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ON REGULAR HENON-LIKE RENORMALIZATION

JONGUK YANG

ABSTRACT. We develop a renormalization theory of non-perturbative dissipative
Hénon-like maps with combinatorics of bounded type. A key novelty of our ap-
proach is the incorporation of Pesin theoretic ideas to the renormalization method,
which enables us to control the small-scale geometry of dynamics in the higher-
dimensional setting. We show that, under certain regularity conditions on the re-
turn maps coming from a measure-independent quantitative formulation of Pesin
theory, renormalizations of Hénon-like maps have a priori bounds. Then using
this estimate, we obtain the following results. First, we show that infinite regular
Hénon-like renormalizability is a finite-time checkable condition. Second, we prove
that Hénon-like maps converge under renormalization to the same renormalization
attractor as for 1D unimodal maps. Lastly, we show that every infinitely renormal-
izable Hénon-like map is reqularly unicritical: there exists a unique orbit of tangen-
cies between strong-stable and center manifolds, and outside a slow-exponentially
shrinking neighborhood of this orbit, the dynamics behaves as a uniformly partially
hyperbolic system.
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1. INTRODUCTION

The set of real quadratic polynomials, after normalization, can be represented as
the following one-parameter family:

Q:={fu(z) =2 +a|acR} (1.1)

We refer to 9 as the (real) quadratic family. Despite its elementary form, the dynam-
ics in 9 turns out to be incredibly rich and fascinatingly complicated. In fact, the
study of this family has been a focal point in the field of one-dimensional dynamics
for nearly three decades (see e.g. [L2]).

At the heart of this topic lies the renormalization theory of unimodal maps, which
analyzes the appearance of small-scale self-similarity in these systems. It was first
introduced to the subject independently by Feigenbaum [Fe] and Coullet—Tresser
[CoTi] in the mid 1970’s. They observed that under successive renormalizations (or
“zoom-ins” ), the small-scale dynamics of a unimodal map asymptotically approach a
universal limit sequence that only depends on the combinatorial type of the original
system. As a conjectural explanation of this phenomenon, they proposed that renor-
malization can be viewed as an operator acting on the space of unimodal maps, and
that the set of renormalization limits form a hyperbolic attractor 2 for this operator.
A rigorous mathematical proof of this conjecture was completed in 1999, through the
combined efforts of Sullivan [Su|, McMullen [Mc] and Lyubich [L1].

In dimension two, the role of the quadratic family is assumed by the Hénon family:

9 ={F,(z,y) = (2* +a—by,z) | a,b € R}. (1.2)

The elements in $) are referred to as Hénon maps. We identify £ with the line b = 0
consisting of degenerate Hénon maps. This way, §) can be viewed as a two-dimensional
extension of Q. A Hénon map F,; is said to be perturbative if |b| < 1, as it can be
obtained by making a small 2D perturbation to the 1D system F,y ~ f,.

The Hénon maps were introduced by Hénon in 1969 as simplified models of the
Poincaré sections of the Lorenz model [He]. Since then, these maps have been some
of the most widely studied examples in two-dimensional dynamics. For some par-
ticularly notable results about Hénon maps, see [BeCal, [| and [|. However, despite
these remarkable developments, the dynamics in § still remains a wide open area of
research. Given the enormous success of renormalization theory in dimension one, it
is natural to try and extend this technique to the two-dimensional setting.

Consider an infinitely renormalizable quadratic polynomial f,,. Numerical evidence
suggests that (at least for some combinatorial types) there exists a real analytic curve

v(b) = (a(b),b) for be0,1)

extending from 7(0) := (a.,0) such that the Hénon map F,) is infinitely renormal-
izable, and has the same asymptotics as f,, under renormalization. See |[GaTt].

In the perturbative regime, this conjecture can be verified for bounded type com-
binatorics using the following argument. Since the 1D renormalization attractor 2A
is hyperbolic, infinitely renormalizable quadratic polynomials converge to 21 under
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renormalization in a robust way. Using this fact, one can show that the 1D renor-
malization convergence in the quadratic family extends to nearby 2D infinitely renor-
malizable Hénon maps. This argument has been applied to the period-doubling case
by Coullet-Eckmann-Koch [CoEcKo|, Gambaudo-Treser-van Strien [GavSTr] and De
Carvalho-Lyubich-Martens [DCLMal; and to the stationary case by Hazard [Hal.

The goal of this paper is to extend the 1D renormalization theory of unimodal
maps to a non-perturbative 2D setting. A natural 2D analogue of a unimodal map
is given by a Hénon-like map: a diffecomorphism F' : D — F(D) € D of the form
F(z,y) = (f(z,y),z) defined on a rectangle 0 € D C R?, such that for any fixed y, the
1D map f(-,y) is unimodal. One may visualize the action of F' as bending D into a U-
shape, and then turning it on its side. See Figure[l] We refer to Ilip(F)(z) := f(z,0)
as the 1D profile of F.

D F(D)

Figure 1. Hénon-like mapping.

The Hénon-like map F'is (Hénon-like) renormalizable if for some integer R > 2,
there is an R-periodic subdomain B* € D, and the return map F%|z: is again Hénon-
like after a smooth change-of-coordinates ® : B! — D!. In this case, the map ®
and the pair (F®, ®) are referred to as a straightening chart and a Hénon-like return
respectively. We define the (Hénon-like) renormalization R(F') of F' as the Hénon-like
map obtained via a suitable affine rescaling of ® o F#o®~! that normalizes the width
of the domain D'. See Figure[2l Lastly, a centered straightening chart ¥ : B* — B! is
a chart that induces the same vertical and horizontal foliations over B!, and preserves
the arclengths along the vertical and horizontal lines through the origin in B*.

A key novelty of our approach is the incorporation of Pesin theoretic ideas to
the renormalization method. This involves keeping track of the regularity of points,
which can then be used to control the geometry of dynamics in the higher-dimensional
setting (see Appendix . We give loose definitions of these notions below. For the
precise definitions, see Subsection

Let p be a point in D, and let E, be a tangent direction at p. For M € N U {oo},
we say that p is M-times forward regular along E, if under DF™ for 1 < m < M,
there is sufficiently dominant exponential contraction along E,. Similarly, p is M-
times backward regular along E, if under DF™ for 1 < m < M, there is sufficiently
dominant exponential expansion along .
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Figure 2. Hénon-like renormalization.

Consider the Hénon-like return (F®,®). For p € B, let E! and E}! be the tangent
directions at p that are mapped by D® to the genuine vertical and horizontal direc-
tions respectively. We say that (F®, ®) is reqular, and that F is reqularly Hénon-like
renormalizable if

i) every p € B! is R-times forward regular along E7;
ii) every ¢ € F(B') is R-times backward regular along Ef;; and
iii) at every p € B!, the tangent directions E; and E]’} are uniformly transversal.

Under this regularity assumption, we establish the following uniform control on the
small-scale geometry of the dynamics of a Hénon-like map that holds at all renormal-
ization depths. An estimate of this kind is commonly referred to as a priori bounds,
and is typically the key ingredient needed to develop a functioning renormalization
theory. The precise version is stated as Theorem A in Section [3]

A Priori Bounds. Suppose for some N € NU {oo}, a Hénon-like map F is N-
times reqularly Hénon-like renormalizable with bounded type combinatorics. Then for
all 1 <n < N, the distortion along the horizontal direction of the nth return map is
uniformly bounded.

A priori bounds has far-reaching consequences for renormalization of Hénon-like
maps, which we summarize below as three main results. They are given informally
here in order to better convey their conceptual meaning to the readers. For their
precise statements, see Section [3|

The first main result describes the asymptotics of Hénon-like maps under regular
Hénon-like renormalization. The precise version is stated as Theorem E in Section [3]
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Renormalization Convergence. Suppose a Hénon-like map F is infinitely regu-
larly Hénon-like renormalizable with bounded type combinatorics. Then the following
statements hold.

i) The centered straightening charts for the renormalizations of F' converge super-
exponentially fast.
ii) The renormalizations of F' converge to the space of 1D systems (i.e. their depen-
dence on the second coordinate goes to zero) super-exponentially fast.
ii1) The 1D profiles of the renormalizations of F' converge to the 1D renormalization
attractor for unimodal maps exponentially fast.

The second main result addresses the problem of guaranteeing the existence of
infinitely regularly Hénon-like renormalizable maps. It is actually a combination of
two theorems: Theorem D and Theorem E in Section [Bl See also Remark [3.1]

Finite-time Checkability. For bounded type combinatorics, infinite reqular Hénon-
like renormalizability is a finite-time checkable condition.

Applying the previous two main results to the Hénon family §, it becomes theoret-
ically possible to verify numerically if the curves of infinitely renormalizable Hénon
maps extend arbitrarily close to b = 1 (although the computations involved would
become infinitely complex as the Jacobian gets closer and closer to 1). See Examples
3.2l and [3.3] for more details.

Renormalization convergence gives us extremely precise information about what the
dynamics of a Hénon map looks like when it is “zoomed-in” at a certain point (which
we later identify as the critical value of the map). The last main result concerns the
global geometry of the dynamics over the entire renormalization limit set. A more
detailed version of this result is stated in Theorem F in Section [l

Regular Unicriticality. An infinitely reqularly Hénon-like renormalizable map with
bounded type combinatorics is regularly unicritical on its renormalization limit set.

The notion of regular unicriticality is introduced and studied in [CLPYT]. It is a
new type of axiomatic dynamics defined on uniquely ergodic sets. Loosely speaking, it
means that the system features a unique critical orbit: an orbit of tangencies between
strong-stable and center manifolds. Moreover, outside a slow-exponentially shrinking
neighborhood of this orbit, every point is uniformly regular. See Definition In
[CLPY1], it is shown that, despite the presence of the critical orbit adding highly
non-linear “bends” in the picture, the global geometry of the dynamics for a regularly
unicritical system can be understood almost as explicitly as for a uniformly partially
hyperbolic system.

1.1. Notations and conventions. Unless otherwise specified, we adopt the follow-
ing notations and conventions.

Any diffeomorphism on a domain in R? is assumed to be orientation-preserving.
The projective tangent space at a point p € R? is denoted by IP2.
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Given a number n > 0, we use 7 to denote any number that satisfy
n<i<Cn”

for some uniform constants C' > 1 and D > 1 (if n > 1) or D € (0,1) (if n < 1) that
are independent of the map being considered. Additionally, we allow 7 to absorb any
uniformly bounded coefficient or power. So for example, if 7 > 1, then we may write

« 10ﬁ5 — ﬁ ”
Similarly, we use 1) to denote any number that satisfy
an’ <n<n

for some uniform constants ¢ € (0,1) and d € (0,1) (if p > 1) ord > 1 (if n < 1) that
are independent of the map being considered. As before, we allow 7 to absorb any
uniformly bounded coefficient or power. So for example, if n > 1, then we may write

13

1/4 =7 .

311
These notations apply to any positive real number: e.g. & > ¢, § <6, L > L, etc.

Note that 7 can be much larger than 7 (similarly, 7 can be much smaller than
n). Sometimes, we may avoid the § or 1 notation when indicating numbers that are
somewhat or very close to the original value of 1. For example, if n € (0,1) is a small
number, then we may denote 1’ := (1 — 7). Then n < n' <.

We use n,m,i,j to denote integers (and less freq_uently l,k). The letter i is never
the imaginary number. Typically (but not always), n € N and m € Z. We typically
use N, M to indicate fixed integers (often related to variables n, m).

We typically denote constants used for estimate bounds by C, K > 1 (less frequently
c>0).

We use calligraphic font U, T,Z, etc, for objects in the phase space and regular
fonts U, T, I, etc, for corresponding objects in the linearized /uniformized coordinates.
A notable exception are for the invariant manifolds W% W€,

We use p,q to indicate points in the phase space, and z,w for points in lin-
earized /uniformized coordinates.

For any set X,, C 2 with a numerical index m € Z, we denote

X = FY(X,)

for all [ € Z for which the right-hand side is well-defined. Similarly, for any direction
E,, € P2 ata point p,, € Q, we denote

E

Pm+1

.= DF!(E,,).
Define

m(z,y) =z, mw(r,y) =y, p(z,y):=(z,0) and I,(x,y):=(0,y).
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2. PRELIMINARIES

2.1. Renormalization of unimodal maps. Let I C R be an interval. A C%-map
f I — I is unimodal if it has a unique critical point ¢ € I, which of quadratic type:
i.e. f'(¢)=0and f"(c) # 0. Denote the critical value of f by v := f(c). We say that
f is normalized if ¢ = 0 and f”(c) = 2. Let v € {r,w}, where r > 2 is an integer.
The space of normalized C7-unimodal maps is denoted 7.

A unimodal map f : I — [ is topologically renormalizable if there exists an R-
periodic subinterval I' C I:

filin'*=g for 1<i<R and fRI") el

We say that f is (valuably) renormalizable if f%(I') contains the critical value v.
If f is valuably renormalizable, then the return map ff|; is also unimodal. We
define the renormalization of f to be

RlD(f) = S o fR|]1 (6] S_l,

where S : R — R is the unique affine map such that Rip(f) € L.

2.2. Hénon-like maps. Let D := I x J C R? be a rectangle, where 0 € ] € J C R
are intervals. A C?-diffemorphism F : D — F(D) € D is Hénon-like if F is of the
form

F(z,y) = (f(x,y),x) for (x,y)€ D, (2.1)

such that for any y € J, the map f(-,y) : I — I is a unimodal map. We say that F’
is normalized if f(-,0) is normalized. The set of normalized C7-Hénon-like maps is
denoted HL".

For /5 € (0,1], we say that F'is -thin (in C7) if

10y fllcn-r < B

The space of S-thin Hénon-like maps in $H£" is denoted S’)SE.
For any 1D map ¢ : I — I, define its 2D embedding 1(g) : I x R — I x R by

Ug)(x,y) = (g9(x), ). (2:2)
For any 2D map G : D — D, define its 1D profile II;p(G) : I — I by
Iip(G)(z) := 7, 0 G(x,0). (2.3)
Note that we have II;p o t(g) = g.
The space of degenerate C7-Hénon-like maps is given by H£] := ¢(47). A map

F e 5522, is said to be perturbative if § < 1, as it can be obtained by making a small
2D perturbation to a 1D system in $£].



8 JONGUK YANG

2.3. Charts. For z € R? let 9", E9" € P? denote the genuine vertical and horizontal
directions at z respectively.

A C"-chart is a C"-diffeomorphism ® : B — B from a quadrilateral B C R? to
a rectangle B = I x J C R? where I,J C R are intervals. The vertical/horizontal

direction E/" € P2 at p € B (associated to ®) are given by

v/h . gv/gh
Byt = Dot (B

The chart ® is said to be genuinely vertical/horizontal if E;’/ h = Egv/ 9" for all p € B.
A wertical leaf in B is a curve [V such that

I’ C ®'({a} x m,(B)) for some a € m,(B).

If the above containment is an equality, then [V is said to be full. A (full) horizontal
leaf I" in B is defined analogously.

Let p € B and E, € P2. Denote z := ®(p) and E, := D®(E,). For t > 0, the
direction F, is said to be t-vertical in B if

£(E., EY")
(B, E2")
A t-horizontal direction in B is analogously defined.

A C%curve I'V C B is said to be vertical in B if ®(I'"V) is a vertical graph in B in the
usual sense. That is, there exists an interval 1Y C m,(B) and a map g, : [ — 7,(B)

such that
o(I") = G"(90) = {(9u(v),y) |y € I"}.

If IY = m,(B), then I' is said to be wvertically proper in B. A horizontal or a hori-
zontally proper curve T in B is analogously defined. If IV is C”, and ||¢]||¢r—1 < ¢
for some ¢t > 0, then we say that 'V is t-vertical (in C”) in B. Note that I'V is a
(vertically proper) 0-vertical curve if and only if it is a (full) vertical leaf.

If T is C?, and g, has a unique critical point ¢ € IV of quadratic type: ¢/ (c) = 0
and

5a(T%) = g1(c) £ 0, (2.4)

then I'V is a vertical quadratic curve in B. We refer to ke (I') as the valuable curvature
of I' in B.

Let £ : B — T(B) be the C™!-unit vector field given by

£(p) = D (ELL)).

A C"'-unit vector field £ : U — T (U) defined on a domain U C B is said to be
t-vertical in C™ in B for some t > 0 if ||5” Egr— <t
Let @ : B — B be another chart with B ¢ B. We define the following relations
between ® and ®. Let ® : B — B be another chart with B ¢ B. We define the
following relations between ® and .
e We say that B is vertically proper in B if every full vertical leaf in B is vertically
proper in B.
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e We say that ® and ® are horizontally equivalent on B if every horizontal leaf
in B is a horizontal leaf in B. 3

e For t > 0, we say that B is t-vertical in B if ® and ® are horizontally equiva-
lent, and the unit vector field given by

E(p) = DCIB_I(Eng)) for peB

is t-vertical in C"~! in B. o
o We say that ® and ® are equivalent on B if B is 0-vertical in B.

Let U : B — B be a chart satisfying the following properties.

e There exists ¢ € B such that ¥(¢) =0 € B.
o Let

Th(t) == U7t 0) for t € m(B),
and
T¥(s) =0 10,5) for s&m,(B).
Then ||(Z"*)'|| = 1.
In this case, we say that U is centered (at q). Clearly, for any chart ® : B — D
and any point ¢ € B, there exists a unique chart ¥ : B — B equivalent to ® that is
centered at q.

Suppose that ¥ : (B,q) — (B,0) is centered at some point ¢ € B. Let I C B
be a horizontal C™-curve, so that ¥(I'") is the horizontal graph in B of a C™-map
gn : I" — 7,(B) defined on an interval I" C m,(B). We say that I'* is t-horizontal
in C" in B if ||gn]|c- < t. In particular, I'" is O-horizontal in B if and only if T is a
subarc of the full horizontal leaf containing q.

2.4. Hénon-like renormalization. Consider a C""'-Hénon-like map F' : D — D.
We say that F' is topologically renormalizable if there exists an R-periodic Jordan
domain B* € D for some integer R > 2:

FiBYNB'=o for 1<i<R and F%B') eB"

If, additionally, B' contains (v,0), where v is the critical value of the unimodal map
II;p(F), and there exists a genuinely horizontal C"-chart ® from B! to a rectangle
D' ¢ R? such that the map F; := ® o F o & ! is again Hénon-like, then F is said
to be (Hénon-like) renormalizable. In this case, any chart ¥ : B! — B! equivalent
to @ is referred to as a straightening chart, and the pair (F®, ¥) is referred to as a
Hénon-like return. B

Denote f; := IIjp(F}), and let S : R — R be the unique affine map such that
SofioS™! e . Define S as the affine map on R? given by S(z,y) := (S(z), S(y)).
The (Hénon-like) renormalization of F is

R(F):=So®oFfo(Sod)™
Observe that R(F) € HL".
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Remark 2.1. Note the loss of one degree of smoothness from F (which is C"*1) to
¢ and R(F) (which are C"). This is to account for the loss of smoothness in the
construction of regular charts given in Theorem [A.2] This is not a critical issue, since
it forces the loss of only one degree of smoothness no matter how many times F' is
renormalized.

2.5. Definition of regularity. Consider a C"-diffeomorphism F': D — F(D) € D
defined on a domain D C R Let L > 1;¢,A € (0,1) and M € NU {oo}. A point
p € D is M-times forward (L, e, \)-regular along E; € IP’f7 if for s € {0, 1}, we have

||1)FWYL|E';||S+1 (1—e)m
< L\ forall 1<m < M. (2.5)

Lfl)\(l+€)m
—  (Jac, Fm)s  —

Similarly, p is M-times backward (L, e, \)-reqular along E; € IF’?) if for s € {0,1}, we
have

-1y (14e)m (Jan F—m)s (1—e)m
L=\ < D], |+ <L\ forall 1<m<M. (2.6)

The constants L, € and \ are referred to as an irreqularity factor, a marginal exponent
and a contraction base respectively.

There exists a uniform constant € € (0, 1) independent of F' such that if (or
(2.6) resp.) holds with & < g1, then the local dynamics of F' near the forward (or
backward resp.) orbit of p can be linearized up to the Mth iterate (see Theorem [A.2)).
If M = oo, this implies in particular that p has a well-defined C"-smooth strong-stable
manifold W**(p) (or center manifold W¢(p) resp.). It should be noted that the center
manifold at an infinitely backward regular point p is not uniquely defined. However,
its C"-jet at p is unique (see Theorem . Henceforth, any marginal exponent will
be assumed to be less than &;.

2.6. Regular Hénon-like returns. A Hénon-like return (F ¥ : B! — B!) is said
to be (L, ¢, \)-regular if the following conditions hold. Let
v/h ._ —1 ( pyv/gh
Byt = pwt (B
e Every p € B! is R-times forward (L, €, \)-regular along Ey.
e Every g € F*(B') € B' is R-times backward (L, e, A)-regular along E'.
e For any p € B', we have £(E}, E}) > 1/L.

In this case, we say that F'is (L, e, \)-reqularly Hénon-like renormalizable.

Example 2.2. Let f : I — I be a C""'-unimodal map. Suppose f is valuably renor-
malizable: there exists an R-periodic subinterval I' C I such that f(I') contains the
critical value v of f. Then for € > 0, there exists 5 = 5(f, R,e) > 0 such that the fol-
lowing holds. Let F : D — D be a $-thin C"*1-Hénon-like map defined on a rectangle
D := I x J with II;p(F) = f. Then there exists an R-periodic quadrilateral B! C D
containing (v, 0) that is 81 ~*-close to I' x J in the Hausdorff topology, and a C"-chart
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U : B! — B! centered at (v,0) that is 8'~*-close to the identity in the C"-topology
such that (F% U) is a (1,¢, 3)-regular Hénon-like return. See Proposition [11.2

2.7. Nested Hénon-like returns. A C"t'-Hénon-like map F : D — D is N-times
topologically renormalizable for some N € N U {oo} if there exist sequences

D=B"35B's... and 1=Ry<R <...

such that for 1 <n < N, the set B" is an R,-periodic Jordan domain. If there exists
b > 2 such that

Tno1:=Ryp/R1 <b forall 1<n<N,

then we say that the combinatorics of renormalization for F' is of (b-)bounded type.
If N = oo, then the renormalization limit set for F' is

oo Rp—1
A=) I F™H(B"). (2.7)
n=1 =0
Suppose for 1 < n < N, there exist a C"-straightening chart ¥" : B" — B" such
that (F% ¥™) is a Hénon-like return. Then the sequence

{(Ff 9™ . B" — B")}N_, (2.8)

said to be nested. Without loss of generality, we may assume that W™ is a centered
straightening chart: that is, U™ is centered at some common point

N
v € [ F™(B).
n=1
Let " : B" — D" be a chart equivalent to U™ such that E, == ®" o Flin o (@)1
is Hénon-like. Denote f, := IIip(F,), and let S™ : R — R be the unique affine
map such that S" o f, o (S")7! € U". Define 8" as the affine map on R? given by
S"(z,y) == (S™(x),S™(y)). The nth (Hénon-like) renormalization of F' is given by

F,=R"F):=8"0®"0 "o (8" 0 &™), (2.9)

Note that R™"(F) € HL". Lastly, we say that F' is N-times (L, ¢, A)-regularly Hénon-
like renormalizable for some L > 1 and €, \ € (0,1) if (F®,¥") is (L,e, \)-regular
foralll1 <n<N.

