QUANTITATIVE PESIN THEORY IN DIMENSION TWO

SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG

ABSTRACT. We develop a measure-independent, quantitative formulation of Pesin
theory. We first quantify the amount of regularity exhibited at each point in the
phase space with a set of explicit inequalities. Then we relate this directly to
the sizes of the regular neighborhoods and the smooth norms of the corresponding
regular charts. As a corollary, we establish the existence of smooth stable and center
manifolds for regular points. This provides us with the technical background for
the renormalization theory of Hénon-like maps developed in [CLPY1], [Y].
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1. INTRODUCTION

In 1970’s, Pesin laid down the foundations for the theory of non-uniformly hyper-
bolic dynamical systems through a series of landmark works [Pell,[Pe2],[Pe3]. The
classical implementation of this technique reveals statistical information about the
system under consideration with respect to a given invariant measure. As such, we
refer to it as measurable Pesin theory.

In this paper, we develop a new quantitative version of this theory. We begin by
formulating the relevant regularity conditions that control dominating and hyper-
bolic features of finite or infinite orbits under consideration (see Definition and
Section . We then relate this directly to the sizes of the regular neighborhoods
and the smooth norms of the corresponding regular charts (see Theorem and

Lemma [6.2)). As a corollary, we obtain invariant curves that approximate the local
1



2 SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG

stable and center manifolds in case of finite-time regularity, and coincide with them
in case of infinite-time regularity (see Theorems and .

The machinery developed in this paper plays an integral role in our subsequent
works on the renormalization theory of dissipative Hénon-like maps [CLPYT], [Y].
In the class of 2D dynamical systems that we consider, each map features a unique
orbit of tangencies between strong-stable and center manifolds. We refer to this orbit
as the critical orbit. Note that the critical orbit is highly atypical, and hence is
unaccounted for by classical measurable Pesin theory. Nonetheless, it turns out that
this single orbit is the primary source of non-linearity for the system, and is chiefly
responsible for shaping its overall dynamics (analogously to the critical orbit of a
unimodal map in 1D). Quantitative Pesin theory provides an adequate language to
analyze and describe how this happens.

Although the aforementioned works are specifically about renormalization, the tools
developed in this paper are quite general. We expect that they will find applications
in other settings as well. In particular, we believe that they will be especially use-
ful in the study of dissipative systems that feature tangencies between stable and
center/unstable manifolds, in the spirit of the work of Benedicks and Carleson [?].
Furthermore, it should be commented that we restrict ourselves to the 2D case mainly
for simplicity. Our quantitative approach should naturally generalize to arbitrary di-
mensions.

2. DERIVATIVES IN PROJECTIVE SPACE

In this section we supply for reader’s convenience some basic calculations for the
first and second derivatives of the projectivization of a smooth two-dimensional map.
We also define the notion of the projective attracting and repelling directions.

For p € R?, denote the projective tangent space at p by ]P’I%. In this section, we
write an element of P? as

E, :={r(cost,sint) |r e R} for teR/27Z.

Let F': Q — F(Q) be a C'-diffeomorphism on a domain 2 C R?. For p € , define
l, : R/21Z — R* and 0, : R/27Z — R/27Z by

L,(t)(cos(0,(t)),sin(0,(t))) :== D,F(cost,sint) for te€R/Z.
For n > 1, the nth projective deriwvative of F at Ezt7 is defined as
OBF(EL) := 05 (¢).
Also define the growth variance of F at p as max; |[,(t)].

Proposition 2.1. We have

Jac, I

GpF(El) = 227
P I DpF gy I?
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Proof. Let vy = (cosa,sina) € IP’% be the direction of maximum expansion for D, F.
Let

p = 91)@‘)-
Denote
_ |cost —sint
t ™ lsint  cost |-
Consider

a 0 1
A= [0 b} — R;'D,FR,.

Note that a > b.
For v = (cost,sint) € P2, write

w = D,F(v) = (lcos(7),lsin(r)).
Observe
I(cos(T — ), sin(T — 3)) = Rz'w = AR 'v = (acos(t — o), bsin(t — a)).
So
tan(r — ) = gtan(t — ). (2.1)

Differentiating, we obtain

dr b (cos(t — ) ziab
o (cmay

cos(t — a) 2

For A C Q, define the eccentricity of F on A as
ccep(F) i= sup || Dy [[[| Dy F .
pEA

Proposition 2.2. The first and second projective derivatives, and the growth variance
of F' on A are uniformly bounded in terms of eccy(F).

Proof. Consider the same set up as in the proof of Proposition 2.1} Clearly,

Differentiating ([2.1]) twice, we obtain
d*t 2b (?TI sin(r — ) cos(t — a) — cos(T — B) sin(t — a))

a2 1 cos?(t — «)

ab b?

_ 2ab(b+1)sin(t —a) b—1
B 4 cos(t —a)’
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If cos(t — a) > k for some uniform constant k& > 0, then we have

&Pt 2a 3
W < Eﬁ < K(QCCA(F>>
for some uniform constant K > 1.

Lastly, recall that

[ = \/(12 cos?(t — a) + b2 sin’(t — a).
Plugging in, and taking limits as ¢ — « 4+ 7/2, we see that
d*r

ar =0

t=atm/2

For the growth variance, we see that

d
1] = sup 44/ cos?(t) + b2 sind 1)

(a® + b*) costsint
= sup
t Va?cos?t+ b?sin’t
_ a® + b?
b

O

Definition 2.3. Let p,e € (0,1); L > 1 and N, M € NU{0,00}. A tangent direction
E, € P2 at a point p € Q is called

e a (L, e, p)-reqular projective attractor for the N-forward iterates of F if
L7+ < 9oDF™(E,) < Lp"™9"  for 0<n < N; (2.2)
e a (L, e, p)-reqular projective repeller for the N -forward iterates of F' if
Ly~ 1=9" < e DF™(E,) < Lp~ 9" for 0<n < N; (2.3)
e a (L, e, p)-reqular projective attractor for the M-backward iterates of F' if
LMo < geDF™(E,) < Lp'™"  for 0<n < M, (2.4)
e a (L, e, p)-reqular projective repeller for the M-backward iterates of F if
Ly =" « 9eDF™(E,) < Lp~ 9" for 0<n< M. (2.5)

3. DYNAMICS IN PROJECTIVE SPACE

Denote the projective space of R? by P2. In this section, we write an element of P?
as

E':={r(cost,sint) | r e R} for teR/27Z.
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3.1. Projective attractor. In this subsection, we consider an orbit with a projective
attracting direction. We construct a transverse projective repelling direction, and
estimate the growth/contraction rate of the derivative of the original map along this
direction.

For 0 <n < N with N € NU {00}, let

an Cn
=[5 7]
be a linear transformation with a,,, b, > 0 and ¢, € R. Suppose ||A!|| < C for some
uniform constant C > 1. For 1 <¢ < N — n, denote

A=Ay Ay
Suppose that there exist constants p,e € (0,1) and L > 1 such that

bo ... by
=l 2 LpttEn for 0 <n < N. (3.1)
ag...Apn—1

L7 < G A (E°) =

Remark 3.1. Condition (3.1]) means that the fixed horizontal direction E° exponen-
tially attracts nearby directions under Aj for n sufficiently large.

