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Abstract. We develop a renormalization theory of non-perturbative dissipative
Hénon-like maps with combinatorics of bounded type. A key novelty of our ap-
proach is the incorporation of Pesin theoretic ideas to the renormalization method,
which enables us to control the small-scale geometry of dynamics in the higher-
dimensional setting. We show that, under certain regularity conditions on the re-
turn maps coming from a measure-independent quantitative formulation of Pesin
theory, renormalizations of Hénon-like maps have a priori bounds. Then using
this estimate, we obtain the following results. First, we show that infinite regular
Hénon-like renormalizability is a finite-time checkable condition. Second, we prove
that Hénon-like maps converge under renormalization to the same renormalization
attractor as for 1D unimodal maps. Lastly, we show that every infinitely renormal-
izable Hénon-like map is regularly unicritical: there exists a unique orbit of tangen-
cies between strong-stable and center manifolds, and outside a slow-exponentially
shrinking neighborhood of this orbit, the dynamics behaves as a uniformly partially
hyperbolic system.
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1. Introduction

The set of real quadratic polynomials, after normalization, can be represented as
the following one-parameter family:

Q := {fa(x) := x2 + a | a ∈ R}. (1.1)

We refer to Q as the (real) quadratic family. Despite its elementary form, the dynam-
ics in Q turns out to be incredibly rich and fascinatingly complicated. In fact, the
study of this family has been a focal point in the field of one-dimensional dynamics
for nearly three decades (see e.g. [L2]).

At the heart of this topic lies the renormalization theory of unimodal maps, which
analyzes the appearance of small-scale self-similarity in these systems. It was first
introduced to the subject independently by Feigenbaum [Fe] and Coullet–Tresser
[CoTr] in the mid 1970’s. They observed that under successive renormalizations (or
“zoom-ins”), the small-scale dynamics of a unimodal map asymptotically approach a
universal limit sequence that only depends on the combinatorial type of the original
system. As a conjectural explanation of this phenomenon, they proposed that renor-
malization can be viewed as an operator acting on the space of unimodal maps, and
that the set of renormalization limits form a hyperbolic attractor A for this operator.
A rigorous mathematical proof of this conjecture was completed in 1999, through the
combined efforts of Sullivan [Su], McMullen [Mc] and Lyubich [L1].

In dimension two, the role of the quadratic family is assumed by the Hénon family:

H := {Fa,b(x, y) := (x2 + a− by, x) | a, b ∈ R}. (1.2)

The elements in H are referred to as Hénon maps. We identify Q with the line b = 0
consisting of degenerate Hénon maps. This way, H can be viewed as a two-dimensional
extension of Q. A Hénon map Fa,b is said to be perturbative if |b| � 1, as it can be
obtained by making a small 2D perturbation to the 1D system Fa,0 ∼ fa.

The Hénon maps were introduced by Hénon in 1969 as simplified models of the
Poincaré sections of the Lorenz model [He]. Since then, these maps have been some
of the most widely studied examples in two-dimensional dynamics. For some par-
ticularly notable results about Hénon maps, see [BeCa], [] and []. However, despite
these remarkable developments, the dynamics in H still remains a wide open area of
research. Given the enormous success of renormalization theory in dimension one, it
is natural to try and extend this technique to the two-dimensional setting.

Consider an infinitely renormalizable quadratic polynomial fa∗ . Numerical evidence
suggests that (at least for some combinatorial types) there exists a real analytic curve

γ(b) = (a(b), b) for b ∈ [0, 1)

extending from γ(0) := (a∗, 0) such that the Hénon map Fγ(b) is infinitely renormal-
izable, and has the same asymptotics as fa∗ under renormalization. See [GaTr].

In the perturbative regime, this conjecture can be verified for bounded type com-
binatorics using the following argument. Since the 1D renormalization attractor A
is hyperbolic, infinitely renormalizable quadratic polynomials converge to A under
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renormalization in a robust way. Using this fact, one can show that the 1D renor-
malization convergence in the quadratic family extends to nearby 2D infinitely renor-
malizable Hénon maps. This argument has been applied to the period-doubling case
by Coullet-Eckmann-Koch [CoEcKo], Gambaudo–Treser–van Strien [GavSTr] and De
Carvalho–Lyubich–Martens [DCLMa]; and to the stationary case by Hazard [Ha].

The goal of this paper is to extend the 1D renormalization theory of unimodal
maps to a non-perturbative 2D setting. A natural 2D analogue of a unimodal map
is given by a Hénon-like map: a diffeomorphism F : D → F (D) b D of the form
F (x, y) = (f(x, y), x) defined on a rectangle 0 ∈ D ⊂ R2, such that for any fixed y, the
1D map f(·, y) is unimodal. One may visualize the action of F as bending D into a U-
shape, and then turning it on its side. See Figure 1. We refer to Π1D(F )(x) := f(x, 0)
as the 1D profile of F .

Figure 1. Hénon-like mapping.

The Hénon-like map F is (Hénon-like) renormalizable if for some integer R ≥ 2,
there is an R-periodic subdomain B1 b D, and the return map FR|B1 is again Hénon-
like after a smooth change-of-coordinates Φ : B1 → D1. In this case, the map Φ
and the pair (FR,Φ) are referred to as a straightening chart and a Hénon-like return
respectively. We define the (Hénon-like) renormalizationR(F ) of F as the Hénon-like
map obtained via a suitable affine rescaling of Φ◦FR ◦Φ−1 that normalizes the width
of the domain D1. See Figure 2. Lastly, a centered straightening chart Ψ : B1 → B1 is
a chart that induces the same vertical and horizontal foliations over B1, and preserves
the arclengths along the vertical and horizontal lines through the origin in B1.

A key novelty of our approach is the incorporation of Pesin theoretic ideas to
the renormalization method. This involves keeping track of the regularity of points,
which can then be used to control the geometry of dynamics in the higher-dimensional
setting (see Appendix A). We give loose definitions of these notions below. For the
precise definitions, see Subsection 2.5.

Let p be a point in D, and let Ep be a tangent direction at p. For M ∈ N ∪ {∞},
we say that p is M-times forward regular along Ep if under DFm for 1 ≤ m ≤ M ,
there is sufficiently dominant exponential contraction along Ep. Similarly, p is M-
times backward regular along Ep if under DFm for 1 ≤ m ≤ M , there is sufficiently
dominant exponential expansion along Ep.
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Figure 2. Hénon-like renormalization.

Consider the Hénon-like return (FR,Φ). For p ∈ B1, let Ev
p and Eh

p be the tangent
directions at p that are mapped by DΦ to the genuine vertical and horizontal direc-
tions respectively. We say that (FR,Φ) is regular, and that F is regularly Hénon-like
renormalizable if

i) every p ∈ B1 is R-times forward regular along Ev
p ;

ii) every q ∈ FR(B1) is R-times backward regular along Eh
q ; and

iii) at every p ∈ B1, the tangent directions Ev
p and Eh

p are uniformly transversal.

Under this regularity assumption, we establish the following uniform control on the
small-scale geometry of the dynamics of a Hénon-like map that holds at all renormal-
ization depths. An estimate of this kind is commonly referred to as a priori bounds,
and is typically the key ingredient needed to develop a functioning renormalization
theory. The precise version is stated as Theorem A in Section 3.

A Priori Bounds. Suppose for some N ∈ N ∪ {∞}, a Hénon-like map F is N-
times regularly Hénon-like renormalizable with bounded type combinatorics. Then for
all 1 ≤ n ≤ N , the distortion along the horizontal direction of the nth return map is
uniformly bounded.

A priori bounds has far-reaching consequences for renormalization of Hénon-like
maps, which we summarize below as three main results. They are given informally
here in order to better convey their conceptual meaning to the readers. For their
precise statements, see Section 3.

The first main result describes the asymptotics of Hénon-like maps under regular
Hénon-like renormalization. The precise version is stated as Theorem E in Section 3.
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Renormalization Convergence. Suppose a Hénon-like map F is infinitely regu-
larly Hénon-like renormalizable with bounded type combinatorics. Then the following
statements hold.

i) The centered straightening charts for the renormalizations of F converge super-
exponentially fast.

ii) The renormalizations of F converge to the space of 1D systems (i.e. their depen-
dence on the second coordinate goes to zero) super-exponentially fast.

iii) The 1D profiles of the renormalizations of F converge to the 1D renormalization
attractor for unimodal maps exponentially fast.

The second main result addresses the problem of guaranteeing the existence of
infinitely regularly Hénon-like renormalizable maps. It is actually a combination of
two theorems: Theorem D and Theorem E in Section 3. See also Remark 3.1.

Finite-time Checkability. For bounded type combinatorics, infinite regular Hénon-
like renormalizability is a finite-time checkable condition.

Applying the previous two main results to the Hénon family H, it becomes theoret-
ically possible to verify numerically if the curves of infinitely renormalizable Hénon
maps extend arbitrarily close to b = 1 (although the computations involved would
become infinitely complex as the Jacobian gets closer and closer to 1). See Examples
3.2 and 3.3 for more details.

Renormalization convergence gives us extremely precise information about what the
dynamics of a Hénon map looks like when it is “zoomed-in” at a certain point (which
we later identify as the critical value of the map). The last main result concerns the
global geometry of the dynamics over the entire renormalization limit set. A more
detailed version of this result is stated in Theorem F in Section 3.

Regular Unicriticality. An infinitely regularly Hénon-like renormalizable map with
bounded type combinatorics is regularly unicritical on its renormalization limit set.

The notion of regular unicriticality is introduced and studied in [CLPY1]. It is a
new type of axiomatic dynamics defined on uniquely ergodic sets. Loosely speaking, it
means that the system features a unique critical orbit: an orbit of tangencies between
strong-stable and center manifolds. Moreover, outside a slow-exponentially shrinking
neighborhood of this orbit, every point is uniformly regular. See Definition 2.4. In
[CLPY1], it is shown that, despite the presence of the critical orbit adding highly
non-linear “bends” in the picture, the global geometry of the dynamics for a regularly
unicritical system can be understood almost as explicitly as for a uniformly partially
hyperbolic system.

1.1. Notations and conventions. Unless otherwise specified, we adopt the follow-
ing notations and conventions.

Any diffeomorphism on a domain in R2 is assumed to be orientation-preserving.
The projective tangent space at a point p ∈ R2 is denoted by P2

p.
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Given a number η > 0, we use η̄ to denote any number that satisfy

η < η̄ < CηD

for some uniform constants C > 1 and D > 1 (if η > 1) or D ∈ (0, 1) (if η < 1) that
are independent of the map being considered. Additionally, we allow η̄ to absorb any
uniformly bounded coefficient or power. So for example, if η̄ > 1, then we may write

“ 10η̄5 = η̄ ”.

Similarly, we use η to denote any number that satisfy

cηd < η < η

for some uniform constants c ∈ (0, 1) and d ∈ (0, 1) (if η > 1) or d > 1 (if η < 1) that
are independent of the map being considered. As before, we allow η to absorb any
uniformly bounded coefficient or power. So for example, if η > 1, then we may write

“ 1
3
η1/4 = η ”.

These notations apply to any positive real number: e.g. ε̄ > ε, δ < δ, L̄ > L, etc.
Note that η̄ can be much larger than η (similarly, η can be much smaller than

η). Sometimes, we may avoid the β or η notation when indicating numbers that are
somewhat or very close to the original value of η. For example, if η ∈ (0, 1) is a small
number, then we may denote η′ := (1− η̄)η. Then η � η′ < η.

We use n,m, i, j to denote integers (and less frequently l, k). The letter i is never
the imaginary number. Typically (but not always), n ∈ N and m ∈ Z. We typically
use N,M to indicate fixed integers (often related to variables n,m).

We typically denote constants used for estimate bounds by C,K ≥ 1 (less frequently
c > 0).

We use calligraphic font U , T , I, etc, for objects in the phase space and regular
fonts U, T, I, etc, for corresponding objects in the linearized/uniformized coordinates.
A notable exception are for the invariant manifolds W ss,W c.

We use p, q to indicate points in the phase space, and z, w for points in lin-
earized/uniformized coordinates.

For any set Xm ⊂ Ω with a numerical index m ∈ Z, we denote

Xm+l := F l(Xm)

for all l ∈ Z for which the right-hand side is well-defined. Similarly, for any direction
Epm ∈ P2

pm at a point pm ∈ Ω, we denote

Epm+l
:= DF l(Epm).

Define

πh(x, y) := x, πv(x, y) := y, Πh(x, y) := (x, 0) and Πv(x, y) := (0, y).
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2. Preliminaries

2.1. Renormalization of unimodal maps. Let I ⊂ R be an interval. A C2-map
f : I → I is unimodal if it has a unique critical point c ∈ I, which of quadratic type:
i.e. f ′(c) = 0 and f ′′(c) 6= 0. Denote the critical value of f by v := f(c). We say that
f is normalized if c = 0 and f ′′(c) = 2. Let γ ∈ {r, ω}, where r ≥ 2 is an integer.
The space of normalized Cγ-unimodal maps is denoted Uγ.

A unimodal map f : I → I is topologically renormalizable if there exists an R-
periodic subinterval I1 ⊂ I:

f i(I1) ∩ I1 = ∅ for 1 ≤ i < R and fR(I1) b I1.

We say that f is (valuably) renormalizable if fR(I1) contains the critical value v.
If f is valuably renormalizable, then the return map fR|I1 is also unimodal. We

define the renormalization of f to be

R1D(f) := S ◦ fR|I1 ◦ S−1,

where S : R→ R is the unique affine map such that R1D(f) ∈ Uγ.

2.2. Hénon-like maps. Let D := I × J ⊂ R2 be a rectangle, where 0 ∈ I b J ⊂ R
are intervals. A C2-diffemorphism F : D → F (D) b D is Hénon-like if F is of the
form

F (x, y) = (f(x, y), x) for (x, y) ∈ D, (2.1)

such that for any y ∈ J , the map f(·, y) : I → I is a unimodal map. We say that F
is normalized if f(·, 0) is normalized. The set of normalized Cγ-Hénon-like maps is
denoted HLγ.

For β ∈ (0, 1], we say that F is β-thin (in Cγ) if

‖∂yf‖Cγ−1 < β.

The space of β-thin Hénon-like maps in HLγ is denoted HLγβ.
For any 1D map g : I → I, define its 2D embedding ι(g) : I × R→ I × R by

ι(g)(x, y) := (g(x), x). (2.2)

For any 2D map G : D → D, define its 1D profile Π1D(G) : I → I by

Π1D(G)(x) := πh ◦G(x, 0). (2.3)

Note that we have Π1D ◦ ι(g) = g.
The space of degenerate Cγ-Hénon-like maps is given by HLγ0 := ι(Uγ). A map

F ∈ HLγβ is said to be perturbative if β � 1, as it can be obtained by making a small

2D perturbation to a 1D system in HLγ0 .
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2.3. Charts. For z ∈ R2, let Egv
z , E

gh
z ∈ P2

z denote the genuine vertical and horizontal
directions at z respectively.

A Cr-chart is a Cr-diffeomorphism Φ : B → B from a quadrilateral B ⊂ R2 to
a rectangle B = I × J ⊂ R2, where I, J ⊂ R are intervals. The vertical/horizontal

direction E
v/h
p ∈ P2

p at p ∈ B (associated to Φ) are given by

Ev/h
p := DΦ−1

(
E
gv/gh
Φ(p)

)
.

The chart Φ is said to be genuinely vertical/horizontal if E
v/h
p = E

gv/gh
p for all p ∈ B.

A vertical leaf in B is a curve lv such that

lv ⊆ Φ−1({a} × πv(B)) for some a ∈ πh(B).

If the above containment is an equality, then lv is said to be full. A (full) horizontal
leaf lh in B is defined analogously.

Let p ∈ B and Ep ∈ P2
p. Denote z := Φ(p) and Ez := DΦ(Ep). For t > 0, the

direction Ep is said to be t-vertical in B if

](Ez, E
gv
z )

](Ez, E
gh
z )

< t.

A t-horizontal direction in B is analogously defined.
A C0-curve Γv ⊂ B is said to be vertical in B if Φ(Γv) is a vertical graph in B in the

usual sense. That is, there exists an interval Iv ⊆ πv(B) and a map gv : Iv → πh(B)
such that

Φ(Γv) = Gv(gv) := {(gv(y), y) | y ∈ Iv}.
If Iv = πv(B), then Γv is said to be vertically proper in B. A horizontal or a hori-
zontally proper curve Γh in B is analogously defined. If Γv is Cr, and ‖g′v‖Cr−1 ≤ t
for some t ≥ 0, then we say that Γv is t-vertical (in Cr) in B. Note that Γv is a
(vertically proper) 0-vertical curve if and only if it is a (full) vertical leaf.

If Γv is C2, and gv has a unique critical point c ∈ Iv of quadratic type: g′v(c) = 0
and

κΦ(Γv) := g′′v (c) 6= 0, (2.4)

then Γv is a vertical quadratic curve in B. We refer to κΦ(Γv) as the valuable curvature
of Γv in B.

Let Ev : B → T 1(B) be the Cr−1-unit vector field given by

Ev(p) := DΦ−1(Egv
Φ(p)).

A Cr−1-unit vector field Ẽv : U → T 1(U) defined on a domain U ⊂ B is said to be
t-vertical in Cr−1 in B for some t ≥ 0 if ‖Ẽv − Ev‖Cr−1 ≤ t.

Let Φ̃ : B̃ → B̃ be another chart with B̃ ⊂ B. We define the following relations
between Φ and Φ̃. Let Φ̃ : B̃ → B̃ be another chart with B̃ ⊂ B. We define the
following relations between Φ and Φ̃.

• We say that B̃ is vertically proper in B if every full vertical leaf in B̃ is vertically
proper in B.



ON REGULAR HÉNON-LIKE RENORMALIZATION 9

• We say that Φ and Φ̃ are horizontally equivalent on B̃ if every horizontal leaf
in B̃ is a horizontal leaf in B.
• For t ≥ 0, we say that B̃ is t-vertical in B if Φ and Φ̃ are horizontally equiva-

lent, and the unit vector field given by

Ẽv(p) := DΦ̃−1(Egv

Φ̃(p)
) for p ∈ B̃

is t-vertical in Cr−1 in B.
• We say that Φ and Φ̃ are equivalent on B̃ if B̃ is 0-vertical in B.

Let Ψ : B → B be a chart satisfying the following properties.

• There exists q ∈ B such that Ψ(q) = 0 ∈ B.
• Let

Ih(t) := Ψ−1(t, 0) for t ∈ πh(B),

and

Iv(s) := Ψ−1(0, s) for s ∈ πv(B).

Then ‖(Ih/v)′‖ ≡ 1.

In this case, we say that Ψ is centered (at q). Clearly, for any chart Φ : B → D
and any point q ∈ B, there exists a unique chart Ψ : B → B equivalent to Φ that is
centered at q.

Suppose that Ψ : (B, q) → (B, 0) is centered at some point q ∈ B. Let Γh ⊂ B
be a horizontal Cr-curve, so that Ψ(Γh) is the horizontal graph in B of a Cr-map
gh : Ih → πv(B) defined on an interval Ih ⊂ πh(B). We say that Γh is t-horizontal
in Cr in B if ‖gh‖Cr ≤ t. In particular, Γh is 0-horizontal in B if and only if Γh is a
subarc of the full horizontal leaf containing q.

2.4. Hénon-like renormalization. Consider a Cr+1-Hénon-like map F : D → D.
We say that F is topologically renormalizable if there exists an R-periodic Jordan
domain B1 b D for some integer R ≥ 2:

F i(B1) ∩ B1 = ∅ for 1 ≤ i < R and FR(B1) b B1.

If, additionally, B1 contains (v, 0), where v is the critical value of the unimodal map
Π1D(F ), and there exists a genuinely horizontal Cr-chart Φ from B1 to a rectangle
D1 ⊂ R2 such that the map F̃1 := Φ ◦ F ◦ Φ−1 is again Hénon-like, then F is said
to be (Hénon-like) renormalizable. In this case, any chart Ψ : B1 → B1 equivalent
to Φ is referred to as a straightening chart, and the pair (FR,Ψ) is referred to as a
Hénon-like return.

Denote f̃1 := Π1D(F̃1), and let S : R → R be the unique affine map such that

S ◦ f̃1 ◦ S−1 ∈ Uγ. Define S as the affine map on R2 given by S(x, y) := (S(x), S(y)).
The (Hénon-like) renormalization of F is

R(F ) := S ◦ Φ ◦ FR ◦ (S ◦ Φ)−1.

Observe that R(F ) ∈ HLr.
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Remark 2.1. Note the loss of one degree of smoothness from F (which is Cr+1) to
Φ and R(F ) (which are Cr). This is to account for the loss of smoothness in the
construction of regular charts given in Theorem A.2. This is not a critical issue, since
it forces the loss of only one degree of smoothness no matter how many times F is
renormalized.

2.5. Definition of regularity. Consider a Cr-diffeomorphism F : D → F (D) b D
defined on a domain D ⊂ R2. Let L ≥ 1; ε, λ ∈ (0, 1) and M ∈ N ∪ {∞}. A point
p ∈ D is M-times forward (L, ε, λ)-regular along E+

p ∈ P2
p if for s ∈ {0, 1}, we have

L−1λ(1+ε)m ≤
‖DFm|E+

p
‖s+1

(Jacp Fm)s
≤ Lλ(1−ε)m for all 1 ≤ m ≤M. (2.5)

Similarly, p is M-times backward (L, ε, λ)-regular along E−p ∈ P2
p if for s ∈ {0, 1}, we

have

L−1λ(1+ε)m ≤ (Jacp F
−m)s

‖DF−m|E−p ‖s+1
≤ Lλ(1−ε)m for all 1 ≤ m ≤M. (2.6)

The constants L, ε and λ are referred to as an irregularity factor, a marginal exponent
and a contraction base respectively.

There exists a uniform constant ε1 ∈ (0, 1) independent of F such that if (2.5) (or
(2.6) resp.) holds with ε ≤ ε1, then the local dynamics of F near the forward (or
backward resp.) orbit of p can be linearized up to the Mth iterate (see Theorem A.2).
If M =∞, this implies in particular that p has a well-defined Cr-smooth strong-stable
manifold W ss(p) (or center manifold W c(p) resp.). It should be noted that the center
manifold at an infinitely backward regular point p is not uniquely defined. However,
its Cr-jet at p is unique (see Theorem A.16). Henceforth, any marginal exponent will
be assumed to be less than ε1.

2.6. Regular Hénon-like returns. A Hénon-like return (FR,Ψ : B1 → B1) is said
to be (L, ε, λ)-regular if the following conditions hold. Let

Ev/h
p := DΨ−1

(
E
gv/gh
Ψ(p)

)
.

• Every p ∈ B1 is R-times forward (L, ε, λ)-regular along Ev
p .

• Every q ∈ FR(B1) b B1 is R-times backward (L, ε, λ)-regular along Eh
q .

• For any p ∈ B1, we have ](Ev
p , E

h
p ) > 1/L.

In this case, we say that F is (L, ε, λ)-regularly Hénon-like renormalizable.

Example 2.2. Let f : I → I be a Cr+1-unimodal map. Suppose f is valuably renor-
malizable: there exists an R-periodic subinterval I1 ⊂ I such that fR(I1) contains the
critical value v of f . Then for ε > 0, there exists β = β(f,R, ε) > 0 such that the fol-
lowing holds. Let F : D → D be a β-thin Cr+1-Hénon-like map defined on a rectangle
D := I × J with Π1D(F ) = f . Then there exists an R-periodic quadrilateral B1 ⊂ D
containing (v, 0) that is β1−ε-close to I1×J in the Hausdorff topology, and a Cr-chart
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Ψ : B1 → B1 centered at (v, 0) that is β1−ε-close to the identity in the Cr-topology
such that (FR,Ψ) is a (1, ε, β)-regular Hénon-like return. See Proposition 11.2.

2.7. Nested Hénon-like returns. A Cr+1-Hénon-like map F : D → D is N -times
topologically renormalizable for some N ∈ N ∪ {∞} if there exist sequences

D =: B0 c B1 c . . . and 1 =: R0 < R1 < . . .

such that for 1 ≤ n ≤ N , the set Bn is an Rn-periodic Jordan domain. If there exists
b ≥ 2 such that

rn−1 := Rn/Rn−1 ≤ b for all 1 ≤ n ≤ N,

then we say that the combinatorics of renormalization for F is of (b-)bounded type.
If N =∞, then the renormalization limit set for F is

ΛF :=
∞⋂
n=1

Rn−1⋃
i=0

FRn+i(Bn). (2.7)

Suppose for 1 ≤ n ≤ N , there exist a Cr-straightening chart Ψn : Bn → Bn such
that (FRn ,Ψn) is a Hénon-like return. Then the sequence

{(FRn ,Ψn : Bn → Bn)}Nn=1 (2.8)

said to be nested. Without loss of generality, we may assume that Ψn is a centered
straightening chart: that is, Ψn is centered at some common point

v0 ∈
N⋂
n=1

FRn(Bn).

Let Φn : Bn → Dn be a chart equivalent to Ψn such that F̃n := Φn ◦ FRn ◦ (Φn)−1

is Hénon-like. Denote f̃n := Π1D(F̃n), and let Sn : R → R be the unique affine

map such that Sn ◦ f̃n ◦ (Sn)−1 ∈ Ur. Define Sn as the affine map on R2 given by
Sn(x, y) := (Sn(x), Sn(y)). The nth (Hénon-like) renormalization of F is given by

Fn = Rn(F ) := Sn ◦ Φn ◦ FRn ◦ (Sn ◦ Φn)−1. (2.9)

Note that Rn(F ) ∈ HLr. Lastly, we say that F is N -times (L, ε, λ)-regularly Hénon-
like renormalizable for some L ≥ 1 and ε, λ ∈ (0, 1) if (FRn ,Ψn) is (L, ε, λ)-regular
for all 1 ≤ n ≤ N .

Suppose that the combinatorics of renormalization for F are of b-bounded type
for some b ≥ 2. For many of our results, the specific values of the constants of
regularity are not important, as long as ε is sufficiently small to compensate for the
size of b. That is, we have bεd < 1 for some uniform constant d ∈ (0, 1) independent
of F . In this case, we will sometimes say that F is “N -times regularly Hénon-like
renormalizable,” without specifying the constants of regularity.

Definition 2.3. For 1 ≤ n ≤ N , denote

In0 := πh(B
n
0 ) and Inm := Fm ◦ (Ψn)−1(In0 × {0}) for m ∈ Z.
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The nth valuable curvature of the Hénon-like returns given in (2.8) is defined as

κn := κΨn(InRn) (2.10)

(see (2.4)).

2.8. Definition of regular unicriticality. Consider a C2-Hénon-like map F : D →
D. Suppose that F is infinitely renormalizable, and the renormalization limit set ΛF

supports a unique invariant probability measure µ. Then with respect µ, the Lya-
punov exponents of F are 0 and log λµ < 0 for some λµ ∈ (0, 1) (see Proposition 14.1).
By Oseledets theorem, µ-a.e. point p ∈ ΛF has strong-stable and center directions
Ess
p , E

c
p ∈ P2

p such that

lim
n→+∞

1

n
log ‖DF n|Essp ‖ = log λµ (2.11)

and

lim
n→+∞

1

n
log ‖DF−n|Ecp‖ = 0. (2.12)

Let ε > 0. Since F |ΛF is uniquely ergodic, (2.11) ((2.12) resp.) implies that p is
infinitely forward (backward resp.) (L, ε, λµ)-regular for some L = L(p, ε) ≥ 1 (see
[CLPY1, Proposition 4.7]).

If p ∈ ΛF satisfies (2.11) and (2.12) with

E∗p := Ess
p = Ec

p,

then {Fm(p)}m∈Z is referred to as a regular critical orbit. Note that in this case, the
local strong-stable manifoldW ss

loc(p) and the center manifold W c(p) form a tangency at
p. If this tangency is quadratic, then {Fm(p)}m∈Z is referred to as a regular quadratic
critical orbit.

For t > 0 and p ∈ R2, denote

Dp(t) := {q ∈ R2 | dist(q, p) < t}.

Definition 2.4. For 0 < ε < δ < 1, we say that F is (δ, ε)-regularly unicritical on
ΛF if the following conditions hold.

i) There is a regular quadratic critical orbit point v0 ∈ ΛF (referred to as the critical
value of F ).

ii) For all t > 0, there exists L(t) ≥ 1 such that for any N ∈ N, if

p ∈ ΛF \
N−1⋃
n=0

Dv−n(tλεnµ ), (2.13)

then p is N -times forward (L(t), δ, λµ)-regular.

When δ and ε are implicit, we simply say that F is regularly unicritical on ΛF .
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3. Statements of the Main Theorems

Let r ≥ 2 be an integer, and consider a Cr+1-Hénon-like map F ∈ HLr+1 of the
form (2.1). A quick computation shows that

JacF (x, y) = −∂yf(x, y).

If ‖ JacF‖ = 0, then F does not depend on the second coordinate y. This means
that F has the same dynamics as the unimodal map Π1D(F )(·) := f(·, 0) ∈ Ur+1.
Hence, one may view the size of ‖ JacF‖ as a measure of how far F is from being a
1D system.