Suppose that the combinatorics of renormalization for F' are of b-bounded type
for some b > 2. For many of our results, the specific values of the constants of
regularity are not important, as long as ¢ is sufficiently small to compensate for the
size of b. That is, we have be? < 1 for some uniform constant d € (0, 1) independent
of F'. In this case, we will sometimes say that F' is “/N-times regularly Hénon-like
renormalizable,” without specifying the constants of regularity.

Definition 2.3. For 1 <n < N, denote
Iy -=m(By) and I :=F"o (@”)*1([61 x {0}) for meZ.
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The nth valuable curvature of the Hénon-like returns given in ([2.8)) is defined as
K = kun (L, ) (2.10)
(see ().

2.8. Definition of regular unicriticality. Consider a C?-Hénon-like map F : D —
D. Suppose that F' is infinitely renormalizable, and the renormalization limit set Ag
supports a unique invariant probability measure p. Then with respect p, the Lya-
punov exponents of F' are 0 and log A, < 0 for some A, € (0,1) (see Proposition.
By Oseledets theorem, p-a.e. point p € Ar has strong-stable and center directions
Ess, E¢ € P2 such that

.1 n
nETmﬁlogHDF Byl = log Ay (2.11)
and
1 “n B
nglfoo - log [[DF ™|k = 0. (2.12)

Let € > 0. Since F|, is uniquely ergodic, (2.11)) ((2.12) resp.) implies that p is
infinitely forward (backward resp.) (L, e, A,)-regular for some L = L(p,e) > 1 (see
[CLPYTl, Proposition 4.7]).

If p € Ap satisfies (2.11)) and (2.12)) with
E: = E}* = E,

then {F™(p)}mez is referred to as a regular critical orbit. Note that in this case, the
local strong-stable manifold W3 (p) and the center manifold W¢(p) form a tangency at
p. If this tangency is quadratic, then {F(p) },ez is referred to as a regular quadratic
critical orbit.

For t > 0 and p € R2, denote
Dy (t) := {g € R* | dist(q,p) < t}.
Definition 2.4. For 0 < ¢ < 6 < 1, we say that F is (0, ¢)-reqularly unicritical on
Ay if the following conditions hold.

i) There is a regular quadratic critical orbit point vy € Ap (referred to as the critical
value of F).
ii) For all ¢ > 0, there exists L(t) > 1 such that for any N € N, if

N-1

peAr\ Do, (tA]), (2.13)

n=0
then p is N-times forward (L(t), d, \,)-regular.

When 0 and € are implicit, we simply say that F' is reqularly unicritical on Ap.
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3. STATEMENTS OF THE MAIN THEOREMS

Let r > 2 be an integer, and consider a C"*'-Hénon-like map F € HLTL of the
form (2.1). A quick computation shows that

JacF(x,y) = —8yf(l',y).

If || Jac F|| = 0, then F' does not depend on the second coordinate y. This means
that F' has the same dynamics as the unimodal map II;p(F)(:) := f(-,0) € U1
Hence, one may view the size of || Jac F'|| as a measure of how far I is from being a
1D system.

In this paper, we focus on the case when F' is dissipative: || Jac F'|| < A < 1 for some
A € (0,1). Our goal is to understand what happens when such a map is renormalized
many times. The following heuristics imply that the renormalizations of F' rapidly
become more and more one-dimensional.

Suppose that F' is N € N U {oo} times renormalizable. For 1 < n < N, the
nth renormalization R"(F) of F is given by (2.9). Assuming that the nonlinear
component ®” of the nth rescaling map and its inverse remain uniformly bounded,
we have

[ Jac R™(F)|| = || Jac ®"| - || Jac F* || - || Jac(®") 7| < || Jac F|| < A,

Since the return times R,, grow exponentially with n, we see that the renormalizations
R™(F) of F converge to the space of 1D systems super-exponentially fast. Thus, to
understand the behavior of the 2D renormalization sequence {R"(F)}\_, C H£", it
suffices to study the following sequence of 1D profiles:

{fo:=TpoR"F)}\, cu. (3.1)

3.1. A priori bounds. Our most difficult task is to establish the pre-compactness
of the sequence given in . In other words, we must show that the 1D profiles f,
do not diverge (at least in the C'-norm) as n increases. If N = oo, this would imply
that {f,}22; has meaningful limits. As is typical in the study of 1D systems, the key
is to find a way of controlling the distortion of the return maps Ff».

Consider a C'-diffeomorphism G : U — G(U) defined on a domain U C R%. For a
Cl-curve y C U, let ¢, : [0, |y]] = 7 be the arc-length parameterization of 7. Denote
Gy = ¢gryoGo ¢;1. The distortion of G along = is defined as

GL(5)]
Dis(G,v) := sup 1.
site(0,) |GL ()]
Theorem A. Consider a C®-Hénon-like map F : D — D. Suppose for N € NU{oo},
the map F has N nested reqular Hénon-like returns given by (2.8)) with combinatorics

of bounded type. For 1 <n < N, let v" be a genuine horizontal arc contained in B™.
Then Dis(Ffn 4™ is uniformly bounded.

The proof of Theorem A is the content of Section [§]
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The pre-compactness of the sequence (3.1) implies that there is definite scaling
when we pass from one renormalization depth to the next. This fact has the following
important geometric consequence for infinitely renormalizable Hénon-like maps.

Theorem B. Consider a C%-Hénon-like map F : D — D. Suppose that F is infinitely
reqularly Hénon-like renormalizable with combinatorics of bounded type. Then the
Hausdorff dimension of the renormalization limit set A given in 15 less than 1.
Consequently, A is totally disconnected, minimal, and supports a unique invariant
probability measure f.

The proof of Theorem B is the content of Section (13|

3.2. Renormalization convergence. The following theorem summarizes the as-
ymptotic behavior of an infinite regular Hénon-like renormalization sequence with
combinatorics of bounded type.

Theorem C. Let r > 2 be an integer, and consider a C™4-Hénon-like map F : D —
D. Suppose that F has infinite nested reqular Hénon-like returns given by with
combinatorics of bounded type. Let e, A € (0,1) be the marginal exponent and the
contraction base of reqularity respectively. Then there exists a O™ 3-chart ® : U — U
centered at vy such that for all n € N sufficiently large, the following properties hold.

i) We have B" € U, and
[0 (7)1~ 1d florss < AC-D

i) The renormalization domain B™ can be extended vertically so that |m, o ®(B")|
1s uniformly bounded below. Moreover, there exist a uniform constants 0 < o1 <
o9 < 1 such that

ol < |mp o ®(B™)| <oy and |m, o ®(FE(B™)* < |1, 0 &(BY)].

iii) The Hénon-like map R™(F) is N~ _thin in OT+3,

iv) We have ||R™(F)||cr = O(1).

v) If r > 4, then there exists a universal constant p € (0,1) such that for any
unimodal map f, € U™ with the same asymptotic combinatorial type as F, we
have

|ITlip o R™(F) — Rip(f)llcr—1 < p™

Let us briefly comment on how part v) in Theorem C relates to the existing renor-
malization theory of unimodal maps in literature. For v € {r,w}, the 1D renormaliza-
tion Rip defined in Subsection [2.1 can be viewed as an operator acting on the Banach
space 7 of unimodal maps. In [L1], Lyubich showed that Rip restricted to U“ is an
analytic operator that has a hyperbolic attractor 2 C U* with exactly one unstable
dimension. This attractor is referred to as the full renormalization horseshoe.

Given an integer b > 2, let 2}, be the compact invariant subset of 2l that consists
of maps with combinatorics of b-bounded type. In |[dFdMPi|, de Faria-de Melo-Pinto
showed that for the action of the renormalization operator Rip on the much larger
space U2 D U¥, the set 2y, is still a hyperbolic attractor with one unstable dimension.
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Once we establish parts iii) and iv) in Theorem C, it follows by a general lemma
(Lemma that the sequence of 1D profiles of the renormalizations of F' is shadowed
by actual orbits of 1D renormalization. Asymptotic convergence then follows from
the hyperbolicity of 1D renormalization discussed above.

3.3. Finite-time checkability. If a quadratic polynomial f : I — I has a periodic
subinterval I' C I, then the cycle of I'' must go through the critical point of f exactly
once. This ensures that the first return map on I! under f is again a unimodal map.
In contrast, if a Hénon map F : D — D has a periodic subdomain B* C B, it is
not necessarily true that the first return map on B' under F must also be Hénon-
like. Intuitively, this contrast is due to the following important conceptual difference
between the 1D case and the 2D case: for the dynamics of 2D diffeomorphisms, there is
no definite single pinpoint location at which the action of the critical point takes place.
Nevertheless, the following result states that if F' is regular Hénon-like renormalizable
up to a sufficiently deep depth, then all further topological renormalizations of F' are
necessarily also regular Hénon-like.

Theorem D. Suppose we are given the following data:
i) a Hénon-like map F € $H£°;
ii) constants b > 2; L > 1 and A € (0,1); and
ii) an increasing sequence {R,}°, such that Ry = 1 and R,/R,—1 < b for all

n € N.
Let eg € (0,1) and ng € NU{0} be constants satisfying
bel < 1, (3.2)
and
Cxofino < 1 (3.3)

for some uniform constants d € (0,1) (independent of F') and C' > 1 (depending only
on L, \, Xl=°||DF7Y||, ||F|lcs and b). Suppose F has ny nested (L,eq, \)-reqular
Hénon-like returns given by (2.8) for some ny > ng. Suppose that

KX < 1, (3.4)

for some uniform constant K = K(C, ||[F®0|gno||cs, king) > 1 (where kyp, is the ngth
valuable curvature given in ) Then there exists uniform constants L > L and
d € (go,1) such that the following holds. Suppose that F is N-times topologically
renormalizable for some ny < N < oo with return times {R,}\_,. Then all N

renormalizations of F are (L, 0, \)-reqular Hénon-like (except possibly the last two if
N < ).

Quantitative Pesin theory combined with some standard arguments in one-dimensional
dynamics is used to show that any topological return map within a sufficiently deep
renormalization depth must be Hénon-like (see Section @ A priori bounds is then

needed to guarantee that regularity is preserved when we pass into deeper renormal-
ization depths (see Section [10)).
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The significance of the previous theorem is that it turns infinite regular Hénon-like
renormalizability of F' into a finite condition, provided that F'is known to be infinitely
topologically renormalizable. The next result gives a criterion for guaranteeing the
latter property.

Theorem E. Suppose we are given the following data:

i) a one-parameter family {F,}qen C HLE depending O -smoothly on a;
ii) constants b >2; L > 1 and X € (0,1); and
iii) an increasing sequence {R,}>°, such that Ry = 1 and R,/R,—1 < b for all
n € N.

Let g9 € (0,1) and ny € N be the constants given in (3.2) and ([3.4). Suppose that
for all a € 3, the map F, is ny-times (L, g, A)-reqularly Hénon-like renormalizable,
and that {I11p o R™ (F,) }aes forms a full one-parameter family of 1D unimodal maps.
Then for any b-bounded renormalization type, there exists a parameter a, € J such
that R™ (F,,) realizes this type.

The renormalization type of an infinitely regular Hénon-like renormalizable map
referred to in Theorem E is defined in Section [6] (see (6.8)). It can be identified with
the combinatorial type of some infinitely renormalizable unimodal map. The proof
of Theorem E is the content of Section [Tl

Remark 3.1. While it is not done in this paper, it is possible to obtain explicit
estimates of the constants d, C' and K in , and . This means that for a
given specific family of 2D maps (say, the Hénon family $), Theorems D and E turn
infinite regular Hénon-like renormalizability in this family into an explicit finite-time
checkable condition. This is illustrated in Examples and [3.3]

Example 3.2. Consider a Hénon map F,, € § (see (1.2)) restricted to a suitable
bounded subset U C R?. Then F,,; has uniformly bounded C®-norm. Moreover, there
exists a uniform constant ¢ = ¢(U) > 1 such that ||DF,|;;'|| < ¢/|b|. Lastly, the Oth
valuable curvature of F,; is exactly equal to 2.

For A € (0,1), consider the one parameter family of Hénon maps $) := {F, ) }acr.
Given b > 2, a number ¢y € (0,1) can be chosen so that holds. Set L = 1. By
the above observations, we see that for $,, the value of the uniform constant K given
in depends only on A. Then let Ay € (0, 1) be the largest number such that
is satisfied when we set A = A\g and ny =0 (i.e. CAY < 1).

Fix A € (0, Ag). Since {II1p(F, ) beer = 2 is a full family, it follows from the real-
ization theorem that for any b-bounded renormalization type, there exists a parame-
ter value a.(A\) € R such that F, )\ is infinitely regularly Hénon-like renormalizable
with this combinatorics.

Note that the above argument is non-perturbative, and does not rely on the robust-
ness of the 1D renormalization convergence. In particular, any numerical estimates
on the quantities D and K would immediately yield a definite lower bound on the
value of the Jacobian Aq.
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Example 3.3. Allowing for non-zero values of n; in Example enables us to po-
tentially find infinitely regularly Hénon-like renormalizable maps in the Hénon family
with Jacobians arbitrarily close to 1 as follows.

Fix A € (0,1), and consider the one-parameter family £, of Hénon maps with
Jacobian A. Suppose we can find an interval J C R of parameters such that for
each map F, := F, , with a € J, there exists a sequence of N € N nested Hénon-like
returns {(F%, U™}V | with combinatorics of b-bounded type. Additionally, suppose
we can verify the following conditions.

i) The family {II;p o R™(F,)}sc5 depends smoothly on the parameter a, and is full.

ii) There exists L > 1 such that for all a € 7, the returns {(Ff ")}V | are
(L, €0, \)-regular.

iii) We have N > ny, where n; € N is the smallest number such that holds.

Then as before, we are guaranteed the existence of an infinitely regularly Hénon-

like renormalizable map F,, »)» with a.(\) € J that realizes any given b-bounded
renormalization type.

We expect that for reasonably small values of A (which would result in small values

of ny), it should be feasible to check these conditions numerically using a computer.

3.4. Regular unicriticality. Let X € D be a compact totally invariant set for a
Hénon-like map F'. We say that F' is uniformly partially hyperbolic on X if every
point p € X is infinitely forward and backward regular along some tangent direction
E;* at p, and the constants of regularity are uniform in p. The geometry of a 2D
dynamical system is very well understood on uniformly partially hyperbolic sets. In
particular, it is known that the leaves in the strong-stable and center laminations
vary continuously, have uniformly bounded curvature, and are uniformly transverse
to each other.

Suppose that F has infinite nested regular Hénon-like returns given by with
combinatorics of bounded type. It is shown in Theorem that

() F*(B") = {vo}. (3.5)

n=1
We refer to vy as the critical value of F. Note that vy is both infinitely forward
and backward regular. Thus, vy has well-defined strong-stable manifold W**(uvy)
and center manifold W¢(vg). The Hénon-likeness of the return maps under F' forces
W#5(vg) and W¢(vy) to form a quadratic tangency at vg. See Figure [3l Thus, the
orbit Ot of vg is a regular quadratic critical orbit of F' (as defined in Subsection .
The existence of O, immediately implies that F' is not uniformly partially hyper-
bolic on Ar. However, our last main theorem states that this is the only obstruction,
and that uniform regularity still holds outside a slow-exponentially shrinking neigh-

borhood of Q.

Theorem F. Consider a C®-Hénon-like map F : D — D. Suppose that F' has infinite
nested reqular Hénon-like returns given by (2.8)) with combinatorics of bounded type.
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Figure 3. The critical value vy of an infinitely regularly Hénon-like
renormalizable map F'.

Then for any € > 0, there exists L. > 1 such that for all n € N, the Hénon-like
return (Ffr 0™ is (L., e, \,)-reqular. Moreover, F is regularly unicritical on the
renormalization limit set Ap with the critical value vy given by (3.5)).

The study of 2D dynamics on a uniformly partially hyperbolic set X is greatly
facilitated by the fact that X has a local product structure. This means that X can
be covered by finitely many charts, called reqular Pesin boxes, which endows the set
with locally defined vertical (strong-stable) and horizontal (center) directions that
are invariant under the dynamics.

In our setting, any covering of Ar by regular Pesin boxes must leave out points
that are too close to the critical orbit Q. In [CLPY1], we introduce new covering
domains called critical tunnels and valuable crescents that uniformize the dynamics
of F near Oy (which is fundamentally non-linear in nature). See Figure . These
new domains, together with regular Pesin boxes, completely cover A, resulting in a
new type of dynamical structure that we call a reqular unicritical structure.

Regular unicritical structures for regularly unicritical systems can fulfill a similar
function as local product structures for uniformly partially hyperbolic systems. In
[CLPY1], we use this new structure to characterize the local geometry of every strong-
stable and center manifold in terms of its proximity to the critical orbit in an explicit
way. Additionally, we prove the following converse of the unicriticality theorem.
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Figure 4. Regular quadratic critical orbit O = {vm }mez contained
in critical tunnels {7_,}°°; and valuable crescents {7,}>2,. For m €
7., the strong-stable and center manifolds of v,, are indicated as red
and blue curves respectively. The tunnel/crescent 7T, is the pinched
region bounded between two green curves that contains W¢(v,,). The
diameter of 7T, shrinks slow-exponentially as |m| — oc.

Theorem 3.4 ([CLPYT]). Let F : D — F(D) € D be a dissipative C3-diffeomorphism
defined on a Jordan domain D C R%. Suppose that F is infinitely topologically renor-
malizable, and assume that F' is reqularly unicritical on the renormalization limit set.
Then the renormalizations of F' are eventually reqular Hénon-like.

4. CONVERGENCE OF THE STRAIGHTENING CHARTS

Let r > 2 be an integer, and consider a C"**-Hénon-like map F : D — D. For some
N e NU{oo}; L >1and g, \ € (0,1), suppose that F' has N nested (L, e, A)-regular
Hénon-like returns given by . Furthermore, assume that N is sufficiently large,
so that for some smallest number 0 < ny < N, we have

Ko o <, (4.1)
where 1 € (0, 1) is independent of F', and
Ko = K0<L7 A€, )‘I_EHDF_1H7 ’|DFHCT>T) >1 (42)

is a uniform constant.
For ng < n < N and m € Z, denote B! := F™(B"). Observe that B’éﬁl € B .
Let

N
v € Zo:= ()| B,
n=1

be a point to be specified later (as the critical value of F'). Without loss of generality,
assume that U™ is centered at vy.

In this section, we describe the asymptotic behavior of the centered straightening
charts {U"}Y_ for the renormalizations of F.

Remark 4.1. In Sections [4| and [p| we do not assume that the combinatorics of the
renormalizations of F' is necessarily of bounded type.
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Define
I =m,(By) and ZJ := ()11} x {0}).
Then it follows that Ij € Ij and ¥"|zn = W'|zz. Denote Z7, := F™ (1) for m € Z.
For py € By, write zg := U™(p), and let

h . ny—1 h v o, n\—1 v
E, = D(¥™)"(EY') and Ey" = D(¥™)"(E9).
Additionally, let
El =DF™ YE!) and E.

PRp—1

= DF~ (B}, )= DF™ Y (Ex").

-1

By increasing L by a uniform amount if necessary (see Proposition [A.1)), we may
assume that every ¢ € By is (R, — 1)-times backward (L, ¢, \)-regular along E.

Proposition 4.2 (Vertical extension of charts). For ng < n < N, the nth centered
straightening chart can be extended to W™ : By — B such that the following properties
hold.

i) The quadrilateral Bg is vertically proper and n-vertical in B{°.
ii) We have ||(¥™)*||cr < Ko, and

0" o (U~ —1d ||or < NE79)En, (4.3)
ii1) Every point qo € [3‘3 is Ry, -times forward (Ko, €, \)-regular along Eg:".

Proof. For py € By, let
{®y,, : Up,, = Uy, } e
be a linearization of F' along the R, forward orbit of py with vertical direction £,".
Let £ = Uy, — T'(U,,,) be the C™-unit vector field given by 2" (q) € Ey™ for
qeU,,.
Let I3 be the full vertical leaf in B{j® containing poy. For qo € 5", let

{®q,, : Uy, — Uy} nRgo
be a linearization of F' along the Ry, forward orbit of gy with vertical direction E"
given by Theorem [A.2]
Let M be a nearest integer to R,,,/2. By Lemma, we see that U, D Dy, (A*M).
Lemma[A 1T implies that Corollary[A.§applies to all points in the M-times truncated
regular neighborhood L{é‘f at ¢o. The R,,-times forward regularity at all points in B(°

together with (4.1)) implies that
U, = FM(L{qu) CU,,.
By Proposition qu and py; are M-times forward (A= e, \),-regular along

Ly and Epy respectively. Hence, Proposition [A.9| implies that €%, s N1=eM_

Moreover, the bounds on ||®,,,|lcr and ||®,,, || given by

vertical in C° in U,,,.

Theorem imply that

1D, (€57 crr < A5,
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, M
Extend 5;;0" to quo as
gon
PO

Then by Proposition [A.14] we have
€5 = Exmellor < A+ DB |or-1) (1 + [[ Dy, (Ep)lor-1) < 1.

pm

pPm

wy = DF M (E01,,)

Rectifying the vertical directions near [;" given by &, we obtain the desired ex-
tension of W™,
Observe that for 0 < k < M

L(By", By < ATt
It follows that i
1 DF v,n
V2 = IDF o]
Concatenating with the forward M-times (A™*M ¢ \)-regularity of g5;, we see that
M
A A1 (M+i) ”DFMJrilEU’n” < VLNEM \(1=e)(M+i)
—= < vl <

V2L

Since ng is assumed to be the smallest number that satisfies (4.1]), we have A\=*M < K.
The claimed R,-times forward regularity of gy along £ follows.
Lastly, replacing the renormalization depth ny in the above argument by n, we

obtain (4.3)). O

Remark 4.3. In Section @, we will show that [S’g is R,-periodic (and hence, we may
assume that Bf = By). See (6.7)).