Define
(1—e)n

_ p 1o
On = (bo C bn_l)/(ao .. an—l) and Sn o |:0 O'n:| '

Lemma 3.2. For 0 <n < N, we have 1 < 0, < Lp~%", and

A, =81 A, - (S)) = {Gon C%{la”} where  p = p'F.

Lemma 3.3. Consider the genuine vertical cone

V&®w) ={(z,y) | x/y < w} with w:=——.

(W) ==A{(z,9) | 2/ } 0= 7)
Then we have ~

ANV (w)) € V¥ (w).
Consequently, if N = oo, then there exists a unique direction Eq € P? such that
E,=A, 1 ... AO(EO) € V¥ w) forall n>0.
Proof. Observe that
kgrﬁ—W@mﬂ_
Let v = (z,y). Then
ATto = (¢ y) = (a2 = eay/(onpar), y/ (Pan)).

(- 2)
= p—~ - — - —1.
PGy T Y

We compute

l,/

y/
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If
w > |cnl ¢l
p(l = pla, ~ p(1 = plano,’
then it follows that |z/y| > w implies |2/y/| < |x/y|. O

Proposition 3.4. There exists a direction E € P? such that
S EHi
L2p?ny/1+w?  bo...bp

where w > 0 s the uniform constant given in Lemma . If N = oo, then E is
unique.

<Lp™"V1+w? forall 1<n<N,

Proof. If N = o0, let Eq be given by Lemma 3.3 Otherwise, let
EO = (AN—I L Ao)_l(Eﬂ—/2).

Let vy = (20,5) € Eo with 5o = 1, and denote v, = (Zn,yn) = A%(vy). By
Lemma , we have v, € V9 (w) for 0 < n < N. Thus,

[yn| < floall < V14w - [ynl.

Hence,

Al

N P
p(l_‘g)n&g e Qp—q

Observe that )

T

1461 5,1
Moreover,
(1—e)n
=gy . ay :( P )~b...bn,
P 0 Y5\ o b)) (a0 an) ) !
and the term in the bracket is bounded by
(1-e)n
- 14 -2
L 1 S S Lp en.
(bo e bn_l)/((lo Ce an_l)

So,

-1 A7 -

(owTFe) " < 1AL o e
0---Un—-1

The result now follows from Lemma [3.2] O

Remark 3.5. Intuitively, Proposition means that the existence of a “projective
attractor” E° implies the existence of a transverse “projective repeller” E (which is
unique if N = 00).
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3.2. Projective repeller. This subsection is dual to the previous one. Assuming the
existence of a projective repelling direction, we establish that the orbit of any other
direction is asymptotic to a projective attractor, and estimate the corresponding rate
of convergence.

For 0 <n < N with N € NU{oo}, let

a, 0
Sl
be a linear transformation with a,,b, > 0 and ¢, € R. Suppose ||A4,| < C for some

uniform constant C > 1. Additionally, suppose that there exist constants p,e € (0,1)
and L > 1 such that

. apg...ap—1

L—lp—(l—e)n < aPAg(Ew/Q)
by ... b1

< Lp~ 9" for 0<n<N. (32

Remark 3.6. Condition (3.2) means that the fixed vertical direction E™/? exponen-
tially repels nearby directions under Ay for sufficiently large n.

Define

n - pFem

s (bo...bu1)/(ag...an 1) nd & - [frn 0}‘

Lemma 3.7. For 1 <n < N, we have 1 < 6,, < Lp~*", and

& b/p 0

An T Ontl An ’ (Sn)_l = |:Cn/a'n bn:| ) where ﬁ = p1+e.

Proposition 3.8. Consider the genuine horizontal cone

VD) = {(x,y) | y/r <@}  where &= ] P _ . C2.
—p
Then
A (VD)) € VI (w).
Proof. Let v = (z,y). Then

A= (@', y) = (bnx /P, crnx)n + bny).

N Cpn T Y
pll+— = =]
bn0n Yy T

N p |cn| p |cnl
w>— e > — s —

then it follows that |y/z| > @ implies |y//2'| < |y/x|. O

We compute

/
L
l./

If
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1 0
%:[—Tn 1}

be a linear transformation that maps E, := AZ(E°) to E°. Note that |7, < &.
Moreover, we have

For 1 <n <N, let

X bo/ptte 0 2 _
An = [ /g bn] = Tni1 An - (Ta)

Proposition 3.9. Fort € (0,7/2], we have

1

—p E (l—s)n
KL[tP

|t|2p forall 1<n<N,

(143e)n < aPAg(Eﬂﬂ—t) <

where K = K(w) > 1 is a uniform constant.
Proof. Let vy = (9,90) € E™?~* such that ||vg| = 1. Denote
B = ANE™Y and  w, = (2, yn) 1= A (vo) € B
Let 0 < m < N be the largest number such that s, < m/4. Note that
pFIm™ < . (3.3)

A straightforward computation shows that

loa|l < 1bo ... by_q| for n <m. (3.4)
Similarly, we have

Ibo - ...~ bu_i

H/UTL” = p(l-l-a)(n—m) =

First we establish upper bounds. For n < m:

D AG(E®) = 0p(S, - T Af - To - So) (B™)
< KopAL(E™)

< K|t|_2p(1+5)n.
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For n > m:
OpAN(E®) < K6,0p Al (E®)
Jac A2

" lenll?

2(14€)(n—m)

=Ko

p(1+e)n
— K&n‘t|_2p(l+a)n
< KLJt|2pt=om,
Next, we establish lower bounds. For n < m:

1 An s
Ka_ 8IP>140 (E 0)
1
Ke,"
1

> —_
KL

Op AY(E) >
—(14+e)n

(—1+€)n‘

For n > m:
1
Ko,
L p
K@'n p(l-l-a)n
1

(143e)n
> — .
KL

OpAG(E*) > ———0pAj(E™)
2(14+€)(n—m)

~
—~

O

Remark 3.10. Intuitively, Proposition means that the existence of a‘“projective
repeller” E™/? implies that the height of any horizontal cone in the complement con-
tracts exponentially fast.

4. DYNAMICS OF ALMOST LINEAR MAPS

In this section, we consider a bi-infinite sequence of global diffeomorphisms of
R? that are C'-close to diagonal linear maps satisfying domination condition with
strongly attracting vertical direction. Moreover, we assume uniform bounds on the
C"-norms of these maps. Under these circumstances, using the C"-section theorem,
we construct:

e a sequence of invariant C'" horizontal graphs that, in forward time, attracts
exponentially fast in C"-topology any sufficiently horizontal graph; and dually
e a sequence of global C"~! vertical direction fields that, in backward time,

attracts exponentially fast in C"~!-topology any sufficiently vertical direction
field.
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We follow up with C"-bounds for compositions of these maps.

Fix an integer r > 1. Let A\,n,p € (0,1); 0 < p— < py and C > 1 be constants
such that n < X and AMu_ < p. For m € Z, let F,, : (R%0) — (R?0) be a
C"-diffeomorphism such that

a, 0
ppa=[tn 9]

for some a,,, b,, > 0, and the following properties are satisfied:

o u_+n<ap,<pyr—mnandb, <A—mn;
e sup, |DypFr, — DoFy|| < m/2; and
[ ] ”DFm| Ccr-1 < C

For n € N, denote F)! := F,,,1,_10...0F,.

