ēı̄)ı̄∈S̄ is a basis of W , we may expand F (ei) as

F (ei) = Aı̄i ēı̄, (1.3)

where, by Einstein’s convention, a sum over ı̄ is understood. The scalars
Aı̄i are the entries of the representing matrix A of F . On a generic vector
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v = viei ∈ V we then get

F (v) = viAı̄i ēı̄.

We now assume that V and W are finite-dimensional: say, dimV =
n and dimW = m. Then

A = (Aı̄i) i=1,...,n
ı̄=1,...,m

=


A1

1 A1
2 · · · A1

n

A2
1 A2

2 · · · A2
n

...
...

. . .
...

Am1 Am2 · · · Amn


is called an m× n matrix.

Remark 1.65. Note that we consistently put the indices in upper
and lower positions. We will also encounter matrices with only lower
indices representing bilinear forms.

Remark 1.66 (Normal form). Given a linear map F : V → W
between finite-dimensional vector spaces, one can always find bases
e1, . . . , en of V and ē1, . . . , ēm of W such that the representing matrix
of F reads

A =

(
1r 0r,n−r

0m−r,r 0m−r,n−r

)
,

where 1r denotes the r × r identity matrix and 0i,j denotes the i × j
zero matrix. Here r = dim imF is called the rank of F . From this
presentation it also follows that the kernel of F corresponds, under the
isomorphism to Kn induced by the basis, to vectors of the form

0
...
0

vr+1

...
vn


,

which show that dim kerF = n− r. We thus get the dimension formula

dim kerF + dim imF = dimV (1.4)

for any linear map F : V → W .

If F : V → W is an isomorphism, then kerF = 0 (see Remark 1.30)
and imF = W , so we get dimV = dimW . If, on the other hand, V and
W have the same finite dimension n, then each of them is isomorphic
to Kn by the basis isomorphism of Remark 1.52. Therefore,

Proposition 1.67. Two finite-dimensional vector spaces are iso-
morphic iff they have the same dimension.
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1.5.1. Operations. If B is the representing matrix of another
linear mapG : V → W , with respect to the same bases, the representing
matrix of F +G is A+B, where addition is defined entry-wise:

(A+B)ı̄i = Aı̄i +B ı̄
i .

If G is instead a linear map W → Z, the collection (ẽı̃)ı̃=1,...,k is a
basis of Z, and B is the corresponding k ×m representing matrix of
G, then the representing matrix of GF is the k×n matrix BA, where
the matrix multiplication is defined by10

(BA)ı̃i = B ı̃
ı̄A

ı̄
i.

1.5.2. Duals. If F ∗ : W ∗ → V ∗ is the dual map, see Remark 1.39,
of a linear map F : V → W with representing matrix A, then we get,
for α = ᾱ ē

̄ ∈ W ∗ and v = viei ∈ V ,

F ∗(α)(v) = α(Fv) = ᾱ ē
̄(viAı̄i ēı̄) = αı̄A

ı̄
i v

i,

where ē1, . . . , ēm is the dual basis to ē1, . . . , ēm. To compute the ith
component of F ∗α, we evaluate on v = ei getting (F ∗α)i = αı̄A

ı̄
i, so

F ∗(α) = αı̄A
ı̄
i e
i.

To get the representing matrix of F ∗, we then compute

F ∗(ēı̄) = Aı̄i e
i. (1.5)

The difference between (1.3) and (1.5) is that in the former we sum
over the upper index whereas in the latter we sum over the lower index
of the matrix A. In the usual notation with two lower indices, this
correponds to summing over the first or second index, and the two
representing matrices are related by the exchange of the indices—the
operation known as transposition: if A is the representing matrix of F ,
with respect to some bases, then AT is the representing matrix of F ∗

with respect to the dual bases.

Remark 1.68. When working with vector spaces of row or column
vectors, the standard basis is always assumed, unless otherwise speci-
fied. A linear map between such subspaces is then always understood as
the corresponding matrix. We would in particular write A : Kn → Km

to denote the linear map with representing matrix A with respect to
the standard bases, i.e., the map v 7→ Av, where we use matrix mul-
tiplication. Note that the jth row of A is equal to Aej. One can also
easily see that the dual map, acting on row vectors, is instead given by
α 7→ αA.

10Comparing with the usual way of writing a product of matrices, we see here
that the upper index is the first index and the lower index is the second index.
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1.5.3. Change of basis. If we want to keep track of the chosen
bases, we need a more descriptive notation. Let B = (e1, . . . , en) be
the chosen basis of V and B̄ = (ē1, . . . , ēm) the chosen basis of W . The
representing matrix of a linear map F : V → W with respect to the
bases B and B̄ is then denoted by FB̄B.

As we identify linear maps Kn → Km with their representing ma-
trices with respect to the standard bases, we may regard FB̄B as an
m × n matrix or, equivalently, as a linear map. In the latter case, we
have, in terms of the basis isomorphisms of Remark 1.52,

FB̄B = φ−1
B̄ FφB.

If we choose another basis B′ of V and another basis B̄′ of W , we
then have, using the notation of Definition 1.57,

FB̄′B′ = φ−1
B̄′ FφB′ = φ−1

B̄′ φB̄FB̄Bφ
−1
B φB′ = φB̄′B̄FB̄BφBB′ ,

i.e.,

FB̄′B′ = φB̄′B̄FB̄BφBB′ .

It is easy to remember this formula, for it looks similar to the formula
for matrix product, with indices replaced by bases.

Remark 1.69 (Equivalence of matrices). The formula for the change
of bases motivates the following definition of equivalence of matrices.
Two m × n matrices A and B are called equivalent if there is an in-
vertible m×m matrix T and an invertible n× n matrix S such that

A = TBS.

By this definition, any two representing matrices of the same linear
map are equivalent, as we may see by setting A = FB̄′B′ , B = FB̄B,
S = φBB′ , and T = φB̄′B̄. Note that, explicitly, we have

Aı̄
′

i′ = T ı̄
′

ı̄ B
ı̄
iS

i
i′ .

Also useful are the formulae

e′i′ = Sii′ei and ēı̄ = T ı̄
′

ı̄ ē
′
ı̄′ .

Let us prove the first (the second is analogous):

Sii′ei = Sii′φBei = φB(Sii′ei) = φB(φBB′ei′) = φB′ei′ = e′i′ ,

where we also used the linearity of φB and the definition φBB′ = φ−1
B φB′ .
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1.5.4. Endomorphisms. If F is an endomorphism of a finite-di-
mensional vector space V , one usually chooses the same basis (say, B)
for V as source and target space. In this case, the representing matrix
of V , now a square matrix,11 with respect to the basis B is written FB
and we have

FB = φ−1
B FφB.

If we pass to another basis (say, B′), we then have

FB′ = φB′BFBφBB′ .

Observing that the isomorphisms φB′B and φBB′ are inverse to each
other, we can also write

FB′ = φ−1
BB′FBφBB′ .

Remark 1.70 (Similarity of matrices). The formula for the change
of basis for the representing matrix of an endomorphism motivates the
following definition of similarity of matrices. Two n×n matrices A and
B are called similar if there is an invertible n× n matrix S such that

A = S−1BS.

By this definition, any two representing matrices of the same endomor-
phism are similar.

1.5.5. Bilinear forms. A bilinear form on a K-vector space V is
a map B : V × V → K that is linear in both arguments; viz.,

B(λ1v1 + λ2v2, w) = λ1B(v1, w) + λ2B(v2, w),

B(v, λ1w1 + λ2w2) = λ1B(v, w1) + λ2B(v, w2).

If B = {e1, . . . , en} is a basis of V , the representing matrix B of a
bilinear form B has the entries

Bij := B(ei, ej). (1.6)

Note that, consistently with the r.h.s., we use lower indices for the
entries of the representing matrix.

Now consider a new basis B′ = {e′1, . . . , e′n} and denote by S the
matrix representing, in the standard basis of Kn, the change of basis
φBB′ ; i.e., as we showed above,

e′i′ = Sii′ei.

Denoting by B′ the representing matrix of B in the basis B′, we then
have

B′i′j′ = Sii′BijS
j
j′ .

11i.e., a matrix with the same number of rows and columns
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Remark 1.71 (Congruency of matrices). The formula for the change
of basis of a bilinear form motivates the following definition of congru-
ency of matrices. Two n× n matrices B and B′ are called congruent if
there is an invertible n× n matrix S such that

B′ = STBS,

where T denotes transposition. By this definition, any two representing
matrices of the same bilinear form are congruent.12

1.6. Traces and determinants

Trace and determinant are particularly important functions on square
matrices which we review here.

The trace of an n×n matrix A is the sum of its diagonal elements.
If we write A = (Aij), then

trA = Aii,

where we used Einstein’s convention. If we we write A = Aij, then we
have to write the sum symbol explicitly: trA =

∑n
i=1Aii. (The fact

that this second notation is incompatible with Einstein’s convention is
related to the fact that the trace of a bilinear form is not a natural
operation.)

Immediate properties of the trace are

(1) trAT = trA for every n× n matrix, and
(2) trAB = trBA for all n× n matrices A,B.

The second property implies trS−1BS = trB, so similar matrices—
see Remark 1.70—have the same trace. Therefore, we can make the
following

Definition 1.72. The trace of an endomorphism F of a finite-di-
mensional vector space V is the trace of any of its representing matrices:
trF := trFB, where B is any basis of V .

Congruent matrices may on the other hand have different traces.
For this reason the trace of a bilinear form is not a well-defined concept,
as it depends on the explicit choice of a basis.13

We conclude with a few additional properties of the trace:

12Note that in the explicit formula (1.6) it is the upper index of the first S that
is the same as the first index of B, whereas in the usual product of matrices—see
footnote 10—it should be the lower index to be involved. It is for this reason that
the first S is actually transposed.

13It is well-defined if we may restrict to a special class of bases that are related
to each other by an orthogonal transformation, i.e., if we only allow congruences
B′ = STBS with SST = 1.
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(1) The trace is linear: tr(λA+λB) = λ trA+µ trB for all n×n
matrices A,B and for all scalars λ, µ.

(2) tr 1n = n if 1n is the identity matrix on Kn.
(3) tr : End(V )→ K is a linear map: tr(λF+λG) = λ trF+µ trG

for all endomorphisms F,G of the finite-dimensional space V
and for all scalars λ, µ.

(4) tr IdV = dimV .

The determinant of a square matrix can be uniquely characterized by
some properties or can be, equivalently, defined by an explicit formula.
The defining properties are the following:

(1) The determinant is linear with respect to every column of the
matrix.

(2) The determinant vanishes if any two column of the matrix are
equal.

(3) The determinant of the identity matrix is 1.

One can show that, for every n, there is a unique map Matn×n(K)→ K
satisfying these three properties, and this map is called the determi-
nant. In words, one says that the determininant is the unique alter-
nating multilinear normalized map on the columns of a square matrix.
Some derived properties are the following:

(D.1) Properties (1) and (2) above hold taking rows instead of colums.
(D.2) detAT = detA for every n× n matrix A.
(D.3) If two columns (or two rows) are exchanged the determinant

changes sign.
(D.4) If one adds to a column a linear combination of the other columns

(or to a row a linear combination of the other rows) the deter-
minant does not change.

(D.5) det(λA) = λn detA for every n × n matrix A and every scalar
λ.

(D.6) The determinant of a diagonal matrix or of an upper triangular
matrix or of a lower triangular matrix is equal to the product of
its diagonal elements.

(D.7) detAB = detA detB for all n× n matrices A,B.
(D.8) detA 6= 0 iff A is invertible. By the previous property, we also

see that in this case, detA−1 = (detA)−1.
(D.9) A collection v1, . . . ,vn of vectors of Kn is a basis iff the deter-

minant of the matrix S whose ith column is vi is different from
zero. (Note that vi = Sei for all i.)

(D.10) The determinant of a block-diagonal matrix is the product of the
determinants of its blocks: det (A 0

0 D ) = detA detD, where A
and D are square matrices.
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(D.11) More generally, det (A B
0 D ) = detA detD, where A and D are

square matrices.

The last property is derived from the others by the following remarks.
We should distinguish the case when A is invertible and when it is not.
In the second case, there is some nonzero vector v in the kernel of A.
By completing v with zeros, we get a nonzero vector in the kernel of
det (A B

0 D ), which is then also not invertible. In this case, both sides
of the equality vanish by (D.8). If, on the other hand, A is invertible,
we can write (A B

0 D ) = (A 0
0 D )

(
1 A−1B
0 1

)
. The determinant of the first

matrix on the right hand side is detA detD by (D.10), whereas the
determinant of the second is 1 by (D.6).

The determinant of an n× n matrix A = Aij can also be explicitly
computed by the Leibniz formula

detA =
∑
σ∈Sn

sgnσA1
σ(1) . . . A

n
σ(n), (1.7)

where sgnσ is the sign of the permutation σ.14 In particular,

det

(
a b
c d

)
= ad− bc.

The determinant can also be computed in terms of the Laplace expansion
along the ith row

detA =
n∑
j=1

(−1)i+jAijd
i
j, (1.8)

where dij is the determinant of the matrix obtained by removing the ith
row and the jth column from A. For example, the Laplace expansion
of a 3× 3 matrix along the first row is

det

a b c
d e f
g h i

 = a det

(
e f
h i

)
− b det

(
d f
g i

)
+ c det

(
d e
g h

)
.

An analogus formula for the expansion along a column also exists as a
consequence of (D.2).

An immediate consequence of the Laplace expansion is the following
formula for the determinant of a perturbation of the identity matrix.

14Every permutation may be written, in a nonunique way, as a product of trans-
positions, i.e., permutations that exchange exactly two elements. The parity of the
number of occurring transpositions does not depend on the decomposition. The sign
of a permutation is then defined as −1 to the number of occurring transpositions.
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Proposition 1.73. Let A be an n× n real or complex matrix and
h a scalar. Then

det eAh = det(1 + hA+O(h2)) = 1 + h trA+O(h2). (1.9)

Proof. For a given n × n matrix B, we write Bkk for its lower
right (n− k)× (n− k) block. We then have

det(1 + hA+O(h2)) = (1 + ha11) det(1 + hA+O(h2))11 +O(h2).

In fact, the explicit summand on the right hand side is the first term
in the Laplace expansion along the first row. The remaining terms are
of the form ha1j, j > 1, times the determinant of the matrix obtained
removing the first row and the jth column. Since the first column of

this matrix is the vector h

( a21
...
an1

)
, this determinant is of order h, so

ha1j times this determinant is of order h2. We can now repeat this
argument inductively on the lower right blocks:

det(1 + hA+O(h2)) = (1 + ha11) det(1 + hA+O(h2))11 +O(h2)

= (1 + ha11)(1 + ha22) det(1 + hA+O(h2))22 +O(h2)

= · · · = (1 + ha11) · · · (1 + hann) +O(h2).

Finally, observe that (1 +ha11) · · · (1 +hann) = 1 +h trA+O(h2). �

The determinant may also be used to compute the inverse of an
invertible matrix as

A−1 =
1

detA
adjA,

where adjA denotes the adjugate matrix of A, i.e., the matrix whose
(i, j) entry is (−1)i+j times the determinant dji of the matrix obtained
by removing the the jth row and and ith column from A. This formula
is theoretically important—it shows, e.g., that the entries of A−1 are
rational functions of the entries of A—but practically not so useful,
apart from the 2× 2 case, which is also easy to remember:(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
. (1.10)

Namely, apart from dividing by the determinant, we just have to swap
the diagonal entries and change the sign of the off diagonal entries.

Determinants may also be used, via property (D.8), to establish
whether a linear map F : V → W between finite-dimensional vector
spaces is invertible. By Proposition 1.67, we know that a necessary
condition is that V and W have the same dimension, say, n. A repre-
senting matrix of F is then an n×n matrix, which by (D.8) is invertible
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iff its determinant is different from zero.15 On the other hand, F is in-
vertible iff any of its representing matrices is so. Therefore, we have
the

Proposition 1.74. A linear map F : V → W between finite-di-
mensional vector spaces is invertible iff dimV = dimW and the deter-
minant of any of its representing matrices is different from zero.

It follows from (D.7) and (D.8) that detS−1BS = detB, so similar
matrices—see Remark 1.70—have the same determinant. Therefore,
we can make the following

Definition 1.75. The determinant of an endomorphism F of a finite-
dimensional vector space V is the determinant of any of its representing
matrices: detF := detFB, where B is any basis of V .

In particular, an endomorphism is invertible iff its determinant is
different from zero.

Remark 1.76 (Discriminants). Congruent matrices may on the
other hand have different determinants. We see however, from (D.2)
and (D.7), that B′ = STBS implies detB′ = (detS)2 detB, so the
determinant changes by a factor that is the square of a nonzero scalar.
The discriminant of a matrix is by definition its determinant up to such a
factor. It follows that congruent matrices have the same discriminant
and that we may define the discriminant of a bilinear form as the
discriminant of any of its representing matrices. If we work over C,
where every element is a square, the only meaningful statement we
can make is whether the discriminant is equal to zero or different from
zero. Over R, we can refine this and speak of strictly positive, strictly
negative or zero discriminants.

15Note that this statment is independent of the chosen bases. In fact, any
two representing matrices of F are equivalent n × n matrices A and B, as in
Remark 1.69, i.e., A = TBS, where S and T are invertible. We then have, by
(D.7), detA = cdetB, where c = detS detT is a nonzero number.



CHAPTER 2

Linear ODEs and Diagonalization of
Endomorphisms

In this chapter we discuss the problem of bringing an endomor-
phism, via a suitable choice of basis, to a diagonal representing matrix,
whenever possible. We start by motivating this problem with the study
of systems of linear ordinary differential equations with constant coef-
ficients.

2.1. Differential equations

An ordinary differential equation (ODE) is an equation whose un-
known is a differentiable function of one variable that appears in the
equation together with its derivatives.

Newton’s equation F = ma is an example of an ODE. In this case,
the unknown is a path x(t).1 In normal form (i.e., with the highest
derivative set in evidence on the left hand side) the equation reads

ẍ =
1

m
F (x, ẋ, t).

A solution is a specific function x(t) that satisfies the equation for all t
in some open interval (possibly the whole of R). In the one-dimensional
case, this is a single equation, but if we consider the problem in three
space dimensions, we get a system of ODEs—one equation for each
component. We also get a system is we describe the interaction of
several particles.

The order of an ODE (or of a system of ODEs) corresponds to
highest derivative occurring in it. For example, Newton’s equation (like
many fundamental equations in physics) is a second-order ODE. It is
possible to reduce the order by the following trick, which we illustrate in
the case of Newton’s equation. Namely, we introduce the momentum
p := mv. We can then rewrite Newton’s equation as the first-order

1By path we mean a (twice) differentiable map whose domain is an interval.

33
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system 
ẋ =

p

m

ṗ = F
(
x,

p

m
, t
)

where now the pair (x, p) is regarded as the unknown.
The Cauchy problem for a system of first-order ODEs consists of the

system together the specification of the variables at some initial time.
The theory of ODEs is discussed in the analysis classes, and there

it is proved, under some mild conditions, that a Cauchy problem has a
unique solution (in an open interval around the initial time).

We will consider here only linear (systems of) first-order ODEs with
constant coefficients, where methods of linear algebra can be used.

2.1.1. Linear ODEs with constant coefficients. ODEs are
called linear if the unknown and its derivatives appear linearly. The
ODE is called homogenous if there is no term independent of them,
inhonogeneous otherwise.

A linear first-order ODE is then the equation ẋ = ax, when homo-
geneous, and ẋ = ax+b, when inhomogeneous, where a and b are given
functions of t. We say that the equation has constant coefficients if a
is constant.

Notation 2.1. It is a standard practice in the theory of ODEs to
write (t) after a variable to specify that it is not assumed to be constant.
If (t) does not appear, the variable is assumed to be a constant. The
unknown function is written without (t) in the equation, as the notation
x(t) is reserved for writing a solution. Therefore, a linear first-order
ODE constant coefficients is written as

ẋ = ax+ b(t). (2.1)

In the homogeneous case—i.e., when b(t) = 0—we write

ẋ = ax. (2.2)

Example 2.2 (Growth processes). The homogenous equation ẋ =
ax with constant a describes a growth process where the growth ẋ
is proportional to the quantity x itself (properly speaking, we have
a growth when a > 0 and a decay when a < 0). Such equation is
widely used: e.g., in economics to describe capital growth by compound
interest, in biology to describe growth (or decline) of a population, in
physics to describe radioactive decay.

To solve (2.2), we introduce y(t) := e−atx(t). Differentianting we
get ẏ = e−at(ẋ − ax). Therefore, x is a solution to (2.2) iff ẏ = 0,
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i.e., y = c, where c is a constant. We then get the general solution
x(t) = eatc. We can also rephrase this as the

Proposition 2.3. The Cauchy problem{
ẋ = ax
x(0) = x0

for a homogenous linear ODE with constant coefficient a has the unique
solution

x(t) = eatx0. (2.3)

The solution is defined for all t ∈ R.

By the same trick, we may also study the associated nonhomoge-
nous equation (2.1), where b(t) is not necessarily assumed to be con-
stant. Namely, we write again y(t) := e−atx(t). In this case, x is a
solution to (2.1) iff ẏ = e−at b(t), so we can get y, and hence x, by

integrating e−atb(t). Namely, we have y(t) = c +
∫ t

0
e−as b(s) ds, where

c is a constant. Therefore, we have the general solution

x(t) = eatc+

∫ t

0

ea(t−s) b(s) ds. (2.4)

This leads to the

Proposition 2.4. The Cauchy problem{
ẋ = ax+ b(t)
x(0) = x0

for a nonhomogenous linear ODE with constant coefficient a has the
unique solution

x(t) = eatx0 +

∫ t

0

ea(t−s) b(s) ds. (2.5)

The solution is defined for all t ∈ R.

2.1.2. Systems of linear ODEs with constant coefficients.
A system of the form

ẋ = Ax+ b(t), (2.6)

where A is a given n × n matrix (with constant entries), called the
coefficient matrix, and b is a given map from an open interval to Rn,
is called a system of n linear ODEs with constant coefficients. For b(t)
the zero map, we have the system

ẋ = Ax, (2.7)

which is called homogeneous.
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Example 2.5 (Harmonic oscillator). Consider Newton’s equation
in one dimension with force F = −kx, where k is a given positive
constant. The second-order ODE mẍ = −kx may be rewritten as the
system {

ẋ =
p

m
ṗ = −kx

which can be brought in matrix form ẋ = Ax by setting x = ( xp ) and

A =

(
0 1

m
−k 0

)
.

Example 2.6 (Homogenous nth-order linear ODE with constant
coefficients). Consider the ODE

x(n) + a1x
(n−1) + · · ·+ an−1ẋ+ anx = 0, (2.8)

where a1, . . . , an are given constants. This ODE can be rewritten as a
system by defining

x :=


x
ẋ
...

x(n−2)

x(n−1)

 .

In fact, we have

ẋ =


ẋ
ẍ
...

x(n−1)

x(n)

 =


ẋ
ẍ
...

x(n−1)

−a1x
(n−1) − · · · − an−1ẋ− anx

 .

Therefore, the ODE (2.8) is equivalent to the system (2.7) with

A =


0 1
0 0 1
· · · · · · · · · · · · · · ·
0 · · · · · · 0 1
−an −an−1 · · · −a2 −a1

 , (2.9)

where all the nondisplayed entries are equal to zero.

Example 2.7 (Infinite-dimensional examples). In physics one also
studies equations involving functions of several variables together with
their partial derivatives—these are called partial differential equations
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(PDEs). Several important PDEs in physics are linear. For example,
the wave equation

1

c2

∂2ψ

∂t2
= ∆ψ,

the heat equation
∂ψ

∂t
= α∆ψ,

and the Schrödinger equation

i

~
∂ψ

∂t
= − ~2

2m
∆ψ + V ψ.

In these examples, ψ is a function (real in the first two cases and com-
plex in the third) of the time variable t and the space variables x, y, z;

∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplace operator; c, α, ~, and m are real con-

stants (respectively: velocity, diffusivity, Planck constant, mass); and
V is a real function of the space variables (the potential). Each of these
equations may be viewed as a system of linear ODEs with constant coef-
ficients in the infinite-dimensional vector space C2(R3) of twice differen-
tiable functions in the space variables. The unknown ψ(t;x, y, z) is then
viewed as map R → C2(R3), t 7→ ψt, with ψt(x, y, z) := ψ(t;x, y, z).
The techniques we present in this section for finite systems of linear
ODEs with constant coefficients may be extended to these infinite-di-
mensional systems, but we will not do it here.

Example 2.8 (Diagonal case). The homogeneous system (2.6) may
be easily solved if the coefficient matrix is diagonal. Namely, suppose
A = D with D diagonal with diagonal entries λ1, . . . , λn:

D =

λ1

. . .
λn

 . (2.10)

The system then splits into n independent equations

ẋ1 = λ1x
1, . . . , ẋn = λnx

n.

The ith equation has the general solution xi(t) = eλitci, where ci is
a constant. It then follows that the associated Cauchy problem with
initial condition x(0) = x0 has the unique solution xi(t) = eλitxi0,
which is defined for all t ∈ R, for i = 1, . . . , n. If we denote by eDt the
diagonal matrix with diagonal entries eλ1t, . . . , eλnt,

eDt =

eλ1t

. . .

eλnt

 , (2.11)
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we can write the unique solution as

x(t) = eDtx0. (2.12)

Digression 2.9 (Upper triangular case). The homogenous case
when the coefficient matrix is upper triangular may also be easily
solved. To illustrate the idea, we consider the two-dimensional case
with A =

(
λ1 β
0 λ2

)
. We then have the two equations

ẋ1 = λ1x
1 + βx2, ẋ2 = λ2x

2.

The second equation is independent of x1 and has the general solution
x2(t) = eλ2tc2, where c2 is a constant. We may plug this solution into
the first equation getting the nonhomogenous equation

ẋ1 = λ1x
1 + β eλ2tc2,

which can be solved using (2.4) with b(t) = eλ2tβc2. If λ1 6= λ2, we
then get

x1(t) = eλ1tc1 +
eλ2t

λ2 − λ1

βc2,

where c1 is a new constant. If λ1 = λ2 = λ, we get instead

x1(t) = eλtc1 + t eλtβc2.

Note that in the “degenerate case” when λ1 = λ2, the solution does
not only depend on exponential functions but also has a factor t. The
general case, with A upper triangular, is solved similarly. One solves
the equations iteratively from the last equation, which only depends
on the last component of x, to the first. Every time one inserts the
solution into the previous equation, which then turns out to be a non-
homogeneous linear ODE that can be solved by (2.4). By induction
one sees that the inhomogenous term b(t) is a linear combination of
products of exponential and polynomials. In conclusion, the general
solution will also be given by a linear combination of products of expo-
nentials and polynomials. If the diagonal entries are all different, the
general solution is simply a linear combination of exponentials.

2.1.3. The matrix exponential. Following the examples of the
solutions (2.3) and (2.12), we now want to get a general solution to
(2.7) in the form of an exponential.

The exponential of a square matrix A is defined by extending to
matrices the usual series defining the exponential of a real or complex
number:

eA :=
∞∑
k=0

1

k!
Ak = 1 +A+

1

2
A2 + · · · .
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One can easily see that the series converges for any matrix A and,
moreover, that the power series

eAt =
∞∑
k=0

tk

k!
Ak = 1 + tA+

t2

2
A2 + · · · .

has infinite radius of convergence. It follows that it defines a smooth
(i.e., infinitely often continuously differentiable) function and that tak-
ing a derivative commutes with the sum, so we get

d

dt
eAt = eAtA = AeAt. (2.13)

Moreover, from

eA0 = 1,

we see that U(t) := eAt is the unique solution to the matrix Cauchy
problem {

U̇ = AU
U (0) = 1

Remark 2.10. The matrix exponential has the following proper-
ties, which can be easily proved:

(1) As in the case of the exponential of a number,

eA(t+s) = eAt eAs (2.14)

for all t, s ∈ C. In particular, taking s = −t, we see that

1 = eAte−At,

so eAt is always invertible and its inverse is e−At.
(2) If A and B commute (i.e., AB = BA), then in the product

of two exponentials we can rearrange the factors. Therefore,
we have

eA+B = eA eB if AB = BA. (2.15)

Note that this equation does not hold if A and B do not
commute because on the right hand side all powers ofA comes
to the left and all powers of B to the right, whereas on the
left hand side powers of A and B come in all possible orders.

(3) For every invertible matrix S, we have

eS
−1AS = S−1eAS. (2.16)

This follows from (S−1AS)k = S−1AkS, which is easily proved
for all k.
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(4) For every square matrices A and B, we have

e

A 0
0 B


=

(
eA 0
0 eB

)
. (2.17)

This follow from (A 0
0 B )

k
=
(
Ak 0
0 Bk

)
, which is easily proved

for all k.

One more interesting property of the matrix exponential is given
by the following

Proposition 2.11. Let A be a square matrix. Then

det eAt = et trA

for every t.

Proof. We consider the function d(t) := det eAt and compute its
derivative. Using (2.14) and the multiplicativity of the determinant—
i.e, property (D.7) on page 29—we have d(t+h) = d(t)d(h). Therefore,
using d(0) = 1, we have

ḋ(t) = lim
h→0

d(t+ h)− d(t)

h
= lim

h→0

d(h)− 1

h
d(t) = ad(t)

with a := ḋ(0). By Proposition 2.3, we then have d(t) = eat. To
complete the proof, we only have to show that a = trA. This can be
done explicitly by using the formula

det eAh = det(1 + hA+O(h2)) = 1 + h trA+O(h2),

which is equation (1.9). �

We may use the matrix exponential to solve any homogeneous linear
system of ODEs with constant coefficients ẋ = Ax by the same trick we
used in the case of a single equation. Namely, we introduce y := e−Atx.
Differentianting, thanks to (2.13), we get ẏ = e−At(ẋ−Ax). Therefore,
x is a solution to (2.7) iff ẏ = 0, i.e., y = c, where c is a constant
vector. We then get the general solution x(t) = eAtc. We can also
rephrase this as the

Proposition 2.12. The Cauchy problem{
ẋ = Ax
x(0) = x0

for a homogenous linear system of ODEs with constant coefficients has
the unique solution

x(t) = eAtx0. (2.18)

The solution is defined for all t ∈ R.
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By the same trick, we may also study the associated nonhomoge-
nous equation (2.6), where b(t) is a (not necessarily constant) map from
an interval to Rn. Namely, we write again y := e−Atx. In this case, x is
a solution to (2.6) iff ẏ = e−At b(t), so we can get y, and hence x, by in-

tegrating e−At b(t). Namely, we have y(t) = c+
∫ t

0
e−As b(s) ds, where

c is a constant vector, and the integral is computed componentwise.
Therefore, we have the general solution

x(t) = eAtc+

∫ t

0

eA(t−s) b(s) ds. (2.19)

2.1.4. Computing the matrix exponential. The practical prob-
lem consists in computing the exponential of a given matrix A. The
simplest case is when the matrix A is diagonal, A = D with D as in
(2.10). In fact, we have

Dk =

λk1 . . .

λkn

 ,

so eDt is as in (2.11). This way we recover the solution discussed in
Example 2.8.

Thanks to (2.13), we can also explictly compute the exponential
of a diagonalizable matrix, i.e., a square matrix A that is similar to a
diagonal matrix D. Writing

S−1AS = D

for some invertible matrix S, we get the solution to the associated
Cauchy problem in the form

x(t) = S−1

eλ1t

. . .

eλnt

Sx0,

where λ1, . . . , λn are the diagonal elements of D. In the next sections
we will develop methods to determine the scalars λ1, . . . , λn and the
matrix S, whenever possible.

Remark 2.13. Not every matrix is diagonalizable. Consider, e.g.,
A = ( 0 1

0 0 ). Pick an invertible matrix S = ( a bc d ). Computing S−1 as in
(1.10), we then get

S−1AS =
1

ad− bc

(
dc d2

−c2 −cd

)
.

Since S is invertible, the entries c and d cannot be both zero, so the
right and side cannot be a diagonal matrix.
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Digression 2.14. By Digression 2.9, and by (2.13), we can also
explicitly compute the exponential of a matrix that is similar to an
upper triangular matrix. This turns out to be always possible if we
work over complex numbers. (See Section 2.4.)

Example 2.15. Consider again the nondiagonalizable matrix A =
( 0 1

0 0 ). We can compute its exponential explicitly as follows. We easily
see that A2 = 0, which in turn implies An = 0 for all n > 1. Therefore,

eAt = 1 + tA =

(
1 t
0 1

)
.

This exponential actually solves the problem of the free particle

mẍ = 0,

which is the same as the harmonic oscillator of Example 2.5 but with

k = 0. The coefficient matrix is in this case A =
(

0 1
m

0 0

)
, i.e., 1

m
times

the matrix considered above. In this case, we have

eAt = 1 + tA =

(
1 t

m
0 1

)
.

The solution to the Cauchy problem is then(
x(t)
p(t)

)
= eAt

(
x0

p0

)
=

(
1 t

m
0 1

)(
x0

p0

)
=

(
x0 + t

m
p0

p0

)
.

This yields the usual formula

x(t) = x0 +
p0

m
t.

2.2. Diagonalization of matrices

Suppose A is diagonalizable, i.e., S−1AS = D for some invertible
matrix S and a diagonal matrix D. If λi is the ith diagonal entry of
D, then we have Dei = λiei. Denoting by vi the ith column of S, i.e.,
vi = Sei, we get

Avi = ASei = SDei = λiSei = λivi.

This motivates the following

Definition 2.16 (Eigenvectors and eigenvalues). A nonzero vector
v is called an eigenvector of a square matrix A if there is a scalar λ,
called the eigenvalue to the eigenvector v, such that

Av = λv. (2.20)

We then have the
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Theorem 2.17. A square matrix is diagonalizable iff it admits a
basis of eigenvectors.

Proof. If S−1AS = D is diagonal, then, by the above discussion,
the vectors vi = Sei are eigenvectors. They are a basis because S is
invertible. (Note that S defines the change of basis from the standard
basis (e1, . . . , en) to the basis (v1, . . . ,vn).)

On the other hand, if (v1, . . . ,vn) is a basis of eigenvectors, we
define S as the matrix whose ith column is vi. It is invertible by
property (D.9) on page 29. We then have

Dei = DS−1vi = S−1Avi = λiS
−1vi = λiei,

which shows that D is diagonal with diagonal entries λ1, . . . , λn. �

Remark 2.18 (Linear systems of ODEs). Back to our problem
ẋ = Ax, assuming we have a basis of eigenvectors (v1, . . . ,vn) of A,
we have the expansion x(t) =

∑n
i=1 ξ

i(t)vi, with uniquely determined

scalars ξ1(t), . . . , ξn(t) for each t. The system then becomes ξ̇1 = λ1ξ
1,

. . . , ξ̇n = λnξ
n, which is solved by ξi(t) = eλitξi0, with (ξ1

0 , . . . , ξ
n
0 ) the

components of the expansion of x0: x0 = ξi0vi. Therefore, we get the
unique solution to the Cauchy problem in the form

x(t) =
n∑
i=1

eλitξi0vi. (2.21)

Remark 2.19 (Choice of field). For our application to linear sys-
tems of ODE we assume A to have real (or complex) entries. On the
other hand, the general problem of diagonalization, Theorem 2.17, and
the rest of the discussion make sense for every ground field.

Now note that we can rewrite the eigenvector equation (2.20) as
(A− λ1)v = 0. This shows the following

Lemma 2.20. A scalar λ is an eigenvalue of the square matrix A
iff A− λ1 is not invertible.

Proof. A−λ1 is invertible iff its kernel is different from zero. This
happens iff there is a nonzero vector v such that (A− λ1)v = 0. �

It follows, from property (D.8) on page 29, that the eigenvalues
of A are precisely the solutions to det(A − λ1) = 0. This motivates
considering the function

PA := det(A− λ1).
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If A is an n × n matrix, by the Leibniz formula (1.7) we see that PA
is a polynomial of degree n,

PA = b0λ
n + b1λ

n−1 + · · ·+ bn.

In particular, b0 = (−1)n, b1 = (−1)n−1 trA, and bn = detA.

Definition 2.21 (Characteristic polynomial). The polynomial PA
is called the characteristic polynomial of the square matrix A.

We may summarize the previous discussion as the

Proposition 2.22. The eigenvalues of a square matrix are the
roots of its characteristic polynomial.

In the quest for the diagonalization ofA, we first compute its eigen-
values by this proposition. Next, we proceed to the determination of
its eigenvectors. That is, for each root λ of the characteristic polyno-
mial of A, we consider the system Av = λv of n linear equations (with
unknown the components v1, . . . , vn of the vector v). We know that
this system has nontrivial solutions because A− λ1 is not invertible.

Note that for every eigenvalue there are infinitely many eigenvec-
tors. For example, if v is a λ-eigenvalue, then so is av for every scalar
a 6= 0. More generally, if v1 and v2 are λ-eigenvalues, then so is any
nonzero linear combination of them.

In order to diagonalize a matrix, we have to determine all its eigen-
values, but there is no need to find all the corresponding eigenvectors:
it is enough to find a basis of eigenvectors (if possible).

Example 2.23. Let A = ( 0 b
c 0 ). Its characteristic polynomial is

PA = det
( −λ b

c −λ
)

= λ2 − bc. Assuming bc > 0, we have the two real

distinct roots λ± = ±
√
bc. The eigenvector equation Av = λ+v is

then the system {
bv2 =

√
bc v1

cv1 =
√
bc v2

The first equation yields the relation v2 =
√

c
b
v1. The second equation

does not yield any new independent condition (this is a consequence of
A−λ+1 being not invertible). Therefore, we have a 1-parameter family
of solutions (we can choose v1 ∈ R as the parameter). For example, for

v1 = 1 we have the eigenvector v+ =
(

1√
c
b

)
. A similar computation

yields the eigenvector v− =
(

1
−
√

c
b

)
to the eigenvalue λ−.2 One can

2If b and c are both positive, we could also pick v1 =
√
b, getting v2 =

√
c and

v± =
( √

b
±
√
c

)
.
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easily check that (v+,v−) is a basis of R2. The transformation matrix
and its inverse are then

S = (v+ v−) =

(
1 1√
c
b
−
√

c
b

)
, S−1 =

1

2

1
√

b
c

1 −
√

b
c

 .