In this paper, we focus on the case when F is dissipative: ‖ JacF‖ ≤ λ < 1 for some
λ ∈ (0, 1). Our goal is to understand what happens when such a map is renormalized
many times. The following heuristics imply that the renormalizations of F rapidly
become more and more one-dimensional.

Suppose that F is N ∈ N ∪ {∞} times renormalizable. For 1 ≤ n ≤ N , the
nth renormalization Rn(F ) of F is given by (2.9). Assuming that the nonlinear
component Φn of the nth rescaling map and its inverse remain uniformly bounded,
we have

‖ JacRn(F )‖ = ‖ Jac Φn‖ · ‖ JacFRn‖ · ‖ Jac(Φn)−1‖ � ‖ JacFRn‖ ≤ λRn .

Since the return times Rn grow exponentially with n, we see that the renormalizations
Rn(F ) of F converge to the space of 1D systems super-exponentially fast. Thus, to
understand the behavior of the 2D renormalization sequence {Rn(F )}Nn=1 ⊂ HLr, it
suffices to study the following sequence of 1D profiles:

{fn := Π1D ◦ Rn(F )}Nn=1 ⊂ Ur. (3.1)

3.1. A priori bounds. Our most difficult task is to establish the pre-compactness
of the sequence given in (3.1). In other words, we must show that the 1D profiles fn
do not diverge (at least in the C1-norm) as n increases. If N =∞, this would imply
that {fn}∞n=1 has meaningful limits. As is typical in the study of 1D systems, the key
is to find a way of controlling the distortion of the return maps FRn .

Consider a C1-diffeomorphism G : U → G(U) defined on a domain U ⊂ R2. For a
C1-curve γ ⊂ U , let φγ : [0, |γ|]→ γ be the arc-length parameterization of γ. Denote
Gγ := φG(γ) ◦G ◦ φ−1

γ . The distortion of G along γ is defined as

Dis(G, γ) := sup
s,t∈(0,|γ|)

|G′γ(s)|
|G′γ(t)|

.

Theorem A. Consider a C6-Hénon-like map F : D → D. Suppose for N ∈ N∪{∞},
the map F has N nested regular Hénon-like returns given by (2.8) with combinatorics
of bounded type. For 1 ≤ n ≤ N , let γn be a genuine horizontal arc contained in Bn.
Then Dis(FRn , γn) is uniformly bounded.

The proof of Theorem A is the content of Section 8.
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The pre-compactness of the sequence (3.1) implies that there is definite scaling
when we pass from one renormalization depth to the next. This fact has the following
important geometric consequence for infinitely renormalizable Hénon-like maps.

Theorem B. Consider a C6-Hénon-like map F : D → D. Suppose that F is infinitely
regularly Hénon-like renormalizable with combinatorics of bounded type. Then the
Hausdorff dimension of the renormalization limit set ΛF given in (2.7) is less than 1.
Consequently, ΛF is totally disconnected, minimal, and supports a unique invariant
probability measure µ.

The proof of Theorem B is the content of Section 13.

3.2. Renormalization convergence. The following theorem summarizes the as-
ymptotic behavior of an infinite regular Hénon-like renormalization sequence with
combinatorics of bounded type.

Theorem C. Let r ≥ 2 be an integer, and consider a Cr+4-Hénon-like map F : D →
D. Suppose that F has infinite nested regular Hénon-like returns given by (2.8) with
combinatorics of bounded type. Let ε, λ ∈ (0, 1) be the marginal exponent and the
contraction base of regularity respectively. Then there exists a Cr+3-chart Φ : U → U
centered at v0 such that for all n ∈ N sufficiently large, the following properties hold.

i) We have Bn b U , and

‖Φ ◦ (Ψn)−1 − Id ‖Cr+3 < λ(1−ε̄)Rn .

ii) The renormalization domain Bn can be extended vertically so that |πv ◦ Φ(Bn)|
is uniformly bounded below. Moreover, there exist a uniform constants 0 < σ1 <
σ2 < 1 such that

σn1 < |πh ◦ Φ(Bn)| < σn2 and |πv ◦ Φ(FRn(Bn))|2 � |πh ◦ Φ(Bn)|.
iii) The Hénon-like map Rn(F ) is λ(1−ε̄)Rn-thin in Cr+3.
iv) We have ‖Rn(F )‖Cr = O(1).
v) If r ≥ 4, then there exists a universal constant ρ ∈ (0, 1) such that for any

unimodal map f∗ ∈ Ur with the same asymptotic combinatorial type as F , we
have

‖Π1D ◦ Rn(F )−Rn
1D(f∗)‖Cr−1 < ρn.

Let us briefly comment on how part v) in Theorem C relates to the existing renor-
malization theory of unimodal maps in literature. For γ ∈ {r, ω}, the 1D renormaliza-
tion R1D defined in Subsection 2.1 can be viewed as an operator acting on the Banach
space Uγ of unimodal maps. In [L1], Lyubich showed that R1D restricted to Uω is an
analytic operator that has a hyperbolic attractor A ⊂ Uω with exactly one unstable
dimension. This attractor is referred to as the full renormalization horseshoe.

Given an integer b ≥ 2, let Ab be the compact invariant subset of A that consists
of maps with combinatorics of b-bounded type. In [dFdMPi], de Faria-de Melo-Pinto
showed that for the action of the renormalization operator R1D on the much larger
space U3 ⊃ Uω, the set Ab is still a hyperbolic attractor with one unstable dimension.
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Once we establish parts iii) and iv) in Theorem C, it follows by a general lemma
(Lemma D.1) that the sequence of 1D profiles of the renormalizations of F is shadowed
by actual orbits of 1D renormalization. Asymptotic convergence then follows from
the hyperbolicity of 1D renormalization discussed above.

3.3. Finite-time checkability. If a quadratic polynomial f : I → I has a periodic
subinterval I1 ⊂ I, then the cycle of I1 must go through the critical point of f exactly
once. This ensures that the first return map on I1 under f is again a unimodal map.
In contrast, if a Hénon map F : D → D has a periodic subdomain B1 ⊂ B, it is
not necessarily true that the first return map on B1 under F must also be Hénon-
like. Intuitively, this contrast is due to the following important conceptual difference
between the 1D case and the 2D case: for the dynamics of 2D diffeomorphisms, there is
no definite single pinpoint location at which the action of the critical point takes place.
Nevertheless, the following result states that if F is regular Hénon-like renormalizable
up to a sufficiently deep depth, then all further topological renormalizations of F are
necessarily also regular Hénon-like.

Theorem D. Suppose we are given the following data:

i) a Hénon-like map F ∈ HL6;
ii) constants b ≥ 2; L ≥ 1 and λ ∈ (0, 1); and

iii) an increasing sequence {Rn}∞n=0 such that R0 = 1 and Rn/Rn−1 ≤ b for all
n ∈ N.

Let ε0 ∈ (0, 1) and n0 ∈ N ∪ {0} be constants satisfying

bεd0 < 1, (3.2)

and
Cλε0Rn0 < 1 (3.3)

for some uniform constants d ∈ (0, 1) (independent of F ) and C ≥ 1 (depending only
on L, λ, λ1−ε0‖DF−1‖, ‖F‖C3 and b). Suppose F has n1 nested (L, ε0, λ)-regular
Hénon-like returns given by (2.8) for some n1 ≥ n0. Suppose that

Kλε0Rn1 < 1, (3.4)

for some uniform constant K = K(C, ‖FRn0 |Bn0‖C6 , κn0) ≥ 1 (where κn0 is the n0th
valuable curvature given in (2.10)). Then there exists uniform constants L ≥ L and
δ ∈ (ε0, 1) such that the following holds. Suppose that F is N-times topologically
renormalizable for some n1 ≤ N ≤ ∞ with return times {Rn}Nn=1. Then all N
renormalizations of F are (L, δ, λ)-regular Hénon-like (except possibly the last two if
N <∞).

Quantitative Pesin theory combined with some standard arguments in one-dimensional
dynamics is used to show that any topological return map within a sufficiently deep
renormalization depth must be Hénon-like (see Section 6). A priori bounds is then
needed to guarantee that regularity is preserved when we pass into deeper renormal-
ization depths (see Section 10).
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The significance of the previous theorem is that it turns infinite regular Hénon-like
renormalizability of F into a finite condition, provided that F is known to be infinitely
topologically renormalizable. The next result gives a criterion for guaranteeing the
latter property.

Theorem E. Suppose we are given the following data:

i) a one-parameter family {Fa}a∈I ⊂ HL6 depending C1-smoothly on a;
ii) constants b ≥ 2; L ≥ 1 and λ ∈ (0, 1); and

iii) an increasing sequence {Rn}∞n=0 such that R0 = 1 and Rn/Rn−1 ≤ b for all
n ∈ N.

Let ε0 ∈ (0, 1) and n1 ∈ N be the constants given in (3.2) and (3.4). Suppose that
for all a ∈ I, the map Fa is n1-times (L, ε0, λ)-regularly Hénon-like renormalizable,
and that {Π1D ◦Rn1(Fa)}a∈I forms a full one-parameter family of 1D unimodal maps.
Then for any b-bounded renormalization type, there exists a parameter a∗ ∈ I such
that Rn1(Fa∗) realizes this type.

The renormalization type of an infinitely regular Hénon-like renormalizable map
referred to in Theorem E is defined in Section 6 (see (6.8)). It can be identified with
the combinatorial type of some infinitely renormalizable unimodal map. The proof
of Theorem E is the content of Section 11.

Remark 3.1. While it is not done in this paper, it is possible to obtain explicit
estimates of the constants d, C and K in (3.2), (3.3) and (3.4). This means that for a
given specific family of 2D maps (say, the Hénon family H), Theorems D and E turn
infinite regular Hénon-like renormalizability in this family into an explicit finite-time
checkable condition. This is illustrated in Examples 3.2 and 3.3.

Example 3.2. Consider a Hénon map Fa,b ∈ H (see (1.2)) restricted to a suitable
bounded subset U ⊂ R2. Then Fa,b has uniformly bounded C6-norm. Moreover, there
exists a uniform constant c = c(U) ≥ 1 such that ‖DFa,b|−1

U ‖ < c/|b|. Lastly, the 0th
valuable curvature of Fa,b is exactly equal to 2.

For λ ∈ (0, 1), consider the one parameter family of Hénon maps Hλ := {Fa,λ}a∈R.
Given b ≥ 2, a number ε0 ∈ (0, 1) can be chosen so that (3.2) holds. Set L = 1. By
the above observations, we see that for Hλ, the value of the uniform constant K given
in (3.4) depends only on λ. Then let λ0 ∈ (0, 1) be the largest number such that (3.4)
is satisfied when we set λ = λ0 and n1 = 0 (i.e. Cλε00 < 1).

Fix λ ∈ (0, λ0). Since {Π1D(Fa,λ)}a∈R ≡ Q is a full family, it follows from the real-
ization theorem that for any b-bounded renormalization type, there exists a parame-
ter value a∗(λ) ∈ R such that Fa∗(λ),λ is infinitely regularly Hénon-like renormalizable
with this combinatorics.

Note that the above argument is non-perturbative, and does not rely on the robust-
ness of the 1D renormalization convergence. In particular, any numerical estimates
on the quantities D and K would immediately yield a definite lower bound on the
value of the Jacobian λ0.
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Example 3.3. Allowing for non-zero values of n1 in Example 3.2 enables us to po-
tentially find infinitely regularly Hénon-like renormalizable maps in the Hénon family
with Jacobians arbitrarily close to 1 as follows.

Fix λ ∈ (0, 1), and consider the one-parameter family Hλ of Hénon maps with
Jacobian λ. Suppose we can find an interval I ⊂ R of parameters such that for
each map Fa := Fa,λ with a ∈ I, there exists a sequence of N ∈ N nested Hénon-like
returns {(FRn

a ,Ψn
a)}Nn=1 with combinatorics of b-bounded type. Additionally, suppose

we can verify the following conditions.

i) The family {Π1D ◦RN(Fa)}a∈I depends smoothly on the parameter a, and is full.
ii) There exists L ≥ 1 such that for all a ∈ I, the returns {(FRn

a ,Ψn
a)}Nn=1 are

(L, ε0, λ)-regular.
iii) We have N ≥ n1, where n1 ∈ N is the smallest number such that (3.4) holds.

Then as before, we are guaranteed the existence of an infinitely regularly Hénon-
like renormalizable map Fa∗(λ),λ with a∗(λ) ∈ I that realizes any given b-bounded
renormalization type.

We expect that for reasonably small values of λ (which would result in small values
of n1), it should be feasible to check these conditions numerically using a computer.

3.4. Regular unicriticality. Let X b D be a compact totally invariant set for a
Hénon-like map F . We say that F is uniformly partially hyperbolic on X if every
point p ∈ X is infinitely forward and backward regular along some tangent direction
Ess
p at p, and the constants of regularity are uniform in p. The geometry of a 2D

dynamical system is very well understood on uniformly partially hyperbolic sets. In
particular, it is known that the leaves in the strong-stable and center laminations
vary continuously, have uniformly bounded curvature, and are uniformly transverse
to each other.

Suppose that F has infinite nested regular Hénon-like returns given by (2.8) with
combinatorics of bounded type. It is shown in Theorem 7.1 that

∞⋂
n=1

FRn(Bn) = {v0}. (3.5)

We refer to v0 as the critical value of F . Note that v0 is both infinitely forward
and backward regular. Thus, v0 has well-defined strong-stable manifold W ss(v0)
and center manifold W c(v0). The Hénon-likeness of the return maps under F forces
W ss(v0) and W c(v0) to form a quadratic tangency at v0. See Figure 3. Thus, the
orbit Ocrit of v0 is a regular quadratic critical orbit of F (as defined in Subsection 2.8).

The existence of Ocrit immediately implies that F is not uniformly partially hyper-
bolic on ΛF . However, our last main theorem states that this is the only obstruction,
and that uniform regularity still holds outside a slow-exponentially shrinking neigh-
borhood of Ocrit.

Theorem F. Consider a C6-Hénon-like map F : D → D. Suppose that F has infinite
nested regular Hénon-like returns given by (2.8) with combinatorics of bounded type.
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Figure 3. The critical value v0 of an infinitely regularly Hénon-like
renormalizable map F .

Then for any ε > 0, there exists Lε ≥ 1 such that for all n ∈ N, the Hénon-like
return (FRn ,Ψn) is (Lε, ε, λµ)-regular. Moreover, F is regularly unicritical on the
renormalization limit set ΛF with the critical value v0 given by (3.5).

The study of 2D dynamics on a uniformly partially hyperbolic set X is greatly
facilitated by the fact that X has a local product structure. This means that X can
be covered by finitely many charts, called regular Pesin boxes, which endows the set
with locally defined vertical (strong-stable) and horizontal (center) directions that
are invariant under the dynamics.

In our setting, any covering of ΛF by regular Pesin boxes must leave out points
that are too close to the critical orbit Ocrit. In [CLPY1], we introduce new covering
domains called critical tunnels and valuable crescents that uniformize the dynamics
of F near Ocrit (which is fundamentally non-linear in nature). See Figure 4. These
new domains, together with regular Pesin boxes, completely cover ΛF , resulting in a
new type of dynamical structure that we call a regular unicritical structure.

Regular unicritical structures for regularly unicritical systems can fulfill a similar
function as local product structures for uniformly partially hyperbolic systems. In
[CLPY1], we use this new structure to characterize the local geometry of every strong-
stable and center manifold in terms of its proximity to the critical orbit in an explicit
way. Additionally, we prove the following converse of the unicriticality theorem.
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Figure 4. Regular quadratic critical orbit Ocrit = {vm}m∈Z contained
in critical tunnels {T−n}∞n=1 and valuable crescents {Tn}∞n=0. For m ∈
Z, the strong-stable and center manifolds of vm are indicated as red
and blue curves respectively. The tunnel/crescent Tm is the pinched
region bounded between two green curves that contains W c(vm). The
diameter of Tm shrinks slow-exponentially as |m| → ∞.

Theorem 3.4 ([CLPY1]). Let F : D → F (D) b D be a dissipative C3-diffeomorphism
defined on a Jordan domain D ⊂ R2. Suppose that F is infinitely topologically renor-
malizable, and assume that F is regularly unicritical on the renormalization limit set.
Then the renormalizations of F are eventually regular Hénon-like.

4. Convergence of the Straightening Charts

Let r ≥ 2 be an integer, and consider a Cr+1-Hénon-like map F : D → D. For some
N ∈ N∪ {∞}; L ≥ 1 and ε, λ ∈ (0, 1), suppose that F has N nested (L, ε, λ)-regular
Hénon-like returns given by (2.8). Furthermore, assume that N is sufficiently large,
so that for some smallest number 0 ≤ n0 ≤ N , we have

K0λ
εRn0 < η, (4.1)

where η ∈ (0, 1) is independent of F , and

K0 = K0(L, λ, ε, λ1−ε‖DF−1‖, ‖DF‖Cr , r) ≥ 1 (4.2)

is a uniform constant.
For n0 ≤ n ≤ N and m ∈ Z, denote Bnm := Fm(Bn). Observe that Bn+1

Rn+1
b BnRn .

Let

v0 ∈ Z0 :=
N⋂
n=1

BnRn ,

be a point to be specified later (as the critical value of F ). Without loss of generality,
assume that Ψn is centered at v0.

In this section, we describe the asymptotic behavior of the centered straightening
charts {Ψn}Nn=1 for the renormalizations of F .

Remark 4.1. In Sections 4 and 5, we do not assume that the combinatorics of the
renormalizations of F is necessarily of bounded type.
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Define

In0 := πh(B
n
0 ) and In0 := (Ψn)−1(In0 × {0}).

Then it follows that In0 b I1
0 and Ψn|In0 = Ψ1|In0 . Denote Inm := Fm(In0 ) for m ∈ Z.

For p0 ∈ Bn0 , write z0 := Ψn(p0), and let

Eh
p0

:= D(Ψn)−1(Egh
z0

) and Ev,n
p0

:= D(Ψn)−1(Egv
z0

).

Additionally, let

Eh,n
pRn−1

:= DFRn−1(Eh
p0

) and Ev
pRn−1

:= DF−1(Eh
pRn

) = DFRn−1(Ev,n
p0

).

By increasing L by a uniform amount if necessary (see Proposition A.1), we may
assume that every q ∈ BnRn−1 is (Rn − 1)-times backward (L, ε, λ)-regular along Ev

q .

Proposition 4.2 (Vertical extension of charts). For n0 ≤ n ≤ N , the nth centered

straightening chart can be extended to Ψn : B̂n0 → B̂n
0 such that the following properties

hold.

i) The quadrilateral B̂n0 is vertically proper and η-vertical in Bn0
0 .

ii) We have ‖(Ψn)±1‖Cr < K0, and

‖Ψn ◦ (Ψn+1)−1 − Id ‖Cr < λ(1−ε̄)Rn . (4.3)

iii) Every point q0 ∈ B̂n0 is Rn-times forward (K0, ε, λ)-regular along Ev,n
q0

.

Proof. For p0 ∈ Bn0 , let

{Φpm : Upm → Upm}Rnm=0

be a linearization of F along the Rn forward orbit of p0 with vertical direction Ev,n
p0

.

Let Ev,npm : Upm → T 1(Upm) be the Cr-unit vector field given by Ev,npm (q) ∈ Ev,n
q for

q ∈ Upm .
Let lv,n0

p0
be the full vertical leaf in Bn0

0 containing p0. For q0 ∈ lv,n0
p0

, let

{Φqm : Uqm → Uqm}
Rn0
m=0

be a linearization of F along the Rn0 forward orbit of q0 with vertical direction Ev,n0
q0

given by Theorem A.2.
LetM be a nearest integer toRn0/2. By Lemma A.3, we see that UpM ⊃ DpM

(
λε̄M

)
.

Lemma A.11 implies that Corollary A.8 applies to all points in the M -times truncated
regular neighborhood UMq0 at q0. The Rn0-times forward regularity at all points in Bn0

0

together with (4.1) implies that

ǓqM := FM(UMq0 ) ⊂ UpM .

By Proposition A.1, qM and pM are M -times forward (λ−ε̄M , ε, λ)v-regular along
Ev,n0
qM

and Ev,n
pM

respectively. Hence, Proposition A.9 implies that Ev,npM |ǓqM is λ(1−ε̄)M -

vertical in C0 in UqM . Moreover, the bounds on ‖ΦpM‖Cr and ‖ΦqM‖Cr given by
Theorem A.2 imply that

‖DΦqM (Ev,npM )‖Cr−1 < λ−ε̄M .
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Extend Ev,np0
to UMq0 as

Ev,np0
|UMq0 := DF−M(Ev,npM |ǓqM ).

Then by Proposition A.14, we have

‖Ev,np0
− Ev,n0

q0
‖Cr ≤ λ(1−ε̄)M(1 + ‖DΦ−1

q0
‖Cr−1)(1 + ‖DΦqM (Ev,npM )‖Cr−1) ≤ η.

Rectifying the vertical directions near lv,n0
p0

given by Ev,np0
, we obtain the desired ex-

tension of Ψn.
Observe that for 0 ≤ k ≤M

](Ev,n
qk
, Ev,n0

qk
) < λ(1−ε̄)(Rn0−k).

It follows that
1√
2
<
‖DF k|Ev,nq0 ‖
‖DF k|Ev,n0

q0
‖
<
√

2.

Concatenating with the forward M -times (λ−ε̄M , ε, λ)-regularity of qM , we see that

λε̄M√
2L
λ(1+ε)(M+i) ≤ ‖DFM+i|Ev,nq0 ‖ ≤

√
2Lλ−ε̄Mλ(1−ε)(M+i).

Since n0 is assumed to be the smallest number that satisfies (4.1), we have λ−ε̄M < K0.
The claimed Rn-times forward regularity of q0 along Ev,n

qk
follows.

Lastly, replacing the renormalization depth n0 in the above argument by n, we
obtain (4.3). �

Remark 4.3. In Section 6, we will show that B̂n0 is Rn-periodic (and hence, we may

assume that Bn0 = B̂n0 ). See (6.7).

Consider Cr-curves Γ1,Γ2 ⊂ R2 with |Γ1| ≥ |Γ2|. For i ∈ {1, 2}, let φΓi : Ji ⊂ R→
Γi be a parameterization of Γi such that

• |φ′Γi | ≡ 1;
• J1 ⊃ J2;
• ‖φΓ1|J2 − φΓ2‖Cr is minimal.

In this case, define

‖Γ1‖Cr := ‖φΓ1‖ and distCr(Γ1,Γ2) := ‖φΓ1|J2 − φΓ2‖Cr . (4.4)

Lemma 4.4. For n0 ≤ n ≤ N , let ln0 be a full horizontal leaf in B̂n0 . Denote lnm :=
Fm(ln0 ) for m ∈ Z. Then we have ‖lnRn−1‖Cr < K0; and

distCr(l
n
Rn−1, l

n+1
Rn+1−1) < λ(1−ε̄)Rn .

Proof. For p−1 ∈ Z−1 := F−1(Z0), let

{Φp−m : Up−m → Up−m}
RN
m=1

be a linearization of F along the RN -times backward orbit of p−1 with vertical di-
rection Ev

p−1
(if N = ∞, then R∞ = ∞). Let V−Rn be the connected component of

F−Rn+1(URnp−1
) ∩ B̂n0 containing p−Rn . Note that Ψn|V−Rn defines a chart on V−Rn , so
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that V−Rn is 0-vertical in B̂n0 . Moreover, arguing as in the proof of Proposition 4.2,

we see that V−Rn is also vertically proper in B̂n0 .
Consider the map

Hn(x, y) = (hn(x), en(x, y)) := Φp−1 ◦ FRn−1 ◦ (Ψn)−1(x, y)

for (x, y) ∈ Ψn(V−Rn). Denote

Fp−n := Φp−n+1 ◦ F ◦ (Φp−n)−1.

Then
Hn = Fp−2 ◦ . . . ◦ Fp−Rn ◦ Φp−Rn

◦ (Ψn)−1. (4.5)

By Theorem A.2, we see that

‖Φp−Rn
◦ (Ψn)−1‖Cr < λ−ε̄Rn .

Applying Proposition A.12, we conclude that

‖en‖Cr < λ(1−ε̄)Rn . (4.6)

The result follows. �

Proposition 4.5 (Locating the critical value). If N = ∞, then the following state-
ments hold.

i) For any point p0 ∈ Z0, there exists a unique strong stable direction Ess
p0
∈ P2

p0

such that
‖Ev,n

p0
− Ess

p0
‖ < λ(1−ε̄)Rn for n ≥ n0.

Moreover, p0 is infinitely forward (L, ε, λ)-regular along Ess
p0

.

ii) Any point p−1 ∈ Z−1 := F−1(Z0) is infinitely backward (L, ε, λ)-regular along
Ev
p−1

. Moreover, there exists a unique center direction Ec
p−1
∈ P2

p−1
such that

‖Eh,n
p−1
− Ec

p−1
‖ < λ(1−ε̄)Rn for n ≥ n0.

iii) There exists a unique point v0 ∈ Z0 such that

Ess
v0

= DF (Ec
v−1

).

Moreover, the strong stable manifold W ss(v0) and the center manifold F (W c(v−1))
have a quadratic tangency at v0.

Proof. The first and second claim follow immediately from Propositions A.9 and A.10.
For n ≥ n0, recall that InRn is a vertical quadratic curve in Bn0 . Let vn0 ∈ In0 be the

unique point such that
Ev,n
vnRn

= DFRn(Eh
vn0

).

By Proposition 4.2 and Lemma 4.4, we have

dist(vnRn , v
n+1
Rn+1

) < λ(1−ε̄)Rn .

Thus, there exists a unique point v0 ∈ Z0 such that

dist(vnRn , v0) < λ(1−ε̄)Rn and distCr(InRn ,W
c(v0)) < λ(1−ε̄)Rn .
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By (4.3), we see that W ss(v0) and W c(v0) have a quadratic tangency at v0.
Lastly, let Uv0 be a neighborhood of v0. Then there exists a uniform constant k > 0

such that for all n sufficiently large, if pRn ∈ InRn \ Uv0 then

](Ev,n
pRn

, DFRn(Eh
p0

)) > k.

Thus, v0 is the unique point in Z0 satisfying Ess
v0

= Ec
v0
. �

We define the critical value v0 ∈ Z0 as follows. If N =∞, let v0 be the point given
in Proposition 4.5 iii). Otherwise, let v0 be the unique point in INRN such that

DFRN (Eh
v−RN

) = Ev,N
v0

(recall that such a point exists since INRN is a vertical quadratic curve in BN0 ). Define
the critical point as v−1 := F−1(v0).

Remark 4.6. In Section 7, we will prove that if N = ∞ and the combinatorics of
the renormalizations of F are of bounded type, then Z0 = {v0}.

Theorem 4.7 (Valuable charts). Let K0 ≥ 1 be the constant given in (4.2). There
exist charts

Φ0 : (B0, v0)→ (B0, 0) and Φ−1 : (B−1, v−1)→ (B−1, 0)

such that

• Φ0 is centered at v0 and is genuine horizontal;
• B0 ⊃ Bn0

0 , B−1 ⊃ Bn0
Rn0−1 and F (B−1) b B0;

• ‖Φ±1
i ‖Cr < K0 for i ∈ {0,−1}; and

• we have

Φ0 ◦ F ◦ Φ−1
−1(x, y) = (f0(x)− λy, x) for (x, y) ∈ B−1, (4.7)

where f0 : (πh(B−1), 0) → (πh(B0), 0) is a Cr-map that has a unique critical
point at 0 such that

‖f ′′0 ‖Cr−2 < K0 and κF := inf
x∈πh(B−1)

f ′′0 (x) > 0. (4.8)

Moreover, the following properties hold for n0 ≤ n ≤ N .

i) We have

‖Φ0 ◦ (Ψn)−1 − Id ‖Cr < λ(1−ε̄)Rn .

ii) Let

Hn := Φ−1 ◦ FRn−1 ◦ (Ψn)−1.

Then Hn(x, y) = (hn(x), en(x, y)), where hn : In0 → hn(In0 ) is a Cr-diffeomorphism
and en is a Cr-map such that

λε̄Rn < |h′n(x)| < λ−ε̄Rn for x ∈ In0 and ‖en‖Cr < λ(1−ε̄)Rn . (4.9)
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Figure 5. Geometry near the critical value v0 and the critical point
v−1 (if N =∞). For n ≥ n0, we have v0 ∈ B̂n0 ⊂ B0 and v−1 ∈ B̂nRn−1 ⊂
B−1. There exist charts Φ0 : B0 → B0 and Φ−1 : B−1 → B−1 such that
Φ0 ◦ F ◦Φ−1 is Hénon-like (see (4.7)). The charts Ψn converges to Φ0

Proof. For t ≥ 0 and X ⊂ R2, denote

X(t) := {p ∈ R2 | dist(p,X) ≤ t}.
Let

B0 := Bn0
0 (λε̄Rn0 ) and Cn0 := B̂n0 (λε̄Rn) \ B̂n0 .

By (4.3), there exists a Cr-diffeomorphism Φ0 defined in a neighborhood of Z0 such
that

‖Φ0 ◦ (Ψn)−1 − Id ‖Cr < λ(1−ε̄)Rn for all n0 ≤ n ≤ N.