4.1. Applications of C"-Section Theorem. In this section, we formulate some
classical applications of graph transform techniques and C”-section theorem. See [Sh,
Chapters 5 and 6] for more details.

Let g : R — R be a C"-function. The curve

Py :=A{(z,9(x)) € R}

is the horizontal graph of g. For t > 0, we say that I'; is ¢t-horizontal if ||¢'|| < t.
Additionally, I'y is center-aligned if g(0) = 0 and ¢’(0) = 0. The space of center-
aligned ¢-horizontal graphs of C"-functions is denoted &7 (¢). We define a metric on
&;,(t) by

11(2) — ¢2(2)l|

]l

[¢1 — @alls :=sup
z#0

Let H : R? — R? be a C"-diffeomorphism. Suppose that there exists a C”-function
H.(g9) : R — R such that H(I'y) = 'y, (4 € &}. Then H,(g) and 'y, (4 are referred
to as the horizontal graph transform of g and I'y by H respectively.

Proposition 4.1 (Forward horizontal graph transform). Suppose

A

— < 1. 4.1

. (@)
Then there exists a uniform constant w = w(p,n) > 0 with w(p,n) — 0 asn — 0 such
that the following holds for allm € Z. ForT', € &} (w), the horizontal graph transform
(Fin)«(g) is well-defined. Moreover, there exists a unique sequence {I' g+ }rmez C &} (w)
such that Fr,(I'g: ) =T and for T, € &} (t), we have

g:n+1’

n * )\ " *
mexm—%ﬂm<(;)|m_%m for meN.

Additionally, ||(g:,)" ||cr—= < K for some uniform constant K = K(C,\, u_,r) > 0.
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For p € R? and u € R, let Ej € IP’% be the tangent direction at p given by
By = {r(u,1) | r € R}.
Let £ : R? — R be a C"'-map. The direction field
& ={B;Y |p e R’}

is the wvertical direction field of £&. For t > 0, we say that & is t-vertical if ||£]| < t.
The space of t-vertical direction fields of C™~'-maps is denoted DF. ' (¢).

Let H : R? — R? be a C"-diffeomorphism. Suppose that there exists a C™ !-map
H*(§) : R? — R such that DH Y(&) = Exe(e) € DF,, . Then H*(§) and Ep-(e) are
referred to as the vertical direction field transform of £ and & by H respectively.

Proposition 4.2 (Backward vertical direction field transform). Suppose
At < 1 (4.2)

Then there exists a uniform constant w = w(p,n) > 0 with w(p,n) — 0 asn — 0
such that the following holds for all m € Z. For & € DF(w), the vertical direction
field transform (F,,)*(€) is well-defined. Moreover, there exists a unique sequence
{E: Ymez C DT, (w) such that DF, N (Ee.) = E- |, and for & € DF)(w), we have

I(DF, )" (&) = &Ennlleo < (Aug)" I = &pllco for n €N,
Additionally, | D&} ||cr—= < K for some uniform constant K = K(C, A, uy,r) > 0.
Proposition 4.3 (Rectification). Let w € (0,1/2) and K > 0. Consider I'y € &} (w)

and & € DF, ' (w) such that

* 9(0) =0, ||l <w and [|g"||cr—= < K and
o |l¢|| <w and | DE||cr-2 < K.
Then there exists a unique C"'-chart W : (R?,0) — (R?,0) such that
o U(z,g(z)) = (x,0) forx € R; and
o DU(&(p)) = EY

¥(p)’
Moreover, we have |DV¥|cr-2 < C for some uniform constant C = C(K) > 0.

Proof. Define
V(z,y) = (z,y = g(z)). (4.3)
For z = (z,y) € R?, observe that
D.V(£(2),1) = (§(2), 1 = ¢'(x)€(2)).
Define

C(2) = §V_(2)) an z,y):= |z i x
£(z) = = (eV-1(2)) d H(z,y): ( +/U &( ,t)dt,y) ) (4.4)

Then ¥ := H oV gives the desired rectifying map. OJ




12 SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG

Lemma 4.4. For m € Z, let ¥, be the chart given by Proposition[{.3, where g and
¢ are taken to be gy, and &, given by Propositions and respectively. Then
F,:=Y,,0F,o(V,)"" is of the form

Fon(,y) = (fm(2),8n(w,y))  for (z,y) € R
Moreover, we have |07 é,,(x,y)| < K|y| fory € R, where K = K(C, \, pia,7) > 0 is

a uniform constant.

Proof. The first claim is obvious.
Write ¥,, = H,, o V,,,, where V,,, and H,, are given by (4.3) and (4.4]) respectively.
Let

Fm(may) = (fm($)7ém(xay)) =V5noFyo (Vm)_l(x,y).

Then F,, is a C"-diffeomorphism with ||Fm||cr < K for some uniform constant K =

A

K(C, p-). It follows immediately that for 0 < s < r, we have
|036m (- )| < Kyl for yeR,
The first component of H,, is given by

y .
o) = ) = 2+ [l )it

with |[&n||cr—1 < C for some uniform constant C' = C(C) > 0. Hence, for 2 < s < r,
we have

|05hmy| < Cly]  for yeR.
Observe that
Em (2, y) = em(hpy (1)),
The bound on |9.7€,,(+, y)| follows. O

4.2. C"-convergence under graph transform. Suppose that F,, for m € Z is of
the form

Fou(2,y) = (fm(2),em(2,y))  for (z,y) € R?

where f,, : R — R is a C"-diffeomorphism, and e,, : R? — R is a C"-map such that
for all 0 < s < r, we have

0zem(y)| <Cly| for yeR. (4.5)
Clearly, we have
po < fi(x) <py and  Oyen(z,y) <A< 1.

Let 0 < 1 and o > 1 be constants such that o < p_ and 0 > py. Forn € N,
denote

F*=(f"e"):=F, 10...0F.
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Proposition 4.5 (Convergence of horizontal graphs). Let ¢ : R — R be a C"-
map with ||¢'||cr-1 < oo. For m € Z and n € N, consider the graph transform
g :=(F").(g). Then

(2r—1)n
~ g n T
e <€ (Z) A llo)

where C'= C(C, 04, A\, 1) > 1 is a uniform constant.
Proof. Observe that

g(a) = e"(u,g(u))  where w:=(f")"'(x).
The result follows from Propositions [B.4], [B.5| and [B.6] O

Proposition 4.6 (Convergence of vertical direction fields). There ezist uniform con-
stants C,C > 1 depending only on C,o.,\,r such that the following holds. Let
£:R? = R be a C" omap with ||€]|cr—1 < 0o. Form € Z and n € N, consider the
vertical direction transform

€= (F")"(&)lrx(-10)-
Suppose
Com A" (1 + €]lgr) < o™
Then

_ ~ 0'3_ (r—1)n
o < (Z) Nl

Proof. A straightforward computation shows that

e 5.8246” o n—1
5_(axfn—£-axen) E

Denote
¢ =& 04" and =0, f" =& Oye".
Then we can write )
E=¢-(1/1h)o F"1.
In the following discussion, C; with i € N denotes a uniform constant. By Lemma|[B.2|
and Proposition [B.6], we have

||¢||Cr71 < Olo-:_nAanHCrfl.
Similarly, Proposition implies
|[V|ler—1 < Coo™t + CLa " X|€||or-1 < Co™t.
Additionally, ¢ (z,y) > ¢" /2 for all x € R and y € (—1,1). Lastly,
IDF™ Y cr2 < Coo ™ + Croy DI\ < 040,
The result now follows from Lemmas [B.1], [B.2] and [B.3] O
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5. DEFINITIONS OF REGULARITY
Consider a C'-diffeomorphism F : Q — F(Q) defined on a domain Q2 C R?. Let