One can then explicitly verify that S−1AS =
(√

bc 0

0 −
√
bc

)
.

Example 2.24. Consider the matrix A of (2.9) associated to a
homogenous nth-order linear ODE with constant coefficients as in Ex-
ample 2.6. It is a good exercise to show that in this case

PA = (−1)n(λn + a1λ
n−1 + · · ·+ an−1λ+ an).

Therefore, the characteristic equation PA = 0 may be obtained from
(2.8) by formally substituting λk to x(k) for k = 0, . . . , n. Equivalently,
it may be obtained by inserting into (2.8) the ansatz x(t) = eλt.

To be sure that the roots of the characteristic polynomial exist, we
assume from now that we work over C and make use of the

Theorem 2.25 (Fundamental theorem of algebra). A nonconstant
complex polynomial has a root. As a consequence, it splits into a prod-
uct of linear factors.

The characteristic polynomial PA of a complex n × n matrix A
factorizes as

PA = (−1)n (λ− λ1)s1 · · · (λ− λk)sk ,
where λ1, . . . , λk are the pairwise distinct roots of PA. Note that k ≤ n.
The exponent si is called the algebraic multiplicity of λi. Note that we
have s1 + · · ·+ sk = n.

Remark 2.26 (Linear systems of ODEs). The coefficient matrix A
of a linear system of ODEs is usually assumed to be real, and we are
interested in a real solution x(t). The trick is to regard A as a complex
matrix; assuming it then to be diagonalizable, we may find a basis of
eigenvectors and proceed as in Remark 2.18. The unique solution to
the Cauchy problem is still given by (2.21), i.e.,

x(t) =
n∑
i=1

eλitξi0vi,

where now the λis, ξ
i
0s, and vis may be complex. If the initial condition

x0 is real, then the unique solution is also real, which ensures that the
sum of complex vectors on the right hand side of (2.21) yields a real
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vector. It is always possible to rearrange this sum of complex exponen-
tials times complex vectors into a real sum involving real exponentials
and trigonometric functions as we explain in the next example and,
more generally, in Section 2.2.1.

Example 2.27 (Harmonic oscillator). In the Example 2.5 of the

harmonic oscillator, we have A =
(

0 1
m

−k 0

)
. The characteristic polyno-

mial is

PA = det(A− λ1) =

(
−λ 1

m
−k −λ

)
= λ2 + ω2

with ω :=
√

k
m

. The complex eigenvalues are then ±iω. To find the

eigenvectors, we then study first the equation Av = iωv. Writing
v = ( ab ), we get the equation

b

m
= iωa

(with the second equation in the system a multiple of this one). By
choosing a = 1, we get the eigenvector v = ( 1

imω ). Similarly, one sees
that v̄ = ( 1

−imω ) is an eigenvector for −iω. (This is a general fact: if
v is an eigenvector with eigenvalue λ for a real matrix A, then v̄ is
an eigenvector for λ̄; this follows from taking the complex conjugation
Av̄ = λ̄v̄ of the equation Av = λv. See also Remark 2.36.) Since
(v, v̄) is a basis of C2, the matrix A is diagonalizable. The general real
solution x of the associated linear system of ODEs has then the form

x(t) = zeiωt

(
1

imω

)
+ z̄e−iωt

(
1

−imω

)
for some complex constant z. In particular, the first component is

x(t) = zeiωt + z̄e−iωt = A cos(ωt+ α)

if we write z = A
2
eiα.

Remark 2.28. Note that a nonzero vector cannot be the eigenvec-
tor of two different eigenvalues. In fact, if Av = λv and Av = µv, we
get by taking the difference that (λ − µ)v = 0. If λ 6= µ, we then get
v = 0.

Another important observation is the following

Lemma 2.29. A collection (v1, . . . ,vm) of eigenvectors of an n ×
n matrix A corresponding to pairwise distinct eigenvalues is linearly
independent.
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Proof. Suppose
∑m

i=1 αivi = 0. Pick k ∈ {1, . . . ,m}. If we apply∏
j 6=k(A− λj1) to the sum, all the terms with i 6= k are killed. On the

other hand, ∏
j 6=k

(A− λj1)vk =
∏
j 6=k

(λk − λj)vk.

Therefore, αk
∏

j 6=k(λk − λj)vk = 0. Since vk 6= 0 and λj 6= λk for all

j 6= k, we get αk = 0. Repeating this argument for each k ∈ {1, . . . ,m},
we see that every αk has to vanish. �

This immediately implies the following useful criterion.

Proposition 2.30. If the n × n matrix A has n pairwise distinct
eigenvalues, then it is diagonalizable.

Proof. Let λ1, . . . , λn be the pairwise distinct eigenvalues of A.
Choose an eigenvector vi for each eigenvalue λi. By Lemma 2.29 this
is a basis. �

To study the diagonalization procedure in general, we need the
following

Definition 2.31. Let λ be an eigenvalue of A. The space

Eig(A, λ) := ker(A− λ1)

is called the eigenspace of A associated with λ.3 The dimension

d := dim Eig(A, λ)

is called the geometric multiplicity of λ.

Remark 2.32. One can show that d ≤ s for every eigenvalue, where
s is the algebraic multiplicity and d is the geometric multiplicity. (We
will prove this as Corollary 2.52 in Section 2.4.1.)

We have the following generalization of Proposition 2.30.

Theorem 2.33. Let λ1, . . . , λk be the pairwise distinct eigenvalues
of the n × n matrix A and let di denote the geometric multiplicity of
λi. Then A is diagonalizable iff d1 + · · · + dk = n. In this case, we
have

Kn = Eig(A, λ1)⊕ · · · ⊕ Eig(A, λk).

3In principle we may define Eig(A, λ) for any scalar λ. However, if λ is not an
eigenvalue, we have Eig(A, λ) = 0.
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Proof. We use the criterion of Remark 1.22 to show that the sum
Eig(A, λ1) + · · ·+ Eig(A, λk) is direct.

Suppose we have v1+· · ·+vk = 0, vi ∈ Eig(A, λi). If some of the vis
were different from zero, then we would have a zero linear combination
of eigenvectors corresponding to pairwise distinct eigenvalues, which is
in contradiction with Lemma 2.29. Therefore, the zero vector has a
unique decomposition and the sum is direct.

By (1.2), the direct sum Eig(A, λ1)⊕· · ·⊕Eig(A, λk) has dimension
d1 + · · · + dk. By Proposition 1.49, it is then the whole space Kn iff
d1 + · · ·+ dk = n.

In this case, for i = 1, . . . , k let (vi,j)j=1,...,di be a basis of Eig(A, λi).
By Remark 1.51, the union of these bases is a basis of the whole space.
Since every vi,j is an eigenvector, A is then diagonalizable by Theo-
rem 2.17. �

Digression 2.34. By Remark 2.32, one then also has that A is
diagonalizable iff the geometric multiplicity of every eigenvalue is equal
to its algebraic multiplicity.

The procedure for the diagonalization of a square matrix A is then
the following:

Step 1. Find all the pairwise distinct roots λ1, . . . , λk of the charac-
teristic polynomial PA.

Step 2. For every root λi choose a basis of Eig(A, λi) and use it com-
pute the dimension di.

Step 3. If d1 + · · ·+dk = n, then we have found a basis of eigenvectors
and A is diagonalizable.

Remark 2.35. We have seen in Remark 2.13 the example A =
( 0 1

0 0 ) of a nondiagonalizable matrix. Let us see what goes wrong with
the diagonalization procedure. The characteristic polynomial is PA =
detA =

( −λ 1
0 −λ

)
= λ2. We therefore only have the eigenvalue λ = 0,

which comes with algebraic multiplicity 2. An eigenvector ( ab ) must
then satisfy ( 0 1

0 0 ) ( ab ) = 0, i.e., b = 0. The eigenspace of λ = 0 is then
the span of ( 1

0 ), which shows that the geometric multiplicity is 1. In
particular, Eig (( 0 1

0 0 ) , 0) ( C2.

2.2.1. Digression: The real case. Suppose now that A is a real
n×n matrix—e.g., the coefficient matrix of a real system of ODEs. To
proceed, we regard it as a complex matrix. Its eigenvalues may then
be complex numbers.

Remark 2.36. Since PA is in this case a real polynomial, any com-
plex root comes with its complex conjugate root. Therefore, if λ is
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not real, we also have a distinct eigenvalue λ̄. Suppose that z ∈ Cn is
an eigenvector to the eigenvalue λ, i.e., Az = λz. By taking complex
conjugation, we get Az̄ = λ̄z̄, so z̄ is an eigenvector to the eigenvalue
λ̄.

Now suppose that A is diagonalizable as a complex matrix. We
want to show that one can find a convenient basis of real vectors associ-
ated to the complex eigenvectors so that we can bringA in a convenient
normal form.

To proceed let us introduce the following notation. We denote by
EigC(A, λ) ⊆ Cn the eigenspace to the eigenvalue λ of A as a complex
matrix. If λ is real, we denote by EigR(A, λ) ⊆ Rn the eigenspace to
the eigenvalue λ of A as a real matrix.

If λ is a real eigenvalue, one can show that dimR EigR(A, λ) =
dimC EigC(A, λ).

If λ is not real, then we write λ = α+ iβ, with α and β its real and
imaginary parts. Let v be a λ-eigenvector. Then, by Remark 2.36, v̄
is a λ̄-eigenvector. As v and v̄ belong to different eigenspaces, they
are linearly independent. Now let u and w be the real and imaginary
parts of v, i.e., v = u + iw with u and w real vectors. We also have
v̄ = u− iw. Note that (u,w) is a basis of SpanC{v, v̄}. Moreover, we
have

Au = A
v + v̄

2
=
λv + λ̄v̄

2
= αu− βw,

Aw = A
v − v̄

2i
=
λv − λ̄v̄

2i
= βu+ αw.

Therefore, the restriction of A to SpanR{u,w} has the representing
matrix

(
α β
−β α

)
in the basis (u,w).

If we now do this for every nonreal eigenvalue λi = αi+iβi, αi and βi
real, passing from the basis (vi,1, . . . ,vi,di , v̄i,1, . . . , v̄i,di) of EigC(A, λ)⊕
EigC(A, λ̄) to the basis (ui,1,wi,1, . . . ,ui,di ,wi,di), with ui,j andwi,j the
real and imaginary parts of vi,j, we get the

Proposition 2.37. Let A be a real n× n matrix that is diagonal-
izable as a complex matrix. Then there is an invertible real matrix S
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such that S−1AS has the block form

λ1

. . .
λr

B1

. . .
Bs


,

where λ1, . . . , λr are the real eigenvalues of A, and the Bjs are 2 × 2
blocks of the form

Bj =

(
αj βj
−βj αj

)
, αj, βj ∈ R,

corresponding each to a pair (λj, λ̄j) of conjugate nonreal eigenvalues.

Remark 2.38. If we want to apply this result to the solution of
linear system of ODEs with constant coefficients, we have to compute
the exponential of t times the block matrix in the proposition. To do
so, it is enough to compute the exponential of each block. For each of
the real eigenvalues, we then simply get the 1× 1 block eλit. For each
block Bj we observe that Bj = αj1 + βj ( 0 1

−1 0 ). By (2.15), we then
get

eBjt = eαjte( 0 1
−1 0 )βjt.

It is possible (see exercise 2.2) to check that4

e( 0 1
−1 0 )x =

(
cosx sinx
− sinx cosx

)
.

Therefore,

eBjt = eαjt
(

cos(βjt) sin(βjt)
− sin(βjt) cos(βjt)

)
.

This shows that the solution to a linear system of ODEs with constant
coefficients whose coefficient matrix is diagonalizable as a complex ma-
trix can be written in terms of real exponentials and trigonometric
functions as announced at the end of Remark 2.26.

4This can either be done by explicit resumming the exponential series or by
solving the harmonic oscillator with k = m = 1.
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2.3. Diagonalization of endomorphisms

The problem of diagonalization and the results we have discussed
for matrices can be generalized to endomorphisms. We present them
here, also as an occasion to recapitulate what we have seen.

Definition 2.39. An endomorphism F of a vector space V is called
diagonalizable if there is a basis B such that FB is a diagonal matrix.

Note that if v is an element of such a basis, we have v 6= 0 and
Fv = λv for some scalar λ.

Definition 2.40 (Eigenvectors and eigenvalues). A nonzero vector
v is called an eigenvector of an endomorphism F if there is a scalar λ,
called the eigenvalue to the eigenvector v, such that Fv = λv.

We clearly have the

Theorem 2.41. An endomorphism F of V is diagonalizable iff V
admits a basis of eigenvectors of F .

If V is finite-dimensional, by Definition 1.75, we may define the
characteristic polynomial of an endomorphism F as

PF := det(F − λ Id).

We then have the

Lemma 2.42. The eigenvalues of an endomoprhism of a finite-di-
mensional space are the roots of its characteristic polynomial.

We also have the following generalization of Lemma 2.29 (with es-
sentially the same proof).

Lemma 2.43. A collection of eigenvectors of an endomorphism cor-
responding to pairwise distinct eigenvalues is linearly independent.

This implies again the

Proposition 2.44. If an endomorphism of an n-dimensional space
has n pairwise distinct eigenvalues, then it is diagonalizable.

We also associate to an eigenvalue λ of F ∈ End(V ) its eigenspace

Eig(F, λ) := ker(F − λ Id)

and its geometric multiplicity

d := dim Eig(F, λ).

We have Eig(F, λ) ∩ Eig(F, µ) = 0 for λ 6= µ and the following
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Theorem 2.45. Let λ1, . . . , λk be the pairwise distinct eigenvalues
of an endomorphism F of an n-dimensional space V and let di denote
the geometric multiplicity of λi. Then F is diagonalizable iff d1 + · · ·+
dk = n. In this case, we have

V = Eig(A, λ1)⊕ · · · ⊕ Eig(A, λk).

If PF splits into linear factor (e.g., if the ground field is C) as

PF = (−1)n (λ− λ1)s1 · · · (λ− λk)sk ,
then si is called the algebraic multiplicity of λi.

Remark 2.46. For every eigenvalue λi, we have di ≤ si. Therefore,
F is diagonalizable iff di = si for every i.

In applications it is often important to diagonalize two different en-
domorphisms at the same time. Of course one has first of all to assume
that each of them is diagonalizable. We say that two diagonalizable
endomorphisms F and G on a vector space V are simultaneously diag-
onalizable if they possess a common basis of eigenvectors.

Proposition 2.47 (Simultaneous diagonalization). Two diagonal-
izable endomorphisms F and G on a vector space V are simultaneously
diagonalizable iff they commute, i.e., FG = GF .

Proof. See Exercise 2.10 �

In the case of matrices, the above proposition reads more explictly
as follows.

Corollary 2.48. Two diagonalizable matrices A and B com-
mute (i.e., AB = BA) iff there is an invertible matrix S such that
S−1AS = D and S−1BS = D′ where D and D′ are diagonal matri-
ces.

2.3.1. The spectral decomposition. Suppose F ∈ End(V ) is
diagonalizable. If we decompose V = Eig(A, λ1)⊕· · ·⊕Eig(A, λk), we
have, as in every direct sum, a unique decomposition of every v ∈ V
as v = w1 + · · · + wk with wi ∈ Eig(A, λi). We let Pi : V → V be the
linear map that assigns to a vector v its ith component wi. The Pis
are a complete system of mutually transversal projections; i.e.,

P 2
i = Pi ∀i, PiPj = PjPi = 0 ∀i 6= j,

k∑
i=1

Pi = Id .

Since the ith component of a vector is an eigenvector to λi, we have
FPiv = Fwi = λiwi = λiPiv for every v ∈ V . As an identity of maps,
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this reads FPi = λiPi. Summing over i, we then get

F =
k∑
i=1

λiPi. (2.22)

The set {λ1, . . . , λk} of the pairwise distinct eigenvalues of F is called
its spectrum and (2.22) is called the spectral decomposition of F .5

2.3.2. The infinite-dimensional case. In Example 2.7, we have
seen that some important PDEs in physics are linear and can be viewed
as linear ODEs on some infinite-dimensional space.

We will not treat this case here in general, but we will consider an
example: the wave equation on a one-dimensional space interval, a.k.a.
the vibrating string. Namely, we want to study the PDE

1

c2

∂2ψ

∂t2
=
∂2ψ

∂x2
,

where the unknown ψ is a function on R×[0, L] 3 (t, x) which describes
the transversal displacement of the string.6 We assume that the string
endpoints are fixed:

ψ(t, 0) = ψ(t, L) = 0 for all t

(this models, e.g., the string of a musical instrument). We then intro-
duce the infinite-dimensional vector space

V := {φ ∈ C∞([0, L]) | φ(0) = φ(L) = 0}

and regard ψ as a map R→ V . The right hand side of the wave equa-
tion uses the linear map F := d2

dx2
. Note that F is not an endomorphism

of V because F (φ), φ ∈ V , might not satisfy the boundary conditions.
To get an endomorphism, we should work on the subspace

Ṽ := {φ ∈ C∞([0, L]) | φ(2k)(0) = φ(2k)(L) = 0 ∀k ∈ N},

on which F is an endomorphism. We now want to find the eigenvectors

of F , i.e., φ ∈ Ṽ \ {0} such that

φ′′ = λφ

5This terminology ultimately comes from physics, namely from the fact that the
spectral lines of an atom are computed in quantum mechanics by taking differences
of eigenvalues of a certain endomorphism, the Hamiltonian operator of the electrons
in the atom.

6More generally, we could consider an interval [a, b], but translating it to [0, L],
with L = b− a its length, simplifies the discussion.
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for some complex scalar λ. Denoting by ±α the two square roots of λ,
we see that the general solution to this equation is

φ(x) = Aeαx +Be−αx,

where A and B are complex constants. The endpoint conditions φ(0) =
0 and φ(L) = 0 amount to the linear system7{

A + B = 0
AeαL + Be−αL = 0

which has a nontrivial solution (B = −A 6= 0) iff the coefficient matrix(
1 1

eαL e−αL

)
is degenerate. Since its determinant is e−αL − eαL, we may

have a nontrivial solution iff e2αL = 1, i.e., α = iπk
L

with k an integer.
The case k = 0 yields φ = 0, which is not an eigenvector. For k 6= 0,

we take A = 1
2i

(and hence B = − 1
2i

), so we have the real eigenvector

φk(x) = sin

(
πkx

L

)
corresponding to the eigenvalue λ = −π2k2

L2 . Note that φ−k = −φk, so
they are not linearly independent. Therefore, we only consider k > 0.

By Lemma 2.43, the collection (φk)k∈Z>0 is linearly independent in

Ṽ and hence in V . Therefore, on the subspace V ′ spanned by this
collection, we have that the set of eigenvalues (a.k.a. the spectrum) is{

−π
2k2

L2
, k ∈ N>0

}
.

If the two initial conditions, ψ|t=0 and ∂ψ
∂t
|t=0, for the wave equation

are linear combinations of the φks, we may then write the unique so-
lution to the Cauchy problem as a linear combination of the φks with
time-dependent coefficients. In fact, suppose

ψ|t=0 =
∞∑
k=1

bk0φk,

∂ψ

∂t
|t=0 =

∞∑
k=1

vk0φk,

7Note that the eigenvalue equation implies that φ(2k+2) is proportional to φ(2k)

for all k, so it is enough to check the boundary condition for k = 0, as the high-
er-order conditions φ(2k)(0) = φ(2k)(L) = 0, k > 0, then follow automatically.



2.4. TRIGONALIZATION 55

where only finitely many of the bk0s and of the vk0s are different from
zero. We can then consider a solution of the form

ψ =
∞∑
k=1

bkφk,

where the coefficients bk are now functions of time, and the sum is
restricted to the ks for which bk0 6= 0 or vk0 6= 0. The wave equation
then yields separate ODEs for each of these ks, which we can assemble
into the Cauchy problems b̈k = −π2c2k2

L2 bk
bk(0) = bk0

ḃk(0) = vk0

Interestingly, it turns out that one can also make sense of infinite
linear combinations

∑∞
k=1 bk sin

(
πkx
L

)
, where (bk) is a sequence of real

numbers with appropriate decaying conditions for k → ∞. This is
an example of Fourier series. We will return to this in Example 3.37,
where we will also learn a method to compute the coefficients bk of an
expansion.

2.4. Trigonalization

Even though not every matrix can be diagonalized, it turns out
complex matrices can be brought to a nice upper triangular form. More
precisely, we have the

Theorem 2.49. Let A be a n×n matrix whose characteristic poly-
nomial splits into linear factors (e.g., a complex matrix),

PA = (−1)n (λ− λ1)s1 · · · (λ− λk)sk . (2.23)

Then there is an invertible matrix S such that

S−1AS = D +N ,

where D is a diagonal matrix with the eigenvalues of A as its diagonal
entries, N is an upper triangular matrix with zeros on the diagonal,
and DN = ND.

Before we prove the theorem, let us see its consequences for the
exponential of a real or complex matrix A (and hence for the associ-
ated system of ODEs). By (2.16), we have that eA = SeD+NS−1. By
(2.15), we have eD+N = eDeN . We already know how to compute the
exponential of a diagonal matrix, so we are only left with the expo-
nential of N . Observe that N applied to a vector whose last k < n
components are equal to 0 yields a vector whose last k+ 1 components
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are equal to 0. Therefore, Nn applied to any vector yields the zero
vector. In conclusion, Nm = 0 for all m ≥ n. One says that N is
nilpotent (meaning that it has a vanishing power). It follows that eN

is a finite sum. These results do not change if we multiply A by t, so
we get

eAt = S−1eDt

(
n−1∑
r=0

tr

r!
N r

)
S.

In particular, this means that a solution of the associated system of
ODEs is a combination of exponentials and polynomials.

Also note that eN is an upper triangular matrix with 1s on the
diagonal, so det eN = 1. Therefore, det eAt = det eDt. Since D is
diagonal, we obviously have det eDt = et trD. On the other hand, we
have trA = trD. In conclusion,

det eAt = et trA

for every t. This is a purely algebraic proof of Proposition 2.11. (In
the theorem we assume that PA splits into linear factors, which might
not be the case if A is real. In this case, we can however regard A as
a complex matrix, apply the theorem, and get the last identity; finally,
we observe that both the left and the right hand side are defined over
R.)

2.4.1. Proof of Theorem 2.49. The eigenspace of A associated
with the eigenvalue λ may be viewed as the largest subspace on which
the restriction of A − λ1 is zero. Since we are looking for a basis
in which the representing matrix minus the diagonal matrix with the
eigenvalues as its diagonal entries is nilpotent, we define the generalized
eigenspace associated with the eigenvalue λ as

Ẽig[A, λ] := {v | ∃m ∈ N (A− λ1)mv = 0}.
More precisely, we say that v is a generalized λ-eigenvector of rank
m > 0 if (A − λ1)mv = 0 but (A − λ1)m−1v 6= 0. Note that every

nonzero vector in Ẽig[A, λ] is a generalized λ-eigenvector with a well-
defined rank. In particular, an eigenvector in the original sense is a
generalized eigenvector of rank 1, so

Eig(A, λ) ⊆ Ẽig[A, λ].

Also observe that A−λ1 applied to a generalized λ-eigenvector of rank
m > 1 yields a generalized λ-eigenvector of rank m− 1.

Finally, note that Ẽig[A, λ] is A-invariant, so also (A− λ1)-invari-

ant. We denote by Nλ the restriction of A− λ1 to Ẽig[A, λ]. By the
definition of generalized eigenspace, Nλ is nilpotent.
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Let (v1, . . . ,vd) be a basis of Ẽig[A, λ]. We order the basis in such
a way that the rank of vj is less than or equal to the rank of vj+1 for
j = 1, . . . , d − 1. It follows that Nλ is represented in this basis by
an upper triangular matrix with zeros on the diagonal. Moreover, Nλ

clearly commutes with λ IdẼig[A,λ]. We are then done after proving the

following

Proposition 2.50. Under the assumptions of Theorem 2.49:

(1) the algebraic multiplicity si of λi is equal to the dimension δi
of Ẽig[A, λi] for every i, and

(2) we have the decomposition Kn = Ẽig[A, λ1]⊕ · · · ⊕ Ẽig[A, λk].

In fact, it is enough to choose a basis of each generalized eigenspace,
ordered by rank as above. In the basis of Kn given by the union of these
bases, A is represented by a matrix D +N as in the theorem.8

We start by proving the

Lemma 2.51. The sum Ẽig[A, λ1] + · · ·+ Ẽig[A, λk] is direct.

Proof. We use the criterion of Remark 1.22. Suppose we have

v1 + · · ·+ vk = 0, vi ∈ Ẽig[A, λi].
Suppose, by contradiction, that some vi is different from zero, and

let mi > 0 be its rank. Since wi := (A − λi1)mi−1vi 6= 0 is an eigen-
vector for λi, we have

k∏
j=1

(A−λj1)mj−1vi =
∏
j 6=i

(A−λj1)mj−1wi =
∏
j 6=i

(λi−λj)mj−1wi =: zi.

Since
∏

j 6=i(λi − λj)
mj−1 is different from zero, we get that zi 6= 0.

Therefore, zi is also an eigenvector for λi.
If we now apply

∏k
j=1(A − λj1)mj−1 to v1 + · · · + vk = 0, we get∑

r:vr 6=0 zr = 0. Since the zrs in the sum are eigenvectors for pairwise
distinct eigenvalues, this is in contradiction with Lemma 2.29.

Therefore, the zero vector has a unique decomposition (as 0+· · ·+0)
and the sum is direct. �

Proof of Proposition 2.50. Note that part (1) of the state-
ment implies part (2) using Lemma 2.51. In fact,

dim(Ẽig[A, λ1]⊕ · · · ⊕ Ẽig[A, λk]) = δ1 + · · ·+ δk = s1 + . . . sk = n,

so the direct sum is the whole space Kn.

8In particular, the restriction of D to Ẽig[A, λj ] is λj Id
Ẽig[A,λj ]

, whereas the

restriction of N is Nλj
.
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Therefore, we will only prove statement (1) by induction on the
dimension n. For n = 1 there is nothing to prove, as in this case

A = (λ) and Ẽig[A, λ] = Eig(A, λ) = K.
Next, we assume we have proved (1), and hence (2), for dimensions

up to n− 1. We pick an i ∈ {1, . . . , k}, denote by Ai the restriction of

A to Ẽig[A, λi], which is A-invariant, and choose a complement W to

Ẽig[A, λi] in Kn. With respect to the decomposition Kn = Ẽig[A, λi]⊕
W , A has the form (

Ai B
0 C

)
,

where B is the composition of the restriction of A to W with the

projection to Ẽig[A, λi] and C is the composition of the restriction of
A to W with the projection to W .

By property (D.11) of the determinant, we have PA = PAiPC . If

we take a rank-ordered basis of Ẽig[A, λi], we have that Ai is repre-
sented by an upper triangular matrix with diagonal entries equal to λi.
Therefore, by property (D.6), PAi = (−1)δi(λ − λi)

δi . In conclusion,
PA = (−1)δi(λ− λi)δiPC . Comparing with (2.23), we have that

PC = (−1)dimW (λ− λ1)s
′
1 · · · (λ− λk)s

′
k

with s′j = sj for j 6= i and s′i = si − δi. We claim that s′i = 0, which
in particular implies δi = si. Since this can be done for every i, this
completes the proof of the proposition.

We now prove the claim that s′i = 0. Since dimW < n and PC
splits into linear factors, we may apply the induction hypothesis, so9

W = Ẽig[C, λ1]⊕ · · · ⊕ Ẽig[C, λk].

Consider the space V = Ẽig[A, λi] ⊕ Ẽig[C, λi]. For v in the first

summand, we have Av ∈ Ẽig[A, λi]; for v in the second summand,
we have Av = Bv + Civ, where Ci denotes the restriction of C to

Ẽig[C, λi], which is a C-invariant subspace. Therefore, the restriction
AV of A to V has the following form with respect to the decomposi-
tion:10 (

Ai B
0 Ci

)
.

9We actually choose a basis to identify W with KdimW and apply statement
(2) to the representing matrix of C.

10By abuse of notation, we keep writing B, but what appears here is actually

the restriction of B to Ẽig[C, λi].
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One easily proves, by induction on r, that

(AV − λi1)r =

(
Ai − λi1 B

0 Ci − λi1

)r
=

(
(Ai − λi1)r Br

0 (Ci − λi1)r

)
for some matrix Br. If v ∈ Ẽig[C, λi] has rank r, we then have (A −
λi1)rv = Brv. Since this is now an element of Ẽig[A, λi], there is an
s such that (A− λi1)sBrv = 0. This means that (A− λi1)r+sv = 0,

i.e., v ∈ Ẽig[A, λi]. Finally, since Ẽig[C, λi] belongs to a complement

of Ẽig[A, λi], the only vector in their intersection is 0. We have thus

proved that Ẽig[C, λi] = 0 and, hence, that s′i = 0. �

Another interesting consequence of part (1) of Proposition 2.50 is
the following result, announced in Remark 2.32.

Corollary 2.52. The geometric multiplicity of every eigenvalue
is less than or equal to its algebraic multiplicity.

Proof. Since Eig(A, λi) ⊆ Ẽig[A, λi], we have dim Eig(A, λi) ≤
δi = si. �

2.5. Digression: The Jordan normal form

By choosing a more suitable basis of each Ẽig[A, λi], the strictly up-
per triangular matrix N of Theorem 2.49 may be put in a “canonical”
form that can be more easily dealt with.

For this we need the notion of a Jordan block (after the French math-
ematician Camille Jordan). For a scalar λ and a positive integer
m, the Jordan block Jλ,m is the m×m upper triangular matrix whose
diagonal entries are equal to λ, the entries right above the diagonal are
equal to 1, and all other entries vanish; e.g.,

Jλ,1 =
(
λ
)
, Jλ,2 =

(
λ 1
0 λ

)
, Jλ,3 =

λ 1 0
0 λ 1
0 0 λ

 ,

and

Jλ,4 =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 .

A Jordan matrix is a block diagonal matrix whose diagonal blocks are
Jordan blocks.
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Theorem 2.53. Let A be a matrix as in Theorem 2.49. Then there
is a basis in which A is represented by a Jordan matrix. More precisely,

for each eigenvalue λi, the generalized eigenspace Ẽig[A, λi] has a basis
in which the restriction of A is represented by a Jordan matrix of the
form Jλi,m1

. . .
Jλi,mk

 ,

with 0 < m1 ≤ · · · ≤ mk and m1 + · · ·+mk = si.

To prove the theorem, it is enough to prove the statement for each
generalized eigenspace separately. By definition of generalized eigen-

space, the restriction N i of A−λ1 to Ẽig[A, λi] is nilpotent. It follows
that it is enough to prove the following

Proposition 2.54. Let N be a nilpotent operator on an n-dimen-
sional vector space V . Then there is a basis of V in which N is repre-
sented by a Jordan matrix of the formJ0,m1

. . .
J0,mk

 ,

with 0 < m1 ≤ · · · ≤ mk and m1 + · · ·+mk = n.

To prove the proposition, we need some preliminary remarks. The
first remark is that a nilpotent operator is not invertible, so it has a
nonzero kernel.

We say that a vector v in V has rank m > 0 if Nmv = 0 but
Nm−1v 6= 0. For a vector v of rank m we define

vj := Nm−jv

for j = 1, . . . ,m. The vectors v1, . . . , vm are called a Jordan chain (note
that vm = v and that v1 is in the kernel of N). We denote by Jor(v)
their span:

Jor(v) := Span{v1, . . . , vm}.
The next remark is that Jor(v) is N -invariant and that the vectors
v1, . . . , vm form a basis. That they generate Jor(v) is obvious by def-
inition, so we only have to check that they are linearly independent.
Suppose αivi = 0 for some scalars α1, . . . , αm. Applying Nm−1 to this
linear combination yields αmNm−1v = 0, which implies αm = 0. If we
then apply Nm−2 to the linear combination, knowing that αm = 0 we
get αm−1Nm−1v = 0 which implies αm−1 = 0, and so on. In particular,
this shows that dim Jor(v) = m.
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The final remark is that, by construction, the restriction of N to
Jor(v) in the basis (v1, . . . , vm) is represented by the Jordan block J0,m.

The strategy to prove Proposition 2.54 consists then in decomposing
V into spans of Jordan chains.

Note that the vector v of rank m we started with to define Jor(v)
might be in the image of N , say, v = Nw. In this case, we may extend
the Jordan chain Jor(v) to the Jordan chain Jor(w) ) Jor(v) (note
that wi = vi for j = 1, . . . ,m and that wm+1 = w). If v is not in the
image of N , we say that v1, . . . , vm is a maximal Jordan chain and that
v is a lead vector for it. Proposition 2.54 is then a consequence of the
following

Lemma 2.55. Let N be a nilpotent operator on an n-dimensional
vector space V . Then there is a collection v(1), . . . , v(k) of lead vec-
tors11 of ranks m1, . . . ,mk, respectively, such that V = Jor(v(1))⊕· · ·⊕
Jor(v(k)).

Note that we may arrange the lead vectors v(1), . . . , v(k) so that
0 < m1 ≤ · · · ≤ mk as in Proposition 2.54.

Proof of the lemma. We prove the lemma by induction on the
dimension n of V . If n = 0, there is nothing to prove.

Next, assume we have proved the lemma up to dimension n − 1.
Let W ⊆ V be the image of N . Note that W is N -invariant. By the
dimension formula (1.4), we have dimW = n − dim kerN < n, since
N has nonzero kernel, so we can apply the induction assumption to
W . Namely, we can find vectors v(1), . . . , v(k) in W such that W =
Jor(v(1))⊕ · · · ⊕ Jor(v(k)). (The v(i)s are lead vectors in W but not in
V .)

We now have two cases to consider. The first case is when W ∩
kerN = 0.12 In this case V = W ⊕ kerN . A basis (z(1), . . . , z(l)) of
kerN produces the decomposition kerN = Jor(z(1)) ⊕ Jor(z(l)) (note
that Jor(z(i)) = Kz(i), for z(i) is in the kernel of N). This concludes the
proof in this case.

The other case is when W ∩kerN 6= 0. Let W ′ be a complement of
W + kerN in V . In particular, the restriction of N to W ′ is injective.
Therefore, we have uniquely determined w(1), . . . , w(k) in W ′ satisfying
v(i) = Nw(i) for i = 1, . . . , k.

We claim that (w(1), . . . , w(k)) is a basis of W ′. This completes the
proof of the lemma, since it yields the decomposition V = Jor(w(1))⊕

11We write v(i) for the lead vectors and v(i),j for the vectors in the corresponding

Jordan chain.
12This case in particular happens when n = 1.
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· · · ⊕ Jor(w(k))⊕ Jor(z(1))⊕ Jor(z(l)), where (z(1), . . . , z(l)) is a basis of
a complement of W in W + kerN .

To prove the claim, take some v in W ′. We have to show that it
has a unique decomposition in w(1), . . . , w(k). Since Nv is in W , we
may expand it in the basis (N jiv(i))i=1,...,k, ji=0,...,m′i−1, where m′i is the
rank of v(i) in W . Note that all these vectors but v(1), . . . , v(k) are
in the image of N2. Therefore, we have uniquely determined scalars
α1, . . . , αk and some vector w such that Nv =

∑
i α

iv(i) +N2w. Setting
ṽ := v −

∑
i α

iw(i), we get Nṽ = N2w, so ṽ − Nw ∈ kerN and hence
ṽ ∈ W + kerN . Since, however, ṽ ∈ W ′, which is a complement of
W + kerN , we get ṽ = 0 and hence v =

∑
i α

iw(i). �

Exercises for Chapter 2
2.1. Applying the formula eAt = SeS

−1AStS−1, compute eAt for A =
( 0 2

8 0 ) using S = ( 1 1
2 −2 ).

2.2. Let A = ( 0 1
−1 0 ).

(a) Compute An for all integers n > 0.
Hint: Distinguish the cases n even and n odd.

(b) Using the above result and writing the exponential series as

eAt =
∞∑
s=0

1

(2s)!
t2sA2s +

∞∑
s=0

1

(2s+ 1)!
t2s+1A2s+1,

show that

eAt =

(
cos t sin t
− sin t cos t

)
.

Hint: Use the series expansions of sin and cos.

2.3. Let A = ( 1 0
0 −1 ) and B = ( 0 1

0 0 ). Compute eAt, eBt, eAteBt, eBteAt,
and e(A+B)t. (Hint: Proceed as in the previous exercise.)

2.4. Determine the characteristic polynomial of the following matrices,
and find their eigenvalues and a basis of eigenvectors:

A =

(
2 1
1 2

)
, B =

0 1 0
1 0 1
0 1 0

 , C =

 1 −1 −1
−1 3 −1
−1 −1 3

 .

2.5. Let A =

(
2 1
2 3

)
.
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(a) Find the similarity transformation that diagonalizes A, i.e.,
find a matrix S such that S−1AS = D is a diagonal matrix
and compute D explicitly.

(b) Using your results just obtained, find the solution to the Cauchy
problem given by

dx

dt
= Ax, x(0) =

(
1
0

)
.

2.6. In this exercise we prove that PA(A) = 0 for any 2× 2 matrix,13

where PA(λ) is the characteristic polynomial of A in λ. For this
we can proceed as follows:
(a) Show that for any 2× 2 matrix A the characteristic polyno-

mial can be written as

PA(λ) = λ2 − tr(A)λ+ det(A).

(b) We will now interpret it as a polynomial in the matrix A.
Show that

A2 − tr(A)A+ det(A) 1 = 0.