Moreover, Φ0 can be extended a centered chart Φ0 : (B0, v0)→ (B0, 0) such that

Φ0|B̂n0 \(B̂n+1
0 ∪Cn+1

0 ) = Ψn|B̂n0 \(B̂n+1
0 ∪Cn+1

0 )

and
‖Φ0 ◦ (Ψn|Cn+1

0
)−1 − Id ‖Cr < λ(1−ε̄)Rn .

Let Ih−1 := INRN−1 3 v−1 if N < ∞, and Ih−1 := W c(v−1) if N = ∞. Observe that

F (Ih−1) 3 v0 is a vertical quadratic curve in B0. Denote

Jv0 := πv ◦ Φ0 ◦ F (Ih−1).

Then there exists a Cr-map

f0 : (Jv0 , 0)→ (πh(B0), 0)

with a unique quadratic critical point at 0 such that

Φ0 ◦ F (Ih−1) = {(f0(y), y) | y ∈ Jv0}.
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The Cr-bound on f0 follows from Proposition 4.2 and Lemma 4.4.
Let C ≥ 1 be the uniform constant given in (4.1). Let

D0 := {(f0(y) + t, y) ∈ B0 | |t| ≤ λK0
−1 and y ∈ Jv0},

and
B−1 := (Φ0 ◦ F )−1(D0).

We define Φ−1 : (B−1, v−1)→ (B−1, 0) to be the unique chart satisfying

Φ0 ◦ F ◦ Φ−1
−1(x, y) = (f0(x)− λy, x) for (x, y) ∈ B−1.

Consider the decomposition of Hn given in (4.5). The second inequality in (4.9)
is given by (4.6). The upper bound in the first inequality follows immediately from
Proposition A.12. For the lower bound, we observe that

‖
(
Φp−Rn

◦ (Ψn)−1
)−1 ‖C1 < λ−ε̄Rn

by Theorem A.2. The lower bound now follows immediately from Theorem A.2 ii)
and iii). �

Denote

I
h/v
i := πh/v(Bi) and Ihi := Φ−1

i (Ihi × {0}) for i ∈ {0,−1}. (4.10)

Observe that

Ih0 c In0
0 c In0+1

0 c . . . and Ih−1 c hn0(In0
0 ) c hn0+1(In0+1

0 ) c . . . .

Moreover, if X ⊂ Bn0 , then (4.9) implies

Φ−1 ◦ FRn−1(X) ⊂ hn(In0 )× [−λ(1−ε̄)Rn , λ(1−ε̄)Rn ]. (4.11)

Define P−1 : (B−1, v−1)→ (Ih−1, 0) and P n
0 : (B̂n0 , v0)→ (In0 , 0) for n0 ≤ n ≤ N by

P−1 := πh ◦ Φ−1 and P n
0 := πh ◦Ψn.

Denote
InRn−1 := P−1(B̂nRn−1) = P−1(InRn−1) = hn(In0 ).

Define the nth (valuable) projection map Pn0 : B̂n0 → In0 by

Pn0 := (Ψn)−1 ◦ Πh ◦Ψn.

Observe that Pn0 |In0 = Id.
We record the following immediate consequence of Theorem A.2 and Propositions

A.13 and A.14.

Lemma 4.8. For n0 ≤ n ≤ N , denote λn := λ(1−ε̄)Rn. Then for 0 < t < λ−ε̄Rn, the
following statements hold.

i) Let Ẽp0 ∈ P2
p0

be a t-horizontal direction at p0 ∈ B̂n0 . Then ẼpRn−1
is (1 + t)λn-

horizontal in B−1.
ii) Let EpRn−1

∈ P2
pRn−1

be a t-vertical direction at pRn−1 ∈ B̂nRn−1. Then Ep0 is

tλn-vertical in B̂n0 .
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iii) Let Γh0 be a curve that is t-horizontal in Cr in B̂n0 . Then FRn−1(Γh0) is (1 + t)rλn-

horizontal in Cr in B̂−1.
iv) Let ΓvRn−1 be a curve that is t-vertical in Cr in B̂nRn−1. Then F−Rn+1(ΓvRn−1) is

tλn-vertical in Cr in B̂n0 .

By Lemma 4.8 iii), InRn−1 is ηn-horizontal in B−1. Thus, there exists a Cr-map
gn : InRn−1 → R with ‖gn‖Cr < λn such that

Φ−1(InRn−1) = {(x, gn(x)) | x ∈ InRn−1}.

Define Gn : InRn−1 → Φ−1(InRn−1) by Gn(x) := (x, gn(x)). Define the nth critical

projection map Pn−1 : P−1
−1 (InRn−1)→ InRn−1 by

Pn−1 := Φ−1
−1 ◦Gn ◦ P−1. (4.12)

Lemma 4.9. For n0 ≤ n ≤ N , let Γ0 be a horizontal curve in B̂n0 . Then

FRn−1|Γ0 = (Pn−1|ΓRn−1
)−1 ◦ FRn−1 ◦ Pn0 |Γ0 .

Proof. Note that Pn−1 is a projection along the vertical foliation Fv−1 on B−1, and Pn0
is a projection along the vertical foliation on B̂n0 obtained by pulling back Fv−1 by
F−Rn+1. The claim follows immediately. �

Figure 6. Projections Pn0 : B̂n0 → In0 and Pn−1 : B̂nRn−1 → InRn−1

near the critical value v0 and critical point v−1 respectively. On any
horizontal curve Γ0 ⊂ B̂n0 , the iterate FRn−1 commutes with these
projections.

We record the following consequences of Theorem 4.7.
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Lemma 4.10. Let f0 : Ih−1 → Ih0 be the map with a unique critical point at 0 given
in Theorem 4.7. Then

κF
2
x2 < f0(x) <

K0

2
x2 and κF |x| < |f ′0(x)| < K0|x|.

Lemma 4.11. Let

Ih,±−1 := {x ∈ Ih−1 | ± x > 0} and g± :=
(
f0|Ih,±−1

)−1

.

Denote θ := K0/κF . Then for 1 ≤ i ≤ r, we have

|g(i)
± (t)| < θ̄

|t|i−1/2
for t > 0.

Proof. By Theorem 4.7 and Lemma 4.10, we have

‖f ′′0 ‖Cr−2 < K0, t <
K0x

2

2
and |f ′0(x)| > κF |x|.

The result now follows from Lemma D.3. �

5. Avoiding the Critical Value

For some N ∈ N∪ {∞}, let F be the N -times regularly Hénon-like renormalizable
map considered in Section 4. Recall the constants n0, η and K0 given in (4.1) and
(4.2), and the constant κF given in (4.8). Additionally, assume that n0 ≤ N is the
smallest number such that

K1λ
εRn0 < η, (5.1)

where

K1 = K1(K0, κF ) ≥ 1 (5.2)

is a uniform constant. In this section, we show that if a (finite or infinite) orbit of a
point avoids getting “too close” to the critical value v0, then it has uniform regularity.

For n0 ≤ n ≤ N , recall that the nth centered straightening chart Ψn : Bn0 → Bn
0

extends vertically to a domain B̂n0 ⊃ Bn0 that is vertically proper in B0 ⊃ Bn0
0 (see

Proposition 4.2 and Theorem 4.7). Let z = (a, b) ∈ B0 = Ih0 × Iv0 . For t ≥ 0, define

Vz(t) := [a− t, a+ t]× Iv0 .

For p ∈ B̂n0 and t ≥ 0, denote

Vnp (t) := (Ψn)−1(VΨn(p)(t)) ⊂ B̂n0 .
We record the following immediate consequences of Lemmas 4.10 and 4.11, and

(5.1).

Lemma 5.1. For n0 ≤ n ≤ N , let Ep−1 ∈ P2
p−1

be a λε̄Rn-horizontal direction at
p−1 ∈ B−1. If

p0 ∈ B̂n0 \ Vnv0
(λε̄Rn)
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then Ep0 is λ−ε̄Rn-horizontal in B̂n0 . Similarly, let Γ−1 be λε̄Rn-horizontal curve in
B−1. If

Γ0 := F (Γ−1) ⊂ B̂n0 \ Vnv0
(λε̄Rn) with t > λε̄Rn ,

then Γ0 is λ−ε̄Rn-horizontal in Cr in B̂n0 .

Lemma 5.2. For n0 ≤ n ≤ N , let Ẽp0 ∈ P2
p0

be a λε̄Rn-vertical direction at p0 ∈ B̂n0 .
If

p0 ∈ B̂nRn \ V
n
v0

(λε̄Rn),

then Ẽp0 is λ−ε̄Rn-vertical in B−1. Similarly, let Γ̃0 be λε̄Rn-vertical curve in B̂n0 . If

Γ̃0 ⊂ B̂nRn \ V
n
v0

(λε̄Rn),

then Γ̃−1 := F−1(Γ̃0) is λ−ε̄Rn-vertical in Cr in B−1.

Proposition 5.3. For n0 ≤ n ≤ N , let p0 ∈ B̂nRn \ V
n
v0

(λε̄Rn). If Ep0 is λε̄Rn-vertical

in B̂n0 , then Ep−Rn is λ(1−ε̄)Rn-vertical in B̂n0 . Moreover, p−Rn is Rn-times forward
(CK0, ε̄, λ)-regular along Ep−Rn for some uniform constant C ≥ 1 independent of F .

Consequently, if pkRn ∈ B̂n0 \ Vnv0
(λε̄Rn) for all k ∈ N, then p0 is infinitely forward

(CK0, ε̄, λ)-regular.

Proof. Consider a linearization

{Φp−m : Up−m → Up−m}Rnm=0

of F along the Rn-backward orbit of p0 with vertical direction

Ev,n
p0

:= (DΨn)−1
(
Egh

Ψn(p0)

)
.

Note that since (FRn ,Ψn) is a Hénon-like return, we have

DΨn
(
Ev,n
p−Rn

)
= Egv

Ψn(p−Rn ).

Denote

Eh,n
p−1

:= DΦp−1

(
Egh

0

)
and Eh

p−1
:= DΦ−1

(
Egh

Φ−1(p−1)

)
,

where Φ−1 : U−1 → U−1 is the chart defined over the critical point given in Theo-
rem 4.7. By Theorem A.2 ii) and (4.9), we see that

‖DF−Rn+1|Eh,np−1
‖ , ‖DF−Rn+1|Ehp−1

‖ < λ−ε̄Rn .

Hence, it follows from Proposition A.10 that

](Eh,n
p−1
, Eh

p−1
) < λ(1−ε̄)Rn .

Thus, by Lemma 4.10, we have

](Eh,n
p−1
, Ep−1) > λε̄Rn .

For 1 ≤ i ≤ Rn, denote

θ−i := ](Egh
0 , DΦp−i(Ep−i)).
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Choose a suitable uniform constant c ∈ (0, π/2) independent of F , and let 1 ≤ M ≤
Rn be the smallest number such that θ−M > c. By Theorem A.2, we see that

θ−i > λ−(1−ε̄)iθ−1 > λ−(1−ε̄)iλε̄Rn .

Consequently, M < ε̄Rn. Let M ′ := CM for some suitable uniform constant C ≥ 1
independent of F .

By Corollary A.8, we have

‖DF i|Ep−Rn ‖ � ‖DF
i|Ev,np−Rn ‖ for 0 ≤ i < Rn −M ′ (5.3)

By Proposition 4.2 iii), p−Rn is Rn-times forward (K0, ε, λ)-regular along Ev,n
p−Rn

.

Hence, (5.3) implies that p−Rn is (Rn −M ′)-times forward (CK0, ε, λ)-regular along
Ep−Rn . By Proposition A.5, we have

λε̄Rn < λ(1+ε̄)M ′ < ‖DF i|Ẽp−M′ ‖ < λ−ε̄M
′
< λ−ε̄Rn (5.4)

for any Ẽp−M′ ∈ P2
p−M′

. We conclude that for 0 ≤ i < M ′, we have

λε̄Rn <
‖DFRn−M ′+i|Ev,np−Rn ‖
‖DFRn−M ′+i|Ep−Rn ‖

< λ−ε̄Rn .

The (CK0, ε̄, λ) forward regularity of p−Rn along Ep−Rn follows. �

Proposition 5.4. For n0 ≤ n ≤ N , let p0 ∈ B̂n0 . If p0 is infinitely forward (K̄0, ε̄, λ)-

regular, then W ss(p0) is λ(1−ε̄)Rn-vertical and vertically proper in B̂n0 .

Proof. The verticality of W ss(p0) follows immediately from Proposition A.9. Consider
a linearization

{Φpm : Upm → Upm}∞m=0

of F along the infinite forward orbit of p0 with vertical direction Ess
p0

. By Theo-
rem A.15, we have

Φpm(W ss
loc(pm)) ⊂ {(0, y) ∈ Upm | y ∈ R}. (5.5)

Let
Vp0 := Vnp0

(λε̄Rn) ⊂ B̂n0 .
Arguing as in the proof of Proposition 4.2, we see that if M is the nearest integer to
Rn/2, then

ΦpM (FM(Vp0)) ⊂ (−λε̄Rn , λε̄Rn)× (−λ(1−ε̄)M , λ(1−ε̄)M). (5.6)

For q0 ∈ Vp0 , denote

Êv/h
qm := D(Fm ◦ (Ψn)−1)

(
E
gv/gh
Ψn(q0)

)
.

By Propositions 4.2 iii), A.5 and A.8, we have

‖DFm|Êvq0‖ < K0λ
(1−ε̄)m and ‖DFm|Êhq0‖ > K0

−1λε̄m.
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Let M0 ≤M be the smallest number number such that

K0λ
(1−ε̄)M0 < diam(UpM0

) � K0
−1λε̄M0 .

Then it follows from Proposition A.3 that qm ∈ Upm for all M0 ≤ m ≤ Rn. Define

Ẽv/h
qm := DΦ−1

pm

(
E
gv/gh
Φpm (qm)

)
.

By Proposition A.1, pM0 is infinitely forward (K0λ
−ε̄M0 , ε, λ)-regular. Hence, by The-

orem A.2 and Corollary A.8, we have∥∥∥∥DF (M−M0)|ẼhqM0

∥∥∥∥ > λε̄M .

Thus, Proposition A.10 implies that

](Ẽh
qM
, Êh

qM
) < λ(1−ε̄)M .

On the other hand, since ‖DΦ±1
pM
‖ < λ−ε̄M , it follows that

](Ess
qM
, Êh

qM
) > λε̄M .

We conclude by (5.5) and (5.6) that W ss
loc(pM) is vertically proper in FM(Vp0). �

Proposition 5.5. For n0 ≤ n ≤ N , let C0 ⊂ Bn0 be a connected set totally invariant
under F dRn for some d ∈ N such that dε̄ < 1. Denote Cm := Fm(C0) for m ∈ Z. If

Vnv0
(λε̄Rn) ∩ C = ∅, where C :=

d−1⋃
i=0

CiRn ,

then every point in C is infinitely forward regular. Moreover, there exists a chart
Φ : D0 → D0 such that the following statements hold:

i) C0 ⊂ D0;

ii) D0 is λ(1−ε̄)Rn-vertical and vertically proper in B̂n0 ;
iii) for p ∈ C0, we have

Φ−1({x} × πv(D0)) ⊂ W ss(p) where Φ(p) = (x, y) ∈ D0; and

iv) the map H := Φ ◦ F dRn ◦ Φ−1 is of the form H(x, y) = (h(x), v(x, y)), where
h : πh(D0)→ πh(D0) is a diffeomorphism.

Proof. The infinite forward regularity of any point p ∈ C is given in Proposition 5.3.
Let W ss

loc(p) be the connected component of W ss(p) ∩ B̂n0 containing p. Define

D :=
⋃
p∈C

W ss
loc(p). and D0 :=

⋃
p∈C0

W ss
loc(p).

By Proposition 5.4, the foliation of each component of D given by the local strong-
stable manifolds is λ(1−ε̄)Rn-vertical and vertically proper in B̂n0 . Let Φ : D0 → D0 be
a genuine horizontal chart that rectifies this vertical foliation over D0. Then the map
H := Φ ◦ F dRn ◦ Φ−1 preserves the vertical foliation.
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By Theorem 4.7 ii), (4.7) and the fact that

D ∩ Vnv0
(λε̄Rn) = ∅,

it follows that h := Π1D(H) is a diffeomorphism. �

6. Combinatorial Structure of Renormalization

In this section, we show that at sufficiently deep renormalization depths (i.e. be-
yond the depth n0 given by (4.1)), the dynamical structure of a 2D Hénon-like map
closely resembles that of a 1D unimodal map. See Figure 7. In particular, we prove
that topological renormalizations at these depths with combinatorics of bounded type
are guaranteed to be regular Hénon-like, as long as they are not trivial in the sense
defined below.

Following [CPTr], we say that a diffeomorphism (in any dimension) is generalized
Morse-Smale (of θ-bounded type) for some θ ∈ N if

• the ω-limit set of any forward orbit is a periodic point;
• the α-limit set of any backward orbit is a periodic point; and
• all periodic orbits have periods bounded by θ.

Note that a diffeomorphism of an interval to itself is generalized Morse-Smale of either
1-bounded type if orientation-preserving, or 2-bounded type if orientation-reversing.
A renormalization of a map is trivial if the induced return map is a generalized Morse-
Smale diffeomorphism of 2-bounded type.

6.1. For unimodal maps.

Lemma 6.1. Consider a unimodal map f : I → I with the critical point c ∈ I.
Suppose that f ′′(c) > 0. Then the following statements hold.

i) If f(c) > c, then c converges to either a fixed attracting or parabolic sink.
ii) If f 2(c) < c, then c converges to either a fixed or 2-periodic attracting or parabolic

sink.
iii) If f 3(c) > f 2(c), then c converges to a fixed attracting or parabolic sink.

If none of the above cases hold, then J := [f(c), f 2(c)] is the minimal invariant
interval containing c.

Consider a unimodal map f : I → I with the critical point c ∈ I. For concreteness,
assume that f ′′(c) > 0. For θ ≥ 1, we say that f has θ-bounded kneading if f(c) < c
and f 1+θ(c) < c. Recall that f is valuably renormalizable if there exists an R-periodic
interval I1 ⊂ I for some integer R ≥ 2 such that fR(I1) contains the critical value
v for f . Note that in this case, f has θ-bounded kneading for some θ ≤ R. The
renormalization type τ(f) of f is given by the order of points in {f i(v)}R−1

i=0 ⊂ I. If f
is N -times valuably renormalizable, then its N-combinatorial type is defined as

τN(f) := (τ(f), τ(R(f)), . . . , τ(RN−1(f))).
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Lemma 6.2. Let f : I → I be a unimodal map with critical value v. If f is non-
trivially topologically renormalizable with return time R ≥ 2, then f is valuably renor-
malizable. In this case, I1 := [v, fR(v)] is the minimal R-periodic interval containing
v.

6.2. For Hénon-like maps. For some N ∈ N ∪ {∞}, let F be the N -times reg-
ularly Hénon-like renormalizable map considered in Section 5. Suppose that the
combinatorics of renormalizations of F are of b-bounded type for some integer b ≥ 2.
Moreover, assume that ε is sufficiently small so that bε̄ < 1. By only considering
every other returns if necessary, we may also assume without loss of generality that
rn := Rn+1/Rn ≥ 3 for n0 ≤ n ≤ N .

Let z = (a, b), w = (c, d) ∈ B0 = Ih0 × Iv0 . Denote

m := min{a, c} and M := max{a, c}.
For t ≥ 0, define

V[z,w](t) := [m− t,M + t]× Iv0 .
For n0 ≤ n ≤ N ; p, q ∈ B̂n0 and t ≥ 0, denote

Vn[p,q](t) := (Ψn)−1(V[Ψn(p),Ψn(q)](t)).

Let s ∈ {0, 1, 2}. For n0 ≤ n ≤ N − s and k ≥ −1, denote

ank := P n
0 (vkRn) and bn,sk := P n

0 (vkRn+Rn+s) = ank+Rn+s/Rn
.

Define
B̂n,s
kRn

:= V[ank ,b
n,s
k ](λ

ε̄Rn) and B̂n,skRn := (Ψn)−1(B̂n,s
kRn

).

In particular, we have

B̂n0 ⊃ B̂
n,0
0 := Vn[v0,vRn ](λ

ε̄Rn).

See Figure 7.

Lemma 6.3. Let n0 ≤ n ≤ N . Suppose that FRn|Bn0 is non-trivially topologically
renormalizable with combinatorics of b-bounded type. Then

VnvkRn (λε̄Rn) ∩ Vnv−Rn (λε̄Rn) = ∅ for k = O(b).

Proof. Let δ ∈ (ε̄, 1) with bδ̄ < 1. Suppose towards a contradiction that for some
k = O(b), we have

VvkRn (λδ̄Rn) ∩ Vv−Rn (λδ̄Rn) 6= ∅. (6.1)

Without loss of generality, assume that k is the smallest number for which (6.1) holds.
For y ∈ Iv0 , consider

Jn0 ⊂ (−λδ̄Rn ,+λδ̄Rn) and J n
0 := Ψ−n(Jn0 × {y}) ⊂ Vnv0

(λδ̄Rn).

For i ∈ N, denote J n
i := F i(J n

0 ).
By Proposition A.5, we see that

|J n
iRn−1| < λ−iε̄Rn|Jn0 | < λδRn for i = O(b).
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Moreover, since

J n
iRn ∩ Vv−Rn (λδ̄Rn) = ∅ for i < k,

we can argue by induction using Lemma 4.8 iii) and Lemma 5.1 that J n
(k+1)Rn−1 is

λ(1−ε̄)Rn-horizontal in Cr in B−1. Then it follows from (6.1), (4.7) and Lemma 4.10
that

|P n
0 (J n

(k+1)Rn)| < λδRn|J n
(k+1)Rn−1| < λδRn|Jn0 |.

We conclude that

F (k+1)Rn(Vnv0
(λδ̄Rn)) b Vnv0

(λδ̄Rn).

Denote Eh
pi

:= DF i(Eh
p0

) for i ∈ N. Arguing by induction using Lemma 4.8 i) and

Lemma 5.1, we also see that Eh
p(k+1)Rn−1

is λ(1−ε̄)Rn-horizontal in B−1. Consequently,

by (6.1), (4.7) and Lemma 4.10, we have

](Eh
p(k+1)Rn

, Ev,n
p(k+1)Rn

) < λδRn .

Hence, by Theorem 4.7 ii), it follows that

‖DFRn|Ehp(k+1)Rn

‖ < λδRn .

Since, by Proposition A.5, we have

‖Dp0F
(k+1)Rn‖ < λ−ε̄Rn ,

we conclude that

‖Dp0F
(k+2)Rn‖ � ‖Dp0F

(k+2)Rn|Ehp0‖ < λ−ε̄RnλδRn = λδRn .

Applying Proposition A.5 again, we have

‖Dp0F
2(k+1)Rn‖ ≤ ‖Dp0F

(k+2)Rn‖ · ‖Dpk+2(Rn)
F kRn‖ < λδRnλ−ε̄Rn = λδRn .

Thus, under F 2(k+1)Rn , there exists a unique fixed sink q0 that attracts the orbit of
every point in Vnv0

(λε̄Rn). Since Vnv0
(λε̄Rn) maps into itself under F (k+1)Rn , we see that

q0 is fixed under F (k+1)Rn .
Denote

Vnv0
:= Vnv0

(λε̄Rn) and Rn+1 := (k + 1)Rn.

The set ∂Vnv0
\ ∂B̂n0 consists of two vertical curves γl,0 and γr,0: the former to the left

and the latter to the right of v0.
For i ≥ 0, let Bn+1,−i

0 be the component of F−iRn+1(Vnv0
) ∩ B̂n0 that contain Vnv0

.

Proceeding inductively, suppose that Bn+1,−i
0 is a quadrilateral such that ∂Bn+1,−i

0 \
∂B̂n0 consists of two vertical curves γl,−i and γr,−i: the former to the left of γl,−i+1

and the latter to the right of γr,−i+1. Let y ∈ Iv0 , and denote

I−i,y0 := (Ψn)−1(In0 × {y}) ∩ B
n+1,−i
0 and I−i,yj := F j(I−i,y0 ) for j ∈ N.

Arguing as above, we see that I−i,yRn+1−1 is λ(1−ε̄)Rn-horizontal in B0, and hence, I−i,yRn+1

is vertical quadratic in B̂n0 whose endpoints are contained in γr,−i. Moreover, by
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Lemma 4.8 iv) and Lemma 5.2, we also see that the induction hypothesis holds for
Bn+1,−i−1

0 .
By Proposition 5.3, we see that as i → ∞, the curves γl,−i and γr,−i converge

to subarcs γl and γr respectively of the strong-stable manifold W ss(w0) of a Rn+1-

periodic saddle w0 ∈ γr := W ss
loc(y0). Moreover, γl and γr are λ(1−δ̄)Rn-vertical and

vertically proper in B̂n0 . It follows that these curves bound the immediate basin

Bn+1
0 ⊂ B̂n0 of q0.

Let Rn < R̂n+1 ≤ bRn. We claim that any R̂n+1-periodic Jordan domain Dn+1
0 b

Bn0 induces a trivial renormalization of FRn|Bn0 .

If Dn+1
0 ∩Bn+1

0 = ∅, then by Proposition 5.5, Dn+1
0 induces a trivial renormalization

of FRn|Bn0 . Assume that Dn+1
0 ∩Bn+1

0 6= ∅. Then Dn+1
0 3 q0 and R̂n+1 = Rn+1. Define

Cn+1
0 :=

⋂
i∈N

F iRn+1(Dn+1
0 ).

By Proposition 5.3, every point p ∈ Cn+1
0 that does not eventually map into Bn+1

0

is infinitely forward (CK0, δ̄, λ)-regular. Let W ss
loc(p) be the connected component of

W ss(p) ∩ B̂n0 that contain p, which must be λ(1−δ̄)Rn-vertical and vertically proper in

B̂n0 by Proposition 5.4.
Let pl0 and pr0 be the leftmost and the rightmost points in Cn+1

0 respectively. Let

D̂n+1
0 be the quadrilaterals vertically proper in B̂n0 enclosed between W ss

loc(p
l
0) and

W ss
loc(p

r
0), so that Cn+1

0 ⊂ D̂n+1
0 . Similarly, let En+1

0 be the quadrilaterals vertically

proper in B̂n0 enclosed between W ss
loc(w0) and W ss

loc(p
r
0).

Observe that

D̂n+1
iRn
∩ Vnv0

(λε̄Rn) = ∅ for 1 ≤ i < Rn+1/Rn. (6.2)

Let J0 be a genuine horizontal arc contained in En+1
0 . Using (6.2), a similar ar-

gument as above shows that JiRn for 0 ≤ i < Rn+1/Rn is λ−δ̄Rn-horizontal in B̂n0 .
Consequently,

FRn+1(En+1
0 ) ∩ Bn+1

0 = ∅.

It follows that En+1
0 is connected and FRn+1(En+1

0 ) = En+1
0 . Applying Proposition 5.5,

we conclude that Dn+1
0 induces a trivial renormalization of FRn|Bn0 . This is a contra-

diction, and therefore, (6.1) cannot hold. �

Proposition 6.4. Let n0 ≤ n ≤ N . Suppose that FRn|Bn0 is twice non-trivially
topological renormalizable with combinatorics of b-bounded type. Then the following
statements hold:

i) |ani − anj | > λε̄Rn for −1 ≤ i, j ≤ 2 with i 6= j;
ii) an0 = 0 < anm < an1 for m ∈ {−1, 2}; and

iii) FRn(B̂n,00 ) b B̂n,00 .
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Proof. For 0 ≤ i ≤ b, mapping un−1 and uni by FRn , and applying Theorem 4.7, it
follows from Lemma 6.3 that

|an0 − ani+1| > λε̄Rn|an−1 − ani | > λε̄Rn . (6.3)

Now, suppose towards a contradiction that an0 = 0 < an−1 < an1 is not true. Then
we have

λε̄Rn < an1 < an−1 − λε̄Rn .
Denote

Jn0 := [−λε̄Rn , an−1 − λε̄Rn ], B̌n
0 := Jn0 × Iv0 and B̌n0 := (Ψn)−1(B̌n

0 ).

By Lemma 4.8 iii) and (4.7), we see that

FRn(B̌n0 ) b B̌n0 \ Vnv0
(λε̄Rn).

It follows from Proposition 5.5 that B̌n0 induces a trivial renormalization of F .
Define

Ďn0 = Ďn,00 := B̌n0 ∪ Vnv−Rn (λε̄Rn).

Observe that FRn(Ďn0 ) b B̌n0 . For i ∈ N, let

Dn,−i0 := (FRn|B̂n0 )−1(Ďn,−i+1
0 ).

Arguing as in the proof of Lemma 6.3, we see that Dn,−i0 is a quadrilateral vertically

proper in B̂n0 that is bounded between two λ(1−ε̄)Rn-vertical curves γl,−i and γr,−i: the
former to the left of γl,−i+1 and the latter to the right of γr,−i+1. Moreover, there
exists an Rn-periodic saddle w0 such that γr,−i converges to the local strong-stable
manifold W ss

loc(w0) as i→∞.
Write

B̂n0 \W ss
loc(w0) = Dn0 t En0 ,

where Dn0 is the connected component that contains Ďn0 . Observe that FRn(En0 ) ⊂ En0 .

