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1. INTRODUCTION

1.1. Renormalization of unimodal maps. Let I C R be an interval. A C?-map
f I — I is unimodal if it has a unique critical point ¢ € I, which of quadratic type:
i.e. f'(¢) =0and f”(c) # 0. Denote the critical value of f by v := f(c). We say that
f is normalized if ¢ = 0 and v = 1. Let v € {r,w}, where r > 2 is an integer. The
space of normalized C7-unimodal maps is denoted L7.

Model examples of unimodal maps are given by real quadratic polynomials, which,
after normalization, can be represented by the following one parameter family of
maps:

Q= {fu(x) :=1—az*|a cR}.
This is referred to as the quadratic famaly.

A unimodal map f : I — I is topologically renormalizable if there exists R-periodic

subinterval I' C I such that
fUnlt=g for 1<i<R and [ff(I') el
1



2 SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG

We say that f is valuably renormalizable if f%(I') contains the critical value v.
If f is valuably renormalizable, then the pre-renormalization of f

pRlD(f) = fR‘Il

is also unimodal. Let ¢' € I' be the unique critical point of pRip(f). We define the
renormalization of f to be

Rip(f) == SopRip(f) oS,

where S is the unique affine map such that S(v) = 1 and S(c¢!') = 0. Observe that
RlD(f) e U,

1.2. Hénon-like maps. Let B := I x I C R? be a square, where 0 € I C R is an
interval. A C*-diffemorphism F : B — F(B) € B is Hénon-like if F is of the form

F(x,y) = (f(x,y),z) for (x,y)€ B,

and for any y € I, the map f(-,y) : I — I is a unimodal map. We say that F
is normalized if f(-,0) is normalized. The set of normalized C7-Hénon-like maps is
denoted HL".

For /3 € (0,1], we say that F'is S-thin (in C7) if

10y fllcn-r < B.

The space of S-thin Hénon-like maps in $£" is denoted 5322,. In particular, if F' €
HL], then F is dissipative (i.e. || Jac F|| < 1). We say that a S-thin Hénon-like map
is perturbative if f < 1.

Model examples of Hénon-like maps are given by the following two parameter family
of maps:

9 = {F.p(z,y) == (1 —az® —by,z) | a,b € R}.
This is referred to as the Hénon family. A straightforward computation shows that

Jac Fo, = b,

and for b # 0, the map F, ; has a polynomial inverse (and hence, is a diffeomorphism).
For any 1D map g : I — I, define a degenerate 2D map ¢(g) : I x R — I x R by

Ug)(@,y) = (g(x), ).
Let
m(z,y) =2 and w(r,y):=y.
For any 2D map G : B — B, define its 1D profile I1;p(G) : I — I by
HlD(G>(I> =Ty O G(x, O)

Note that we have II1p o t(g) = g.
The space of degenerate C7-Hénon-like maps is given by $H£] := (7). Observe
that II1p(HLY) = L.
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1.3. Topological renormalization of 2D maps. Let F : Q@ — F(Q) € Q be a
continuous map defined on a Jordan domain 2 C R2. We say that F is topologically
renormalizable if there exists an R-periodic Jordan domain B € €2 for some integer
R > 2.

Let N € NU {oo}. If F'is N-times renormalizable, then there exist sequences of
nested Jordan domains and natural numbers:

0=B8">...9BY and 1=:Ry<...<Ry

such that for 1 < n < N, the domain B" is R,-periodic. If there exists a uniform
constant b > 2 such that

rni=Ry/R,1 <b for 1<n<N, (1.1)
then the return times {R,}\_, are said to be of (b-)bounded type. If N = oo, then
the induced renormalization limit set of F' is defined as

oo 2R,—1

Ar=( | F'(B"). (1.2)

n=1 i=R,

1.4. Hénon-like renormalization. For z € R?, let E9°, E9" € P? denote the gen-

uine vertical and horizontal directions at z respectively.

A (C"-)chart is a C"-diffeomorphism ¥ : D — D from a quadrilateral D C R? to
a rectangle D = I x J C R? where I,J C R are intervals. The vertical/horizontal
direction Eg/h € IP)Z at p € D (associated to V) is given by

v — v/gh
Byt = pwt (B

The chart ¥ is said to be genuine vertical/horizontal if E;/h = Egv/gh for all p € D.
A chart U : D — D := I x J is said to be vertically/horizontally equivalent to W if
ToW is genuine vertical /horizontal. If I is both vertically and horizontal equivalent
to W, then we simply say that U is equivalent to .