2.7. Let J be an endomorphism of V satisfying J2 = id.
(a) Show that λ = ±1 are the only possible eigenvalues of J .
(b) Using

v =
v + Jv

2
+
v − Jv

2
,

show that J is diagonalizable.

2.8. Motivated by the study of the vibrating string where the endpoints
are free to slide frictionless in the vertical direction, we consider
the endomorphism F := d2

dx2
of the vector space

V := {φ ∈ C∞([0, `]) | φ′(0) = φ′(`) = 0}.

Find all eigenvalues of F and a corresponding linearly independent
system of eigenvectors.

13The result actually holds for matrices of any size and is known as the Cayley–
Hamilton theorem.
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2.9. Let

A =

 5 −1 −2
−1 5 2
0 0 6

 .

(a) Find all eigenvalues of A.
(b) Find linearly independent eigenvectors corresponding to all

eigenvalues.
(c) Find an invertible matrix S such that S−1AS is upper trian-

gular.
Hint: Find an appropriate basis for each generalized eigen-
space.

2.10. The goal of this exercise is to show that two diagonalizable en-

domorphisms F and G on a vector space14 V are simultaneously
diagonalizable—i.e., possess a common basis of eigenvectors—iff
they commute—i.e., FG = GF .
(a) Assume that F and G have a a common basis of eigenvectors.

Show that they commute.
(b) Now assume that F and G commute.

(i) Show that every eigenspace of F is G-invariant.
(ii) Let (λ1, . . . , λk) be the pairwise distinct eigenvalues of

F . Let v be an eigenvector of G with eigenvalue µ. Let
v = v1 + · · ·+ vk be the unique decomposition of v with
vi ∈ Eig(F, λi). Show that Gvi = µvi for every i.
Hint: Use point (a) and the uniqueness of the decompo-
sition.

(iii) Show that Eig(G, µ) =
⊕k

i=1(Eig(F, λi) ∩ Eig(G, µ)).15

Hint: Use point (b).
(iv) Conclude that

V =
⊕

i=1,...,k
j=1,...,l

Eig(F, λi) ∩ Eig(G, µj),

where (µ1, . . . , µl) are the pairwise distinct eigenvalues
of G.

(v) Conclude that F and G have a common basis of eigen-
vectors.

14For notational simplicity, we assume V to be finite-dimensional.
15Some of these intersections might be the zero space.



CHAPTER 3

Inner Products

In this chapter we discuss inner products, a generalization of the
familiar dot product, a.k.a. the scalar product.

Remark 3.1 (Terminology). The term scalar product is unfortu-
nately used both as a synonym of dot product and as a synonym of
inner product. For this reason, we will avoid using this term. We will
only speak of dot product (for the well-known special case) and of inner
product (for the generalization, which comprises the dot product as a
special case).

3.1. The dot product

3.1.1. The dot product on the plane. Recall that the dot prod-
uct of two vectors v =

(
v1

v2

)
and w =

(
w1

w2

)
on the plane is defined as

v ·w := v1w1 + v2w2. (3.1)

Also recall that the length ‖v‖ of v, also known as the norm of the vec-

tor v, is defined by the Pythagorean theorem as ‖v‖ =
√

(v1)2 + (v2)2,
so we have

‖v‖ =
√
v · v. (3.2)

If v and w are different from zero, we may find the oriented angle θ

θ
v

w

Figure 3.1. The oriented angle between two vectors

between them, see Figure 4.1, and also write

v ·w = ‖v‖‖w‖ cos θ. (3.3)

Computing the sum of the vectors as in Figure 3.2, by the law of cosines

65
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A

B

C

θ′

v

v +w w

Figure 3.2. The law of cosines

(the generalization of the Pythagorean theorem), we have

AC
2

= AB
2

+BC
2 − 2ABBC cos θ′.

By writing the length of the sides of the triangle in terms of the norms
of the corresponding vectors, and observing that θ′ = π − θ, we get

‖v +w‖2 = ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ cos θ. (3.4)

Since cos θ ≤ 1, we get, after taking the square roots of both sides, the
triangle inequality

‖v +w‖ ≤ ‖v‖+ ‖w‖ (3.5)

stating that the length of one side of a triangle cannot exceed the sum
of the lengths of the two other sides (the inequality is saturated—i.e.,
it becomes an equality—iff the triangle is degenerate).

3.1.2. The dot product in n dimensions. We now generalize
the above considerations to the n-dimensional space Rn. The dot prod-
uct of two n-dimensional vectors

v =

v1

...
vn

 w =

w1

...
wn


is defined componentwise generalizing (3.1):

v ·w :=
n∑
i=1

viwi.

Note that, using transposition, this can also be written as

v ·w = vTw, (3.6)

where we use matrix multiplication on the right hand side. The length
(or norm) ‖v‖ of v is defined by the n-dimensional extension of the
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Pythagorean theorem as ‖v‖ =
√∑n

i=1(vi)2, so we have again (3.2). If
v and w are different from zero, they span a plane and inside this plane
we find the oriented angle θ between them, so we have again (3.3), the
cosine law (3.4), and the triangle inequality (3.5).

3.2. Inner product spaces

We now want to generalize all the above to general vector spaces
over R.

Definition 3.2 (Inner products). A positive-definite symmetric
bilinear form on a real vector space is called an inner product. A real
vector space endowed with an inner product is called an inner product
space (a.k.a. a euclidean space).

More explicitly, if V is a vector space over R, an inner product is
a map V × V → R, usually denoted by ( , ), satisfying the following
three properties.

Bilinearity: For all v, v1, v2, w, w1, w2 ∈ V and all λ1, λ2 ∈ R,
we have

(λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w),

(v, λ1w1 + λ2w2) = λ1(v, w1) + λ2(v, w2).

Symmetry: For all v, w ∈ V , we have

(v, w) = (w, v).

Positivity: For all v ∈ V \ {0}, we have

(v, v) > 0.

Remark 3.3. Because of symmetry, it is enough to verify linearity
on one of the two arguments, as that on the other follows. Moreover,
bilinearity implies

(λv, λv) = λ2(v, v) (3.7)

for all v ∈ V and all λ ∈ R. In particular, setting λ = 0, we get
(0, 0) = 0. By positivity, we then get (v, v) ≥ 0 for every v ∈ V .

Example 3.4 (Dot product). The dot product v · w on Rn is an
example of inner product. We will see (Theorem 3.86) that, upon
choosing an appropriate basis, an inner product on a finite-dimensional
vector space can always be brought to this form.

Example 3.5 (Subspaces). If W is a subspace of an inner product
space V , we may restrict the inner product to elements of W . This
makes W itself into an inner product space.
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Example 3.6. On Rn we may also define

(v,w) :=
n∑
i=1

λiv
iwi

for a given choice of real numbers λ1, . . . , λn. This is clearly bilinear
and symmetric. One can easily verify that it is positive definite iff
λi > 0 for all i = 1, . . . , n.

Example 3.7. More generally, on Rn we may define

(v,w) := vTgw = vigijw
j,

where g is a given n × n real matrix, and we have used Einstein’s
convention in the last term. (The previous example is the case when g is
diagonal.) Bilinearity is clear. Symmetry is satisfied iff g is symmetric.1

A symmetric matrix g is called positive definite if the corresponding
symmetric bilinear form is positive definite, i.e., if vTgv > 0 for every
nonzero vector v.

Remark 3.8 (Representing matrix). If we have an inner product
( , ) on a finite-dimensional space V with a basis B = (e1, . . . , en), we
define the representing matrix g with entries

gij := (ei, ej).

Upon using the isomorphism φB : Rn → V of Remark 1.52, we get on
Rn the inner product of Example 3.7.

The following two examples are (the real version of examples that
are) important for quantum mechanics.

Example 3.9 (Continuous functions on a compact interval). We
consider the vector space V = C0([a, b]) of real-valued functions on the
interval [a, b]. Then

(f, g) :=

∫ b

a

fg dx (3.8)

is an inner product on V . Bilinearity and symmetry are obvious.
As for positivity, note that, if f 6= 0, there is some x0 ∈ [a, b] with
f(x0) = c0 6= 0. By continuity there is some open interval (c, d) ⊂ [a, b]
containing x0 such that f(x)2 > c2

0/2 for all x ∈ (c, d). We may write

(f, f) =

∫ c

a

f 2 dx+

∫ d

c

f 2 dx+

∫ b

d

f 2 dx.

1Recall that a matrix A is called symmetric if AT = A.
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Since the first and the last integral are nonnegative and the middle

one is larger than or equal to
c20
2

(d − c), and hence positive, we get
(f, f) > 0.

Example 3.10 (Compactly supported continuous functions). De-
note by V = C0

c (R) the vector space of real-valued functions on R with
compact support: i.e., f belongs to C0

c (R) iff it is continuous and there
is an interval [a, b] outside of which f vanishes. We define2

(f, g) :=

∫ ∞
−∞

fg dx.

This can be proved to be an inner product as in the previous example.

The following is also an important infinite-dimensional example.

Example 3.11. A sequence a = (a1, a2, . . . ) of real numbers is
called finite if only finitely many ais are different from zero (equiva-
lently, if there is an N such that ai = 0 for all i > N). We denote
by R∞ the vector space of all finite real sequences, with vector space
operations

λ(a1, a2, . . . ) = (λa1, λa2, . . . )

(a1, a2, . . . ) + (b1, b2, . . . ) = (a1 + b1, a2 + b2, . . . ).

It is an inner product space with

(a, b) :=
∞∑
i=1

aibi,

where the right hand side clearly converges because it is a finite sum.

3.2.1. Nondegeneracy. The positivity condition of an inner prod-
uct ( , ) on V implies in particular the nondegeneracy condition

(v, w) = 0 ∀w ⇐⇒ v = 0.

In fact, the condition has to be satisfied in particular for w = v, so we
have (v, v) = 0 and hence v = 0. A further consequence of this is that
the linear map

V → V ∗

v 7→ L(v)
,

with L(v)(w) := (v, w), is injective.

2Note that the integral converges. In fact, f vanishes outside some interval
[a, b] and g outside some interval [a′, b′]. Let [c, d] be some interval that contains

both [a, b] and [a′, b′]. Then
∫∞
−∞ fg dx =

∫ d
c
fg dx which converges since f and g

are continuous.
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Remark 3.12 (The induced isomorphism). If V is finite-dimen-
sional, then this map is also surjective: in summary, we get an isomor-
phism L between V and V ∗. We denote by R its inverse.

Example 3.13. In the case of the dot product on Rn—(v,w) =
v · w = vTw as in (3.6)—the map L is just the usual transposition
map Rn → (Rn)∗:

L(v) = vT.

Remark 3.14 (Lowering and raising indices). In the case of Exam-
ple 3.7—(v,w) = vTgw on Rn—the map L is given by

L(v) = vTg.

As ( , ) is positive definite, the map L is an isomorphism. This implies
that the matrix g is invertible. Note that L(v) is the row vector α
with components

αj = vigij, j = 1, . . . , n,

where we have used the Einstein convention of Definition 1.33. For this
reason, applying L is also called the operation of lowering indices. It is
customary, especially in the physics literature, to denote by gij (note
the upper indices!) the entries of the inverse matrix g−1. That is,

gijgjl = δil ,

where we have used the Kronecker delta. The map R : (Rn)∗ → Rn,
inverse to L, maps a row vector α to the column vector v = R(α)
whose components are

vi = gijαj, i = 1, . . . , n.

For this reason, applying R is also called the operation of raising indices.

Remark 3.15. For a general finite-dimensional inner product space
(V, ( , )) with basis (e1, . . . , en) and representing matrix with entries
gij = (ei, ej) as in Remark 3.8, the maps L and R are also described in
terms of lowering and raising indices:

L(v)j = vigij, R(α)i = gijαj,

with v = viei and α = αje
j. Here we have denoted by (e1, . . . , en)

the dual basis on V ∗ and by gij the entries of the inverse matrix of
g = (gij).
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3.3. The norm

Let (V, ( , )) be an inner product space. Positivity implies—see
Remark 3.3—that (v, v) is a nonnegative real number. Therefore, we
can compute its square root. We use this to define the norm of a vector
v, generalizing (3.2), as

‖v‖ :=
√

(v, v).

The norm has three important properties. We start considering the
first two, which follow immediately from the properties of the inner
product:

(N.1) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 iff v = 0.
(N.2) ‖αv‖ = |α|‖v‖ for all v ∈ V and for all α ∈ R.

For the third property—the triangle inequality—we need first the fol-
lowing

Theorem 3.16 (Cauchy–Schwarz inequality). Let (V, ( , )) be an
inner product space, and let ‖ ‖ denote the induced norm. Then all
v, w ∈ V satisfy the Cauchy–Schwarz inequality

|(v, w)| ≤ ‖v‖‖w‖ (3.9)

with equality saturated iff v and w are linearly dependent.

Proof. We start proving the inequality. If w = 0, both sides
vanish, so the inequality is satisfied. If w 6= 0, we consider the function

f(λ) := ‖v + λw‖2 = (v + λw, v + λw) = ‖v‖2 + 2λ(v, w) + λ2‖w‖2.

The function satisfies the following three properties:

(1) f(λ) ≥ 0 for all λ.
(2) f ′(λ) = 2(v, w) + 2λ‖w‖2.
(3) f ′′(λ) = 2‖w‖2 > 0 for all λ.

Property (2) implies that f has a unique critical point, which by prop-
erty (3) is a minimum, located at

λmin = −(v, w)

‖w‖2
.

Property (1) implies that this minimum fmin is nonnegative. Therefore,

0 ≤ fmin = f(λmin) = ‖v‖2 − (v, w)2

‖w‖2
.

This inequality may be rewritten as |(v, w)|2 ≤ ‖v‖2‖w‖2. Taking the
square root yields the Cauchy–Schwarz inequality (3.9).

Next, assume that v and w are linearly dependent. Upon exchang-
ing them if necessary, we have w = αv for some real number α. We
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then have (v, w) = α‖v‖2, by linearity with respect to the second argu-
ment, and ‖w‖ = |α|‖v‖, by property (N.2). This shows that we have
an equality in (3.9).

Vice versa, suppose that we have an equality in (3.9). If w = 0,
the vectors are obviously linearly dependent. If w 6= 0, we consider
the function f as above. The equality in (3.9) implies fmin = 0. This
means ‖v+λminw‖ = 0, so v+λminw = 0 by property (N.1). Therefore,
v and w are linearly dependent. �

We then have the following generalization of (3.5):

Proposition 3.17 (The triangle inequality). Let (V, ( , )) be an
inner product space, and let ‖ ‖ denote the induced norm. Then all
v, w ∈ V satisfy the triangle inequality

‖v + w‖ ≤ ‖v‖+ ‖w‖. (3.10)

Proof. We have

‖v + w‖2 = (v + w, v + w) = ‖v‖2 + 2(v, w) + ‖w‖2.

By taking the absolute value (and using the triangle inequality on R),
we get

‖v + w‖2 = |‖v + w‖2| ≤ ‖v‖2 + 2|(v, w)|+ ‖w‖2.

By the Cauchy–Schwarz inequality, we then have

‖v + w‖2 ≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2.

By taking the square root, we get the triangle inequality (3.10). �

As a consequence, we have the following

Theorem 3.18 (Properties of the norm). Let (V, ( , )) be an inner
product space. Then the induced norm ‖ ‖ satisfies the following three
properties

(N.1) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 iff v = 0.
(N.2) ‖αv‖ = |α|‖v‖ for all v ∈ V and for all α ∈ R.
(N.3) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Digression 3.19 (Normed spaces). A norm on a real vector space V
is a function ‖ ‖ : V → R satisfying properties (N.1), (N.2), and (N.3).
A real vector space endowed with a norm is called a normed space. The
above theorem shows that an inner product space is automatically a
normed space as well. On the other hand, there are norms that are
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not defined in terms of an inner product. For example, on Rn one can
show that

‖v‖p :=

(
n∑
i=1

|vi|p
) 1

p

defines a norm for every real number p ≥ 1. The following is also a
norm:

‖v‖∞ := max{|v1|, . . . , |vn|}.

Remark 3.20 (The other triangle inequality). In plane geometry
we know that not only is the length of one side of a triangle shorter than
the sum of the lengths of the other two sides, but also that it is longer
than their difference. Analogously, in a normed space, in addition to
the triangle inequality (3.10) we also have

‖v − w‖ ≥ |‖v‖ − ‖w‖| (3.11)

for all v and w. To prove this, just apply the usual triangle equality to
w and v − w:

‖v‖ = ‖w + (v − w)‖ ≤ ‖w‖+ ‖v − w‖.

Therefore, ‖v‖ − ‖w‖ ≤ ‖v − w‖. Exchanging v and w yields ‖w‖ −
‖v‖ ≤ ‖v − w‖. The two inequalities together imply (3.11).

Remark 3.21 (Angle between vectors). Returning to the Cauchy–
Schwarz inequality (3.9), we observe that for nonzero vectors v and w

we may also write |(v,w)|
‖v‖‖w‖ ≤ 1. This implies that there is an angle θ,

unique in [0, π], such that

cos θ =
(v, w)

‖v‖‖w‖
.

This formula generalizes (3.3). We also have

‖v + w‖2 = ‖v‖2 + 2(v, w) + ‖w‖2 = ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ cos θ,

which generalizes the law of cosines (3.4).

Remark 3.22 (Infinite-dimensional spaces). Note that our proofs
of the Cauchy–Schwarz and the triangle inequalities also hold in the
case of infinite-dimensional spaces. In particular, in the case of Exam-
ple 3.9 of continuous functions on a compact interval [a, b] with inner
product as in (3.8) the induced norm is

‖f‖ =

(∫ b

a

f 2 dx

) 1
2

,
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so the Cauchy–Schwarz inequality explictly reads∣∣∣∣∫ b

a

fg dx

∣∣∣∣ ≤ (∫ b

a

f 2 dx

) 1
2
(∫ b

a

g2 dx

) 1
2

, (3.12)

whereas the triangle inequality reads(∫ b

a

(f + g)2 dx

) 1
2

≤
(∫ b

a

f 2 dx

) 1
2

+

(∫ b

a

g2 dx

) 1
2

. (3.13)

On the inner product space R∞ of Example 3.11, the norm is

‖a‖ =

√√√√ ∞∑
i=1

(ai)2,

the Cauchy–Schwarz inequality reads∣∣∣∣∣
∞∑
i=1

aibi

∣∣∣∣∣ ≤
√√√√ ∞∑

i=1

(ai)2

√√√√ ∞∑
i=1

(bi)2, (3.14)

and the triangle inequality is√√√√ ∞∑
i=1

(ai + bi)2 ≤

√√√√ ∞∑
i=1

(ai)2 +

√√√√ ∞∑
i=1

(bi)2. (3.15)

3.3.1. Square-integrable continuous functions. The inequal-
ities (3.12) and (3.13) allow for the construction of a more interesting
inner product space (whose complex version is) important for quantum
mechanics, namely, the space of square-integrable continuous functions.

We start with a digression on improper Riemann integrals of contin-
uous functions.3 Recall that one defines∫ ∞

−∞
f dx := lim

a,b→+∞

∫ b

−a
f dx,

where f is a continuous function, if the limit on the right hand side
exists. For further convenience, we define

If (a, b) :=

∫ b

−a
f dx,

so
∫∞
−∞ f dx := lima,b→+∞ If (a, b). Note that If is a continuous function

of a and b.

3What we discuss here has far reaching generalizations to much larger classes
of functions via the Lebesgue integral.
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The situation is better behaved when f ≥ 0 because, in this case,
If is monotonically increasing, so

lim
a,b→+∞

If (a, b) = sup{If (a, b), (a, b) ∈ (R≥0)2}

and the limit exists, although it can be infinite.
We can always reduce to this well-behaved case by introducing

f+ :=
|f |+ f

2
and f− :=

|f | − f
2

.

Note that, for f continuous, also f± are continuous. They are moreover
nonnnegative, so the integrals

∫∞
−∞ f± dx exist, although they can be

infinite. Observe that we have

f = f+ − f−.
If the improper integrals of f± are finite, then there difference is well-
defined (and finite), so the limit defining the improper integral of f
converges, and we have∫ ∞

−∞
f dx =

∫ ∞
−∞

f+ dx−
∫ ∞
−∞

f− dx.

Now observe that
|f | = f+ + f−.

If f is continuous, we then have∫ ∞
−∞
|f | dx =

∫ ∞
−∞

f+ dx+

∫ ∞
−∞

f− dx,

where each of the three improper integrals is possibly infinite. Observe
however that, since all three integrals are nonnegative, the left hand
side is finite if and only the improper integrals of f± are finite.

We may summarize this discussion, with the following definition
and lemma.

Definition 3.23. A continuos function f : R → R is called abso-
lutely integrable if the improper integral

∫∞
−∞ |f | dx is finite.

Lemma 3.24. If f is an absolutely integrable continuous function,
then its improper integral converges, and we have∫ ∞

−∞
f dx =

∫ ∞
−∞

f+ dx−
∫ ∞
−∞

f− dx.

We next move to the main object of interest for us:

Definition 3.25. A continuos function f : R→ R is called square
integrable if the improper integral

∫∞
−∞ f

2 dx is finite.
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We first have the

Lemma 3.26. If f and g are square-integrable continuous functions
on R, then so is f + g.

Proof. We use the triangle inequality (3.13), writing −a instead
of a: (∫ b

−a
(f + g)2 dx

) 1
2

≤
(∫ b

−a
f 2 dx

) 1
2

+

(∫ b

−a
g2 dx

) 1
2

.

Since f and g are square-integrable, the two summands on the right
hand side have finite limits for a, b→ +∞. This implies that I(f+g)2(a, b)
is bounded from above, so its limit—which exists because (f + g)2 is
nonnegative—is also finite. �

Since multipliying a square-integrable continuous function by a real
constant clearly yields again a square-integrable continuous function,
the lemma has the following

Corollary 3.27. The set L2,0(R) of square-integrable continuous
functions on R is a subspace of the real vector space C0(R) of contin-
uous functions on R.

Next, we have the

Lemma 3.28. If f and g are square-integrable continuous functions
on R, then the product fg is absolutely integrable.

Proof. In this case we use the Cauchy–Schwarz inequality (3.12),
writing −a instead of a, applied to the nonnegative continuous func-
tions |f | and |g|:∣∣∣∣∫ b

−a
|f ||g| dx

∣∣∣∣ ≤ (∫ b

−a
|f |2 dx

) 1
2
(∫ b

−a
|g|2 dx

) 1
2

.

Since |f ||g| = |fg|, |f |2 = f 2, and |g|2 = g2, we can rewrite it as∫ b

−a
|fg| dx ≤

(∫ b

−a
f 2 dx

) 1
2
(∫ b

−a
g2 dx

) 1
2

,

where we have removed the absolute value around the left hand side
which is clearly nonnegative.

Since f and g are square integrable, the two factors on the right
hand side have finite limits for a, b→ +∞. This implies that I|fg|(a, b)
is bounded from above, so its limit—which exists because |fg| is non-
negative—is also finite. �

We can summarize these results in the
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Theorem 3.29. On the real vector space L2,0(R) of square-inte-
grable continuous functions on R, we have the inner product

(f, g) :=

∫ +∞

−∞
fg dx.

Proof. We have already proved that the integral defining the inner
product converges. It is clearly bilinear and symmetric. Positivity is
proved as in Example 3.9. �

Finally, observe that the induced norm—called the L2-norm—is

‖f‖ =

(∫ +∞

−∞
f 2 dx

) 1
2

Since L2,0(R) is an inner product space, we have the Cauchy–Schwarz
and triangle inequalities. Explicitly, they say that for square-integrable
continuous functions f and g on R, we have∣∣∣∣∫ +∞

−∞
fg dx

∣∣∣∣ ≤ (∫ +∞

−∞
f 2 dx

) 1
2
(∫ +∞

−∞
g2 dx

) 1
2

,(∫ +∞

−∞
(f + g)2 dx

) 1
2

≤
(∫ +∞

−∞
f 2 dx

) 1
2

+

(∫ +∞

−∞
g2 dx

) 1
2

.

Remark 3.30. The space C0
c (R) of compactly supported continu-

ous functions of Example 3.10 is a subspace of L2,0(R), and its inner
product is the restriction of the inner product on L2,0(R).

3.3.2. Square-summable sequences. Analogously to the space
of square-integrable functions, we may study the space of square-sum-
mable sequences (this is actually easier, so we leave many details to
the reader: see Exercise 3.6).

Definition 3.31. A sequence a = (a1, a2, . . . ) of real numbers is
called square summable if the series

∑∞
i=1(ai)

2 converges.

If a is a sequence, we denote by a(N) its N -truncation, i.e., the
sequence whose first N terms are the same as in a, whereas the others
are equal to zero. Note that, for every N , a(N) belongs to the inner
product space R∞ of finite real sequences introduced in Example 3.11.

Using the triangle inequality (3.15) on R∞ for truncated sequences
and taking the limit for N going to infinity, one shows that the sum of
two square-summable sequences is again square-summable.

By the Cauchy–Schwarz inequality (3.14) on R∞, one shows that,
if a and b are square summable, then

∑∞
i=1 |aibi| converges. A fortiori,



78 3. INNER PRODUCTS

the right hand side of

(a, b) :=
∞∑
i=1

aibi

also converges.
The inner product space of square-summable real sequences is de-

noted by `2 (or, more precisely, by `2
R to stress that we are considering

real sequences).

3.4. Orthogonality

Let (V, ( , )) be an inner product space. Two vectors v and w are
called orthogonal if (v, w) = 0. In this case one writes v ⊥ w.

A collection (ei)i∈S of nonzero vectors in V is called an orthogonal
system if ei ⊥ ej for all i 6= j in S.

Lemma 3.32. An orhogonal system is linearly independent.

Proof. Suppose
∑

i λ
iei = 0 for some scalars λi (only finitely

many of which are different from zero). For every j, we then have(
ej,
∑
i

λiei

)
= 0.

On the other hand, using the linearity of the inner product and the
orthogonality of the system, we get4(

ej,
∑
i

λiei

)
= λj‖ej‖2.

Since ej 6= 0, we get λj = 0. �

If (ei)i∈S is in addition a system of generators, then it is called an
orthogonal basis.

An orthogonal system (ei)i∈S is called an orthonormal system if in
addition ‖ei‖2 = 1 for all i ∈ S. Succinctly,

(ei, ej) = δij, (3.16)

where δij is the Kronecker delta:

δij :=

{
1 if i = j,

0 if i 6= j.

If (ei)i∈S is in addition a system of generators, then it is called an
orthonormal basis.

4No sum is understood on the right hand side.
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Example 3.33. The standard basis (e1, . . . , en) of Rn is an or-
thonormal basis for the dot product.

Remark 3.34. Note that (3.16) implies that the representing ma-
trix of an inner product on a finite-dimensional space in an orthonor-
mal basis is the identity matrix. We will see (Theorem 3.43) that every
finite-dimensional space admits an orthonormal basis, so eventually we
always go back to the case of the dot product.

An orthogonal system (ei)i∈S can be transformed into an orthonor-
mal system (ẽi)i∈S with the same span simply by normalizing the vec-
tors: ẽi := ei

‖ei‖ for all i ∈ S. We will therefore mainly consider or-

thonormal systems/bases.
If v =

∑
i v

iei is in the span of an orthonormal system (ei)i∈S, we
can get the coefficients of the expansion by the formula

vi = (ei, v). (3.17)

We can also rewrite the expansion as

v =
∑
i

(ei, v)ei.

Moreover, note that, if w =
∑

iw
iei, then (v, w) =

∑
ij v

iwj(ei, ej), so,

by (3.16),

(v, w) =
∑
i

viwi,

and, in particular,

‖v‖2 =
∑
i

(vi)2. (3.18)

Remark 3.35 (Einstein’s convention). The above formulae do not
fit with Einstein’s convention as introduced in Definition 1.33. The
way out is to raise and lower indices as in Remark 3.14, now using the
three different notations δij, δ

j
i , and δij for the Kronecker delta (each of

them being 1 for i = j and 0 otherwise). We then define, in Einstein’s
notation, ei = δijej and vi = δijv

j. The formulae above now read

v = viei,

vi = (ei, v),

v = (ei, v)ei,

(v, w) = viδijw
j,

‖v‖2 = viδijv
j.
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Remark 3.36 (Bessel’s inequality). The generalization of Pythago-
ras’ theorem given by (3.18) does not hold if we have an orthonormal
system (ei)i∈S that is not a basis. Actually, if S is infinite, then (3.18)
may not be a finite sum, as there could be infinitely many nonvanish-
ing coefficients vi = (ei, v) for a given vector v.5 Suppose now that
S = N>0. In particular, for each N , (e1, . . . , eN) is an orthonormal
system, so we have6

N∑
i=1

(vi)
2 ≤ ‖v‖2.

Therefore, the limit for N →∞ converges, and we have

∞∑
i=1

(vi)
2 ≤ ‖v‖2, (3.19)

which is known as Bessel’s inequality.

Example 3.37 (Sine series). Consider the space

V := {φ ∈ C0([0, L]) | φ(0) = φ(L) = 0}

which extends that of Section 2.3.2 to all continuous functions. Let

ek(x) :=

√
2

L
sin

(
πkx

L

)
.

One can easily verify that (ek)k∈N>0 is an orthonormal system on V

with the inner product (f, g) :=
∫ L

0
fg dx of Example 3.9. If f is a

linear combination of the eks,

f(x) =

√
2

L

∞∑
k=1

bk sin

(
πkx

L

)
(3.20)

5If (ei)i∈S is a basis, the vis are the coefficients of the expansion of v, so only
finitely many of them are different from zero, by definition of a basis.

6Observe that

0 ≤

∥∥∥∥∥v −
N∑
i=1

viei

∥∥∥∥∥
2

=

(
v −

N∑
i=1

viei, v −
N∑
i=1

viei

)
=

= ‖v‖2 − 2
N∑
i=1

(vi)
2 +

N∑
i=1

(vi)
2 = ‖v‖2 −

N∑
i=1

(vi)
2.



3.4. ORTHOGONALITY 81

with only finitely many bks different from zero, then we can recover the
coefficients bk of the expansion via (3.17):7

bk = (ek, f) =

√
2

L

∫ L

0

f(x) sin

(
πkx

L

)
dx. (3.21)

Note that the integral on the right hand side actually converges for
every f in V , so we can define the coefficients bk also for functions that
are not finite linear combinations of the eks. Bessel’s inequality (4.10)
in this case reads

∞∑
k=1

(bk)
2 ≤ ‖f‖2. (3.22)

In this particular case one can show—but this is beyond the scope of
these notes—that Bessel’s inequality is actually saturated:

∞∑
k=1

(bk)
2 = ‖f‖2. (3.23)

This equality is known as Parseval’s identity. Finally, it turns out that
also the series (3.20) actually converges, in an appropriate sense, to the
original function f . This is an example of a Fourier series, called a sine
series.

3.4.1. The orthogonal projection. Let w be a nonzero vector
in V . Any vector v can then be decomposed in a component parallel
to w,

v‖ = (v, w)
w

‖w‖2
,

and in one orthogonal to it,

v⊥ = v − v‖.

In fact, (v‖, w) = (v, w), so (v⊥, w) = 0. This is an example of an
orthogonal decomposition.

7One often prefers to write the expansion as

f(x) =

∞∑
k=1

bk sin

(
πkx

L

)
without the prefactor, i.e., using a nonnormalized orthogonal system. In this case,
the coefficients bk are obtained by

bk =
2

L

∫ L

0

f(x) sin

(
πkx

L

)
dx.
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Example 3.38. Consider R2 with the dot product. Let v = ( 2.5
2.5 )

and w = ( 6
2 ) as in Figure 3.3. We then have ‖w‖2 = 40 and v ·w = 20,

so v‖ = 1
2
w = ( 3

1 ) and v⊥ = ( 2.5
2.5 )− ( 3

1 ) = ( −.51.5 ).

v

v‖

v⊥ w

Figure 3.3. The orthogonal decomposition

Example 3.39. On Rn with the dot product, the formula for the
parallel component of v along a unit vector w reads

v‖ = (w · v)w.

On R3 one can write the orthogonal component also using the cross
product (see exercise 3.16) as

v⊥ = (w × v)×w.
Therefore, for v,w ∈ R3 with ‖w‖ = 1, the decomposition reads

v = (w · v)w + (w × v)×w.
We denote by Pw the endomorphism that assigns to a vector v its

component v‖ parallel to w. We rewrite the definition for future use:

Pwv = (v, w)
w

‖w‖2
. (3.24)

Note that, for any scalar λ, we have

Pw(λw) = (λw,w)
w

‖w‖2
= λw.

Therefore, Pw restricted to the span of w acts as the identity. This also
means that P 2

w = Pw, so Pw is a projection.
As a consequence, the endomorphism P ′w = Id−Pw is also a pro-

jection. Its image, which we denote by w⊥, is called the orthogonal
complement to the span of w. Explicitly, we have

w⊥ = {v ∈ V | v ⊥ w}. (3.25)

Proof. For any v, we have seen that P ′wv = v⊥ is orthogonal to
w, so it belongs to w⊥. This shows imP ′w ⊆ w⊥.

On the other hand, if v ∈ w⊥, we get Pwv = 0, so we have P ′wv = v,
which shows that v is in the image of P ′w. Therefore, w⊥ ⊆ imP ′w. �
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Example 3.40. Let V = C0([0, 1]) be the space of continuous func-

tions on the interval [0, 1] with inner product (f, g) =
∫ 1

0
fg dx (see Ex-

ample 3.9). Let f(x) = x3 and g(x) = x. We have ‖g‖2 =
∫ 1

0
x2 dx = 1

3

and (f, g) =
∫ 1

0
x4 dx = 1

5
, so Pgf = 3

5
g. Therefore, we get

(Pgf)(x) =
3

5
x and (P ′gf)(x) = x3 − 3

5
x.

Remark 3.41. Note that Pw and P ′w only depend on the direction
of w but not on its norm:

Pλw = Pw and P ′λw = P ′w

for every λ 6= 0. In particular, if w is normalized (i.e., ‖w‖ = 1), then
we get the simpler formula

Pwv = (v, w)w.

3.4.2. The Gram–Schmidt process. We want to show that a
finite (or countable) linearly independent system may be transformed
into an orthonormal one with the same span.

The central step of the contruction is the following: Suppose we
have an orthonormal system (e1, . . . , ek) and a vector v that is not a
linear combination of the eis. Then we can make v orhogonal to all the
eis by substracting all its parallel components:

ṽ := v −
k∑
i=1

(v, ei)ei.

Note that (ṽ, ei) = 0 for i = 1, . . . , k. Moreover, ṽ 6= 0 because v is not
a linear combination of the eis. We can then normalize it to

ek+1 :=
ṽ

‖ṽ‖
.

As a result (e1, . . . , ek+1) is also an orthonormal system, and in partic-
ular it is linearly independent by Lemma 3.32. Also note that

Span{e1, . . . , ek+1} = Span{e1, . . . , ek, v}.
In fact, let w be a linear combination of (e1, . . . , ek+1). Since ek+1 is
a linear combination of (e1, . . . , ek, v), we get that w is so, too. Vice
versa, let w be a linear combination of (e1, . . . , ek, v). Since v is a linear
combination of (e1, . . . , ek+1), we get that w is so, too.

We then get the following

Proposition 3.42 (Gram–Schmidt process). Let (v1, . . . , vk) be a
linearly independent system in an inner product space V . Then there
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is an orthonormal system (e1, . . . , ek) with the same span. This system
is determined by the following process:

ṽ1 := v1 e1 :=
ṽ1

‖ṽ1‖

ṽ2 := v2 − (v2, e1)e1 e2 :=
ṽ2

‖ṽ2‖

ṽ3 := v3 − (v3, e1)e1 − (v3, e2)e2 e3 :=
ṽ3

‖ṽ3‖
...

...

ṽk := vk −
k−1∑
i=1

(vk, ei)ei ek :=
ṽk
‖ṽk‖

Proof. The proof goes by induction on the number k of vectors.
For k = 1, we simply normalize the vector: e1 := v1

‖v1‖ .

Next suppose we have proved the statement for k vectors and we
want to prove it for k + 1. Consider the subcollection (v1, . . . , vk)
of (v1, . . . , vk+1). By the induction assumption, we can replace it by
the orthonormal system (e1, . . . , ek), given by the construction in the
proposition, which has the same span. In particular, vk+1 is not a
linear combination of the eis, i = 1, . . . , k. We can therefore apply the
construction just before the proposition to get the vector ek+1. As we
observed, (e1, . . . , ek+1) is an orthonormal system with the same span as
(e1, . . . , ek, vk+1). As the latter has the same the span as (v1, . . . , vk+1),
the proof is complete.

The displayed list of assignments summarizes this process. �

If (v1, . . . , vn) is a basis of V , then the Gram–Schmidt process yields
an orthonormal basis (e1, . . . , en). Therefore, we have the

Theorem 3.43 (Orthonormal bases). A finite-dimensional or count-
ably infinite-dimensional inner product space has an orthonormal basis.

Example 3.44 (A countably infinite-dimensional example). Con-
sider the inner product space V = C0([0, 1]) of Example 3.9. Let W be
the subspace of polynomial functions. This has the basis (1, x, x2, x3, . . . ).
We write vk(x) = xk. The Gram–Schmidt process will then turn
(vk)k∈N into an orthonormal basis (ek)k∈N of W . Let us see the first

steps. We have ‖v0‖2 =
∫ 1

0
1 dx = 1, so e0 = v0. Next we compute

(v1, e0) =
∫ 1

0
x dx = 1

2
, so ṽ1(x) = x−1

2
. From ‖ṽ1‖2 =

∫ 1

0

(
x− 1

2

)2
dx =

1
12

, we get e1(x) = 2
√

3
(
x− 1

2

)
. Next we compute (v2, e0) =

∫ 1

0
x2 dx =
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1
3

and (v2, e1) = 2
√

3
∫ 1

0
x2
(
x− 1

2

)
dx = 1

2
√

3
, so ṽ2(x) = x2 − 1

3
−(

x− 1
2

)
= x2 − x + 1

6
. From ‖ṽ2‖2 =

∫ 1

0

(
x2 − x+ 1

6

)2
dx = 1

180
, we

get e2(x) = 6
√

5
(
x2 − x+ 1

6

)
. We then have the beginning of the

orthonormal basis(
1, 2
√

3

(
x− 1

2

)
, 6
√

5

(
x2 − x+

1

6

)
, . . .