Applying Proposition 5.5, we conclude that B̂n0 induces a trivial renormalization of
F , which is a contradiction.

Next, suppose towards a contradiction that

|an1 − an2 | < λε̄Rn .

By the Rn-times regularity of F on B̂n0 , we conclude that

‖vkRn − v(k+1)Rn‖ < λ−ε̄Rn|an1 − an2 | < λε̄Rn for 1 ≤ k < b. (6.4)

For l ∈ {1, 2}, let Bn+l
0 b Bn+l−1

0 be the Rn+l-periodic Jordan domain that induces
a non-trivial renormalization of FRn|Bn0 . By Proposition 5.5, we may assume without

loss of generality that a λε̄Rn-neighborhood of Bn+l
0 contains v0 (and hence, also vRn+l

).

Proposition B.1 implies the existence of a saddle point x0 ∈ Bn+1
0 of period dRn+1

for some d ≤ rn+1. For 0 ≤ i < Rn+1, let W ss
loc(xiRn) be the connected component of

W ss(xiRn) ∩ B̂n0 containing xiRn . Clearly,

W ss
loc(xiRn) ∩ Bn+1

jRn
= ∅ (6.5)
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for 0 ≤ j < rn such that i 6= j. Moreover, it follows from Propositions 5.4 and 5.5
that W ss

loc(xiRn) is λ(1−ε̄)Rn-vertical and vertically proper in B̂n0 .
Mapping vRn+1 and v0 by FRn and applying Theorem 4.7, it follows from (6.3) that

|an1 − anrn+1| > λε̄Rn .

Thus, by (6.4), we have anrn+1 < ank < an1 for 2 ≤ k ≤ rn. This contradicts (6.5).
Therefore, claim i) holds.

Suppose towards a contradiction that an2 < an1 is not true. Then we have

an1 < an2 − λε̄Rn .
Let y ∈ Iv0 , and consider

An0 := [an−1 + λεRn , an1 ] and An0 := (Ψn)−1(An0 × {y}).
Denote Ani := F i(An0 ). Applying Theorem 4.7 and Lemma 5.1, we see that AnRn is

λ−ε̄Rn-horizontal in B̂n0 . This means that fn := Π1D(Fn), where

Fn := Ψn ◦ FRn ◦ (Ψn)−1,

maps An0 onto fn(An0 ) as an orientation-preserving diffeomorphism. Moreover,

fn(An0 ) ⊃ [λε̄Rn , an2 − λ(1−ε̄)Rn ] c An0 .

Let
Ln0 := {(an1 , t) ∈ B̂n0} and Ln0 := (Ψn)−1(Ln0 ).

For i ∈ N, define
Ln−i := F−Rn(Ln−i+1 ∩ AnRn).

Applying Lemma 5.2 and Lemma 4.8 iv) and arguing by induction, we see that Ln−i
is λ(1−ε̄)Rn-vertical and vertically proper in B̂n0 . Moreover, by Lemma 5.3, we see that
any point p ∈ Ln−i is iRn-times forward (CK0, ε̄, λ)-regular along the tangent direction
to Ln−i at p. It follows that Ln−i converges as i→∞ to the local strong-stable manifold
of some Rn-periodic saddle z0. Let Bn,r0 be the connected components of Bn0 \W ss(z0)
containing vRn . It follows that FRn(Bn,r0 ) ⊂ Bn,r0 . This is a contradiction. Claim ii)
now follows.

Theorem 4.7 implies that

FRn(Vn[v0,v−Rn ](λ
ε̄Rn)) b Vn[v0,vRn ](λ

ε̄Rn).

We similarly conclude that

FRn(Vn[v−Rn ,vRn ](λ
ε̄Rn)) b Vn[v0,v2Rn ](λ

ε̄Rn).

Thus, claim iii) holds. �

Proposition 6.5. Let n0 ≤ n ≤ N . Suppose that FRn|Bn0 is twice non-trivially
topological renormalizable with combinatorics of b-bounded type. Then for m := n−s
with s ∈ {1, 2}, the following statements hold:

i) B̂m,slRm
∩ B̂m,skRm

= ∅ for 0 ≤ l, k < Rn/Rm with l 6= k;
ii) am0 = 0 < bm0 < amk , b

m
k < bm1 < am1 for 2 ≤ k < Rn/Rm; and
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iii) FRm(B̂m,skRm
) b B̂m,s(k+1)Rm (mod Rn) for 0 ≤ k < Rn/Rm.

Consequently, B̂n,00 is Rn-periodic.

Figure 7. The combinatorial structure of the nth renormalization of
F for n ≥ n0 (for rn := Rn+1/Rn = 3). The Rn+1-periodic domains

B̂n,10 , B̂n,1Rn
and B̂n,12Rn

containing v0, vRn and v2Rn respectively are ver-

tically proper and pairwise disjoint in B̂n0 . Moreover, FRn(B̂n,1kRn
) b

B̂n,1(k+1)Rn (mod Rn+1). Under the projection P n
0 : B̂n0 → In0 ⊂ R, the orbit

{vkRn}rnk=−1 of the critical value are mapped to {ank}
rn
k=−1.

Proof. Suppose towards a contradiction that for some 1 ≤ j, i < 2rm with j < i, we
have

|ami − amj | < λε̄Rm .
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Applying F (2rm−i)Rm to viRm and vjRm , we see by the regularity of F that

‖v2Rm+1 − vj′Rm‖ < λε̄Rm ,

where j′ := j + 2rm − i. Note that j′ 6= 0 (mod rm). Hence,

Bm+1
j′Rm
∩ Bm+1

0 = ∅.

Moreover, by Proposition 6.4, we have

λε̄Rm < am2rm − λ
ε̄Rm < amj′ < am2rm + λε̄Rm < amrm . (6.6)

Proposition B.1 implies the existence of a saddle point x0 ∈ Bm+2
0 of period dRm+2

for some d ≤ rm+2. For 0 ≤ k < Rm+2/Rm, let W ss
loc(xkRm) be the connected com-

ponent of W ss(xkRm) ∩ B̂m0 containing xkRm . Then (6.6) implies that W ss
loc(xj′Rm)

intersect Bm+1
0 . This is a contradiction. Claim i) follows. Then Claim ii) and iii)

follow by Proposition 6.4 and Theorem 4.7 respectively. �

By Proposition 6.5, we may henceforth assume without loss of generality that for
all n0 ≤ n ≤ N such that FRn|Bn0 is twice non-trivially renormalizable, we have

Bn0 := B̂n,00 := Vn[v0,vRn ](λ
ε̄Rn). (6.7)

Let 0 ≤ n < N . Suppose that FRn+1|Bn+1
0

is twice non-trivially topological renor-

malizable with combinatorics of b-bounded type. Consider the sequence of points

{ank := πh ◦Ψn(vkRn)}rn−1
k=0 ⊂ In0 := πh(B

n
0 ) ⊂ R. (6.8)

The renormalization type τ(Rn(F )) of Rn(F ) is given by the order of points in (6.8).
Additionally, the N-renormalization type of F is defined as

τN(F ) := (τ(F ), τ(R(F )), . . . , τ(RN−1(F ))).

Lemma 6.6. Let n0 ≤ n ≤ N . Suppose that FRn|Bn0 is twice topological renor-
malizable with combinatorics of b-bounded type. For s ∈ {1, 2} and m := n − s,
let Γ0 be a λ−ε̄Rm-horizontal curve in Bn0 . Then the following statements hold for
1 ≤ k ≤ Rn/Rm:

i) Γ(k−1)Rm is λ−ε̄Rm-horizontal in Bm0 ; and

ii) ΓkRm−1 is λ(1−ε̄)Rm-horizontal in B−1.

Proof. The result is an immediate consequence of Lemmas 4.8 iii) and 5.1, and Propo-
sition 6.5. �

Theorem 6.7 (Hénon-likeness of deep returns). Suppose that FRN |BN0 is three times
non-trivially topologically renormalizable with combinatorics of b-bounded type. Then
F is (N+1)-times (CK0, ε̄, λ)-regularly Hénon-like renormalizable, where and C,K0 ≥
1 are uniform constants (the former independent of F , and the latter given in (4.2)).

Proof. For l ∈ {1, 2}, let BN+l
0 b BN+l−1

0 be an RN+l-periodic Jordan domain with

rN+l−1 := RN+l/RN+l−1 ≤ b.
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Define

CN+l
0 :=

∞⋂
i=1

F iRN+l(BN+l
0 ) and CN+l :=

RN+l/RN−1⋃
i=0

F iRN (CN+l
0 ).

By Proposition 5.5, we see that

VNv0
(λε̄RN ) ∩ CN+l 6= ∅.

Without loss of generality, assume that

VNv0
(λε̄RN ) ∩ CN+l

0 6= ∅.
By (4.9) and Proposition A.5, it follows that

dist(vRN+l
, CN+l

0 ) < λε̄RN .

For m ≥ −1, let
aNm := πh ◦ΨN(vmRN ).

Denote
FN+1 := ΨN ◦ FRN+1 ◦ (ΨN)−1 and fN+1 := Π1D(FN+1).

Note that aN0 = 0 and aNrN = fN+1(0). Moreover, by (4.9), we see that

|aN(i+1)rN
− fN+1(aNirN )| < λ(1−ε̄)RN for i ∈ N.

Define

J0 := (−λε̄RN , aNrN + λε̄RN ) and D0 := (ΨN)−1(J0 × Iv0 ).

Denote Di := F i(D0) for i ∈ N. By the regularity of F , we see that DiRN is contained
in the λε̄RN -neighborhood of BN+1

iRN
for all 1 ≤ i ≤ b. We claim that

aN−1 ∈ πh ◦ΨN(D(rN−1)RN ). (6.9)

Suppose towards a contradiction that we have

aN−1 ∈ πh ◦ΨN(D(r̂−1)RN ) for some r̂ < rN . (6.10)

Proposition B.1 implies the existence of a saddle point q0 ∈ BN+1
0 of period dRN+1

for some d ≤ rN+1. For 0 ≤ i < RN+1, let W ss
loc(qiRN ) be the connected component

of W ss(qiRN ) ∩ BN0 containing qiRN . It follows from Propositions 5.4 and 5.5 that
W ss

loc(qiRN ) is λ(1−ε̄)RN -vertical and vertically proper in BN0 .
By (6.10), either πh ◦ ΨN(BN+1

0 ) is contained in a λε̄RN -neighborhood of πh ◦
ΨN(BN+1

r̂RN
), or vice versa. In the former case, W ss(q0) intersects BN+1

r̂RN
, and in the lat-

ter case, W ss(qr̂RN ) intersects BN+1
0 . In either case, we have a contradiction. Hence,

(6.10) does not hold.
Suppose towards a contradiction that

aN−1 6∈ πh ◦ΨN(D(rN−1)RN ) (6.11)

For y ∈ Iv0 , let

J y
0 := (ΨN)−1(J0 × {y}) and J y

i := F i(J y
0 ) for i ∈ N.
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Arguing inductively using Lemmas 4.8 iii) and 5.1, we see that

J y
RN+1

∩ VNv0
(λε̄RN ) = ∅,

and J y
RN+1

is λ−ε̄RN -horizontal. Hence, fN+1 maps J0 as a diffeomorphism onto

fN+1(J0).
If fN+1 is orientation-reversing, then aN2rN and aNrN are λ(1−ε̄)RN -close to the left and

right endpoints of fN+1(J0) respectively. Lemma 6.3 implies that λε̄RN < aN2rN . Thus,
we see that fN+1(J0) b J0. We conclude that

FRN+1(D0) b D0 \ VNv0
(λε̄RN ).

Applying Proposition 5.5, it follows that D0 induces a trivial renormalization of
FRN |BN0 . Then by a similar argument as in the proof of Lemma 6.3, we see that

BN+1
0 also induces a trivial renormalization of FRN |BN0 . This is a contradiction.

If fN+1 is orientation-preserving, then aNrN and aN2rN are λ(1−ε̄)RN -close to the left
and right endpoints of fN+1(J0) respectively. Proceeding inductively on k ∈ N, sup-
pose that JkRN+1

is λ−ε̄RN -horizontal; and every p0 ∈ D0 is kRN+1-times forward
(CK0, ε̄, λ)-times regular along

Êv,k
p0

:= DF−kRN+1(Ev,N
pkRN+1

).

It follows that

distCr(J y
kRN+1

,J y′

kRN+1
) < λ(1−ε̄)kRN+1 for y, y′ ∈ Iv0 .

By a similar argument as above used to disprove (6.10), we see that

J y
(krN+i)RN

∩ Vnv0
(λε̄RN ) = ∅ for i < rN .

Hence, arguing inductively using Lemmas 4.8 iii) and 5.1, it follows that J y
(k+1)RN+1−1

is λ(1−ε̄)RN -horizontal.
Let

Ĵ y
k :=

k−1⋃
i=0

J y
iRN+1

and Ĵyk := πh ◦ΨN(Ĵ y
k ).

If

J y
(k+1)RN+1

∩ Vnv0
(λε̄RN ) 6= ∅, (6.12)

then fN+1|Ĵyk is a Cr-map on the interval Ĵyk that maps Ĵk−1 as an orientation-

preserving diffeomorphism to fN+1(Ĵk−1), and maps the unique turning point in

Ĵk \ Ĵk−1 to an image that is λ(1−ε̄)RN -close to 0. This is clearly impossible. It
follows by induction that (6.12) does not hold for all k ∈ N.

Let

D :=
∞⋃
i=0

F iRN+1(D0) and A :=
∞⋂
i=0

F iRN+1(D)
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Then the above observations imply thatA0 is a totally invariant connected set disjoint
from VNv0

(λε̄RN ), whose basin contains D. By a similar argument as in the proof of

Lemma 6.3, we see that BN+1
0 induces a trivial renormalization of FRN |BN0 . This is

a contradiction. Hence, we conclude that (6.9) holds. Moreover, arguing as in the
proofs of Propositions 6.4 and 6.5, we conclude that D0 is RN+1-periodic.

For p0 ∈ D0, let
Ev,N+1
p0

:= DF−RN+1(Eh
pRN+1

). (6.13)

Then Proposition 5.3 implies that p0 is RN+1-times forward (CK0, ε̄, λ)-regular along
Ev,N+1
p0

. Denote BN+1
0 := D0, and let ΨN+1 : BN+1

0 → BN+1
0 be a genuine horizontal

chart that rectifies the vertical direction field given by (6.13). It follows from (6.9)
that

(FRN+1 ,ΨN+1 : BN+1
0 → BN+1

0 )

is a Hénon-like return.
It remains to prove that any point p0 ∈ BN+1

RN+1
is backward (CK0, ε̄, λ)-regular

along Eh
p0

. By the regularity of the Nth Hénon-like return, p0 is RN -times backward

(L, ε, λ)-regular along Eh
p0

. Proceeding by induction, suppose that for some 1 ≤
l < rN+1, the point p0 is lRN -times backward (CK0, ε̄, λ)-regular along Eh

p0
. By

Proposition A.9,
Ev,N+1
p−lRN

:= DF−lRN (Eh
p0

)

is λ(1−ε̄)RN -vertical in BN0 . Arguing as in the proof of Proposition 5.3, we see that

λε̄RN <
‖DF−i|Ev,N+1

p−lRN
‖

‖DF−i|Ehp−lRn ‖
< λ−ε̄RN for 1 ≤ i ≤ RN .

Concatenating with the lRN -times backward regularity of p0, we conclude that p0 is
actually (l + 1)RN -times backward (C̄K0, ε̄, λ)-regular along Eh

p0
(with ε̄ increased

some uniform amount from the lth step). �

7. Critical Recurrence

Let F be the infinitely regularly Hénon-like renormalizable map with combinatorics
of bounded type considered in Subsection 6.2 (with N =∞). In this section, we prove
the following result.

Theorem 7.1. We have

Z0 :=
∞⋂
n=1

BnRn = {v0}.

Consequently, the orbit of v0 is recurrent.

Proof. Let

Y0 :=
∞⋂
n=1

Bn0 , I∞0 := Ih0 ∩ Y0 and I∞0 := πh ◦ Φ0(I∞0 ).
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Note that every point p0 ∈ Y0 is infinitely forward (L, ε, λ)-regular. Moreover, by
Proposition 5.4, W ss(p0) is vertically proper in B1

0. Let W ss
loc(p0) be the connected

component of W ss(p0) ∩ B1
0 containing p0. Then we have

Y0 =
⋃

p0∈I∞0

W ss
loc(p0).

Since Yi := F i(Y0) ⊂ Bni for all n ∈ N such that 0 ≤ i < Rn, we see that

Yi ∩ Y0 = ∅ for i ∈ N.
We claim that Y0 = W ss

loc(v0). Suppose towards a contradiction that this is not true.
By (4.7) and (4.11), this means that there exists a uniform constant b > 0 such that
(0, b) ⊂ I∞0 .

Recall that for n ∈ N, the curve InRn is vertical quadratic in Bn0 . Let cn0 ∈ In0 be
the unique point such that

Egv

Ψn(cnRn)
= D(Ψn ◦ FRn)

(
Eh
cn0

)
.

By Theorem 4.7 ii), we see that Φ−1(InRn−1) is λ(1−ε̄)Rn-horizontal in B−1. Hence, by
Theorem 4.7 i), we have

‖cnRn − v0‖ < λ(1−ε̄)Rn .

Let M ∈ N be sufficiently large so that for n ≥M , we have

P n
0 (cnRn) < λ(1−ε̄)Rn < λε̄RM < b/2.

Note that for 0 ≤ k < Rn/RM , we have

BnkRM ∩ B
n
0 = ∅.

Thus, applying Lemma 5.1 and proceeding by induction, we see that the curve InkRM
is λ−ε̄RM -horizontal in BM0 , and In(k+1)RM−1 is λ(1−ε̄)RM -horizontal in B−1.

Define Bn−kRM for 0 ≤ k < Rn/RM inductively as follows. Suppose that

• F kRM (BnkRM ) b Bn0 ;

• ΨM(Bn−kRM ) is a vertically proper quadrilateral in BM
0 , whose side boundaries

are λ(1−ε̄)RM -vertical; and
• Bn−kRM ⊃ I

n
Rn−kRM .

Since Bn0 is Rn-periodic (see Proposition 6.5 iii)), property i) implies that

Bn−kRM ∩ B
n
−iRM = ∅ for 0 ≤ i < k.

This, together with property ii) ensure that

F−1(Bn−kRM ) ∩ BMRM−1

consists of exactly two connected components (unless k = 0, in which case there is only
one connected component). Let Bn−kRM−1 be the component containing InRn−kRM−1.
Define

Bn−(k+1)RM
:= F−RM+1(Bn−kRM−1).
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By Lemma 5.2, we see that

∂Bn−kRM−1 \ ∂BMRM−1

consists of two λ−ε̄RM -vertical curves Γn,±−kRM−1 in B−1, and

Γn,±−(k+1)RM
:= F−RM+1(Γn,±−kRM−1)

are λ(1−ε̄)RM -vertical and vertically proper in BM0 .
Since the sets

Bn−(k+1)RM
⊃ InRn−(k+1)RM

for 0 ≤ k < Rn/RM

are disjoint, the intervals

InkRM := PM
0 (InkRM )

must be disjoint in IM0 .
Consider the diffeomorphism hM given in Theorem 4.7 ii). Define

gnk (x) := PM0 ◦ F ◦ (PM−1|In(k+1)RM−1
)−1(hM(x), 0) for x ∈ InkRM .

Since In(k+1)RM−1 and In(k+1)RM
are uniformly horizontal in B−1 and B0 respectively, it

follows that ‖gnk‖Cr is uniformly bounded. Moreover,

Rn/RM−1∑
k=0

|InkRM | < |I
M
0 |.

Thus, we conclude from Theorem C.1 that

Gn := gnRn/RM−1 ◦ . . . ◦ gn0

has uniformly bounded distortion.
Let

In+1
−Rn = PM

0 (Bn+1
−Rn).

Then In+1
−Rn and In+1

0 are disjoint intervals in In0 . Moreover, |In+1
0 | is uniformly bounded

below, while

|In+1
−Rn|, |I

n+1
Rn
| → 0 as n→∞.

However,

Gn(In+1
−Rn) = In+1

0 and Gn(In+1
0 ) = In+1

Rn
.

This contradicts the fact that Gn has uniformly bounded distortion. The result
follows. �
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8. A Priori Bounds

Let r ≥ 2 be an integer, and consider a Cr+4-Hénon-like map F : D → D. For
some N ∈ N ∪ {∞}; L ≥ 1 and ε, λ ∈ (0, 1), suppose that F has N nested (L, ε, λ)-
regular Hénon-like returns given by (2.8) with combinatorics of b-bounded type for
some integer b ≥ 3. By only considering every other returns if necessary, we may also
assume without loss of generality that rn := Rn+1/Rn ≥ 3 for n0 ≤ n ≤ N . Assume
that ε is sufficiently small so that bε̄ < 1. Also assume that N is sufficiently large,
so that for some smallest number 0 ≤ n0 ≤ N , we have (5.1). Lastly, suppose that
FRN |BN0 is twice non-trivially topologically renormalizable (so that Proposition 6.5

applies).
The goal of this section is to prove Theorem A stated in Section 3.

8.1. The outline of strategy. For n0 ≤ n ≤ N , consider the horizontal cross-
section of the nth renormalization domain Bn0 :

In0 := (Ψn)−1(In0 × {0}) = Ih0 ∩ Bn0 3 v0.

See (4.10). We want to prove that Dis(FRn , In0 ) is uniformly bounded.
The general strategy is to reduce the 2D dynamics of F acting on In0 to a 1D

mapping scheme for which standard 1D arguments can be applied to control distor-
tion. Below we give a broad description of this 1D mapping scheme using simpler
notations to better convey the main ideas. In the actual proof, the 1D scheme is
derived from the 2D dynamics it is modeling, which forces the notations to become
more complicated.

Fix some intervals I0, I−1 ⊂ R. For 1 ≤ n ≤ N , let {Ani }Rn−1
i=0 and {Ǎni }Rn−1

i=0 be
collections of pairwise disjoint subintervals in I0 and I−1 respectively so that 0 ∈
ǍnRn−1 ⊂ I−1. Consider the following mapping scheme for 1 ≤ i ≤ Rn:

• a C2-diffeomorphism

φni : Ani−1 → Ǎni−1 := φni (Ani−1)

with uniformly bounded C2-norm; and
• a quadratic power map

gni : Ǎni−1 → Ani := gni (Ǎni−1)

given by
gni (x) = x2 + ani for some ani ∈ R.

Define
Hi := φni ◦ gni−1 ◦ φni−1 ◦ . . . ◦ gn1 ◦ φn1 .

Suppose that the domains of φni for 1 ≤ i ≤ Rn can be extended so that gni ◦Hi maps
a strictly larger interval Ãn0,i c An0 diffeomorphically onto an image gni ◦Hi(Ã

n
0,i) that

contains the two adjacent neighbors Anι−(i) and Anι+(i) of Ani (or at least subintervals in

Anι±(i) of commensurate lengths). Then we can apply Koebe distortion theorem (see

Section C) to conclude that HRn|An0 has uniformly bounded distortion.
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We now give a brief description of how the 2D dynamics of F acting on the curve
In0 is reduced to the above 1D mapping scheme. The main idea is to weave into the
dynamics of F systematic applications of projections near the critical value v0. This

confines the orbit of In0 to lie in a fixed union of curves {In0
i }

Rn0−1

i=0 . These projections
are then “undone” near the critical point v−1 to recover the original dynamics. See
the definitions of the maps Hn

i and Ĥi, as well as Lemmas 8.2 and 8.3. See also
Figure 8.

The pairwise disjointedness of the collection of images {J n
i }Rn−1

i=0 of In0 under Ĥi

relies on the 1D combinatorial structures of the renormalizations of the 2D map F
established in Section 6. See Figure 7 and Lemma 8.10.

Contributions by quadratic power maps in the composition Ĥi arise in the following
way. When the inverse projection is applied near the critical point v−1, it is onto a
nearly horizontal curve (approximating a subarc of a center manifold of v−1). Under
one iterate of F , this curve is mapped to a subarc of a vertical quadratic curve near
the critical value v0. Then projecting along a vertical foliation to the transverse
horizontal arc In0

0 ⊃ In0 produces the effect of applying a quadratic power map. See
Proposition 8.18.

Lastly, the extension of Ĥi to a strictly larger domain Ĩn0,i c In0 so that the image

Ĥi(Ĩn0,i) covers (commensurate portions of) the adjacent neighbors J n
ι±(i) of J n

i is
done in Propositions 8.14 and 8.17.

8.2. The proof of Theorem A. First, we need the following lemma (which requires
the 3 additional degrees of smoothness assumed in this section). Recall that P n

0 :=
πh ◦Ψn for n0 ≤ n ≤ N .

Lemma 8.1. Let κF , K1 > 0 be the constants given in Theorem 4.7 and (5.2) respec-
tively. Consider a Cr+3-map g : I → R on an interval I ⊂ Ih−1 such that ‖g‖C2 < κF .

Denote G(x) := (x, g(x)). Then there exist a ∈ Ih0 and a Cr-diffeomorphism ψ : I →
ψ(I) with

‖ψ±1‖Cr < K1(1 + ‖g‖Cr+3)

such that we have

Q(x) := P n
0 ◦ F ◦ Φ−1

−1 ◦G(x) = κF · (ψ(x))2 + a (8.1)

where defined.

Proof. By Theorem 4.7 i), it suffices to show that there exists ψ̃g with

‖ψ̃±1‖Cr < K1(1 + ‖g‖Cr+3)

such that
Q̃(x) := πh ◦ Φ0 ◦ F ◦ Φ−1

−1 ◦G(x) = κF · (ψ̃(x))2 + ã.

By (4.7), we have Q̃ = f0−λ · g. By the bound on ‖g‖C2 , we see that Q̃ has a unique
critical point, Q̃′′(x) is bounded below by cκF for some uniform constant c > 0, and

‖Q̃′′‖Cr+1 < K1(1 + ‖g‖Cr+3).
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The result now follows from Lemma D.4. �

For n0 ≤ n ≤ N , define a sequence of maps {Hn
i }∞i=0 as follows. First, let Hn0

i := F i.
Proceeding inductively, suppose Hn−1

i is defined. Write i = j + kRn with k ≥ 0 and
0 ≤ j < Rn. Define

Hn
i := Hn−1

j ◦ Pn0 ◦ F kRn ,

where
Pn0 := (Ψn)−1 ◦ Πh ◦Ψn

is the nth projection map near the critical value v0. Observe that Hn
i is well-defined

on Bn0 .

Lemma 8.2. Let s ∈ {1, 2} and n0 ≤ n ≤ N − s. Then Hn
i |In+s

1
is a diffemorphism

for 0 ≤ i < Rn+s.

Proof. The statement is clearly true for n = n0. Suppose the statement is true for
n− 1. If i < Rn, then

Hn
i |In+s

1
= Hn−1

i |In+s
1

is a diffeomorphism. Suppose the same is true for i < (k − 1)Rn with 2 ≤ k <
Rn+s/Rn. Observe that

Hn
kRn = Pn0 ◦ F kRn .

By Lemma 6.6 i), the map Pn0 |In+s
kRn

is a diffeomorphism. For i = j+kRn with j < Rn,

we have
Hn
i := Hn−1

j ◦ Pn0 ◦ F kRn .

Since
Pn0 (In+s

kRn
) ⊂ In0 ,

the result follows. �

Recall the definition of Pn−1 for n0 ≤ n ≤ N given in (4.12).

Lemma 8.3. For s ∈ {1, 2} and n0 ≤ n ≤ N − s, let Γ0 be a Cr-curve which is
λ−ε̄Rn-horizontal in Bn+s

0 . Then for 1 ≤ k ≤ Rn+s/Rn, we have

F kRn−1|Γ0 =
(
Pn0
−1|ΓkRn−1

)−1 ◦Hn
kRn−1|Γ0 .

Proof. If k = 1, then the result follows immediately from Lemma 4.9. Suppose the
result is true for some n0 ≤ n < N − s and 1 ≤ k < Rn+s/Rn. By definition, we have

Hn
(k+1)Rn−1 = Hn

kRn−1 ◦ FRn .

If Γ0 is a Cr-curve which is λ−ε̄Rn-horizontal in Bn+s
0 , then by Lemma 6.6 i), we

see that ΓRn := FRn(Γ0) is a Cr-curve which is λ−ε̄Rn-horizontal in Bn0 . Thus, by
induction, we have

F kRn−1|ΓRn =
(
Pn0
−1|Γ(k+1)Rn−1

)−1

◦Hn
kRn−1|ΓRn .

Composing on the right by FRn|Γ0 , the result is true in this case.
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Finally, suppose that the result is true for some n0 ≤ n < N − s and k = Rn+1/Rn.
Let γ0 := Pn+1

0 (Γ0). By the induction hypothesis, we have:

FRn+1−1|γ0 =
(
Pn0
−1|γRn+1−1

)−1

◦Hn
Rn+1−1|γ0 .

Applying Lemma 4.9:

FRn+1−1|Γ0 =
(
Pn+1
−1 |ΓRn+1−1

)−1

◦
(
Pn0
−1|γRn+1−1

)−1

◦Hn
Rn+1−1 ◦ Pn+1

0 |Γ0

=
(
Pn0
−1|ΓRn+1−1

)−1

◦Hn+1
Rn+1−1|Γ0 .