Consider C"-curves I'1, Ty C R? with |['y| > |Ty|. Fori € {1,2}, let ¢r, : J; CR —
I'; be a parameterization of I'; such that

o] =1;

e Ji D Jy

e ||¢r, s — ¢r,|lcr is minimal.
In this case, define

ITiller == ll¢r, || and  dister (', T2) := [[¢r, |, — ér,|lr- (4.4)

Lemma 4.4. Forng <n < N, let I? be a full horizontal leaf in BY. Denote I :=
F™(I3) for m € Z. Then we have ||l _i|lcr < Ko; and

dister (I, _y, 5t _y) < AU,
Proof. For p_1 € Z_1 := F~Y(Z,), let
{q)me : up—m - Upfm}ijll

be a linearization of F' along the Ry-times backward orbit of p_; with vertical di-
rection By | (if N = oo, then R, = 00). Let V_g, be the connected component of

FFntl(yfFn ) 0 By containing p_p,. Note that U"|y, , defines a chart on V_p,, so
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that V_g_ is O-vertical in Bg. Moreover, arguing as in the proof of Proposition ,
we see that V_p, is also vertically proper in B .
Consider the map

Hy(2,y) = (ha(), en(,9)) 1= p_, 0 F 1o (U7)7(x,y)
for (z,y) € U*(V_g,). Denote

prn = ®p7n+1 © F © (q)an)_l'
Then
H,=F, ,0...0F, , o®, . o(U")" (4.5)

By Theorem we see that
D, ., 0 (U")H|er < A5Fn,
Applying Proposition [A.12] we conclude that
lenllor < AT, (4.6)
The result follows. U

Proposition 4.5 (Locating the critical value). If N = oo, then the following state-
ments hold.

i) For any point py € 2y, there exists a unique strong stable direction Es° € IP?,O
such that

HE;(’)" — ESSH < \1=8)Fn for n > ng.
Moreover, py is infinitely forward (L,e, \)-regular along E.

i) Any point p_y € Z_1 = F~Y(2y) is infinitely backward (L, e, \)-regular along
E, . Moreover, there exists a unique center direction Ej | € ]P",,Q,_1 such that
HEgﬁ - E;,lH < \1=8)Fn for n > ng.

iii) There exists a unique point vy € 2y such that
£y = DF(E ).
Moreover, the strong stable manifold W**(vy) and the center manifold F(W*¢(v_y))
have a quadratic tangency at vy.

Proof. The first and second claim follow immediately from Propositions and [A.10]

For n > nyg, recall that Z3; is a vertical quadratic curve in By. Let vy € Zy be the
unique point such that

E" = DFf(E").
Rn 0
By Proposition 4.2 and Lemma [£.4] we have
dist (v, , v y,) < A=) En

Thus, there exists a unique point vy € Z; such that

dist(vf, ,vo) < A9 and  dister (Zp , W€ (vg)) < A9,
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By (4.3), we see that W**(vy) and W*¢(vg) have a quadratic tangency at vy.
Lastly, let U,,, be a neighborhood of vy. Then there exists a uniform constant k£ > 0
such that for all n sufficiently large, if pg, € I} \ U, then

L(Ep"  DF™(ElY)) > k.

PRy’
Thus, vg is the unique point in Z, satisfying E;” = Ey, . O

We define the critical value vy € 2y as follows. If N = oo, let vy be the point given
in Proposition iii). Otherwise, let vy be the unique point in ZgN such that

DF™(E, )= E"

(recall that such a point exists since Zy s a vertical quadratic curve in B{). Define
the critical point as v_y := F~(uvyp).

Remark 4.6. In Section [, we will prove that if N = oo and the combinatorics of
the renormalizations of F' are of bounded type, then Zy = {v,}.

Theorem 4.7 (Valuable charts). Let Ky > 1 be the constant given in (4.2)). There
exist charts

(bo : (BU,UQ) — (Bo,O) and (I),l : (Bfl,’l),1> — (Bfl,())
such that

o Oy 15 centered at vy and is genuine horizontal;
® BO D Bgo} Bfl D) B;L%(:Lofl and F(Bfl) c B(),'
o |®F|cr < Ko fori € {0,—1}; and
e we have
(I)OOFo(I):%([B,y) - (fﬂ(w) _)‘yax) for (xay) € Bfla (47)

where fo 1 (mh(B-1),0) = (m1(Bo),0) is a C"-map that has a unique critical
point at 0 such that

1filler—= < Ko and  kp:= inf fi'(z)>0. (4.8)

z€my(B-1)

Moreover, the following properties hold for ng <n < N.
i) We have
[®g 0 (T") 1 —1d ||or < AI-Fn,
ii) Let
H, :=®_j o Ffrlo (¥m)~ 1
Then Hy,(z,y) = (hn(x), en(x,y)), where hy, : I} — hy, (1) is a C"-diffeomorphism
and e, is a C"-map such that

NBn < B! (2)] < X5Bn for z eIl and len|or < NI (4.9)
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Figure 5. Geometry near the critical value vy and the critical point
v_y (if N = 00). Forn > ng, we have vy € B € By and v_; € BA?%n_l C
B_;. There exist charts ®, : By — By and &_; : B_; — B_; such that
®go Fod_; is Hénon-like (see (4.7)). The charts W™ converges to @

Proof. For t > 0 and X C R2, denote
X(t) ;= {p € R* | dist(p, X) < t}.
Let R R
By := By°(\fmo)  and  C = By (AF) \ BY.
By (4.3)), there exists a C"-diffeomorphism @, defined in a neighborhood of Z, such
that
@ 0 (T™)™F —1d|lcr < AI79Bn forall ng <n < N.
Moreover, &y can be extended a centered chart ®q : (B, v9) — (Bo, 0) such that
‘I’O\Bg\(ég“ucg“) - ‘I’n|83\(z§g+1ucg“)
and
1@ 0 (U |ens1) ™! = 1d flor < ATTITen,
Let 7", == I} _; 3 vy if N < 0o, and Z"| := W¢(v_y) if N = co. Observe that
F(Z",) 3 vy is a vertical quadratic curve in By. Denote
JU =m0 ®y0 F(I")).
Then there exists a C"-map
fo: (J5,0) = (mn(Bo), 0)
with a unique quadratic critical point at 0 such that
By o F(Z) = {(fo(w),y) |y € 5}
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The C"-bound on f, follows from Proposition [4.2] and Lemma [4.4]
Let C' > 1 be the uniform constant given in (4.1)). Let
Dy == {(foly) +t,y) € Bo | [t| < AKo~' and y € J5},
and
B—l = (CI)Q ©) F)_l(D()).

We define ®_; : (B_1,v_1) — (B_1,0) to be the unique chart satisfying

Pyo Fod {(z,y) = (fo(z) — A\y,z) for (z,y) € B_;.

Consider the decomposition of H,, given in (4.5). The second inequality in (4.9))
is given by (4.6). The upper bound in the first inequality follows immediately from
Proposition [A.12] For the lower bound, we observe that

ny—1)—1 —ERp
1@y, o (@) flor < A

by Theorem [A.2l The lower bound now follows immediately from Theorem ii)
and iii). O

Denote
M= m(B)  and I := @Y (I" x {0})  for i€ {0,—1}. (4.10)
Observe that
Do s. .. and 1" 3 hy(15°) D b (I3 3 ..
Moreover, if X C Bj, then implies

Oy o FInmH(X) C hy(I7) x [-AI79 B \(1=8)Rn), (4.11)
Define P_y : (B_y,v_y) — (I",,0) and P? : (B2, v) — (I2,0) for ng <n < N by
Py:=mo0®_; and F:=m,oV"
Denote
I,y = Pfl(B%nfl) = P_1(Zk, 1) = ha(lg).
Define the nth (valuable) projection map Pg : By — I} by
Pr = (V") "t oIl 0 U™
Observe that Pg|z» = Id.

We record the following immediate consequence of Theorem and Propositions
[A.13 and [A. 14l

Lemma 4.8. For ng < n < N, denote \, := A\1"98 Then for 0 <t < \=¥8n the
following statements hold.

i) Let B, € P2 be a t-horizontal direction at py € By. Then EpRn
horizontal in B_;.
ii) Let E, € P2 be a t-vertical direction at pr,—1 € Bp . Then Ey, is

tA\,-vertical in Bg.

-1

Rnp—1
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iii) Let T be a curve that is t-horizontal in C" in BY. Then FF=Y(T1) is (1+1)"\,-
horizontal in C" in B_;.
w) Let T, _, be a curve that is t-vertical in C™ in B}y _y. Then F~FtY (T _ ) is

t\n-vertical in C" in By

By Lemma iii), I _; is m,-horizontal in B_;. Thus, there exists a C"-map
gn I 1 — R with ||gn|lcr < A, such that

(T, 1) = {(z,90(2)) [ w € [}, 1}

Define G, : Iz _, — ®_1(Zj _,) by Gu(x) := (v,gn()). Define the nth critical
projection map P", : P=(I% _\) = I _ by

P = @j oG, oP_;. (4.12)
Lemma 4.9. Forng <n < N, let I'y be a horizontal curve in [;’8 Then
FRnil’FO = (,Pfl‘Fan)il © FRnil © Pg’FO'

Proof. Note that P, is a projection along the vertical foliation F*, on B_;, and Py

is a projection along the vertical foliation on BS obtained by pulling back F"; by
F~fn+l The claim follows immediately. O

Yo

R, —1 an
Fn Bg, -1

Figure 6. Projections Py : By — I and P", : Bﬁn_l — I
near the critical value vy and critical point v_; respectively. On any
horizontal curve I'y C BS, the iterate Ff»~! commutes with these
projections.

We record the following consequences of Theorem
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Lemma 4.10. Let fo : I", — I} be the map with a unique critical point at 0 given
in Theorem[4.7. Then

K
%xQ < fo(z) < 701’

Lemma 4.11. Let

2 and  kplz| < |fi(2)] < Kolzl.

-1
P et | 2500 and go= (flps)

Denote 0 := Ky/kp. Then for 1 <i <r, we have

(i 0
lgx’ (t)] < N for t>0.
Proof. By Theorem and Lemma |4.10, we have

K(]"I?Q

1/ llor—2 < Ko, t< and |fi(z)] > krl|xl.

The result now follows from Lemma [D.3] O

5. AVOIDING THE CRITICAL VALUE

For some N € NU {00}, let F' be the N-times regularly Hénon-like renormalizable
map considered in Section . Recall the constants ng, n and Ky given in (4.1)) and
, and the constant kp given in . Additionally, assume that ng < N is the
smallest number such that

K \fmo <, (5.1)
where

K1 = KI(K(),HF> Z 1 (52)

is a uniform constant. In this section, we show that if a (finite or infinite) orbit of a
point avoids getting “too close” to the critical value vy, then it has uniform regularity.
For ny < n < N, recall that the nth centered straightening chart U™ : By — Bj

extends vertically to a domain B} D B that is vertically proper in By D B (see
Proposition [4.2) and Theorem [4.7). Let z = (a,b) € By = I} x I¥. For t > 0, define

V.(t):=[a—t,a+t] x Ij.
For p € B}} and t > 0, denote
V() = (07) 7 (Vi (1) € By

We record the following immediate consequences of Lemmas [4.10] and |4.11}, and

(.1).

Lemma 5.1. Forng < n < N, let &, , € Pf,_l be a N -horizontal direction at
p_1 € Bfl. [f

po € By \ Vi, (A1)
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then E,, is \=*fn-horizontal in By. Similarly, let T_y be XNFn-horizontal curve in
B_i. If )
Lo:=F(I_y) C BE\ Vi (A™)  with  t > X\,

then Ty is A= -horizontal in C" in B,

Lemma 5.2. Forng <n < N, let Epo € IP%O be a NBn_vertical direction at py € B‘g

If A i
po € By, \ Vi, (X,

then Epo is \=Bn_vertical in B_,. Similarly, let Ty be NFr-vertical curve in l’;’g If
o C an \ Vi (A,

then T_y == F~Y(T) is AP _vertical in C" in B_;.

Proposition 5.3. Forng <n < N, let py € Bﬁn \ VI (AFm) . If B,y is AR -vertical

m 5’3, then E, , s NI=8En _yertical in 5’3. Moreover, p_r, is R,-times forward

(CKo,é, )\)-regula; along E,_,,  for some uniform constant C' > 1 independent of F'.
Consequently, if prr, € B\ Vi (M) for all k € N, then py is infinitely forward
(CKy, &, \)-regular.
Proof. Consider a linearization

{®p_, Uy, = Up, ﬁnzo
of F' along the R,-backward orbit of py with vertical direction

v ny—1 h
BV = (D) (Egm(po)).

Note that since (F%»,¥") is a Hénon-like return, we have

n v,n _ gu
DU (EMJ = B .
Denote
hon . h b h
Ebt = DO, (B") and B, =D (B, ).
where ®_; : U_; — U_; is the chart defined over the critical point given in Theo-

rem [1.7 By Theorem ii) and (£.9), we see that
IDF= 5 g ||, [ DE= 5 gy || < A7
Hence, it follows from Proposition that
L(EM BN ) < AN
Thus, by Lemma [£.10], we have
L(EM" B, ) > Xfn,

For 1 <1 < R, denote
efi = K(Eghv D(I)pﬂ(Epfi))‘
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Choose a suitable uniform constant ¢ € (0,7/2) independent of F, and let 1 < M <
R, be the smallest number such that 6_,; > ¢. By Theorem [A.2] we see that

9—7; > )\—(1—5)2'9_1 > A—(l—é)i)\éRn‘

Consequently, M < gR,,. Let M’ := C'M for some suitable uniform constant C' > 1
independent of F.

By Corollary [A.8] we have
IDF|g, , | =< |DF|gyn || for 0<i<R,—M (5.3)
By Proposition iii), p-g, is Ry-times forward (Ko,e,A)-regular along Ep" .
Hence, (5.3)) implies that p_g, is (R, — M’)-times forward (C' Ky, e, A)-regular along
E,_, - By Proposition [A.5 we have

A < NHFEME DY || < AT < AR (5.4)

M/’

for any Ep,M/ € PIQLM,. We conclude that for 0 < i < M’, we have
[ DF =5 o]

||DFRn—M/+i|Ep7Rn [

Nofn < < \~¢fn

The (CKjy, &, \) forward regularity of p_g, along E,_, follows. O

Proposition 5.4. Forng <n < N, let py € 33. If po is infinitely forward (Ko, &, \)-
regular, then W**(po) is \=9Fn _yertical and vertically proper in BE.
Proof. The verticality of W*(py) follows immediately from Proposition[A.9} Consider
a linearization
{(me : upm - Upm zz()

of F along the infinite forward orbit of py with vertical direction E;°. By Theo-
rem [A.15] we have

0y, (Wize(pm)) € {(0,y) € Up,, |y € R} (5.5)

Let
Vo i= V;LO(AéR") C By.
Arguing as in the proof of Proposition [4.2] we see that if M is the nearest integer to
R, /2, then

By (FM (V) © (AT AT ) o (AU N2, (5.6)
For ¢o € V,,, denote
w/h o m ny—1 v/gh
EY/h = D(F™ o (U7) )(Eg g )

W™ (qo)
By Propositions i), and [A.8] we have
IDE™| s || < KoAY™D™ and  [|[DE™|g || > Ko "2
q0 0
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Let My < M be the smallest number number such that
KoAU=9Mo < diam (U, ) =< Ko ' AT
Then it follows from Proposition that ¢, € U,,, for all My < m < R,,. Define
r/h . -1 v/gh
Eylt = o, (37 ).

(I)Pm (Qm)
By Proposition , P, is infinitely forward (KoA=¥M0 e X)-regular. Hence, by The-
orem and Corollary [A.8] we have

DFM=Mo) -l s \EM
qJWO

Thus, Proposition implies that
Fho ok 1—-&)M
L(EM (BN ) < N7V

am’

On the other hand, since ||[D®E! || < A=¥M it follows that

pm

L(ES BN ) > 2

qam’

We conclude by (5.5) and (5.6) that W (pas) is vertically proper in FM(V,,). O

loc

Proposition 5.5. Fornyg <n < N, let Cy C Bj be a connected set totally invariant
under F4% for some d € N such that dé < 1. Denote C,, := F™(Cy) for m € Z. If

d—1
Ve (\yne =2, where C:=|JCi,,
i=0
then every point in C is infinitely forward regular. Moreover, there exists a chart
® : Dy — Dy such that the following statements hold:
Z) C[) C DO,’
ii) Dy is N\~ _yertical and vertically proper in By ;
iii) for p € Cy, we have
¢~ ({a} x m,(Do)) C W*(p) where  ®(p) = (w,y) € Do;  and

i) the map H := ® o Fifn o &1 is of the form H(z,y) = (h(z),v(z,y)), where
h: (Do) — mh(Dy) is a diffeomorphism.

Proof. The infinite forward regularity of any point p € C is given in Proposition [5.3|
Let W2 (p) be the connected component of W**(p) N B} containing p. Define

loc
D= JWiip). and Dy =] W)
peC peCo
By Proposition [5.4] the foliation of each component of D given by the local strong-
stable manifolds is A1 =®%»_vertical and vertically proper in [5’3. Let ® : Dy — Dy be
a genuine horizontal chart that rectifies this vertical foliation over Dy. Then the map
H := ® o ['¥in 0 d~! preserves the vertical foliation.
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By Theorem ii), (4.7) and the fact that
DNV (X)) =g,
it follows that h := II;p(H) is a diffeomorphism. O

6. COMBINATORIAL STRUCTURE OF RENORMALIZATION

In this section, we show that at sufficiently deep renormalization depths (i.e. be-
yond the depth ngy given by ), the dynamical structure of a 2D Hénon-like map
closely resembles that of a 1D unimodal map. See Figure[7] In particular, we prove
that topological renormalizations at these depths with combinatorics of bounded type
are guaranteed to be regular Hénon-like, as long as they are not trivial in the sense
defined below.

Following [CPTY|, we say that a diffeomorphism (in any dimension) is generalized
Morse-Smale (of 6-bounded type) for some 6 € N if

e the w-limit set of any forward orbit is a periodic point;
e the a-limit set of any backward orbit is a periodic point; and
e all periodic orbits have periods bounded by 6.

Note that a diffeomorphism of an interval to itself is generalized Morse-Smale of either
1-bounded type if orientation-preserving, or 2-bounded type if orientation-reversing.
A renormalization of a map is trivial if the induced return map is a generalized Morse-
Smale diffeomorphism of 2-bounded type.

6.1. For unimodal maps.

Lemma 6.1. Consider a unimodal map f : I — I with the critical point ¢ € I.
Suppose that f"(c) > 0. Then the following statements hold.

i) If f(c) > ¢, then c converges to either a fized attracting or parabolic sink.
i) If f2(c) < ¢, then ¢ converges to either a fized or 2-periodic attracting or parabolic
sink.
i) If f3(c) > f%(c), then ¢ converges to a fived attracting or parabolic sink.

If none of the above cases hold, then J := [f(c), f*(c)] is the minimal invariant
interval containing c.

Consider a unimodal map f : I — I with the critical point ¢ € I. For concreteness,
assume that f”(c) > 0. For 6 > 1, we say that f has 0-bounded kneading if f(c) < ¢
and f1*%(c) < c. Recall that f is valuably renormalizable if there exists an R-periodic
interval I' C I for some integer R > 2 such that fZ(I') contains the critical value
v for f. Note that in this case, f has #-bounded kneading for some 6§ < R. The
renormalization type 7(f) of f is given by the order of points in {fi(v) it ¢ I. If f
is N-times valuably renormalizable, then its N-combinatorial type is defined as

v (f) = (r(f), T(R(f)), .., T(RYTI(S))).
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Lemma 6.2. Let f : I — I be a unimodal map with critical value v. If f is non-
trivially topologically renormalizable with return time R > 2, then f is valuably renor-
malizable. In this case, I' := [v, fE(v)] is the minimal R-periodic interval containing
.

6.2. For Hénon-like maps. For some N € N U {oo}, let F' be the N-times reg-
ularly Hénon-like renormalizable map considered in Section Suppose that the
combinatorics of renormalizations of F' are of b-bounded type for some integer b > 2.
Moreover, assume that ¢ is sufficiently small so that be < 1. By only considering
every other returns if necessary, we may also assume without loss of generality that
Tn = Rpy1/Ry, >3 forng <n < N.
Let z = (a,b),w = (¢,d) € By = I} x I¥. Denote
m :=min{a,c} and M :=max{a,c}.
For t > 0, define
View)(t) :=[m —t, M +t] x I.
For no <n < N;p,q€ [5’8 and t > 0, denote

Vi) (t) = (") (Vin(),wm () (1))
Let s € {0,1,2}. For ng <n < N —s and k > —1, denote
ay = Py'(vkr,) and  bp° = Pl (UkRat Ruys) = QiR R
Define
B, = Vigpy (A7) and - By = (0")7H(Byg)-
In particular, we have

By O By =V (A,

V0,V Ry, |

See Figure [7]

Lemma 6.3. Let ng < n < N. Suppose that FR”|33 1s non-trivially topologically
renormalizable with combinatorics of b-bounded type. Then

Vo, A nVy (M) =@ for k= 0(b).

VkRp

Proof. Let § € (¢,1) with bé < 1. Suppose towards a contradiction that for some
k = O(b), we have ) )
Vi, A NV, (NF) 3 2. (6.1)

Without loss of generality, assume that & is the smallest number for which (6.1]) holds.

For y € Ijj, consider

Jo C (=A% N0y and g = U % {y)) € VR (AOF).

For i € N, denote J := F'(J").

By Proposition [A.5] we see that

T 1| < A7 J0 ) < M for i = O(b).
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Moreover, since i

Ve () =5 T i<k,
we can argue by induction using Lemma iii) and Lemma that \7(7,’; F1)Ra—1 18
A1=8Fn_horizontal in C” in B_;. Then it follows from (6.1)), (4.7) and Lemma
that

1Py (T syra )| < /\QR”|~7(713+1)R,L—1‘ < A,
We conclude that . )
k+1)Ry, n R, n R,
FEDI (g0 (W) @ Vi ().
Denote Eh = DFi(Eh ) for i € N. Arguing by induction using Lemma i) and

Lemma 5—1| we also see that Ez?(k Ryt is A\1=®8=_horizontal in B_;. Consequently,
by (6.1), (4.7) and Lemma | we have
h v,n R,
K<Ep(k+1) E k+1)Rn) < AT
Hence, by Theorem ii), it follows that
IDFRlgy < AR,

Since, by Proposition [A.5], we have
1Dy, FUDRa || o \~2Rn,
we conclude that
| Dy DR | < [ Dy P4 | < A0 8T — 3R,
Applying Proposition [A 5| again, we have

||D F2 (k+1) RnH < HD F (k+2) Rn“ HD FkR"H < )\QRnA—s‘Rn — /\éRn'

Pk+2(Rp)
Thus, under F2¢++DEn there exists a unique fixed sink g, that attracts the orbit of
every point in V' (A*F»). Since V1 (A*Ff") maps into itself under F* T we see that
Qo is fixed under F*+1)En

Denote

Ve =Vr (X)) and Ry = (k+ 1)R,.
The set 9V, \ B2 consists of two vertical curves ¥4 and 4™ the former to the left
and the latter to the right of vy.
For i > 0, let By*""" be the component of F~*+ (V1) N By that contain V7.
Proceeding inductively, suppose that BSH’_i is a quadrilateral such that 8Bg+1’_i \

836‘ consists of two vertical curves v»~* and 4™ ~%: the former to the left of v»=i*!
and the latter to the right of v»~*!. Let y € I¥, and denote

o™= ()M Iy < {yH) n By and I = FY(ZGWY)  for j €N,

Arguing as above, we see that Z,"Y _ is \(1=9%n_horizontal in By, and hence, Z,,"?
) Ry4+1—1 ) ) “Rnp41

is vertical quadratic in Bf whose endpoints are contained in 4"~*. Moreover, by
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Lemma (4.8 iv) and Lemma we also see that the induction hypothesis holds for
Bn—H ,—1i—

By Proposmon we see that as i — oo, the curves v%~% and "~ converge
to subarcs 7' and " respectively of the strong-stable manifold W**(wy) of a R, 1-
periodic saddle wy € 7" := Wi (yo). Moreover, 4 and ~" are (=9 Fn_yertical and
vertically proper in Bg. It follows that these curves bound the immediate basin
Byt c B” of go.