)
of W .

Example 3.45 (Hermite polynomials). This is another countably
infinite-dimensional example, which is relevant for the quantum har-
monic oscillator. Let V be the space of real polynomial functions (you
may regard it as a subspace of C0(R)). One can show that

(f, g) :=

∫ +∞

−∞
e−x

2

fg dx

defines an inner product on V . The basis (1, x, x2, x3, . . . ) of V can
then be turned by the Gram–Schmidt process into an orthonormal basis
(e0, e1, . . . ). Its elements (up to appropriate factors) are the Hermite
polynomials Hn:

en =
1√√
π2nn!

Hn, Hn := (−1)nex
2 dn

dxn
e−x

2

.

As we have already observed, see equation (3.16) and Remark 3.34,
the matrix representing the inner product in an orthonormal basis is
the identity matrix. In particular, we get the following

Corollary 3.46. A symmetric matrix g is positive definite iff it
is of the form g = ETE with E an invertible matrix.

Proof. Let (v,w) := vTgw.
If g is symmetric and positive definite, then ( , ) is an inner product.

By the Gram–Schmidt process, we have an orthonormal basis. In such a
basis, see Remark 3.34, the inner product is represented by the identity
matrix. Taking E to be the matrix representing the change of basis,
we then get g = ETE.

Vice versa, if g = ETE, we get that gT = g. Moreover, for every
v we have

(v,v) = vTgv = vTETEv = (Ev)TEv = (Ev)T ·Ev.
If v is different from zero, then so is also Ev, since E invertible. By
the positivity of the dot product, we then get the positivity of ( , ),

v 6= 0 =⇒ Ev 6= 0 =⇒ (Ev)T ·Ev > 0 =⇒ (v,v) > 0,
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and hence of g. �

Remark 3.47. As is made clear in the proof, a matrix E such that
g = ETE is obtained via the change of basis to an orthonormal basis
(v1, . . . ,vn) for the inner product (v,w) = vTgw. In particular, if we
denote by F the matrix whose columns are these basis vectors, we get

F TgF =

vT1...
vTn

 g (v1, . . . ,vn
)

=

vT1...
vTn

(gv1, . . . , gvn
)

= 1,

so g = F T,−1F−1. Therefore, we get the factorization g = ETE with
E = F−1. As F consists of basis elements, it is also called a frame.
For this reason, its inverse E is called a coframe.

Remark 3.48. The matrix E in Corollary 3.46 is not uniquely de-
termined (as we can choose different orthonormal bases). In particular,

suppose that E′ is also an invertible matrix with g = E′
T
E′. Then we

have E′
T
E′ = ETE, or, equivalently, ET,−1E′T = EE′−1. Therefore,

the invertible matrix O := E′E−1 satisfies

OT = O−1.

A matrix with this property is called an orthogonal matrix (see more
on this in Section 3.5). Note that E′ = OE. In conclusion, any
two matrices occurring in a factorization of the same positive definite
matrix are related by an orthogonal matrix.

The fact that a positive definite matrix g is necessarily of the form
g = ETE for some invertible matrix E implies that det g = (detE)2 >
0, so we have the

Lemma 3.49. A positive definite matrix necessarily has positive de-
terminant.

This fact can actually be improved to a useful criterion to check
whether a matrix is positive definite. We need the following terminol-
ogy.

Definition 3.50. Let g be an n×n matrix. For every k = 1, . . . , n,
we denote by g(k) the k × k upper left part of g.8 The determinant of
g(k) is called the kth leading principal minor of g.

Then we have the

Corollary 3.51. If g is a positive definite matrix, then all its
leading principal minors are necessarily positive.

8That is, if g = (gij)i,j=1,...,n, then g(k) = (gij)i,j=1,...,k.
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Proof. Let Wk be the span of (e1, . . . , ek). The restriction to Wk

of the inner product defined by g is also an inner product. Moreover, for
any v,w ∈ Wk, we have (v,w) = vTgw = vTg(k)w. This shows that
g(k) is a positive definite matrix, so det g(k) > 0 by Lemma 3.49. �

The converse to Corollary 3.51 also holds. (For the proof, see exer-
cise 3.12.)

Lemma 3.52. If all the leading principal minors of a real symmetric
matrix g are positive, then g is positive definite.

We can summarize the results of Corollary 3.51 and of Lemma 3.52
as the following

Theorem 3.53 (Sylvester’s criterion). A real symmetric matrix is
positive definite iff all its leading principal minors are positive.

Digression 3.54 (Maxima and minima of functions). Sylvester’s
criterion has an important application in analysis. Let F be a twice
continuously differentiable function of n variables. If x0 is a critical
point, then the Taylor expansion of F in a neighborhood of F reads

F (x) = F (x0) +
1

2
(x− x0)T g(x) (x− x0),

where g(x) is an n × n matrix depending continuously on x with

g(x0) = dx0F =
(

∂2F
∂xi∂xj

(x0)
)

—the Jacobian matrix of F . The lead-

ing principal minors of g are continuous functions of x (since they are
polynomials in the entries of g which is continuous). If we assume
that they are all positive at x0, then there is a neighborhood in which
they all remain positive. In this neighborhood, g(x) is then positive
definite, so F (x0) is a minimum. We then get the following criterion:
we have a minimum at a critical point x0 if all the leading principal
minors of the Jacobian at x0 are positive (equivalently, if the Jacobian
is positive definite at x0). Similarly, we have a maximum at a critical
point x0 if all the leading principal minors of minus the Jacobian at x0

are positive (equivalently, if the Jacobian is negative definite at x0).

3.4.3. Orthogonal complements. The following is a very useful
generalization of the concept of the orthogonal complement w⊥ of a
nonzero vector w introduced in (3.25).

Definition 3.55. Let W be a subspace of an inner product space
V . The orthogonal subspace associated to W is the subspace

W⊥ := {v ∈ V | v ⊥ w ∀w ∈ W}
of all vectors orthogonal to vectors in W .
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If W = Rw, for a nonzero vector w, then W⊥ is the same as w⊥ as
introduced in (3.25).

Example 3.56. Let V = R3 endowed with the dot product. Let

w =
(

1
0
0

)
and W = Rw the x-axis. Then W⊥ is the yz-plane. Another

example is the following: Let v,w be linearly independent vectors in
R3 and let W be the plane they generate. Then W⊥ is the line through
the origin orthogonal to this plane. We can write

W⊥ = R(v ×w),

where we have used the cross product.

Example 3.57. Let V = C0([−1, 1]) be the space of continuous

functions on the interval [−1, 1] with inner product (f, g) =
∫ 1

−1
fg dx

(see Example 3.9). Let

W := {f ∈ C0([−1, 1]) | f(0) = 0}.
We claim that W⊥ = {0}. To show this, assume that g is not the zero
function. We will show that we can find an f in W such that (f, g) 6= 0.
In fact, let x0 ∈ [−1, 1]\{0} be a point with g(x0) 6= 0.9 We may assume
x0 > 0 and g(x0) > 0 (the proof for the other cases is analogous). By
continuity, there is an ε > 0 such that (x0 − ε, x0 + ε) ⊂ (0, 1) and
g(x) > 0 for all x ∈ (x0 − ε, x0 + ε). Consider

g(x)

x

f(x)

f(x) :=


0 for x < x0 − ε,
1 + x−x0

ε
for x0 − ε ≤ x ≤ x0,

1− x−x0
ε

for x0 ≤ x ≤ x0 + ε,

0 for x > x0 + ε.

9If g(x) = 0 for all x 6= 0, then, by continuity, we also have g(0) = 0, so g would
be the zero function.
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We have f ∈ W and

(f, g) =

∫ x0+ε

x0−ε
fg dx

because f vanishes outside of the interval (x0− ε, x0 + ε). The integral
is strictly positive because both f and g are strictly positive in the
interval (x0 − ε, x0 + ε).

Without any assumption on dimensionality, we have the following

Proposition 3.58. Let V be an inner product space, and let W
and Z be subspaces of V . Then the following hold:

(1) {0}⊥ = V .
(2) V ⊥ = {0}.
(3) W ∩W⊥ = {0}.
(4) W ⊆ Z =⇒ Z⊥ ⊆ W⊥.
(5) W ⊆ W⊥⊥.
(6) W⊥⊥⊥ = W⊥.
Proof.

(1) Every vector is orthogonal to the zero vector.
(2) If v ∈ V ⊥, then (v, w) = 0 for every w ∈ V . In particular, we

may take w = v, so (v, v) = 0, which implies v = 0.
(3) If v ∈ W⊥, then (v, w) = 0 for every w ∈ W . If v ∈ W , then,

in particular, we may take w = v, so (v, v) = 0, which implies
v = 0.

(4) If v ∈ Z⊥, then (v, z) = 0 for every z ∈ Z. In particular,
(v, z) = 0 for every z ∈ W , so v ∈ W⊥.

(5) Let w ∈ W . Then, for every v ∈ W⊥, we have (v, w) = 0.
But this means that w is orthogonal to every vector in W⊥,
so w ∈ W⊥⊥.

(6) Applying (4) to (5), we get W⊥⊥⊥ ⊆ W⊥. On the other hand,
(5) for W⊥ reads W⊥ ⊆ (W⊥)⊥⊥ = W⊥⊥⊥.

�

Property (3) of the above proposition shows that the sum of W and
W⊥ is a direct sum. If this happens to exhaust V, i.e., if

W ⊕W⊥ = V,

then we say that W⊥ is the orthogonal complement of W . To stress that
this is a direct sum of orthogonal spaces, we may also use the notation

V = W ⊥©W⊥.
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Note that in this case we have

W⊥⊥ = W.

In fact, by (3) applied to W⊥, we have W⊥ ∩W⊥⊥ = {0}, which then
implies W⊥⊥ ⊆ W . From (5) we have the other inclusion.

The orthogonal space W⊥ might happen not to be a complement
to W , as Example 3.57 shows. However, we have the following

Proposition 3.59. If W is a finite-dimensional subspace of an
inner product space V , then W⊥ is a complement of W , called the
orthogonal complement:

V = W ⊕W⊥.

Proof. We prove this by generalizing the construction in Sec-
tion 3.4.1.

Namely, let (w1, . . . , wk) be an orthonormal basis of W (which exists
by Theorem 3.43). Then we define PW ∈ End(V ) as

PW (v) :=
k∑
i=1

(v, wi)wi. (3.26)

Note that PW (w) = w for every w ∈ W , so PW is a projection (i.e.,
P 2
W = PW ) with image W . Also note that for every v, z ∈ V , we have

(PW (v), z) =
k∑
i=1

(v, wi)(z, wi),

so
(PW (v), z) = (v, PW (z))

for all v, z ∈ V . In particular, we have

(PW (v), w) = (v, w) ∀v ∈ V, ∀w ∈ W. (3.27)

We then define P ′W := Id−PW , i.e.,

P ′W (v) = v −
k∑
i=1

(v, wi)wi.

This is also a projection (see Remark 1.38). We claim that its image
is W⊥. Clearly, if v ∈ W⊥, then P ′W (v) = v, so W⊥ ⊆ imP ′W . On the
other hand, for every v ∈ V and every w ∈ W , by (3.27) we have

(P ′W (v), w) = (v, w)− (PW (v), w) = 0,

so imP ′W ⊆ W⊥.
Finally, observe that every v ∈ V can be written as

v = PW (v) + P ′W (v).
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Since the first summand is in W , the second is in W⊥, and, by (3) in
Proposition 3.58, W ∩W⊥ = {0}, the proof is complete. �

Remark 3.60. Note that, since the decomposition of a vector in
a direct sum is unique, the projections PW and PW⊥ are canonically
defined. That is, formula (3.26) is just a convenient way to write PW
when we are given an orthonormal basis (w1, . . . , wk), but it is inde-
pendent of its choice.

In particular, Proposition 3.59 implies the following

Theorem 3.61. Let V be a finite-dimensional inner product space.
Then, for every subspace W we have the orthogonal complement W⊥.
In particular,

dimW + dimW⊥ = dimV,

and
W⊥⊥ = W.

We may generalize the orthogonal decomposition W ⊕ W⊥, when
W⊥ is a complement, to more general “orthogonal sums.” First, we
need the

Definition 3.62. Two subspaces W1 and W2 of an inner product
space V are called orthogonal, and we write

W1 ⊥ W2,

if every vector in W1 is orthogonal to every vector in W2.

For example, W and W⊥ are orthogonal subspaces. Note that
W1 ⊥ W2 implies W1 ∩ W2 = {0}, as a vector in the intersection is
orthogonal to itself, so it has to be zero. In particular, a sum of two
orthogonal spaces W1 and W2 is automatically a direct sum, which we
may also denote as W1 ⊥©W2. This generalizes to collections:

Definition 3.63. Let (Wi)i∈S be a collection of subspaces of an
inner product space V . The collection is called orthogonal if

Wi ⊥ Wj for all i 6= j.

Proposition 3.64. If (Wi)i∈S is an orthogonal collection of sub-
spaces, then the sum of the Wis is direct.

Proof. Suppose we have
∑

iwi = 0, wi ∈ Wi, and only finitely
many wis different from zero. Taking the inner product with wj yields

0 =

(
wj,
∑
i

wi

)
= ‖wj‖2,



92 3. INNER PRODUCTS

so wj = 0. As we can do this for every j, we get that the zero vector,
and hence every vector, has a unique decomposition, so the sum is
direct. �

Remark 3.65 (Orthogonal sums). To stress that the summands of
such a direct sum are orthogonal to each other, we may also use the
notation

⊥©
i∈S

Wi

for the direct sum
⊕

i∈SWi.

Definition 3.66. If (Wi)i∈S is an orthogonal collection of sub-
spaces of V and their sum is the whole of V , then

V = ⊥©
i∈S

Wi

is called an orthogonal decomposition of V .

Remark 3.67. Suppose we have an orthogonal decomposition V =
⊥©i∈SWi. Let Pi denote the projection to the Wi-component. Then,
for any v, v′ ∈ V , we have

(Piv, v
′) = (Piv, Piv

′).

In fact, since Piv ∈ Wi, it is orthogonal to every vector in the other Wjs,
so it only sees the Wi-component of v′. Similarly, we have (v, Piv

′) =
(Piv, Piv

′). Therefore,

(Piv, v
′) = (v, Piv

′)

for all v, v′ ∈ V . This is an example of a symmetric operator (more on
this in Section 3.5.4).

3.5. Orthogonal operators

An endomorphism F of an inner product space V is called an or-
thogonal operator if

(Fv, Fw) = (v, w)

for every v, w ∈ V .

Example 3.68 (Orthogonal matrices). In the case of the dot prod-
uct on Rn, the endomorphism defined by an n × n matrix A is or-
thogonal iff v · w = (Av) · (Aw) = vTATAw for all v,w ∈ Rn.
Taking v = ei and w = ej, the condition implies (ATA)ij = δij for all
i, j = 1, . . . , n. Therefore, we see that the endomorphism defined by A
is orthogonal iff

ATA = 1,
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which is the usual definition of an orthogonal matrix. Note that the
condition implies that A is invertible and also that A−1 is itself an
orthogonal matrix. Moreover, if A and B are orthogonal, then so is
their product AB.

Remark 3.69. In particular, we have that an endomorphism of a
finite-dimensional inner product space is orthogonal iff its representing
matrix in any orthonormal basis is orthogonal.

Remark 3.70. Let (v1, . . . ,vn) be the columns of an n× n matrix
A. Then (vT1 , . . . ,v

T
n) are the rows of AT. We then see that

A is orthogonal ⇐⇒ (v1, . . . ,vn) is an orthonormal system.

In particular, the matrix representing the change of basis from the
standard basis to another orthonormal basis (w.r.t. to the dot product)
is orthogonal. By the observations at the end of Remark 3.68, we then
get the

Proposition 3.71. The matrix representing the change of basis
between any two orthonormal bases on (Rn, ·) is orthogonal.

Remark 3.72. If we consider on Rn the inner product (v,w) :=
vTgw, where g is a positive definite symmetric matrix as in Exam-
ple 3.7, the condition for the endomorphisms defined by an n×n matrix
A to be orthogonal is

ATgA = g.

If we write g = ETE as in Corollary 3.46, the condition becomes
ATETEA = ETE, i.e.,

BTB = 1 with B = EAE−1.

That is, upon conjugation by E, we get the usual condition for an
orthogonal matrix.10

Example 3.73 (An infinite-dimensional example). Consider the
vector space V of square-integrable continuous functions on R as in
Section 3.3.1 (or, for simplicity, consider the vector space V of com-
pactly supported continuous functions on R of Example 3.10). For a
given a ∈ R, consider the endomorphism F of V defined by

(Ff)(x) = f(x+ a).

10Note that E describes the change from the chosen orthonormal basis to the
standard basis. Therefore, B is just the representation of A with respect to the
orthonormal basis.
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Since the integral on R is translation-invariant, we get

(Ff, Fg) =

∫ +∞

−∞
f(x+ a)g(x+ a) dx =

∫ +∞

−∞
f(x)g(x) dx = (f, g),

so F is orthogonal.

Here is a useful characterization of orthogonal operators:

Theorem 3.74. Let F be an endomomorphism of an inner product
space V . Then the following are equivalent:

(1) F is orthogonal.
(2) F preserves all norms.

The condition that F preserves all norms means

‖Fv‖ = ‖v‖
for every v ∈ V .

Proof of Theorem 3.74. By the definition of norm, it is clear
that (1) implies (2).

On the other hand, (2) implies (1) as an immediate consequence of
the formula

(v, w) =
1

2
(‖v + w‖2 − ‖v‖2 − ‖w‖2),

which holds for every v, w ∈ V . �

Corollary 3.75. An orthogonal operator is injective.

Proof. If v is in the kernel of F , then we also have ‖Fv‖ = 0. If
F is orthogonal, then, by the above theorem, it preserves norms, so we
get ‖v‖ = 0, which implies that v vanishes. �

This has the following immediate corollary:11

Corollary 3.76. An orthogonal operator on a finite-dimensional
inner product space is invertible.

One can easily prove that the composition of two orthogonal op-
erators is an orthogonal operator, that the inverse of an orthogonal
operator is an orthogonal operator, and that the identity map is an
orthogonal operator. As a consequence of this and of Corollary 3.76,
we have the

Proposition 3.77. The set O(V ) of orthogonal operators on a
finite-dimensional inner product space V is a group, called the orthog-
onal group of V .

11The corollary also follows from Remark 3.69 and Example 3.68.
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Remark 3.78. In the case of Rn with the dot product, we write
O(n) for the corresponding group of orthogonal matrices

O(n) = {A ∈ Matn×n(R) | ATA = 1},

called the orthogonal group.

Remark 3.79. On an infinite-dimensional inner product space an
orthogonal operator may fail to be surjective. Consider, e.g., the or-
thogonal operator

(a1, a2, . . . ) 7→ (0, a1, a2, . . . )

on the space R∞ of finite real sequences introduced in Example 3.11.

3.5.1. Linear conformal maps. Recall that the angle θv,w be-
tween two nonzero vectors v, w ∈ V is defined as the unique angle in
[0, π] such that

cos θv,w =
(v, w)

‖v‖‖w‖
.

If F is an injective endomorphism, we can also measure the angle be-
tween the image vectors Fv and Fw and ask whether this is presev-
erved.

Definition 3.80. An endomorphism F of an inner product space
V is conformal if it is injective and preserves all angles, i.e.,

(Fv, Fw)

‖Fv‖‖Fw‖
=

(v, w)

‖v‖‖w‖
for all v, w ∈ V \ 0.

Note that just preserving all angles is not enough for an endo-
morphism to be orthogonal.12 We have two basic examples of linear
conformal maps:

(1) orthogonal operators;
(2) the endomorphism F = λ Id with λ 6= 0.

In fact, an orthogonal operator is injective by Corollary 3.75 and pre-
serves norms by Theorem 3.74, so it clearly preserves angles. In the sec-
ond example, F is injective. Moreover, (Fv, Fw) = λ2(v, w), ‖Fv‖ =
|λ|v, and ‖Fw‖ = |λ|w. Note that for λ 6= 1 this endomorphism is not
orthogonal.

It turns out that every linear conformal map is a composition of
these two examples:

12Consider for example the endomorphism F = λ Id with λ 6= 0, 1.
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Lemma 3.81. A linear conformal map can be uniquely written as
the composition of a rescaling (λ Id, with λ > 0) and an orthogonal
operator G, i.e., F = λG.

Proof. It is enough to show that ‖Fv‖‖v‖ takes the same positive

value, which we denote by λ, for every nonzero vector v. In fact, this
implies

‖Gv‖ =

∥∥∥∥Fvλ
∥∥∥∥ =
‖Fv‖
λ

= ‖v‖,

so G preserves all norms and is therefore orthogonal by Theorem 3.74.
First observe that, if v is any nonzero vector and v′ := v

‖v‖ its

corresponding unit vector, we have ‖Fv‖ = ‖F (‖v‖v′)‖ = ‖v‖‖F (v′)‖,
so ‖Fv‖‖v‖ = ‖Fv′‖ (we have only used the linearity of F here).

Therefore, it is enough to show that ‖Fv‖ takes the same value,
which we denote by λ, for every unit vector v.

Let v and w be any two unit vectors. Then (v + w, v − w) = 0.
Since F is conformal, we have

0 = (F (v + w), F (v − w)) = ‖Fv‖2 − ‖Fw‖2.

�

Remark 3.82. By inspection in the proof, we see that actually any
injective endomorphism F that preserves orthogonality, i.e., such that

v ⊥ w =⇒ Fv ⊥ Fw,

is of the form λG, with λ > 0 and G orthogonal, and therefore confor-
mal.

3.5.2. Isometries. The notion of orthogonal operator may be gen-
eralized to linear maps between different spaces. Let (V, ( , )V ) and
(W, ( , )W ) be inner product spaces. A linear map F : V → W is called
an isometry (more precisely, a linear isometry) if

(Fv1, Fv2)W = (v1, v2)V

for all v1, v2 ∈ V . Following verbatim the proof of Theorem 3.74, we
see that F is an isometry iff it preserves all norms. We also see that an
isometry is always injective and that it preserves all angles. If V and
W are finite-dimensional, we then have dimV ≤ dimW , and F is an
isomorphisms iff dimV = dimW .

Example 3.83. The inclusion map of a subspace, with the restric-
tion of the inner product as in Example 3.5, is an isometry.
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Example 3.84 (Sine series and spaces of sequences). Consider the
space

V := {φ ∈ C0([0, L]) | φ(0) = φ(L) = 0}
of Example 3.37 with the orthonormal system provided there. To each
function f ∈ V we may assign the real sequence (b1, b2, . . . ) with bk :=
(ek, f) as in (3.21). If f is in the span V ′ of the sine functions, bk
is the coefficient of its expansion in the basis (ek)k∈N>0 of V ′, so only
finitely many bks are different from zero. For a general f ∈ V , however,
infinitely many bks may be different from zero. Still we have Bessel’s
inequality (3.22) which shows that (b1, b2, . . . ) is a square-summable
sequence (see Section 3.3.2). Therefore, we have a linear map

F :{φ ∈ C0([0, L]) |φ(0) = φ(L) = 0} → `2R

f 7→
(√

2
L

∫ L
0 f(x) sin

(
πkx
L

)
dx
)
k∈N>0

Thanks to Parseval’s identity (3.23), F is actually an isometry. It is
not surjective though.13

Example 3.85. If (e1, . . . , en) is an orthonormal basis of V , then
the linear map F : V → Rn that assigns to a vector v the column vector
with components its coefficients vi = (ei, v) is a bijective isometry (in
the notations of Remark 1.52, F = Φ−1

B with B = (e1, . . . , en)).

From this observation and from Theorem 3.43, we get the

Theorem 3.86. Every n-dimensional inner product space possesses
a bijective isometry with Rn endowed with the dot product.

3.5.3. The orthogonal groups. In this section we analyze the
group O(n) of orthogonal matrices, introduced in Remark 3.78, in par-
ticular for n = 2 and n = 3.

The first remark is that the condition ATA = 1 implies (detA)2 =
1. Therefore,

detA = ±1.

Orthogonal matrices with determinant 1 form a subgroup of O(n) called
the special orthogonal group:

SO(n) := {A ∈ Matn×n(R) | ATA = 1 and detA = 1}.
We also write

O−(n) := {A ∈ Matn×n(R) | ATA = 1 and detA = −1}.

13We may enlarge V to contain noncontinuous square-integrable functions. All
the above works. By the injectivity of the isometry F , we then get square-summable
sequences of coefficients beyond those coming from continuous functions.
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We have O(n) = SO(n) tO−(n).14

Note that O−(n) is not a subgroup. Also note that for everyA,B ∈
O−(n), we haveAB ∈ SO(n). On the other hand, for everyA ∈ O−(n)
and every B ∈ SO(n), we have that AB and BA lie in O−(n).

Remark 3.87. An example of a matrix in O−(n) is

S :=


1

. . .
1
−1

 ;

i.e., Sei = ei for i < n and Sen = −en. The matrix S acts on
Rn as the reflection through the hyperplane Span{e1, . . . , en−1}. Note
that for every A ∈ O−(n), we have B := AS ∈ SO(n); equivalently,
A = BS. This means that, in order to describe the elements of O(n),
it is enough to describe those of SO(n) and then apply S.

Remark 3.88. If n is odd, then also −1 is an element of O−(n), so
we can write each A ∈ O−(n) as (−1)(−A), with −A ∈ SO(n). Note
that, in any dimension, −1 acts on Rn as the reflection through the
origin.

3.5.3.1. The groups O(2) and SO(2). Let A = ( a bc d ) ∈ SO(2). Its
inverse, by (1.10), is A =

(
d −b
−c a

)
. Imposing this to be equal to AT =

( a cb d ) yields

d = a and b = −c,
so A = ( a −cc a ). Since 1 = detA = a2 + c2, we may parametrize the
entries by a = cos θ and c = sin θ. We have proved the

Proposition 3.89. A matrix in SO(2) has the form

R(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
.

The angle θ is uniquely determined if we take it in the interval θ ∈
[0, 2π).

Remark 3.90. If v is a vector in R2, then R(θ)v is the vector
rotated counterclockwise by the angle θ. From this observation, or by
direct computation, we get R(θ)R(θ′) = R(θ + θ′). The group SO(2)
may then be interpreted as the group of rotations on the plane centered
at the origin.

14The symbol t denotes disjoint union.
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θ v

R(θ)v

x

y

Remark 3.91. Note that R(0) = 1 and R(π) = −1. On the other
hand, for any θ ∈ (0, π)∪ (π, 2π), R(θ) does not preserve any line, so it
cannot have any eigenvector and is therefore not diagonalizable (over
the reals). We can see this also via the characteristic polynomial

PR(θ) = λ2 − 2λ cos θ + 1,

whose roots are λ± = e±iθ.

As for A ∈ O−(2), it follows—see also Remark 3.87—that it can
then be written as R(θ)S with S = ( 1 0

0 −1 ) for some θ. Therefore, we
have the

Proposition 3.92. A matrix in O−(2) has the form

S(θ) :=

(
cos θ sin θ
sin θ − cos θ

)
.

The angle θ is uniquely determined if we take it in the interval θ ∈
[0, 2π).

Note that S(θ)2 = 1 for every θ. Geometrically, S(θ) may be
interpreted as a reflection.

θ
2

v

S(θ)v

x

y

Proposition 3.93. The matrix S(θ) is diagonalizable and similar
to ( 1 0

0 −1 ). Geometrically, S(θ) acts on R2 as the reflection through the
line that passes through the origin and forms an angle θ

2
with the x-axis.
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We give two proofs, one with a more geometric flavor and the other
fully algebraic.

Geometric proof. As S(θ) is given by R(θ)S, its action on a
vector v is given by the successive application of S and R(θ).

Now, if v is a nonzero vector that forms an angle α with the x-axis,
then Sv is the vector of the same length that forms the angle −α with
the x-axis, as S is the reflection through the x-axis. Applying the
rotation R(θ) next gives the vector of the same length that forms the
angle θ − α with the x-axis.

A nonzero vector v is then kept fixed by S(θ) iff α = θ−α mod 2π,
i.e., 2α = θ mod 2π. For α, θ ∈ [0, π), this yields α = θ

2
or α = π + θ

2
,

which shows that the line L θ
2

that forms the angle θ
2

with the x-axis is

invariant.
It is then convienient to write α = θ

2
+β. A nonzero vector forming

this angle with the x-axis is then sent to the vector of the same length
that forms the angle θ

2
− β with the x-axis. If we now measure angles

w.r.t. the line L θ
2
, we see that a nonzero vector forming an angle β

with it is mapped by S(θ) to the vector of the same length that forms
the angle −β with it. This shows that S(θ) is the reflection through
L θ

2
. �

Algebraic proof. Note that S(0) = ( 1 0
0 −1 ) and S(π) = ( −1 0

0 1 ),
so the proposition is immediately proved in these two cases.

Assume then θ ∈ (0, π) ∪ (π, 2π). The characteristic polynomial

PS(θ) = λ2 + 1

has the two distinct real roots ±1, so S(θ) is diagonalizable and similar
to ( 1 0

0 −1 ). We now look for a basis of eigenvectors (v+,v−).
The eigenvector equation S(θ)v+ = v+, with v+ = ( ab ), yields

a cos θ + b sin θ = a,

so

b = a
1− cos θ

sin θ
= a tan

θ

2
.

That is, the line L+ that is fixed by S(θ) has inclination θ
2
.

Similarly, the eigenvector equation S(θ)v− = −v−, with v− = ( ab ),
yields

a cos θ + b sin θ = −a,
so

b = −a1 + cos θ

sin θ
= a tan

(
θ

2
+
π

2

)
.
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Therefore, the line L− that gets reflected through its origin is rotated
by π

2
with respect to L+, so it is orthogonal to it. �

3.5.3.2. The groups O(3) and SO(3). Analogously to what we have
done in two dimensions, we now want to determine the normal form of
a matrix A in O(3).

The first remark is that the characteristic polynomial of a real 3×3
matrix is a real cubic polynomial and has therefore at least one real
root. The second remark is that, if A is orthogonal, then ‖Av‖ = ‖v‖
for any v. In particular, if v is an eigenvector for a real eigenvalue λ,
we then get |λ|‖v‖ = ‖v‖, so |λ| = 1. We have then proved the

Lemma 3.94. A matrix A ∈ O(3) has at least one real eigenvalue,
which can only be 1 or −1.15

Now, let v be an eigenvector of A ∈ O(3). Then the plane W := v⊥

orthogonal to v is A-invariant. In fact, if w ∈ W , then 0 = (w,v) =
(Aw,Av) = λ(Aw,v), so Aw ∈ W (recall that λ = ±1). Moreover,
for every w,w′ ∈ W , we still have (Aw,Aw′) = (w,w′). Therefore,
the restriction F of A to W is an orthogonal operator. By choosing an
orthonormal basis (w1,w2) of W , we then represent F as an orthogonal

2×2 matrix B. Observe that, in the orthonormal basis
(
v
‖v‖ ,w1,w2

)
,

our matrix A becomes λ 0 0
0
0

B

 .

Therefore, detA = λ detB.
Consider first the case A ∈ SO(3). Since B ∈ O(2), we have

detB = ±1. If B ∈ SO(2), we then have λ = 1. If B ∈ O−(2),
then by Proposition 3.5.3.1, we know that B has an eigenvector with
eigenvalue 1. Therefore, we have the

Proposition 3.95. A matrix A ∈ SO(3) has at least one eigen-
vector with eigenvalue 1.

The line spanned by this eigenvector is called a principal axis of A.
If we now let v be an eigenvector ofA ∈ SO(3) with eigenvalue 1, we

get that the orthogonal matrix B that represents the restriction of A
to v⊥ in an orthonormal basis has determinant 1. From Remark 3.90,
we get therefore the following geometric description.

Theorem 3.96. A matrix A ∈ SO(3) acts on R3 as a rotation
around its principal axis.16

15The lemma immediately generalizes to O(2k + 1) for any k.
16The principal axis is uniquely determined if A 6= 1.
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The group SO(3) may then be interpreted as the group of space
rotations centered at the origin.

By choosing an orthonormal basis (v,w1,w2), with v a unit vector
on the principal axis and (w1,w2) an orthonormal basis of v⊥ such that
w1 × w2 = v, we then get, thanks to Proposition 3.71, the following
theorem, where S is the matrix with colums v,w1,w2.

Theorem 3.97. For every matrix A ∈ SO(3), there is a matrix
S ∈ SO(3) such that

S−1AS =

 1 0 0
0
0

R(θ)


for some angle θ.

IfA ∈ O−(3), then −A ∈ SO(3), which can be written in the above
form. Note that −R(θ) = R(θ + π). Therefore, now writing θ instead
of θ + π, we have the

Theorem 3.98. For every matrix A ∈ O−(3), there is a matrix
S ∈ SO(3) such that

S−1AS =

−1 0 0
0
0

R(θ)


for some angle θ.

3.5.4. Symmetric and skew-symmetric operators. We con-
clude with some related concepts.

Definition 3.99. An endomorphism F of an inner product space
V is called symmetric if

(Fv, w) = (v, Fw)

for every v, w ∈ V .

Example 3.100. In the case of the dot product on Rn, the endo-
morphism defined by an n×n matrix A is symmetric iff the matrix A
is symmetric, i.e., AT = A. In particular, we have that an endomor-
phism of a finite-dimensional inner product space is symmetric iff its
representing matrix in some orthonormal basis is symmetric.

Example 3.101. If we have an orthogonal decomposition

V = ⊥©
i∈S

Wi,

then the projection Pi to the Wi-component is symmetric, as shown in
Remark 3.67.
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Symmetric operators occur in several applications. As an example,
note that B(v, w) := (v, Fw) is a bilinear symmetric form iff F is
symmetric. We can then define a new inner product on V , provided F
is positive definite, i.e., (v, Fv) > 0 for every v ∈ V \ {0}.

Another useful concept is the following.

Definition 3.102. An endomorphism F of an inner product space
V is called skew-symmetric (or antisymmetric) if

(Fv, w) = −(v, Fw)

for every v, w ∈ V .

Example 3.103. In the case of the dot product on Rn, the en-
domorphism defined by an n × n matrix A is skew-symmetric iff the
matrix A is skew-symmetric, i.e., AT = −A. In particular, we have
that an endomorphism of a finite-dimensional inner product space is
skew-symmetric iff its representing matrix in some orthonormal basis
is skew-symmetric.

Skew-symmetric operators are closely related to orthogonal oper-
ators. One relation is the following. Suppose O(t) is a differentiable
map R → O(n). Then, differentiating the identity OTO = 1, we get

Ȯ
T
O+OTȮ = 0. Therefore, the matrix A := ȮO−1 is skew-symmet-

ric.
A second relation concerns perturbations of the identity operator.

Namely, let O(t) = 1+At+O(t2). Then OT(t) = 1+ATt+O(t2), and
OT(t)O(t) = 1 + (AT +A)t+O(t2). It follows that O(t) is orthogonal
only if A is skew-symmetric.

A third relation is the following. Let A be skew-symmetric. De-
fine O(t) := eAt. Then we have OT = O−1, so O(t) is orthogonal
for every t. Finally, note that the trace of a skew-symmetric matrix
vanishes. Therefore, by Proposition 2.11, detO(t) = 1 for every t. As
a consequence, eAt is a differentiable map R→ SO(n).

Remark 3.104. The vector space of skew-symmetric n×n matrices
is denoted by so(n):

so(n) := {A ∈ Matn×n(R) | AT = −A}.
This notation helps remembering that we have the exponential map

exp: so(n) → SO(n)
A 7→ eA

Remark 3.105. Note that R(θ) = eρ(θ) with ρ(θ) =
(

0 −θ
θ 0

)
, so

exp: so(2)→ SO(2) is surjective.
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Remark 3.106. Note that, thanks to (2.17), 1 0 0
0
0

R(θ)

 = e

(
0 0 0
0
0 ρ(θ)

)

with ρ(θ) as above. From Theorem 3.97, we then have that for every
matrix O ∈ SO(3), there is a matrix S ∈ SO(3) such that

O = Se

(
0 0 0
0
0 ρ(θ)

)
S−1 = eA

with

A = S

 0 0 0
0
0

ρ(θ)

S−1 = S

 0 0 0
0
0

ρ(θ)

ST,

which is skew-symmetric, since ρ(θ) is so. Therefore, exp: so(3) →
SO(3) is surjective.

Remark 3.107. We will see in Corollary 4.113 that for every n the
exponential map exp: so(n)→ SO(n) is surjective.

3.5.5. Minkowski space. It was observed by Poincaré and by
Minkowski that Lorentz boosts (a part of the transformations, discov-
ered by Lorentz, that preserve Maxwell’s equation) are like rotations
but for a “squared norm” given by x2 + y2 + z2 − c2t2, where c is the
speed of light.17 As this is central to Einstein’s special relativity, we
will briefly digress on it.

The idea is to define an “inner product” on Rn+1, called the Minkowski
(inner) product, (with n = 3 being the case for usual space–time) as

(v,w) := vTηw

17More precisely, Poincaré was thinking in terms of the usual euclidean norm
but proposed to consider time as an imaginary coordinate, i.e., he considered the
squared norm x2 + y2 + z2 + (ict)2. Minkowski later observed that it was more
natural to keep working over the reals, just by changing the last sign in the formula
for the squared norm.
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with18

η =


−1

1
. . .