�

Figure 8. Visualization of the map Hn0
i for 0 ≤ i < Rn0+1 acting on

the horizontal curve In0+1
0 ⊂ In0

0 (for rn0 := Rn0+1/Rn0 = 3). The
orbit of In0+1

0 makes returns to Bn0
0 3 v0 under F kRn for 0 ≤ k < rn0 .

At these moments, the projection map Pn0
0 is applied to In0+1

kRn0
to bring

it down to In0
0 . These projections are then “undone” in Bn0

Rn0−1 3 v−1

to return to In0+1
(k+1)Rn0−1

. For n > n0, the multiple projections (at

various depths) can be applied to the orbit of In0 near v0 before they
are undone near v−1.
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We also define another sequence of maps {Ĥi}RN−1
i=0 as follows (if N = ∞, then

RN = ∞). If i < 2Rn0 , let Ĥi := F i. Otherwise, let n0 ≤ n < N be the largest

number such that i ≥ 2Rn, and define Ĥi := Hn
i . Observe that by Lemma 8.3, we

have

ĤRn−1|In0 = Hn−1
Rn−1|In0 = Pn0

−1|InRn−1
◦ FRn−1|In0 . (8.2)

Remark 8.4. In the definition of Ĥi := Hn
i , we set n to be the largest number such

that i ≥ 2Rn rather than i ≥ Rn for the following technical reason. Observe that

Hn
Rn(In+1

0 ) = Pn0 (In+1
Rn

).

The domain of Pn0 is equal to Bn0 , whose right vertical boundary is λε̄Rn distance away
from In+1

Rn
. Hence, Hn

Rn
|In+1

0
does not extend to a horizontal curve Ĩn+1

0,i substantially

larger than In+1
0 (so that its image would cover the adjacent neighbors of Hn

Rn
(In+1

0 )),

since if it did, then FRn(Ĩn+1
0,i ) would lie outside of the domain Bn0 of Pn0 .

The remainder of the section is devoted to the proof of the following theorem,
whose corollary immediately implies Theorem A.

Theorem 8.5. There exists a uniform constant

K = K(L, λ, ε, λ1−ε‖DF−1‖, ‖DF‖C5 , ‖FRn0 |Bn0‖C6 , κF ) ≥ 1

such that for all n0 ≤ n ≤ N , we have

Dis(Ĥi, In0 ) < K for 0 ≤ i < Rn.

Corollary 8.6. For n0 ≤ n ≤ N , let hn : In0 → hn(In0 ) be the diffeomorphism given
in Theorem 4.7 ii). Then Dis(hn, I

n
0 ) < K, where K > 1 is the uniform constant

given in Theorem 8.5.

Observe that any number 2Rn0 ≤ i < RN can be uniquely expressed as

i = j + an0Rn0 + an0+1Rn0+1 + . . .+ anRn

for some n0 ≤ n < N , where

i) 0 ≤ j < Rn0 ;
ii) 0 ≤ am < rm for n0 ≤ m < n; and

iii) 2 ≤ an < 2rn.

In this case, we denote

i := j + [an0 , an0+1, . . . , an].

We extend this notation to i < 2Rn0 by writing

i = j + [an0 ] for some an0 ∈ {0, 1}

We record the following easy observation.
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Lemma 8.7. Let 2Rn0 ≤ i < RN be given by

i = j + [an0 , . . . , an].

Then we have

Ĥi = Hn
i = F j ◦

(
Pn0

0 ◦ F an0Rn0

)
◦ . . . ◦

(
Pn0 ◦ F anRn

)
.

For n0 ≤ n ≤ N , we define a collection of arcs {J n
i }Rn−1

i=0 by

J n
i := Ĥi(In0 ) for 0 ≤ i < Rn. (8.3)

See Figure 9.

Lemma 8.8. Let n0 ≤ n ≤ N and 0 ≤ i < Rn. If

i = [0, . . . , 0, am, am+1, . . . , ak]

for some n0 ≤ m ≤ k < n, then we have J n
i ⊂ Im0 . Moreover, we have

J n
i+l = Hm−1

l (J n
i ) for 0 ≤ l < Rm.

Proof. Observe that
Pk1 ◦ F akRk(Ik+1

1 ) ⊂ Ik1 .
By Lemma 8.7, the result follows from induction. �

Lemma 8.9. For n0 ≤ n ≤ N and 0 ≤ i < Rn, we have J n
i ⊂ I

n0

i (mod Rn0 ).

Proof. The result follows immediately from Lemma 8.8. �

Let Γ : [0, 1]→ R2 be a parameterized Jordan arc. For

0 ≤ a < b < c < d ≤ 1,

consider the subarcs Γ1 := Γ(a, b) and Γ2 := Γ(c, d) of Γ. We denote Γ1 <Γ Γ2. Let
Γ3 be another subarc of Γ. We denote Γ1 ≤Γ Γ3 if either Γ1 <Γ Γ3 or Γ1 = Γ3.

Henceforth, we consider In0
0 with parameterization given by

In0
0 (t) := (Ψn0)−1(t, 0) for t ∈ In0

0 .

Note that In0
0 ◦ P n0

0 = Pn0
0 . Moreover,

P n0
0 (v0) = 0 < P n0

0 (vRn0
).

Lemma 8.10. For s ∈ {1, 2}; n0 ≤ n ≤ N − s and 1 < k < Rn+s/Rn, we have

J n+s
0 <In0

0
J n+s
kRn

<In0
0
J n+s
Rn

.

Proof. Observe that

• For s ∈ {1, 2}:
J n+s
Rn

= Hn−1
Rn

(In+s
0 ) = Pn−1

0 ◦ FRn(In+s
0 ).

• For 1 < k < srn:

J n+s
kRn

= Hn
kRn(In+s

0 ) = Pn0 ◦ F kRn(In+s
0 ).
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Figure 9. Arcs J n
i := Ĥi(In0 ) with 0 ≤ i < Rn that are contained in

Im0 for some m < n. For 0 ≤ k < rm+1, we have J n
kRm+1

⊂ Im+1
0 . For

2 ≤ l < rm, we have J n
kRm+1+lRm

= Pm0 ◦ FRm(J n
kRm+1

).

In the case s = 1, and the case s = 2 and 1 < k < 2rn follow immediately from
Proposition 6.5.

Replacing n by n+1 and applying the above conclusion, we see that for 1 < l < rn+1:

J n+2
0 <In0

0
J n+2
lRn+1

<In0
0
J n+2
Rn+1

.

Note that for 2 < k < rn:

J n+2
lRn+1+kRn

= Hn
kRn|In+1

0
(J n+2

lRn+1
).
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The result now follows from Lemma 8.2. �

Let Γ0 : [0, |Γ0|] → R2 be a C1-curve parameterized by its arclength. Let Γ1 :=
Γ0(l, |Γ0| − l) for some 0 < l < |Γ0|/2 be a subarc of Γ0. We denote Γ1 = Γ0[−l] and
Γ0 = Γ1[+l]. Let Γ2 be a C1-curve such that Γ1 ⊂ Γ2 ⊂ Γ0. We denote

Γ0{−l} = Γ2 = Γ1{+l}.

Lastly, if Γ3 and Γ4 are C1-curves in R2 and we have Γ3[−l] ⊂ Γ4 ⊂ Γ3[+l], then we
denote Γ4 = Γ3{∼ l}. See Figure 10. These notations can be extended to intervals in
R in the obvious way.

Figure 10. Illustration of the relations between Γ0 = Γ1[+l], Γ1 =
Γ0[−l], Γ0{−l} = Γ2 = Γ1{+l} (above); and Γ3 and Γ4 = Γ3{∼ l}
(below).

Let n0 < n ≤ N , and consider the collection of arcs {J n
i }Rn−1

i=0 . By Lemma 8.9 and
Lemma 8.10, for 2Rn0 ≤ i < Rn, there exist unique numbers 0 ≤ ιn−(i), ιn+(i) < Rn

such that

ιn±(i) = i (mod Rn0),

and the arcs J n
ιn−(i) and J n

ιn+(i) are the two nearest neighbors of J n
i (one on each side)

in In0

i (mod Rn0 ). Define Ĵ n
i as the convex hull of J n

ιn−(i) ∪ J n
i ∪ J n

ιn+(i) in In0

i (mod Rn0 ).

We also define a subarc J̃ n
i of In0

i (mod Rn0 ) containing J n
i as follows. Write

i = j + [an0 , an0+1, . . . , am]

for some n0 ≤ m < n. If m < n− 1, define

J̃ n
i := Ĵ n

i [+λε̄Rm ].

Otherwise, define

J̃ n
i := Ĵ n

i [−λε̄Rn−1 ].
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Proposition 8.11. There exists a uniform constant K > 0 such that for n0 ≤ n ≤ N ,
we have

Rn−1∑
i=2Rn0

|J̃ n
i | < K.

Proof. Observe that

Rn−1∑
i=2Rn0

|J̃ n
i | <

Rn−1∑
i=2Rn0

|Ĵ n
i |+

n−1∑
m=n0

2Rm+1λ
ε̄Rm .

By Lemma 8.10, the maximum number of overlaps among arcs in {Ĵ n
i }Rn−1

2Rn0
is three.

Hence, the above sum has a uniform upper bound. �

Lemma 8.12. For n0 ≤ n ≤ N , let Γ0 ⊂ In0 be an arc. Then we have

K0
−1λε̄i <

|Hn
i (Γ0)|
|Γ0|

< K0λ
−ε̄i for 0 ≤ i < Rn,

where K0 ≥ 1 is the uniform constant given in (4.2).

Proof. For p0 ∈ Γ0, let Ep0 ∈ P2
p0

be the direction tangent to Γ0 at p0. Note that p0

is Rn-times forward (L, ε, λ)-regular along Ev
p0

. Thus, by Theorems 4.7 and A.2, and
Corollary A.8, we have

K0
−1λε̄l < ‖DF l|Ep0‖ < K0λ

−ε̄l for 0 ≤ l < Rn.

By Proposition 6.5 and Lemma 6.6 i), the curve ΓkRm := F kRm(Γ0) for 0 ≤ k < rm
is λ−ε̄Rm horizontal in Bm0 . Hence, by Theorem 4.7, we see that

K0
−1λε̄Rm < ‖DPm0 |EpkRm ‖ < K0.

Write

i = j + [an0 , . . . , am]

for some n0 ≤ m < n. Then by Lemma 8.7 we have

Hn
i = F j ◦ Pn0

0 ◦ F an0Rn0 ◦ . . . ◦ Pm0 ◦ F amRm .

Concatenating the previous estimates, we obtain the desired result. �

Lemma 8.13. For s ∈ {1, 2}; n0 ≤ n ≤ N − s and 2 ≤ k < 2rn, let X−1 ⊂ BnRn−1 be
a set such that

Pn0
−1(X−1) = J n+s

kRn−1.

Then

Pn0 ◦ F (X−1) = J n+s
kRn
{∼ λ(1−ε̄)Rn}.

Proof. By Lemma 8.3, we have

In+s
kRn−1 =

(
Pn0
−1|In+s

kRn−1

)−1

(J n+s
kRn−1) =

(
Pn0
−1|In+s

kRn−1

)−1

◦ Pn0
−1(X−1).



ON REGULAR HÉNON-LIKE RENORMALIZATION 53

Since
J n+s
kRn

= Pn0 ◦ F (In+s
kRn−1),

the claim follows from (4.7) and (4.11). �

Proposition 8.14. For n0 ≤ n ≤ N − 2 and 2Rn ≤ i < 2Rn+1, there exists an arc
K0,i containing In+2

0 such that the following properties are satisfied.

i) We have K0,i ⊃ K0,i+1.

ii) The map Ĥi|K0,i
is a diffeomorphism.

iii) We have Ĥi(K0,i) ⊃ J̃ n+1
i .

iv) Denote Ki := F i(K0,i). Then for 2 < k ≤ 2rn, the arc KkRn−1 is λ(1−ε̄)Rn-
horizontal in B−1, and

KkRn ⊂ BnRn \ Vv0(λε̄Rn).

Proof. We first extend In0+1
2n0−1 to an arc K2Rn0−1 ⊂ B−1 such that K2Rn0−1 is λ(1−ε̄)Rn0 -

horizontal in B−1, and the curve K2Rn0
:= F (K2Rn0−1) maps diffeomorphically onto

In0
0 \ Vv0(λε̄Rn0 ) under Pn0

0 |K2Rn0
. We define

K0,2Rn0
:= F−2Rn0 (K2Rn0

).

Proceeding by induction, suppose the result holds for i ≤ (k − 1)Rn with 2 < k ≤
2rn. For 0 ≤ l < Rn, define

K0,(k−1)Rn+l := K0,(k−1)Rn .

Observe that
Ĥ(k−1)Rn+l = Hn

l ◦ F (k−1)Rn .

Thus, property ii) follows from Lemma 8.2; property iii) follows from Lemmas 8.8
and 8.12; and property iv) for KkRn−1 follows from Lemma 6.6 ii).

If k < 2rn, then define KkRn to be the component of F (KkRn−1) \ Vv0(λε̄Rn) con-
taining In+2

kRn
. By Lemma 6.6 i), KkRn maps injectively under Pn0 . Lastly, property

iii) follows from Lemma 8.13.
If k = 2rn, then define K2Rn+1 to be the component of

F (K2Rn+1−1) ∩
(
Bn+1

0 \ Vv0(λε̄Rn+1)
)

containing In+3
2Rn+1

. Properties ii) and iii) for K2Rn+1 can be checked similarly as
above. �

By Lemma 8.10, for n0 ≤ n ≤ N − 2, there exists a unique number 2 ≤ χn < rn
such that

J n+1
0 <In0

0
J n+1
χnRn

≤In0
0
J n+1
kRn

for all 1 ≤ k < rn.

After relabelling ιn± if necessary, the following results hold.

Lemma 8.15. Let n0 ≤ n ≤ N − 2. Then

ιn+1
+ (i) = i+ χnRn for 2Rn0 ≤ i < Rn.

Proof. The claim follows immediately from Lemmas 8.2 and 8.8. �
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Lemma 8.16. Let n0 + 2 ≤ n ≤ N . For 1 ≤ m ≤ n − 2 and 2 ≤ k < 2rm, there
exists 1 ≤ i < 2rm such that

ιn−(kRm) = ιm+2
− (kRm) = iRm.

Proof. By Lemmas 8.10, 8.2 and 8.8, we see that the extremal intervals in Jm+1
lRm

for
0 ≤ l < rm are J n

lRm
and J n

lRm+Rm+1
. Moreover, by Lemma 8.15, we have

J n
ιn+(lRm+jRm+1) ⊂ Jm+1

lRm
for j ∈ {0, 1}.

The claim follows. �

Proposition 8.17. For n0 + 2 ≤ n ≤ N and 2Rn0 ≤ i < Rn, there exists an arc Ĩn0,i
such that the following conditions hold for all 2Rn0 ≤ j ≤ i.

i) We have In0 ⊂ Ĩn0,i ⊂ K0,i.
ii) Denote

J̃ n
j,i−j := Ĥj(Ĩn0,i).

Then we have
J̃ n
j,i−j ⊂ J̃ n

j and J̃ n
i,0 ⊃ J̃ n

i .

Proof. First consider the case when i < 2Rn−1. Proceeding by induction, suppose
that the result is true for j ≤ kRm with n0 ≤ m ≤ n− 2 and 2 ≤ k < 2rm. Then the
result holds for kRm < j < (k + 1)Rm by Lemmas 8.2 and 8.8.

Note that we have,

Pm0 (KkRm) ⊃ J̃m+2
kRm

⊃ Jm+2

ιm+2
− (kRm)

∪ Jm+2
kRm
∪ Jm+2

ιm+2
+ (kRm)

,

where by Lemmas 8.15 and 8.16, we have

Jm+2

ιm+2
− (kRm)

= Jm+2
ιn−(kRm) ⊃ J

n
ιn−(kRm) and Jm+2

kRm
⊃ J n

kRm ∪ J
n
ιn+(kRm).

Hence, there exists an arc I ′kRm ⊂ KkRm such that

Pm0 (I ′kRm) = J̃m+2
kRm

.

By Lemmas 8.12 and 8.3, we have

Pn0
−1 ◦ FRm−1(I ′kRm) = Ĵm+2

(k+1)Rm−1[+λε̄Rm ].

Thus, by Lemmas 8.13 and 8.15, we see that

Pm0 ◦ FRm(I ′kRm) ⊃ Ĵm+2
(k+1)Rm

,

and hence, the result holds for j = (k + 1)Rm.
Next, consider the case when i ≥ 2Rn−1. For j < 2Rn−1, the result follows by

the same argument as in the previous case. Proceeding by induction, suppose that
the result is true for j ≤ kRn−1 with 2 ≤ k < rn−1. Then the result holds for
kRn−1 < j < (k + 1)Rn−1 by Lemmas 8.2, 8.8 and Lemma 8.12.

Similar to the previous case, there exists an arc I ′kRn−1
⊂ KkRn−1 such that

Pn−1
0 (I ′kRn−1

) ⊃ J̃ n
kRn−1
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and

Pn0
−1 ◦ FRn−1−1(I ′kRn−1

) = Ĵm+2
(k+1)Rn−1−1[−λε̄Rn ].

Let I ′′(k+1)Rn−1
be the connected component of

F (I ′(k+1)Rn−1
) \ Vv0(λε̄Rn)

containing In(k+1)Rn−1
. By Lemma 8.13, we have

Pn−1
0 (I ′′(k+1)Rn−1

) ⊃ Ĵ n
(k+1)Rn−1

[−λε̄Rn ].

Thus, the result holds for j = (k + 1)Rn−1. �

Let i ≥ 2Rn0 be a number given by

i = [0, . . . , 0, am, am+1, . . . , ak]

for some n0 ≤ m ≤ k so that am > 0. Denote

m̂(i) := m, k̂(i) := k and â(i) := am.

We extend this notation to the case when i = an0Rn0 with an0 ∈ {0, 1} by letting

m̂(i) := 1, k̂(i) := 1 and â(i) := an0 .

Proposition 8.18. Let n0 ≤ n ≤ N and i = j + sRn0 with 0 ≤ j < Rn0 and
0 ≤ s < Rn/Rn0. For 0 ≤ l ≤ s, denote

m̂l := m̂(lRn0), k̂l := k̂(lRn0) and âl := â(lRn0).

If m̂l = k̂l, let

Ǐnl := F lRn0−1(Ĩn0,i).
Otherwise, let

Ǐnl := Im̂l+1
âlRm̂l−1.

Then Ǐnl is λ(1−ε̄)Rm̂l -horizontal. Moreover, define

Ȟl := Pm̂l0 ◦ F ◦
(
Pn0
−1|Ǐnl

)−1

◦ FRn0−1|In0
0
.

Then we have

Ĥi|Ĩn0,i = F j|In0
0
◦ Ȟs ◦ . . . ◦ Ȟ4 ◦ Ȟ3 ◦ Pn0

0 ◦ F 2Rn0 |Ĩn0,i .

Proof. We proceed by induction. Clearly, the result is true for i < 2Rn0 . Suppose
that the result is true for all i′ < i.

First, suppose i = 2Rk+1 for some n0 ≤ k + 1 < n. Denote

Γd := F d(Ĩn0,i) for 0 ≤ d ≤ i.

By Lemma 8.7:

Ĥ2Rk+1
|Γ0 = Pk+1

0 ◦ F 2Rk+1 = Pk+1
0 ◦ F ◦ FRk−1 ◦ F (2rk−1)Rk |Γ0 . (8.4)
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By Proposition 8.14 iv), Γ(2rk−1)Rk is λ−ε̄Rk-horizontal in Bk0 . So it follows from
Lemma 4.9 that

FRk−1|Γ(2rk−1)Rk
=
(
Pn0
−1|Γ2Rk+1−1

)−1

◦ FRk−1 ◦ Pk0 |Γ(2rk−1)Rk
.

Note that

Ĥ(2rk−1)Rk = Hk
(2rk−1)Rk

= Pk0 ◦ F (2rk−1)Rk .

Substituting into (8.4), we obtain

Ĥ2Rk+1
|Γ0 = Pk+1

0 ◦ F ◦
(
Pn0
−1|Γ2Rk+1−1

)−1

◦ FRk−1 ◦ Ĥ(2rk−1)Rk |Γ0 .

By Lemma 8.3, we have

FRk−1|Ik0 =
(
Pn0
−1|IkRk−1

)−1

◦Hk
Rk−1|Ik0 .

Thus, we conclude:

Ĥ2Rk+1
|Γ0 = Pk+1

0 ◦ F ◦
(
Pn0
−1|Γ2Rk+1−1

)−1

◦Hk
Rk−1|Ik0 ◦ Ĥ(2rk−1)Rk |Γ0 .

We can apply the induction hypothesis to decompose Ĥ(2rk−1)Rk into factors of the

form Ȟl. Observe that for

e0 := (2rk − 1)Rk < e < 2Rk+1,

we have

m̂(e) = m̂(e− e0) < k̂(e) ≤ k and â(e) = â(e− e0).

Hence, we can also apply the induction hypothesis to Hk
Rk−1|Ik1 to decompose them

into factors of the form Ȟl. The claim follows.
Next, suppose that i = akRk for some n0 ≤ k < n and ak ≥ 3. Proceeding in the

same way as in the previous case, we obtain (in place of (8.4)):

Ĥi|Γ0 = Pk0 ◦ F akRk = Pk0 ◦ F ◦ FRk−1 ◦ F (ak−1)Rk |Γ0 .

The rest of the argument is identical mutatis mutandis.
Lastly, suppose that

i = j + [an0 , . . . , ak]

for some n0 < k < n such that

m̂(i) < k = k̂(i) < n.

Then

Ĥi = Hk−1
i−akRk ◦ P

k
0 ◦ F akRk = Hk−1

i−akRk |Ik0 ◦ ĤakRk .

Applying the induction hypothesis to ĤakRk and Hk−1
i−akRk |Ik0 and arguing as above, we

obtain the desired result. �
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Let G : U → G(U) be a C1-diffeomorphism defined on a domain U ⊂ R2. For
a C1-curve Γ ⊂ U , we define the cross-ratio distortion CrD(G,Γ) of G on Γ as the
cross-ratio distortion of

GΓ := φ−1
G(Γ) ◦G ◦ φΓ,

where φΓ and φG(Γ) are parameterizations of Γ and G(Γ) by their respective arclengths
(see Section C).

Proposition 8.19. Let n0 ≤ n ≤ N and 1 ≤ i < Rn. Then there exists a uniform
constant ν > 0 such that the maps Ĥi and ĤRn−1 ◦ Ĥ−1

i have ν-bounded cross-ratio

distortion on Ĩn0,i and Ĥi(Ĩn0,Rn−1) respectively.

Proof. Consider the decomposition of Ĥi given in Proposition 8.18:

Ĥi|Ĩn0,i = F j|In0
0
◦ Ȟs ◦ . . . ◦ Ȟ3 ◦ Pn0

0 ◦ F 2Rn0 |Ĩn0,i .

Denote
J := Pn0

0 ◦ F 2Rn0 (Ĩn0,i) and Ȟ := Ȟs ◦ . . . ◦ Ȟ3.

To prove the cross-ratio distortion bound for Ĥi, it suffices to prove it for Ȟ on J .
The maps

φ0 := (P n0
0 |In0

0
)−1 : In0

0 → In0
0 and φ−1 := (P−1|In0

Rn0−1
)−1 : In0

Rn0−1 → I
n0
Rn0−1

give parameterizations of In0
0 and In0

Rn0−1. Denote

J2 := φ−1
0 (J ) and h1 := φ−1

−1 ◦ FRn0−1|In0
0
◦ φ0.

For 3 ≤ l ≤ s, let
Hl := φ−1

0 ◦ Ȟl ◦ . . . ◦ Ȟ3 ◦ φ0;

and
J ′l := h1(Jl−1) and Jl := Hl(J2).

By Proposition 8.18 and Lemma 8.1, there exist a diffeomorphism ψl : J ′l → ψl(J
′
l )

and a constant al ∈ R such that

Hl(x) = (ψl ◦ h1 ◦Hl−1(x))2 + al.

By (C.2) and Lemma C.2, we see that

CrD(Ȟ,J ) � CrD(Hs, J2) >

(
s−1∏
l=2

CrD(h1, Jl)

)
·

(
s∏
l=3

CrD(ψl, J
′
l )

)
.

Note that the diffeomorphisms h1 and {ψl}sl=3 have uniformly bounded second deriva-
tives. Moreover, Propositions 8.11 and 8.17 implies that the total length of {Jl, J ′l}sl=3

is uniformly bounded. The bound on the cross ratio distortion of Ĥi now follows from
Lemma C.3.

Now, consider the decomposition of ĤRn−1 on Ĩn0,Rn−1:

ĤRn−1|Ĩn0,Rn−1
= FRn0−1|In0

0
◦ ȞS ◦ . . . ◦ Ȟ3 ◦ Pn0

0 ◦ F 2Rn0 |Ĩn0,Rn−1
,
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where S := Rn/Rn0−1. The same argument as above implies the bound on the cross
ratio distortion of

ĤRn−1 ◦ Ĥ−1
i |I = FRn0−1|In0

0
◦ ȞS ◦ . . . ◦ ȞS−s ◦ FRn0−1−j|I

on I := Ĥi(Ĩn0,Rn−1). �

Proof of Theorem 8.5. Consider the arcs {J n
i }Rn−1

i=0 . There exists 2Rn0 ≤ i1 < Rn

such that

|J n
ιn+(i1)| , |J n

ιn−(i1)| > k|J n
i1
|

for some uniform constant k > 0. By Proposition 8.17, there exists an arc Ĩn0,i1 ⊃ I
n
0

which is mapped diffeomorphically onto J̃ n
i1

by Ĥi1 .

Recall that the nearest neighbor of In0 in In0
0 is given by J n

χn−1Rn−1
. Let În0 be the

convex hull of In0 ∪ J n
χn−1Rn−1

. Then

(Ĩn0,i1 ∩ I
n0
0 ) \ In0 ⊂ În0 \ In0 .

Hence, Proposition 8.19 and Theorem C.4 imply∣∣∣În0 \ In0 ∣∣∣ > k |In0 | .

By Lemma 8.13, we conclude that the two components of J̃ n
Rn−1 \J n

Rn−1 have lengths

greater than k
∣∣J n

Rn−1

∣∣. By Proposition 8.17, ĤRn−1 maps Ĩn0,Rn−1 ⊃ In0 diffeomorphi-

cally onto J̃ n
Rn−1. The result now follows from Proposition 8.19 and Theorem C.4. �

9. Uniform C1-Bounds

9.1. For unimodal maps. Let s ≥ 1 be an integer, and consider a normalized Cs+3-
unimodal map f : I → I ∈ Us+3. Recall that this means f ′(0) = 0 and f ′′(0) = 2.
Let ψf be the Cs-diffeomorphism given in Lemma D.4 so that f(x) = 2(ψf (x))2. An
elementary computation shows that

2 = f ′′(0) = 2(ψ′f (0))2.

Hence, ψ′f (0) = 1.
For K ≥ 1, we say that f has K-bounded non-linearity if

sup
x,y∈I

ψ′f (x)

ψ′f (y)
≤ K. (9.1)

Denote the space of all normalized Cs+3-unimodal maps withK-bounded non-linearity
by Us+3(K). Observe that if f : I → I is in Us+3(K), then

K−1 ≤ |ψ′f (x)| ≤ K for x ∈ I. (9.2)

Lemma 9.1. Let f : I → I ∈ U4(K) for some K ≥ 1. Then |I| < 2|K|2. Conse-
quently, we have ‖f ′‖ < C for some uniform constant C = C(K) ≥ 1.



ON REGULAR HÉNON-LIKE RENORMALIZATION 59

Proof. By (9.2), we see that |ψf (I)| > K−1|I|. If the length of an interval is bigger
than 2|K|2, then |f(I)| > (2|K|)2 > 4|K|2. Thus, iterated images of I under f
become unbounded. This is a contradiction.

We compute
f ′(x) = 2ψf (x)ψ′f (x).

The result follows. �

Lemma 9.2. Let f : I → I be in U4(K) for some K ≥ 1, and let n ∈ N. If the
critical orbit of f does not converge to an n-periodic sink, then there exists a uniform
constant ρn = ρn(K) > 0 such that |fn(0)| > ρn. In particular, |I| > ρ1.

Proof. By Lemma 9.1, there exists a uniform constant C = C(K) ≥ 1 such that
‖f ′‖ < C. For n ∈ N, let

ln :=
1

4K2Cn
and Jn := (−ln, ln).

Observe that

|fn(Jn)| < Cn|ψf (Jn)|2 < 1

16K2Cn
.

Hence, if fn(0) ∈ (−ln/8, ln/8), then fn(Jn) b Jn. The result now follows from

|(fn)′(x)| < 2|ψf (x)||ψ′f (x)|Cn < 1/2 for x ∈ Jn.
�

Proposition 9.3. Let f : I → I be in U4(K) for some K ≥ 1. Suppose that f is
non-trivially renormalizable, so that there exists an R-periodic interval I1 such that
fR(I1) contains the critical value v for f . Denote by c1 the critical point for fR|I1.
Assume that R1D(f) has χ-bounded kneading for some χ ≥ R. Let J be a connected
component of I \ {f i(c1)}3R+1

i=0 . Then we have |J | > ρ, where ρ = ρ(K,χ) ∈ (0, 1) is a
uniform constant.