Consider a C"-Hénon-like map F' : B — B defined on a square B := 1 x [ 3 0. Let
v € I be the critical value of the unimodal map II;p(F'). We say that F' is Hénon-like
renormalizable if there exists an R-periodic quadrilateral (v,0) € B! C B for some
integer R > 2, and a genuine horizontal chart ¥ : B! — B! := I' x I' for some
interval 0 € I' C R such that 7, o ¥(-,0) = 0, and the pre-renormalization of F:

PR(F) := Vo F¥z o U™}

is Hénon-like. Then (F® W) is referred to as a Hénon-like return of F.
Denote the critical point and the critical value of IIjp o pR(F) by c',v' € I!
respectively, and let S : R? — R? be the affine map given by

S(x,y) =0 Yz —c',y) where o:=2v"—c.
Define the renormalization of F' as

R(F):=SoWoFfzo(Sow)



4 SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG
Observe that R(F) € HL"

1.5. Regular Hénon-like returns. Consider a C"-diffeomorphism F': Q — F(Q2) €
Q) defined on a Jordan disk Q € R% Let \,e € (0,1); L >1and N € NU{0,00}. A
point p € Q is N-times forward (L, e, X)-reqular along E} € ]P’?D if for s € {—r,r —1},
we have

Lfl)\(lJrs)n < (Jacp Fn)s

e P” <A forall 1< n < N. 1.3
= P = orefl tsns -

Similarly, p is N-times backward (L, e, \)-regular along E, € Pﬁ if for s € {—r,r—1},
we have

L1\-(-on < (Jac, F7")°

—(14e)n
SDE, | < LA( forall 1<n<N. (1.4)

The constants L, € and A are referred to as an irreqularity factor, a marginal exponent
and a contraction base respectively.

There exists a uniform constant ¢y € (0,1) independent of F' such that if
(or resp.) holds with ¢ < &g, then the local dynamics of F' near the forward
(or backward resp.) orbit of p can be linearized up to the Nth iterate (see Theo-
rem . If N = oo, this implies in particular that p has a well-defined strong-stable
manifold W#*(p) (or center manifold W¢(p) resp.), which is C"-smooth and tangent
to E;° (or Ej resp.). It should be noted that the center manifold at an infinitely
backward regular point p is not uniquely defined. However, its C"-jet at p is unique

(see Proposition |A.12)).
Definition 1.1. A Hénon-like return (F ¥ : B — B!) is said to be (L, e, \)-regular
if the following conditions hold.

e For any p € B', we have £(E}, El') > 1/L, where

v/h .__ -1 gv/gh
Byt = Dt (B3

e Every p € B! is R-times forward (L, €, \)-regular along E}.
e Every g € F*(B') € B' is R-times backward (L, ¢, A)-regular along E}'.

In this case, we say that F'is (L, e, \)-reqular Hénon-like renormalizable.

Example 1.2. let f : I — I be a valuably renormalizable unimodal map. pre-
renormalization pR(f) := f%| 1 is the first return map of f on an R-periodic interval
I' @ I containing the critical value v. Then for any ¢ > 0, there exists A\ > 0 such
that any C"-diffeomorphism of the form

F(z,y) = (f(x) + e(z,y), 7)

with |le|lcr < A has a (1, e, A)-regular Hénon-like return (F% ¥ : B! — B'), with B?
A ~¢_close in Hausdorff topology to I' x I' and ¥ A'~*-close in C"-topology to the
identity.
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For N € NU {oc}, we say that F': Q — Q is N-times Hénon-like renormalizable if
there exist a nested sequence of quadrilaterals {B"}Y_, contained in §2, and a sequence
of horizontally equivalent C"-charts:

U . B> B"=["xI"CR?> for 1<n<N

such that (F'%» ™) is a Hénon-like return of F'. In this case, we say that the sequence
of Hénon-like returns is nested.
The nth pre-renormalization of F' is defined as

E, = pR"(F) := V" o Ff|g. o (U")7.

Let f, : I™ — I"™ be the unimodal map given by f, := Il1p(F},). Denote the critical
point and the critical value of f,, by ¢, v™ € I" respectively.
Let 8" : R? — R? be the affine map given by

S™(x,y) =0, (x —c",y) where o, :=0v"—c"

The nth renormalization of F' is given by
RY(F) :=8"0oU" o F|z. 0 (8" 0 U™)~ .