Let R, < Rn+1 < bR,. We claim that any Rnﬂ periodic Jordan domain D ntl e

™ induces a trivial renormalization of F'%» B

If Dy NBIT = @, then by Proposition 5.5, Dy induces a trivial renormalization

of F e |5p. Assume that DfH B # 2. Then D"+ 5 qo and Ry = Ry.1. Define

CZ)H_I — ﬂ FiR"“(Dg""l),

i€EN

By Proposition every point p € Cyt! that does not eventually map into Bgt!
is infinitely forward (C'Ko, d, A)-regular. Let Wit (p) be the connected component of
Wes(p) N B” that contain p, which must be A\~ DBn_vertical and vertically proper in
Bz by Proposmon .

Let pl, and pj; be the leftmost and the rightmost points in CJ™! respectively. Let
Dp*t be the quadrilaterals vertically proper in B2 enclosed between WS (ph) and
Wige(pg), so that Cotl ¢ DptL. Similarly, let 5"+1 be the quadrilaterals vertically

proper in Bf} enclosed between W} (wg) and W (pp).
Observe that

25?};;1 N V&()\an) =g for 1<i< RnH/Rn. (6.2)

Let Jy be a genuine horizontal arc contained in S"H. Using , a similar ar-
gument as above shows that Jig, for 0 < i < R,41/R, is A~ JR" horlzontal in B"
Consequently,

FR”“(ESH) NB™ =o.

It follows that &' is connected and Ffn+1(£8) = £, Applying Proposition ,
we conclude that Dj*! induces a trivial renormalization of F#*|gs. This is a contra-
diction, and therefore, (6.1)) cannot hold. O

Proposition 6.4. Let ng < n < N. Suppose that FT» Br 18 twice non-trivially
topological renormalizable with combinatorics of b-bounded type. Then the following
statements hold:

i) |af —a?] > AP for —1 <, j <2 with i # j;
i) af =0 <al, <ay forme {—1,2}; and
iii) Fin(B") € By,
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Proof. For 0 < i < b, mapping u", and u? by Ff» and applying Theorem , it
follows from Lemma [6.3] that

lag — ajy| > N fal ) —aff| > AT (6.3)

Now, suppose towards a contradiction that aj = 0 < a”, < af is not true. Then
we have

NP < g < g™ — N

Denote

JU ==X g = N Br=Jr x IY and  BY = (U")TYBR).
By Lemma [4.§]iii) and (4.7)), we see that

F™(By) € By \ Vi (A").
It follows from Proposition that B} induces a trivial renormalization of F.
Define
Dy =Dy =By uVy (A,
Observe that Ff»(Dyp) € By. For i € N, let
Dyt = () (D)),

Arguing as in the proof of Lemma , we see that Df " is a quadrilateral vertically
proper in B? that is bounded between two A(1~2F»_vertical curves v~ and ™~ the
former to the left of 4~ and the latter to the right of v»~**!. Moreover, there
exists an R,-periodic saddle wy such that v~ converges to the local strong-stable
manifold W (wy) as i — oo.

Write R

By \ Wi (wo) = Dy U &,

where D} is the connected component that contains Dj. Observe that Ff (1) C £F.
Applying Proposition we conclude that [;’8 induces a trivial renormalization of
F', which is a contradiction.

Next, suppose towards a contradiction that

la? — ay| < A,
By the R,-times regularity of F' on [3’3, we conclude that
H’UkRn — U(k—i—l)RnH < AigR”‘arf — CL;‘ < >\an for 1<k<b. (64)
For I € {1,2}, let By™ € By™~! be the R, ;-periodic Jordan domain that induces
a non-trivial renormalization of F'fn| sr. By Proposition , we may assume without

loss of generality that a A*f»-neighborhood of B{*' contains vy (and hence, also vg, ., ).

Proposition implies the existence of a saddle point zy € By of period dR,,
for some d < r,11. For 0 < i < Ry,41, let W (x;r,) be the connected component of

W*s(x;,) N BY containing x;p,. Clearly,

loc
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for 0 < j < 7, such that i # j. Moreover, it follows from Propositions [5.4] and
that W (2,5, ) is A1=9fn_vertical and vertically proper in By.

Mapping vg, ., and vy by F#» and applying Theorem it follows from ([6.3)) that

la} —al | > A,

Thus, by (6.4), we have ay! .| < a} < af for 2 < k < r,. This contradicts (6.5).
Therefore, claim i) holds.

Suppose towards a contradiction that aj < aj is not true. Then we have

at < ay — X,
Let y € I, and consider
A=+ A ] and AD = (B7)N(AD X {)).
Denote A" := F"(A%). Applying Theorem and Lemma [5.1| we see that A}, is
AR _horizontal in B{}. This means that f, := II;p(F},), where
F, :=VU"o Ffin o (™)1
maps Aj onto f,(Af) as an orientation-preserving diffeomorphism. Moreover,
fu(AD) D [NBn g — N17En] 5 AR
Let X
Ly :={(a},t) € By} and L := (V") (Ly).
For i € N, define
Loy = Fin (L N AR, ).

Applying Lemma and Lemma iv) and arguing by induction, we see that £",

is A\1=9Bn_vertical and vertically proper in B}. Moreover, by Lemma we see that
any point p € L", is i R,,-times forward (C'Ky, &, \)-regular along the tangent direction
to L", at p. It follows that £", converges as i — oo to the local strong-stable manifold
of some R,-periodic saddle z. Let B be the connected components of B \ W**(z)
containing vg,. It follows that F®(By") C By". This is a contradiction. Claim ii)
now follows.

Theorem implies that
o Vi) A7) € Vi (A7),
We similarly conclude that
Fo Vo A7) € Vi e ) A7),
Thus, claim iii) holds. O

Proposition 6.5. Let ng < n < N. Suppose that FR"\Bg 15 twice non-trivially
topological renormalizable with combinatorics of b-bounded type. Then for m :=n—s
with s € {1,2}, the following statements hold:

i) B> OBy =@ for 0 <1,k < Ry/Ry, withl # k;

i) agt =0 < byt < apr, bpr < b <af for2 <k < R,/R,; and
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iii) FT (Bl ) € Bk, (mod myy Jor 0 <k < R/ Ry

Consequently, Bg’o 18 R, -periodic.

Figure 7. The combinatorial structure of the nth renormalization of
F for n > ng (for r, :== R,11/R, = 3). The R, 1-periodic domains
By, B}"?j and B} ]’%ln containing vy, vg, and veg, respectively are ver-
tically proper and pairwise disjoint in Bg. Moreover, [%n (B,fgn) S
B?I:H)Rn (mod R,.,)- Under the projection I : Br — I C R, the orbit
{vkr, }i_; of the critical value are mapped to {a}};~ ;.

Proof. Suppose towards a contradiction that for some 1 < j,7 < 2r,, with j < i, we

have
|a" — '] < AT
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Applying F@rm=0Fn o v;5 and v;g,,, we see by the regularity of F' that
V27,00 = V|l < AT,
where j' := j + 2r,, —i. Note that j' # 0 (mod r,,). Hence,
m—+1 m—+1
Moreover, by Proposition |6.4, we have
Nofm < ay,. — Noftm < ay < as, + Noftm < a,’ . (6.6)

Proposition implies the existence of a saddle point o € BJ"™* of period dR, 2
for some d < 140, For 0 < k < Ry,10/Rpm, let Wi (xxg, ) be the connected com-

loc

ponent of W*(zyg, ) N BY containing xyg,. Then implies that W (xjg,,)

intersect By'*!. This is a contradiction. Claim i) follows. Then Claim ii) and iii)

follow by Proposition and Theorem [4.7] respectively. O

By Proposition [6.5] we may henceforth assume without loss of generality that for
all ng < n < N such that FF» | By is twice non-trivially renormalizable, we have

b= By =V (). (6.7)

Let 0 < n < N. Suppose that Ffn+1] B! is twice non-trivially topological renor-
malizable with combinatorics of b-bounded type. Consider the sequence of points

{a} := 7 0 U™ (vkr, ) Yoyt C IY := mu(By) C R. (6.8)
The renormalization type 7(R™(F)) of R™(F) is given by the order of points in (6.8).
Additionally, the N-renormalization type of F is defined as
T~ (F) = (1(F), 7(R(F)), ..., 7(RY7H(F))).

Lemma 6.6. Let ng < n < N. Suppose that FR”|33 15 twice topological renor-
malizable with combinatorics of b-bounded type. For s € {1,2} and m := n — s,
let Ty be a X~ _horizontal curve in By. Then the following statements hold for
1<k < R,/Rn:

i) D—1)r,, is A== -horizontal in By*; and

i) i, -1 is N3 _horizontal in B_;.

Proof. The result is an immediate consequence of Lemmas iii) and , and Propo-
sition [6.5] 0

Theorem 6.7 (Hénon-likeness of deep returns). Suppose that FTV| gy is three times

non-trivially topologically renormalizable with combinatorics of b-bounded type. Then
F is (N+1)-times (C Ky, &, \)-reqularly Hénon-like renormalizable, where and C, Ky >
1 are uniform constants (the former independent of F', and the latter given in (4.2))).

Proof. For [ € {1,2}, let BY'*" € B)""'~! be an Ry -periodic Jordan domain with

TNti-1 = Ryii/Ryyi—1 < b.
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Define
o Rnti/Rn—1
i ::ﬂFiRN+l(BéV+Z) and CNT!.= U Fifv (o,
i=1 i=0

By Proposition [5.5, we see that
N (\éR N+l

Vo (AT N e £ o
Without loss of generality, assume that

Vf,\g()\éRN) N+ @.
By (4.9) and Proposition , it follows that

dist(vgy,,, Co' ) < ATV,
For m > —1, let

a =7, 0 UN (Upry ).

Denote
Fyip =0 o Fvato (UM)™1 and  fyyq o= hip(Fyga)-

Note that a) = 0 and af}fv = fn+1(0). Moreover, by (4.9), we see that

a1y — Fra(all ) < AE9BY - for e N,
Define
Jo = (=X o 4 XYY and Dy = (UY) TN x 1Y).

) TN
Denote D; := F(Dy) for i € N. By the regularity of F', we see that D;r, is contained
in the \*f~_neighborhood of ngvl for all 1 < i < b. We claim that

a™, €m0 WY (D 1yRy)- (6.9)
Suppose towards a contradiction that we have
a¥, €m0 \I’N(D(qz,l)RN) for some 7 < ry. (6.10)

Proposition implies the existence of a saddle point ¢y € Bév 1 of period dRy 41
for some d < ryy1. For 0 < i < Ryi1, let Wi (gig,) be the connected component
of W*(q;r,) N BY containing ¢;r,. It follows from Propositions and that
W (qiry ) is N3N vertical and vertically proper in BY.

By (6.10), either 7, o WN(BY™) is contained in a A*#¥-neighborhood of 7, o
UN (B 1), or vice versa. In the former case, W**(gq) intersects B%fvl, and in the lat-

ter case, W**(gsr, ) intersects By '. In either case, we have a contradiction. Hence,

(6.10) does not hold.

Suppose towards a contradiction that
a, & 1,0 U (Diyy—1)Ry) (6.11)
For y € Ij, let
TV = (UM Jy x{y}) and JY:=F(JY) for ieN.
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Arguing inductively using Lemmas iii) and , we see that
Thyr WV (X)) = &,

and jﬁNH is A\~*R~_horizontal. Hence, fy,; maps Jy as a diffeomorphism onto
fnii(Jo).

If fyy1 is orientation-reversing, then aé\iN and a are A1=98~_close to the left and

right endpoints of fy41(Jo) respectively. Lemma (6.3 implies that A~ < @ . Thus,
we see that fyy1(Jo) € Jo. We conclude that

FRN+1(Dy) € Dy \ Viy (ATFN).
Applying Proposition [5.5] it follows that Dy induces a trivial renormalization of
FEy| gy- Then by a similar argument as in the proof of Lemma we see that
Bt also induces a trivial renormalization of F7V| Y- This is a contradiction.

If fyi1 is orientation-preserving, then a and af) =~ are A079%~_close to the left
and right endpoints of fy.1(Jy) respectively. Proceeding inductively on k& € N, sup-
pose that Jipy,, is A~¢EN_horizontal; and every py € Dy is kRy.yi-times forward
(CKy, &, \)-times regular along

ok —kRNn+1 v, N
Bk = DRRRv (N )

PERy 41

It follows that
distor(j,fRNH,ng;NH) < AORRNA for g0 e I
By a similar argument as above used to disprove ([6.10]), we see that

t7(?1%1\7-1—2')31\] N V;LO<)\€RN) =g for 1<ry.

Hence, arguing inductively using Lemmas iii) and , it follows that \7(:'2 )Ry -1

is \1=9EN_horizontal.

Let
k-1
‘7]‘? = U iz}’?NH and ‘]lg = Th © \IJN(jIgJ)
i=0
If
VAR Vi (N # @, (6.12)

then frni1] J is a C"-map on the interval j,f that maps jk—l as an orientation-

preserving diffeomorphism to fNH(jk,l), and maps the unique turning point in

jk \ jk,l to an image that is AI=9EN_clogse to 0. This is clearly impossible. It
follows by induction that (6.12)) does not hold for all k£ € N.
Let

D .= U Fifine (D()) and A := ﬂ RN+ (D)

=0 i=0
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Then the above observations imply that 4 is a totally invariant connected set disjoint
from V (A*E~) | whose basin contains D. By a similar argument as in the proof of
Lemma we see that B) ! induces a trivial renormalization of F#~| gy This is
a contradiction. Hence, we conclude that holds. Moreover, arguing as in the
proofs of Propositions and [6.5] we conclude that Dy is Ry1-periodic.
For py € Dy, let
EpNt = DFTiNe(ED ). (6.13)

PRy 11
Then Proposition |5.3| implies that pg is Ry 1-times forward (C' Ky, €, A)-regular along
E&NTL Denote By T := Dy, and let WMt BY*! — B7*! be a genuine horizontal
chart that rectifies the vertical direction field given by (6.13)). It follows from
e (Ffve g+t g — Bt
is a Hénon-like return.

It remains to prove that any point py € Bgﬁl is backward (C'Ky, &, A)-regular
along EZ’}O. By the regularity of the Nth Hénon-like return, py is Ry-times backward
(L, e, X)-regular along Ego. Proceeding by induction, suppose that for some 1 <
[ < ryy1, the point pgy is [Ry-times backward (C'Ky, &, A)-regular along EI’}O. By
Proposition [A.9]

Em,NJrl = DFflRN (E;LO)

PRy

is \1=9)E~ _vertical in BY. Arguing as in the proof of Proposition , we see that
—i

1DE™ i |l

NEN < :
||DF_Z|E;LIRn 1

<\ BNv for 1 <i< Ry.

Concatenating with the [Ry-times backward regularity of py, we conclude that py is
actually (I 4+ 1)Ry-times backward (C'Ko,&, \)-regular along E/' (with & increased
some uniform amount from the /th step). O

7. CRITICAL RECURRENCE

Let F' be the infinitely regularly Hénon-like renormalizable map with combinatorics
of bounded type considered in Subsection (with N = 00). In this section, we prove
the following result.

Theorem 7.1. We have .
ZO = ﬂ Bnn = {’UQ}.
n=1
Consequently, the orbit of vy is recurrent.

Proof. Let

yo = ﬂ 88‘7 I(())o = Ig M yo and _[(())o = Thp © ®0(180>
n=1
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Note that every point py € ) is infinitely forward (L,e, A)-regular. Moreover, by
Proposition , W#5(pg) is vertically proper in B}. Let W (py) be the connected
component of W*(py) N B} containing py. Then we have

Mo = U Wige(po).

po€LS®
Since Y; := F*()y) C B for all n € N such that 0 < < R, we see that
YinYyo=2 for ieN.

We claim that Yy = W (vp). Suppose towards a contradiction that this is not true.
By and , this means that there exists a uniform constant b > 0 such that
(0,b) C Ig°.

Recall that for n € N, the curve Zp is vertical quadratic in By. Let ¢ € Zg be
the unique point such that

gv _ n Rn h
By ) = DU o F )(Ecg>.

By Theorem [4.7]ii), we see that ®_;(Zp _,) is A\!=9Fn-horizontal in B_;. Hence, by
Theorem [4.7]1), we have
¢k, — voll < AU,
Let M € N be sufficiently large so that for n > M, we have
Py(cg ) < NI <\t < /2,
Note that for 0 < k < R,/ Ry, we have
wry By = .
Thus, applying Lemma and proceeding by induction, we see that the curve Zj', -
is A= _horizontal in BY!, and I&H)RMA is \1=9Ex horizontal in B_.
Define B", for 0 <k < R, /Ry inductively as follows. Suppose that
o FMU(Biy.,) € By
o UM(B", ) is a vertically proper quadrilateral in B}', whose side boundaries
are \1=8Fu_yertical; and
Since B is R,-periodic (see Proposition [6.5]iii)), property i) implies that
This, together with property ii) ensure that
FY(B"g,,) N By,

consists of exactly two connected components (unless £ = 0, in which case there is only
one connected component). Let B",p _, be the component containing Zp _,p ;.
Define
. p—Ru+1
BE(kJ+1)R]u T F ut (B,,ik?R]\/If:I.)'
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By Lemma |5.2] we see that
OB 1, 1 \OBY,

. _= . + .
consists of two A~¢EM_yertical curves r Ry 1 01 B_1, and

n,+ . p—Ry+1/7n,E
F—(lc-i—l)RM = p (F—kRM—l)

are \1=9Fm_yertical and vertically proper in BM.
Since the sets

B i1yra O Lhy—(ortyry,  for 0<k < R,/Ry
are disjoint, the intervals
gy, = POM(II?RM)
must be disjoint in /3.
Consider the diffeomorphism hj; given in Theorem |4.7]ii). Define
gk (x) = Pg" o Fo (Pl

(k+1)Rp;—1

)" (har(x),0)  for v € I,

Since I& ) Ra—1 and I& +1)Ryy BT€ uniformly horizontal in B_; and By respectively, it
follows that ||g}|

¢ is uniformly bounded. Moreover,

Rn/Rp—1

k=0

Thus, we conclude from Theorem that

n._ 4N n
G" =gk, /Ry—1° -+ © 90

has uniformly bounded distortion.
Let

n+1l __ M n+1
1"y, = B (B%,).
Then I"};' and Ij*! are disjoint intervals in If. Moreover, |I§*] is uniformly bounded
below, while

P R =0 as n— oo
However,

GM(I'F) =1t and  GM(IGTY) = IR

This contradicts the fact that G™ has uniformly bounded distortion. The result
follows. [
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8. A PRIORI BOUNDS

Let » > 2 be an integer, and consider a C"*4-Hénon-like map F : D — D. For
some N € NU{oo}; L > 1 and ¢, € (0,1), suppose that F' has N nested (L,e, A)-
regular Hénon-like returns given by with combinatorics of b-bounded type for
some integer b > 3. By only considering every other returns if necessary, we may also
assume without loss of generality that r,, := R,41/R, > 3 for np <n < N. Assume
that ¢ is sufficiently small so that bé < 1. Also assume that N is sufficiently large,
so that for some smallest number 0 < ng < N, we have . Lastly, suppose that
FEN| By is twice non-trivially topologically renormalizable (so that Proposition
applies).

The goal of this section is to prove Theorem A stated in Section

8.1. The outline of strategy. For no < n < N, consider the horizontal cross-
section of the nth renormalization domain Bg:

Ty = (UM x {0}) =T N BY = vp.

See ([4.10). We want to prove that Dis(F, i) is uniformly bounded.

The general strategy is to reduce the 2D dynamics of F' acting on ZJ' to a 1D
mapping scheme for which standard 1D arguments can be applied to control distor-
tion. Below we give a broad description of this 1D mapping scheme using simpler
notations to better convey the main ideas. In the actual proof, the 1D scheme is
derived from the 2D dynamics it is modeling, which forces the notations to become
more complicated.

Fix some intervals Iy, C R. For 1 < n < N, let {47} and {A7} ! be
collections of pairwise disjoint subintervals in Iy and I_; respectively so that 0 €
Arf%nq C I_4. Consider the following mapping scheme for 1 <i < R,:

e a C?-diffeomorphism
OF AL — AT =GR (A7)

with uniformly bounded C?-norm; and
e a quadratic power map

g ALy = AT = gl (AL

given by
gt (x) =2* +a? for some af €R.

Define
H;:=¢logl 0¢! 0...0g] 0ol
Suppose that the domains of ¢ for 1 <7 < R,, can be extended so that ¢/'o H; maps
a strictly larger interval A7, © A? diffeomorphically onto an image ¢ o H;(A#.) that
contains the two adjacent rfeighbors Al and A7 ;) of A7 (or at least subintervals in
Afi (i) of commensurate lengths). Then we can apply Koebe distortion theorem (see
Section [C]) to conclude that Hpg,|4» has uniformly bounded distortion.
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We now give a brief description of how the 2D dynamics of F' acting on the curve
7y is reduced to the above 1D mapping scheme. The main idea is to weave into the
dynamics of F' systematic applications of projections near the critical value vy. This
confines the orbit of Z§ to lie in a fixed union of curves {Z;"‘O}fing_l. These projections
are then “undone” near the critical point v_; to recover the original dynamics. See
the definitions of the maps H and I:IZ-, as well as Lemmas and h See also
Figure

The pairwise disjointedness of the collection of images {7}t of 77 under H;
relies on the 1D combinatorial structures of the renormalizations of the 2D map F
established in Section [0} See Figure [7] and Lemma [8.10]

Contributions by quadratic power maps in the composition H; arise in the following
way. When the inverse projection is applied near the critical point v_q, it is onto a
nearly horizontal curve (approximating a subarc of a center manifold of v_;). Under
one iterate of F', this curve is mapped to a subarc of a vertical quadratic curve near
the critical value vy. Then projecting along a vertical foliation to the transverse
horizontal arc Z;° D ZJ produces the effect of applying a quadratic power map. See
Proposition

Lastly, the extension of H; to a strictly larger domain i{fz 5 I so that the image
ﬁl(fg}z) covers (commensurate portions of) the adjacent neighbors J/: ;) of J" is

done in Propositions and [8.17]

8.2. The proof of Theorem A. First, we need the following lemma (which requires
the 3 additional degrees of smoothness assumed in this section). Recall that P :=
7, o U™ for ng <n < N.

Lemma 8.1. Let kp, K1 > 0 be the constants given in Theorem and (5.2)) respec-
tively. Consider a C""-map g : I — R on an interval I C I"; such that ||g||c2 < kp.