Proof. By Lemma 6.2, we have I1 := [v, fR(v)] 3 c1. Denote I1
i := f i(I1) for 0 ≤ i <

R. The fact that we have |f l+i(v) − f i(c1)| > ρ for for l ∈ {0, R} and 1 ≤ i < R
follows from Lemmas 9.1 and 9.2.

By the assumption on bounded kneading, there exists a smallest integer r1 ≤ χ
such that f (r1+1)R(c1) < c1. By Lemma 9.2, there exists a uniform constant ρ1 =
ρ1(K,χ) > 0 such that

v < f r1R(v) < fR(v)− ρ1. (9.3)

Let Li := [f iR(v), f (i−1)R(v)] for 2 ≤ i ≤ r1. If r1 = 2, then it follows from (9.3)
that |L2| > ρ. If r1 > 2, then observe that fR maps Li diffeomorphically onto Li+1

for i < r1. By Lemma 9.1, ‖(fR)′‖ < C for some uniform constant C ≥ 1, and

L2 t L3 t . . . t Lr1 ⊃ [c1, fR(v)].

This implies that |L2| > ρ′ for some uniform constant ρ′.
Let J0 be the gap between I1

k and I1
l with 0 ≤ k < l < R. If Jm := fm(J0)

with m = χ̄ maps onto an interval I1
i for some 0 ≤ i < R, then by Lemma 9.1 and
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Lemma 9.2, we have |J0| > C−mρ̃ for some uniform constants C = C(K) ≥ 1 and
ρ̃ = ρ̃(K,χ) > 0. Thus, we may assume, after replacing J0 with JR if necessary, that
∂J0 3 fk+R(v).

Map J0 by f r1R−k−R. Since

I1
l+r1R−k−R ∩ I

1
0 = ∅,

the image Jr1R−k−R of the gap must contain (c1, fR(v)). The result now follows from
(9.3). �

9.2. For Hénon-like maps. For an integer r ≥ 2 and a constant K ≥ 1, let
HLr+2(K) be the space of all normalized Cr+2-Hénon-like maps whose 1D profiles
are contained in Ur+2(K). Additionally, for β ∈ (0, 1), let HLr+2

β (K) be the set of all

Hénon-like maps in HLr+2(K) that are β-thin in Cr+2.
For some N ∈ N∪ {∞}, let F be the N -times regularly Hénon-like renormalizable

Cr+4-map with combinatorics of b-bounded type considered in Section 8. If N <∞,
suppose that FRN |BN0 is twice topologically renormalizable with combinatorics of b-
bounded type.

Let K ≥ 1 be the uniform constant given in Theorem 8.5. Assume that n0 ≤ N is
the smallest number such that

K2λ
εRn0 < 1, (9.4)

where
K2 = K2(K,b) ≥ 1 (9.5)

is a uniform constant.
For n0 ≤ n ≤ N , denote

In0 := πh(B
n
0 ) and In0 := (Ψn)−1(In0 × {0}).

Define
F̃n := Ψn ◦ FRn ◦ (Ψn)−1 and f̃n := Π1D(F̃n).

Proposition 9.4. There exists a uniform constant K = K(K) ≥ 1 such that for all
n0 ≤ n ≤ N , we have ‖F̃n‖C1 < K.

Proof. The result follows immediately from Corollary 8.6 and Lemma 9.1. �

Proposition 9.5. For n0 ≤ n ≤ N , we have

‖f̃ in − Π1D(F̃ i
n)‖C0 < λ(1−ε̄)Rn for i = O(b).

Proof. Denote Πh(x, y) := (x, 0). It suffices to show that

‖(F̃n ◦ Πh)
i − F̃ i

n ◦ Πh‖C0 < λ(1−ε̄)Rn .

By Proposition 9.4, ‖F̃n‖C1 is uniformly bounded. Moreover, by Theorem 4.7 ii),
we have

‖F̃n − F̃n ◦ Πh‖Cr+3 < λ(1−ε̄)Rn .

The result now follows from Lemma D.1. �
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Proposition 9.6. For n0 ≤ n < N and −rn ≤ k ≤ 2rn, denote

unk := Ψn(vkRn) and ank := πh(u
n
k).

Let J be a connected component of In0 \ {ank}
2rn
k=−rn . Then we have |J | > ρ|In0 |, where

ρ = ρ(K,b) ∈ (0, 1) is a uniform constant.

Proof. Let v0 be the critical value of F defined in Section 4. Denote un0 := Ψn(v0).
Note that un0 is a point of tangency between foliation by vertical quadratic curves
λ(1−ε̄)Rn-close to the image of the horizontal foliation by Fn, and foliation by λ(1−ε̄)Rn-
vertical curves. On the other hand, (fn(0), 0) is the unique tangency between the
image curve under the degenerate Hénon map ι(fn), and the genuine vertical foliation.
Since

‖Fn − ι(fn)‖Cr+3 < λ(1−ε̄)Rn ,

we see that
|πh(un0 )− fn(0)| < λ(1−ε̄)Rn .

The result now follows from Propositions 9.3 and 9.5. �

Theorem 9.7. For n0 ≤ n ≤ N , there exist σn � |In0 |1/2; τn ∈ In0 and a Cr+3-
diffeomorphism φn defined on the interval πv(B

n
0 ) such that for

Sn(x, y) := (σ−2
n x+ τn, σ

−1
n y + τn),

and
Yn(x, y) = (x, φn(y)) and Φn := (Yn)−1 ◦Ψn,

the following statements hold.

i) There exist uniform constants 0 < ρ1 < ρ2 < 1 depending only on K and b such
that ρn1 < σn < ρn2 .

ii) The distortion of φn is bounded by K, and ‖φ±1
n ‖C1 < K, where K = K(K) ≥ 1

is a uniform constant.
iii) We have

Rn(F ) := Sn ◦ Φn ◦ FRn ◦ (Sn ◦ Φn)−1 ∈ HLr+3
λn

(K),

where λn := λ(1−ε̄)Rn.

Proof. Consider the maps

F0 := Φ0 ◦ F ◦ Φ−1
−1 and Hn := Φ−1 ◦ FRn−1 ◦ (Ψn)−1.

By Theorem 4.7, we have

F0(x, y) = (f0(x)− λy, x) and Hn(x, y) = (hn(x), en(x, y)),

where f0 is a map with a unique critical point at 0 with f ′′0 (0) > 0; hn is a diffeomor-
phism; and en is a map such that ‖en‖Cr+3 < λ(1−ε̄)Rn . Moreover, Corollary 8.6 states
that hn has K-bounded distortion.

The map F̃n := (Ψn) ◦ FRn−1 ◦ (Ψn)−1 is of the form

F̃n(x, y) = (gn(x, y), hn(x)),



62 JONGUK YANG

where gn(·, y) for y ∈ πv(Bn0 ) is a unimodal map. By Theorem 4.7 i), we see that

‖gn(·, y)− f0 ◦ hn(·)‖Cr+3 < λ(1−ε̄)Rn .

We claim that |hn(In0 )|2 � |In0 |. Write In0 = [an, bn] and hn(In0 ) = [αn, βn]. For
−rn ≤ k ≤ 2rn, denote

unk := Ψn(vkRn) and ank := πh(u
n
k).

Recall that an and bn are λε̄Rn-close to an0 = 0 and anrn respectively, and that an−1 ∈ In0 .

Additionally, observe that gn(0), gn(an−1) and gn(anrn) are λ(1−ε̄)Rn-close to anrn , 0 and
an2rn respectively. By Proposition 9.6, |anrn| and |an2rn| are commensurate with |In0 |.
The claim now follows from the fact that f0(αn) and f0(βn) are λ(1−ε̄)Rn-close to
gn(an) and gn(bn) respectively.

Define
Y̌n(x, y) := (x, hn(y)) and Φ̌n := (Y̌n)−1 ◦Ψn.

It is easy to check that
F̌n := Φ̌n ◦ FRn ◦ (Φ̌n)−1

is a Hénon-like map. Denote f̌n := Π1D(F̌n), and let

Šn(x) = σ2
nx+ τn

be the unique orientation-preserving affine map on R such that Šn ◦ f̌n ◦ (Šn)−1 ∈
Ur+3(K).

Lemma 9.2 implies that σ2
n � |In0 |. Property i) now follows from Proposition 9.6.

Let
φn(y) := σ−1

n hn(y).

Properties ii) and iv) follow immediately. Lastly, since hn has bounded distortion,
and |hn(In0 )| � |In0 |1/2 � σn, it follows that ‖φ±1

n ‖C1 is uniformly bounded. Thus, we
also have Property iii). �

10. Preservation of Regularity

For N ∈ N, let F be the N -times (L, ε, λ)-regularly Hénon-like renormalizable map
with combinatorics of b-bounded type considered in Subsection 9.2 (with n0 ≤ N
satisfying (9.4)). For n0 ≤ n ≤ N , we have by Theorem 9.7:

Fn := Rn(F ) = Sn ◦ Φn ◦ FRn ◦ (Sn ◦ Φn)−1,

where ‖(Φn)±1‖C1 < K for some uniform constant K = K(K) ≥ 1, and

Sn(x, y) := (σ−2
n (x+ τn), σ−1

n (y + τn))

for some σn ∈ (0, 1) and |τn| � σ2
n. Moreover, by Proposition 9.6, there exist uniform

constants 0 < ρ1 < ρ2 < 1 depending only on K and b such that ρn1 < σn < ρn2 . Let
fn := Π1D(Fn).

For p ∈ Bn0 , let

Ev,n
p := (DΦn)−1(Egv

z ) where z := Φn(p).
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Moreover, since Φn is genuinely horizontal, we have

Egh
p = (DΦn)−1(Egh

z ).

Denote P n
0 := πh ◦ Φn.

Lemma 10.1. For n0 ≤ n < N and 0 ≤ k < rn, let p ∈ Bn+1
kRn
⊂ Bn0 . Then we have

1

K
< ‖DF iRn|Eghp ‖ < ‖DF

iRn‖ < K for 0 ≤ i ≤ rn − k,

where K = K(K,b) ≥ 1 is a uniform constant.

Proof. The upper bound follows immediately from Proposition 9.4. Denote z :=
Sn ◦Φn(p), and zi = (xi, yi) := F i

n(z). Propositions 6.5 and 9.6 imply that for 0 ≤ j <
rn − k − 1, there exists a uniform constant ρ = ρ(K,b) ∈ (0, 1) such that |xj| > ρ.
Thus, |f ′n(xj)| is uniformly bounded below.

By the thinness of Fn, we see that for all w = (u, v) in the domain of Fn, we have

‖D(πh ◦ Fn)|Eghw ‖ = |f ′n(u)|+O(λ(1−ε̄)Rn).

Let hn := ψfn be the diffeomorphism given in Lemma D.4. Then

‖DFn|Eghw ‖ > c|h′n(u)|
for some uniform constant c > 0. Let

αj := |f ′n(xj)| − λ(1−ε̄)Rn for 0 ≤ j < rn − k − 1,

and αrn−k−1 := c|h′n(xrn−k−1)|. Then we have

‖D(πh ◦ F i
n)|Eghz0 ‖ ≥ α0 . . . αi−1.

The desired lower bound follows. �

Lemma 10.2. For n0 ≤ n ≤ N , let p0 ∈ Bn0 . Then

1

Kn−n0
< ‖DF T |Eghp0 ‖ < Kn−n0 for 0 ≤ T < Rn,

where K = K(K,b) ≥ 1 is a uniform constant.

Proof. Write
T = t0 + tn0Rn0 + . . .+ tn−1Rn−1

with 0 ≤ t0 < Rn0 and 0 ≤ tk < rk for n0 ≤ k < n. Denote

Tk := tk+1Rk+1 + . . .+ tn−1Rn−1.

Then clearly, we have

K−1 · dn0 · . . . · dn−1 ≤ ‖DF T |Eghp0 ‖ ≤ K ·Dn0 · . . . ·Dn−1,

where

Dk := ‖DpTk
F tkRk‖ and dk :=

∥∥∥∥D (P k
0 ◦ F tkRk

)
|EghpTk

∥∥∥∥
for n0 ≤ k < n. The result now follows from Lemma 10.1. �
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Let v0 be the critical value of F . For k ≥ −rn, denote

unk := Sn ◦ Φn(vkRn) and ank := πh(u
n
k).

Consider an increasing sequence of renormalization depths

n0 ≤ n1 < n2 < . . . < nk ≤ N.

We say that this sequence is tempered if for 1 ≤ i < k, we have

ρ
ni+1−ni
1 > λε̄Rni ,

where ρ1 is given in Proposition 9.6.

Lemma 10.3. Consider a tempered sequence {ni}ki=1. Let

S = s1Rn1 + . . .+ sk−1Rnk−1
and Ŝ := S + skRnk ;

where 1 ≤ si < rni for 1 ≤ i ≤ k. For p0 ∈ Bnk+1
Rnk+1

, define

ẑ = (x̂, ŷ) := Snk ◦ Φnk(pS−Ŝ) and Êẑ := D(Snk ◦ Φnk ◦ F S)(Egh
p−Ŝ

).

Then Êẑ is θ-horizontal for some uniform constant θ = θ(K,b) ≥ 1. Moreover, we
have

1

Kk
<

∥∥∥∥DF Ŝ|Eghp−Ŝ

∥∥∥∥ < Kk (10.1)

where K = K(K,b) ≥ 1 is a uniform constant.

Proof. Proceeding by induction on k, suppose the result holds for k′ < k. We first
show that Êẑ is uniformly horizontal. Denote

S ′ := s1Rn1 + . . .+ sk−2Rnk−2
;

and for 0 ≤ i ≤ sk−1,

zi = (xi, yi) := Snk−1 ◦Ψnk−1(p(i−sk−1)Rnk−1
)

and

Êzi := D(Snk−1 ◦ Φnk−1 ◦ F S′+iRnk−1 )(Egh
p−S

).

Then by Propositions 6.5 and 9.6, it follows that for 0 ≤ j < sk−1

|xj − ank−1

0 | > ρ1.

Thus, Êzj is (1/ρ1)-horizontal by Lemma 5.1. Propositions 6.5 and 9.6 also imply
that

|x̂− ank0 | > ρ1.

Since

zsk−1
= Snk−1 ◦ Φnk−1 ◦ (Snk ◦ Φnk)−1(ẑ),

it follows from Theorem 9.7 that

∆ := |xsk−1
− ank−1

0 | > K0
−1ρ

nk−nk−1

1 > λε̄Rnk−1 .
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Thus, by Lemma 5.1, Êzsk−1
is O(1/∆)-horizontal. Under

D(Snk ◦ Φnk ◦ (Snk−1 ◦ Φnk−1)−1),

the distance ∆ = |xsk−1
− ank−1

0 | is rescaled to ρ1 = |x̂− ank0 |. We conclude that

Êẑ = D(Snk ◦ Φnk ◦ (Snk−1 ◦ Φnk−1)−1)(Êzsk−1
)

is θ-horizontal for some uniform constant θ ≥ 1.
Since Êẑ is uniformly horizontal, we see that ‖Dπh|Êẑ‖ > K−1. Thus, by Lemma 10.1,

we see that ∥∥DF sk
nk
|Êẑ
∥∥ > K−1.

By the induction hypothesis, we have∥∥∥∥DF S|Eghp−Ŝ

∥∥∥∥ > K−(k−1).

Concatenating the above two inequalities, (10.1) follows. �

Theorem 10.4. Fix δ ∈ (ε̄, 1) such that bδ̄ < 1. Then there exists a uniform constant
L = L(K,b) ≥ 1 such that the following holds. For m ∈ N ∪ {∞}, suppose that Fn0

is (m + 2)-times topologically renormalizable with combinatorics of b-bounded type.
Then F has n0 +m nested (L, δ, λ)-regular Hénon-like returns.

Proof. Proceeding by induction, suppose that for n0 ≤ M < n0 +m, the map F has
M nested (L, δ, λ)-regular Hénon-like returns

{(FRn ,Φn : Bn0 → Bn
0 )}Mn=1.

By Theorem 6.7, F has a (L, δ̄, λ)-regular Hénon-like return

(FRM+1 ,ΦM+1 : BM+1
0 → BM+1

0 ).

We claim that this return is (L, δ, λ)-regular.
Let p0 ∈ BM+1

0 and

Ev/h
p0

:= (DΦM+1)−1(E
gv/gh

ΦM+1(p0)
).

Let Rn0 ≤ T < RM+1. Write

T = t0 + t1Rn1 + . . .+ tkRnk ,

with 0 ≤ t0 < Rn0 ; ni−1 ≤ ni ≤ M and 1 ≤ ti < rni for 1 ≤ i ≤ k. Lemma 10.2
implies that

1

Kk
< ‖DF T |Ehp0‖ < Kk

By (9.4), we have K < λ−εRni . Together with Proposition A.4, this implies that p0 is
RM+1-times forward (K, ε, λ)-regular horizontally along Eh

p0
. By Proposition A.17, it

follows that p0 is RM+1-times forward (L, δ, λ)-regular (vertically) along Ev
p0

.

Let q0 ∈ BM+1
RM+1

and S = lRn0 for some 1 ≤ l < RM+1/Rn0 . Write

S = s1Rn1 + . . .+ skRnk ,
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where 1 ≤ si < rni for 1 ≤ i ≤ k. Let 1 ≤ m ≤ k be the smallest number such that
{ni}ki=m is tempered. Denote

S ′ := smRnm + sm+1Rnm+1 + . . .+ skRnk ,

and let
Êq−1 := DF S′−1(Egh

q−S′
).

By Lemmas 4.8 i) and 10.3, we see that Êq−1 is λ(1−ε̄)Rnk -horizontal in U−1, and

K−(k−m) < ‖DF−S′+1|Êq−1
‖ < Kk−m. (10.2)

Let
Ev
q−1

:= DF−1(Eh
q0

) = DΦ−1
−1(Egv

Φ−1(q−1)).

Since ‖Φ±1
−1‖C1 < K0 by Theorem 4.7, we have

K0
−1 ≤

‖DF−S′+1|Evq−1
‖ · ‖DF−S′+1|Êq−1

‖
Jacp−1 F

−S′+1
≤ K0. (10.3)

Substituting in Proposition A.4 and (10.2), we obtain

L̄−1K−(k−m)λ−(1−ε̄)S′ < ‖DF−S′+1|Evq−1
‖ < L̄Kk−mλ−(1+ε̄)S′ .

By (9.4), we have L̄K < λ−εRni , and hence,

Kλ−(1−ε̄)S′ < ‖DF−S′+1|Evq−1
‖ < Kλ−(1+ε̄)S′ . (10.4)

Denote
Êv
q−S′

:= DF−S
′+1(Ev

q−1
).

By Proposition A.5, we have

K̄−1λε̄(S−S
′) < ‖DF−(S−S′)|Êvq−S′

‖ < K̄λ−(1+ε̄)(S−S′). (10.5)

Since the gap between nm−1 and nm is not tempered, we have

ρnm1 < ρ
nm−nm−1

1 < λε̄Rnm−1 .

Denote ω := logλ ρ1. Then nm > (ε̄/ω)Rnm−1 . There exists a uniform constant

R̂ = R̂(ε, ω,b) ∈ N such that for all R ≥ R̂, we have

2(ε/ω)R >
b

ε
R.

By uniformly increasing n0 if necessary, we may assume that Rn0 ≥ R, so that

ε̄S ′ > ε̄Rnm > ε̄2nm > ε̄2(ε̄/ω)Rnm−1 > bRnm−1 > S − S ′.
Therefore,

‖DF−(S−S′)|Êvq−S′
‖ > K̄−1λε̄(S−S

′) > K̄−1λε̄S
′
λ−(1−ε̄)(S−S′). (10.6)

Concatenating (10.4) with (10.5) and (10.6), we conclude by Proposition A.4 that
q0 is RM+1-times backward (L, δ, λ)-regular (vertically) along Eh

q0
. �
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11. Realization of Renormalization Combinatorics

11.1. For unimodal maps. Consider a C2-unimodal map f with critical point c.
For concreteness, assume f ′′(c) > 0. For η > 0, we say that f has η-gap if f(c) < c−η,
and double η-gap if f(c) < f 2(c) < c − η. By Lemma 6.1, if f has double η-gap for
some η > 0, then c converges to a sink of period 1 or 2. Lastly, for χ ∈ N, we say
that f has (η, χ)-kneading if

f 1+χ
a2

(c) + η < c < f 1+i
a2

(c)− η for 1 ≤ i < χ.

Let I ⊂ R be an interval, and consider a C1-smoothly parameterized family f =
{fa}a∈I of C2-unimodal maps (i.e. fa depends C1-smoothly on the parameter a). For
η > 0 and χ ≥ 2, we say that f is (η, χ)-full if the following conditions hold.

• For all a ∈ I, the map fa has η-gap and χ-bounded kneading.
• There exists a1 ∈ I such that fa1 has double η-gap.
• There exists a2 ∈ I such that fa2 has (η, χ)-kneading.

Recall the definition of renormalization type τ(f) of a valuably renormalizable
unimodal map f given in Subsection 6.1.

Proposition 11.1. Consider a C1-smoothly parameterized family f = {fa}a∈I ⊂
U2(K) for some K ≥ 1. Suppose that f is (η0,b)-full for some η0 > 0 and b ≥
2. Then for any b-bounded renormalization type T , there exist a uniform constant
η1 = η1(K,b) > 0 and an interval I1 ⊂ I such that τ(fa) = T for a ∈ I1, and
f1 := {R1D(fa)}a∈I1 ⊂ U2 is (η1,b)-full.

Proof. The Intermediate Value Theorem by Milnor-Thurston [MiTh] implies that

there exist a parameter interval Î1 ⊂ I such that τ(fa) = T for a ∈ I1, and f̂1 :=
{R1D(fa)}a∈Î1

is full.

Clearly, there exist K ′ = K ′(K,b) ≥ 1 such that f̂1 ⊂ U2(K ′). Let I′1 be a maximal

subinterval of Î1 such that for a ∈ I′1, the critical point 0 ofR1D(fa) does not converge
to a fixed attracting sink. Then by Lemma 9.2, we see that there exists a uniform
constant η1 = η1(K ′) > 0 such that fa has η1-gap. Moreover, observe that there exist
a1 ∈ ∂I′1 such that the critical point 0 of R1D(fa1) converges to a fixed parabolic sink
of flip type. By decreasing η1 a uniform amount if necessary, we see that R1D(fa1)
has double η1-gap.

Applying the Intermediate Value Theorem again, we can restrict I′1 to a smaller
subinterval such that for a ∈ I1, the mapR1D(fa) has b-bounded kneading. Moreover,

the endpoints of I1 are a1 and a2, so that for f̂a2 := R1D(fa2), we have

f̂ 1+χ
a2

(0) < 0 < f̂ 1+i
a2

(0) for 1 ≤ i < χ,

and 0 does not converge to a sink of period less than χ. By decreasing η1 a uniform
amount if necessary, it follows from Lemma 9.2 that f̂a2 has (η1, χ)-kneading. �
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11.2. For Hénon-like maps. For N ∈ N, let F be the N -times (L, ε, λ)-regularly
Hénon-like renormalizable map with combinatorics of b-bounded type considered in
Subsection 9.2. Let η1 = η1(K,b) > 0 be the constant given in Proposition 11.1. We
assume that N is sufficiently large, so that for some 0 ≤ n0 ≤ N , we have (in addition
to (9.4)):

λεRn0 < cη1 (11.1)

for some sufficiently small constant c ∈ (0, 1) independent of F .
For 0 ≤ n ≤ N , let Fn := Rn(F ) and fn := Π1D(Fn). Denote the domain of

Fn by Dn. Recall the definition of the renormalization type τ(Fn) of Fn given in
Subsection 6.2 (see (6.8)).

Proposition 11.2. Suppose that fN is valuably renormalizable with return time rN ≤
b, and that R1D(fN) has η1-gap and b-bounded kneading. Then F is (N + 1)-times
Hénon-like renormalizable, and τ(FN) = τ(fN).

Proof. Let J0 be the rN -periodic interval of fN containing the critical value fN(0).
Denote the critical point of g := f rNN |JN+1 by c. By Lemma 6.2, we can assume that

J0 := [g(c), c] ∪ [c, g2(c)].

Denote Ji := gi(J0) for 0 ≤ i < rN . We claim that Ji and Jj for i 6= j are uniformly
far apart. By Lemma 9.1, there exists a uniform constant ρ1 > 0 such that if g2(c) <
c+ρ1, then g3(c) < c−ρ1. Considering the two cases g2(c) < c+ρ1 and g2(c) > c+ρ1

separately, and arguing as in the proof of Proposition 9.3, the claim follows.
For 0 ≤ i < rN , let J̃i be an interval that compactly contains Ji, and the components

of J̃i \ Ji have lengths commensurate to λε̄Rn . Define

Wi := J̃i × πv(DN).

Observe that Wi ∩Wj = ∅ if i 6= j. Moreover, by Proposition 9.5, it follows that we
have Fn(Wi) b Wi+1 (mod rn) for 0 ≤ i < rn.

Let

Wi := (SN ◦ ΦN)−1(Wi).

Denote RN+1 := rNRN . By Theorem 9.7, we see that if i > 0, then

Wi ∩ VNv0
(ρN1 ) = ∅

for some uniform constant ρ1 ∈ (0, 1). Using Lemmas 4.8 iii) and 5.1 and proceeding
by induction, one can show that under FRN+1 , horizontal foliation of W0 maps to a
foliation by vertical quadratic curves in W0. Similarly, using Lemmas 4.8 iv) and 5.2
and proceeding by induction, one can show that under F−RN+1 , horizontal foliation
of FRN+1(W0) maps to a λ(1−ε̄)RN -vertical foliation of W0. Let ΨN+1 be a genuine
horizontal chart that rectifies this vertical foliation. Then it follows immediately that
(FRN+1 ,ΨN+1) is a Hénon-like return. �
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Proof of Theorem E. Let F = {Fa}a∈I ⊂ HL6 be a C1-smoothly parameterized family
of Hénon-like maps that satisfy the following properties. For a ∈ I, the map Fa is n0-
times (L, ε, λ)-regularly Hénon-like renormalizable with combinatorics of b-bounded
type, where n0 is sufficiently large so that (9.4) and (11.1) are satisfied.

For some N ≥ n0, suppose that Fa has N Hénon-like returns {(FRn
a ,Φn

a)}Nn=1 with
combinatorics of b-bounded type. For n0 ≤ n ≤ N , Theorem 10.4 implies that
(FRn ,Φn) is (L, δ, λ)-regular for some uniform constants L ≥ 1 and δ ∈ (ε̄, 1) with

bδ̄ < 1. Moreover, by Theorem 9.7, we have Rn(Fa) ∈ HL5
λn(K) with λn := λ(1−δ̄)Rn .

Proceeding by induction, suppose that there exists an interval of parameters IN ⊂ I
such that the following properties hold.

• For a ∈ IN , the map Fa is N -times Hénon-like renormalizable with combina-
torics of b-bounded type.
• For all a, a′ ∈ IN , we have τN(Fa) = τN(Fa′).
• Denote FN,a := RN(Fa) and fN,a := Π1D(FN,a). Then fN := {fN,a}a∈IN forms

a (η1/2,b)-full C1-smoothly parameterized family.

Let T be a renormalization type with return time rn ≤ b. Lemma 11.1 implies
that there exists an interval IN+1 ⊂ IN such that τ(fN,a) = T for a ∈ IN+1, and
{R1D(fN,a)}a∈IN+1

is (η1,b)-full. By Proposition 11.2, Fa is (N + 1)-times Hénon-like
renormalizable, and τ(FN,a) = τ(fN,a). Moreover, we see from Proposition 9.5 that

‖f rNN,a − Π1D(F rN
N,a)‖C0 < λ(1−δ̄)RN < cη1.

It follows that {Π1D ◦ RN+1(Fa)}a∈IN+1
is (η1/2,b)-full. �

12. Uniform Cr-Bounds

Let F be the infinitely regularly Hénon-like renormalizable map with combinatorics
of b-bounded type considered in Subsection 9.2 (with N =∞). For n ≥ n0, denote

F̃n = pRn(F ) := Ψn ◦ FRn ◦ (Ψn)−1 and f̃n := Π1D(Fn).

By Corollary 8.6, there exists a uniform constant K ≥ 1 such that f̃n has K-bounded
non-linearity.

Consider the arcs

In0 := (Ψn)−1(In0 × {0}) = Ih0 ∩ Bn0 3 v0

and Ini := F i(In0 ) for i ∈ N. Let {J n
i }Rn−1

i=0 be the collection of arcs given in (8.3).
Recall that for n0 ≤ m ≤ n; 0 ≤ k < Rn/Rm and 0 ≤ i < Rm, we have

J n
0 := In0 , J n

kRm ⊂ J
m
0 and J n

i+kRm = Ĥi(J n
kRm). (12.1)

Moreover, {J n
i }Rn−1

i=0 is pairwise disjoint by Lemma 8.10.
The map

φ0 := P0|Ih0 : Ih0 → Ih0

gives a parameterization of Ih0 by its arclength. For n ≥ n0 and 0 ≤ l < Rn/Rn0 , let

JnlRn0
:= φ0(J n

lRn0
).