1

 ,

which is called the Minkowski metric.
Conventionally one uses indices from 0 to n (instead of 1 to n+ 1),

so a vector v in the Minkowski space (Rn+1, ( , )) is denoted by

v =


v0

v1

...
vn

 ,

and one denotes the standard basis by (e0, . . . , en). The components
v1, . . . , vn are thought of as space components, whereas v0 is thought
of as c times the time component. The Minkowski product then reads
explicitly

(v,w) = −v0w0 +
n∑
i=1

viwi.

We have the “squared norm” (v,v) = −c2t2 +
∑n

i=1(xi)2, where we
have set v0 = ct and vi = xi for i > 0.

The Minkowski product is bilinear and symmetric but not positive
definite. For example (e0, e0) = −1. On the other hand (ei, ei) = 1 for
i = 1, . . . , n, and (ei, ej) = 0 for all i 6= j, i, j = 0, . . . , n. The standard
basis is then orthogonal. It may also be considered orthonormal if we
accept that one vector has “squared norm” −1 instead of +1.

By analogy with the basis vectors, one says that a vector v is time-
like if (v,v) < 0 and space-like if (v,v) > 0. Note that there are also
nonzero vectors v satisfying (v,v) = 0, e.g., v = e0 + e1. Such vectors
are called null or light-like.

18An equally spread convention defines

η =


1
−1

. . .

−1

 .
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3.5.5.1. Lorentz transformations. Much of the theory of inner prod-
ucts extends to the case of the Minkowski product. We will focus here
only on the topic of orthogonal matrices, namely matrices A such that

(Av,Aw) = (v,w)

for all v,w. From the definition of the Minkowski product, we then
have that A is orthogonal iff

ATηA = η.

Orthogonal matrices on the Minkowski space (Rn+1, ( , )) are also called
Lorentz transformations. They form a group, called the Lorentz group,
which is denoted by O(1, n).

Note that A ∈ O(1, n) implies (detA)2 = 1. Lorentz transfor-
mations with determinant equal to +1 are called proper and form a
subgroup denoted by SO(1, n).

If we denote by ai, i = 0, . . . , n, the columns of a Lorentz transfor-
mation A, then we get

(ai,aj) =


−1 if i = j = 0,

1 if i = j > 0,

0 if i 6= j.

That is, the columns of A are orthogonal to each other, the last n
columns are normalized and space-like, and the first column is normal-
ized and time-like. Writing

a0 =


a0

0

a1
0
...
an0

 ,

we then get

−(a0
0)2 +

n∑
i=1

(ai0)2 = −1,

which shows that either a0
0 ≥ 1 or a0

0 ≤ −1. A Lorentz transformation
A with a0

0 ≥ 1 is called orthochronous.
Orthochronous Lorentz transformations form a subgroup of O(1, n),

which is denoted by O+(1, n). The intersection of O+(1, n) and SO(1, n)
is the group SO+(1, n) of proper, orthochronous Lorentz transforma-
tions:

SO+(1, n) = {A ∈ Mat(n+1)×(n+1)(R) |ATηA = η, detA = 1, a0
0 ≥ 1}.
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3.5.5.2. The group SO+(1, 1). In the case of one space dimension,
we essentially repeat the analysis of Section 3.5.3.1, with minor, but
important, variations.

Let A = ( a bc d ) ∈ SO+(1, 1). Its inverse, by (1.10), is A =
(
d −b
−c a

)
.

The defining equation

ATη = ηA−1

reads explicitly (
−a c
−b d

)
=

(
−d b
−c a

)
.

Therefore, we get

d = a and b = c,

soA = ( a cc a ). Since 1 = detA = a2−c2 and a ≥ 1, we may parametrize
the entries by a = cosh τ and c = sinh τ . We have proved the

Proposition 3.108. A matrix in SO+(1, 1) has the form

L(τ) :=

(
cosh τ sinh τ
sinh τ cosh τ

)
,

for a uniquely determined τ ∈ R.19

Unlike nontrivial rotations, Lorentz transformations leave certain
lines invariant. Actually, L(τ) is diagonalizable for every τ . In fact,
for τ 6= 0, the characteristic polynomial

PL(τ) = λ2 − 2λ cosh τ + 1

has the two distinct roots

λ± = cosh τ ±
√

cosh2 τ − 1 = cosh τ ± sinh τ = e±τ .

As corresponding eigenvectors we may take

v+ =

(
1
1

)
, v− =

(
1
−1

)
.

Note that both v+ and v− are light-like.
As a consequence, the diagonal lines L+ = Rv+ and L− = Rv− are

invariant under every Lorentz transformation. Moreover, each of the
four connected regions in R2 \ (L+ ∪ L−) is also invariant.

19In physics, one uses the parameters γ = cosh τ and β = tanh τ , so we have

L =

(
γ βγ
βγ γ

)
,

with the relation γ = 1√
1−β2

. Physically L with β = v
c describes the transformation

between two observers moving at relative velocity v with respect to each other.
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future

past

presentpresent x1 = x

x0 = ct

Following the physical interpretation, these four regions are called
future, past, present to the left, present to the right. They can be
characterized as follows: a nonzero vector v =

(
v0

v1

)
is in the future if

(v,v) < 0 and v0 > 0, in the past if (v,v) < 0 and v0 < 0, and in the
present if (v,v) > 0 (to the left if v1 < 0 and to the right if v1 > 0).20

By the usual diagonalization procedure, we may write

L(τ) = S−1
(

eτ 0
0 e−τ

)
S

with S = ( 1 1
1 −1 ). This may also be easily checked explicitly by observ-

ing that S−1 = 1
2
S.

Finally, note that
(

eτ 0
0 e−τ

)
= e( τ 0

0 −τ ). Therefore, L(τ) = eS
−1( τ 0

0 −τ )S.

Since S−1 ( τ 0
0 −τ )S = ( 0 τ

τ 0 ), we finally have

L(τ) = e( 0 τ
τ 0 ).

Exercises for Chapter 3
3.1. Let V = Matn×n(R) be the vector space of n × n real matrices.

Show that
(A,B) := tr(ATB)

is an inner product on V .

3.2. The goal of this exercise is to show that the following two condi-
tions on g =

(
α β
β δ

)
are equivalent:

(A) g is positive definite (i.e., (v,w) := vTgw is an inner prod-
uct).

20In higher dimensions, one gets a similar structure with the difference that the
present becomes a connected region, whereas future and past are still disconnected
by the light cone {v | (v,v) = 0}.
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(B) α > 0 and det g > 0.
Throughout the exercise we write x = ( xy ).
(a) Compute (x,x).
(b) Assuming (A) show the following statements:

(i) If (x,x) > 0 for y = 0 and every x 6= 0, then α > 0.

(ii) Now assume y 6= 0 and α > 0. Define f(z) := (x,x)
y2

, with

z = x
y
. Considering the minimum of f for z ∈ R, show

that det g > 0.
(c) Assuming (B), show the following statements:

(i) (x,x) > 0 for y = 0 and every x 6= 0.
(ii) Now assume y 6= 0. Show that

(x,x) >
(αx+ βy)2

α
.

Conclude that g is positive definite.

3.3. In each of the following cases, compute the angle between the
vectors v and w.
(a) V = R3 with the dot product, v =

(
1
2
3

)
, w =

(
4
5
6

)
.

(b) V = R2, inner product defined by g = ( 1 2
2 5 ), v = ( 1

2 ), w = ( 3
4 ).

(c) V = C0([0, 1]), (f, g) =
∫ 1

0
fg dx, v the function 1 − x, w the

function x2.

3.4. Let V be the space of real polynomial functions (you may regard
it as a subspace of C0(R)). Show that

(f, g) :=

∫ ∞
−∞

e−x
2

fg dx

is an inner product.

3.5. Using the Cauchy–Schwarz inequality, find the maximum and the
maximum point(s) of the function x+ 2y + 3z on the unit sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.
Hint: Note that using the dot product the function can be ex-

pressed as
(

1
2
3

)
· v with v ∈ S2.

3.6. Recall that a sequence a = (a1, a2, . . . ) of real numbers is called
square summable if the series

∑∞
i=1(ai)

2 converges. Let `2(R) de-
note the set of square summable real sequences.
(a) Show that the sum of two square summable real sequences is

again square summable: i.e., given (a1, a2, . . . ), (b1, b2, . . . ) ∈
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`2(R), one has
∑∞

i=1(ai + bi)
2 <∞.

Hint: Use the triangle inequality on RN to find an estimate of∑N
i=1(ai + bi)

2.
(b) Show that for every (a1, a2, . . . ), (b1, b2, . . . ) ∈ `2(R), the series∑∞

i=1 |aibi| converges.
Hint: Use the Cauchy–Schwarz inequality on RN to find an
estimate of

∑N
i=1 |aibi|.

(c) Use the above to show that `2(R) is a real vector space with
the addition rule (a1, a2, . . .)+(b1, b2, . . .) = (a1+b1, a2+b2, . . .)
and that

((a1, a2, . . . ), (b1, b2, . . . )) :=
∞∑
i=1

aibi

is an inner product.

3.7. In this exercise we work on V = R3 with the dot product.

(a) Let w =
(

1
1
1

)
. For each of the following v ∈ R3 find the

orthogonal decomposition v = v‖ + v⊥ with v‖ proportional
to w and v⊥ orthogonal to it.

(i) v =
(

1
0
0

)
.

(ii) v =
(

3
3
3

)
.

(iii) v =
(

3
−4
1

)
.

(b) Let w1 =
(

1
1
1

)
, w2 =

(
1
0
−1

)
, w3 =

(
2
−4
2

)
.

(i) Show that (w1,w2,w3) is an orthogonal basis.
(ii) Compute the corresponding orthonormal basis (v1,v2,v3)

obtained by normalizing the vectors.

(iii) Expand
(

1
2
3

)
and

(
4
5
6

)
in this orthonormal basis.

3.8. In V = C0([0, 1])—the space of continuous functions on the in-

terval [0, 1] with inner product (f, g) =
∫ 1

0
fg dx—let g(x) = x2.

For each of the following f ∈ V find the orthogonal decomposition
f = f‖ + f⊥ with f‖ proportional to g and f⊥ orthogonal to it.
(a) f(x) = x.
(b) f(x) = x2(1− 2x3).
(c) f(x) = ex.
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3.9. Consider the function

f(x) =
1

2

[(
x− π

2

)2

−
(π

2

)2
]

in

V := {φ ∈ C0([0, π]) | φ(0) = φ(π) = 0}.
Compute the coefficients bk = (ek, f) with respect to the orthonor-
mal system

ek(x) =

√
2

π
sin (kx) ,

k ∈ N>0.

Hint: Use ek = − e′′k
k2

and integration by parts.

3.10.
(a) Apply the Gram–Schmidt process to the following vectors:

(i) v1 =
(

1
1
1

)
,v2 =

(
1
0
2

)
in R3.

(ii) v1 =

(
1
1
1
1

)
,v2 =

(
0
1
1
1

)
, v3 =

(
0
0
1
1

)
in R4.

(b) Find an orthonormal basis for the positive definite matrix
g = ( 1 2

2 5 ), and write g = ETE for some matrix E.

3.11. Apply the Gram–Schmidt process to the three vectors (1, x, x2) in
the space V of polynomial functions on R with inner product

(f, g) :=

∫ ∞
−∞

e−x
2

fg dx.

Hint: You can use the formulae

I(α) :=

∫ ∞
−∞

e−αx
2

dx =

√
π

α
,(

d

dα

)k
I(α) = (−1)k

∫ ∞
−∞

e−αx
2

x2k dx,

which hold for every real α > 0 and every positive integer k.

3.12. The goal of this exercise is to prove the following statement:
If all the leading principal minors of a real symmetric ma-
trix g are positive, then g is positive definite.

We prove it by induction on the size of the matrix g.
(a) Show that the statement is true if g is a 1× 1 matrix.
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(b) Assume that the statement holds for n × n matrices and let
g be an (n + 1) × (n + 1) symmetric matrix satisfying the
condition in the statement. Write

g =

(
h b
bT a

)
with h an n× n matrix, b an n-column vector and a a scalar.

(i) Show that h is positive definite, so there is an invertible
matrix E such that h = ETE.
Hint: Use the induction hypothesis.

(ii) Show that

a > ‖Fb‖2
E,

where F = ET,−1 and ‖v‖E :=
√
v · v denotes the eu-

clidean norm on Rn.
Hint: Use the condition in the statement and the identity

det

(
A B
C D

)
= detA det(D −CA−1B),

which holds for every block matrix with A invertible.21

(iii) For a fixed n-column vector w consider the function

f(x) :=
(
wT x

)
g

(
w
x

)
.

(A) Show that

f(x) = ax2 + 2 b ·w x+ ‖Ew‖2
E.

(B) Show that the minimum value of f is

fmin = ‖Ew‖2
E −

(b ·w)2

a
.

(C) Assuming b ·w 6= 0, show that

fmin >
‖Fb‖2

E‖Ew‖2
E − (b ·w)2

‖Fb‖2
E

.

Hint: Use point 12(b)ii.

21This identity may be proved by writing(
A B
C D

)
=

(
A 0

C D −CA−1B

)(
1 A−1B
0 1

)
and computing the determinant.



EXERCISES FOR CHAPTER 3 113

(D) Show that

‖Fb‖2
E‖Ew‖2

E ≥ (b ·w)2.

Hint: Use the Cauchy–Schwarz inequality for the
dot product.

(iv) Conclude that g is positive definite.

3.13.
(a) Let W ⊂ R4 be the subspace generated by

w1 =


1
2
3
4

 and w2 =


4
3
2
1


(i) Find an orthonormal basis of W .

(ii) Use it to compute the projection operators PW and PW⊥ .

(iii) Apply PW and PW⊥ to the vector v = (0, 1, 2, 1)T.
(b) Let V be the vector space of all polynomials of degrees two

or less restricted to the interval [0, 1] ∈ R, endowed with the

inner product (f, g) =
∫ 1

0
f(x)g(x)dx.

(i) Find an orthonormal basis for the subspace V ′ spanned
by f(x) = x− 1 and g(x) = x+ x2.

(ii) Find the projection operators PV ′ and PV ′⊥ .
(iii) Apply the projection operators to the vector h(x) = 1.

3.14. Which of the following matrices are orthogonal?

A =

(√
3 1

1 −
√

3

)
, B =

1

7

 3 −2 −6
−2 6 −3
−6 −3 −2

 , C =


3√
10

− 1√
10

0

− 1√
35
− 3√

35

√
5
7

1√
14

3√
14

√
2
7

 .

3.15. Let V = C0
c (R) be the space of compactly supported functions on

R with inner product (f, g) =
∫ +∞
−∞ fg dx.

(a) For which values of a, b ∈ R is the following endomorphism of
V orthogonal?

(Ff)(x) = bf(ax).

(b) Show that

(F̃ f)(x) =
√

cosh(x)f(sinh(x))
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is an orthogonal endomorphism of V .

3.16. In this exercise we investigate some properties of the cross product
in R3. We do not recall its explicit definition but define it implicitly
as follows: for every a, b ∈ R3, the cross product a × b is the
uniquely determined vector satisfying

a× b · c = det(a b c),

for every c ∈ R3. Here (a b c) denotes the matrix with columns a,
b, and c. Using this characterization of the cross product, prove
the following statements.
(a) ∀a, b ∈ R3

a× b = −b× a.
(b) ∀a, b ∈ R3, a 6= 0,

a× b = a× b⊥,

with the orthogonal decomposition b = b‖ + b⊥ with respect
to a.

(c) ∀a, b, c ∈ R3

a× b · c = c× a · b = b× c · a.

(d) ∀a, b ∈ R3

a× b ⊥ a and a× b ⊥ b.

(e) Assume a ⊥ b. Then

‖a× b‖ = ‖a‖‖b‖.

Hint: Observe that, for a and b different from zero,

‖a× b‖2 = det(a b a× b) = ‖a‖‖b‖‖‖a× b‖ detS,

where S is an orthogonal matrix. Why is a× b 6= 0?
(f) ∀a, b ∈ R3, with ‖a‖ = 1,

‖a× b‖ = ‖b⊥‖.

(g) For a, b ∈ R3 with ‖a‖ = 1 define v = (a × b) × a. Use all
the above to show the following statements.

(i) v ∈ Span{a, b}.
(ii) v = λb⊥ for some λ ∈ R.

(iii) v · b⊥ = ‖b⊥‖2.
Conclude that

(a× b)× a = b⊥.
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Therefore,

b = (a · b)a+ (a× b)× a

3.17. Let a ∈ R3 with ‖a‖ = 1. For every b ∈ R3, we use the orthogonal
decomposition b = b‖ + b⊥ with respect to a.
(a) Assuming b⊥ 6= 0, show that (a, b⊥,a × b) is an orthogonal

basis of R3.
(b) Show that

Ra(θ)b = b‖ + cos θ b⊥ + sin θ a× b⊥,

where Ra(θ) ∈ SO(3) is the counterclockwise rotation by the
angle θ around a.
Hint: Normalize the orthogonal basis of the previous point and
use points (16d) and (16f) of exercise 3.16.

3.18. Recall that so(3) is the vector space of 3× 3 real skew-symmetric
matrices. Show the following statements.
(a) For all A,B ∈ so(3) and for all S ∈ SO(3), we have

(i) [A,B] := AB −BA ∈ so(3).
(ii) SAS−1 ∈ so(3).

(iii) S[A,B]S−1 = [SAS−1,SBS−1].
(b) The following matrices are a basis of so(3):

R1 :=

0 0 0
0 0 −1
0 1 0

 , R2 :=

 0 0 1
0 0 0
−1 0 0

 , R3 :=

0 −1 0
1 0 0
0 0 0

 .

(c) Writing

x ·R :=
3∑
i=1

xiRi,

show that

[x ·R, x̃ ·R] = x× x̃ ·R.

Hint: Use the explicit formulaxy
z

×
x̃ỹ
z̃

 =

yz̃ − zỹzx̃− xz̃
xỹ − yz̃

 .
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3.19. Let

O =
1

3

 2 −1 2
2 2 −1
−1 2 2

 .

(a) Check that O ∈ SO(3).
(b) Find its principal axis.

Hint: Find an eigenvector of O. Note that you should already
know an eigenvalue, so there is no need to solve the character-
istic equation.

(c) Find its rotation angle.
Hint: Choose a unit vector w orthogonal to the principal axis
and compute Ow.



CHAPTER 4

Hermitian products

In this chapter we extend, and adapt, the notion of inner product
to complex vector spaces. Among the reasons to do so, one is that
working over complex numbers gives more tools also to solve problems
over the reals. Another is that this framework is needed for quantum
mechanics.

4.1. The standard hermitian product on Cn

The dot product z · w = zTw may in principle be extended to
complex vectors. The problem is that z · z =

∑
i(z

i)2 is not generally
a real number (even less generally a nonnegative real number), so it
cannot be used to define a norm.

Recall that for a complex number z, one may indeed define a norm
using the absolute value

|z| =
√
z̄z.

If one writes z = a+ ib, with a and b real, then |z| =
√
a2 + b2, so the

absolute value of a complex number is the same as the euclidean norm
of the corresponding real vector under the identification (isomorphism
of real vector spaces) C = R2.

Guided by this, we want to define the norm of a vector z in Cn as
‖z‖ =

√∑n
i=1 z̄

izi. Again, note that by writing zi = ai + ibi, with ai

and bi real, we have ‖z‖ =
√∑n

i=1((ai)2 + (bi)2), so this norm is the
same as the euclidean norm under the identification (isomorphism of
real vector spaces) Cn = R2n.

Following the case of the inner product on a real space, we want to
get the norm as the square root of the inner product of a vector with
itself. In order to do so, we have to adapt the definition of the inner

117
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product to the following:1

〈z,w〉 :=
n∑
i=1

z̄iwi = z̄Tw,

where z̄ denotes the vector whose components are the complex con-
jugates of the components of z. This is called the standard hermitian
product on Cn (after Charles Hermite).

Note that the standard hermitian product is linear in the second
argument. With respect to the first argument, we have instead

〈λ1z1 + λ2z2,w〉 = λ̄1 〈z1,w〉+ λ̄2 〈z2,w〉 .
One says that 〈 , 〉 is antilinear in the first argument.

Also note that 〈 , 〉 is not symmetric. Instead it satisfies

〈z,w〉 = 〈w, z〉.
One says that 〈 , 〉 is conjugate symmetric or hermitian symmmetric.

Finally, we have that 〈z, z〉 is a nonnegative real number, so we can
take its root, which gives back the norm we wanted to consider:

‖z‖ =
√
〈z, z〉.

4.2. Hermitian spaces

Motivated by the example of the standard hermitian product and
its properties, we introduce the following

Definition 4.1 (Hermitian forms). A map 〈 , 〉 : V × V → C,
where V is a complex vector space, is called a hermitian form if it
satisfies the following two properties.

Linearity in the second argument: For all v, w1, w2 ∈ V and
all λ1, λ2 ∈ C, we have

〈v, λ1w1 + λ2w2〉 = λ1 〈v, w1〉+ λ2 〈v, w2〉 .
Hermitian symmetry: For all v, w ∈ V , we have2

〈v, w〉 = 〈w, v〉.
1This is the most common convention in physics. In most math texts, one uses

instead

〈z,w〉 :=

n∑
i=1

ziw̄i = zTw̄,

which produces anyway the same norm ‖z‖ =
√
〈z, z〉.

2Note that complex conjugation is applied to the image of 〈 , 〉. In the case

of the standard hermitian product, we also have 〈w, z〉 = 〈w̄, z̄〉, but for a general
complex vector space V , the complex conjugation “v̄” of a vector v is not defined.
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Lemma 4.2. An hermitian form 〈 , 〉 on V also satisfies the fol-
lowing properties.

Antilinearity in the first argument: For all v1, v2, w ∈ V and
all λ1, λ2 ∈ C, we have

〈λ1v1 + λ2v2, w〉 = λ̄1 〈v1, w〉+ λ̄2 〈v2, w〉 .
Reality: For all v ∈ V , we have 〈v, v〉 ∈ R.

Proof. This is a very easy computation left to the reader. �

Remark 4.3. We can summarize the antilinearity in the first argu-
ment and the linearity in the second, by saying that 〈 , 〉 is sesquilinear.

Sesquilinearity: For all v, v1, v2, w, w1, w2 ∈ V and all λ1, λ2 ∈
C, we have3

〈λ1v1 + λ2v2, w〉 = λ̄1 〈v1, w〉+ λ̄2 〈v2, w〉 ,
〈v, λ1w1 + λ2w2〉 = λ1 〈v, w1〉+ λ2 〈v, w2〉 .

Note that the reality property allows asking whether 〈v, v〉 is posi-
tive or negative or zero.

Definition 4.4. An hermitian form 〈 , 〉 on V is called positive
definite if (v, v) > 0 for all v ∈ V \ {0}.

We now come the fundamental

Definition 4.5 (Hermitian products). An hermitian product is a
positive-definite hermitian form. A complex vector space V together
with an hermitian product 〈 , 〉 is called an hermitian product space.4

Remark 4.6. A finite-dimensional hermitian product space is also
called a finite-dimensional Hilbert space.

We may now adapt several examples from Section 3.2.

Example 4.7 (The standard hermitian product). The standard
hermitian product v̄Tw on Cn is an example of hermitian product. We
will see (Theorem 4.64) that, upon choosing an appropriate basis, an
hermitian product on a finite-dimensional vector space can always be
brought to this form.

3This is the most common convention in physics. In most math texts, a
sesquilinear form is instead linear in the first argument and antilinear in the sec-
ond. In both cases, an hermitian form may be defined as an hermitian-symmetric
sesquilinear form.

4Terminology at this point starts to differ wildly among different authors. You
may check, e.g., https://en.wikipedia.org/wiki/Inner product space to get some co-
herent version.

https://en.wikipedia.org/wiki/Inner_product_space
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Example 4.8 (Subspaces). If W is a subspace of an hermitian
product space V , we may restrict the hermitian product to elements of
W . This makes W itself into an hermitian product space.

Example 4.9. On Cn we may also define

〈v,w〉 :=
n∑
i=1

λiv̄
iwi

for a given choice of complex numbers λ1, . . . , λn. This is clearly
sesquilinear, and it is hermitian symmetric iff all λis are real. One
can easily verify that it is positive definite iff λi > 0 for all i = 1, . . . , n.

Example 4.10. More generally, on Cn we may define

〈v,w〉 := v̄Tgw = v̄igijw
j, (4.1)

where g is a given n× n complex matrix, and we have used Einstein’s
convention in the last term. (The previous example is the case when g
is diagonal.) Sesquilinearity is clear. Hermitian symmetry is satisfied
iff g is self adjoint, i.e.,

ḡT = g,

where ḡ denotes the matrix whose entries are the complex conjugates
of the entries of g. A self-adjoint matrix g is called positive definite if
the corresponding hermitian form is positive definite, i.e., if v̄Tgv > 0
for every nonzero vector v.

The above example motivates the following

Definition 4.11. The adjoint (a.k.a. the hermitian conjugate or the
hermitian transpose) of a complex matrix A is the matrix5

A† := Ā
T
,

where the symbol † is pronounced “dagger.” A complex square matrix
A is called self adjoint (or hermitian) if it satisfies

A† = A.

Using this terminology, we may say that (4.1) defines an hermitian
form iff g is self-adjoint.

5In the math literature, the adjoint matrix of A is also denoted by A∗. The
∗ notation has some advantage in handwriting, for it avoids any possible confu-
sion between the dagger symbol † and the transposition symbol T. Note however
that, when dealing with complex matrices, in most cases you can bet one is using
hermitian conjugation and not transposition.
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Moreover, using the notation of the adjoint, we can write the stan-
dard hermitian product on Cn as

〈z,w〉 = z†w.

The adjunction has several properties that parallel those of trans-
position, as described in the following Lemma, whose proof we leave as
an exercise.

Lemma 4.12. The adjunction has the following properties (for all
matrices A and B and for every complex number λ):

(1) (A†)† = A.
(2) (A+B)† = A† +B†.
(3) (λA)† = λ̄A†.
(4) (AB)† = B†A†.
(5) If A is invertible, then so is A†, and we have (A†)−1 = (A−1)†.

Remark 4.13 (Representing matrix). If we have an hermitian prod-
uct 〈 , 〉 on a finite-dimensional space V with a basis B = (e1, . . . , en),
we define the representing matrix g with entries

gij := 〈ei, ej〉 .
Hermitian symmetry of 〈 , 〉 implies gji = ḡij, so g is self-adjoint. If
we expand v = viei and w = wiei, then by sesquilinearity we get

〈v, w〉 = v̄igijw
j,

that is, formula (4.1). Upon using the isomorphism φB : Cn → V of
Remark 1.52, we therefore get on Cn the inner product of Example 3.7.

4.2.1. Complex-valued functions. The content of the exam-
ples 3.10 and 3.11, where the inner product was defined in terms of
an integral, may be readily generalized to the complex case. We only
need to spend a few words about complex-valued functions and their
integrals.

Namely, if f is a complex-valued function, then one can write f =
u + iv with uniquely determined real-valued functions u and v, called
the real and imaginary part of f , respectively. One says that f is
continuous/differentiable/smooth/. . . if u and v are so. The integral of
f is defined as ∫ b

a

f dx :=

∫ b

a

u dx+ i

∫ b

a

v dx. (4.2)

Example 4.14 (Continuous functions on a compact interval). De-
note by V = C0([a, b],C) the vector space of complex-valued functions
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on the interval [a, b]. Then

〈f, g〉 :=

∫ b

a

f̄ g dx (4.3)

is an hermitian product on V . Sesquilinearity and hermitian symmetry
are obvious. Note that

〈f, f〉 =

∫ b

a

|f |2 dx,

where | | denotes the absolute value of complex numbers (for f = u+iv,
we have |f | =

√
u2 + v2). As |f |2 is now a real-valued function, we may

proceed exactly as in Example 3.9 to show positivity.

Example 4.15 (Compactly supported continuous functions). Let
V = C0

c (R,C) be the vector space of complex-valued functions on R
with compact support: i.e., f = u+ iv belongs to C0

c (R,C) iff u and v
are continuous function with compact support—i.e., u and v belong to
the C0

c (R). We define

〈f, g〉 :=

∫ ∞
−∞

f̄ g dx.

This can be proved to be an hermitian product as in the previous
example.

4.2.2. Square-integrable continuous functions. We now want
to introduce the space of complex-valued square-integrable continuous
functions, which is important for quantum mechanics. We will rely on
the discussion of Section 3.3.1.

The first point is to define the integral of a complex-valued contin-
uous function on R. We do this by extending (4.2). Namely, we use
the following

Definition 4.16. A complex-valued continuos function f : R→ C
is called integrable if both its real and imaginary parts u and v are
absolutely integrable according to Definition 3.23. In this case we set∫ ∞

−∞
f dx :=

∫ ∞
−∞

u dx+ i

∫ ∞
−∞

v dx.

Next we introduce the main concept.

Definition 4.17. A complex-valued continuos function f : R→ C
is called square integrable if the improper integral

∫∞
−∞ |f |

2 dx is finite.

Note that |f |2 is real valued, so the definition reduces to what we
discussed in Section 3.3.1.
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If we write f = u + iv, with u, v real valued, then |f |2 = u2 + v2.
Therefore, we get the

Lemma 4.18. A complex-valued continuos function is square inte-
grable iff its real and imaginary parts are so.

This also implies the following

Lemma 4.19. If f and g are complex-valued square-integrable con-
tinuous functions on R, then so is f + g.

Proof. Write f = u+ iv and g = ũ+ iṽ. By the previous lemma,
we know that u, v, ũ, ṽ are real-valued square-integrable continuos func-
tions. This implies, by Lemma 3.26, that u+ũ and v+ ṽ are also square
integrable. Therefore, f + g = (u + ũ) + i(v + ṽ) is square integrable
(again by Lemma 4.18). �

Since multipliying a complex-valued square-integrable continuous
function by a complex constant clearly yields again a square-integrable
continuous function, the lemma has the following

Corollary 4.20. The set L2,0(R,C) of complex-valued square-in-
tegrable continuous functions on R is a subspace of the complex vector
space C0(R,C) of complex-valued continuous functions on R.

Next, we have the

Lemma 4.21. If f and g are complex-valued square-integrable con-
tinuous functions on R, then the product f̄ g is integrable.

Proof. Write f = u + iv and g = ũ + iṽ. Again, by Lemma 4.18,
we know that u, v, ũ, ṽ are real-valued square-integrable continuos func-
tions. We have

f̄ g = uũ+ vṽ + i(uṽ − vũ).

By Lemma 3.28, we have that the real-valued continuous functions
uũ, vṽ, uṽ and vũ are absolutely integrable. Therefore, the sums
uũ + vṽ and uṽ − vũ are also absolutely integrable. Therefore, by
Definition 4.16, f̄ g is integrable. �

We can summarize these results in the

Theorem 4.22. On the complex vector space L2,0(R,C) of com-
plex-valued square-integrable continuous functions on R, we have the
hermitian product

〈f, g〉 :=

∫ +∞

−∞
f̄ g dx.

Proof. The only thing still to check is positivity. We leave it as
an exercise. �



124 4. HERMITIAN PRODUCTS

4.2.3. Square-summable sequences. Analogously to the space
of complex-valued square-integrable functions, we may study the space
of square-summable complex sequences.

We start with the following immediate generalization of Exam-
ple 3.11.

A sequence a = (a1, a2, . . . ) of complex numbers is called finite if
only finitely many ais are different from zero (equivalently, if there is
an N such that ai = 0 for all i > N). We denote by C∞ the vector
space of all finite real sequences, with vector space operations

λ(a1, a2, . . . ) = (λa1, λa2, . . . )

(a1, a2, . . . ) + (b1, b2, . . . ) = (a1 + b1, a2 + b2, . . . ).

It is an hermitian product space with

〈a, b〉 :=
∞∑
i=1

āibi,

where the right hand side clearly converges because it is a finite sum.

Definition 4.23. A sequence a = (a1, a2, . . . ) of complex numbers
is called square summable if the series

∑∞
i=1 |ai|2 converges.

One can prove (we leave the details to the reader) that the sum
of two square-summable complex sequences is again square-summable
and that, if a and b are square summable, then

∑∞
i=1 āibi converges.

The hermitian product space of square-summable complex sequences,
with hermitian product

〈a, b〉 :=
∞∑
i=1

āibi,

is denoted by `2 (or, more precisely, by `2
C to stress that we are consid-

ering complex sequences).

4.2.4. Nondegeneracy and Dirac’s notation. As in the case
of the inner product, the positivity condition of an hermitian product
〈 , 〉 on V implies in particular the nondegeneracy conditions

〈v, w〉 = 0 ∀w ⇐⇒ v = 0 and 〈v, w〉 = 0 ∀v ⇐⇒ w = 0.

These conditions imply that we have the following injective maps (bi-
jective if V is finite-dimensional):

(1) An antilinear map

V → V ∗

v 7→ 〈v, 〉
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(2) A linear map

V → V
∗

w 7→ 〈 , w〉

where V
∗

denotes the space of antilinear maps V → C.

At this point, it is convenient to introduce a notation due to P. A.
M. Dirac, which is commonly used in quantum mechanics.

In this notation, known as the bra–ket notation, the hermitian prod-
uct, called the bracket, of two vectors v and w is denoted by 〈 v |w 〉,
with a vertical bar instead of a comma. It has to be thought of as the
juxtaposition of the bra 〈v | and the ket |w〉.

In this notation, kets are just another way of denoting vectors (more
precisely, we should think of w 7→ |w〉 as the identity map on V with
vectors written in two different notations). As remarked above, we may
also regard kets as antilinear maps V → C.

Similarly, bras are just another way of denoting covectors (more
precisely, we should think of v 7→ 〈v | as the antilinear injective map
V → V ∗ introduced above).

The bra–ket notation helps remembering what is linear and what is
antilinear (just by analogy to the properties of the bracket with respect
to its arguments).

Dirac’s bra–ket notation becomes even more useful when dealing
with orthonormal bases, as we will see in Section 4.4.

4.2.5. The adjoint of an operator. The notion of adjoint may
be extended to operators.

Definition 4.24. Let F be an endomorphism of an inner product
space (V, 〈 , 〉). Its adjoint operator is an endomorphism F † of V such
that for every v, w ∈ V we have

〈v, Fw〉 =
〈
F †v, w

〉
.

Remark 4.25. The existence of F † is not guaranteed if V is in-
finite-dimensional.6 However, if F † exists, then it is uniquely deter-

mined. In fact, let F̃ † be also an endomorphism satisfying 〈v, Fw〉 =〈
F̃ †v, w

〉
for every v, w ∈ V . Then we have

〈
(F̃ † − F †)v, w

〉
= 0 for

every v, w ∈ V . By the nondegeneracy of the hermitian product, we

then get (F̃ † − F †)v = for every v ∈ V , i.e., F̃ † = F †.

6One can easily check that F † exists iff for every v the linear form αv : w 7→
〈v, Fw〉 is in the image of the antilinear map z 7→ 〈z, 〉 introduced in Section 4.2.4.
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Example 4.26. In the case of the standard hermitian product on
Cn, the adjoint of the endomorphism defined by an n × n complex
matrix A is the endomorphism defined by the adjoint of A.

Remark 4.27. The adjoint of an operator shares the same prop-
erties of the adjoint of a matrix as expressed in Lemma 4.12, which
follow from the uniqueness of the adjoint:

(1) (F †)† = F .
(2) (F +G)† = F † +G†.
(3) (λF )† = λ̄F †.
(4) (FG)† = G†F †.

On a finite-dimensional space one also has that, if F is invertible, then
so is F †, and we have (F †)−1 = (F−1)†.

4.3. The norm

As in the case of the inner product we can define a norm starting
from an hermitian product. Namely, we set

‖v‖ :=
√
〈v, v〉.

We immediately get the first two properties of a norm:

(N.1) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 iff v = 0.
(N.2) ‖αv‖ = |α|‖v‖ for all v ∈ V and for all α ∈ C.7

Again we will get the triangle inequality from the

Theorem 4.28 (Cauchy–Schwarz inequality). Let (V, 〈 , 〉) be an
hermitian product space, and let ‖ ‖ denote the induced norm. Then
all v, w ∈ V satisfy the Cauchy–Schwarz inequality

| 〈v, w〉 | ≤ ‖v‖‖w‖ (4.4)

with equality saturated iff v and w are linearly dependent.

Proof. The proof runs exactly along the lines of the proof to The-
orem 3.16. We describe only the case w 6= 0 to outline the, minor,
differences. Namely, we consider again the function

f(λ) := ‖v + λw‖2

where now λ is a complex variable. We have

f(λ) = 〈v + λw, v + λw〉 = ‖v‖2 + λ̄ 〈w, v〉+ λ 〈v, w〉+ λ2‖w‖2.

If we write λ = a + ib, we may view f as a real-valued function of the
real variables a and b. We have:

(1) f(a+ ib) ≥ 0 for all a, b.

7Here |α| =
√
ᾱα is the absolute value of the complex number α.
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(2) Hess f(a+ ib) =
(

2‖w‖2 0

0 2‖w‖2

)
for all a, b.

By computing ∂f
∂a

and ∂f
∂b

, we see that f has a unique critical point,
which is a minimum because the Hessian is positive definite. By explicit
computation we get

fmin = ‖v‖2 − | 〈v, w〉 |
2

‖w‖2
.