Denote G(z) := (z,g(x)). Then there exist a € I} and a C"-diffeomorphism v : [ —
W(I) with
[ ler < Ka(1+ [lgller+s)
such that we have
Q) =PloFod 10G(z)=rpr- (Y(x))*+a (8.1)
where defined.
Proof. By Theorem i), it suffices to show that there exists 1;9 with

[ lor < Kr(1+ [lgllcres)
such that . }
Q(z) =mpoPgoFod ;0G(z) = k- (¢(2))* +a.
By (4.7), we have Q = fo— A-g. By the bound on ||g||¢c2, we see that Q has a unique
critical point, Q”(x) is bounded below by ckp for some uniform constant ¢ > 0, and

1Q"llor1 < Ka(L+ [|gllorsa)-
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The result now follows from Lemma [D.4] 0

For ng < n < N, define a sequence of maps { H'}22, as follows. First, let H" := F".
Proceeding inductively, suppose H;* ! is defined. Write i = j + kR,, with & > 0 and
0 <j < R,. Define

H} = H} ' o Py o FFin,
where

Pii= (") oIl o U"
is the nth projection map near the critical value vy. Observe that H]" is well-defined
on By.
Lemma 8.2. Let s € {1,2} andng <n < N —s. Then H}‘]I?ﬂ is a diffemorphism
for 0 <i < R,s.
Proof. The statement is clearly true for n = ng. Suppose the statement is true for
n—1. Ifi < R,, then

Hﬂz{l“ - Hﬁ’1|z?+s

is a diffeomorphism. Suppose the same is true for i < (kK — 1)R, with 2 < k <
R, .s/R,. Observe that
Hpp, =Pg o FFon.
By Lemma i), the map P6L|zgg7j is a diffeomorphism. For i = j+ kR, with j < R,,,
we have
H} == H} ' o Py o FFn,
Since
Po(Zig,) € 15,
the result follows. O]
Recall the definition of P", for no < n < N given in (4.12)).

Lemma 8.3. For s € {1,2} and ng < n < N — s, let I'y be a C"-curve which is
\"¢Fn_horizontal in Bg“. Then for 1 <k < R,,s/R,, we have

_ —1
FkRn 1|1“0 = (,Pf(ilrk}zn—l) © HIZLRH—1|F0‘

Proof. If k = 1, then the result follows immediately from Lemma Suppose the
result is true for some ng <n < N—sand 1 <k < R,,s/R,. By definition, we have

n _ n R
Hiivyg,—1 = Hpg,—1 0 F7

If Ty is a C"-curve which is A=*F»-horizontal in Bj*®, then by Lemma i), we
see that ', = Ff(Ty) is a C"-curve which is A=*f"-horizontal in By. Thus, by
induction, we have

-1
kR,—1 _ no n
F |FRn - ( —l‘F(IH—l)Rn—l) ° HkRnflh‘Rn'

Composing on the right by Ff» | | the result is true in this case.
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Finally, suppose that the result is true for some ng <n < N —sand k = R, 11/ R,.
Let o := Py (I'y). By the induction hypothesis, we have:

-1
Rn4+1—1 _ no n
F |’Yo — < 71|7Rn+1—1> © HRn+1—1|70'
Applying Lemma [4.9;
R 1 +1 -1 ! +1
11— _ n no n n
F ‘Fo - (P,1 |FRn+171> © <P71|7Rn+1—1) © HRn+171 © 7DO |F0

— no n+1
- ( —1’FRTL+1—1) OHRn_A,_lfl’FO'

Figure 8. Visualization of the map H;" for 0 < i < R,,+1 acting on
the horizontal curve Zy°™" C I3 (for 7,y := Rpyi1/Ruy = 3). The
orbit of Zj°™ makes returns to Bj° 3 vy under F*in for 0 < k < 1.
At these moments, the projection map P;° is applied to IZ}%:(} to bring
it down to Z5°. These projections are then “undone” in By _; 3 v_y

to return to I&(’jll) g1 For n > ng, the multiple projections (at

various depths) can be applied to the orbit of Z§ near vy before they
are undone near v_y.
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We also define another sequence of maps {H;}23 ™" as follows (if N = oo, then
Ry = o0). If i < 2R,,, let H; := F'. Otherwise, let ng < n < N be the largest
number such that ¢ > 2R,,, and define H; := H. Observe that by Lemma , we
have

Hp,ilrp = Hytylzp = Pz | o Rz, (8.2)
Remark 8.4. In the definition of H; := H! we set n to be the largest number such
that ¢ > 2R,, rather than ¢ > R, for the following technical reason. Observe that
Hy (Z51) = P (Z).

The domain of Py is equal to Bf, whose right vertical boundary is A*%» distance away
from I]’%:I. Hence, Hp |Ig+1 does not extend to a horizontal curve I&;H substantially

larger than Z;*" (so that its image would cover the adjacent neighbors of Hy (Z*)),
since if it did, then Ff» (i'gjl) would lie outside of the domain By of PJ.

The remainder of the section is devoted to the proof of the following theorem,
whose corollary immediately implies Theorem A.

Theorem 8.5. There exists a uniform constant
K =K(L e, X[ DF 7, [IDF||cs, [|[F s || co, ) > 1
such that for all ng < n < N, we have
Dis(H;,I0) <K for 0<i<R,.

Corollary 8.6. Forng <n < N, let h, : [} — h,(I}) be the diffeomorphism given
in Theorem ii). Then Dis(h,, I') < K, where K > 1 is the uniform constant
gwen in Theorem [8.5,

Observe that any number 2R,,, <@ < Ry can be uniquely expressed as
L= j + anoRno + ano-i—ano—i-l +...+ aan

for some ng < n < N, where

i) 0 <j < Ry;
i) 0 < ay, <1y for ng <m < n; and
i) 2 < a, < 2r,.

In this case, we denote
i:=J 4 [Angs Qng i1y - - - Qn-
We extend this notation to ¢ < 2R,,, by writing
i=j+ lan] forsome a,, € {0,1}

We record the following easy observation.
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Lemma 8.7. Let 2R,, <1 < Ry be given by
i =7+ [Ang, ..., an]
Then we have
]:[7; =H = Fio (7730 o F“”OR"O) 0...0 (773 oFa"R”) .
For ny < n < N, we define a collection of arcs {7} ! by

I = Hy(I}) for 0<i<R,. (8.3)
See Figure [9]
Lemma 8.8. Letng <n< N and0<i1< R,. If

i=100,...,0,Gm, A1, - - -, ax]

for some ng < m < k <n, then we have J* C I". Moreover, we have

to=HHTM)  for 0<1I<R,.

Proof. Observe that
Py o P (T8 C If.
By Lemma the result follows from induction. O

Lemma 8.9. Forng <n <N and 0 <i < R,,, we have J C Iin?mod Rng)"
70

Proof. The result follows immediately from Lemma 8.8 0J
Let T': [0,1] — R? be a parameterized Jordan arc. For
0<a<b<c<d<l,

consider the subarcs I'; := I'(a,b) and T's := T'(c,d) of I'. We denote I'; <r I's. Let
I's be another subarc of I'. We denote I'y <p I'5 if either I'y < I's or I'y =T's.
Henceforth, we consider Z;° with parameterization given by

Tio(t) = (U™)"1(t,0) for te€ Ij°.
Note that Z;° o Py = P;°. Moreover,
Pi(vg) =0 < PSL()('URHO)‘
Lemma 8.10. Fors € {1,2}; ng <n<N—-sand 1 <k < R,.s/R,, we have
/i <zpo N/ <zpo Ti. "
Proof. Observe that
e For s € {1,2}:
Tit* = Hy (I3™) =Py~ o F(Z5™).
e For 1 < k < sry,:
TiR: = Hig, (T37) = Py o FE(I5).
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~

Figure 9. Arcs J" := H;(Z}) with 0 < ¢ < R,, that are contained in
Zg* for some m < n. For 0 < k < rpyq, we have J,  C Zg"*'. For
2 <1 <1y, we have T p =Pyt o Fin(J

m+1>‘

In the case s = 1, and the case s = 2 and 1 < k < 2r, follow immediately from
Proposition [6.5]
Replacing n by n+1 and applying the above conclusion, we see that for 1 < < r,,1:

n+2 n+2 n+2
jo <Z(’)'LO %Rn+1 <Z(’]'LO jRn+1'

Note that for 2 < k < ry,:

n+2 o n n+2
~71Rn+1+kRn - HkRn |Ig+1 (‘7an+1 )
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The result now follows from Lemma [R.2] 0

Let Ty : [0,|Tg|]] = R? be a C'-curve parameterized by its arclength. Let T'y :=
Co(l,|To| = 1) for some 0 < I < |TI'g|/2 be a subarc of I'g. We denote I'y = I'y[—{] and
[y = I'y[+]. Let T’y be a C'-curve such that T’y C T'y C T'y. We denote

To{—1} =Ty =Ty {+}.

Lastly, if '3 and 'y are C''-curves in R? and we have I'3[—1] C T'y C ['3[+{], then we
denote I'y = 's{~ [}. See Figure[L0] These notations can be extended to intervals in
R in the obvious way.

: Lo |
| | I's
: | T
l Iy l
— = L
— | I'y
| | —
l l

Figure 10. Illustration of the relations between I'y = T'y[+(], T'; =
Fo[—l], Fo{—l} = FQ = F1{+l} (above); and F3 and F4 = F3{N l}
(below).

Let ng < n < N, and consider the collection of arcs {J"} 7!, By Lemma|8.9) and
Lemma {8.10 for 2R,,, < i < R, there exist unique numbers 0 < (" (¢), 1 (7) < R,
such that

u} (i) =i (mod R,,),
and the arcs J ;) and jﬁ(i) are the two nearest neighbors of J* (one on each side)
in I oa Ry’ Define J7 as the convex hull of VARSIV \Z%(i) in I oa Ry’

We also define a subarc J of L mod Rog) containing J;" as follows. Write

i =7+ [Qng, Qngs1y - -+ Q)
for some ng < m <n. If m <n —1, define
TP = JE A,
Otherwise, define
VARSIV AR
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Proposition 8.11. There exists a uniform constant K > 0 such that forng < n < N,

we have
R,—1
ST < K.
i=2Rp,
Proof. Observe that
Rnfl Rnfl n—1
Sdr < Y 1T+ Y 2R AR
7::2R7LO Z:2Rn0 m=ng

By Lemma (8.10, the maximum number of overlaps among arcs in {jl” fﬁ;}l is three.
Hence, the above sum has a uniform upper bound. [l

Lemma 8.12. Forng <n < N, let I'y CZ{} be an arc. Then we have
. H™"(T _
Ko~ ']\ < % < Ko\ for 0<i<R,,
0
where Ko > 1 is the uniform constant given in (4.2).
Proof. For py € Ty, let E,, € IP’?,O be the direction tangent to I'y at pg. Note that pg

is R,-times forward (L, e, \)-regular along £ . Thus, by Theorems and and
Corollary [A.§ we have

Ko '\ < |DF|g,, || < KoA™  for 0<I<R,.

By Proposition [6.5| and Lemma i), the curve ['yg,, = F*m(Ty) for 0 < k <1y,
is A=f horizontal in Bg'. Hence, by Theorem , we see that

Ky '\ < | DPY|,,,, | < Ko.
Write
i =74 [ang,- -, am]
for some ng < m < n. Then by Lemma [8.7| we have
H! = FI o Py° o F%noling o...oP&nOFamRm-
Concatenating the previous estimates, we obtain the desired result. O

Lemma 8.13. Fors € {1,2};ng<n< N —-sand2 <k <2r,, let X_y CBE _; be
a set such that

PU(X1) = TR
Then
Pél o F(X_l) — kng-ns{N )\(I—E)Rn}'

Proof. By Lemma [8.3] we have

-1 -1
oo = (Pl ) (i) = (Pl ) o PRS(Xo).
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Since
J"+S Py o F(Zig 1),
the claim follows from ([4.7) and ([£.11)). O

Proposition 8.14. Forng <n < N —2 and 2R, < i < 2R, 11, there exists an arc
Ko: containing Iy such that the following properties are satisfied.

Z) We have IC()’Z‘ D) ICO,H—I-
ii) The map I:Ii|;CO’,L. is a diffeomorphism.
iii) We have Hy(Ko;) D I
w) Denote K; := F'(Ko;). Then for 2 < k < 2r,, the arc Kyg, 1 is \179Fn
horizontal in B_y, and

leRn C B%n \VU()()\gR").

P’f’OOf. We ﬁI‘St extend Igvg;_—ll to an arc ICZR,,LO—l C B_l SU.Ch that ’CQRnO—l 18 )\Uig)R”O—
horizontal in B_;, and the curve Ko, := F(Ksg, —1) maps diffeomorphically onto
I\ Vyo (AEm0) under PI°| Kanng We define

ICO,QRTLO = F_2R”() (ICQRnO )

Proceeding by induction, suppose the result holds for i < (k — 1)R,, with 2 < k& <
2r,. For 0 <[l < R, define

Ko, (k=1)Rp+1 = Ko, (k—1)R,, -
Observe that

A

H(kfl)Rn+l = Hln o F(k_l)Rn.
Thus, property ii) follows from Lemma ; property iii) follows from Lemmas
and ; and property iv) for Kxg, 1 follows from Lemma ii).

If k < 2r,, then define Kyg, to be the component of F(Kxg, 1) \ Vu, (A¥F") con-

taining 74>, By Lemma [6.6]1), Ky, maps injectively under P Lastly, property
iii) follows from Lemma
If k = 2ry, then define Kyr,,, to be the component of

F(Kar, 1) N (Bg“ \ VUO(AER”“))

containing Iggil. Properties ii) and iii) for Ksg,,, can be checked similarly as
above. O

By Lemma [8.10] for ng < n < N — 2, there exists a unique number 2 < x, < 7,
such that
To ™ <o Titp, <gro Fil o forall 1<k <7,

After relabelling ¢!} if necessary, the following results hold.
Lemma 8.15. Let ng <n < N — 2. Then
U@ =i+ xnRn  for 2R, <i< R,.
Proof. The claim follows immediately from Lemmas [8.2] and [8.§| O
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Lemma 8.16. Let ng +2 <n < N. For1 <m <n-—2and 2 < k < 2r,,, there
exists 1 <1 < 2r, such that

" (kRy) = ("2 (kRy) = iRy,

Proof. By Lemmas , and , we see that the extremal intervals in jfg:l for
0<l<ryare Jp, and Jjp g, . - Moreover, by Lemma|8.15, we have

T T (IRm~+jRm+1) C k7lm+1 for je {07 1}'
The claim follows. 0

Proposition 8.17. Forny+2 <n <N and 2R,, <i < R,, there exists an arc fgl
such that the following conditions hold for all 2R,,, < 7 < 4.

i) We have I} C f&i C Ko,-

ii) Denote

Tjimj = H;(Z5,)-
Then we have 3 ) 3 3
Jhi; Il and Ty D T

Proof. First consider the case when ¢ < 2R, ;. Proceeding by induction, suppose
that the result is true for j < kR,, with ng <m <n—2and 2 < k < 2r,,. Then the

result holds for kR,, < j < (k+ 1)R,, by Lemmas [8.2 and 8.8
Note that we have,

Pg@(/CkRm) ») jm+2 jm+2 U jm+2 U jm+2

m+2 kJR m+2(kJRm)
where by Lemmas and [8.16, we have
Totagepy = Tinorn) 2 Theray  a0d - T2 D Tin, U TR en,)-

Hence, there exists an arc 7, ~C Kyg,, such that
i (Tin,) = Tt

By Lemmas and [8.3] we have

no o FRm 1( ) k7(7]?:12 1[+)\5Rm]'

Thus, by Lemmas [8.13] and [8.15] we see that
Py o Fn (T, ) D *771?4—:12)1%”1’

and hence, the result holds for j = (k + 1)R,,.

Next, consider the case when ¢+ > 2R,,_,. For j < 2R,_1, the result follows by
the same argument as in the previous case. Proceeding by induction, suppose that
the result is true for 7 < kR,_; with 2 < k < r,_;. Then the result holds for
kR,_1 < j < (k+1)R,_1 by Lemmas[8.2] and Lemma [8.12]

Similar to the previous case, there exists an arc Z;, = C Kyg,_, such that

Py (T, Ry 1) O jknR,H



ON REGULAR HENON-LIKE RENORMALIZATION 55

and

mo OFRn_rl( lan_l) — ‘7(7;:12)1%%171[_)\‘5}%”]'

, be the connected component of

F(Zhiiyr, )\ Vo (A7)
containing 7 ) - By Lemma8.13, we have
7)(7)"0*1(:[6§€+1)Rn_1) ) k7(Tl;+1)Rn—1 [_)\éRn]'

Thus, the result holds for j = (k+ 1)R,,_1. O

Let I&H)R%

Let © > 2R,,, be a number given by
i=100,...,0,Gm, Qms1,- -, 0k
for some ny < m < k so that a,, > 0. Denote
m(i):=m, k(@):=k and a(i):= ap.
We extend this notation to the case when i = a,,R,, with a,, € {0, 1} by letting

m(i):=1, k(i):=1 and a(7) := ay,.
Proposition 8.18. Let ng < n < N and i = j + sR,, with 0 < j < R,, and

0<s<R,/R,,. For0<1<s, denote

iy = m(IRn,), ki:=k(IRy) and a = a(lRy,).
If iy = ky, let

Ip o= Fo )T,
Otherwise, let
iln = I;%J;ifr
Then T is \1=9Fw _horizontal. Moreover, define
H =P oFo <Pﬁq]fln)l 0 P

Then we have

ﬁl‘zgl = Fj|Igo oH,o...0HyoHsoPo F2R"0|i&.

Proof. We proceed by induction. Clearly, the result is true for ¢ < 2R,,,. Suppose
that the result is true for all i < i.
First, suppose ¢ = 2Ry, for some ng < k + 1 < n. Denote

Ly:= Fd(j{)fi) for 0<d<u.
By Lemma [8.7}

' _ k+1 2Rp41 k+1 Ry—1 (2Tk—l)Rk
Hop, \|lre =Py oF =Py oFoF™ oF - (8.4)
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By Proposition iv), Dor—1)R, 18 A\~ horizontal in Bg. So it follows from
Lemma [.9] that

-1
Ri—1 _ no Rip—1 k
F |F(27»k71)Rk - ( —1|F2Rk+1—1> oF © PO |F(27'k71)Rk‘

Note that
H(Qkal)Rk = H(k%k—l)Rk — 7)66 o F@re—1)Ri_

Substituting into (8.4]), we obtain

—1
2 _ k+1 no Rk—l 2
H2Rk+1 |F0 =Py oFo <7)71|F2Rk+171> oFf © H(Q"'k_l)Rk |F0'

By Lemma [8.3] we have

FRt| g = <Pﬁg\z§k71> o Hpy, _ilzs-

Thus, we conclude:

1
2 _ k+1 no k 2
H2Rk+1|r() =Py olo (P—1|F23k+1—1> © Hkal‘Z(’f © H(27'k—1)Rk‘FO'

. into factors of the

We can apply the induction hypothesis to decompose H (2ri—1)R
form H,. Observe that for

€p = (27’k — 1)Rk <e< 2Rk+1,

we have
m(e) = m(e—e)) < k(e) <k and ale) =ale —e).
Hence, we can also apply the induction hypothesis to H 1’3%71’2{@ to decompose them

into factors of the form H,. The claim follows.
Next, suppose that i = a; R, for some ng < k < n and a; > 3. Proceeding in the
same way as in the previous case, we obtain (in place of ({8.4)):

-Hilro = Pg o FakRk = 7)(’; oF o Fkal o F(akfl)Rkh_‘O'
The rest of the argument is identical mutatis mutandis.
Lastly, suppose that
P =+ [t

for some ng < k < n such that

Then
2 k—1 k apr Ry, __ k—1 2
H, = H: oPyoF = H; |I§OHakRk'

i—ap Ry i—ap Ry

Applying the induction hypothesis to ﬁak R, and H ol \Zg and arguing as above, we

i—ag Ry

obtain the desired result. O
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Let G : U — G(U) be a C'-diffeomorphism defined on a domain U C R?. For
a Cl-curve I' C U, we define the cross-ratio distortion CrD(G,T') of G on T as the
cross-ratio distortion of

GF = (béér) oGo (ﬁp,
where ¢r and ¢¢ r) are parameterizations of I' and G(I") by their respective arclengths
(see Section |C)).

Proposition 8.19. Let ng <n < N and 1 <1 < R,. Then there exists a uniform
constant v > 0 such that the maps H; and Hgr, 1 o Hi_1 have v-bounded cross-ratio
distortion on Ly, and Hy(Zyp ) respectively.

Proof. Consider the decomposition of H; given in Proposition m
Hilzy, = Flzpo 0 Hyo...0 Hy 0 P o F*fnalg, |
Denote 3
J =Py o Ffo(I3) and H:=Ho...0Hs

To prove the cross-ratio distortion bound for I—L, it suffices to prove it for H on J.

The maps

- -1 — -1.
¢o = (P(;IO’I{)LO) 1g° = Iy and ¢y = (P-ﬂzggo_l) : Ilg(;ofl — Igiofl

give parameterizations of Z° and Z° _,. Denote
0 Rng—1

Jo = ¢y (J) and by =@y 0 Fio™ 1m0 ¢y
For 3 <[ < s, let i §
H,:= ¢y o Hjo...0 H;o dp;
and
Jl/ = hl(Jl_1> and Jl = Hl(Jz)
By Proposition and Lemma there exist a diffeomorphism v, : J| — ¥;(J])
and a constant a; € R such that
Hy(z) = (0 hy o Hi_1(2))* + a;.

By (C.2) and Lemma , we see that
s—1 s
CI"D(H, j) = CI"D(HS, Jg) > (H Cl"D(hl, Jﬂ) . (H CI“D(@/J[, J;)) .
1=3

1=2
Note that the diffeomorphisms hy and {¢;};_5 have uniformly bounded second deriva-
tives. Moreover, Propositions and implies that the total length of {.J;, J/}7_,
is uniformly bounded. The bound on the cross ratio distortion of H; now follows from
Lemma [C.3] A

Now, consider the decomposition of Hg_ 1 on f& Ro_1:

= FR"0_1|Igo oHgo...oHzoPy° oF?fmls,

H _ |~n
Bn =T 0,Rp—1"

—1
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where S := R,,/R,,, — 1. The same argument as above implies the bound on the cross
ratio distortion of

Hp,—10 H |y = Ffmo~ 1‘1"0 oHgo...oHg jo Ffno=17d|;
onZ:= f[i(iaRn_l). O

Proof of Theorem[8.5 Consider the arcs {J" R" !. There exists 2R, < i1 < R,
such that

Tl > 1Tl > kIJZfI

for some uniform constant k¥ > 0. By Prop081t10n , there exists an arc j& A
which is mapped diffeomorphically onto j " by H

Recall that the nearest neighbor of Zj in Zj° is given by J¢'  p . Let f{)‘ be the
convex hull of Zy UJ? 5 . Then

(Z5:, N\ Ty c I3\ T
Hence, Proposition and Theorem [C.4] imply

I0N\TI7| > k|17

By Lemma , we conclude that the two components of I % 1\ Jg, _; have lengths
greater than k; ‘j R, 1‘ By Proposition |8. H R,—1 Maps IO r,—1 2 Iy diffeomorphi-
cally onto J7 ®._1- The result now follows from Proposition [8.19(and Theorem . OJ

9. UNIFORM C'-BOUNDS

9.1. For unimodal maps. Let s > 1 be an integer, and consider a normalized C**3-
unimodal map f : [ — I € U3, Recall that this means f’(0) = 0 and f”(0) = 2.
Let s be the C*-diffeomorphism given in Lemma so that f(x) = 2(¢s(z))% An
elementary computation shows that

2= J(0) = 2(u(0))”

(8
For K > 1, we say that f has K-bounded non-linearity if

W (x)
A

Denote the space of all normalized C**3-unimodal maps with K-bounded non-linearity
by UsT3(K). Observe that if f: [ — [ is in U573(K), then

K <[¢i(x)| <K for zel (9.2)

(9.1)

Lemma 9.1. Let f : [ — I € U4(K) for some K > 1. Then |I| < 2|K|*. Conse-
quently, we have ||f'|| < C for some uniform constant C' = C(K) > 1.
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Proof. By (9.2)), we see that |¢;(I)] > K~!|I|. If the length of an interval is bigger
than 2|K|?, then |f(I)| > (2|K|)* > 4|K|*>. Thus, iterated images of I under f
become unbounded. This is a contradiction.