70 JONGUK YANG

Observe that {JnlRn0
}Rn/Rn0−1

l=0 is a pairwise disjoint set of intervals contained in R.

Moreover,

Jn+1
kRn

= Π1D ◦ F̃ k
n (Jn+1

0 ) for 0 ≤ k < rn. (12.2)

Let γ ⊂ Γ be C1-curves in R2. We say that γ is commensurable with Γ if |γ| � |Γ|.

Proposition 12.1. Let n ≥ n0 and 0 ≤ i < Rn. Then any arc J n+1
i+kRn

for some
0 ≤ k < rn, or any component of

J n
i \

rn−1⋃
k=0

J n+1
i+kRn

is commensurable with J n
i . Consequently, there exists a uniform constant ρ ∈ (0, 1)

such that
Rn−1∑
i=0

|J n
i | < O(ρn).

Proof. Denote the critical point of f̃n by cn. Then by Proposition 9.3, we see that
each component of

Jn0 \
3rn+1⋃
k=0

f̃kn(cn)

is commensurate with Jn0 . Thus, by Proposition 9.5 and (12.2), this implies the result
in the case i = 0. The case 0 < i < Rn then follows immediately from Theorem 8.5
and (12.1). �

The map

φ−1 := P−1|In0
Rn0−1

: In0
Rn0−1 → In0

Rn0−1

gives a parameterization of In0
Rn0−1. Denote

JnlRn0−1 := φ−1(J n
lRn0−1) for 1 ≤ l ≤ Rn/Rn0 .

Observe that {JnlRn0−1}
Rn/Rn0
l=1 is a pairwise disjoint set of intervals contained in R.

Define

γn−1 :=

Rn/Rn0−1⋃
l=3

JnlRn0−1 ⊂ Ih−1 and γn0 :=

Rn/Rn0−1⋃
l=3

JnlRn0
⊂ Ih0 . (12.3)

Proposition 8.18 gives the following decomposition of ĤRn−1:

ĤRn−1|In0 = FRn0−1|In0
0
◦ Ȟ Rn

Rn0
−1 ◦ . . . ◦ Ȟ3 ◦ Pn0

0 ◦ F 2Rn0 |In0 .

where for 3 ≤ l < Rn/Rn0 , we have

Ȟl := Pm̂l0 ◦ F ◦
(
Pn0
−1|Ǐnl

)−1

◦ FRn0−1|In0
0
.
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Define

Γn−1 :=

Rn/Rn0−1⋃
l=3

Ǐnl ⊂ U−1 ⊂ R2.

Lemma 12.2. For n ∈ N and 3 ≤ l < Rn/Rn0, the map P−1 restricts to a diffeomor-
phism from Ǐnl to JnlRn0−1 (and hence, also from Γn−1 to γn−1). Define

gn−1 := πv ◦ Φ−1 ◦ (P−1|Γn−1
)−1.

Then
‖gn−1|(−t,t)‖Cr = O(t1/ε̄).

Proof. The first claim follows immediately from Proposition 8.18.
Observe that m̂l is the largest integer such that

{0} ∪ JnlRn0−1 ⊂ Jm̂lRm̂l−1.

Moreover,
JnlRn0−1 ⊂ Jm̂l+1

âlRn0−1 and 0 /∈ Jm̂l+1
âlRn0−1.

By Proposition 8.18, Ǐnl is λ(1−ε̄)Rm̂l -horizontal. Additionally, by Proposition 12.1,
we have

dist(0, Ǐnl ) � ρm̂l

for some uniform constant ρ ∈ (0, 1). The estimate on gn−1 follows. �

Let G : I → J be a C1-diffeomorphism between two C1-curves I,J ⊂ R2. Define
the zoom-in operator Z by

Z(G)(t) := |J |−1 · φ−1
J ◦G ◦ φI(|I|t),

where φI : [0, |I|]→ I is the parameterization of I by its arclength (and φJ similarly
defined). Note that Z(G) : [0, 1]→ [0, 1].

This rest of this section is devoted to proving the following theorem.

Theorem 12.3. There exists a universal constant K > 0 such that for all n ≥ n0

sufficiently large and 1 ≤ i < Rn, we have

‖Z(Ĥi|In0 )‖Cr < K.

Define
q(x) := sign(x)x2.

Denote Ǐh0 := q−1(Ih0 ). For n ≥ n0 and 0 ≤ l < Rn/Rn0 , let J̌nlRn0
:= q−1(JnlRn0

). The

proof of Theorem 12.3 relies on the following key result.

Proposition 12.4. Let n ∈ N. There exists a Cr-diffeomorphism ȟn : Ih0 → Ǐh0 with

‖(ȟn)±1‖Cr = O(1)

such that for 1 ≤ l ≤ Rn/Rn0, we have

φ0 ◦ ĤlRn0
◦ φ−1

0 |In0 = (qnl ◦ ȟnl ) ◦ . . . ◦ (qn2 ◦ ȟn2 ) ◦ (qn1 ◦ ȟn1 ),
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where ȟnl : Jn(l−1)Rn0
→ J̌nlRn0

and qnl : J̌nlRn0
→ JnlRn0

are diffeomorphisms given by

ȟnl := ȟn|Jn
(l−1)Rn0

and qnl := q|J̌nlRn0

. (12.4)

Lemma 12.5. For n ∈ N and 3 ≤ l < Rn/Rn0, we have

P m̂l
0 ◦ F ◦ (Pn0

−1|Ǐnl )−1 ◦ FRn0−1 ◦ φ−1
0 |Jn(l−1)Rn0

= qnl ◦ ȟnl (x),

where ȟnl and qnl are as defined in (12.4).

Proof. Define γ̌n0 := q−1(γn0 ), where γn0 is given in (12.3). By Lemmas 8.1 and 12.2,
there exists a Cr-diffeomorphism ψn−1,0 : γn−1 → γ̌n0 with

‖(ψn−1,0)±1‖Cr = O(1)

such that

P m̂l
0 ◦ F ◦ Φ−1

−1 ◦Gn
−1|Ǐnl = q ◦ ψn−1,0|Ǐnl ,

where Gn
−1(x) := (x, gn−1(x)). Precomposing with P−1 ◦FRn0−1 ◦φ−1

0 |Jn(l−1)Rn0

gives the

desired result. �

Proof of Theorem 12.3. For 1 ≤ l < Rn/Rn0 , let n0 ≤ m̂l ≤ n be the largest integer
such that

{0} ∪ J̌nlRn0
⊂ J̌m̂lRm̂l

.

Denote Lnm := {1 ≤ l < Rn/Rn0 | m̂l = m}. Then l ∈ Lnm if and only if

J̌nlRn0
⊂ J̌mRm and J̌nlRn0−1 ∩ J̌m+1

Rm+1
= ∅.

Note that
n⋃

m=n0

Lnm = {1 ≤ l < Rn/Rn0}.

Let Um
Rm

be the component of J̌mRm \ J̌
m+1
Rm+1

contained in R−. Applying Proposi-

tion 12.1 and Lemma D.5 to Z
(
q|UmRm

)
, we see that∑

l∈Lnm

‖Z(qnl )− Id ‖Cr = O(ρm)

for some uniform constant ρ ∈ (0, 1). The result now follows from Proposition 12.1,
Proposition 12.4, and Lemmas D.5 and D.6. �

Theorem 12.6. For all n ∈ N sufficiently large, we have ‖Rn(F )‖Cr = O(1).

Proof. By Theorem 12.3 and (8.2), we see that

‖Π1D ◦ Rn(F )‖Cr = O(1).

Since Rn(F ) is a λ(1−ε̄)Rn-thin Hénon-like map, the result follows. �
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13. Exponentially Small Pieces

Let F be the infinitely regularly Hénon-like renormalizable map considered in Sec-
tion 12. The goal of this section is to prove Theorem B.

For any integer l ≥ 2, we have

dRn0 = a1Rn1 + . . .+ akRnk , (13.1)

for some

• n0 ≤ n1 < . . . < nk,
• 1 ≤ am < rnk for 1 ≤ m < k, and
• 2 ≤ ak < 2rnk .

Define
ĤlRn0

:= F a1Rn1 ◦ Pn2
0 ◦ F a2Rn2 ◦ . . . ◦ Pnk0 ◦ F akRnk ◦ Pnk0 ,

where Pn0 : Bn0 → In0 for n ≥ n0 is the projection map onto In0 given by

Pn0 := (Ψn)−1 ◦ Πh ◦Ψn.

Denote m̂(lRn0) := n1 and k̂(lRn0) := nk. Recall the definition of Ĥi given in Sec-
tion 8. Then we have

Pm̂(lRn0 )
0 ◦ ĤlRn0

= ĤlRn0
◦ P k̂(lRn0 )

0 . (13.2)

Lemma 13.1. Let i = lRn0 for some l ≥ 2. Then for n ≥ k̂(i), we have

‖Ĥi − F i|
Bk̂(i)

0

‖C0 < λ(1−ε̄)Rm̂(i) .

Proof. By Theorem 4.7 and Proposition 9.4, ‖(Ψm)±1‖Cr+3 and ‖F̃m‖C1 are uniformly
bounded. Moreover, by Theorem 4.7 ii), we have

‖F̃m − F̃m ◦ Πh‖Cr+3 < λ(1−ε̄)Rm . (13.3)

Let i = lRn0 be given by (13.1) with k̂(i) = nk < n. Note that

FRnk = (Ψnk)−1 ◦ F̃nk ◦Ψnk

and
ĤRnk

= FRnk ◦ Pnk0 = (Ψnk)−1 ◦
(
F̃nk ◦ Πh

)
◦Ψnk .

Hence, we see by (13.3) and Lemma D.1 that

‖ĤRnk
− FRnk |Bnk0

‖C0 < λ(1−ε̄)Rnk .

Moreover,

ĤakRnk
=
(

(Ψnk)−1 ◦ F̃ ak−1
nk

◦Ψnk
)
◦ ĤRnk

and
F akRnk =

(
(Ψnk)−1 ◦ F̃ ak−1

nk
◦Ψnk

)
◦ FRnk

Thus, another application of Lemma D.1 imply

‖ĤakRnk
− F akRnk |Bnk0

‖C0 < λ(1−ε̄)Rnk .
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Proceeding by induction, suppose that

‖Ĥij+1
− F ij+1|Bnk0

‖C0 < λ(1−ε̄)Rnj+1 .

where 1 ≤ j < k and

ij+1 := anj+1
Rnj+1

+ . . .+ ankRnk .

Write

Ĥij = (Ψnj)−1 ◦ F̃
anj−1
nj ◦

(
F̃nj ◦ Πh

)
◦Ψnj ◦ Ĥij+1

and

F ij |Bnk0
= (Ψnj)−1 ◦ F̃

anj−1
nj ◦ F̃nj ◦Ψnj ◦ F ij+1|Bnk0

.

Applying Lemma D.1, the result follows. �

Lemma 13.2. There exists a uniform constant ρ ∈ (0, 1) such that

Rn/Rn0∑
l=2

diam(ĤlRn0
(In0 )) = O(ρn).

Proof. For 2 ≤ l ≤ Rn/Rn0 , consider the curve Ǐnl ⊂ U−1 given in Proposition 8.18.
By (13.2), we have

ĤlRn0
(In0 ) = F ◦

(
Pn0
−1|Ǐnl

)−1

◦ FRn0−1 ◦ Ĥ(l−1)Rn0
(In0 ).

Thus, {ĤlRn0
(In0 )}Rn/Rn0

l=2 is the image of

{J n
lRn0

:= ĤlRn0
(In0 )}Rn/Rn0−1

l=1

under

Gn := F ◦
(
Pn0
−1|Γn−1

)−1

◦ FRn0−1,

where

Γn−1 :=

Rn/Rn0⋃
l=2

Ǐnl .

Since Γn−1 is uniformly horizontal, ‖Gn‖Cr = O(1). The result now follows from
Proposition 12.1. �

Theorem 13.3. There exists a uniform constant ρ̃ ∈ (0, 1) such that for n ∈ N, we
have

Rn−1∑
i=0

diam(F i(BnRn)) = O(ρ̃n).

Proof. Choose n0 < m < n to be determined later. By Lemma 13.1, we see that for
1 ≤ l < Rn/Rm, we have

diam(F lRm(BnRn)) < diam(ĤlRm(In0 )) + λ(1−ε̄)Rm̂(lRm) .
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Thus, by Lemma 13.2, we have

Rn/Rm−1∑
l=0

diam(F lRm(BnRn)) = O(ρn) +
Rn

Rm

λ(1−ε̄)Rm .

For m sufficiently large, the expression on the right is bounded by O(ρn1 ) for some
uniform constant ρ1 ∈ (ρ, 1).

Let i = j + a0Rn0 + . . . + am−1Rm−1 + lRm with 0 ≤ j < Rn0 ; 0 ≤ ak < rk for
n0 ≤ k < m, and 1 ≤ l < Rn/Rm. We can write

F i−lRm = F j ◦ (Ψn0)−1 ◦ F̃ a0
n0
◦Ψn0 ◦ . . . ◦ (Ψm−1)−1 ◦ F̃ am−1

m−1 ◦Ψm−1.

By Theorem 4.7 and Proposition 9.4, we see that

‖F i−lRm‖C1 < Km

for some uniform constant K ≥ 1. Hence,

Rn−1∑
i=0

diam(F i(BnRn)) = RmK
m

Rn/Rm−1∑
l=0

diam(F lRm(BnRn)) = O(RmK
mρn1 ).

For n/m sufficiently large, the expression on the right is bounded by O(ρ̃n) for some
uniform constant ρ̃ ∈ (ρ1, 1). �

Observe that Theorem B is an immediate consequence of Theorem 13.3.

14. Regular Unicriticality

Let F be the infinitely regularly Hénon-like renormalizable map considered in Sec-
tion 12. Recall that the renormalization limit set of F is given by

ΛF :=
∞⋂
n=1

Rn−1⋃
i=0

BnRn+i.

By Theorem B, ΛF supports a unique invariant probability measure µ given by the
counting measure:

µ(Bni ) = 1/Rn for n, i ∈ N.

Proposition 14.1 (Proposition 8.3 [CLPY1]). With respect to µ, the Lyapunov ex-
ponents of F on ΛF are 0 and log λµ < 0 for some λµ ∈ (0, 1).

Proposition 14.2 (Proposition 4.1 [CLPY1]). For any η > 0, there exist uniform
constants Nη ∈ N and Cη ≥ 1 such that the following holds. Let p ∈ Bnk and Ep ∈ P2

p,
where n ≥ Nη and k ≥ 0. Then for all i ∈ N, we have:

C−1
η λ(1+η)i

µ < ‖DF i|Ep‖ < Cηλ
−ηi
µ (14.1)

and

C−1
η λ(1+η)i

µ < Jacp(F
i) < Cηλ

(1−η)i
µ . (14.2)
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For p ∈ Bn0 , define
Ev,n
p := D(Ψn)−1(Egv

Ψn(p))

and
Eh
p := D(Ψn)−1(Egh

Ψn(p)) = D(Φ0)−1(Egh
Φ0(p)).

Theorem 14.3. For any δ > 0, there exists Lδ ≥ 1 such that for all n ∈ N, the nth
Hénon-like return (FRn ,Ψn) is (Lδ, δ, λµ)-regular.

Proof. Choose η ∈ (0, δ). It suffices to show the result for n ≥ max{n0, Nη}, where
Nη is given in Proposition 14.2. Let p0 ∈ Bn0 . By Lemma 10.2 and (14.2), we see
that p0 is Rn-times forward (O(1), η̄, λµ)-regular horizontally along Eh

p0
. The required

forward (Lδ, δ, λµ)-regularity (vertically) along

Ev,n
p0

:= (DΨn)−1(Egv
Ψn(p0))

now follows from Proposition A.17.
Let q0 := pRn . We claim that q−1 is backward regular (vertically) along

Ev
q−1

:= (DΦ−1)−1(Egv
Φ−1(q−1)).

We argue similarly as in the proof of Theorem 10.4.
Let S = lRn0 for some 1 ≤ l < Rn/Rn0 . Write

S = s1Rn1 + . . .+ skRnk ,

where 1 ≤ si < rni for 1 ≤ i ≤ k. Let 1 ≤ m ≤ k be the smallest number such that
{ni}ki=m is tempered. Denote

S ′ := snmRnm + snm+1Rnm+1 + . . .+ snkRnk ,

and let
Êq−1 := DF S′−1(Egh

q−S′
).

Subbing in (10.2) and (14.2) (instead of Proposition A.4) into (10.3), we obtain

K−(k−m)C−1
η λ(1+η)S′

µ < ‖DF−S′+1|Evq−1
‖ < Kk−mCηλ

(1−η)S′

µ .

Then following the same argument as in the proof of Theorem 10.4 (but using (14.1)
and (14.2) instead of Proposition A.5 and Proposition A.4 respectively), we conclude
that q−1 is (Rn − 1)-times backward (Lδ, δ, λµ)-regular (vertically) along Ev

q−1
. �

Recall that by Theorem 7.1, we have
∞⋂
n=1

BnRn = {v0}.

Theorem 14.4. The orbit {vm}m∈Z is a regular quadratic critical orbit.

Proof. By Theorem 14.3, v0 is infinitely forward and backward (Lδ, δ, λµ)-regular
along E∗v0

= Ess
v0

= Ec
v0

for all δ > 0. Thus, {vm}m∈Z is a regular critical orbit.
The quadratic tangency of W ss(v0) and W c(v0) at v0 is given in Proposition 4.5
iii). �
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14.1. Critical cover. Let δ = ε̄ for some ε ∈ (0, 1). Choose η ∈ (0, ε). Proposi-
tion 14.2 and Theorem 14.3 imply that by replacing F with Rn0(F ) for some n0 ∈ N
sufficiently large, we may henceforth assume the following.

• Conditions (4.1) and (9.4) hold with λ = λµ and n0 = 0.
• The map F is η-homogeneous: for all p ∈ B and Ep ∈ P2

p, we have

λ1+η
µ < ‖DF |Ep‖ < λ−ηµ and λ1+η

µ < Jacp F < λ1−η
µ .

• For n ∈ N, the nth Hénon-like return (FRn ,Ψn) is (1, η, λµ)-regular.

Denote ε′ := (1 + ε̄)ε > ε. For z = (a, b) ∈ Bn
0 and t ≥ 0, let

Vz(t) := [a− t, a+ t]× Iv0 .
For p ∈ Bn0 and t ≥ 0, let

Vnp (t) := (Ψn)−1(VΨn(p)(t)).

Lastly, for t > 0 and p ∈ R2, denote

Dp(t) := {q ∈ R2 | dist(q, p) < t}.
We now show that F is (δ, ε)-regularly unicritical on ΛF (see Definition 2.4). First,

we need to define a suitable cover of the iterated preimages of critical value v0. For
n ∈ N and 1 ≤ i < rn, let Cn be the connected component of

BnRn ∩ V
n
v−Rn

(λε
′Rn
µ )

containing v−Rn . Define Cni := F i(Cn) for 0 ≤ j < Rn, and

CN :=
N+1⋃
n=1

Rn−1⋃
i=0

Cni .

Note that {v−i}RN+1

i=1 ⊂ CN .

Proposition 14.5. We have diam(Cni ) < λεRnµ . Consequently,

CN ⊂
RN+1⋃
i=1

Dv−i(λ
εi
µ ).

Proof. By Theorem 4.7 ii), BnRn is a λ
(1−ε̄)Rn
µ -thick strip around the curve FRn(In0 ),

which is vertical quadratic in Bn0 with the vertical tangency λ
(1−η̄)Rn
µ -close to v0. By

Proposition 6.5, we have

Vv−Rn (λη̄Rnµ ) ∩ Vv0(λη̄Rnµ ) = ∅.
By Lemma 5.1, the connected component Γn of the curve

InRn ∩ Vv−Rn (λη̄Rnµ )

is λ−η̄Rn-horizontal in Bn0 . Consequently,

diam(Cn) � |Γn| < λ−η̄Rnλε
′Rn .
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Then by η-homogeneity of F , we have

diam(Cni ) < λ−η̄i diam(Cn)

for 0 ≤ i < Rn. The result follows. �

14.2. Forward regularity away from the critical cover. For all p ∈ ΛF \ {v0},
there exists a unique number dp ≥ 0 such that p ∈ Bdp0 \B

dp+1
0 . Define depth(p) := dp.

If p = v0, define depth(p) = ∞. Let p0 ∈ ΛF . For N ∈ N, let 0 ≤ S ≤ N be the
largest number satisfying

d = depth(pS) ≥ depth(pi) for 0 ≤ i ≤ N.

Define the valuable moment and the valuable depth of the N-times forward orbit of
p0 as

vm(p0, N) := S and vd(p0, N) := d

respectively.

Lemma 14.6. Let p0 ∈ ΛF and N ∈ N. Denote S := vm(p0, N) and d := vd(p0, N).
Write

S = s0R0 + s1R1 + . . .+ sdRd,

where 0 ≤ si < ri for 0 ≤ i ≤ d. If p0 \Cd, then for 0 ≤ n ≤ d and 0 ≤ s ≤ sn, we
have

pSn−1+sRn /∈ Vnv0
(λε̄Rnµ ) where Sn−1 := s0R0 + . . .+ sn−1Rn−1.

Proof. If q0 ∈ ΛF ∩Vnv0
(λε̄Rn), then it follows from Theorem 4.7 ii) and η-homogeneity

that q−Rn+1 ∈ Cn+1. Thus, if pS′ ∈ Vnv0
(λε̄Rnµ ), where S ′ := Sn−1 + sRn, then

p−Rn+1+S′ ∈ Cn+1. Therefore,

p0 ∈ Cn+1
Rn+1−S′ ⊂ Cn ⊂ Cd.

This is a contradiction. �

Lemma 14.7. Denote
εi = (1 + ε̄)iε̄ for i ≥ 0.

Let q0 ∈ Bn0 and Eq0 ∈ P2
q0

. If

](Eq0 , E
v,n
q0

) > λε1Rnµ ,

then
‖DFRn|Eq0‖ > λε2Rnµ .

Moreover, if qRn /∈ Vnv0
(λε0Rnµ ), then

](EqRn , E
v,n
qRn

) > λε1Rnµ .

Proof. The estimate on ‖DFRn|Eq0‖ follows immediately from the (1, η, λµ)-regularity

of the Hénon-like return (FRn ,Ψn). The estimate on ](EqRn , E
v,n
qRn

) follows immedi-
ately from Lemma 5.1. �
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Lemma 14.8. For n, k ∈ N, let q0 ∈ Bn+k
0 and Eq0 ∈ P2

q0
. If

Rn ≥ ε̄Rn+k and ](Eq0 , E
v,n+k
q0

) > λε̄Rn+k
µ ,

then

‖DFRn|Eq0‖ > λε̄Rnµ and ](EqRn , E
v,n
qRn

) > λη̄Rnµ .

Proof. Observe that

η̄Rn > η̄ε̄Rn+k = ε̄Rn+k.

So

λη̄Rnµ < λε̄Rn+k
µ .

By Theorem 4.7 i), we have

](Ev,n+k
q0

, Ev,n
q0

) < λ(1−η̄)Rn
µ .

Hence,

](Eq0 , E
v,n
q0

) > λε̄Rn+k
µ − λ(1−η̄)Rn

µ > λη̄Rnµ − λ(1−η̄)Rn
µ = λη̄Rnµ .

Since depth(qRn) < n, we have qRn /∈ Vnv0
(λη̄Rnµ ) by Proposition 6.4. The result then

follows from Lemma 5.1. �

Theorem 14.9. Let p0 ∈ ΛF and N ∈ N. Define

Êpi := D(F i ◦ Φ−1
0 )(Egh

p0
) for i ≥ 0.

If p0 6∈ Cd with d := vd(p0, N), then

‖DFN |Êp0‖ > λε̄Nµ .

Proof. Write

S := vm(p0, N) = s0R0 + . . .+ sdin
Rdin

with 0 ≤ sn < rn for 0 ≤ n ≤ din ≤ d. Using Lemmas 14.6 and 14.7, and arguing
inductively, we see that

‖DF S|Êp0‖ > λε̄Sµ , pS /∈ Vdin
v0

(λ
η̄Rdin
µ ) and ](ÊpS , E

v,din
pS

) > λ
η̄Rdin
µ .

Let

T := N − S = t0R0 + . . .+ tdoutRdout

with 0 ≤ tn < rn for 0 ≤ n ≤ dout < d. If dout ≥ din, then

pS /∈ Vdout
v0

(λ
η̄Rdout
µ ) ⊂ Vdin

v0
(λ

εRdin
µ ) and ](ÊpS , E

v,dout
pS

) > λ
η̄Rdout
µ .

Thus, by Lemma 14.6, we have

‖DF tdout
Rdout |ÊpS ‖ > λ

ε̄tdout
Rdout

µ .

Denote

Tn := t0R0 + . . .+ tnRn and 0 ≤ n ≤ dout.

Note that Tn < Rn+1 ≤ bRn.
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If dout < din, let ď := dout, and denote tdin
:= sdin

. Otherwise, let ď < dout be the
largest integer such that tď > 0. Proceeding by induction, suppose for some n ≤ ď
with tn > 0, we have

‖DFN−Tn|Êp0‖ > λε̄(N−Tn)
µ and ](ÊpN−Tn , E

v,n+k
pN−Tn

) > λη̄Rn+k
µ ,

where k > 0 is the smallest number such that tn+k > 0.
If Rn ≥ ε̄Rn+k, then Lemma 14.8 implies that

‖DF tnRn|ÊpN−Tn ‖ > λε̄tnRnµ and ](ÊpN−Tn−1
, Ev,n

pN−Tn−1
) > λη̄Rnµ .

If Rn < ε̄Rn+k, then by η-homogeneity, we have

‖DFN |Êp0‖ > λ(1+η)Tn
µ ‖DFN−Tn+k |Êp0‖ > λε̄Rn+k

µ λε̄(N−Tn+k)
µ > λε̄Nµ .

�

15. Renormalization Convergence

15.1. For unimodal maps. Let r ≥ 3 be an integer. Consider a Cr-unimodal map
f : I → I with the critical value v ∈ I. For an integer 0 ≤ s ≤ r and a number t > 0,
the t-neighborhood of f with respect to the Cs-topology is denoted Ns(f, t).

Lemma 15.1. For K ≥ 1 and b ≥ 2, there exists a uniform constant t0 = t0(K,b) >
0 such that the following holds. Let f ∈ Ur(K). Suppose f is non-trivially renormaliz-

able with return time R ≤ b, and R1D(f) has b-bounded kneading. If f̃ ∈ Ns(f, t)∩U2

with 2 ≤ s < r and t ∈ [0, t0], then f̃ is valuably renormalizable with τ(f̃) = τ(f).
Moreover,

‖R1D(f)−R1D(f̃)‖Cs < Ct,

where C ≥ 1 is a uniform constant depending only on K, b and ‖f‖Cs+1.

Proof. The renormalizability of f̃ such that τ(f̃) = τ(f) follows immediately from
Lemma 6.2 and Proposition 9.3.

Denote the critical points of f and f̃ by c = 0 and c̃ respectively. Define

I1 := [f(c), fR(c)] and Ĩ1 := [f̃(c̃), f̃R(c̃)];

and f1 := fR|I1 and f̃1 := f̃R|Ĩ1 . Let S and S̃ be the unique orientation-preserving

affine maps on R such that S ◦ f1 ◦ S−1, S̃ ◦ f̃1 ◦ S̃−1 ∈ Us.
By Lemma D.1, we see that

‖f1 − f̃1‖Cs < Ct.

This implies immediately that ‖S − S̃‖ < Ct. The result follows. �

Consider the full renormalization attractor A contained in the space Uω of analytic
unimodal maps. For an integer b ≥ 2, the compact invariant subset of A consisting
of all infinitely renormalizable unimodal maps with combinatorics of b-bounded type
is denoted Ab.
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The following is a consequence of the fact that Ab is a hyperbolic attractor for the
renormalization operator R1D acting on U3.

Lemma 15.2. Let r ≥ 3 and N ∈ N be integers, and let K ≥ 1 be a number.
Suppose f ∈ Ur is N-times valuably renormalizable. Then for any f ∗ ∈ Ab with
τN(f) = τN(f ∗), we have:

‖Rn
1D(f)−Rn

1D(f ∗)‖Cr = Cρn‖f − f ∗‖Cr for 1 ≤ n < N/2,

where ρ = ρ(b) ∈ (0, 1) is a universal constant and C ≥ 1 is a uniform constant
depending only on b and ‖f‖Cr .

15.2. For Hénon-like maps. Let F be the infinitely regularly Hénon-like renormal-
izable Cr+4-map considered in Section 12. For n ≥ n0, denote Fn := Rn(F ) and
fn := Π1D(Fn). By Theorem 9.7, we have Fn ∈ HLr+3

λn
(K), where K ≥ 1 is a uni-

form constant, and λn := λ(1−ε̄)Rn . Moreover, by Theorem 12.6, ‖Fn‖Cr is uniformly
bounded.