We leave all the remaining details, as well as the proof of the second
part of the theorem, to the reader. �

We then get, with the simple details of the proof left to the readers,
the following

Proposition 4.29 (The triangle inequality). Let (V, 〈 , 〉) be an
hermitian product space, and let ‖ ‖ denote the induced norm. Then
all v, w ∈ V satisfy the triangle inequality

‖v + w‖ ≤ ‖v‖+ ‖w‖. (4.5)

As an immediate consequence we have the

Theorem 4.30 (Properties of the norm). Let (V, 〈 , 〉) be an her-
mitian product space. Then the induced norm ‖ ‖ satisfies the following
three properties

(N.1) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 iff v = 0.
(N.2) ‖αv‖ = |α|‖v‖ for all v ∈ V and for all α ∈ C.
(N.3) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Digression 4.31 (Complex normed spaces). A norm on a complex
vector space V is a function ‖ ‖ : V → R satisfying properties (N.1),
(N.2), and (N.3). A complex vector space endowed with a norm is
called a complex normed space. The above theorem shows that an
hermitian product space is automatically a complex normed space as
well. On the other hand, there are norms that are not defined in terms
of an hermitian product.

Remark 4.32 (The other triangle inequality). Like in the case of
real normed spaces, see Remark 3.20, also in a complex normed space
we have the other triangle inequality,

|‖v‖ − ‖w‖| ≤ ‖v − w‖ (4.6)

for all v and w, which is proved exactly like in the real case.
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4.4. Orthogonality

We briefly review the rather straightforward generalization of the
concepts presented in Section 3.4.

Let (V, 〈 , 〉) be an hermitian product space. Two vectors v and w
are called orthogonal if 〈v, w〉 = 0. In this case one writes v ⊥ w. Note
that this condition is symmetric (i.e., v ⊥ w iff w ⊥ v).

An orthogonal system is again defined as a collection (ei)i∈S of
nonzero vectors in V such that ei ⊥ ej for all i 6= j in S. Again
we have, with exactly the same proof as in the inner product case, the

Lemma 4.33. An orhogonal system is linearly independent.

If the orthogonal system generates the space, we call it an orthogonal
basis.

If the vectors ei are normalized (i.e., ‖ei‖2 = 1), then we speak of
an orthonormal system or an orthonormal basis, respectively.

Example 4.34. The standard basis (e1, . . . , en) of Cn is an or-
thonormal basis for the standard hermitian product.

Remark 4.35. Note that the representing matrix of an hermitian
product on a finite-dimensional space in an orthonormal basis is the
identity matrix. We will see (Theorem 4.40) that every finite-dimen-
sional space admits an orthonormal basis, so eventually we always go
back to the case of the standard hermitian product.

If v =
∑

i v
iei is in the span of an orthonormal system (ei)i∈S, we

can get the coefficients of the expansion by the formula

vi = 〈ei, v〉 . (4.7)

Unlike in the case of the inner product, we now have to be careful on
the order of the arguments, as we have

v̄i = 〈v, ei〉 .
We can also rewrite the expansion as

v =
∑
i

〈ei, v〉 ei.

Moreover, note that, if w =
∑

iw
iei, then 〈v, w〉 =

∑
ij v̄

iwj 〈ei, ej〉, so

〈v, w〉 =
∑
i

v̄iwi =
∑
i

〈v, ei〉 〈ei, w〉 ,

and, in particular,

‖v‖2 =
∑
i

|vi|2. (4.8)
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Remark 4.36 (Dirac’s notation). The above formulae have a nice
rewriting in terms of Dirac’s bra–ket notation introduced in Section 4.2.4.
The expansion formula for a vector v in the orhonormal basis (ei), e.g.,
reads

| v〉 =
∑
i

| ei〉 〈 ei | v 〉 , (4.9)

and the bracket of two vectors is now

〈 v |w 〉 =
∑
i

〈 v | ei 〉 〈 ei |w 〉 .

The nice mnemonic rule stemming from these formulae is that the ex-
pression | ei〉〈ei |, summed over i, may be freely inserted or omittted in
other expressions.8 Another practical advantage of the bra–ket nota-
tion is that it allows for the shorthand notation | i〉 for | ei〉. With it
the above formulae simply read

| v〉 =
∑
i

| i〉 〈 i | v 〉 and 〈 v |w 〉 =
∑
i

〈 v | i 〉 〈 i |w 〉 .

Remark 4.37 (Bessel’s inequality). As in the case of the inner
product, see Remark 3.36, we may apply (4.7) also to the case when
the orthonormal system is not a basis. In particular, with the same
proof as in the inner product case, we get again Bessel’s inequality

∞∑
i=1

|vi|2 ≤ ‖v‖2, (4.10)

with

vi = 〈ei, v〉
where (ei)i∈N>0 is an orthonormal system.

Example 4.38 (Fourier series). Consider the complex vector space

V := {φ ∈ C0([0, L],C) | φ(0) = φ(L)}

8The mathematical reason is that (| ei〉) denote an orthonormal basis of V ,
whereas (〈ei |) denotes the corresponding dual basis of V ∗. The term | ei〉〈ei | is
then a dual vector (i.e., a linear map V → C) times a vector: this corresponds to
a linear map V → V , | v〉 7→ | ei〉 〈 ei | v 〉. By (4.9), we have that the sum over i
produces the identity operator: ∑

i

| ei〉〈ei | = Id .
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of complex-valued continuous periodic functions on the interval [0, L]
with hermitian product

〈f, g〉 =

∫ L

0

f̄ g dx.

Consider

ek(x) :=
1√
L

e
2πikx
L

which belongs to V for every k ∈ Z. We have

〈ek, ek〉 =
1

L

∫ L

0

1 dx = 1,

for every k, and

〈ek, el〉 =
1

L

∫ L

0

e
2πi(l−k)x

L dx =
1

2πi(l − k)
e

2πikx
L

∣∣∣L
0

= 0,

for every k 6= l in Z. Therefore, (ek)k∈Z is an orthonormal system.
Using Dirac’s notation, and writing | k〉 instead of | ek〉, we get the
Fourier coefficients

fk = 〈 k | f 〉 =
1√
L

∫ L

0

e−
2πikx
L f dx (4.11)

for every f ∈ V . As Z is a countable set (i.e., it is isomorphic to N),
we still have Bessel’s inequality, which now reads∑

k∈Z

|fk|2 ≤ ‖f‖2. (4.12)

In this particular case one can show—but this is beyond the scope of
these notes—that Bessel’s inequality is actually saturated:∑

k∈Z

(fk)
2 = ‖f‖2. (4.13)

This equality is known as Parseval’s identity. Note that, if f is in the
span of the eks, we then have

f(x) =
1√
L

∑
k

fk e
2πikx
L . (4.14)

However, even if f ∈ V is not in the span of the eks, it turns out that
the series (4.14) actually converges, in an appropriate sense, to the
original function f . This is an example of a Fourier series. Finally, note
that working with complex-valued functions has several advantages,
one being the easier way to show that (ek) is orthonormal as compared
to the case of sine or cosine series. This theory may also be used for
real-valued functions, just regarded as a special case of complex-valued
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ones. The only observation regarding the Fourier coefficients is that f
is real valued iff f−k = f̄k for every k.

4.4.1. The orthogonal projection. The definition and proper-
ties of the orthogonal projection go exactly as in the case of the inner
product.

If w is a nonzero vector, we can uniquely decompose any vector v
as v = v‖ + v⊥ with v‖ ∈ Cw and v⊥ ⊥ w by

v‖ = 〈w, v〉 w

‖w‖2
and v⊥ = v − v‖.

Again we define the projections

Pwv = 〈w, v〉 w

‖w‖2
and P ′w = Id−Pw.

Their properties are again the following:

P 2
w = Pw, P ′2w = P ′w,

imPw = Cw, imP ′w = w⊥ = {v ∈ V | v ⊥ w},

and, for every λ ∈ C \ {0},

Pλw = Pw, P ′λw = P ′w.

In particular, if w is normalized (i.e., ‖w‖ = 1), then we get the simpler
formula

Pwv = 〈w, v〉w,

or, in Dirac’s notation,

Pwv = |w〉 〈w | v 〉 .

4.4.2. The Gram–Schmidt process. The Gram–Schmidt pro-
cess works in exactly the same way as in the case of the inner product.
By the same proof, we get the following

Proposition 4.39 (Gram–Schmidt process). Let (v1, . . . , vk) be a
linearly independent system in an hermitian product space V . Then
there is an orthonormal system (e1, . . . , ek) with the same span. This
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system is determined by the following process:

ṽ1 := v1 e1 :=
ṽ1

‖ṽ1‖

ṽ2 := v2 − 〈e1, v2〉 e1 e2 :=
ṽ2

‖ṽ2‖

ṽ3 := v3 − 〈e1, v3〉 e1 − 〈e2, v3〉 e2 e3 :=
ṽ3

‖ṽ3‖
...

...

ṽk := vk −
k−1∑
i=1

〈ei, vk〉 ei ek :=
ṽk
‖ṽk‖

Again, if (v1, . . . , vn) is a basis of V , then the Gram–Schmidt process
yields an orthonormal basis (e1, . . . , en). Therefore, we have the

Theorem 4.40 (Orthonormal bases). A finite-dimensional or count-
ably infinite-dimensional hermitian product space has an orthonormal
basis.

If V = Cn with hermitian product 〈v,w〉 = v̄Tgw, where g is a
positive definite self-adjoint matrix, the elements of an orthonormal
basis (v1, . . . ,vn) satisfy

v̄Ti gvj = δij.

Therefore, the invertible matrix F whose columns are these basis vec-
tors satisfies

F †gF =

v̄T1...
v̄Tn

 g (v1, . . . ,vn
)

=

v̄T1...
v̄Tn

(gv1, . . . , gvn
)

= 1,

so g = F †,−1F−1. By setting E = F−1, we get the factorization
g = E†E. Note on the other hand that, if we have a matrix g of this

form, then g is self adjoint and positive definite, for v̄Tgv = Ev
T
Ev.

We then have the

Corollary 4.41. A self-adjoint matrix g is positive definite iff it
is of the form g = E†E with E an invertible matrix.

Remark 4.42. The matrix E in Corollary 4.41 is not uniquely
determined (as we can choose different orthonormal bases). In particu-

lar, suppose that E′ is also an invertible matrix with g = E′
†
E′. Then

we have E′
†
E′ = E†E, or, equivalently, E′E−1 = E′

†,−1
E†. Since
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E′
†,−1
E† = (E′E−1)†,−1, we get that the invertible matrix U := E′E−1

satisfies

U † = U−1.

A matrix with this property is called unitary (see more on this in Sec-
tion 4.5). Note that E′ = UE. In conclusion, any two matrices occur-
ring in a factorization of the same positive-definite matrix are related
by a unitary matrix.

Note that detE†E = |detE|2, which is positive if E is invertible,
so we have the

Lemma 4.43. A positive-definite self-adjoint matrix necessarily has
positive determinant.

Exactly as in the case of inner products, and with the same proof,
we then get the following

Corollary 4.44. If g is a positive definite matrix, then all its
leading principal minors are necessarily positive.

The converse to Corollary 4.44 also holds. (For the proof, very
similar to that to Lemma 3.52, see exercise 4.6.)

Lemma 4.45. If all the leading principal minors of a self-adjoint
matrix g are positive, then g is positive definite.

We can summarize the results of Corollary 4.44 and of Lemma 4.45
as the following

Theorem 4.46 (Sylvester’s criterion). A self-adjoint matrix is pos-
itive definite iff all its leading principal minors are positive.

4.4.3. Orthogonal complements. The orthogonal subspace as-
sociated to a subspace W of an hermitian product space (V, 〈 , 〉) is
defined exactly as in the the case of the inner product:

W⊥ := {v ∈ V | v ⊥ w ∀w ∈ W}.

The orthogonal space has exactly the same properties, with the same
proofs, as in Proposition 3.58:

(1) {0}⊥ = V .
(2) V ⊥ = {0}.
(3) W ∩W⊥ = {0}.
(4) W ⊆ Z =⇒ Z⊥ ⊆ W⊥.
(5) W ⊆ W⊥⊥.
(6) W⊥⊥⊥ = W⊥.
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Moreover, again by the same proof as in the case of Proposition 3.59,
we have the following

Proposition 4.47. If W is a finite-dimensional subspace of an
hermitian product space V , then W⊥ is a complement of W , called the
orthogonal complement:

V = W ⊥©W⊥.

In particular, this implies the following

Theorem 4.48. Let V be a finite-dimensional hermitian product
space. Then, for every subspace W we have the orthogonal complement
W⊥. In particular,

dimW + dimW⊥ = dimV,

and
W⊥⊥ = W.

Again we say that two subspaces W1 and W2 of an hermitian prod-
uct space V are orthogonal if every vector in W1 is orthogonal to every
vector in W2. In this case we write

W1 ⊥ W2.

Definition 4.49. Let (Wi)i∈S be a collection of subspaces of an
hermitian product space V . The collection is called orthogonal if

Wi ⊥ Wj for all i 6= j.

Proposition 4.50. If (Wi)i∈S is an orthogonal collection of sub-
spaces, then the sum of the Wis is direct.

This is proved exactly as in the case of Proposition 3.64.

Definition 4.51. If (Wi)i∈S is an orthogonal collection of sub-
spaces of V and their sum is the whole of V , then

V = ⊥©
i∈S

Wi

is called an orthogonal decomposition of V .

Remark 4.52. Suppose we have an orthogonal decomposition V =
⊥©i∈SWi. Let Pi denote the projection to the Wi-component. As in
Remark 3.67, we may prove that

〈Piv, v′〉 = 〈v, Piv′〉
for all v, v′ ∈ V . This is an example of a self-adjoint operator (more on
this in Section 4.5.3).



4.5. UNITARY OPERATORS 135

4.5. Unitary operators

An endomorphism F of an hermitian product space V is called a
unitary operator if

〈Fv, Fw〉 = 〈v, w〉
for every v, w ∈ V .

Example 4.53 (Unitary matrices). In the case of the standard her-
mitian product on Cn, the endomorphism defined by an n×n complex

matrix A is unitary iff v̄Tw = Av
T
Aw = v̄TA†Aw for all v,w ∈ Cn.

Taking v = ei and w = ej, the condition implies (A†A)ij = δij for all
i, j = 1, . . . , n. Therefore, we see that the endomorphism defined by A
is unitary iff

A†A = 1.

A matrix satisfying this identity is called a unitary matrix. Note that
the condition implies that A is invertible and also that A−1 is itself
a unitary matrix. Moreover, if A and B are unitary, then so is their
product AB.

Remark 4.54. In particular, we have that an endomorphism of a
finite-dimensional hermitian product space is unitary iff its representing
matrix in any orthonormal basis is unitary.

Remark 4.55. Let (v1, . . . ,vn) be the columns of an n× n matrix
A. Then (v̄T1 , . . . , v̄

T
n) are the rows of A†. We then see that

A is unitary ⇐⇒ (v1, . . . ,vn) is an orthonormal system.

Here is a useful characterization of unitary operators:

Theorem 4.56. Let F be an endomomorphism of an hermitian
product space V . Then the following are equivalent:

(1) F is unitary.
(2) F preserves all norms.

Proof. If F is unitary, then in particular ‖Fv‖2 = 〈Fv, Fv〉 =
〈v, v〉 = ‖v‖2 for every v, so F preserves all norms.

The reversed implication is obtained by making use of the polariza-
tion identity

〈v, w〉 =
1

4
(‖v + w‖2 − ‖v − w‖2 − i|v + iw‖2 + i‖v − iw‖2), ∀v, w,

whose proof is left as an exercise. �

Condition (2) implies that a unitary operator is injective. This has
the following immediate corollary.
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Corollary 4.57. A unitary operator on a finite-dimensional her-
mitian product space is invertible.

One can easily prove that the composition of two unitary operators
is a unitary operator, that the inverse of a unitary operator is a uni-
tary operator, and that the identity map is a unitary operator. As a
consequence of this and of Corollary 4.57, we have the

Proposition 4.58. The set U(V ) of unitary operators on a finite-di-
mensional hermitian product space V is a group, called the unitary group
of V .

Remark 4.59. In the case of Cn with the standard hermitian prod-
uct, we write U(n) for the corresponding group of unitary matrices

U(n) = {A ∈ Matn×n(C) | A†A = 1},
called the unitary group.

Remark 4.60. The characterization of unitary matrices of Exam-
ple 4.53 extends to operators. Namely, assume V to be finite-dimen-
sional (or, more generally, F to be invertible). Then F is unitary iff

F †F = Id,

where we have used the notion of adjoint operator introduced in Sec-
tion 4.2.5. In fact, if F is unitary, then so is its inverse. Therefore,

〈v, Fw〉 =
〈
F−1v, F−1Fw

〉
=
〈
F−1v, w

〉
,

which shows F † = F−1. On the other hand, if F † is the inverse of F ,
then

〈Fv, Fw〉 =
〈
F †Fv, w

〉
=
〈
F−1Fv, w

〉
= 〈v, w〉 ,

so F is unitary.

4.5.1. Isometries. The notion of unitary operator may be gen-
eralized to linear maps between different spaces. Let (V, 〈 , 〉V ) and
(W, 〈 , 〉W ) be hermitian product spaces. A linear map F : V → W is
called an isometry if

〈Fv1, Fv2〉W = 〈v1, v2〉V
for all v1, v2 ∈ V . Following verbatim the proof of Theorem 4.56, we
see that F is an isometry iff it preserves all norms. We also see that an
isometry is always injective. If V and W are finite-dimensional, we then
have dimV ≤ dimW , and F is an isomorphisms iff dimV = dimW .

Example 4.61. The inclusion map of a subspace, with the restric-
tion of the hermitian product as in Example 4.8, is an isometry.
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Example 4.62 (Fourier series and spaces of sequences). Consider
the space

V := {φ ∈ C0([0, L],C) | φ(0) = φ(L)}
of Example 4.38 with the orthonormal basis provided there. To each
function f ∈ V we may assign the complex sequence

(. . . , f−1, f0, f1, f2, . . . )

with fk := 〈ek, f〉 as in (4.11). For a general f ∈ V , infinitely many
fks may be different from zero. Still we have Bessel’s inequality (4.12)
which shows that (. . . , f−1, f0, f1, f2, . . . ) is a square-summable sequence
(see Section 4.2.3).9 Therefore, we have a linear map

F : {φ ∈ C0([0, L],C) | φ(0) = φ(L)} → `2
C

f 7→
(

1√
L

∫ L
0

e−
2πikx
L f dx

)
k∈Z

Thanks to Parseval’s identity (4.13), F is actually an isometry. It is
not surjective though.10

Example 4.63. If (e1, . . . , en) is an orthonormal basis of V , then
the linear map F : V → Cn that assigns to a vector v the column vector
with components its coefficients vi = 〈ei, v〉 is a bijective isometry (in
the notations of Remark 1.52, F = Φ−1

B with B = (e1, . . . , en)).

From this observation and from Theorem 4.40, we get the

Theorem 4.64. Every n-dimensional hermitian product space pos-
sesses a bijective isometry with Cn endowed with the standard hermitian
product.

4.5.2. The unitary groups. In this section we analyze the group
U(n) of unitary matrices, introduced in Remark 4.59, in particular for
n = 1 and n = 2.

Note that, for every complex square matrix, detA† = detA. There-
fore, the condition A†A = 1 for a unitary matrix implies |detA|2 = 1.
This means that detA is of the form eiθ for some θ ∈ R.

Unitary matrices with determinant 1 form a subgroup of U(n) called
the special unitary group:

SU(n) := {A ∈ Matn×n(C) | A†A = 1 and detA = 1}.
9To agree with the notation there, we have to relabel the indices via an isomor-

phism N→ Z.
10We may enlarge V to contain noncontinuous square-integrable functions. All

the above works. By the injectivity of the isometry F , we then get square-summable
sequences of coefficients beyond those coming from continuous functions.
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Remark 4.65. The groups U(1), SU(2), and SU(3) are particularly
important in physics: SU(2) is related to spin in quantum mechanics,
U(1) × SU(2) to the electroweak interaction, and SU(3) to the strong
interaction.

Remark 4.66. If A is an n × n unitary matrix with determinant

eiθ, then B := e−
iθ
nA is also unitary, but now with determinant equal

to 1. Therefore, every n × n unitary matrix A can be written as λB
with |λ| = 1 and B ∈ SU(n).

4.5.2.1. The group U(1). A matrixA ∈ U(1) is of the formA = (λ)
with |λ| = 1. Therefore, we have the

Proposition 4.67. A matrix in U(1) has the form (eiθ). The an-
gle θ is uniquely determined if we take it in the interval θ ∈ [0, 2π).
Geometrically, U(1) is the unit circle S1 in the complex plane:

U(1) = S1 = {λ ∈ C | |λ| = 1}.

Remark 4.68. If z = ρeiα ∈ C, then eiθz = ρei(α+θ), so the group
U(1) may be interpreted as the group of rotations on the complex plane
centered at the origin.

As we observed in Remark 3.90, also the group SO(2) acts by rota-
tions on the plane. Actually, U(1) and SO(2) are essentially the same
group, as follows from the normal form of matrices in SO(2) given in
Proposition 3.89. Namely, we have the following

Proposition 4.69. There is a group isomorphism

U(1) → SO(2)

eiθ 7→
(

cos θ − sin θ
sin θ cos θ

)
We leave the simple details of the proof to the reader.

4.5.2.2. The group SU(2). We have seen that, geometrically, the
group U(1) is the same as the unit circle in the plane. Our goal is to
show the higher-dimensional analogue for SU(2).

Proposition 4.70. A matrix A in SU(2) has the form

A =

(
α β
−β̄ ᾱ

)
with |α|2 + |β|2 = 1. Therefore, geometrically, the group SU(2) is the
same as the three-dimensional unit sphere S3 in R4.
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Proof. Consider a 2 × 2 complex matrix A =
(
α β
γ δ

)
with deter-

minant 1. By (1.10), its inverse is then
(

δ −β
−γ α

)
. Equating it to its

adjoint
(
ᾱ γ̄
β̄ δ̄

)
yields δ̄ = α and γ = −β̄.

As a consequence, our matrix A has the form
(

α β
−β̄ ᾱ

)
, and its

determinant, which we have to equate to 1, is |α|2 + |β|2. We have thus
proved the first statement.

Next, if we identify C2 with R4 by taking the real and imaginary
parts of α and β,11

α = x0 + ix3 and β = x2 + ix1,

we see that the equation |α|2 + |β|2 = 1, for (α, β) ∈ C2, defines

S3 = {(x0, x1, x2, x3) ∈ R4 | (x0)2 + (x1)2 + (x2)2 + (x3)2 = 1},
which is the unit sphere. �

4.5.3. Self-adjoint and anti-self-adjoint operators. We con-
clude with a related concept.

Definition 4.71. An endomorphism F of an hermitian product
space V is called self adjoint if

〈Fv, w〉 = 〈v, Fw〉
for every v, w ∈ V .

Remark 4.72. By the notion of adjoint operator introduced in
Section 4.2.5, we immediately have that F is self adjoint iff its adjoint
operator exists and

F † = F.

Example 4.73. In the case of the standard hermitian product on
Cn, the endomorphism defined by an n × n matrix A is self adjoint
iff the matrix A is self adjoint (see Definition 4.11), i.e., A† = A.
In particular, we have that an endomorphism of a finite-dimensional
hermitian product space is self adjoint iff its representing matrix in
some orthonormal basis is self adjoint.

Example 4.74. If we have an orthogonal decomposition

V = ⊥©
i∈S

Wi,

then the projection Pi to the Wi-component is self adjoint, as shown
in Remark 4.52.

11The reason for naming the real and imaginary parts this way is to conform
with a notation that we will introduce in Remark 4.84.
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Self-adjoint operators are at the core of quantum mechanics, where
they are used to describe physical observables.

Definition 4.75. An endomorphism F of an hermitian product
space V is called anti–self adjoint or antihermitian if

〈Fv, w〉 = −〈v, Fw〉

for every v, w ∈ V .

Remark 4.76. By the notion of adjoint operator introduced in
Section 4.2.5, we immediately have that F is anti–self adjoint iff its
adjoint operator exists and

F † = −F.

Example 4.77. In the case of the standard hermitian product on
Cn, the endomorphism defined by an n×n matrixA is anti–self adjoint
iff the matrix A is anti–self adjoint, i.e., A† = −A. In particular, we
have that an endomorphism of a finite-dimensional inner product space
is anti–self adjoint iff its representing matrix in some orthonormal basis
is anti–self adjoint.

Remark 4.78. Self-adjoint and anti-self-adjoint operators are close-
ly related. Namely, suppose F is self adjoint. Then iF is anti–self
adjoint. In fact

〈iFv, w〉 = −i 〈Fv, w〉 = −i 〈v, Fw〉 = −〈v, iFw〉 .

Similarly, if F is anti–self adjoint, then iF is self adjoint.

Anti-self-adjoint operators are also closely related to unitary oper-
ators. One relation is the following. Suppose U(t) is a differentiable
map R → U(n). Then, differentiating the identity U †U = 1, we get

U̇
†
U + U †U̇ = 0. Therefore, the matrix A := U̇U−1 is anti–self

adjoint.
A second relation concerns perturbations of the identity operator.

Namely, let U(t) = 1 +At + O(t2). Then U †(t) = 1 +A†t + O(t2),
and U †(t)U (t) = 1+(A†+A)t+O(t2). It follows that U(t) is unitary
only if A is anti–self adjoint.

A third relation is the following. Let A be anti–self adjoint. Define
U(t) := eAt. Then we have U † = U−1, so U (t) is unitary for every t.
Therefore, eAt is a differentiable map R→ U(n). By Proposition 2.11,
detU(t) = et trA for every t. As a consequence, eAt is a differentiable
map R→ SU(n) iff the trace of A vanishes.
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Remark 4.79. The real vector space12 of anti-self-adjoint n×n ma-
trices is denoted by u(n); its subspace of traceless matrices is denoted
by su(n):

u(n) := {A ∈ Matn×n(C) | A† = −A},
su(n) := {A ∈ Matn×n(C) | A† = −A, trA = 0}.

This notation helps remembering that we have the exponential maps

exp: u(n) → U(n)
A 7→ eA

exp: su(n) → SU(n)
A 7→ eA

Remark 4.80. We will see in Corollary 4.106 that for every n these
exponential maps are surjective. In the next section we will only focus
on the case of su(2).

4.5.4. Pauli matrices. The Pauli matrices, introduced by W.
Pauli to describe the spin of a particle in quantum mechanics, are
a basis of the real vector space isu(2) of traceless self-adjoint 2 × 2
matrices (see Remark 4.78 to relate self-adjoint and anti-self-adjoint
operators). They are the following three traceless self-adjoint 2 × 2
matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Proposition 4.81. The Pauli matrices (σ1, σ2, σ3) form a basis
of the real vector space isu(2) of traceless self-adjoint 2 × 2 matrices.
Consequently, (iσ1, iσ2, iσ3) is a basis of the real vector space su(2) of
traceless anti-self-adjoint 2× 2 matrices.

Proof. LetA =
(
α β
γ −α

)
be a traceless 2×2 complex matrix. Then

A† =
(
ᾱ γ̄
β̄ −ᾱ

)
. Therefore, A is self adjoint iff

α = ᾱ and β = γ̄.

The first equation says that α is real: we write α = x3 ∈ R. If we denote
by x1 and x2 the real and imaginary parts of γ—i.e., γ = x1+ix2—then
the second equation says that β = x1− ix2. Therefore, A is self adjoint
and traceless iff it is of the form

A =

(
x3 x1 − ix2

x1 + ix2 −x3

)
= x1σ1 + x2σ2 + x3σ3

12A linear combination with real coefficients of anti-self-adjoint matrices is still
anti–self adjoint. The same does not hold if we allow complex coefficients.
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with x1, x2, x3 real. One also immediately checks that this decomposi-
tion is unique, so (σ1, σ2, σ3) is a basis of isu(2). The second statement
is an immediate consequence of Remark 4.78. �

Remark 4.82. To get a basis of the real vector space iu(2) of
self-adjoint 2× 2 matrices we just have to add one more basis element,
e.g., σ0 = 1. We will not consider this here.

Remark 4.83. The expansion of a traceless self-adjoint 2×2 matrix
in the basis of Pauli matrices is usually denoted by

x · σ := xiσi = x1σ1 + x2σ2 + x3σ3. (4.15)

Remark 4.84. Matrices in SU(2) can also be written in terms of
Pauli matrices. In fact, by Proposition 4.70 every A ∈ SU(2) if of the

form A =
(

α β
−β̄ ᾱ

)
with |α|2 + |β|2 = 1. Setting α = x0 + ix3 and

β = x2 + ix1, we have

A = x0 1 + ix · σ

with (x0)2 +(x1)2 +(x2)2 +(x3)2 = 1. It is convenient to set x =
(
x1

x2

x3

)
.

The condition then reads (x0)2 + ‖x‖2 = 1, where ‖ ‖ denotes the
euclidean norm on R3. This means that there is an angle θ such that
x0 = cos θ and ‖x‖ = ± sin θ. We can therefore write

A = cos θ 1 + i sin θ x̂ · σ, (4.16)

where x̂ is a unit vector.

One immediatley checks that the square of each Pauli matrix is the
identity matrix and that

σ1σ2 = iσ3 = −σ2σ1, σ2σ3 = iσ1 = −σ3σ2, σ3σ1 = iσ2 = −σ1σ3.

One may summarize all these identities as

σiσj = δij1 + i
3∑

k=1

εijkσk,

where δij is the Kronecker delta and εijk is the Levi-Civita symbol defined
as zero if one index is repeated and as the sign of the permutation
123 7→ ijk otherwise. Explicitly,

ε123 = ε231 = ε312 = 1,

ε132 = ε213 = ε321 = −1,

εijk = 0 otherwise.
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Using the notation of (4.15), we then have, for every x,y ∈ R3,

(x · σ)(y · σ) = x · y 1 + ix× y · σ, (4.17)

where on the left hand side we use matrix multiplication and on the
right hand side we use the dot and the cross product of vectors. This
formula implies the following

Lemma 4.85. For every y ∈ R3 \ {0}, we have

eiy·σ = cos ‖y‖+ i
sin ‖y‖
‖y‖

y · σ.

Proof. By (4.17) with x = y we have (y ·σ)2 = ‖y‖21. Therefore,
setting J := iy·σ

‖y‖ , we have J2 = −1. This implies J2s = (−1)s1 and

J2s+1 = (−1)sJ for all s ∈ N. We then get, for every α ∈ R,

eαJ =
∞∑
n=0

αn

n!
Jn =

∞∑
s=0

(−1)s
α2s

(2s)!
1 +

∞∑
s=0

(−1)s
α2s+1

(2s+ 1)!
J .

Recognizing the power series for sine and cosine, we then have

eαJ = cosα 1 + sinαJ .

Finally,
eiy·σ = e‖y‖J = cos ‖y‖1 + sin ‖y‖J ,

which proves the lemma. �

By (4.16) we then have the

Corollary 4.86. The exponential map su(2) → SU(2) is surjec-
tive.

4.5.4.1. SU(2) and space rotations. There is a very strong relation
between the group SU(2) and the group SO(3) of space rotations. This
is at the core of the appearance of SU(2) in quantum mechanics to
describe the spin of particles.

The central observation is the following. Let A ∈ SU(2) and B be
a 2× 2 traceless hermitian matrix. Define

ΦAB := ABA†.

It is readily verified that ΦBA is also traceless and hermitian. That is,
we have defined a linear map

ΦA : isu(2) → isu(2)
B 7→ ABA†

For any two A,A′ ∈ SU(2), we also clearly have

ΦAA′B = AA′B(AA′)† = ΦA(ΦA′B).
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That is,

ΦAA′ = ΦAΦA′ ,

where on the right hand side we use the composition of linear maps.
Abstractly, we have the group homomorphism

Φ: SU(2) → Aut(isu(2))
A 7→ ΦA

where Aut(isu(2)) denotes the group of automorphisms (i.e., invertible
linear maps) of the real vector space isu(2). Using a basis—e.g., by the
Pauli matrices—we may identify isu(2) with R3 and Aut(isu(2)) with
the group of invertible 3× 3 real matrices.

One can also readily prove that det(ΦAB) = detB for every A ∈
SU(2). If we expand B in the basis of Pauli matrices,

B = x · σ =

(
x3 x1 − ix2

x1 + ix2 −x3

)
,

we see that detB = (x1)2 + (x2)2 + (x3)2 = ‖x‖2. This shows that
the representing matrix of ΦA in the basis of the Pauli matrices pre-
serves the euclidean norm, so it is orthogonal (by Theorem 3.74).
The composition Ψ of the group homomorphism Φ with the isomor-
phism φ−1

(σ1,σ2,σ3) : isu(2) → R3 is therefore a group homomorphism

Ψ: SU(2)→ O(3). By definition we have

ΦA(x · σ) = (ΨAx) · σ. (4.18)

Thanks to (4.17) we can explicitly write down Ψ and get the following

Theorem 4.87. For

A = cos θ 1 + i sin θ x̂ · σ,

where x̂ is a unit vector, we have

ΨA = Rx̂(−2θ),

whereRn(α) denotes the counterclockwise rotation by the angle α around
the oriented principal axis generated by the vector n. Consequently, Ψ
defines a surjective group homomorphism

Ψ: SU(2)→ SO(3).

Moreover, ΨA = ΨA′ iff A = ±A′, so the the preimage of each point
in SO(3) consists of exactly two points in SU(2). (One says that SU(2)
is a double cover of SO(3).)
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Proof. Take A as in the statement and B = y ·σ. By (4.17), we
get

AB = cos θ y · σ + i sin θ x̂ · y 1− sin θ x̂× y · σ
= i sin θ x̂ · y 1 + (cos θ y − sin θ x̂× y) · σ.

Since A† = cos θ 1− i sin θ x̂ ·σ, we then get, after some simplifications,

ABA† = (cos2 θ y+sin2 θ (x̂ ·y x̂−(x̂×y)×x̂)−2 sin θ cos θ x̂×y) ·σ.
We have

x̂ · y x̂ = y‖,

where we use the orthogonal decomposition y = y‖ + y⊥ with y‖
proportional to x̂ and y⊥ orthogonal to it. A computation using the
properties of the cross product (see exercise 3.16) shows

(x̂× y)× x̂ = y⊥.

Therefore, using (4.18) and exercise 3.17,

ΨAy = cos2 θ (y‖ + y⊥) + sin2 θ (y‖ − y⊥)− 2 sin θ cos θ x̂× y
= y‖ + cos(2θ)y⊥ − sin(2θ) x̂× y⊥
= Rx̂(−2θ)y.

This proves the first part of the theorem.
The explicit formula also shows that the image of Ψ is the whole

group SO(3). Moreover, ifA′ = cos θ′ 1+i sin θ′ x̂′·σ and ΨA = ΨA′ , we
have Rx̂(−2θ) = Rx̂′(−2θ′). This first implies that the two rotations
have the same principal axis, so x̂ = ±x̂′. Actually, up to choosing
θ′ appropriately, we may assume x̂ = x̂′. We then have the condition
2θ = 2θ′ mod 2π, i.e., θ = θ′ mod 2π or θ = θ′ + π mod 2π. In the
first case, A = A′ and in the second A = −A′. �

Remark 4.88. As a final remark, note that by Proposition 4.70,
we can identify SU(2) with the three-dimensional sphere S3. Moreover,
if A corresponds to a point x ∈ S3 ⊂ R4, then −A corresponds to the
antipodal point −x. The map Ψ therefore provides a surjective map
S3 → SO(3) with the property that the preimage of each point in SO(3)
consists of two antipodal points in S3.

4.6. Diagonalization and normal form for some important
classes of matrices

We will now apply hermitian products to diagonalize unitary and
self-adjoint matrices. This will also lead to the diagonalization of real
symmetric matrices and to a normal form for orthogonal and for real
skew-symmetric matrices.
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The three mentioned cases of real matrices can actually be reduced
to the study of unitary or self-adjoint matrices.

Proposition 4.89. Let A be an n × n real matrix, which we will
regard as an n× n complex matrix. Then the following hold:

(1) A is orthogonal iff A is unitary.
(2) A is symmetric iff A is self adjoint.
(3) A is skew-symmetric iff iA is self-adjoint.

Proof. The three statements simply follow from the fact that, A
being real, we have A = A, so A† = AT. For the last statement, we
use (iA)† = −iA† = −iAT. �

Finally, unitary and self-adjoint matrices are particular examples
of the more general concept of normal matrices.

Definition 4.90 (Normal matrices). A complex matrix A is called
normal if it commutes with its adjoint:

A†A = AA†.

Lemma 4.91. Unitary and self-adjoint matrices are normal.

Proof. This is readily verified and left as an exercise. �

We will therefore start with a discussion of normal matrices and
their diagonalizability, then we will specialize this result on unitary
and self-adoint matrices, and finally we will draw consequences for
orthogonal, real symmetric and real skew-symmetric matrices.

4.6.1. Normal matrices and normal operators. We begin by
extending the definition of normal matrices to operators.

Definition 4.92 (Normal operators). An endomorphism F of an
inner product space (V, 〈 , 〉) is called normal if its adjoint, as defined
in Section 4.2.5, exists and satisfies

F †F = FF †.

In the next two propositions we state some important properties of
normal operators.

Proposition 4.93. Let F be an endomorphism on V with adjoint
F †. Then F is normal iff

〈Fv, Fw〉 =
〈
F †v, F †w

〉
for all v, w ∈ V .
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Proof. By definition of adjoint operator, we have

〈Fv, Fw〉 =
〈
F †Fv, w

〉
and

〈
F †v, F †w

〉
=
〈
FF †v, w

〉
.

Therefore, if F is normal, the stated equality follows immediately. If,
on the other hand, the stated equality holds, then we get〈

F †Fv − FF †v, w
〉

= 0

for all v, w. By the nondegeneracy of 〈 , 〉, we then have F †Fv −
FF †v = 0 for all v, i.e., F †F = FF †. �

Proposition 4.94. Let F be normal. Then the following hold:

(1) v is an eigenvector of F with eigenvalue λ iff it is an eigen-
vector of F † with eigenvalue λ:

Fv = λv ⇐⇒ F †v = λv.