We compute
f(x) = 20 (2)P} (2).
The result follows. U

Lemma 9.2. Let f : I — I be in UH(K) for some K > 1, and let n € N. If the
critical orbit of f does not converge to an n-periodic sink, then there exists a uniform
constant p, = pn(K) > 0 such that |f"(0)| > p,. In particular, |I]| > p;.

Proof. By Lemma , there exists a uniform constant C' = C(K) > 1 such that
||l < C. For n € N, let

1
Ly

= W and Jn = <—ln,ln).

Observe that
n n 2
Hence, if f"(0) € (—1,/8,1,/8), then f"(J,) € J,. The result now follows from

(") (@) < 2ep(@) [y (2)|C" < 1/2 for  x € Jp.
O

Proposition 9.3. Let f : I — I be in U*(K) for some K > 1. Suppose that f is
non-trivially renormalizable, so that there exists an R-periodic interval I' such that
fR(IY) contains the critical value v for f. Denote by c' the critical point for f2|.
Assume that Rip(f) has x-bounded kneading for some x > R. Let J be a connected
component of I\ {f{(c)}2EFL. Then we have |J| > p, where p = p(K,x) € (0,1) is a
uniform constant.

Proof. By Lemma [6.2] we have I' := [v, f#(v)] 3 ¢!. Denote I} := f(I') for 0 <i <
R. The fact that we have |f*(v) — fi(c})] > p for for [ € {O,R} and 1 < i < R
follows from Lemmas [0.1] and [0.21

By the assumption on bounded kneading, there exists a smallest integer r; < x
such that f+VE(cl) < ¢! By Lemma 7 there exists a uniform constant p; =
p1(K, x) > 0 such that

v < () < FR() — p. (9.3

Let L; := [fif(v), fO=VEW)] for 2 < i < ry. If r; = 2, then it follows from
that |Ly| > p. If 7 > 2, then observe that f® maps L; diffeomorphically onto L,
for i < r1. By Lemma [9.1]} ||(f%)’|| < C for some uniform constant C' > 1, and

LoULgU... UL, D[, fR(v)].

This implies that |Ls| > p’ for some uniform constant p'.
Let Jy be the gap between I} and I} with 0 < k < [ < R. If J,, :== f™(Jo)
with m = Y maps onto an interval I} for some 0 < ¢ < R, then by Lemma and
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Lemma [0.2] we have |.Jy| > C~™p for some uniform constants C = C(K) > 1 and
p = p(K,x) > 0. Thus, we may assume, after replacing Jy with Jg if necessary, that
0Jo > fFE ).

Map Jy by frE=*=F_Since

1 1
L rk—r N1y =9,

the image J,, r_r_r of the gap must contain (c!, f#(v)). The result now follows from

©3). 0

9.2. For Hénon-like maps. For an integer » > 2 and a constant K > 1, let
HLT(K) be the space of all normalized C"+?-Hénon-like maps whose 1D profiles
are contained in 4"%(K). Additionally, for 8 € (0,1), let HL37%(K) be the set of all
Hénon-like maps in £ "?(K) that are S-thin in C7*2.

For some N € NU {00}, let F' be the N-times regularly Hénon-like renormalizable
C™t*-map with combinatorics of b-bounded type considered in Section . If N < o0,
suppose that FEv| By Is twice topologically renormalizable with combinatorics of b-
bounded type.

Let K > 1 be the uniform constant given in Theorem Assume that ng < N is
the smallest number such that

Koo < 1, (9.4)
where
Ky = Ky(K,b) > 1 (9.5)
is a uniform constant.

For ng < n < N, denote

I§ == my(Bg) and Iy = (9") (I x {0}).
Define
F,:=0"0 Ffn o (™)' and fn = HlD(Fn).

Proposition 9.4. There exists a uniform constant K = K(K) > 1 such that for all
no <n < N, we have |F,||cr < K.

Proof. The result follows immediately from Corollary and Lemma 9.1} U
Proposition 9.5. For ng < n < N, we have
I £ = Thp(Fy)llco < AU=2F for i = O(b).
Proof. Denote I1j,(z,y) := (x,0). It suffices to show that
[(Fy 0 TIy)! — F o Tp[|co < A9,
By Proposition , |F, |l is uniformly bounded. Moreover, by Theorem ii),

we have ] )
IE, — F, o I ||cres < AL79En,

The result now follows from Lemma [D.1] 0
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Proposition 9.6. For ng <n < N and —r, < k < 2r,, denote
up = V" (vkg,) and ap = m(uy).
Let J be a connected component of Ii' \ {a}};_, . Then we have |J| > p|Ii|, where
p=p(K,b) € (0,1) is a uniform constant.
Proof. Let vy be the critical value of F' defined in Section 4] Denote ufj := U™ (vp).
Note that ug is a point of tangency between foliation by vertical quadratic curves
N1=8)Fn_close to the image of the horizontal foliation by F),, and foliation by A\(1=&)fn_
vertical curves. On the other hand, (f,(0),0) is the unique tangency between the
image curve under the degenerate Hénon map ¢( f,,), and the genuine vertical foliation.
Since i
1F = e(fa)llors < AU,
we see that i
[ () = fa(0)] < AU,
The result now follows from Propositions [9.3 and [9.5] O
Theorem 9.7. For ng < n < N, there ezist o, < |I}|V?; 7, € I} and a C™+3-
diffeomorphism ¢,, defined on the interval m,(B{) such that for
S™(x,y) = (0,7 + 7w, 0,y + T),
and
V'(z,y) = (z,0u(y)) and @":=(Y")~' oW,
the following statements hold.
i) There ezist uniform constants 0 < p; < ps < 1 depending only on K and b such

that pt < o, < pj.
i) The distortion of ¢, is bounded by K, and ||¢= | < K, where K = K(K) > 1

1 a uniform constant.
iii) We have

R (F):=8"0d" o o (8”0 @") ! € HE(K),

where N, := A\1=fn

Proof. Consider the maps
Fy:=®poFo® ] and H,:=®& joF™ 1o ()L

By Theorem [£.7, we have

Fo(v,y) = (fo(r) = Ay,x)  and  Hy(2,y) = (ha(2), en(2,y)),
where fj is a map with a unique critical point at 0 with f(0) > 0; h,, is a diffeomor-
phism; and e,, is a map such that ||e,||cr+s < A179%» Moreover, Corollary states
that h, has K-bounded distortion.
The map F, := (¥") o Ffi»=L o (U")~1 is of the form

Fo(z,y) = (gn(2,9), ha(1)),
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where g, (-, y) for y € m,(B}) is a unimodal map. By Theorem [4.7]1), we see that

9 (-, y) = fo o ()l < AGTEHn,
We claim that |h,(I})|* < |I}|. Write I}' = [a,,b,] and h,(I}') = [an, 8,). For
—rp, < k < 2r,, denote
up = V" (vkg,) and ap = mp(uy).

Recall that a, and b, are X -close to aj = 0 and a!", respectively, and that a”; € Ij.
Additionally, observe that g,,(0), g,(a",) and g,(al’ ) are \0=9%n_close to a” , 0 and
ay, respectively. By Proposition , la; | and |a}, | are commensurate Wlth |15
The claim now follows from the fact that fy(y,) and fo(8,) are A(!=5%_close to
gn(a,) and g, (b,) respectively.

Define

V' (z,y) = (2, ho(y)) and " := (Y") 1o ¥"
It is easy to check that
F o (Dn FR" ° (@n)—l
is a Hénon-like map. Denote f, := HlD( n), and let
S™(x) = otz + T,
be the unique orientation-preserving affine map on R such that S™ o f, o (5‘”)‘1
ilH'?’(K).
Lemma implies that o2 < |I}|. Property i) now follows from Proposition [9.6]
Let

Guly) = Uglhn@)'

Properties ii) and iv) follow immediately. Lastly, since h, has bounded distortion,
and |h, (I3)| < |I3|'? < o, it follows that ||¢!||c1 is uniformly bounded. Thus, we
also have Property iii). O

10. PRESERVATION OF REGULARITY

For N € N, let F' be the N-times (L, e, A)-regularly Hénon-like renormalizable map
with combinatorics of b-bounded type considered in Subsection (with ng < N
satisfying (9.4))). For ny < n < N, we have by Theorem

F,:=R"F)=8"0®" 0 "o (8" 0 ")
where ||(®")*!||c1 < K for some uniform constant K = K(K) > 1, and
S™(x,y) = (0, (z + 7). 0, (y + 7))

for some o, € (0,1) and |7,,| < o2. Moreover, by Proposition [0.6] there exist uniform
constants 0 < p; < pa < 1 depending only on K and b such that pf < o, < pj. Let
fn = HlD(Fn>

For p € By, let

v oL n\—1 v - X7
By = (DO")"(EY")  where z:= ®"(p).
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Moreover, since ®" is genuinely horizontal, we have
h ny—1 h
B9 = (DO")"(E9").
Denote Fj 1= mp, o ®".

Lemma 10.1. Forng<n < N and 0 <k <r,, let p € Bﬁg C Bi. Then we have

1 . )
= < ||DF%RH|Egh|| < |DFr|| < K for 0<i<m,—k,

where K = K(K,b) > 1 is a uniform constant.

Proof. The upper bound follows immediately from Proposition [9.4 Denote z :=
S"o®"(p), and 2; = (z;,y;) := F!(z). Propositions[6.5 and [0.6]imply that for 0 < j <
r, — k — 1, there exists a uniform constant p = p(K,b) € (0,1) such that |z;| > p.
Thus, |f}(x;)| is uniformly bounded below.

By the thinness of F,,, we see that for all w = (u,v) in the domain of F),, we have

1D (0 Fo)l g |l = [fr(w)] + OAIH),
Let h,, := 1y, be the diffeomorphism given in Lemma @ Then
Dy gyl > clhi, (w)]
for some uniform constant ¢ > 0. Let
o = |f(x;)] = ATDE for 0<j<r, —k—1,
and o, g1 :=c|h! (2, _x_1)|. Then we have
| D (7, 0 F;)IE%LH > g0 .

The desired lower bound follows. U
Lemma 10.2. Forng <n < N, let py € By. Then

1

Kn—no
where K = K(K,b) > 1 is a uniform constant.

Proof. Write

< ||DFT| ]| < K™  for 0<T <R,,
PO

T=ty+tpRn, + ... +th-1Rn1
with 0 <ty < R,,, and 0 < ¢}, < 7y for ng < k < n. Denote

Tk = tk+1Rk+1 + ...+ tn—an—l-
Then clearly, we have

K*'dy ... dy < ||DFT|E%L|| <K-Dyy-...-Dy_y,

where
Dy, = ||DkaFt’“R’“|| and dj := HD (P o F'sf)

h
| E?
ka

for ng < k < n. The result now follows from Lemma, [10.1}] OJ
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Let vy be the critical value of F. For k > —r,,, denote
up :=8" o ®"(vkg,) and ay = mp(up).
Consider an increasing sequence of renormalization depths
ng <nyp <ng <...<n<N.
We say that this sequence is tempered if for 1 < i < k, we have
py T > A
where p; is given in Proposition
Lemma 10.3. Consider a tempered sequence {n;}*_,. Let

S=s1Rp, +...+8,-1R,,_, and Si=9+ splRy,;

where 1 <'s; <1y, for1 <1< k. Forp, € Bt define

Rnk+1’
2= (2,9) =8 o ®™(pg ) and E: = D(8™ 0 ®™ o FS)(Eg’jg).

Then E: is 0-horizontal for some uniform constant 6 = 0(K,b) > 1. Moreover, we
have

DF%| || < K* (10.1)
P_g

<
where K = K(K,b) > 1 is a uniform constant.

Proof. Proceeding by induction on k, suppose the result holds for k' < k. We first
show that F; is uniformly horizontal. Denote

S"i=s1Rn, + ...+ Sk 2R, ,;
and for 0 <17 < s4,_1,
zi = (T3, ;) = 8™ o U (piosy DR., )
and
E, := D(S™ o "t o FS Ty y(EI" ),
Then by Propositions [6.5) and [9.6] it follows that for 0 < j < sj_;

;= ag""'[ > pu.

Thus, E’Zj is (1/p1)-horizontal by Lemma . Propositions and also imply
that

|2 — ag"| > p1.
Since
oy = ST 0 @M o (8™ 0 @) (3),
it follows from Theorem that

Nl — — N —MNj— g
A=z, —ag T > Ko tptt T > At
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A

Thus, by Lemmal5.1} £, is O(1/A)-horizontal. Under
D(8™ o @™ o (S™-1 o 1))
the distance A = |z, — ag*™'| is rescaled to p; = |# — ag*|. We conclude that
E: = D(8™ 0 ®" o (8™ o @™=1))(E,, )

is @-horizontal for some uniform constant 8 > 1.
Since E: is uniformly horizontal, we see that || D7y | .l > K~ Thus, by Lemma
we see that
IDE .|| > K7
By the induction hypothesis, we have

> K—k=1),

DFS| on
P_g

Concatenating the above two inequalities, ((10.1]) follows.

65

10.1

O

Theorem 10.4. Fiz§ € (£,1) such that b < 1. Then there exists a uniform constant

L = L(K,b) > 1 such that the following holds. For m € NU {oco}, suppose that

F,,

is (m + 2)-times topologically renormalizable with combinatorics of b-bounded type.

Then F' has ng + m nested (L, §, \)-reqular Hénon-like returns.

Proof. Proceeding by induction, suppose that for ng < M < ng + m, the map F
M nested (L, d, A)-regular Hénon-like returns

{(F " By — By) Ly
By Theorem , F has a (L, 8, \)-regular Hénon-like return
(Fhaer @Ml glHL _y gLy

We claim that this return is (L, , A)-regular.
Let py € B and

v — v/gh
Epo/h = (Do) 1(E§>Aﬁ1(po))'
Let R,, < T < Rpr41. Write
T'=ty+t Ry, +... +1: Ry,

has

with 0 < tp < Ry;ni-1 <n; < Mand 1<t <r, for 1 <i <k Lemma [10.2

implies that

1
Tk < IDFT|g || < K*

By (9.4), we have K < A\~¢fn_ Together with Proposition this implies that py is

Ryriq-times forward (K, e, \)-regular horizontally along EI’}O. By Proposition [A.17] it

follows that pg is Rysi1-times forward (L, 0, A)-regular (vertically) along Ej, .
Let qo € BY*! and S = IR, for some 1 <[ < Ryri1/R,,. Write

Ry

S = Sanl + ... _'_SkRnka
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where 1 <s; <1, for 1 <7 < k. Let 1 < m < k be the smallest number such that
{n;}¥_, is tempered. Denote

S" = smRn, + Smy1Rny iy + ...+ Sk R,

and let R
E,, == DF¥ N (ES ).
By Lemmas i) and , we see that qul is A= _horizontal in U_;, and
K- < |DF=571, | < KM, (10.2)
Let

v -1 hy\ __ -1 v
E, = DF (qu) = Dq)fl(Eg,l(q,l))'
Since ||®*1]|¢1 < Ko by Theorem , we have
IDF=S+1]p |- IDF-541]5 |
Jac, , F=9'+1
Substituting in Proposition and ({10.2)), we obtain
E_lK_(k_m))\_(l_é)S, < ||DF_S/+1|E11 || < [_/Kk—m)\—(l-i-é)sl‘
By (9.4), we have LK < A~¢f"i_ and hence,

< K,. (10.3)

0o <

KX 098 < IDF 5+ gy || < KA~ (10.4)
Denote
Ll L —S’'+1 v
Eq,s/ =DF (Eq,1>-

By Proposition [A.5] we have
KNG < | DR, || < KA~(1+a5=5), (10.5)
q_g/

Since the gap between n,,_; and n,, is not tempered, we have

pim < ppm Tt < At

Denote w := log, p1. Then n,, > (§/w)R,, ,. There exists a uniform constant
R = R(e,w,b) € N such that for all R > R, we have
gerr 5 Pp
€

By uniformly increasing ng if necessary, we may assume that R,,, > R, so that
£S' > &R, > &2 > 52E/Wh S bR, >89
Therefore,
| DE~(5=5 g ll> KN o 1) \~(1-9(5=5), (10.6)

Concatenating (10.4)) with (10.5) and ({10.6|), we conclude by Proposition that

qo is Ras41-times backward (L, 6, A)-regular (vertically) along E" . O
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11. REALIZATION OF RENORMALIZATION COMBINATORICS

11.1. For unimodal maps. Consider a C?-unimodal map f with critical point c.
For concreteness, assume f”(c) > 0. Forn > 0, we say that f has n-gapif f(c) < c—n,
and double n-gap if f(c) < f*(c) < ¢ —n. By Lemmal6.1] if f has double n-gap for
some n > 0, then ¢ converges to a sink of period 1 or 2. Lastly, for x € N, we say
that f has (n, x)-kneading if
foxX(e)+n<e< fif'(c)—n for 1<i<y.

Let J C R be an interval, and consider a C''-smoothly parameterized family f =
{fa}aes of C*-unimodal maps (i.e. f, depends C'-smoothly on the parameter a). For
n >0 and x > 2, we say that f is (1, x)-full if the following conditions hold.

e For all a € J, the map f, has n-gap and y-bounded kneading.
e There exists a1 € J such that f,, has double n-gap.
e There exists ay € J such that f,, has (1, x)-kneading.

Recall the definition of renormalization type 7(f) of a valuably renormalizable
unimodal map f given in Subsection [6.1]

Proposition 11.1. Consider a C'-smoothly parameterized family f = {fi}taes C
U3(K) for some K > 1. Suppose that § is (no, b)-full for some ng > 0 and b >
2. Then for any b-bounded renormalization type T, there exist a uniform constant
m = m(K,b) > 0 and an interval Iy C T such that 7(f,) = T for a € Ty, and

f1 .= {Rip(fa) }aca, C U is (m1,b)-full.

Proof. The Intermediate Value Theorem by Milnor-Thurston [MiTh] implies that
there exist a parameter interval J1 C T such that 7(fs) = T for a € J;, and fl =
{Rip(fa)}aes, 1s full.

Clearly, there exist K’ = K’(K,b) > 1 such that f; ¢ 42(K”). Let J} be a maximal
subinterval of J; such that for a € 3, the critical point 0 of Rip(f,) does not converge
to a fixed attracting sink. Then by Lemma [9.2] we see that there exists a uniform
constant 71 = 11 (K’) > 0 such that f, has n;-gap. Moreover, observe that there exist
a; € 07 such that the critical point 0 of Rip(f,,) converges to a fixed parabolic sink
of flip type. By decreasing 7; a uniform amount if necessary, we see that Rip(fa,)
has double 7;-gap.

Applying the Intermediate Value Theorem again, we can restrict J) to a smaller
subinterval such that for a € J;, the map Rip(f,) has b-bounded kneading. Moreover,
the endpoints of J; are a; and as, so that for faz := Rip(fa,), we have

FX(0) < 0 < fIH(0) for 1<i<y,

and 0 does not converge to a sink of period less than y. By decreasing 7; a uniform
amount if necessary, it follows from Lemma [9.2| that f,, has (7, x)-kneading. O
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11.2. For Hénon-like maps. For N € N, let F' be the N-times (L, e, \)-regularly
Hénon-like renormalizable map with combinatorics of b-bounded type considered in
Subsection . Let n1 = n1(K,b) > 0 be the constant given in Proposition . We
assume that N is sufficiently large, so that for some 0 < ng < N, we have (in addition
to ):

Afino < ey (11.1)

for some sufficiently small constant ¢ € (0,1) independent of F'.
For 0 < n < N, let F, := R"(F) and f, := IIjp(F,). Denote the domain of
F,, by D™ Recall the definition of the renormalization type 7(F},) of F, given in

Subsection [6.2] (see (6.8)).

Proposition 11.2. Suppose that fn is valuably renormalizable with return time ry <
b, and that Rip(fn) has m-gap and b-bounded kneading. Then F is (N + 1)-times
Hénon-like renormalizable, and 7(Fy) = 7(fn).

Proof. Let Jy be the ry-periodic interval of fy containing the critical value fx(0).
Denote the critical point of g := fi{'|x+1 by ¢. By Lemma , we can assume that

Jo = 1g(c),] U [e,g*(0)].

Denote J; := ¢'(Jp) for 0 < i < ry. We claim that .J; and J; for ¢ # j are uniformly
far apart. By Lemma , there exists a uniform constant p; > 0 such that if ¢g*(c) <
c+p1, then ¢3(c) < c—p;. Considering the two cases g*(c) < c+p; and g*(c) > c+py
separately, and arguing as in the proof of Proposition [9.3] the claim follows.

For 0 < i < ry, let .J; be an interval that compactly contains J;, and the components
of J~Z \ J; have lengths commensurate to A\, Define

W, = J; x m,(DM).
Observe that W; N W; = @ if  # j. Moreover, by Proposition , it follows that we
have F,(W;) @ Wit1 (mod r,) for 0 < i <1,
Let
W = (SN 0 @M)7H(W)).
Denote Ry41 :=ryRy. By Theorem 9.7, we see that if ¢ > 0, then
win Vé\ol(/)iv) =9

for some uniform constant p; € (0,1). Using Lemmas [4.8]iii) and [5.1] and proceeding
by induction, one can show that under Ffi¥+1 horizontal foliation of W, maps to a
foliation by vertical quadratic curves in W,. Similarly, using Lemmas iv) and
and proceeding by induction, one can show that under F~f~+1 horizontal foliation
of FEN+1(W,) maps to a A1~ _vertical foliation of W,. Let WN*! be a genuine
horizontal chart that rectifies this vertical foliation. Then it follows immediately that
(FEx+1 g1 g a Hénon-like return. O
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Proof of Theorem E. Let § = {F,}acr C HL° be a C'-smoothly parameterized family
of Hénon-like maps that satisfy the following properties. For a € J, the map F, is ng-
times (L, €, A)-regularly Hénon-like renormalizable with combinatorics of b-bounded
type, where ng is sufficiently large so that and are satisfied.

For some N > ng, suppose that F, has N Hénon-like returns {(FI &")}N_ | with
combinatorics of b-bounded type. For ng < n < N, Theorem [10.4] implies that
(Ffn ®m) is (L, 6, A)-regular for some uniform constants L > 1 and § € (£,1) with
bé < 1. Moreover, by Theorem , we have R"(F,) € 9L} (K) with \, := A\1-9Fn,

Proceeding by induction, suppose that there exists an interval of parameters Iy C J
such that the following properties hold.

e For a € Jy, the map F, is N-times Hénon-like renormalizable with combina-
torics of b-bounded type.

e For all a,a’ € Ty, we have 7y (F,) = 7n(Fy).

e Denote Fy, := RN(F,) and fy, :=ip(Fya). Then fy := {fna}acsy forms
a (1m1/2, b)-full C'-smoothly parameterized family.