A p,e € (0,1); L >1and NM € NU{0,00}. A point p € Q is N-times forward
(L, &, \, p)o-regular along E)™" € ]P’fg if, for all 1 < n < N, we have

LTI < | DF™ s || < AU (5.1)
e |DF" s |
DFn v,+
L—l (1+e)n < —Ep < (l—a)n. 5.2
p - Jac, [ = &P ( )

Similarly, p is M-times backward (L,e, X, p),-reqular along E)— € ]P’ZZ) if, for all 1 <
n < M, we have

L—l)\(l-i-a)n < HDF_n’E;**”_l < L)\(l—s)n (53)
and
Jac, F~"
Lt (I+e)n < P < Lp(l_a)n. (54)
[DE="] o[

If all four conditions - hold with E := EX* = E»~, then pis (M, N)-times
(L,e, \, p)y-regular along E}. Tf, additionally, we have M = N = oo, then p is Pesin
(L,&, A, p)o-regular along E .

We say that p is N-times forward (L,e, A, p)n-reqular along E;}’Jr € IP’IZJ if, for all
1 <n < N, we have
Jacy, F™"

L—l)\(l-i-a)n <t P- < L)\(l—a)n (55)
1D, F
and Jac 7
L—lp(1+€)n < L S Lp(l—s)n (56)
1D, [ TP

Similarly, we say that p is M-times backward (L,e, A, p)n-reqular along E;}’_ € IP’Z if,
for all 1 <n < M, we have

D F~ " -
LIN\OFom < M < LA1=em (5.7)
Jac, ="
and )
D, F~™| -
Lflp(lJrs)n < H p |Ep H < Lp(lfs)n. (58)

- Jac, F'=" -

If all four conditions - hold with E}' := E"* = E}»~, then p is (M, N)-

times (L, e, A, p)p-reqular along EI’}. If, additionally, we have M = N = oo, then p is
Pesin (L, e, A, p)p-reqular along E;}.

In the above definitions, the letters v and h stand for “vertical” and “horizontal.”

The constants L, €, and A and p are referred to as an irregularity factor, a marginal
exponent and contraction bases respectively. Henceforth, once the contraction bases
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are introduced and fixed, we will sometimes write “(L,¢e, A, p)y/p-regular” as simply
“(L,€)y/n-regular”.

Remark 5.1. Note that if p is (M, N)-times (L, ¢, A, p),-regular along E7, then E}
is a (L, e, p)-regular projective repeller and attractor for the N-forward iterates and
M-backward iterates of F' respectively. Similarly, if p is (M, N)-times (L,&, \, p)p-
regular along EI}L then Eg is a (L,e, p)-regular projective attractor and repeller for
the N-forward iterates and M-backward iterates of F' respectively.

Proposition 5.2 (Vertical forward regularity = horizontal forward regularity). There
exists a uniform constant K = K(p, || F|lc1) > 1 such that the following holds. Sup-
pose p is N-times forward (L,e),-reqular along EY € P2. Let E! € P2\ {E’}. If
L(Ey, E;;) > 0, then the point p is N-times forward (Ly,e1)p-reqular along E{;, where

Li:=KL*/0*> and ¢, :=(3+2log, pe.

Conversely, if p is N-times forward (L, €),-regular along Eg € ]P’I%, then there exists
E; € IP’IQ) such that p is N-times forward (L, €2),-reqular along EY, where

Ly:=KL* and e5:=(1+2log, p)e.

Proof. Suppose that p is vertically regular along Ej. For 1 < n < N, let A, :=
DpnpyF and E*0 := E]?, and define A,, as in Subsection . We use the same set up

as in the proof of Proposition [3.9, Then
Jac, F™ Jac A} bo ... bn1|?

IDE gl G Gaptom [ AG ()7

where v € E with v = 1.
We first establish upper bounds. For n < m:

JacAg K|b0...bn_1|2

[AG @) pFem v
Kby bas]
- p(l—i-a)n

< —lb() .. -bn—1|-

For n > m:

JaCAg K|bobn_1|
145 (0) plitem

= —|b0...bn_1|.
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Next, we establish lower bounds. For n < m:
Jac An |b0 n 1|2
145 ()l ngp (v, |

oo b
- K;,2 (1+e)n

For n > m:
JacAg |b0...bn_1|
A5 ()|~ Kappttem

> 2€n|b0...bn_1|.

K2’
The horizontal projective regularity is given in Proposition |3.9|
Suppose that p is horizontally regular along Eg. The claimed vertical regularity of
p along some direction £ follows immediately from Proposition . U

Proposition 5.3 (Horizontal backward regularity = vertical backward regularity).
There exists a uniform constant K = K(p,||F||c1) > 1 such that the following holds.
Suppose p is M-times backward (L,<),-reqular along E}' € P2. Let EV € P2\ {E!}.
If K(ES,E;) > 0, then the point p is M-times backward (Ly,€1),-reqular along E,
where
Li:=KL*/0*> and ¢, :=(3+2log,pe.

Conversely, if p is M-times backward (L,€),-regular along E} € lP’Z, then there

exists Eg € IP’IQ) such that p is M-times backward (Lq,2),-regular along E]};, where

Ly:=KL* and ¢&5:=(1+2log,p)e.

Proposition 5.4 (Pesin regularity = vertical forward regularity + horizontal back-
ward regularity + transversality). Suppose p is N-times forward (L, €),-regular along
E! € P2 and M-times backward (L, e)p-regular along E} € P2 with 0 := £L(E!, E") >
0. Let £ > 1 be the minimum value such that p is (M, N)-times (L, €),-reqular along
EY and (L, &),-reqular along E". Then we have L™'67% < £ < LO~%, where

L:=KL, L:=KL> and ¢&:=(3+2log,p)e
for some uniform constant K = K(p, ||F||c1) > 1.