(2) Eig(F, λ) = Eig(F †, λ) for every eigenvalue λ of F .

Proof. By definition, v 6= 0 is an eigenvector of F with eigenvalue
λ iff Fv = λv. This occurs iff ‖(F − λ Id)v‖ = 0. However,

‖(F − λ Id)v‖2 = 〈(F − λ Id)v, (F − λ Id)v〉
=
〈
(F † − λ Id)v, (F † − λ Id)v

〉
= ‖(F † − λ Id)v‖2,

where we have used that F (and hence F −λ Id) is normal. Therefore,
the previous condition holds iff ‖(F † − λ Id)v‖ = 0, i.e., iff F †v = λv,
viz., iff v 6= 0 is an eigenvector of F † with eigenvalue λ. �

Proposition 4.95. Let v be an eigenvector of a normal operator
F . Then v⊥ is an F -invariant and F †-invariant subspace. Moreover,
the restriction of F to v⊥ is normal.

Proof. We have Fv = λv. Let w ∈ v⊥. Then, using Proposi-
tion 4.94,

〈v, Fw〉 =
〈
F †v, w

〉
=
〈
λv, w

〉
= λ 〈v, w〉 = 0,

so Fw ∈ v⊥. Similarly one proves that v⊥ is also F †-invariant:〈
v, F †w

〉
= 〈Fv, w〉 = 〈λv, w〉 = λ 〈v, w〉 = 0,

Finally, if w,w′ ∈ v⊥, the identity 〈Fw, Fw′〉 =
〈
F †w,F †w′

〉
shows

that F|v⊥ is normal (by Proposition 4.93). �

The above results lead to the following

Theorem 4.96. An operator F on a finite-dimensional hermitian
product space V is normal iff there is an orthonormal basis of eigen-
vectors (in particular, F is diagonalizable by Theorem 2.41).
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Proof. Suppose first that we have an orthonormal basis (v1, . . . , vn)
of eigenvectors of F with corresponding eigenvalues (λ1, . . . , λn). We
then have 〈

F †vi, vj
〉

= 〈vi, Fvj〉 = λjδij.

Expanding F †vi =
∑

k αikvk yields αij = λjδij. Therefore, F †vi =∑
k λkδikvk = λivi. As a consequence,

F †Fvi = F †(λivi) = λiF
†vi = |λi|2vi.

On the other hand,

FF †vi = F (λivi) = λiFvi = |λi|2vi,
so

F †Fvi = FF †vi.

Since this holds for every basis element vi, we conclude that F †F =
FF †, so F is normal.13

Now suppose instead that F is normal. We prove that it admits an
orthonormal basis of eigenvectors by induction on the dimension n of
V . If n = 1, there is nothing to prove.

Assume we have proved the statement for spaces of dimension n,
and let dimV = n + 1. Let λ be an eigenvalue of F (which exists be-
cause, by the fundamental theorem of algebra, the characteristic poly-
nomial has roots). Let v be an eigevector for λ. We can assume that
‖v‖ = 1 (otherwise we just rescale v by its norm). By Proposition 4.95,
v⊥ is F -invariant and F restricted to it is normal. Moreover, by The-
orem 4.48, dim v⊥ = n. Therefore, by the induction hypothesis, v⊥

has an orthonormal basis of eigenvectors. This basis together with v is
then an orthonormal basis of V . �

Remark 4.97. Note that the proof of the theorem also gives a
recursive procedure to obtain an orthonormal basis of eigenvectors of
a normal operator.

Remark 4.98. Note that Theorem 4.96 also implies that the ei-
genspaces corresponding to different eigenvalues of a normal operator
F are orthogonal to each other:

Eig(F, λ) ⊥ Eig(F, µ) if λ 6= µ.

13An equivalent proof is based on the observation that, in an orthonormal basis

of eigenvectors, F is represented by a diagonal matrix D =

(
λ1

. . .
λn

)
and F † by

D† =

(
λ1

. . .
λn

)
. Therefore, D†D = DD†.
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In particular, this implies that any two eigenvectors corresponding to
different eigenvalues are orthogonal to each other:

Fv = λv, Fw = µw, λ 6= µ =⇒ v ⊥ w. (4.19)

A second consequence is that the spectral decomposition of Section 2.3.1
is now orthogonal

V = Eig(F, λ1) ⊥©· · · ⊥©Eig(F, λk),

where λ1, . . . , λk are the pairwise distinct eigenvalues of the normal
operator F . Therefore, the projection operator Pi corresponding to
the eigenspace Eig(F, λi) is self adjoint for every i (see Remark 4.52).
In summary,

P †i = Pi ∀i, P 2
i = Pi ∀i, PiPj = PjPi = 0 ∀i 6= j,

k∑
i=1

Pi = Id,

and

F =
k∑
i=1

λiPi.

The theorem also has the following fundamental

Corollary 4.99. An n× n complex matrix A is normal iff there
is a unitary matrix S such that

S−1AS = D =

λ1

. . .
λn

 ,

where (λ1, . . . , λn) are the eigenvalues of A.

Proof. View A as the endomorphism of Cn defined by v 7→ Av.
If there is a unitary matrix S as in the statement, then its columns

(v1, . . . ,vn) are an orthonormal basis of Cn. Moreover, the columns
of AS are (Av1, . . . ,Avn), whereas the columns of SD, which by the
statement is the same as AS, are (λ1v1, . . . , λnvn). Therefore, the vis
are eigenvectors. Since we have an orthonormal basis of eigenvectors,
then A is normal by Theorem 4.96.

On the other hand, if A is normal, then by Theorem 4.96 we have
an orthonormal basis (v1, . . . ,vn) of eigenvectors. If we let S be the
matrix with columns the vis, then S is unitary and satisfies the stated
identity. �

In applications, especially to quantum mechanics, it is often impor-
tant to diagonalize two different normal endomorphisms at the same
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time: we say that two normal endomorphisms F and G on an hermit-
ian product space V are simultaneously diagonalizable if they possess
a common orthonormal basis of eigenvectors. We have the following
generalization of Proposition 2.47.

Proposition 4.100 (Simultaneous diagonalization). Two normal
endomorphisms F and G on an hermitian product space V are simul-
taneously diagonalizable iff they commute, i.e., FG = GF .

Proof. See Exercise 4.8. �

In the case of matrices, the above proposition reads more explictly
as follows.

Corollary 4.101. Two normal matrices A and B commute (i.e.,
AB = BA) iff there is a unitary matrix S such that S−1AS = D
and S−1BS = D′ where D and D′ are diagonal matrices.

4.6.2. Diagonalization of unitary matrices. Let U be a uni-
tary matrix, hence normal. We can then apply Corollary 4.99. We first
however make the following observation.

Proposition 4.102. The eigenvalues of a unitary matrix have ab-
solute value 1. Therefore, they are of the form eiθ for some θ ∈ R.

Proof. Let v be an eigenvector to the eigenvalue λ of the unitary
matrix U : Uv = λv. Then

‖v‖2 = 〈v,v〉 = 〈Uv,Uv〉 = 〈λv, λv〉 = |λ|2‖v‖2,

so |λ|2 = 1, since v 6= 0. �

Remark 4.103. By Remark 4.98 we have that any two eigenvectors
of a unitary matrix corresponding to different eigenvalues are orthogo-
nal to each other, see (4.19). This can also be checked directly. Namely,
assume Uv = λv and Uw = µw. Then

〈v,w〉 = 〈Uv,Uw〉 = 〈λv, µw〉 = λµ 〈v,w〉 =
µ

λ
〈v,w〉 .

If λ 6= µ, then this implies 〈v,w〉 = 0.

As an immediate consequence of Corollary 4.99, we then get the
following

Theorem 4.104. An n × n complex matrix U is unitary iff there
is a unitary matrix S such that

S−1US =

eiθ1

. . .

eiθn

 ,
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where θ1, . . . , θn are real numbers.

Proof. The only-if part follows directly from Corollary 4.99 and
Proposition 4.102. The if part is just a computation: observe that the
diagonal matrix D on the right hand side is unitary and that therefore
SDS−1 is also unitary, since S is so. �

Remark 4.105. Note that U in the theorem is special unitary iff
θ1 + · · · + θn = 2πk with k ∈ Z. We can actually assume without loss
of generality (just by changing θn to θn − 2πk) that

θ1 + · · ·+ θn = 0.

We conclude with the following

Corollary 4.106. The exponential maps

exp: u(n) → U(n)
A 7→ eA

exp: su(n) → SU(n)
A 7→ eA

are surjective.

Proof. Let U ∈ U(n). By Theorem 4.104, there is a unitary
matrix S such that U = SDS−1 where

D =

eiθ1

. . .

eiθn

 = eB with B =

iθ1

. . .
iθn


and θ1, . . . , θn real. By (2.16) we then have U = eA with A =
SBS−1 = SBS†. Since B is clearly anti–self adjoint, then so is A.
Therefore, A ∈ u(n).

IfU ∈ SU(n), we may assume, by Remark 4.105, that θ1+· · ·+θn =
0. Therefore, trB = 0 and hence trA = 0. Therefore, A ∈ su(n). �

4.6.3. Diagonalization of self-adjoint matrices. Let A be self
adjoint, hence normal. We can then apply Corollary 4.99. We first
however make the following observation.

Proposition 4.107. The eigenvalues of a self-adjoint matrix are
real.

Proof. Let v be an eigenvector to the eigenvalue λ of the self-ad-
joint matrix A: Av = λv. Then, on the one hand,

〈v,Av〉 = 〈v, λv〉 = λ 〈v,v〉 = λ‖v‖2,
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and, on the other hand,

〈Av,v〉 = 〈λv,v〉 = λ 〈v,v〉 = λ‖v‖2.

Since 〈v,Av〉 = 〈Av,v〉 forA self adjoint and v 6= 0, we get λ = λ. �

Remark 4.108. The fact that the eigenvalues of a self-adjoint ma-
trix are real is of fundamental importance for applications in quantum
mechanics. We will see that it is also important in view of the diago-
nalization of real symmetric matrices.

Remark 4.109. By Remark 4.98 we have that any two eigenvec-
tors of a self-adjoint matrix corresponding to different eigenvalues are
orthogonal to each other, see (4.19). This can also be checked directly.
Namely, assume Av = λv and Aw = µv. Then

〈v,Aw〉 = µ 〈v,w〉 and 〈Av,w〉 = λ 〈v,w〉 = λ 〈v,w〉 ,
as λ must be real. Since 〈v,Av〉 = 〈Av,v〉, for λ 6= µ this implies
〈v,w〉 = 0.

As an immediate consequence of Corollary 4.99, we then get the
following

Theorem 4.110. An n × n complex matrix A is self adjoint iff
there is a unitary matrix S such

S−1AS =

λ1

. . .
λn

 ,

where λ1, . . . , λn are real numbers.

Proof. The only-if part follows directly from Corollary 4.99 and
Proposition 4.107. The if part is just a computation: observe that
the diagonal matrix D on the right hand side is self adjoint and that
therefore SDS−1 is also self adjoint, since S is unitary. �

4.6.4. Normal form of orthogonal matrices. An orthogonal
matrix O when viewed as a complex matrix is unitary. Therefore, by
Theorem 4.104, it is diagonalizable, as a complex matrix, with eigen-
values of the form eiθ. As some eigenvalues may not be real, in general
an orthogonal matrix is not diagonalizable (over the reals). However,
one can arrange the orthonormal basis of eigenvectors so as to prove
the following normal form theorem.

Theorem 4.111. Let O be an n×n orthogonal matrix. Then there
is an orthogonal matrix S such that S−1OS = R where R has one of
the following block diagonal forms (we have to distinguish four cases).
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n = 2r n = 2r + 1

detO = 1


R(θ1)

. . .

R(θr)




1
R(θ1)

. . .

R(θr)



detO = −1


1

−1

R(θ1)

. . .

R(θr−1)



−1

R(θ1)

. . .

R(θr)


with

R(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
.

For the proof we will need a generalization of Proposition 4.95.

Lemma 4.112. If W is an O-invariant subspace, for an orthogonal
matrix O, then so is W⊥.

Proof. First observe that O restricted to W is still injective and
therefore, as a map W → W , bijective. Therefore, W is also O−1-in-
variant. Then, for every v ∈ W⊥ and w ∈ W , we have

w · (Ov) = (O−1w) · v = 0,

where in the first equality we have used the fact that also O−1 is or-
thogonal and in the second that O−1w is in W . This shows that
Ov ∈ W⊥. �

Proof of Theorem 4.111. If an eigenvalue is real, hence neces-
sarily equal to ±1, then we can choose the corresponding eigenvector
to be real. By Lemma 4.112, its orthogonal space is O-invariant. We
can then proceed by induction until no real eigenvalues are left.

If an eigenvalue is not real, then its complex conjugate is also an
eigenvalue, since the characteristic polynomial of O is real and there-
fore each nonreal root comes with its complex conjugate. If eiθ is an
eigenvalue, with θ different from 0 and π modulo 2π, then e−iθ is a
distinct eigenvalue. If v is an eigenvector for eiθ, taking the complex
conjugation of Ov = eiθv yields Ov = e−iθv, so v is an eigenvector
for e−iθ. By Remark 4.103, v ⊥ v. Assuming ‖v‖ = 1 (otherwise just
divide v by its norm), we also have ‖v‖ = 1. It follows that the real
vectors

a :=
v + v√

2
and b :=

v − v
i
√

2
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are an orthonormal system14 and therefore linearly independent. More-
over,

Oa =
eiθv + e−iθv√

2
= cos θ

v + v√
2

+ i sin θ
v − v√

2
= cos θ a− sin θ b,

Ob =
eiθv − e−iθv

i
√

2
= cos θ

v − v
i
√

2
+ i sin θ

v + v

i
√

2
= cos θ b+ sin θ a.

Therefore, O restricted to Span{a, b} is represented, in the basis (b,a),
by the matrix R(θ).

We can keep grouping pairs of eigenvectors with conjugate eigen-
values, apply the above construction, restrict O to the orthogonal com-
plement of their real span (which is O-invariant by Lemma 4.112) and
continue by induction. This way we get an orthonormal basis of Rn in
which O is represented by a block diagonal matrix whose blocks are
either 1× 1 with entry ±1 or 2× 2 of the form R(θ).

We can also group a pair of eigenvectors with eigenvalue +1. In
this case, O restricted to their span is the 2 × 2 identity matrix, i.e.,
R(0). If instead we group a pair of eigenvectors with eigenvalue −1,
then O restricted to their span is minus the 2× 2 identity matrix, i.e.,
R(π). Therefore, we can rearrange the orthonormal basis (and get the
orthogonal matrix S whose columns are the elements of this basis) so
that O is represented as in the table. The four cases just correspond
to the fact that the number of ±1-eigenvectors can be even/odd. �

We conclude with the following

Corollary 4.113. The exponential map

exp: so(n) → SO(n)
A 7→ eA

is surjective.

Proof. Let O ∈ SO(n). By Theorem 4.111, there is an orthogonal
matrix S such that O = SRS−1 withR as in the first row of the table.
Note that, thanks to (2.17), R = eρ with ρ of the form

n = 2r n = 2r + 1ρ(θ1)
. . .

ρ(θr)




0
ρ(θ1)

. . .
ρ(θr)


14Namely, 〈a,a〉 = 〈b, b〉 = 1 and 〈a, b〉 = 0. Since a and b are real, this is the

same as a · a = b · b = 1 and a · b = 0.
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with

ρ(θ) :=

(
0 −θ
θ 0

)
.

Therefore, O = eA with A = SρS−1 = SρST, which is skew-symmet-
ric, since ρ is so. �

4.6.5. Diagonalization of real symmetric matrices and bi-
linear forms. A real symmetric matrix A when viewed as a complex
matrix is self adjoint. Therefore, by Theorem 4.104, it is diagonalizable,
as a complex matrix. By Proposition 4.107 its eigenvalues are however
real. As a consequence, A is diagonalizable also as a real matrix:

Theorem 4.114. Let A be an n× n real symmetric matrix. Then
there is an orthogonal matrix S such that

S−1AS =

λ1

. . .
λn

 .

Proof. The proof proceeds by induction as in the case of Theo-
rem 4.96 by the following two remarks.

First, a real symmetric matrix has real eigenvalues, so it has at least
an eigenvector. Second, if v is an eigenvector for some eigenvalue λ,
Av = λv, then for every w

v · (Aw) = (ATv) ·w = (Av) ·w = λv ·w.
Therefore, w ∈ v⊥ implies Aw ∈ v⊥. We can then proceed by induc-
tion to show that there is an orthonormal basis of eigenvectors.

The matrix S is obtained as the matrix whose columns are the
elements of this basis. �

A symmetric matrix A is often used to define a symmetric bilinear
form by

(v,w) := vTAw.

From this point of view, one has to consider symmetric matrices up
to congruency as in Remark 1.71. Namely, recall that A and B are
congruent if there is an invertible matrix T such that B = T TAT .
Since S in Theorem 4.114 is orthogonal, we have that a symmetric
matrix A is congruent to the diagonal matrix with the eigenvalues on
its diagonal. We can actually get an even more standard form.

Theorem 4.115. Let A be a real symmetric matrix. Then there
is an invertible matrix T such that T TAT is a diagonal matrix whose
diagonal entries are only from the set {0, 1,−1}. This diagonal matrix
is called a normal form for A.
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Proof. Let (v1, . . . ,vn) be an orthonormal basis of eigenvectors
of A (e.g., the columns of the matrix S of Theorem 4.114). We define

ṽi :=


vi if λi = 0,
vi√
λi

if λi > 0,
vi√
−λi

if λi < 0.

Then (ṽ1, . . . , ṽn) is an orthogonal basis of eigenvectors. Moreover,

ṽTi ṽi is equal to 1 in the first case and to 1
λi

in the second and third
case. The matrix T is finally obtained as the matrix whose columns
are the elements of this basis. �

We can rearrange the basis vectors (i.e., permute the columns of
T ) in such a way that the first diagonal entries of the diagonal matrix
are equal to 0, the second to −1 and last to +1. The number of the
entries of each type is an invariant under congruency. To prove this,
we first consider the following

Lemma 4.116. Let ( , ) be a symmetric bilinear form on a real
finite-dimensional vector space V . Set

N := {v ∈ V | (v, w) = 0 ∀w ∈ V },
which is clearly a subspace (called the null subspace of the bilinear
form). Let V−, V+ be subspaces of V such that following hold:

(1) V = N ⊕ V− ⊕ V+.
(2) For every v and w in different summands (v, w) = 0.
(3) ∀v ∈ V− \ {0}, (v, v) < 0.
(4) ∀v ∈ V+ \ {0}, (v, v) > 0.

Then, for every other decomposition N,W−,W+ of V with these prop-
erties, we have dimW− = dimV− and dimW+ = dimV+.

In particular, the numbers n0 = dimN , n− = dimV−, and n+ =
dimV+ only depend on the bilinear form and not on the decomposition.
The triple (n0, n−, n+) is called the signature of the symmetric bilinear
form.

Example 4.117. The signature of an inner product on V , dimV =
n, is (0, 0, n). The signature of the Minkowski product on Rn+1 is
(0, 1, n).

Proof of the lemma. Let π± : V → V± be the projections to
the correspnding summand; i.e., if v decomposes (uniquely) as v =
v0 + v− + v+, then π±v = v±.

Now consider subspaces W−,W+ also satisfying (1), (2), (3), and
(4). We claim that π−|W−

and π+|W+
are injective. In fact, let w ∈ W−.
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If π−w = 0, then w = w0 + w+ with w0 ∈ N and w+ ∈ V+. Therefore,
(w,w) = (w+, w+) ≥ 0. Since (w,w) ≤ 0, we conclude (w,w) = 0, so
w = 0. Similarly, for w ∈ W+.

As a consequence, dimW− ≤ dimV− and dimW+ ≤ dimV+. Since,
by (1), dimW− + dimW+ = dimV− + dimV+, we conclude that both
inequalities are saturated. �

The spans of the basis elements given by the columns of any T as
in Theorem 4.115 corresponding to the diagonal entries 0, −1 and 1,
respectively, yield a choice of decomposition N ⊕ V+ ⊕ V−. This first
of all shows that such a decomposition exists. It also shows that the
numbers of 0s, −1s, and 1s on the diagonal of the normal form do not
depend on the choice of basis:

Proposition 4.118 (Sylvester’s law of inertia). Let A be an n×n
real symmetric matrix. Let D be a diagonal matrix congruent to A
whose diagonal entries are in the set {0, 1,−1}. Let (d0, d−, d+) be
the number of diagonal entries of D equal to 0, −1 and 1, respectively.
Then (d0, d−, d+) is equal to the signature (n0, n−, n+) of the symmetric
bilinear form associated to A.

In particular, we have that for every n × n real symmetric matrix
A there is an invertible matrix T such that

T TAT =

0n0

−1n−
1n+

 .

4.6.6. Normal form of real skew-symmetric bilinear forms.
If B is an n × n real skew-symmetric matrix, then A := iB is self
adjoint. Therefore, by Theorem 4.110, A is diagonalizable with an
orthonormal basis of eigenvectors; moreover, by Proposition 4.107, its
eigenvalues are real. As a consequence the eigenvalues of B are purely
imaginary or zero.

To proceed, we will need a generalization of Proposition 4.95, sim-
ilar to Lemma 4.112.

Lemma 4.119. If W is anB-invariant subspace, for a real skew-sym-
metric matrix B, then so is W⊥.

Proof. For every v ∈ W⊥ and w ∈ W , we have

w · (Bv) = (BTw) · v = −(Bw) · v = 0,

since Bw ∈ W by assumption. This shows that Bv ∈ W⊥. �
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Let us restrict B to the orthogonal complement of its kernel, which
is B-invariant by Lemma 4.119. Its eigenvalues there will then be
purely imaginary and different from zero. We proceed as in the case of
orthogonal matrices. Since B is real, every nonreal eigenvalue comes
with its complex conjugate. Therefore, if v is an eigenvector for the
eigenvalue iλ, λ ∈ R6=0, then v is an eigenvector for the distinct eigen-
value −iλ. By Remark 4.109, v ⊥ v. Assuming ‖v‖ = 1 (otherwise
just divide v by its norm), we also have ‖v‖ = 1. It follows that the
real vectors

a :=
v + v√

2
and b :=

v − v
i
√

2
are an orthonormal system and therefore linearly independent. More-
over,

Ba = iλ
v − v√

2
= −λb, Bb = iλ

v + v

i
√

2
= λa.

Therefore,B restricted to Span{a, b} is represented, in the basis (a, b),
by the matrix

(
0 λ
−λ 0

)
.

Going to the orthogonal space and proceeding by induction (thanks
to Lemma 4.119), we then get an orthogonal matrix S, whose columns
are the elements of an orthogonal basis (v1, . . . ,vr,a1, b1, . . . ,ak, bk),
with r = dim kerB, such that

S−1BS =



0r
0 λ1

−λ1 0
. . .

0 λk
−λk 0


with λi 6= 0 for i = 1, . . . , k. Without loss of generality (swap ai with
bi otherwise), we can assume λi > 0 for every i.

From the point of view of the associated skew-symmetric bilinear
form (v,w) := vTBw, it is natural to consider B up to congruency.
We can in this case choose a new basis by setting

ṽi = vi, ãi =
ai√
λi
, b̃i =

bi√
λi
,

where we assume, as remarked above, λi > 0 for every i. We then set
T to be the invertible matrix whose columns are the new basis vectors.
We have then proved the following

Theorem 4.120. Let B be an n × n real skew-symmetric matrix.
Then n = r + 2k, with r = dim kerB and some k, and there is an
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invertible matrix T such that

T TBT =



0r
0 1
−1 0

. . .
0 1
−1 0


with k nondegenerate blocks.

In particular, we have the following

Corollary 4.121. Let B be an n×n nondegenerate real skew-sym-
metric matrix. Then n is even.

This case is particular important for mechanics in Hamilton’s for-
mulation, where half of the basis elements, say the as, correspond to
the positions of the system and the other half, say the bs, correspond
to the momenta.

Exercises for Chapter 4
4.1. For which of the following matrices g is the bilinear form 〈v,w〉 :=

vTgw an hermitian product? Motivate your answer.
(a) g = ( 1 i

i 1 ).
(b) g = ( 1 i

−i 1 ).
(c) g = ( 1 i

−i 2 ).

4.2. Let V = Matn×n(C) be the complex vector space of n×n complex
matrices. Show that

(A,B) := tr(A†B)

is an hermitian product on V .

4.3. Recall that an operator F on an hermitian product space is called
self adjoint if it has an adjoint F † and F † = F . Consider the linear
operator F := i d

dx
(i.e., Ff = if ′) on the following complex vector

spaces,15

V1 := C∞([a, b],C),

V2 := {f ∈ V1 | f(a) = f(b)},
V3 := {f ∈ V2 | f(a) = 0},

15C∞ denotes the space of infinitely differentiable functions.
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with hermitian product

〈f, g〉 :=

∫ b

a

f̄ g dx.

(a) Show that F on V2 and on V3 is self adjoint.
(b) We now want to show that F on V1 is not self adjoint because

it does not have an adjoint.
(i) Assume by contradiction that F † : V1 → V1 exists. Let

G := F † − F . Show that ∀g ∈ V3

〈Gf, g〉 = 0.

Hint: Observe first that 〈Gf, g〉 = 〈f, Fg〉 − 〈Ff, g〉.
(ii) Show that, if h ∈ V1 satisfies 〈h, g〉 = 0 ∀g ∈ V3, then

h = 0.
Hint: You may use the fact that, for every x0 ∈ R and
ε > 0, it is possible to find an infinitely differentiable
nonnegative function g that is equal to 1 in the interval
[x0 − ε, x0 + ε] and equal to 0 outside the interval (x0 −
2ε, x0 + 2ε). See Figure 4.1 for an example.16

(iii) Conclude that G is the zero operator.
(iv) Show on the other hand that there are f, g ∈ V1 such

that 〈Gf, g〉 6= 0, so G cannot be the zero operator.

4.4. Consider the complex vector space C∞ of finite complex sequences
(i.e., sequences (a1, a2, . . . ) of complex numbers that have only
finitely many nonzero terms) with the hermitian product

〈a, b〉 =
∞∑
i=1

aibi.

Let F : C∞ → C∞ be the linear operator

F (b1, b2, . . . ) =

(
∞∑
i=1

bi, 0, 0, . . .

)
.

Assume by contradiction that the adjoint F † exists. Show that
there is an a ∈ C∞ such that〈

F †a, ei
〉
6= 0 ∀i,

16The colored portions in the figure correspond to the following functions:

yblack = 0, yred =
1

1 + e( 1
x−

1
1−x )

, yyellow = 1, yblue =
1

1 + e( 1
4−x−

1
x−3 )

.

Note that these functions join smoothly (i.e., all left and right derivatives of any
order coincide) at the points x = 0, 1, 3, 4.
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Figure 4.1. A function g for x0 = 2 and ε = 1

where ei is the basis element of C∞ given by the sequence whose
ith term is equal to 1 and whose every other term is equal to 0.
Conclude that this is a contradiction.17

4.5. On the complex vector space V of complex-valued polynomial
functions on R with hermitian product

〈f, g〉 :=

∫ +∞

−∞
dx e−

x2

2 f(x)g(x),

consider the endomorphism F = i
(

d
dx

+ αx
)
, α ∈ R, i.e.,

(Ff)(x) = if ′(x) + iαxf(x).

(a) Show that F admits an adjoint for every α.
(b) Find α such that F is self-adjoint.

4.6. The goal of this exercise is to prove the following statement:
If all the leading principal minors of a self-adjoint matrix
g are positive, then g is positive definite.

We prove it by induction on the size of the matrix g.
(a) Show that the statement is true if g is a 1× 1 matrix.

17Another way to interpret this exercise is in terms of representing matrices.
Using the given basis, we define the representing matrix A of an endomorphism
F as the infinite matrix with entries Aji defined by Fei =

∑∞
j=1A

j
iej . Note that

an infinite matrix may represent an endomorphism iff each of its columns has only
finitely many nonzero entries. The transpose of such a matrix may violate this
condition.
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(b) Assume that the statement holds for n × n matrices and let
g be an (n + 1) × (n + 1) self-adjoint matrix satisfying the
condition in the statement. Write

g =

(
h b

b̄
T

a

)
with h a self-adjoint n × n matrix, b an n-column complex
vector and a a real number.

(i) Show that h is positive definite, so there is an invertible
matrix E such that h = E†E .
Hint: Use the induction hypothesis.

(ii) Show that

a > ‖Fb‖2
H,

where F := E†,−1 and ‖v‖H :=
√
v̄Tv denotes the stan-

dard hermitian norm on Cn.
Hint: Use the identity on determinants of block matrices
presented in exercise 3.12.

(iii) For a fixed n-column complex vectorw consider the real-
valued function

f(z) :=
(
w̄T z̄

)
g

(
w
z

)
, z ∈ C.

(A) Setting z = u + iv and b̄
T
w = α + iβ—with u, v,

α, and β real—show that

f(z) = a(u2 + v2) + 2(αu+ βv) + ‖Ew‖2
H.

(B) Show that the minimum value of f , as a function
of (u, v) ∈ R2, is

fmin = ‖Ew‖2
H −
|b̄Tw|2

a
.

(C) Assuming b̄
T
w 6= 0, show that

fmin >
‖Fb‖2

H‖Ew‖2
H − |b̄

T
w|2

‖Fb‖2
H

.

Hint: Use point 6(b)ii.
(D) Show that

‖Fb‖2
H‖Ew‖2

H ≥ |b̄
T
w|2.

Hint: Use the Cauchy–Schwarz inequality for the
standard hermitian product.
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(iv) Conclude that g is positive definite.

4.7. Consider the following matrices:

A =
1

2

 1 −i −1 + i
i 1 1 + i

1 + i −1 + i 0

 , B =
1

2

 1 −i 1− i
i 1 1− i

1 + i −1− i 0

 ,

C =

 5/3 2i/3 −2i/3
−2i/3 5/3 −2/3
2i/3 −2/3 5/3

 , D =
1√
3

1 1 1

1 1
2
(i−
√

3) i
2
(i+
√

3)

1 i
2
(i+
√

3) 1
2
(i−
√

3)

 .

(a) Which of them is unitary and/or self adjoint?
(b) For each unitary and/or self-adjoint matrix in the list, find an

orthonormal basis of eigenvectors.

4.8. The goal of this exercise is to show that two normal endomor-
phisms F and G on a finite-dimensional hermitian product space V
are simultaneously diagonalizable—i.e., possess a common orthonor-
mal basis of eigenvectors—iff they commute—i.e., FG = GF .18

(a) Assume that F and G have a common orthonormal basis of
eigenvectors. Show that they commute.

(b) Now assume that F and G commute.
(i) Show that F † and G† commute.

(ii) Let λ be an eigenvalue of F . Show that Eig(F, λ) is
a G-invariant and G†-invariant subspace and that the
restriction of G to it is a normal operator.
Hint: Note that Eig(F, λ) is also an eigenspace for F †.

(iii) Conclude that it is possible to find a common eigenvector
v of F and G.

(iv) Let v be a common eigenvector v of F and G. Show
that v⊥ is invariant under F , F †, G, G†, and that the
restrictions of F and G to it are normal operators that
commute with each other.

(v) Show that F and G possess a common orthonormal ba-
sis of eigenvectors.
Hint: Proceed by induction on the dimension of V .

4.9. Let

E =
1

3

 4 i
2
(i+
√

3) i
2
(i−
√

3)
i
2
(i−
√

3) 4 i
2
(i+
√

3)
i
2
(i+
√

3) i
2
(i−
√

3) 4

 and F =
1

3

4 1 1
1 4 1
1 1 4

 .

18This result is of fundamental importance for quantum mechanics.
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(a) Show that E and F commute.
(b) Show E and F are simultaneously diagonalizable by finding a

common orthonormal basis of eigenvectors.



CHAPTER 5

Multilinear algebra

In this chapter we go beyond the notion of linear maps to encom-
pass multilinear ones. In particular, this allows considering polynomial
functions and maps as part of linear algebra. New spaces appear nat-
urally in this context via the tensor product. These constructions are
important in a variety of situations, ranging from analysis to physics
(fluid mechanics, general relativity, quantum mechanics,. . . ).

We consider vector spaces over a ground field K, which, for the
applications in these notes, will be R or C. The vector spaces will be
always assumed to be finite dimensional.1

5.1. Tensor products

We begin by recalling that a map V ×W → Z, where V , W and
Z are vector spaces, is called bilinear if it is linear with respect to each
argument when the other argument is kept fixed. That is, φ is bilinear
if

φ(λ1v1 + λ2v2, w) = λ1φ(v1, w) + λ2φ(v2, w),

φ(v, λ1w1 + λ2w2) = λ1φ(v, w1) + λ2φ(v, w2),

for all v, v1, v2 ∈ V , all w,w1, w2 ∈ W , and all λ1, λ2 ∈ K.
Note that the set Bil(V,W ;Z) of bilinear maps V × W → Z in-

herits a vector space structure from Z. Namely, if φ1 and φ2 are in
Bil(V,W ;Z), one defines

(φ1 + φ2)(v, w) := φ1(v, w) + φ2(v, w),

(λφ1)(v, w) := λφ1(v, w).

1Unless explicitly stated otherwise, the results in this chapter also hold for
infinite-dimensional spaces. The proofs are exactly the same if we assume the
existence of a basis (which is guaranteed by the axiom of choice). In this case, a
sum over an index set is understood to have only finitely many nonvanishing terms.
For applications to quantum mechanics, one needs instead an extension of these
results to infinite-dimensional Hilbert spaces, which we do not discuss here.

165
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If (ei)i∈I is a basis of V and (fj)j∈J is a basis of W , a bilinear map
ξ is completely determined by its values ξ(ei, fj). This also shows that

dim Bil(V,W ;Z) = dimV dimW dimZ.

The main idea of the tensor product consists in replacing bilinear maps
by linear maps:

Definition 5.1. The2 tensor product of two vector spaces V and
W is a pair (V ⊗W, η), where V ⊗W is a vector space and η : V ×
W → V ⊗ W is a bilinear map, such that for every vector space Z
and every bilinear map ξ : V ×W → Z there is a unique linear map
ξ⊗ : V ⊗ W → Z such that ξ = ξ⊗ ◦ η. This property is called the
universal property of the tensor product.

V ×W V ⊗W

Z

η

ξ ∃!ξ⊗

Before we show the existence of the tensor product, let us draw
some consequences of this definition. First, observe that the association
ξ 7→ ξ⊗ is linear, i.e.,

(ξ + ξ̃)⊗ = ξ⊗ + ξ̃⊗,

(λξ)⊗ = λξ⊗,

and that it has an inverse: to any linear map φ : V ⊗ W → Z we
associate the bilinear map φ ◦ η : V ×W → Z. By uniqueness, we then
have (φ ◦ η)⊗ = φ. This shows that we have an isomorphism

Bil(V,W ;Z) ∼= Hom(V ⊗W,Z).

In particular, for Z = K we have

Bil(V,W ;K) ∼= (V ⊗W )∗.

If V and W are finite dimensional, we then also have

V ⊗W ∼= Bil(V,W ;K)∗. (5.1)

This is one possible way of constructing the tensor product (in partic-
ular, this is already a proof that the tensor product of two finite-di-
mensional vector spaces exists).

2We are actually defining “a” tensor product, but we will see in Lemma 5.2
that all definitions are canonically equivalent.
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The important point, however, is that it does not really matter
which construction pf the tensor product we use, as they are all equiv-
alent:

Lemma 5.2. Suppose ((V ⊗W )1, η1) and ((V ⊗W )2, η2) both sat-
isfy the universal property. Then there is a canonical3 isomorphism
F12 : (V ⊗W )1 → (V ⊗W )2 such that η2 = F12η1.

Proof. Since η2 is a bilinear map, there is a uniquely defined linear
map, which we denote by F12, with the property stated in the Lemma.

V ×W (V ⊗W )1

(V ⊗W )2

η1

η2 F12
F21

We have to prove that F12 is an isomorphism. To do this, we reverse
the role of 1 and 2 and get a linear map F21 : (V ⊗W )2 → (V ⊗W )2

such that η1 = F21η2. Therefore, η1 = F21F12η1. This shows that
F21F12 is the linear map (η1)⊗ : (V ⊗W )1 → (V ⊗W )1 corresponding
to η1. By uniqueness we have F21F12 = Id1. Analogously, we prove
F12F21 = Id2. �

We now turn to the existence of the tensor product, also for infinite-
dimensional vector spaces. As the actual construction does not matter,
we may pick one in particular, e.g., by using bases.

Lemma 5.3. The tensor product of any two vector spaces V and W
exists.

Proof. Let (ei)i∈I be a basis of V and (fj)j∈J a basis of W . Recall
that a basis allows identifying vectors with their coefficients. More
precisely, let Map(I,K) denote the vector space of maps4 I → K. To
a map i 7→ vi we associate the vector

∑
i∈I v

iei. Vice versa to a vector
v ∈ V that we expand as

∑
i∈I v

iei we associate the map i 7→ vi. Hence,
the choice of a basis for V establishes an isomorphism Map(I,K) ∼= V .
Also note that to the basis element er corresponds the map i 7→ δir. By

3Canonical means that no choice is required to define it. See also Remark 1.63.
4In the infinite-dimensional case we only consider maps that do not vanish at

finitely many points.
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abuse of notation, this map is also denoted by er and the maps (ei)i∈I
are clearly a basis of Map(I,K). This suggests defining

V ⊗W = Map(I × J,K).

To show that this is the correct choice, we only have to define η
and to prove the universal property. First observe that the maps

ei ⊗ fj : (r, s) 7→ δri δ
s
j ,

for i ∈ I and j ∈ J , form a basis of Map(I × J,K).
As η is bilinear, it is enough to define it on basis elements. Following

the analogy of a single vector space, we set

η(ei, fj) := ei ⊗ fj.