Proposition 15.3 (Shadowing Lemma). For N ∈ N, there exists n1 = n1(N) ∈ N
such that for all n ≥ n1, the map fn is N-times valuably renormalizable with τN(fn) =
τN(Fn). Moreover, we have

‖fn+k −Rk
1D(fn)‖Cr−1 < Ckλ(1−ε̄)Rn for 1 ≤ k ≤ N

for some uniform constant C ≥ 1.

Proof. First, consider the case when N = 1. The renormalizability of fn so that
τ(fn) = τ(Fn) follows immediately from Lemma 6.2, and Propositions 9.5 and 9.6.

Note that

‖Fn − Fn ◦ Πh‖Cr < λ(1−ε̄)Rn .

Since ‖Fn‖Cr is uniformly bounded, Lemma D.1 implies that

‖F rn
n − (Fn ◦ Πh)

rn‖Cr−1 < Cλ(1−ε̄)Rn

for some uniform constant C ≥ 1. Thus,

‖Π1D(F rn
n )− f rnn ‖Cr−1 < Cλ(1−ε̄)Rn .

It follows that if S and S̃ are the unique orientation-preserving affine maps on R such
that S ◦ Π1D(F rn

n ) ◦ S−1, S̃ ◦ f rnn ◦ S̃−1 ∈ Us, then

‖S − S̃‖ < Cλ(1−ε̄)Rn .

Thus,

‖fn+1 −R1D(fn)‖Cr−1 < Cλ(1−ε̄)Rn .

Proceeding inductively, suppose that the result is true for all 1 ≤ k < N . In
particular, we have

‖fn+N−1 −RN−1
1D (fn)‖Cr−1 < CN−1λ(1−ε̄)Rn .
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By the above argument, fn+N−1 is valuably renormalizable so that

τ(fn+N−1) = τ(Fn+N−1).

If n1 is sufficiently large, it follows from Lemma 15.1 that RN−1
1D (fn) is also valuably

renormalizable, and

τ(RN−1
1D (fn)) = τ(fn+N−1).

For m ∈ N, we have

‖fn+m −R1D(fn+m−1)‖Cr−1 < λ(1−ε̄)Rn+m .

Applying Lemma 15.1 0 ≤ k < N times, we obtain

‖Rk
1D(fn+m)−Rk+1

1D (fn+m−1)‖Cr−1 < Ckλ(1−ε̄)Rn+m .

Thus,

‖fn+N −RN
1D(fn)‖Cr−1 ≤

N−1∑
k=0

‖Rk
1D(fn+N−k)−Rk+1

1D (fn+N−(k+1))‖Cr−1

<
N−1∑
k=0

Ckλ(1−ε̄)Rn+N−k

< O(CNλ(1−ε̄)Rn).

�

Proof of Theorem C. Statements i), ii) and iii) are given by Theorem 4.7. Statement
iv) is given by Theorem 12.6. Hence, it remains to prove Statement v).

Suppose r ≥ 4. Let f ∗ ∈ Ab so that

τ∞(f ∗) = τ∞(F ) := [τ(f0), τ(f1), . . .].

Denote f ∗n := Rn
1D(f ∗) for n ≥ 0.

Consider the constants C ≥ 1 and ρ ∈ (0, 1) given in Lemma 15.2. Choose N ∈ N
sufficiently large so that CρN < ρ̃ < 1. Let n1 = n1(2N) ∈ N be the number given in
Proposition 15.3. Then for all n ≥ n1, we have

‖fn+N − f ∗n+N‖Cr−1 ≤ ‖fn+N −RN
1D(fn)‖Cr−1 + ‖RN

1D(fn)−RN
1D(f ∗n)‖Cr−1

≤ O(λ(1−ε̄)Rn) + ρ̃‖fn − f ∗n‖Cr−1

< ρ̃′‖fn − f ∗n‖Cr−1 ,

for some uniform constant ρ̃′ ∈ (0, 1). �
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Appendix A. Quantitative Pesin Theory

In this section, we summarize the results in [CLPY2]. Let r ≥ 2 be an integer,
and consider a Cr+1-diffeomorphism F : B → F (B) b B, where B ⊂ R2 is a bounded
domain. Let λ, ε ∈ (0, 1) with ε̄ < 1.

Let p0 ∈ B and Ev
p0
∈ P2

p0
. For m ∈ Z, decompose the tangent space at pm as

P2
pm = (Ev

pm)⊥ ⊕ Ev
pm .

In this decomposition, we have

DpmF =:

[
αm 0
ζm βm

]
,

where αm, βm > 0 and ζm ∈ R.
For some M,N ∈ N ∪ {0,∞} and L ≥ 1, suppose for s ∈ {0, 1}, we have

L−1λ(1+ε)n ≤ β0 . . . βn−1

(α0 . . . αn−1)s
≤ Lλ(1−ε)n for 1 ≤ n ≤ N,

and

L−1λ(1+ε)n ≤ β−n . . . β−1

(α−n . . . α−1)s
≤ Lλ(1−ε)n for 1 ≤ n ≤M.

Then we say that p0 is (M,N)-times (L, ε, λ)-regular along Ev
p0

.

Proposition A.1 (Growth in irregularity). [CLPY2, Proposition 5.5] For −M ≤
m ≤ N , let Lpm ≥ 1 be the minimum value such that pm is (M + m,N −m)-times
(Lpm , ε, λ)-regular along Ev

pm. Then

Lpm < L̄λ−ε̄|m|.

A.1. Linearization. For w, l > 0, denote

B(w, l) := (−w,w)× (−l, l) ⊂ R2 and B(l) := B(l, l).

Theorem A.2 (Regular charts). [CLPY2, Theorem 6.1] There exists a uniform con-
stant

C = C(‖DF‖Cr , λ−ε) ≥ 1

such that the following holds. For −M ≤ m ≤ N , let

ω :=
λ1−ε

1− λ1−ε · ‖DF
−1‖ · ‖DF‖ and Kpm := L̄(1 + ω)5‖DF−1‖λ1−ε̄|m|.

Define
Upm := B(lpm) where lpm := λ1+ε̄(CKpm)−1.

Then there exists a Cr-chart Φpm : (Upm , pm)→ (Upm , 0) such that DΦpm(Ev
pm) = Egv

0 ,

‖DΦ−1
pm‖Cr−1 < C(1 + ω), ‖DΦpm‖Cs < CKs+1

pm for 0 ≤ s < r,

and the map Φpm+1 ◦ F |Upm ◦ Φ−1
pm extends to a globally defined Cr-diffeomorphism

Fpm : (R2, 0)→ (R2, 0) satisfying the following properties:

i) ‖DFpm‖Cr−1 ≤ ‖DF‖Cr ;
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ii) we have

D0Fpm =

[
am 0
0 bm

]
, where λε̄ < am < λ−ε̄ and λ1+ε̄ < bm < λ1−ε̄.

iii) ‖DzFpm −D0Fpm‖C0 < λ1+ε̄ for z ∈ R2;
iv) we have

Fpm(x, y) = (fpm(x), epm(x, y)) for (x, y) ∈ R2,

where fpm : (R, 0) → (R, 0) is a Cr-diffeomorphism, and epm : R2 → R is a
Cr-map such that for all 0 ≤ s ≤ r, we have

∂sxepm(·, y) ≤ ‖DF‖Cr |y| for y ∈ R.

The construction in Theorem A.2 is referred to as a linearization of F along the
(M,N)-orbit of p0 with vertical direction Ev

p0
. For −M ≤ m ≤ N , we refer to lpm ,

Upm , Φpm and Fpm as a regular radius, a regular neighborhood, a regular chart and a
linearized map at pm respectively.

For p ∈ R2 and t > 0, let

Dp(t) := {‖q − p‖ < t}.

Lemma A.3. [CLPY2, Lemma 6.2] For −M ≤ m ≤ N , we have

Upm ⊃ Dpm

(
λ1+ε̄

C2K2
pm

)
,

where C,Kpm ≥ 1 are given in Theorem A.2.

A.2. C1-estimates.

Proposition A.4 (Jacobian bounds). [CLPY2, Proposition 6.14] We have

L̄−1λ(1+ε̄)n ≤ Jacp0 F
n ≤ L̄λ(1−ε̄)n for 1 ≤ n ≤ N,

and
L̄−1λ−(1−ε̄)n ≤ Jacp0 F

−n ≤ L̄λ−(1+ε̄)n for 1 ≤ n ≤M.

Proposition A.5 (Derivative bounds). [CLPY2, Proposition 6.15] Let C ≥ 1 and
ω > 0 be the uniform constants given in Theorem A.2. For Ep0 ∈ P2

p0
, we have

λ(1+ε̄)n

CL̄(1 + ω)2
≤ ‖DF n|Ep0‖ ≤ C(1 + ω)2λ−ε̄n for 1 ≤ n ≤ N,

and

λε̄n

CL̄(1 + ω)2
≤ ‖DF−n|Ep0‖ ≤ C(1 + ω)2λ−(1+ε̄)n for 1 ≤ n ≤M.

Consider the sequence of linearized maps {Fpm}N−M given in Theorem A.2. For
1 ≤ n ≤ N −m, we denote

F n
pm = (fnpm , e

n
pm) := Fpm+n−1 ◦ . . . ◦ Fpm+1 ◦ Fpm . (A.1)
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Proposition A.6. [CLPY2, Proposition 6.4] For −M ≤ m ≤ N and 0 ≤ n ≤ N−m,
consider the Cr-diffeomorphism F n

pm given in (A.1). Let z = (x, y) ∈ Upm, and
suppose that

zi = (xi, yi) := F i
pm(z) ∈ Upm+i

for 0 ≤ i ≤ n.

Denote

DzF
n
pm =:

[
anm(z) 0
cnm(z) bnm(z)

]
.

Define

ľh := sup
n
nλε̄n <∞ and ľv := (1− λ1−ε̄)−1;

and

χh := exp

(
ľh‖F‖C3

λε̄

)
and χv := exp

(
(ľh + ľv)‖F‖C3

λε̄

)
.

Then
1

χh
≤ anm(z)

anm(0)
≤ χh,

1

χv
≤ bnm(z)

bnm(0)
≤ χv and ‖γnm‖ < λ(1−ε̄)n.

For −M ≤ m ≤ N and q ∈ Upm , write z := Φpm(q). The vertical/horizontal direc-

tion at q in Upm is defined as E
v/h
q := DΦ−1

pm(E
gv/gh
z ). By the construction of regular

charts in Theorem A.2, vertical directions are invariant under F (i.e. DF (Ev
q ) = Ev

F (q)

for q ∈ Upm). Note that the same is not true for horizontal directions.

Proposition A.7. [CLPY2, Proposition 6.5] For −M ≤ m ≤ N and q ∈ Upm, we
have

1√
2
≤
‖DΦpm|Ev/hz

‖
‖DΦpm|Ev/hpm

‖
≤
√

2.

Corollary A.8. [CLPY2, Corollary 6.6] For some −M ≤ m0 ≤ N , let qm0 ∈ Upm0
.

Suppose for m0 ≤ m ≤ m1 ≤ N , we have qm ∈ Upm. Let

Êh
qm := DFm−m0(Eh

qm0
).

Then for m0 ≤ m′ ≤ m1, we have

1

2χh
≤
‖DFm′−m|Êhqm‖
‖DFm′−m|Ehpm‖

≤ 2χh and
1

2χv
≤
‖DFm′−m|Evqm‖
‖DFm′−m|Evpm‖

≤ 2χv,

where χh and χv are constants given in Proposition A.6.

Proposition A.9 (Vertical alignment of forward contracting directions). [CLPY2,
Proposition 6.8] Let q0 ∈ Up0 and Ẽv

q0
∈ P2

q0
. Suppose qi ∈ Upi for 0 ≤ i ≤ n ≤ N ,

and that

ν := ‖DF n|Ẽvq0‖ <
λε̄n

χh(2 + ω)3C̄
,
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where C, ω, χh ≥ 1 are uniform constants given in Theorem A.2 and Proposition A.6.
Denote z0 := Φp0(q0) and Ẽv

z0
:= DΦp0(Ẽv

q0
). Then

](Ẽv
z0
, Egv

z0
) < χh(1 + ω)C̄λ−ε̄nν.

Proposition A.10 (Horizontal alignment of backward neutral directions). [CLPY2,
Proposition 6.9] Let q0 ∈ Up0 and Ẽh

q0
∈ P2

q0
. Suppose q−i ∈ Up−i for 0 ≤ i ≤ n ≤ M ,

and that

µ := ‖DF−n|Ẽhq0‖ <
1

χv(2 + ω)3C̄λ(1−ε̄)n .

Denote

z0 := Φp0(q0), Ẽh
z0

:= DΦp0(Ẽh
q0

) and Êh
z0

:= DΦp0 ◦ F n(Eh
q−n).

Then

](Ẽh
q0
, Êh

q0
) < χv(1 + ω)C̄λ(1−ε̄)n · µ.

The n-times truncated regular neighborhood of p0 is defined as

Unpm := Φ−1
pm

(
Un
pm

)
⊂ Upm , where Un

p0
:= B (λε̄nlpm , lpm) .

The purpose of truncating a regular neighborhood is to ensure that its iterated images
stay inside regular neighborhoods.

Lemma A.11. [CLPY2, Lemma 6.10] Let −M ≤ m ≤ N and 0 ≤ n ≤ N −m. We
have F i(Unpm) ⊂ Upm+i

for 0 ≤ i ≤ n.

Proposition A.12. [CLPY2, Propositions B.5 and B.6] There exists a uniform
constant K = K(‖DF‖Cr , λ, ε, r) ≥ 1 such that the following result holds. For
−M ≤ m ≤ N and 0 ≤ n ≤ N − m, consider the Cr-maps fnpm and enpm given
in (A.1). Then we have

‖Dfnpm‖Cr−1 < Kλ−ε̄n and ‖Denpm‖Cr−1 < Kλ(1−ε̄)n.

A.3. Cr-estimates. Let g : R→ R be a Cr-function. The curve

Γg := {(x, g(x)) x ∈ R}

is the horizontal graph of g. Let H : R2 → R2 be a Cr-diffeomorphism. Suppose that
there exists a Cr-function H∗(g) : R→ R such that H(Γg) = ΓH∗(g). Then H∗(g) and
ΓH∗(g) are referred to as the horizontal graph transform of g and Γg by H respectively.

Proposition A.13 (Cr-convergence of horizontal graphs). [CLPY2, Proposition 4.5]
Let g : R → R be a Cr-map with ‖g′‖Cr−1 < ∞. For −M ≤ m ≤ N and 1 ≤ n ≤
N −m, consider the graph transform g̃ := (F n

pm)∗(g). Then

‖g̃′‖Cr−1 < Cλ(1−ε̄)n(1 + ‖g′‖Cr−1)r

where C = C(C, λ, ε, r) ≥ 1 is a uniform constant.
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For p ∈ R2 and u ∈ R, let Eu
p ∈ P2

p be the tangent direction at p given by

Eu
p := {r(u, 1) | r ∈ R}.

Let ξ : R2 → R be a Cr−1-map. The direction field

Eξ := {Eξ(p)
p | p ∈ R2}

is the vertical direction field of ξ. Let H : R2 → R2 be a Cr-diffeomorphism. Suppose
that there exists a Cr−1-map H∗(ξ) : R2 → R such that DH−1(Eξ) = EH∗(ξ). Then
H∗(ξ) and EH∗(ξ) are referred to as the vertical direction field transform of ξ and Eξ
by H respectively.

Proposition A.14 (Backward vertical direction field transform). [CLPY2, Propo-
sition 4.6] There exist uniform constants C, C̃ ≥ 1 depending only on C, λ, ε, r such
that the following holds. Let ξ : R2 → R be a Cr−1-map with ‖ξ‖Cr−1 < ∞. For
−M ≤ m < N and 0 ≤ n ≤M +m, consider the vertical direction transform

ξ̃ := (F n
pm)∗(ξ)|R×(−1,1).

Suppose

Cλ(1−ε̄)n(1 + ‖ξ‖Cr−1) < 1.

Then

‖ξ̃‖Cr−1 < C̃λ(1−ε̄)n‖ξ‖Cr−1 .

A.4. Stable and center manifolds. For −M ≤ m ≤ N , define the local vertical
and horizontal manifold at pm as

W v
loc(pm) := Φ−1

pm({(0, y) ∈ Upm}) and W h
loc(pm) := Φ−1

pm({(x, 0) ∈ Upm})

respectively.
If N = ∞, then Proposition A.9 implies that Ev

p0
is the unique direction along

which p0 is infinitely forward regular. In this case, we denote Ess
p0

:= Ev
p0

, and refer to
this direction as the strong stable direction at p0. Additionally, we define the strong
stable manifold of p0 as

W ss(p0) :=

{
q0 ∈ Ω | lim sup

n→∞

1

n
log ‖qn − pn‖ < (1− ε) log λ

}
.

Theorem A.15 (Canonical strong stable manifold). [CLPY2, Theorem 6.13] If N =
∞, then

W ss(p0) :=
∞⋃
n=0

F−n(W v
loc(pn)).

Consequently, W ss(p0) is a Cr+1-smooth manifold.

If M = ∞, then Proposition A.10 implies that Eh
p0

is the unique direction along

which p0 is infinitely backward regular. In this case, we denote Ec
p0

:= Eh
p0

, and refer
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to this direction as the center direction at p0. Moreover, we define the (local) center
manifold at p0 as

W c(p0) := Φ−1
p0

({(x, 0) ∈ Up0}).
Unlike strong stable manifolds, center manifolds are not canonically defined. However,
the following result states that it still has a canonical jet.

Theorem A.16 (Canonical jets of center manifolds). [CLPY2, Theorem 6.16] Sup-
pose M = ∞. Let Γ0 : (−t, t) → Up0 be a Cr+1-curve parameterized by its arclength
such that Γ0(0) = p0, and for all n ∈ N, we have

‖DF−n|Γ′0(t)‖ < λ−
(1−ε̄)n
r+1 for |t| < λεn.

Then Γ0 has a degree r + 1 tangency with W c(p0) at p0.

A.5. Horizontal regularity. We say that p ∈ B is N-times forward horizontally
(L, ε, λ)-regular along Eh,+

p ∈ P2
p if, for s ∈ {1, 2}, we have

L−1λ(1+ε)n ≤ Jacp F
n

‖DpF n|Eh,+p
‖s
≤ Lλ(1−ε)n for 1 ≤ n ≤ N. (A.2)

Similarly, we say that p is M-times backward horizontally (L, ε, λ)-regular along
Eh,−
p ∈ P2

p if, for s ∈ {1, 2}, we have

L−1λ(1+ε)n ≤
‖DpF

−n|Eh,−p ‖
s

Jacp F−n
≤ Lλ(1−ε)n for 1 ≤ n ≤M. (A.3)

If (A.2) and (A.3) hold with Eh
p := Eh,+

p = Eh,−
p , then p is (M,N)-times horizontally

(L, ε, λ)-regular along Eh
p .

Proposition A.17 (Horizontal vs vertical forward regularity). [CLPY2, Proposition
5.2] If p is N-times forward horizontally (L, ε, λ)-regular along Eh

p ∈ P2
p, then there

exists Ev
p ∈ P2

p such that p is N-times forward (L̄, ε̄, λ)-regular along Ev
p .

Proposition A.18 (Horizontal vs vertical backward regularity). [CLPY2, Proposi-
tion 5.3] Suppose p is M-times backward horizontally (L, ε, λ)-regular along Eh

p ∈ P2
p.

Let Ev
p ∈ P2

p \ {Eh
p }. If ](Eh

p , E
v
p) > θ, then the point p is M-times backward

(L̄/θ2, ε̄, λ)-regular along Ev
p .

Appendix B. Classification of Fixed Points

Let F : B → F (B) b B be a dissipative diffeomorphism defined on a Jordan
domain B ⊂ R2. Suppose that q0 ∈ B is an isolated fixed point for F , and that
λ−, λ+ ∈ R with 0 < |λ−| < |λ+| are the eigenvalues of Dq0F . If |λ+| ≥ 1, then q0 has
a well-defined invariant local center manifold W c

loc(q0). In this case, we classify q0 as:

• a saddle with reflection if the branches of W c
loc(q0) \ {q0} alternate and are

repelling;
• a saddle with no reflection if both branches of W c

loc(q0) \ {q0} are fixed and
repelling;
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• a saddle-node if both branches of W c
loc(q0) \ {q0} are fixed and one is repelling

while the other is attracting.

The index of q0, denoted Index(q0), is defined as the winding number of the vector
field

∆q0F (p) := F (p− x0)− (p− q0),

and can be determined based on the type of q0 as follows:

• Index(q0) = 1 if q0 is a sink or a saddle with reflection;
• Index(q0) = 0 if q0 is a saddle-node; or
• Index(q0) = −1 if q0 is a saddle with no reflection.

Proposition B.1. Let F : B → F (B) b B be a dissipative diffeomorphism defined on
a Jordan domain B ⊂ R2. Suppose that there exists an R-periodic Jordan subdomain
B1 b B for some integer R ≥ 2. Then there exists a r-periodic saddle point in B for
some integer r that divides R.

Proof. If FR has a non-isolated fixed point q0, then q0 must have an indifferent eigen-
value, and hence is a type of saddle.

Suppose that all fixed points of FR are isolated. By the classical Lefschetz formula,
when the number of fixed points is finite, the sum of the index of the fixed points in
the disc is equal to 1. Observe that F has at least one fixed point and one R-periodic
orbit in B. Hence, not all fixed points of FR can be sinks. �

Appendix C. Distortion Theorems for 1D Maps

In this section, we summarize some of the techniques in 1D dynamical systems used
to control distortion. See [dMvS] for complete details.

Let f : I → f(I) be a C1-diffeomorphism on an interval I ⊂ R. For J ⊂ I, the
distortion of f on J is defined as

Dis(f, J) := sup
x,y∈J

|f ′(x)|
|f ′(y)|

.

We denote Dis(f) := Dis(f, I). For K ≥ 1, we say that f has K-bounded distortion
on J if

Dis(f, J) ≤ K.

Clearly, if g : I ′ → g(I ′) is another C1-diffeomorphism on an interval I ′ ⊃ f(J), then
we have

Dis(g ◦ f, J) ≤ Dis(g, f(J)) ·Dis(f, J). (C.1)

Theorem C.1 (Denjoy Lemma). Let f : I → I be a Cr-map on an interval I ⊂ R.
Then there exists a uniform constant K > 0 such that if fn|J is a diffeomorphism on
a subinterval J ⊂ I for some n ∈ N, then

log(Dis(fn, J)) ≤ K
n−1∑
i=0

|f(J)|.
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C.1. Cross Ratios. Let J b I ⊂ R be bounded open intervals. The complement
I \ J consists of two intervals L and R. The cross-ratio of J in I is given by

Cr(I, J) :=
|I||J |
|L||R|

.

For τ > 0, we say that I contains a τ -scaled neighborhood of J if

|L|, |R| > τ |J |.
Let f : I → f(I) be a homeomorphism. The cross-ratio distortion under f of J in

I is given by

CrD(f, I, J) :=
Cr(f(I), f(J))

Cr(I, J)
.

Clearly, if g : f(I)→ g ◦ f(I) is another homeomorphism, then

CrD(g ◦ f, I, J) = CrD(g, f(I), f(J)) · CrD(f, I, J). (C.2)

For ν > 0, we say that f has ν-bounded cross-ratio distortion on I if

CrD(f, I ′, J) > ν

for all bounded open intervals J b I ′ ⊂ I.

Lemma C.2. For α > 1, let Pα : R+ → R+ be an α-power map such that

Pα(x) = xα for x ∈ R+.

Then Pα|R+ has negative Schwarzian derivative. Consequently, Pα|R+ has 1-bounded
cross-ratio distortion on R+.

Lemma C.3. Let I ⊂ R be a bounded open interval, and let f : I → f(I) be a C1-
diffeomorphism with K-bounded distortion on I for some K > 0. Then there exists a
uniform constant ν = ν(K) > 0 such that f has ν-bounded cross-ratio distortion on
I.

Theorem C.4 (Koebe distortion theorem). Let J b I ⊂ R be bounded open intervals,
and let f : I → f(I) be a C1-diffeomorphism with ν-bounded cross-ratio distortion
on I for some ν > 0. If f(I) contains a τ -scaled neighborhood of f(J), then there
exists a uniform constant K = K(ν, τ) > 0 depending only on ν and τ such that f
has K-bounded distortion on J .

Appendix D. Compositions of Nearby Maps

Lemma D.1. Let d ∈ N. Consider maps H0, H̃0 : U → V and H1, H̃1 : V → Rd

defined on domains U, V ⊂ Rd. Suppose H0, H̃0, H̃1 are Cr−1 and H1 is Cr; and

‖Hi − H̃i‖Cr−1 < δ for i ∈ {0, 1}.
Then we have

‖H1 ◦H0 − H̃1 ◦ H̃0‖Cr−1 < δP (‖H1‖Cr , ‖H̃0‖Cr−1),

where P is a two-variable homogeneous polynomial of degree r.



ON REGULAR HÉNON-LIKE RENORMALIZATION 91

Proof. Let di := Hi − H̃i. A straightforward computation shows that

H1 ◦H0 = H1 ◦ (H̃0 + d0)

= H1 ◦ H̃0 +O(‖DH1 ◦ H̃0‖‖d0‖)
= H̃1 ◦ H̃0 + d1 ◦ H̃0 +O(‖DH1 ◦ H̃0‖‖d0‖).

The result follows. �

Lemma D.2. [PuSh, (4)] Let F,G be Cr-maps such that F ◦G is well-defined. Then

‖F ◦G‖r ≤ rr‖F‖r‖G‖rr,
where ‖F‖r := ‖DF‖Cr−1.

Lemma D.3. [CLPY2, Lemma B.4] Consider a Cr-diffeomorphism f : R → R.
Suppose ‖f ′‖ > µ for some constant µ ∈ (0, 1). Then there exists a uniform constant
C = C(r) ≥ 1 such that

‖(f−1)′‖Cr−1 < Cµ1−2r‖f ′′‖r−1
Cr−2 .

Lemma D.4. For r ≥ 4, let f : I → f(I) be a Cr-map defined on an interval
0 ∈ I ⊂ R such that f(0) = 0 = f ′(0) and f ′′(0) = κ > 0. Then there exists a
Cr-diffeomorphism ψf : I → ψf (I) such that f(x) = κ · (ψf (x))2, and ‖ψ±1

f ‖Cr−3 < C
for some uniform constant C = C(‖f‖Cr , κ, r) > 0.

Proof. In the proof, let Ki > 0 for i ∈ N be uniform constants that depend only on
‖f‖Cr , κ and r.

Write

κ−1f(x)− x2 = h(x) +
r∑
i=3

aix
i,

where

lim
x→0

h(x)

xr
= 0 and ‖h(r)‖ < K1.

Consequently,
‖h(i)‖ < K2|x|r−i for 0 ≤ i ≤ r. (D.1)

Define

ψf (x) := x
√

1 + g(x) where g(x) :=
κ−1f(x)− x2

x2
.

Let J := {|x| < 1/K3}. Observe that f(x) > 1/K4 for x ∈ I \ J . Thus, applying
Lemma D.2, we have

‖(ψf |I\J)±1‖Cr <
∥∥∥∥(√f |I\J

)±1
∥∥∥∥
Cr
< K5.

Let ĥ(x) := h(x)/x2. We claim that that ĥ(k)(x) with k ≤ r − 3 is a sum of a
uniform number of terms of the form

c
h(i)(x)

x2+k−i (D.2)
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for some coefficient c ∈ R independent on f and i ≤ k. Proceeding by induction,
suppose that this is true for k < r − 3. Differentiating, (D.2), we obtain

c
h(i+1)(x)

x2+k−i + (2 + k − i)c h(i)(x)

x2+k−i+1
.

The claim follows. Hence, by (D.1), we conclude that

|ĥ(k)(x)|, |g(k)(x)| < K5|x| for 0 ≤ k ≤ r − 3.

In particular, ‖g|J‖ � 1.
A simple computation shows that ‖ψf |J‖Cr−3 < K6, and |ψ′f (x)| > c for x ∈ J ,

where c > 0 is an independent constant. Applying Lemma D.3 to obtain the required
bound for the inverse of ψf , the result follows. �

Let g : I → J be a C1-diffeomorphism between two intervals I, J ⊂ R2. Define the
zoom-in operator Z by

Z(g)(t) := |J |−1 · g(|I|t).
Note that Z(g) : [0, 1]→ [0, 1].

Lemma D.5. [AvdMMa, Lemma 5] Let φ : U → φ(U) be a Cr-diffeomorphism
defined on a domain U ⊂ R. Then there exists a uniform constant

K = K(‖φ‖Cr , ‖φ′′/φ′‖C0) ≥ 1

such that for any interval I ⊂ U , we have

‖Z(φ|I)− Id ‖Cr ≤ K|I|.

Lemma D.6. [AvdMMa, Lemma 6] For 1 ≤ i ≤ n, let φi : [0, 1] → [0, 1] be a
Cr-diffeomorphism such that

n∑
i=1

‖φi − Id ‖Cr = O(1).

Then
‖φn ◦ . . . ◦ φ1‖Cr = O(1).
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