Proof. The upper bound follows immediately from Propositions and The
lower bound follows from Proposition |3.9| O

Suppose py € A is (M, N)-times (L, ¢),/p-regular along E;’O/h € P2. For —M <
m < N, denote

Pm = F"(po) and EY":=D, F"(E/").
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Define the irregularity of p,, as the smallest value £, > 1 such that p,, is (M +
m, N —m)-times (L,,.,€),/n-regular along B

Proposition 5.5 (Growth in irregularity). Let A := min{\, p}. Then
L, < L2\l for — M <m < N.
Proof. Denote

Jac,, I
bi :=||D,.Flg: || and a; = —2—r0.
p P ||DPiF|E;’i||

For 0 <m < N and 0 <n < N —m, we have
L—l)\(l—i—&)(m-{—n) < bO o bm+n—1 < L)\(l—a)(m-&-n).
Since
L=\ < by < LA™
it follows that
L—Q)\—Zam)\(l-i-a)n < bm o bm+n—1 < L2)\—2am)\(1—a)n.
For 0 < k < m, we conclude immediately that
L—Q)\Qak)\(l-i-a)(m—k) < bk o bm—l < L2>\—22kz)\(1—a)(m—kz)‘
Lastly, for 0 < [ < M, we have
LA LA™ < p by by by < LAV LA™,
Similar computations imply analogous bounds for

by ... bmin_1 R S b_;...b_1-by... by
and

s .
agp . ..Am4n—1 Am - - - Am4n—1 A_;...Q_1"-09...Qm_1

Thus, the claim holds for 0 < m < N.
The proof in the case —M < m < 0 is nearly identical, and will be omitted. O

6. LINEARIZATION ALONG REGULAR ORBITS

Let r > 1 be an integer, and consider a C""!-diffeomorphism F : Q — F(Q) € Q
defined on a domain  C R?. Suppose a point py € Q is (M, N)-times (L, &, A, p),-
regular along E € IP)IQJO for some A\, p,e € (0,1); M,N,€ NU{oo} and L > 1. We
impose the following condition on the contraction bases and marginal exponent:

p(r+1)—€(r+3) )\(1—5)(7"—&-1)



18 SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG

6.1. Construction of regular charts. For [ > 0, denote
B(l) := (—1,1) x (=1,1) C R%.

For p € R?, let B3, Egh € P? be the genuine vertical and horizontal tangent directions
at p.

Theorem 6.1. Suppose that (6.1)) holds. Then there exists a uniform constant
C=C(DFler, A7) 21
such that the following holds. For —M < m < N, let

pl—e B L3p—25)\1—e||DF—1||(1 +w)5

p4€\m\)\2s|m|
Define
L = MCK)™t and U, :=B(l,,),
where X := X\'5(1 — \°). Then there exists a C"-chart ®,, : (Up, D) — (U, 0) such
that D®,,(Ey ) = Ef",

D@ orr < C(1+w),  [|DPy|
and the map @10 F|y, o @1 extends to a globally defined C"-diffeomorphism F,, :
(R%,0) — (R?,0) satisfying the following properties:

i) |DFgllcrr < [[DFler

CS<C'IC;:H for 0<s<r,

ii) we have
Oy 0
Polin = [ 0 ﬁml ’
where
)\1_5771 )\1—&‘7”
Q= == and By, = e with &, := sign(m) - €.

iii) || D,Fy — DoFpllco < A for z € R?;
iv) we have
Fu(z,y) = (fm(x),em(z,y))  for (z,y) € R,
where fr, : (R,0) — (R,0) is a C"-diffeomorphism, and e,, : R* — R is a C"-map
such that for all 0 < s < r, we have

Ozep,, (v y) < |DFlerlyl - for yeR.
Proof. Set

For n > 1, define
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For —M <m < N, let

m

S, = {U(’)” 0 ] and A, := il s A - ST
The following properties can be checked by straightforward computations:
© 0,.1/0, =A"/b, and 0_,, 41 /0, = N /b
e 1< |0, < LA=EM: and
e we have
~ M~¢a, /b, 0 = [Aea, /b, 0
An - |:)\1€Cn/bn )\15:| and A—n - >\1+Ec—n/b—n /\1+s
Define
bo...bp_1 . p(lfs)"a_n R ]
T 1= d =
on p(1+5)”a0 R 0 A | at d b—n c. b_1
For —M <m < N, let

S = {Uén g] and A, = Spy1- A - ST

The following properties can be checked by straightforward computations:

® Gpi1/0n = bn/(p1+€an) and 641/ = bfn/(Pl_gafn)Q
o 1< |G| < Lp~2Im;

e we have
- Al—a/pl-i-a 0 R B )\1+a/p1—a 0
An - [ én /\175 and A—n - é—n /\1+s ’
where X
Fe
Cap = A Acin; and (6.2)
bino—in

o [Cn| < AF[DEH| - ||IDFY|.
Define

i —2eml g S
—|P o -1
S, = [ 0 p—25|m|} and A, =Sni1-An-S,, .

Then

)\1+€/p1—36 0

A _ )\l_e/p1+3€ 0 / ‘
n p2€C,n )\1+5p25

p—QEén )\l—sp—25:| and A—n =

By Proposition there exists a genuine horizontal cone V9"(w) with

1—¢
p _
Wi IDE=H| - |DF|| (6.3)

such that
A, (V"(w)) € V9 (w),
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If M = oo, then by Proposition (note that the genuine vertical direction E™/? is a
projective attractor for {A_,,}°2 ), there exists a unique direction E,, € V9" (w) such

~

that A,,(E,) = Epgr. If M < oo, define
B = Apy ... - A_y(E°) € VI'(w),

where E° is the genuine horizontal direction. Define

A

—Tm 1

as the unique matrix such that 7,,(E,,) = E°. Note that |7,| < w.
Let § -
Am = Tm+1 . Am . Tn,zl

Then
T Al—s/pl—&—?)e 0 g _ )\1+5/p1—35 0
An - 0 )\l—sp—Qs and A—n - 0 )\1+€p26 :
Let - A
Zyn i =k-T,08,08,08,0C, (6.4)
where
k= Lp A DF7Y|(1 + w)?, (6.5)
and C,, is the translation and rotation of R? so that C,,(E; / ) = Ep . Define
Fm = m+1oF‘UmOZn;17

where U, is a sufficiently small neighborhood of p,, to be specified later. Observe
that DyF,, = A,,. We claim that for any partial derivative & of order li| = s with
2 <s<r+1, wehave |[0°F,| < ||0°F|.

First, an elementary computation shows that

10" Fr

2s
W o o ooy 1 =T "
Write
Congr 0 F o Cul(w,9) = (fm(2,y), gm (. 9)).
Denote
fon = ﬂhoﬁiloFmon and g, := WUOTn:_il_loFmona
where
m(z,y) :=x and m,(z,y) :=y.
Then
y KO mai10ma1 pxEImlz prElmly
Jm(@,y) = - pelmtal (/wm&m’ KOm )
and
v P prelmly p2eimly
Gm(2,y) = p2elm+1] " m (/{am@n’ KO, ) '
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Taking a partial derivative of order |i| = s with 2 < s < r + 1, we have

. KOmt10m ° ;
0] < 0 (” )-uafmn

p2s|m+1| KO
1 Om+1 ml i
~ ( + ) (1) - 5 Fol

2e|m|

- p28ﬁ5_1 Om
1 - - i
< e N DE L [0

< (1+w) V0 fi -

By , the claimed bound on the higher order partial derivatives of F,, follows.
Let
U, = BOIFIG)).
Then } ) }
sup | D EFplg, — Anll < A (6.7)

Extend F,|; to a globally defined C"*!-diffeomorphism F}, : (R?,0) — (R?,0) such
that

. Fm|Um = F,,; and

° Fm|R2\Um = Am, where U, is a suitable neighborhood of U,,.
Additionally, define E,, for m € Z\ [-M, N] by

. Pép 2] |

Then the sequence {E, }mez satisfies the conditions in Appendix
Thus, the conditions given in (6.1]), together with Propositions and imply

that there exist unique sequences of horizontal graphs {I'g- },,cz and vertical direction
fields {&¢ }mez that are invariant under {F}mez. Applying Proposition E, we
obtain a sequence of C"-charts
{T 1 (R?,0) = (R%,0)}nez
such that || DWV,,|cr—1 < C, and the map
Fp =0k, 00!

is of the form given in iii).
Finally,
®,, =V, 0 2, (6.8)

gives the desired chart. U

The construction in Theorem is referred to as a linearization of F' along the
(M, N)-orbit of po with vertical direction E; . For —M < m < N, we refer to Iy,
U, ,, and F,, as a reqular radius, a reqular neighborhood, a reqular chart and a
linearized map at p,, respectively.
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For p € R? and ¢ > 0, let
D, (t) == {llg — pll < t}.
Lemma 6.2. For —M < m < N, we have

A
>y, (s )
where X € (0,1) and C,K,, > 1 are given in Theorem .