Let T" be a renormalization type with return time r, < b. Lemma [11.1] implies
that there exists an interval Jy4; C Jy such that 7(fy,.) = T for a € Tnyq, and
{Rip(fn,a) tacan.s is (m1, b)-full. By Proposition [11.2] F, is (N + 1)-times Hénon-like
renormalizable, and 7(F,) = 7(fn ). Moreover, we see from Proposition (9.5 that

[ fNe — Thin (Fpf) oo < AI=ORY < oy,

It follows that {II;p o RN+ (F,)}aeay,, 18 (11/2, b)-full. O

12. UNIFORM C"-BOUNDS

Let I be the infinitely regularly Hénon-like renormalizable map with combinatorics
of b-bounded type considered in Subsection (with N = 00). For n > ng, denote

E,=pR*(F):=U" o Ff o (I")!  and f, :=p(F,).
By Corollary , there exists a uniform constant K > 1 such that fn has K-bounded

non-linearity.
Consider the arcs

Ty = (U1 x {0}) =T N BY > v

and I!' := F'(I}) for i € N. Let {J7}! be the collection of arcs given in (8.3).
Recall that for ng <m <n; 0 <k < R,/R,, and 0 < i < R,,, we have

T =15, Jin, CT" and  Jlig, = Hi(Tlk,). (12.1)
Moreover, {J"}1 is pairwise disjoint by Lemma m

The map
¢o = Polgy : Ig — Iy

gives a parameterization of Z}' by its arclength. For n > ng and 0 <1 < R,,/R,,, let
SiRng = P0(TiRy )
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Observe that {J[}zno }ﬁo/ o=l is a pairwise disjoint set of intervals contained in R.

Moreover,
St =Thpo FX(Jy™) for 0<k<r,. (12.2)
Let v C T be C'-curves in R%. We say that v is commensurable with T if |y| =< |T|.
Proposition 12.1. Let n > ng and 0 < ¢ < R,. Then any arc j;ﬂ,}%n for some
0 <k <ry,, orany component of

rn—1

n n+1
T\ Jiin,
k=0

is commensurable with J. Consequently, there ezists a uniform constant p € (0,1)

such that
Rp—1

> 1T < 0",

=0

Proof. Denote the critical point of fn by ¢". Then by Proposition , we see that

each component of
3rn+1

T\ U e

is commensurate with J§. Thus, by Proposition and ([12.2)), this implies the result
in the case © = 0. The case 0 < 7 < R,, then follows immediately from Theorem

and (12.1)). O

The map
U . 0 no
Gy := P_1|zg$1071 ‘ I?zno—1 » gy

gives a parameterization of Izo _,. Denote
no

‘]l%no—l = Qs—l(kyl?%no—l) fOI 1 S l S Rn/RnO'

Rn/Rng

Observe that {Jﬁﬁnofl =1 is a pairwise disjoint set of intervals contained in R.
Define
Ry/Rng—1 R /Rny—1
h h
o= U kgt oand ygi= () JR, I (12.3)
1=3 1=3

Proposition gives the following decomposition of Hg _;:

2 _ Rng—1 ¥ - 10 2R
HR,L—1|I{)L—F 0 |I(;LO OH}?n_lo...OH{J,OP@ oF n0|161.
no
where for 3 <1 < R,/R,,, we have

3 ) -1
H :=Pj"oFo (Pﬁﬂjﬁ) o FRno_1|Zgo.
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Define
Ry /Ry —1

= J Zrcu,cr
1=3
Lemma 12.2. Forn € N and 3 <1 < R,/ R,,, the map P_; restricts to a diffeomor-
phism from 17" to Jip _y (and hence, also from I'y to 4y ). Define

n

gty =m0 Py o (Poylr, )7
Then i
g% ~ellor = O(E%).

Proof. The first claim follows immediately from Proposition [8.18
Observe that m; is the largest integer such that

{opu Jﬁ%nofl - Jg,;l—r
Moreover, ) )
Ting1 C Ty and 0 & Jeh .

By Proposition , fl” is \0=&%n _horizontal. Additionally, by Proposition ,

we have ) )
dist(0, I}") < p™

for some uniform constant p € (0,1). The estimate on g™, follows. 0

Let G : T — J be a C'-diffeomorphism between two C'-curves Z, J C R?. Define
the zoom-in operator Z by

Z(G)(t) =T 97 0 G o dr(|T]t),

where ¢7 : [0, |Z|] — Z is the parameterization of Z by its arclength (and ¢ similarly
defined). Note that Z(G) : [0,1] — [0, 1].

This rest of this section is devoted to proving the following theorem.

Theorem 12.3. There exists a universal constant K > 0 such that for all n > ng
sufficiently large and 1 <1 < R, we have

|Z(Hilzg)ller < K.

Define

q(r) := sign(z)z”.

Denote I} := q '(I}). For n > ng and 0 <[ < R,/R,,, let Jvﬁzno = qfl(Jl’}%no). The

proof of Theorem [12.3| relies on the following key result.

Proposition 12.4. Let n € N. There exists a C"-diffeomorphism h™ : Il — I with
I(R")Hler = O(1)

such that for 1 <1 < R, /R,,, we have

¢o 0 Hip,, 0 g |y = (af o h}') o...o (g5 o hy) o (qf o h),
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where h}' : J(T;_l)Rno — jlanO and q;' : j[}{no — Jig,, ore diffeomorphisms given by

iL? = iLn|Jn

(I-1)Rn

and q; = q|ijn0. (12.4)
Lemma 12.5. Forn € N and 3 <1 < R,,/R,,, we have

PytoFo (P™z) "o Flinto ¢61|J(T;_1)Rn0
where hy and qf are as defined in ([12.4).

Proof. Define 4% := q~ (), where 4§ is given in (12.3). By Lemmas [8.1] and [12.2]
there exists a C"-diffeomorphism 9", , : 4" — 7§y with

1w 16)* ler = O(1)

= qln © B;L(x)7

such that

Pj"oFodI o Gi1|il" =qo ¢z1,0|1‘ln,
where G" () := (v, g",(x)). Precomposing with P_; o FFno~1 o¢al|J571)Rno gives the
desired result. d

Proof of Theorem[12.3 For 1 <1 < R,/R,,, let no <1y < n be the largest integer
such that

{0} U JfR, C J]?;l.
Denote L :={1 <l < R, /Ry, | "y =m}. Then | € L if and only if

jﬁ%no cJp  and jﬁ%nofl nJptl = o.

Note that
U Lp ={1<i<R./Ry}

m=ng

Let Up be the component of j}%”m \ j?ﬂfjl contained in R™. Applying Proposi-

tion |12.1/and Lemma [D.5{to Z <Q|U}? >, we see that

> lZ(a!) —1dler = O(p™)

leLy,

for some uniform constant p € (0,1). The result now follows from Proposition [12.1}

Proposition and Lemmas and [D.6] O
Theorem 12.6. For all n € N sufficiently large, we have ||R™(F)|cr = O(1).

Proof. By Theorem and (8.2), we see that
|IThip o R™(F)||cr = O(1).
Since R"™(F) is a A(!1=®%=_thin Hénon-like map, the result follows. O
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13. EXPONENTIALLY SMALL PIECES

Let F' be the infinitely regularly Hénon-like renormalizable map considered in Sec-
tion The goal of this section is to prove Theorem B.
For any integer [ > 2, we have

dR,, = a1 Ry, + ... + apR,, (13.1)
for some
o g <ng < ... < ng,
e 1<a, <mr, for1 <m <k, and
o 2 < ay <2r,,.
Define R
Hano — Fa1Rn1 o 7)(7)12 o Faan2 o... 0 ng o FakR"k o P{;lk7

where PJ : By — Zj for n > ng is the projection map onto Zj given by
Py = (¥") P oIl o ",

Denote (IR, ) := ny and k(IR,,) := ng. Recall the definition of H; given in Sec-
tion 8l Then we have

IRny) ) ; k

k(IRng)
OHZRnO :Hano 0770 07,

P (13.2)

Lemma 13.1. Let i = IR, for some | > 2. Then for n > k(i), we have
1 — F| o lloo < A9,

BhO)
Proof. By Theorem and Proposition , [(@™)* || ris and || Fy,||cr are uniformly
bounded. Moreover, by Theorem ii), we have
| — E o Iy || rrs < A9 m, (13.3)
Let : = [R,,, be given by with k(i) = nj, < n. Note that
FRme = (U)o [, 0 U™

and .
Hence, we see by ((13.3) and Lemma that
1HR,, — Flie]grilco < A=y
Moreover,
HakRnk = ((\I’n’“)_l o Fs:_l o \Iln’“) o HRnk

and
Foxttn, — ((\Il"’“)_l o Fs:_l o \IJ”’“) o Ffn

Thus, another application of Lemma imply
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Proceeding by induction, suppose that

9y b 1-2)R,, .
||Hij+1 - FZJ+1|ng||CO < A=
where 1 < 5 < k and

ij+1 = (Inj+1an+l + ...+ ankRnk.

Write
~ ~ Q. —1 ~ ) ~
,Hij = (\Ijnj)_l © F”j oo (F”j © Hh) o¥™ o Hij+1
and )
Fij|ng _ (anj)—l o F;;nj o Fnj o UM o Fij+1|83’“'
Applying Lemma [D.1] the result follows. O

Lemma 13.2. There exists a uniform constant p € (0,1) such that

Rn/Rng

Z diam(’;‘:lmno (Ig)) = O(pn)

=2

Proof. For 2 <l < R,/R,,, consider the curve fl” C U_; given in Proposition m
By ((13.2)), we have

N -1 ~
Hin,, (T5) = Fo (P8l) o F™0™ o iy, ().

Thus, {ﬂanO (Zg) sz/ o s the image of

n 2 n\ Bn/Rng—1

{jmno = Hig,, (Z5) 1,20

under )
G = o (Pﬁ(ﬂrzl) o Fim,
where
Rn/Rng
I, = U 1y
1=2

Since I'"; is uniformly horizontal, ||G,|[c- = O(1). The result now follows from
Proposition [12.1 [l
Theorem 13.3. There exists a uniform constant p € (0,1) such that for n € N, we
have

Rp—1

> diam(F'(B}, ) = O(5").

i=0

Proof. Choose ny < m < n to be determined later. By Lemma [13.1] we see that for
1 <1< R,/R,,, we have

diam(FlR’” (Bg,)) < diam(’}:[lRm (M) + A= Rn(Rm)
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Thus, by Lemma [13.2] we have
Rn/Rpm—1 R

> diam(F(By, ) = O(p") + A0

1=0 m
For m sufficiently large, the expression on the right is bounded by O(p?) for some
uniform constant p; € (p, 1).

Let i = j+aoRny + ...+ a1 Ry + IR, with 0 < 5 < R,; 0 < ap < 1 for

no < k<m,and 1 <l < R,/R,,. We can write

Fitim — pi g (\IJ"O)_1 o Fgg oU™o. . .0 (\Ifm_l)_l o F:{i_ll oyt
By Theorem and Proposition [9.4] we see that

[F o < K
for some uniform constant K > 1. Hence,
Rn—l Rn/Rm_l
> diam(F (B, )) = Rp K™ Y diam(F" (B, ) = O(R, K™p}).
i=0 1=0

For n/m sufficiently large, the expression on the right is bounded by O(p™) for some
uniform constant p € (py, 1). O

Observe that Theorem B is an immediate consequence of Theorem [13.3]

14. REGULAR UNICRITICALITY

Let F' be the infinitely regularly Hénon-like renormalizable map considered in Sec-
tion Recall that the renormalization limit set of F' is given by

oo Rn,—1

Ar=( U Bhi

n=1 =0
By Theorem B, Ap supports a unique invariant probability measure p given by the
counting measure:

w(B)=1/R, for n,ieN.

Proposition 14.1 (Proposition 8.3 [CLPY1]). With respect to u, the Lyapunov ex-
ponents of F' on Ap are 0 and log A\, < 0 for some X\, € (0,1).

Proposition 14.2 (Proposition 4.1 [CLPY1]). For any n > 0, there exist uniform
constants N, € N and C,, > 1 such that the following holds. Let p € B} and E, € ]P’fo,
where n > N, and k > 0. Then for all i € N, we have:

C AT < | DF|g, || < Cy A" (14.1)
and

C A < Jac, (F) < CpAl " (14.2)
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For p € BB, define
vn . ny—1 v
and
n\— h - h
Ez]; = D(¥") 1(E‘%"(p)) = D(®o) 1(Eflio(p))'

Theorem 14.3. For any 6 > 0, there exists Ls > 1 such that for all n € N, the nth
Hénon-like return (F® U™) is (Ls, 0, A, )-regular.

Proof. Choose 1 € (0,6). It suffices to show the result for n > max{ng, N, }, where
N, is given in Proposition Let po € Bj. By Lemma [10.2) and ((14.2)), we see
that py is Rp-times forward (O(1), 7, A,)-regular horizontally along E . The required
forward (Ls, 0, A, )-regularity (vertically) along
Byt = (DY) TN (B,
now follows from Proposition [A.17]
Let qo := pg,. We claim that ¢q_; is backward regular (vertically) along

E! = (Do) " (EY ).

®_1(q-1)

We argue similarly as in the proof of Theorem [10.4]
Let S =R, for some 1 <1 < R,/R,,. Write

S = 81Rn1 + ... +8kRnka

where 1 <s; <1, for 1 <7 < k. Let 1 < m < k be the smallest number such that
{n;}%_  is tempered. Denote

ra_
S =8y, By + Snp By + 0 Sp Ry

and let

A S'—1( zogh

E, , = DFS\(E ).
Subbing in (10.2)) and (14.2)) (instead of Proposition [A.4]) into (10.3), we obtain

K_(k_m)0771>\§L1+n)S < HDF—S' +1|E}1’_1 H < Kk_anA/(}_n)S )

Then following the same argument as in the proof of Theorem [10.4] (but using (14.1])
and ([14.2)) instead of Proposition and Proposition respectively), we conclude
that ¢_; is (R, — 1)-times backward (Ls,d, A, )-regular (vertically) along E7 . O

Recall that by Theorem [7.1], we have

() Bk, = {vo}-

Theorem 14.4. The orbit {v,, }mez s a reqular quadratic critical orbit.

Proof. By Theorem [14.3, v is infinitely forward and backward (Ls,d, \,)-regular
along B} = E3° = LS for all § > 0. Thus, {vm}mez is a regular critical orbit.
The quadratic tangency of W#(vy) and W¢(vg) at vy is given in Proposition
iii). 0
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14.1. Critical cover. Let § = £ for some ¢ € (0,1). Choose n € (0,g). Proposi-
tion and Theorem imply that by replacing F' with R™(F') for some ny € N
sufficiently large, we may henceforth assume the following.

e Conditions (4.1)) and (9.4) hold with A = A\, and ny = 0.
e The map F' is n-homogeneous: for all p € B and E, € IP’]QD, we have

N <||DF|g,|| < A" and A< Jac, F < A7
e For n € N, the nth Hénon-like return (F%» ") is (1,7, \,)-regular.
Denote €' := (1 + &)e > e. For z = (a,b) € Bj and t > 0, let

V.(t) :=[a—t,a+t] x Ij.
For p € B and t > 0, let

Vi (t) == (U") " (Vanp (1))
Lastly, for ¢t > 0 and p € R?, denote

Dy (t) := {g € R* | dist(q,p) < t}.

We now show that F is (8, ¢)-regularly unicritical on Ar (see Definition [2.4). First,
we need to define a suitable cover of the iterated preimages of critical value vy. For
n € Nand 1<i<r,, let C" be the connected component of

Bh, NV (A7)

containing v_g,. Define C* := F*(C") for 0 < j < R, and
N+1 Ry—1

cV= e

n=1 =0
Note that {v_;}/ N ¢ CV.
Proposition 14.5. We have diam(C}") < )\;R". Consequently,
RN
cVc (D).
i=1
Proof. By Theorem ii), By is a /\S_g)R"-thick strip around the curve F#(Z1),

which is vertical quadratic in By with the vertical tangency A,(}*mR”—close to vy. By
Proposition [6.5) we have

Vi_n, A NV, (M) = 2.
By Lemma the connected component I'" of the curve
Ih, NV g, ()\ZR")
is A~ _horizontal in BY. Consequently,

diam(C™) = [T < A7\ fn
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Then by n-homogeneity of F', we have
diam(C?") < A~ diam(C")
for 0 <17 < R,,. The result follows. OJ

14.2. Forward regularity away from the critical cover. For all p € Ar \ {vp},

there exists a unique number d, > 0 such that p € ng \ngﬂ. Define depth(p) := d,,.
If p = vy, define depth(p) = co. Let pg € Ap. For N € N/ let 0 < S < N be the
largest number satisfying

d = depth(ps) > depth(p;) for 0<1i<N.

Define the valuable moment and the valuable depth of the N-times forward orbit of
Po as
vim(pg, N):=S and vd(py, N):=d

respectively.

Lemma 14.6. Let py € Ap and N € N. Denote S := vm(pg, N) and d := vd(py, N).
Write

S = SoRO + 81R1 + ...+ Sde,
where 0 < s; < 1y for 0 <1 < d. ]fpo\Cd, then for 0 <n <d and 0 < s < s,, we
have
DS, _1+sR, ¢ V;‘()(/\iR") where  S,_1:=50Ry+ ...+ $p_1Rn_1.

Proof. If qo € Ap NV (A¥F), then it follows from Theorem ii) and n-homogeneity
that ¢_g,., € C*"'. Thus, if ps € V) (Xf"), where S := S,_1 + sR,, then
P—Ry.1+s € C"TL. Therefore,

+1 d
Do € C}gn+1_sl C c" c C“.

This is a contradiction. O

Lemma 14.7. Denote
gg=1+¢8)e for i>0.
Let qo € By and Ey, € P2 . If
L(Eq, B > Xotfin,
then
[DE g, | > A2
Moreover, if qr, ¢ Vi (A2Fn), then
L(E,

v,n e1Rn
dRp Ean) > )\/j' '

Proof. The estimate on || DF " |g, || follows immediately from the (1,7, A,)-regularity
of the Hénon-like return (F*, ™). The estimate on £(E,, ,E" ) follows immedi-

dRp "

ately from Lemma [5.1] O
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Lemma 14.8. Forn,k € N, let gy € By*™* and E,, € P2 If

R,>¢éR,.x and K(E E;’(;"'*‘h > )\iRn-He,

q0°
then
Ry, ERn
| DF™ g, || > X and A(F,

v,n nR.,
an,Ean) > AL
Proof. Observe that

ﬁRn > ﬁan+k — anJ,—ku
So
R :R,,
AR <N
By Theorem [4.7]1), we have
v,n+k v,n 1-7)Rn

L(ERmHR ERm) < AT

Hence,

K(EqO,E;’(;”) > )\iRnJrk _ /\ilfﬁ)Rn > )\ZRn _ )\E}*ﬁ)Rn — )\ZRn.

Since depth(qr,) < n, we have qg, ¢ Vi (1) by Proposition . The result then
follows from Lemma 5.1l O

Theorem 14.9. Let py € Ap and N € N. Define
E, == D(F' o ®;")(ES") for i>0.
If po & C¢ with d := vd(po, N), then
N EN
IDF, || > A2,
Proof. Write
S :=vm(py, N) = soRo + ...+ sa, Ra,,
with 0 < s, < 7, for 0 < n < d;, < d. Using Lemmas and [14.7] and arguing
inductively, we see that
& in nR in n V,din nR in
IDF|g, Il > X5, ps g Vir(\u™™)  and  £(Epy, Byfn) > Ay .
Let
T:=N — S == tORO + ...+ tdouthout
with 0 <t, <r, for 0 <n < dy, <d. If doy > di,, then

~

ps & VW) C VIR and LBy, Byt > ApT
Thus, by Lemma [14.6] we have
R
HDFtdout dout B

| fia
pPs

| > )\gtdout
"

out

Denote
T, =t Ry+...+t,R, and 0<n <dyu.
Note that T;, < R,+1 < bR,.
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If dowt < din, let d = dout, and denote t4 = sq, . Otherwise, let d < dyy be the
largest integer such that ¢t; > 0. Proceeding by induction, suppose for some n < d
with ¢, > 0, we have

IDEYToly || > N and - L(By, o, BytE) > Al

PN-Ty,

where k& > 0 is the smallest number such that ¢, > 0.
If R, > &R, .}, then Lemma implies that

IDEfp >N and L(Epy oy, By, ) > A

PN—T, _1
If R, < &R, 1k, then by n-homogeneity, we have

HDFN|EPO|| > )\LlJrn)TnHDFNanH‘EPOH > )\iRn+k)\i(N*Tn+k) > AiN_

15. RENORMALIZATION CONVERGENCE

15.1. For unimodal maps. Let » > 3 be an integer. Consider a C"-unimodal map
f I — I with the critical value v € I. For an integer 0 < s < r and a number ¢ > 0,
the t-neighborhood of f with respect to the C*-topology is denoted M*(f, ).

Lemma 15.1. For K > 1 and b > 2, there exists a uniform constant to = to(K,b) >
0 such that the following holds. Let f € U"(K). Suppose f is non-trivially renormaliz-
able with return time R < b, and Rip(f) has b-bounded kneading. Iffe ME(f, 1) N
with 2 < s < r and t € [0,ty], then f is valuably renormalizable with 7(f) = 7(f).
Moreover,

[Rip(f) = Rin(f)lles < Ct,
where C' > 1 is a uniform constant depending only on K, b and || f]|

Cs+l.

Proof. The renormalizability of f such that 7(f) = 7(f) follows immediately from
Lemma and Proposition (9.3] 3

Denote the critical points of f and f by ¢ = 0 and ¢ respectively. Define

I'=[f(e), ff(e)] and I':=[f(@), @)

and fi := fB and f; == f¥|5. Let S and ~5’ be the unique orientation-preserving
affine maps on R such that So fioS™!, So fi 057t € .

By Lemma [D.1], we see that

Ifi = filles < Ct.

This implies immediately that ||S — S|| < Ct. The result follows. O

Consider the full renormalization attractor 2l contained in the space U of analytic
unimodal maps. For an integer b > 2, the compact invariant subset of 2l consisting
of all infinitely renormalizable unimodal maps with combinatorics of b-bounded type
is denoted 2.
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The following is a consequence of the fact that 2y, is a hyperbolic attractor for the
renormalization operator Rp acting on 2.

Lemma 15.2. Let r > 3 and N € N be integers, and let K > 1 be a number.
Suppose f € U" is N-times valuably renormalizable. Then for any f* € Ay with

T~ (f) = 75 (f*), we have:
IR (f) = Rin(f)ller = Co"llf = fller for 1<n < N/2,
where p = p(b) € (0,1) is a universal constant and C > 1 is a uniform constant

depending only on'b and || f||cr.