Finally, if ξ is a bilinear map V ×W → Z, we define

ξ⊗(ei ⊗ fj) := ξ(ei, fj),

and we immediately see that ξ = ξ⊗ ◦ η, as it is enough to check this
identity on basis vectors.

On the other hand, ξ⊗ is uniquely determined. In fact, the difference
φ of any two maps ξ⊗ and ξ′⊗ corresponding to the same ξ, satisfies
φ ◦ η = 0. Applying this to basis vectors, we get φ(ei ⊗ fj) = 0 for all
i, j, so φ is the zero map. �

Remark 5.4 (Bases). Since (ei ⊗ fj)i∈I,j∈J is a basis, every vector
z of V ⊗W can be written as

z =
∑
i∈I

∑
j∈J

zij ei ⊗ fj

for uniquely determined scalars zij. This in particular shows that5

dim(V ⊗W ) = dimV dimW.

Note that in this representation the components of the vector z have
two indices. In particular, we may think of the zijs at the entries of a
matrix. This a practical point of view for applications.

Remark 5.5 (Tensors). It is customary to denote with v ⊗ w the
value of η on (v, w):

v ⊗ w := η(v, w).

5One may easily check that {0}⊗W = W⊗{0} = {0} for every vector space W ,
so the dimension formula has to be understood with the convention 0 · d = d · 0 = 0
even if d =∞.
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Vectors in V ⊗ W are usually called tensors.6 Tensors of the form
v⊗w (i.e., tensors in the image of η) are called pure tensors. With this
notation, the universal property reads more clearly as

ξ⊗(v ⊗ w) = ξ(v, w) (5.2)

for all v ∈ V and all w ∈ W .

Remark 5.6 (Pure tensors). Not every tensor is pure! Using bases
as in Remark 5.4, we can expand a pure tensor v ⊗ w as

v ⊗ w =
∑
ij

viwj ei ⊗ fj.

This means that the matrix z = (zij) corresponding to a pure tensor
has the form zij = viwj for some scalars vi and wj. For example, if
V = W = R2 we get

z =

(
v1w1 v1w2

v2w1 v2w2

)
.

Clearly not every matrix has this form: e.g., the matrix ( 0 1
1 0 ) has not.

To check that a tensor is not pure we resorted to bases. Note, however,
that being pure is a property that does not rely on any choice of basis:
it simply means being in the image of η.

Remark 5.7 (Pure and entangled states). The notion of pure ten-
sors is very important in applications to quantum mechanics where it
is used to define the pure states of a composite system, with the other
states usually referred to as entangled.

The fact that η is a bilinear map is encoded in the new notation of
equation (5.2) by the formulae

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, (5.3a)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, (5.3b)

(λv)⊗ w = v ⊗ (λw) = λ v ⊗ w, (5.3c)

for all v, v1, v2 ∈ V , w,w1, w2 ∈ W and λ ∈ K.

Digression 5.8. These formulae lead to yet another construction
of the tensor product. Namely, one considers the free vector space

6Vectors owe their name to the fact that they were originally introduced to
define actual displacements: vector in Latin means carrier. Tensors owe their name
to the fact that they were originally introduced to describe tensions in an elastic
material as linear relations, i.e., matrices, between the vectors that describe internal
forces and deformations.
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generated by the elements of V ×W ,7 writing v⊗w instead of (v, w) ∈
V × W , and imposes the formulae (5.3) (i.e., one quotients by the
subspace generated by them).8 The advantage of this construction is
that it does not require introducing bases (so it does not need the axiom
of choice).

Remark 5.9 (Change of basis). Suppose we have changes of bases
ei =

∑
iA

ı̄
iēı̄ and fj =

∑
iB

̄
j f̄̄. Then, expanding and using (5.3), we

get the following formula for the corresponding change of basis in the
tensor product:

ei ⊗ fj =
∑
ı̄̄

Aı̄iB
̄
j ēı̄ ⊗ f̄̄.

If z ∈ V ⊗ W is expanded in the basis ei ⊗ fj as in Remark 5.4,
z =

∑
ij ei ⊗ fj, then we have

z =
∑
ij

∑
ı̄̄

Aı̄iz
ijB ̄

j ēı̄ ⊗ f̄̄ =
∑
ı̄̄

z ı̄̄ ēı̄ ⊗ f̄̄

with

z ı̄̄ = Aı̄iz
ijB ̄

j,

where we have used Einstein’s convention to avoid the sum symbols.
This way we recover the correct transformation rules for matrices under
a change of basis. This simple derivation is an added value of the
concept of tensor product.

Note that any linear map on V ⊗W is completely determined by its
values on all pure tensors v⊗w as this in particular entails evaluation on
the basis vectors (ei⊗fj)i∈I,j∈J (or, more abstractly, since pure tensors
are the image of η and a linear map ξ⊗ is completely determined by
the bilinear map ξ = ξ⊗ ◦ η). This also means that to define a map on
V ⊗W we can specify it on all pure tensors v ⊗w and check that it is
compatible with (5.3).

7The free K-vector space Span(M) generated by a set M—in our case M =
V ×W—is the set of finite linear combinations

∑
m∈M λmm, with λm ∈ K. It can

equivalently be described as the set of maps M → K that are different from zero
on finitely many elements. The previous linear combination is identified with the
map m 7→ λm.

8More neatly, one quotients Span(V ×W ) by the relations

((v1 + v2), w) = (v1, w) + (v2, w),

(v, (w1 + w2)) = (v, w1) + (v, w2),

(λv,w) = (v, λw) = λ (v, w),

and denotes the equivalence class of (v, w) by v ⊗ w.
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Remark 5.10 (Commutativity). We have a canonical isomorphism

V ⊗W ∼−→ W ⊗ V
v ⊗ w 7→ w ⊗ v

Remark 5.11 (Unit). We have a canonical isomorphism

V ⊗K ∼−→ V
v ⊗ λ 7→ λv

with inverse V → V ⊗ K, v 7→ v ⊗ 1. (Note that λv is mapped to
(λv)⊗ 1 which is however the same as v ⊗ λ.)

Remark 5.12 (Associativity). If we have a third vector space Z,
then we have a canonical isomorphism

(V ⊗W )⊗ Z ∼−→ V ⊗ (W ⊗ Z)
(v ⊗ w)⊗ z 7→ v ⊗ (w ⊗ z)

For this reason one usually writes V ⊗W ⊗Z without bracketing. One
also says that the tensor product of vector spaces is associative.

Remark 5.13 (Multiple tensor products). Suppose we have vector
spaces V1, . . . Vk. Then we can defines their tensor product V1⊗· · ·⊗Vk
by iterating the pairwise tensor product: first compute V1 ⊗ V2, then
(V1 ⊗ V2) ⊗ V3, and so on. By the above remarks the order in which

take these tensor products does not matter. If (e
(r)
i ) is a basis of Vr,

then we get a basis of V1 ⊗ · · · ⊗ Vk denoted by (e
(1)
i1
⊗ · · · ⊗ e(k)

ik
). A

vector z ∈ V1 ⊗ · · · ⊗ Vk can then be uniqely expanded as

z =
∑
i1,...,ik

zi1...ik e
(1)
i1
⊗ · · · ⊗ e(k)

ik
,

extending the formula given in Remark 5.4. If we have changes of bases

e
(r)
i =

∑
i

(r)Aı̄iē
(r)
ı̄ , then, extending Remark 5.9, we get

z =
∑
ı̄1,...,̄ık

z̄ ı̄1...̄ık ē
(1)
ı̄1 ⊗ · · · ⊗ ē

(k)
ı̄k

with

z ı̄1...̄ık = (1)Aı̄1i1 · · ·
(k)Aı̄kik z

i1...ik .

This leads to a practical interpretation of tensor products, common in
physics: a tensor is simply viewed as an object with several indices
transforming as in the above equation under changes of bases. This
is then just a generalization of the notions of vector (one index) and
matrix (two indices).
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Remark 5.14 (Hom spaces). Another useful map is the canonical
inclusion

V ∗ ⊗W ↪→ Hom(V,W )
α⊗ w 7→ (v 7→ α(v)w)

To see that it is injective observe that, if α(v)w = 0 for all v ∈ V , then
w = 0 or α = 0, and in either case α⊗ w = 0.

Remark 5.15 (Hom spaces in the finite-dimensional case). If V
and W are finite dimensional, then the last homomorphism is also an
isomorphism since

dim(V ∗ ⊗W ) = dimV dimW = dim Hom(V,W ).

If we choose a basis (ei)i∈I of V , a basis (fj)J∈J of W , and denote by
(ei)i∈I the dual basis of V ∗, then a vector A in V ∗⊗W can be expanded
as

A =
∑
i∈I

∑
j∈J

Aji e
i ⊗ fj.

The coefficients Aji are also the components of the matrix that repre-
sents the corresponding linear map on right hand side:

ei 7→
∑
j∈J

Ajifj.

Remark 5.16 (Dual spaces). Similarly, we have a canonical inclu-
sion

V ∗ ⊗W ∗ ↪→ (V ⊗W )∗

α⊗ β 7→ (v ⊗ w 7→ α(v)β(w))

which is an isomorphism if V and W are finite dimensional. Moreover,
(5.1) shows that, if V is finite dimensional, then V ∗⊗ V ∗ is canonicaly
isomorphic to the space Bil(V, V ;K) of bilinear forms on V :

V ∗ ⊗ V ∗ ∼= Bil(V, V ;K).

If we pick a basis (ei) of V and its dual basis (ei) of V ∗, then the
entries of a matrix (Aij) can be viewed equivalently as the coefficients
of an element of V ∗ ⊗ V ∗,

∑
ij Aij e

i ⊗ ej, and as the entries of the

representing matrix of a bilinear map, (v, ṽ) 7→
∑
Aijv

iṽj.

Remark 5.17 (Linear maps). If we have linear maps φ : V → V ′

and ψ : W → W ′, then we canonically have a linear map

φ⊗ ψ : V ⊗W → V ′ ⊗W ′

v ⊗ w 7→ φ(v)⊗ ψ(w)
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If we have bases (ei)i∈I of V , (fj)j∈J of W , (e′i′)i′∈I′ of V ′ and (f ′j′)j′∈J ′

of W ′, we may represent the maps φ and ψ by matrices: φ(ei) =∑
i′∈I′ φ

i′
i e
′
i′ and ψ(fj) =

∑
j′∈J ′ ψ

j′

j f
′
j′ . It follows that

φ⊗ ψ(ei ⊗ fj) =
∑
i′∈I′

∑
j′∈J ′

φi
′

i ψ
j′

j e
′
i′ ⊗ f ′j′ .

5.1.1. Inner products. As we have seen above, a bilinear form
on a finite-dimensional vector space V may be equivalently viewed as
an element BV of V ∗ ⊗ V ∗. If we have a second finite-dimensional
vector space W endowed with a bilinear form BW ∈ W ∗⊗W ∗, we may
consider the tensor product BV ⊗ BW in V ∗ ⊗ V ∗ ⊗W ∗ ⊗W ∗, which
is isomorphic to (V ⊗W )∗ ⊗ (V ⊗W )∗, thanks to remarks 5.10, 5.12,
and 5.16. This way we get a bilinear form on V ⊗W .

In particular, if V and W are inner product (or hermitian) spaces,
we may induce an inner (or hermitian) product on V ⊗W . Explicitly,
we have

(v ⊗ w, ṽ ⊗ w̃)V⊗W = (v, ṽ)V (w, w̃)W ,

and

〈v ⊗ w, ṽ ⊗ w̃〉V⊗W = 〈v, ṽ〉V 〈w, w̃〉W .

Moreover, given orthonormal bases (ei)i=1,...,m of V and (fj)j=1,...,n

ofW , one can easily verify that (ei⊗fj)i=1,...,m; j=1,...,n is an orthonormal
basis of V ⊗W .

Dirac’s notation is particulat handy. In this case, we denote the
orthonormal bases as | i〉V and | j〉W and use the shorthand notation

| ij〉V⊗W := | i〉V ⊗ | j〉W .

When it is clear from the contexts, the indices V , W , and V ⊗W are
usually omitted. This way, a vector ψ in V ⊗W is expanded as

|ψ〉 =
∑
ij

| ij〉 〈 ij |ψ 〉 .

5.2. Tensor powers

Let V be a vector space. Its kth tensor power is by definition

V ⊗k = V ⊗ · · · ⊗ V,

where we have k copies of V on the right hand side. The definition is
actually by induction:

V ⊗1 := V and V ⊗(k+1) := V ⊗k ⊗ V.
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As the tensor product of tensor spaces is associative the bracketing is
not important. By convention one also sets

V ⊗0 := K.

Observe that

dimV ⊗k = (dimV )k.

An element of V ⊗k is called a tensor of order k. If we pick a basis
(ei)i∈I on V , then (ei1⊗ · · · ⊗ eik)i1,...,ik∈I is a basis of V ⊗k and a tensor
T of order k may be uniquely written as

T =
∑

i1,...,ik∈I

T i1···ik ei1⊗ · · · ⊗ eik .

Moreover, we have V ⊗k1 ⊗ V ⊗k2 = V ⊗(k1+k2) for all k1, k2. (We
write equal instead of isomorphic, as the isomorphism is canonical.)
This corresponds to a bilinear map

⊗ : V ⊗k1 × V ⊗k2 → V ⊗(k1+k2)

(v1 ⊗ · · · ⊗ vk1 , w1 ⊗ · · · ⊗ wk2) 7→ v1 ⊗ · · · ⊗ vk1 ⊗ w1 ⊗ · · · ⊗ wk2
called the tensor product of tensors. It is clearly associative: namely,

(T1 ⊗ T2)⊗ T3 = T1 ⊗ (T2 ⊗ T3)

for all Ti ∈ V ⊗ki and any choice of ki. Usually one then omits brack-
eting. One also extends the tensors product to scalars. Namely, if
a ∈ V ⊗0 = K and α ∈ V ⊗k, one defines a ⊗ α := aα =: α ⊗ a. Notice
that 1 ∈ K is then a unit: 1⊗ α = α⊗ 1 = α for all α.

If we pick a basis, then the components of a tensor product of
tensors are just the products of the components of the two factors:

(T1 ⊗ T2)i1···ik1+k2 = T
i1···ik1
1 T

ik1+1···ik2
2 .

The tensor product of tensors then makes

T (V ) :=
∞⊕
k=0

V ⊗k

into an associative algebra called the tensor algebra of V :9; i.e., we
have a billinear map T (V ) × T (V ) → T (V ), (α, β) 7→ α ⊗ β which is
associative:

(α⊗ β)⊗ γ = α⊗ (β ⊗ γ)

for all α, β, γ ∈ T (V ). Also note that there is a unit element 1 ∈ K =
V 0 ⊂ T (V ): i.e.,1⊗ α = α⊗ 1 = α for all α ∈ T (V ).

9The T in T (V ) stands for “tensor.”
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An element of T (V ) is sometimes called a nonhomogenous tensor,
but often just a tensor. Elements of a single V ⊗k are also called ho-
mogenous tensors.

A linear map φ : V → W canonically induces linear maps

φ⊗k : V ⊗k → W⊗k

v1 ⊗ · · · ⊗ vk 7→ φ(v1)⊗ · · · ⊗ φ(vk)
(5.4)

for all k. Notice that if T1 and T2 are in V ⊗k1 and V ⊗k2 , then

φ⊗(k1+k2)(T1 ⊗ T2) = φ⊗k1(T1)⊗ φ⊗k2(T2).

This construction may be repeated with the dual space V ∗ of V .
More generally, one considers the tensor product

T ks (V ) := V ⊗k ⊗ (V ∗)⊗s

An element of T ks (V ) is called a tensor of type (k, s). Tensors of type
(0, s) are also called covariant tensors of order s, whereas tensors of
type (k, 0) are also known as contravariant tensors of order k.10 As the
notation suggests, by convention we put the linear forms to the right.
Hence, if we pick a basis (ei)i∈I on V , then

(ei1⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejs)i1,...,ik,j1,...js∈I
is a basis of T ks (V ), where (ej)j∈I denotes the dual basis. A tensor T
of type (k, s) can then be uniquely written as

T =
∑

i1,...,ik,j1,...js∈I

T i1···ikj1···js ei1⊗ · · · ⊗ eik ⊗ e
j1 ⊗ · · · ⊗ ejs .

Remark 5.18. Sometimes this convention of putting first the copies
of V and then those of V ∗ is not observed. In this case, it is important
to write the indices in the correct order. For example, a tensor with
componens T i kj is understood as an element of V ⊗ V ∗ ⊗ V .

Remark 5.19. Particularly important are the tensor spaces T 1
1 (V )

and T 0
2 (V ) for V finite-dimensional. In this case, T 1

1 (V ) is canonically
identified with the space of endomorphisms of V . In a basis we write
F ∈ T 1

1 (V ) as

F =
∑
i,j∈I

F i
j ei ⊗ ej.

10This terminology refers to the fact that, if we change basis by some matrix,
the components of a vector change by application of the inverse matrix (hence
the name contravariant), whereas the components of a linear form change by the
application of the matrix itself (hence the name covariant).
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The coefficients F i
j are also the entries of the matrix representing the

corresponding endomorphism, which we keep denoting by F :

F (ej) =
∑
i∈I

F i
j ei.

The tensor space T 0
2 (V ) is instead canonically identified with the space

of bilinear forms on V . In a basis we write B ∈ T 0
2 (V ) as

B =
∑
i,j∈I

Bij e
i ⊗ ej.

The coefficients Bij are also the entries of the matrix representing the
corresponding bilinear form, which we keep denoting by B:

B(ei, ej) = Bij.

Remark 5.20 (Einstein’s convention). Note that above we have
consistently made use of Einstein’s convention. Namely, we have used
lower indices to denote basis vectors (ei) and upper indices to denote
the components vi in the expansion of a vector

v =
∑
i

viei.

For the dual basis we have used the same letters as for the basis but
with upper indices: (ei). For the components of a linear form we have
then used lower indices:

ω =
∑
i

ωie
i.

Consequently a vector in T ks will have k upper and s lower indices.
This notation allows recognizing at a glance the type of a tensor. As
usual, we can also tacitly assume a summation over every repeated
index, once in the upper and once in the lower position. For example,
with this convention the expansion of a tensor of type (1, 1) is written
as F = F i

j ei ⊗ ej, and the expansion of a bilinear form is written as

B = Bij e
i ⊗ ej.

A tensor of type (k, s) may be written, by definition, as a linear
combination of tensors of the form T ⊗S where T is of type (k, 0) and
S is of type (0, s). The tensor product of tensors extends to the general
case by

T k1s1 (V )⊗ T k2s2 (V ) → T k1+k2
s1+s2 (V )

(T1 ⊗ S1)⊗ (T2 ⊗ S2) 7→ T1 ⊗ T2 ⊗ S1 ⊗ S2
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Similarly, an isomorphism φ : V → W induces canonically isomor-
phisms11

φks : T ks (V ) → T ks (W )
T ⊗ S 7→ φ⊗k(T )⊗ ((φ∗)−1)⊗s(S)

(5.5)

for all k, s. Again, if U1 ∈ T k1s1 (V ) and U2 ∈ T k2s2 (V ), we have

φk1+k2
s1+s2

(U1 ⊗ U2) = φk1s1 (U1)⊗ φk2s2 (U2).

This can be written, a bit painfully, in terms of the components of the
tensor and of the representing matrix A of φ in a given basis and of its
inverse B = A−1:

(φks(T ))ı̄1···̄ık̄1···̄s = T i1···ikj1···jsA
ı̄1
i1
· · ·Aı̄kikB

i1
̄1
· · ·Bis

̄s ,

where we have used Einstein’s convention.
Finally, observe that the pairing V ⊗V ∗ → K, (v, α) 7→ α(v) canon-

ically induces linear maps

Imn : T ks (V )→ T k−1
s−1 (W ),

for all 1 ≤ m ≤ k and 1 ≤ n ≤ s, obtained by pairing the mth vector
with the nth linear form in the tensor. These linear maps are called
contractions. Contractions may of course also be written in terms of the
components. For example, if T is of type (3, 2), its contraction I3

1 (T )
is of type (2, 1) and has components

(I3
1 (T ))ijk = T ijrrk ,

where we have used Einstein’s convention.

5.3. The exterior algebra

In this section, we develop the theory of skew-symmetric tensors,
which are used in several instances like, e.g., to obtain an intrinsic char-
acterization of determinants, to define differential forms (used to give
an invariant theory of integration and a unified form of the theorems of
Gauss and Stokes in every dimension), and to describe classical fields
that obey the Fermi–Dirac statistics.

In continuity with the previous sections, we assume that the ground
field K has characteristic zero (e.g., K = R or K = C).12

In terms of a basis, skew-symmetric tensors are simply the tensors
whose components are skew-symmetric with respect to any exchange
of indices.

11In this case, φ must be an isomorphism because we need the associated map
(φ∗)−1 : V ∗ →W ∗.

12For the general case, see Section 5.3.2.



178 5. MULTILINEAR ALGEBRA

More invariantly, we proceed as follows. First observe that a per-
mutation σ on k elements defines an endomorphism of V ⊗k given by

v1 ⊗ · · · ⊗ vk 7→ vσ(1) ⊗ · · · ⊗ vσ(k)

on pure tensors. We denote the so defined endomorphism also by σ.
In particular, if (ei) is a basis and α =

∑
i1,...,ik

αi1...ikei1 ⊗ · · · ⊗ eik is a
k-tensor, then

σα =
∑
i1,...,ik

αi1...ikeiσ(1) ⊗ · · · ⊗ eiσ(k)

=
∑
i1,...,ik

αiσ−1(1)...iσ−1(k)ei1 ⊗ · · · ⊗ eik .
(5.6)

Note that this defines a representation of the symmetric group Sk (i.e.,
the group of permutations over k elements) on V ⊗k: namely,

(σ1σ2)α = σ1(σ2α) and Idα = α

for all σ1, σ2 ∈ Sk and α ∈ V ⊗k (we denote by Id the identity permu-
tation).

Since we are interested in skew-symmetric tensors, we twist this
representation by the sign:13 a k-tensor is called skew-symmetric if

σα = sgnσ α

for all σ ∈ Sk.

Remark 5.21 (Signs). One can show that every permutation σ can
be written as a product τ1 · · · τs of transpositions, where a transposition
is a permutation that exchanges exactly two elements. The number s
is of course not fixed. However, one can show that its parity is fixed.
One then defines the sign of the permutation σ as (−1)s. In particular,
we have sgnτ = −1 if τ is a transposition and sgn Id = 1.

As a consequence, we have that α is skew-symmetric if and only
if τα = −α for every transposition τ . We denote by ΛkV the vector
space of skew-symmetric k-tensors.

If we expand α in a basis, we see that α is skew-symmetric if and
only if its components change sign by the exchange of any two indices.
More generally, by (5.6), we see that α is skew-symmetric if and only
if

αiσ(1)...iσ(k) = sgnσ αi1...ik (5.7)

for all σ and all i1, . . . , ik.

13A parallel discussion, without this twist, leads to the symmetric algebra.
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Note that the map φ⊗k defined in equation (5.4) commutes with
the action of the permutation group:

φ⊗kσ = σφ⊗k

for all σ ∈ Sk. This implies that φ⊗k maps skew-symmetric tensors
to skew-symmetric tensors. The restriction of φ⊗k to ΛkV is usually
denoted by Λkφ. In summary, a linear map φ : V → W canonically
induces linear maps

Λkφ : ΛkV → ΛkW

for all k.
The tensor product of two skew-symmetric tensors is in general no

longer skew-symmetric. However, one can always skew-symmetrize it
and define the wedge product of α1 ∈ Λk1V and α2 ∈ Λk2V by

α1 ∧ α2 := Altk(α1 ⊗ α2), (5.8)

with k = k1 + k2, where

Altkα :=
1

k!

∑
σ∈Sk

sgnσ σα.

Example 5.22. If α1, α2 ∈ V = Λ1V , then

α1 ∧ α2 =
α1 ⊗ α2 − α2 ⊗ α1

2
.

Lemma 5.23. The alternating map Altk has image equal to ΛkV .
Moreover, if α ∈ ΛkV , then Altkα = α.

Proof. For τ ∈ Sk, let us compute

τ Altkα =
1

k!

∑
σ∈Sk

sgnσ τσα = sgnτ
1

k!

∑
σ∈Sk

sgn(τσ) τσα.

By the change of variable σ̂ = τσ, we then get

τ Altk α = sgnτ
1

k!

∑
σ̂∈Sk

sgnσ̂ σ̂α = sgnτ Altk α

for all τ ∈ Sk, which proves that the image of Altk is in ΛkV .
We then move to the second statement. From σα = sgnσ α, we get

Altk(α) := 1
k!

∑
σ∈Sk α = α. This also proves that the image of Altk is

the whole of ΛkV . �

Remark 5.24. Note that dividing by the order of the group of
permutations in the definition of the wedge product is fundamental for
this lemma to hold. Therefore, we must be sure the k! 6= 0 in K for
every k. If the ground field K has characteristic different from zero,
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all this does not work, and one has to resort to a different definition of
ΛkV and of the wedge product.

If φ is a linear map as above, then we clearly have

Λkφ(α1 ∧ α2) = (Λk1α1) ∧ (Λk2α2).

We extend the wedge product to the direct sum ΛV :=
⊕∞

k=0 ΛkV .

Lemma 5.25. (ΛV,∧) is an associative algebra with unit 1 ∈ K =
Λ0V ; i.e.,

(α1 ∧ α2) ∧ α3 = α1 ∧ (α2 ∧ α3)

for all α1, α2, α3 ∈ ΛV , and

1 ∧ α = α ∧ 1 = α

for all α ∈ ΛV .

This algebra is called the exterior algebra of V .

Proof. For αi ∈ ΛkiV , i = 1, 2, 3, we compute

(α1 ∧ α2) ∧ α3 =

 1

(k1 + k2)!

∑
σ∈Sk1+k2

sgnσ σ(α1 ⊗ α2)

 ∧ α3 =

=
1

(k1 + k2 + k3)!(k1 + k2)!

∑
σ̃∈Sk1+k2+k3
σ∈Sk1+k2

sgnσ̃ sgnσ σ̃(σ(α1 ⊗ α2)⊗ α3).

Let σ × Idk3 be the permutation over k1 + k2 + k3 elements that is the
identity on the last k3 element and σ on the first k1 + k2 elements.
Then σ(α1 ⊗ α2)⊗ α3 = (σ × Idk3)(α1 ⊗ α2 ⊗ α3). Notice that sgnσ =
sgn(σ×Idk3). We then make the change of variable σ̃ 7→ σ̂ = σ̃(σ×Idk3)
and get

(α1∧α2)∧α3 =
1

(k1 + k2 + k3)!(k1 + k2)!

∑
σ̂∈Sk1+k2+k3
σ∈Sk1+k2

sgnσ̂ σ̂(α1⊗α2⊗α3).

If we perform the sum over σ, we finally obtain

(α1 ∧ α2) ∧ α3 =
1

(k1 + k2 + k3)!

∑
σ̂∈Sk1+k2+k3

sgnσ̂ σ̂(α1 ⊗ α2 ⊗ α3).

By an analogous computation, one sees that this is also the expression
for α1 ∧ (α2 ∧ α3).
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We next check that 1 ∈ K is the unit. Since 1⊗α = α and α ∈ ΛkV
is skew-symmetric, we have

1 ∧ α =
1

k!

∑
σ∈Sk

sgnσ σ(1⊗ α) =
1

k!

∑
σ∈Sk

sgnσ σα =
1

k!

∑
σ∈Sk

α = α.

Similarly, one sees that α ∧ 1 = α. �

Remark 5.26. By induction, using the first part of this proof, one
can also prove that for αi ∈ ΛkiV , i = 1, . . . , r, we have

α1 ∧ · · · ∧ αr =
1

k!

∑
σ∈Sk

sgnσ σ(α1 ⊗ · · · ⊗ αr).

with k =
∑r

i=1 ki.

Lemma 5.27. The wedge product is graded commutative, i.e.,

α2 ∧ α1 = (−1)k1k2α1 ∧ α2

for all α1 ∈ Λk1V and α2 ∈ Λk2V . In particular, α∧ α = 0 if α ∈ ΛkV
with k odd.

Proof. Let τ ∈ Sk, k = k1 + k2, denote the permutation that
exchanges the first k1 elements with the last k2 elements. We have
α2 ⊗ α1 = τ(α1 ⊗ α2). Then, by (5.8), we have

α2 ∧ α1 =
1

k!

∑
σ∈Sk

sgnσ στ(α1 ⊗ α2).

By the change of variables σ 7→ σ̂ = στ , we get

α2 ∧ α1 = sgnτ
1

k!

∑
σ̂∈Sk

sgnσ̂ σ̂(α1 ⊗ α2).

This completes the proof since sgnτ = (−1)k1k2 . �

Lemma 5.28. If (ei)i∈I is a basis of V , then (ej1∧· · ·∧ejk)j1<···<jk∈I
is a basis of ΛkV .

Proof. We expand α ∈ ΛkV ⊂ V ⊗k as

α =
∑
i1,...,ik

αi1...ik ei1 ⊗ · · · ⊗ eik .

Since α = sgnσ σα for all σ, we can also write α = 1
k!

∑
σ∈Sk sgnσ σα.

We then get, by Remark 5.26,

α =
∑

i1,...,ik∈I

αi1...ik ei1 ∧ · · · ∧ eik ,
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which shows that (ei1 ∧ · · · ∧ eik)i1,...,ik∈I is a system of generators for
ΛkV .

By the graded commutativity we have ei ∧ ei = 0 for all i. This
implies that, if an index is repeated, then ei1∧· · ·∧eik = 0, since we can
use the graded commutativity to move the two ei’s with the same index
next to each other. If all the indices are different from each other, then
there is a unique permutation σ such that iσ(1) < iσ(2) < · · · < iσ(k).
We can then write

αi1...ik ei1 ∧ · · · ∧ eik = αi1...ik sgnσ eiσ(1) ∧ · · · ∧ eiσ(k)
= αiσ(1)...iσ(k) eiσ(1) ∧ · · · ∧ eiσ(k) = αj1...jk ej1 ∧ · · · ∧ ejk ,

where we have used (5.7) and have set jr = iσ(r), r = 1, . . . , k. By
construction we have j1 < j2 < · · · < jk. If we fix a string of ordered
jrs, there are k! corresponding strings of unordered irs. Therefore,

α =
∑

j1<···<jk∈I

k!αj1...jk ej1 ∧ · · · ∧ ejk ,

which shows that (ej1∧· · ·∧ejk)j1<···<jk∈I is also a system of generators
for ΛkV .

We finally want to prove that they are linearly independent. Let
λj1...jk be a collection of scalars for j1 < · · · < jk such that∑

j1<···<jk∈I

λj1...jk ej1 ∧ · · · ∧ ejk = 0.

For i1, . . . , ik pairwise distinct, define αi1...ik = sgnσλiσ(1)...iσ(k) where σ
is the unique permutation such that iσ(1) < · · · < iσ(k); if an index is
repeated, we define αi1...ik = 0. We then have

∑
i1,...,ik∈I α

i1...ik ei1∧· · ·∧
eik = 0. By Remark 5.26, this implies

∑
i1,...,ik∈I α

i1...ik ei1⊗· · ·⊗eik = 0.

Hence αi1...ik = 0 for all i1, . . . , ik, which implies λj1...jk = 0 for all
j1 < · · · < jk. �

This in particular implies that to define a linear map on ΛkV it is
enough to define it on pure elements, i.e., elements of the form v1 ∧
· · · ∧ vk, checking that it is multilinear and alternating in the vectors
v1, . . . , vn.

Corollary 5.29. If dimV = n, then dim ΛkV = ( nk ). In particu-
lar, ΛkV = {0} if k > n.

Observe that ΛnV is one-dimensional if n = dimV . This means,
that if φ is an endomorphism of V , then Λnφ is the multiplication by
a scalar. It turns out that this scalar is the determinant of φ:

Λnφα = detφα (5.9)
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for all α ∈ ΛnV .

Proof. Let (e1, . . . , en) be a basis of V . We have

Λnφ(e1 ∧ · · · ∧ en) = φ(e1)∧ · · · ∧φ(en) =
∑
i1,...,in

φi11 · · ·φinn ei1 ∧ · · · ∧ ein ,

where (φji ) is the matrix representing φ in this basis. If any index is
repeated, the contribution vanishes. If all indices are pairwise different,
we let σ be the permutation with σ(j) = ij. Then

Λnφ(e1 ∧ · · · ∧ en) =
∑
σ∈Sn

sgnσ φ
σ(1)
1 · · ·φσ(n)

n e1 ∧ · · · ∧ en,

which completes the proof by using the Leibniz formula for the deter-
minant. �

5.3.1. Contractions. The pairing between a vector space and its
dual extends to the exterior algebra. We describe its most important
instance.

An element of ΛV ∗ is called a form and an element of ΛkV ∗ a
k-form. A k-form a1 ∧ · · · ∧ ak with ai ∈ V ∗ for all i is called pure. A
linear map defined on ΛkV ∗ is completely determined by its values on
the pure forms (as in particular basis elements are pure forms). On the
other hand, a map defined on pure forms extends to a linear map if it
is multinear and alternating on the pure forms.

A vector v in V defines a linear map ιv : ΛkV ∗ → Λk−1V ∗ called
contraction, for all k, defined on pure forms by

ιv(a1 ∧ · · · ∧ ak) = a1(v) a2 ∧ · · · ∧ ak − a2(v) a1 ∧ a3 ∧ · · · ∧ ak + · · ·

=
k∑
r=1

(−1)r−1ar(v) a1 ∧ · · · ∧ âr ∧ · · · ∧ ak,

where the caret ̂ indicates that the factor ar is omitted. On Λ0V ∗ the
contraction ιv is defined as the zero map.

Lemma 5.30. The contraction has the following important proper-
ties. First, for all α ∈ ΛkV ∗, β ∈ ΛlV ∗, and v ∈ V , one has

ιv(α ∧ β) = ιvα ∧ β + (−1)kα ∧ ιvβ.

Second, for all v, w ∈ V and α ∈ ΛV ∗, one has

ιvιwα = −ιwιvα

Proof. It is enough to check the first identity when α and β are
pure, and this follows immediately from the definition.
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The second identity can also be easily checked on pure forms. In
fact, one can use the first identity to show that Iv,w := ιvιw + ιwιv
satisfies

Iv,w(α ∧ β) = Iv,wα ∧ β + α ∧ Iv,wβ
for all α and β. By induction one then sees that Iv,w is determined by
its actions on 1-forms. Since Iv,w is clearly zero on Λ1V ∗, it is then zero
on the whole ΛV ∗. �

Let finally φ be a linear map V → W . Since the transpose of a
linear map is defined exactly so as to preserve the pairing of a vector
with a linear form, (φ∗a)(v) = a(φv) for all a ∈ W ∗ and v ∈ V , we
have

ιvΛ
kφ∗α = Λk−1φ∗ιΦvα, (5.10)

for all v in V and all α ∈ ΛkV ∗.

5.3.2. Digression: The exterior algebra as a quotient. In
the above description of the exterior algebra, we had several denom-
inators of the form k!, which is not a problem if the ground field K
has characteristic zero. For a general ground field, one can use another
definition of the exterior algebra (which is canonically isomorphic to
the previous one if the field has characteristic zero).

To start with, we recall a basic construction. An algebra A is a
vector space endowed with a bilinear map A×A→ A, usually denoted
by (a, b) 7→ ab. The algebra is called associative if (ab)c = a(bc) for
all a, b, c ∈ A. A two-sided ideal of an algebra A is a subspace I with
the property that ax ∈ I and xa ∈ I for all a ∈ A and all x ∈ I. The
quotient space A/I then inherits an associative algebra structure by

[a][b] := [ab], a ∈ [a], b ∈ [b].

Note that the class [ab] does not depend on the choice of representatives
a and b, since I is a two-sided ideal.

We now apply this construction to the algebra T (V ) :=
⊕∞

k=0 V
⊗k,

where V is a vector space on some ground field K, of any characteristic,
and the associative algebra structure is defined by the tensor product
of tensors. We let I be the two-sided ideal generated by elements of
the form v⊗ v with v ∈ V . More explictly I is the span of elements of
the form a⊗ v⊗ v⊗ b with a, b ∈ T (V ) and v ∈ V . The exterior algebra
ΛV of V is then defined as the quotient algebra T (V )/I. The induced
associative product is denoted by ∧ and is called the exterior product:

[a] ∧ [b] := [a⊗ b], a ∈ [a], b ∈ [b].
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Note that I is a graded ideal, i.e., I =
⊕∞

k=2 Ik with

Ik = I ∩ V ⊗k

= span{a⊗ v⊗ v⊗ b : v ∈ V, a ∈ V ⊗k1 , b ∈ V ⊗k2 , k1 + k2 = k− 2}.

One then defines ΛkV = V ⊗k/Ik and one gets ΛV =
⊕∞

k=0 ΛkV . Ob-
serve that Λ0V = K and Λ1V = V .

The kth tensor power φ⊗k of a linear map φ : V → W clearly
sends the kth component of the ideal of T (V ) to the kth component
of the ideal of T (W ), so it descends to the quotients. We denote it by
Λkφ : ΛkV → ΛkW .

One can prove that the so defined exterior algebra has the same
properties as the one we have defined above in terms of skew-symmetric
tensors.

In the case of characteristic zero, the two constructions are equiv-
alent. Namely, let Ak : V ⊗k → V ⊗k be the map defined by Akα =
1
k!

∑
σ∈Sk sgnσ σα. One can see that Ik = kerAk and that the image of

Ak is the space of skew-symmetric k-tensors. The induced isomorphism
between T (V )/I and

⊕
k Ak(V

⊗k) is also compatible with the wedge
products.

Finally, observe that in the general construction the exterior algebra
is a quotient of the tensor algebra, whereas in the special construction
with skew-symmetric tensors it is a subspace.
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