Proof. The result follows immediately from the fact that U, := B(AC~'K;!) and
DB || < ClCom. 0

For —M <m < N and q € Uy, write z := ®,,(q). The vertical/horizontal direction

at q in Uy, is defined as /" := D®-1(ES"/%"). By the construction of regular charts
in Theorem vertical directions are invariant under F* (ie. DF(Ey) = E},, for

q € Uy,). Note that the same is not true for horizontal directions.

Lemma 6.3. Define

)\1:;:25
di =

. 1F2e
and fq = A

For =M <m < N and z € R?, we have
a <|fl(2)l <ay and [ <|9yem(z)| < By
Proof. By a straightforward computation, we can check that
AT N> A and ATE4 N < AT

The result is now an immediate consequence of Theorem [6.1]ii) and iii). O
For 0 <n < N —m, denote
Eo(z,y) = (fu(e), e (2, y) = Fy 000 Fn(,y). (6.9)

Proposition 6.4. For —M < m < N and 0 < n < N — m, consider the C"-
diffeomorphism F)' given in . Let z = (z,y) € Up,, and suppose that

zi = (23, 4) = F'(2) € Upyy  for 0<i<n.

Denote ) 0
no_ . o (2
Delin = [%(z) ﬁ;@(z)]
Define
- 2n\ - A
lp = sgp oK. <oo and I[,:= CRo(1 = p A%
and

| Fllc b b
Kp 1= exXp (/\1+25—/p1—3a and K, = exp NET P + N2 e [Fllcz ) -
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Then
kn — ap(0) ko~ BR(0)
Additionally, we have
n—1
el < LB, where 1, = o
i=0

Proof. Observe that

n—1
> il <.
1=0

We compute

n -1
1Og (((L]}n > ‘ Z ‘IOg fm+z Il IOg fr,n+z(0) ’
=0

n—1 x| g
i—o \J0 mi()
|| Flle2

— )\1+25/p1+€’

since | f! (z)] > A17%/p!* for all —-M < m < N.
Similarly, we have

—_

dyen, (o, 0 -
‘log (M) ‘ = |10g ayem-i-i(xh 0) - log ayem-i-i(oa O)'

oyen,(0,0)
L

|| Fllc2
— /\1+25/p1—35’

@
Il
)

3

<

™

A

axayem-i-i (337 O) d?lf)
ayem-i-i (1'7 0)

(2

since |Qyen (@, y)| > A2 /p! =3 for all =M < m < N.
Comparing 9yel (o, yo) to dyelr (xg,0), we first observe that

n—1 n—1
Z ‘Z/z| < XCflKal prki)\(lfk)i < [v-
i=0 i=0
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Thus,

dyen (o, yo) _ —
IOg (m — Z |10ga em-&-z(q;zayz) loga em—i—z(l‘zu O)’

=0
[ [V | Pemii(z,y)

< y ‘dy>
; (/0 ayem—i-i(xa y)
LIl o2

S )\1’+2€”p025

Since Y, (+,0) = 0, we have

Y ()| < [[Ell 21yl
Denote 2, = (zn, yn) := F(2). By Lemma[6.3]| we see that

lyal < B2 yol < BEIACTIK,

Arguing by induction, we see that

I (2)] < B (Z )X/le-

U

Proposition 6.5. For —M < m < N and q € U,,, we have

[ D@y o |
V3 = D8l < V2
Proof. Recall that ®,, := ¥, o Z,,, and diam(U,,) < ||¥,,]|c2 - |22}, Denote
z:=®,(q) and Z:=V_ '(2);
and
7o = DY (B, B =Dz Y BV and BV = Dz Y (B
We see that
LB B L (B B < w4,
The result follows immediately. O

Corollary 6.6. For some —M < my < N, let ¢, € Up,. Suppose for mg < m <
m1 < N, we have q,, € U,,. Let

Ep = DF™ ™ (B ).

qm

Then for mg < m' < my, we have

1 IDE™ =g || 1| DF™="p |
§ - <2kp, and — < - m— < 2Ky,
D= I, = [DF, |

where Ky, and K, are constants given in Proposition [6.4)
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Proof. Denote
Zm = Olgn) and  EE = D, (E ).
By the bound on ||7/%|| given in Proposition [6.4] we see that
Pl h Ah b
LB BT, LB, B, ) <T/4
The result now follows from Propositions [6.4] and [6.5] O

Lemma 6.7. Consider a matriz of the form

[

for some T € R. Then ||T|| < || + 2.

Proof. Let v = (z,y) be a unit vector. Observe
ITo|* = 2* + (r2 +y)?
<1+ (7| +1)?
< (I +2)*
[

Proposition 6.8 (Vertical alignment of forward contracting directions). Consider the
constants C,w in Theorem and Ky, tn Proposition . Let qo € Uy and E € Pgo.
Suppose q; € U; for 0 < i <n < N, and that

)\(1+4€)n
k(2 + w)3C2L2p(—Tom
Denote zy := ®o(qo) and E;’O = DCIDO(E};O). Then

/fh(l + w)c2L2p(177€)n
\(1+4e)n v

v:=|DF"z | <
a0

20 20

2B ) <

Proof. Suppose towards a contradiction that for u = (1,¢) € E;JO, we have t < 2(14w).
Using Lemma [6.3] and Corollary [6.6], a straightforward computation shows that

. o
IDES 5o | > Tan(w 1 2)
Following the construction in Theorem we see that ®,, := V,, o Z,,, where Z,,
is given in and || DV, ||cr-1 < C. In particular, we have Z; = k7 o Cy, and
kCL*(1 + w)

HD(I)mH < p4sn)\25n

Applying Lemma [6.7], we have

)\(1+45)n
4,%(2 + w)3c2L2p(1—7a)n'
Absorbing the constant 4 into C, this is a contradiction.

v > D7 1 | g [ 1D >
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Suppose that we have v = (¢,1) € E”ZJO with ¢ < 1/(2w + 2). Then
L(E) EY)=<t and 1D 2ol || < 1.