15.2. For Hénon-like maps. Let F' be the infinitely regularly Hénon-like renormal-
izable C™*-map considered in Section [12} For n > nyg, denote F, := R"(F) and
fn = IIip(F,). By Theorem we have F,, € Y),Sgig(K), where K > 1 is a uni-
form constant, and ), := A== Moreover, by Theorem | Fyu|lcr is uniformly
bounded.

Proposition 15.3 (Shadowing Lemma). For N € N, there exists ny = n1(N) € N
such that for alln > ny, the map f, is N-times valuably renormalizable with Tx(f,) =
Tn(Fy). Moreover, we have

| fnr = Rip(fa)llors < CEATTDE - for 1<k <N
for some uniform constant C' > 1.

Proof. First, consider the case when N = 1. The renormalizability of f, so that
7(fn) = 7(F,) follows immediately from Lemma [6.2] and Propositions [9.5 and [9.6]
Note that

| E, — Fy o Iy || or < AGfn,
Since || Fy,||cr is uniformly bounded, Lemma implies that
|Fr — (Fy 0 Ty) ™ || r-1 < CAUZE) A
for some uniform constant C' > 1. Thus,

ITLip(F7) = farller < CAI=)Fn,

It follows that if S and S are the unique orientation-preserving affine maps on R such
that SoIp(F) o S™ So frmoS™! € 4* then
1S — S|| < CAE=9)En,
Thus,
1 = Rap(fo)ermr < CAU 0,

Proceeding inductively, suppose that the result is true for all 1 < &k < N. In
particular, we have

I frsnot — REL(f)Jorot < CNTINA=Rn,
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By the above argument, f,.y_1 is valuably renormalizable so that

T(fnJerl) = T(Fn+N71)-

If ny is sufficiently large, it follows from Lemma that R, *(f,) is also valuably

renormalizable, and
TR (fa) = 7(fasn-1).
For m € N, we have
| foim — Rap(frgpm1)||cro1 < NI nsm
Applying Lemma 0 < k < N times, we obtain
IRES frm) — R frim) et < CEAG= Rt

Thus,

N-1

I fnen = RISl <) IRE (fasn—k) = RES (fu o))l o
k=0

N-—1
< Z Ck)\(l_é)Rn+N—k
k=0

< O(CN\I=9En)
0]
Proof of Theorem C. Statements i), i) and iii) are given by Theorem [4.7 Statement

iv) is given by Theorem [12.6] Hence, it remains to prove Statement v).
Suppose r > 4. Let f* € 2y, so that

Too([*) = Too(F) = [7(f0), 7(f1), .- ].

Denote [ := Ry (f*) for n > 0.

Consider the constants C' > 1 and p € (0,1) given in Lemma[15.2] Choose N € N
sufficiently large so that Cp™ < p < 1. Let ny = ny(2N) € N be the number given in
Proposition [15.3, Then for all n > ny, we have

I fain — Fionller— < I fusn — RS (Fu)llor1 + RN (o) — RIS (F) lorr
< ONYDEY 4 5l o — fillorn
<\ fu— fillor,

for some uniform constant g’ € (0, 1). O
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APPENDIX A. QUANTITATIVE PESIN THEORY

In this section, we summarize the results in [CLPY2]. Let r > 2 be an integer,
and consider a C"*1-diffeomorphism F : B — F(B) € B, where B C R? is a bounded
domain. Let \,e € (0,1) with £ < 1.

Let pg € B and Ej € IP’}%O. For m € Z, decompose the tangent space at p,, as

2 v \L v
]P)pm - (Epm) @ Epm'
In this decomposition, we have
« 0
D, F=:]"™ ,
pm {cm @J

where «a,,, 8,, > 0 and (,, € R.
For some M, N € NU{0,00} and L > 1, suppose for s € {0,1}, we have

Li\0Fem < % <IN for 1< n <N,
Q. ..0pn_1)°

and

L-I\0+en < % <IN for 1<n< M.
O_py...O_1)"

Then we say that py is (M, N)-times (L, e, \)-reqular along E .
Proposition A.1 (Growth in irregularity). [CLPY2, Proposition 5.5] For —M <

m < N, let L,,, > 1 be the minimum value such that p,, is (M + m, N —m)-times
(Lp,., €, A)-regular along E} . Then

L,, < LA~Eml
A.1. Linearization. For w,[ > 0, denote
B(w,l) ;= (—w,w) x (=1,1) CR* and B(l) :=B(l,1).

Theorem A.2 (Regular charts). [CLPY2, Theorem 6.1] There ezists a uniform con-
stant

C = C(IDPer A ) 2 1
such that the following holds. For —M < m < N, let

1—¢
wim T IDEIDF and Ky, = K1+ ) | DN
Define )
Uy, :=B(l,,,) where 1, =NT(CK,, )"

Then there exists a C"-chart @y, = (Up,,, Pm) = (Up,,,0) such that D®, (E} )= Ef°,
DD, o1 < C(1+w), [[D®,, [lcs < CKS for 0<s<r,

and the map ®, . o Fly o @Ijnll extends to a globally defined C-diffeomorphism
F,, : (R*0) — (R*0) satisfying the following properties:

1) |DEy,,[[er—r < [|[DF|er;
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ii) we have

0 by

ZZZ) ||Dszm — DOFpmHCO < \+E fO?” A Rz;
iv) we have

Donm = [am O} ) where )\ < A, < A °  and M < b,, < A\-E

Fy(2,9) = (fp (2), €5, (2,y))  for (z,y) € R,
where f, : (R,0) = (R,0) is a C"-diffeomorphism, and e, : R*> — R is a
C"-map such that for all 0 < s < r, we have
05ep () < ||DF||erlyl  for yeR.

The construction in Theorem is referred to as a linearization of F' along the
(M, N)-orbit of po with vertical direction E, . For —M < m < N, we refer to [,,,
U,,,, ®,., and I, = as a reqular radius, a reqular neighborhood, a reqular chart and a
linearized map at p,, respectively.

For p € R? and ¢ > 0, let

Dy (t) :={llg —pll <}
Lemma A.3. [CLPY2, Lemma 6.2] For —M < m < N, we have

)\1+s
upm ) ]me (CQICZQ) > )
where C, K, > 1 are given in Theorem @
A.2. C'-estimates.
Proposition A.4 (Jacobian bounds). |[CLPY2, Proposition 6.14] We have
LI\ < Jacy, F™ < LAX=9"  for 1< n <N,
and
LI\ (-9 < Jacy,, F™" < LAUFn for  1<n< M.
Proposition A.5 (Derivative bounds). [CLPY2, Proposition 6.15] Let C' > 1 and
w > 0 be the uniform constants given in Theorem . For E,, € P2 we have

po’

/\(1+§)n .
——— < ||DF" < C(1 2)\—¢en 1<n<N
CL(l +w)2 — H |EPOH > ( +W> fOT <n< N,

and

)\én .
— < ||DF™™ < (1 2)\~(+a)n 1<n<M.
CL(l +w)2 > H |Ep0|| < ( +W) for <n<

Consider the sequence of linearized maps {F,,, }"¥,, given in Theorem [A.2] For
1 <n <N —m, we denote

e = F o...oF

n _( n n )
Pm Pm’? “Pm/ " Pm+4n—1 Pm+1

o F,

Pm

(A.1)
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Proposition A.6. [CLPY2, Proposition 6.4] For —-M <m < N and 0 <n < N—m,
consider the C"-diffeomorphism F)! = given in (Ad). Let z = (z,y) € U,,, and
suppose that

zi=(xi,y) =F, (2) €U,,., for 0<i<n.

Denote
no_. |am(z) 0
D8 =& )
Define
I :=supnA\™ < oo and I, :=(1—- X571
and 3 S
l v
Xh = €xXp ﬂﬂw and X, := €xp (lh ! )—”F”CS :
e A®
Then
1 al(z) 1 b (2) s
< Im < ’ < Im < ; and n <)\(1 a)n'
o a0 = T ) 1

For —M <m < N and ¢q € U,,,, write z := &, (q). The vertical/horizontal direc-
tion at q in U, is defined as E/" = D@;}L(Egv/gh). By the construction of regular
charts in Theorem|A.2} vertical directions are invariant under F (i.e. DF(E]) = Ep,,
for ¢ € U,,,). Note that the same is not true for horizontal directions.

Proposition A.7. [CLPY2, Proposition 6.5] For —M < m < N and q € U,,,, we

have

D® v
1 _IDlnl o
V3 = D%y, |

Corollary A.8. [CLPY2, Corollary 6.6] For some —M < mq < N, let gy, € Up,,, -
Suppose for mo < m < m; < N, we have g, € U, . Let

E} = DF"™(E} ).

am
Then for mg < m' < my, we have
1 IDF™ =" gy | .o |DE™ =g, ||
= T > 2Xp AN
2xn = [[DF™ g |

= r__ §2X’U’
2x0 — [|DF™ gy |

where x;, and x,, are constants given in Proposition [A.6]

Proposition A.9 (Vertical alignment of forward contracting directions). [CLPY2]
Proposition 6.8] Let gy € U, and Ey € Pgo. Suppose q; € Uy, for 0 <7 <n < N,
and that

)\ETL

= |DF" 5, || < ————x,
v H ’EqOH Xh(2+w)30
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where C,w, x, > 1 are uniform constants given in Theorem[A.4 and Proposition[A.6
Denote z := @y, (qo) and EY = D@, (E7). Then

L(E?  E%) < xp(1+w)CA .

207 20
Proposition A.10 (Horizontal alignment of backward neutral directions). [CLPY2,

Proposition 6.9] Let gy € U, and Eg‘o e P2 . Suppose q_; €Uy,_, for 0 <i<n <M,
and that

1
=[|DF s || < — —,
K | ‘EQOH Xo(2 + w)3CA0=8)n

Denote
2= ®p(q0), E" =D&, (E") and EI :=D®, oF"(E" ).
Then
L(EY B! ) < xo(14w)CATTIm .,
The n-times truncated reqular neighborhood of py is defined as

u, =o' (U ) Cl,, whee U =B\, 1,,.).

The purpose of truncating a regular neighborhood is to ensure that its iterated images
stay inside regular neighborhoods.

Lemma A.11. [CLPY2, Lemma 6.10] Let —M <m < N and 0 <n < N —m. We
have F*(U} ) C Uy,,,, for 0 <i<n.

Proposition A.12. [CLPY2, Propositions B.5 and B.6] There exists a uniform
constant K = K(||DF||cr,\,e,7) > 1 such that the following result holds. For
—M < m < N and 0 < n < N —m, consider the C"-maps fgm and e, given
in (A.1). Then we have

IDf o+ < KX and || Dej, fler < KA
A.3. C"-estimates. Let g : R — R be a C"-function. The curve
Ly:={(z,g9(x)) x € R}

is the horizontal graph of g. Let H : R? — R? be a C"-diffeomorphism. Suppose that
there exists a C"-function H,(g) : R — R such that H(I'y) = 'y, (5. Then H,(g) and
I, (g) are referred to as the horizontal graph transform of g and I'y by H respectively.

Proposition A.13 (C"-convergence of horizontal graphs). [CLPY2, Proposition 4.5]
Let g : R = R be a C"-map with ||¢'||cr—1 < co. For —M < m < N and 1 < n <
N —m, consider the graph transform g := (F}! ).(g). Then

19" ler-r < CANOM (A + || gl er-1)"

where C'= C(C, A\, e,r) > 1 is a uniform constant.
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For p € R? and u € R, let IS IP’% be the tangent direction at p given by
By = {r(u,1) | r € R}.
Let £ : R? — R be a C"'-map. The direction field
& = (B | p e R?)

is the vertical direction field of €. Let H : R*? — R? be a C"-diffeomorphism. Suppose
that there exists a C" '-map H*(€) : R* — R such that DH (&) = Ep+(¢). Then
H*(&) and Ep+(¢) are referred to as the vertical direction field transform of £ and &
by H respectively.

Proposition A.14 (Backward vertical direction field transform). [CLPY2, Propo-
sition 4.6] There exist uniform constants C.C>1 depending only on C,\,e,r such
that the following holds. Let & : R*> — R be a C" '-map with ||¢||cr—1 < oco. For
—M <m < N and 0 <n < M +m, consider the vertical direction transform

€= (Ep )" (©)lrx(-1,0):
Suppose
CAI(1 4 el ) < 1.
Then
I€llorr < CAL=D 1€l grr.

A.4. Stable and center manifolds. For —M < m < N, define the local vertical
and horizontal manifold at p,, as

Wiee(Pm) = @, ({(0,y) € Up,.})  and  Wigo(pm) := @, ({(2,0) € Uy, })

respectively.

If N = oo, then Proposition implies that £ is the unique direction along
which py is infinitely forward regular. In this case, we denote E" := E} , and refer to
this direction as the strong stable direction at py. Additionally, we define the strong
stable manifold of py as

n—oo

W (o) = {qoemhmsup log lgn — pn||<<1—s>1ogx}.

Theorem A.15 (Canonical strong stable manifold). [CLPY?2, Theorem 6.13] If N =
00, then

WSS U F VVIOC Pn )

Consequently, W*(py) is a C”"“—smooth mamfold.

If M = oo, then Proposition implies that E[,LO is the unique direction along

which py is infinitely backward regular. In this case, we denote Ef = Ego, and refer
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to this direction as the center direction at py. Moreover, we define the (local) center
manifold at py as

We(po) := @, ({(2,0) € Upy}).
Unlike strong stable manifolds, center manifolds are not canonically defined. However,
the following result states that it still has a canonical jet.

Theorem A.16 (Canonical jets of center manifolds). [CLPY2, Theorem 6.16] Sup-
pose M = oo. Let Iy : (—t,t) = U, be a C"-curve parameterized by its arclength
such that Ty(0) = po, and for all n € N, we have

(1—&)n

||DF_n|F6(t)|| <\ = for |t| < )\,
Then Ty has a degree r + 1 tangency with W¢(po) at po.

A.5. Horizontal regularity. We say that p € B is N-times forward horizontally
(L, e, \)-regular along E;“* € IP’?, if, for s € {1,2}, we have

L7I\Hem < _Jac, 7 < LA for 1<n<N. (A.2)
1D, e

Similarly, we say that p is M-times backward horizontally (L,e, \)-reqular along
El~ e P2if, for s € {1,2}, we have

D F—’n — S
Dl
- Jac, F'—™ -
If (A.2) and (A.3) hold with E := E}-* = El~ then p is (M, N)-times horizontally
(L, &, X)-regular along E!.

LI\ LA™ for 1< n< M. (A.3)

Proposition A.17 (Horizontal vs vertical forward regularity). [CLPY2, Proposition
5.2] If p is N-times forward horizontally (L,e, \)-reqular along E)' € P2, then there
exists E,) € IP’?7 such that p is N-times forward (L, &, \)-reqular along E}.

Proposition A.18 (Horizontal vs vertical backward regularity). [CLPYZ2, Proposi-

tion 5.3] Suppose p is M -times backward horizontally (L,e, \)-reqular along Eg € IP’%.
v h h v ; ; ;

Let E) € P2\ A{E}}. If L(E},E}) > 0, then the point p is M-times backward

(L/6%,&,X)-regular along E.

APPENDIX B. CLASSIFICATION OF FIXED POINTS

Let FF : B — F(B) € B be a dissipative diffecomorphism defined on a Jordan
domain B C R2. Suppose that ¢y € B is an isolated fixed point for F', and that
Ao, A+ € Rwith 0 < [A_| < |A\y] are the eigenvalues of D, F. If [A| > 1, then gy has
a well-defined invariant local center manifold W _(go). In this case, we classify ¢ as:

e a saddle with reflection if the branches of W (q0) \ {qo} alternate and are
repelling;

e a saddle with no reflection if both branches of W (qo) \ {q} are fixed and
repelling;
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e a saddle-node if both branches of W _(qo) \ {¢qo} are fixed and one is repelling
while the other is attracting.

The index of qo, denoted Index(qo), is defined as the winding number of the vector
field

Ay F(p) == F(p —x0) — (p — q0),
and can be determined based on the type of ¢y as follows:

e Index(qg) = 1 if qo is a sink or a saddle with reflection;
e Index(qo) = 0 if qp is a saddle-node; or
e Index(qg) = —1 if o is a saddle with no reflection.

Proposition B.1. Let F': B — F(B) € B be a dissipative diffeomorphism defined on
a Jordan domain B C R%. Suppose that there exists an R-periodic Jordan subdomain
B! @ B for some integer R > 2. Then there exists a r-periodic saddle point in B for
some integer r that divides R.

Proof. If F¥ has a non-isolated fixed point ¢y, then gy must have an indifferent eigen-
value, and hence is a type of saddle.

Suppose that all fixed points of F' are isolated. By the classical Lefschetz formula,
when the number of fixed points is finite, the sum of the index of the fixed points in
the disc is equal to 1. Observe that F' has at least one fixed point and one R-periodic
orbit in B. Hence, not all fixed points of F® can be sinks. 0

APPENDIX C. DISTORTION THEOREMS FOR 1D MAPS

In this section, we summarize some of the techniques in 1D dynamical systems used
to control distortion. See [dMvS] for complete details.

Let f: I — f(I) be a C'-diffeomorphism on an interval I C R. For J C I, the
distortion of f on J is defined as

Dis(f,J) := xszlepj n;/gi: .

We denote Dis(f) := Dis(f, ). For K > 1, we say that f has K-bounded distortion
on J it

Dis(f,J) < K.

Clearly, if g : I' — g(I') is another C'-diffeomorphism on an interval I’ O f(.J), then
we have

Dis(g o f,J) < Dis(g, f(J)) - Dis(f, J). (C.1)

Theorem C.1 (Denjoy Lemma). Let f : I — I be a C"-map on an interval I C R.
Then there exists a uniform constant K > 0 such that if f"|; is a diffeomorphism on
a subinterval J C I for some n € N, then

los(Dis(7", 1)) < K 1)
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C.1. Cross Ratios. Let J @ I C R be bounded open intervals. The complement
I'\ J consists of two intervals L and R. The cross-ratio of J in I is given by

_
LI R|
For 7 > 0, we say that I contains a T-scaled neighborhood of J if
L[, [R| > [J].
Let f: I — f(I) be a homeomorphism. The cross-ratio distortion under f of J in

I is given by
CrD(f,1,J) = Cr(f(1). F(J))

Cr(I,J) :

Cr(I,J)
Clearly, if g : f(I) — go f(I) is another homeomorphism, then

For v > 0, we say that f has v-bounded cross-ratio distortion on I if
CrD(f, I',J) > v
for all bounded open intervals J € I' C I.
Lemma C.2. For a > 1, let P, : RT — R™ be an a-power map such that
P,(z)=z“ for xeRT.

Then P,|g+ has negative Schwarzian derivative. Consequently, P,|r+ has 1-bounded
cross-ratio distortion on R.

Lemma C.3. Let I C R be a bounded open interval, and let f : [ — f(I) be a C'-
diffeomorphism with K-bounded distortion on I for some K > 0. Then there exists a
uniform constant v = v(K) > 0 such that f has v-bounded cross-ratio distortion on

I.

Theorem C.4 (Koebe distortion theorem). Let J € I C R be bounded open intervals,
and let f : I — f(I) be a C'-diffeomorphism with v-bounded cross-ratio distortion
on I for some v > 0. If f(I) contains a T-scaled neighborhood of f(J), then there
exists a uniform constant K = K(v,7) > 0 depending only on v and T such that f
has K -bounded distortion on J.

APPENDIX D. COMPOSITIONS OF NEARBY MAPS

Lemma D.1. Let d € N. Consider maps H~O,P~[~0 U =V and H,H, : V — R¢
defined on domains U,V C R?. Suppose Hy, Hy, H, are C"' and H, is C"; and

|H; — Hyllgr1 <6 for i€{0,1}.
Then we have
HHl e} HO - H’l o go”cr—l < 5P(HH1HCT, Hgol‘cr—l),

where P is a two-variable homogeneous polynomial of degree r.
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Proof. Let d; := H; — ]jfl A straightforward computation shows that
Hy o Hy= Hyo (Hy+dy)
= H, o Hy+ O(| DH, o Hy|[||dol|)
— Hy 0 Hy+ dy o Hy 4+ O(||DHy o Hol|||dol)).

The result follows. O
Lemma D.2. [PuSh| (4)] Let F, G be C"-maps such that F oG is well-defined. Then
|1F o Gl < r"[|F|l.[|GII7,

where ||F ||, := || DF||gr-1.

Lemma D.3. [CLPY2, Lemma B.4] Consider a C"-diffeomorphism f : R — R.
Suppose ||f'|] > p for some constant p € (0,1). Then there exists a uniform constant
C =C(r) > 1 such that

I e < Cu =1 flgte

Lemma D.4. Forr > 4, let f : I — f(I) be a C"-map defined on an interval
0 € I C R such that f(0) = 0 = f(0) and f"(0) = k > 0. Then there exists a
C"-diffeomorphism 1y : I — () such that f(x) = k- (¥s(x))?, and ||1/)}t1||cr73 <C
for some uniform constant C = C(||f||cr,k,7) > 0.

Proof. In the proof, let K; > 0 for « € N be uniform constants that depend only on
| fllcr, k and 7.

Write ,
k1 f(x) — 2% = hx) + Z a;x’,
i=3
where h
lim hiz) =0 and ||p") < K.
z—0 7
Consequently, . '
A9 < Kylz|"™" for 0<i<r (D.1)
Define

_ k1f(z) — 2?

Yi(z) =214 g(x) where g(z): v
Let J := {|z| < 1/K3}. Observe that f(z) > 1/K, for € I\ J. Thus, applying
Lemma [D.2] we have

+1
st e < | (yinr) |

Let h(z) := h(z)/2?. We claim that that A% (z) with k < r — 3 is a sum of a
uniform number of terms of the form
h(i)(x)

otk

< Ks.

(D.2)
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for some coefficient ¢ € R independent on f and ¢ < k. Proceeding by induction,
suppose that this is true for k& < r — 3. Differentiating, (D.2]), we obtain

h(i+1)(l‘) . h(i) (I)
cC———— + (2 + k — ’L)Cm.

2 +k—i
The claim follows. Hence, by (D.1]), we conclude that
W (z)], |9¥(2)| < Kslz| for 0<k<r—3.

In particular, ||g],|| < 1.

A simple computation shows that [[¢]s||cr—s < Ks, and [} (x)] > ¢ for z € J,
where ¢ > 0 is an independent constant. Applying Lemma [D.3]to obtain the required
bound for the inverse of v¢, the result follows. O

Let g : I — J be a C*-diffeomorphism between two intervals I, J C R?. Define the
zoom-in operator Zi by
Z(g)(t) = [J|7" - g(l1]t).
Note that Z(g) : [0,1] — [0, 1].

Lemma D.5. [AvdMMal, Lemma 5] Let ¢ : U — ¢(U) be a C"-diffeomorphism
defined on a domain U C R. Then there exists a uniform constant

K = K([[¢ller, 19"/ lco) = 1

such that for any interval I C U, we have
1Z(];) = Id [[er < K|1].

Lemma D.6. [AvdMMal Lemma 6] For 1 < i < n, let ¢; : [0,1] — [0,1] be a
C"-diffeomorphism such that

> ¢ —Id|ler = O(1).
=1

Then
[pno...0di]cr = O(1).
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