Moreover,
at

2\/§h

Hence, a straightforward computation shows that

IDEG | o || > 57—

)\(1+4€)nt
(L + ) G20

v >

O

Proposition 6.9 (Horizontal alignment of backward neutral directions). Consider
the constants C,w in Theorem and k, in Proposition [6.4. Let qo € Uy and
EZ]O € IP’EO. Suppose q_; € U_; for 0 <i<n < M, and that

6en
W= ||DF_n|E};O I < Ko(2 1 w)yl,OCQLz)\(l—4a)n'
Denote
2= Qo(qo), E- :=DOy(EL) and E =D& oF"(E! ).
Then

272 (1—4e)n
L(E Eh) (/ﬁ:v(1+w)CL)\ >'N-

q0° 6en
p

6.2. Special domains inside regular neighborhoods. For w,l > 0, denote
B(w,l) = (—w,w) x (—1,1) CR* and B(I) :=B(l1).
For —M < m < N, recall that U,, := B(l,,), where [,, is the regular radius given in

Theorem [6.1]
Suppose that

)\1—4&
= <1 (6.10)
Let
ey = max{l,at'}, (6.11)

where @4 are given in Lemma [6.3] For 0 < n, < N —mand 0 < n_ < M + m,
denote
ky := max{|m|, |m £ ny|}.
The ny-times forward/backward truncated regular neighborhood of py is defined as
Ur® = o, (UL*) CU,, where Uy =B (ex"lp,, L) -

The purpose of truncating a regular neighborhood is to ensure that its iterated
images stay inside regular neighborhoods.
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Lemma 6.10. Let —M <m < N and 0 <n < N —m. We have F'(UYT) C Uy,
for 0 <i<n.

For w > 1 and a > 0, define
Ty (a) == A{(z,y) € Uo | ly| < alz|*}.
We refer to
T5(a) == @5 (T (a) C Uo

as a w-pinched reqular neighborhood (of dilation a) at py. Note that py & T¢(a). For
n > 0, we also denote

Ty " (a) :==T5 (a) NUS™
and
To"" (a) := @5 (T (a)) = Tg’(a) N U™,

If the dilation a is not indicated, it is assumed to be equal to 1: e.g. Ty’ := T3°(1).
The purpose of pinching a regular neighborhood is to ensure that its iterated preim-
ages stay inside regular neighborhoods.

Lemma 6.11. Let 0 <n < M. If

log (>\1+4sp65)
10g (/\1+4e/p1—76> ’

then F~(T3"") CU_; for 0 <i<mn.

Proof. By Lemma [6.3] we see that
) o Bl L) T
U

Lemma 6.12. Forqy € Uy \{po}, let n € N be the largest number such that qo € Uy~ .
If ¢_n €U_,, then qo € Ty""(C), where

log(\'=*/p*)  log(Ap™)
w = max ,
log()\25p45) log(/\1+4€/p1775)

and

1 (1-Te)w
C = max{ P } .

/\25wp45wl81—1’ )\(1+46)wl(c)0—1
Proof. Denote zg = (x, %) := Po(q0). We have
ei("H)lnH < |zo| < e,

Moreover, by Lemma we see that |yo| < lnB_’ﬁ A straightforward computation
shows that |y| < Clxo|”. O
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6.3. Stable manifolds. For —M < m < N, define the local vertical and horizontal
manifold at p,, as

Wioe(Pm) = @, ({(0,9) € Un}) and  Wiee(pm) = ;' ({(2,0) € Un})

respectively.

If N = oo, then Proposition 3.9/implies that E is the unique direction along which
po is infinitely forward regular (see Remark . In this case, we denote EJ° := EJ |,
and refer to this direction as the strong stable direction at py. Additionally, we define

the strong stable manifold of py as

W*(py) := {qo € Q| limsup — log||qn pall < (1 —¢) log)\}.

n—oo

Theorem 6.13 (Canonical strong stable manifold). Suppose

1 8 \4 1 At
ANTEPTANT and N < = (6.12)
If N = o0, then
WSS U F VVloc Pn )

Consequently, W**(py) is a C’T“—smooth manifold.

Proof. Clearly, W .(po) C W*(py). Let qo € W**(py). By the first inequality in
and Lemma , we see that ¢, € U, for all n sufficiently large. Denote
Zn = Dp(gn). We see by the first inequality in and Lemma that either
qn € W2.(pn), or g, € T¥(l,,C), where w > 1, and C' > 0 is a uniform constant.
Thus, z, converges to 0 tangentially along the horizontal direction. However, by
Theorem and Proposition we have

. )\1_5 e )\1+8
llrfglofolf H IOg HQn - an > IOg (p1+3€ P A ) - log (,016) .

This contradicts the second inequality in (6.12)). O

6.4. Neutral direction. If p = A, then instead of “(L, ¢, A, A),/p-regular”, we simply
write “(L, e, A),/p-regular.” Suppose that po is (M, N)-times (L, e, \),-regular along
EY .
Proposition 6.14 (Jacobian bounds). We have

L3 )\(+3e)n < Jacy, F" < L3\0=3e)n for 1<n<N,

and
L3N8 < Jac, Fn < LA~ for 1 <n < M.
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Proposition 6.15 (Derivative bounds). Let C' > 1 and w > 0 be the constants given
in Theorem . Then for E,, € P2, we have
/\(1+35)n x4
mSHDF |Ep0H§C<1+w))\ fOT’ 1§TL§N,
and
o IDFE"|p, || < C(1+w)?PA U for 1<n<M
CL2(1 +w)? ~ Froll = ==

Proof. We prove the inequalities for the forward direction. The proof of the backward
direction is similar.
Decompose F™ = &1 o FJ' o ®. Let

k= Lp 2 A DF V(14 w)
By (6.4), and Theorem [6.1]ii), we see that |DEy|| < A™*",
|D®|| < Ck and ||D®}| <k 'C(1+w).

After replacing C' by C?, the upper bound follows. For the lower bound, we similarly
observe that ||DF6L|E%(Z)O)|| > \(1=3e)n

K
Do >———— and |D9, < K(1+w)CLAA %"
D%l | > gy mmd D%, | < w(1+)

By uniformly increasing C' if necessary, the lower bound also follows. U

If M = oo, then Proposition implies that E;‘O is the unique direction along
which pg is infinitely backward regular (see Remark . In this case, we denote
E; = EJ’;O, and refer to this direction as the center direction at py. Moreover, we
define the (local) center manifold at py as

We(po) := 05" ({(2,0) € Up}).

Unlike strong stable manifolds, center manifolds are not canonically defined. However,
the following result states that it still has a canonical jet.

Theorem 6.16 (Canonical jets of center manifolds). Suppose M = oo. Let Iy :
(—t,t) = Uy be a C™-curve parameterized by its arclength such that To(0) = po, and
for all n € N, we have

IDF™ eyl <A™ for  [t] < AMEm,

where

r 14+ 9¢
= (1+2 1-— . — 2¢e.
ve=+ 5)( r+ 1 1—5> c

Then Ty has a degree r + 1 tangency with W¢(po) at po.
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Proof. Let Ny be a sufficiently small neighborhood of pg, and denote o := ®o(T'oNNG).
If T'y does not have a degree r+1 tangency with W¢(pg) at po, then there exists ag # 0
and [y € (0, 1) such that
Yo = {(z, apz™) | x| < lo}.
Let 29 = (z0,Y0) € 70 NUy"~. This means
|ZE0| < Gﬁl_n — /\5571)\6671 — )\llen'

Denote z_, = (#_pn,y_n) := (F™,) ! (20). By Theorem [6.1]ii), we see that

Yon < )\7(1+35)ny0.
Since z_, e U_, ify_, < l_,, we conclude that z_,, € U_,, if

T < )\(1+35)n/\66n _ )\(1+9€)n‘
Let E., € P be the tangent direction to vy at z. Denote
E. ,:=D(F") " (E,) and t_,:=4(E._ E").

Z—n?) Tz

Note that ty = (r + 1)agz}y. Again, by Theorem [6.1]ii), we have ¢t_,, > A~(079)"¢,. Set
1o = A1) “and let 0 < ng < n be the smallest number such that t_,, > 1. By a
straightforward computation, we conclude that
o 1+ 9¢
Tr+l 1-c¢

Denote qo := ®;'(20) and E,, := D®;'(E.,). Using Theorem [6.1] and Propositions
and [6.5] we obtain

IDFE™" |, | > 1D - I DF2E) e, | IDCE,) e, |

—n+ng —ng

N n.

> )\6571 . )\—(1+2a)(n—no) . /\—48
=A™

7. HOMOGENEITY

Let 7 > 2 be an integer, and consider a C""!-diffeomorphism F : Q — F(Q) € Q
defined on a domain Q0 € R?. Suppose that A €  is a compact totally invariant set
for F' not equal to the orbit of a periodic sink. For A\,n € (0,1), we say that F is
(1, A)-homogeneous on A if for all p € A and E, € P, we have:

i) A < ||D,Fg, || <A77 and

i) A < Jac, F < A7

Proposition 7.1. Suppose F|p has a unique invariant probability measure p, and
that with respect to u, the Lyapunov exponents of F|n are log\ < 0 and 0. Then
for any n > 0, there exists N = N(n) € N such that if n > N, then the map F™ is
(n, A)-homogeneous on A.
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Proof. For all p € A, we have
n—1

1 1 n—oo
—log (Jac, F"") = — Zlog (Jacpi(y) F) e /log (Jac F) dp = log A.
n n
=0
This implies that for n; > 0, there exists N € N such that for all n > N, we have

1
‘—log (Jac, F™) —log A| < ny.
n

Thus,
()\n)l-i-ﬁl/log)\ < Jan n < ()\n)l—m/log)\‘

Since the largest Lyapunov exponent of F|, is 0, for 7y > 0, there exists M € N
such that for all m > M, we have

1
—/10g||DFdeu < 1.
m

For all p € A, we have

n—1
1 I 1 | -
ﬁlogHDpF | < - E (ElogHDFi(p)F ||> — E/logHDF || d e

i=0
Thus, there exists N’ € N such that for all n > N’, we have
D, < e = (e

Lastly, let
kn := min [[DF"|g,|.
pEP2
Then
Jac, F" = k|| D,F™||.
The result follows. ]

Suppose that F' is (9, A\)-homogeneous on A. Let C,D > 1 be sufficiently large
uniform constants independent of F'. Let 0 < ¢ < n < 1 be sufficiently small constants
such that

i:=Cn"P <e and £:=CeVP < 1.

Homogeneity considerably simplifies the regularity conditions given in Section ?7?.
Let N, M € NU{0,00} and L > 1. Then a point p € A is:

o N-times forward (L, e, A, A),-regular along E} € P2 if
IDF"|pyl| < LAY for 1< n < N;
e M-times backward (L, ¢, A, \),-regular along £ if
IDF™"|gy|l > L7'A079"  for 1< n < M;
e N-times forward (L, e, \, \),-regular along E]’; € IP’; if
[ DE" gl > L'\ for 1<n<N;
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e M-times backward (L, e, A\, A),-regular along EI’} € IP?, if
|[DE"|gn|| < LA™ for 1<n<M.

APPENDIX A. ADAPTATION LEMMA

Fix A\, e € (0,1). Let {u,,}X=! ,, be a sequence of numbers with M, N € NU{0, co}.
Moreover, suppose there exists L > 1 such that

LI+ < Uy Uy < LA™ for 1<n< N;
and
LoINOFem < < DA™ for 1< m < M.
Choose ¢ € (¢,1). Define

\(1-o)n U_q ... U_pm,
Cn = Ug - .. Up—-1 and gim . )\(1+5)m
We record the following useful properties, which can be checked by straightforward
computations.

Lemma A.1. For0 <n < N and 1 <m < M, we have

Cn—&-l _ )\175 nd C—m—l—l - )\1+5

g’l’b un C—m u—m '

Moreover,
1<G< LA O for  —M<I<N.

APPENDIX B. C"-BOUNDS UNDER COMPOSITIONS
Lemma B.1. [PuSh| (4)] Let F, G be C"-maps such that F o G is well-defined. Then
[ F o Gl <r"[|F|- IG5,
where ||F ||, := || DF||gr-1.

Lemma B.2 (Product). Let d € N. Consider C"-maps F,G : U — R defined on
U C R? such that |DF||gr-1, | DG||cr—1 < co. Then there exists a uniform constant
C =C(r) > 1 such that

|D(F - G)|lgr-1 < C||DF||cr—1||DG||gr-1.

Lemma B.3 (Quotient). Let d € N. Consider a C"-map F : U — R defined on
U C R? such that |F(x)| > pu >0 forx € U, and |DF||¢r—1 < co. Then there exists
a uniform constant C = C(r) > 1 such that

ID(1/F)||cr—1 < Cp* " || DF |5t
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Proof. The proof is by induction on r. Suppose that an rth order partial derivative
0"(1/F)(z) is a sum of uniform number of terms of the form P-(F(z))~!, where l < r,
and P is a degree k < r polynomial expression of partial derivatives of F' up to order
r.

Differentiating, we obtain

oP  P-l0F(x)
(F(z)) (F(z)t

The result follows.

Lemma B.4 (Inverse). Consider a C"-diffeomorphism f : R — R. Suppose ||f'|| >
for some constant i € (0,1). Then there exists a uniform constant C = C(r) >
such that

OJ
1
1

IG5 Nlerms < O 17

Proof. The proof is by induction on r. Let u := f~!(z) for x € R. Note that
u' = 1/(f'(u)). The case r = 1 follows. Suppose that (f~1)")(z) is a sum of uniform
number of terms of the form P - (f’(u))™!, where | < 2r, and P is a degree k < r
polynomial expression of f (i)(u) for2 <i<r.
Differentiating, we obtain

P P-lf"(u)- o

(fr@)t (flu))*
The result follows. U

Proposition B.5 (Compositions of 1D Diffeomorphisms). Consider a sequence f,, :
R — R for n > 0 of C"-diffeomorphisms. Denote f" := f,_10...0 fo. Suppose
|fl| < p and || f]]|cr—1 < C for some constants u, C > 1. Then there ezists a uniform
constant C' = C(C, u,r) > 1 such that

IDf s < .

Proposition B.6 (Compositions of 2D contractions). Consider a sequence F,, : R x
(—=1,1) = R x (—=1,1) for n > 0 of C"-diffeomorphisms of the form

Eu(@,y) = (fu(z),en(z,y))  for (z,y) € Rx(-1,1)
where f, : R — R is a C"-diffeomorphism, and e, : R x (=1,1) = R is a C"-map.
Forn € N, denote
F'=(f"e"):=F,10...0F.
Suppose there exist constants u, C > 1 and X € (0,1) such that ||f) || < p; ||0yel || <
N IDE, || g1 < C; and

0zem ()| < Cly|  for ye(-1,1)

for all 0 < s < r. Then there exists a uniform constant C = C(C,u, \,r) > 1 such
that
|De"||gr—1 = Cu™\".
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