Suppose that there exist constants A,y € (0,1) and L > 1 such that the Hénon-
like returns {(Ff» U™}V are (L,gg, A)-regular. Then we say that F is N-times
(L, g9, A)-regular Hénon-like renormalizable.

Assume additionally that the return times { R, })_, are of b-bounded type for some
integer b > 2. For many of our results, the specific values of L, \ and ¢y are not so
important, as long as ¢ is sufficiently small to compensate for the size of b. That is,
we have

bgg < 1, (1.5)

where z5 := &l for some suitably small uniform constant d € (0,1) independent
of F'. In this case, we sometimes simply say that F' is N-times reqular Hénon-like
renormalizable without specifying the constants of regularity.

Theorem A. Let r > 2 be an integer, and consider a C"-diffeomorphism F : Q) —
F(Q) € Q defined on a Jordan disk Q € R?*. Given constants b € N, L > 1,
A € (0,1) and g9 € (0,1) satisfying (L.5), there exists a uniform constant N € N
depending only on ||F|lcz, A and L such that the following holds. Suppose that F
1s infinitely topologically renormalizable with return times of b-bounded type. If the
first N renormalizations are (L, g, N)-reqular Hénon-like, then F' is infinitely reqular
Hénon-like renormalizable.

Theorem B. Let r > 2 be an integer, and consider a C"-diffeomorphism F : Q) —
F(Q) € Q defined on a Jordan domain Q @ R?. Suppose that F is infinitely reqular
Hénon-like renormalizable with return times of bounded type. Then the Hausdorff di-
mension of the induced renormalization limit set A is less than 1. Consequently, Ap
18 totally disconnected, minimal, and supports a unique invariant probability measure

L.
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1.6. Regular unicriticality. Consider a C"-diffeomorphism F' : Q — F(Q2) € Q
defined on a Jordan domain 2 € R?. Suppose that F is infinitely renormalizable, and
is uniquely ergodic on the induced renormalization limit set Ap given by . Then
with respect to the unique invariant probability measure p, the Lyapunov exponents
of F' are 0 and log A\, < 0 for some A, € (0,1) (see [CLPY]). By Oseledets theorem,
p-a.e. point p € Ar has strong-stable and center directions E,°, E} € ]P’f) such that

.1 n
n1—1>1—|1—100 - log [[DF"|gss|| = log A, (1.6)
and
1 “n _
ngrfoo - log [[DF™"|gg| = 0. (1.7)

Let e > 0. Since F|,,. is uniquely ergodic, ((1.6]) ((1.7) resp.) implies that p is infinitely
forward (backward resp.) (L, ¢, \,)-regular for some L = L(p,e) > 1 (see [CLPY]).

If p € Ap satisfies ((1.6) and (|1.7)) with
B} = B =

then {F"(p) }mez is referred to as a reqular critical orbit. Note that in this case, the
local strong-stable manifold W3 (p) and the center manifold W¢(p) form a tangency at
p. If this tangency is quadratic, then {F"™(p) }.nez is referred to as a reqular quadratic
critical orbit.

For t > 0 and p € R?, we denote the ball
Dy (t) := {g € R* | dist(q,p) < t}.

Definition 1.3. For 0 < ¢ < § < 1, we say that F' is (0, €)-reqularly unicritical on
the limit set A if the following conditions hold.

i) There is a regular quadratic critical orbit point v € Ap (referred to as the critical

value).
ii) For all ¢ > 0, there exists L(t) > 1 such that for any N € N, if
N-1
n=0

then p is N-times forward (L(t), d, A, )-regular.

When ¢ and e are implicit, we simply say that F'is reqularly unicritical on Ap.

In [CLPY], we prove that if F infinitely topologically renormalizable (with return
times not necessarily of bounded type), and is regular unicritical on the induced
renormalization limit set, then the renormalizations of F' are eventually regular henon-
like.

Theorem C. Let r > 2 be an integer, and consider a C"-diffeomorphism F : ) —
F(Q) € Q defined on a Jordan domain 2 @ R?. Suppose for some L > 1; X\, g9 € (0,1)
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and b > 2 satisfying (1.5)), the map F has infinite nested (L, €y, \)-regular Hénon-like
returns:

{(Ff W™ : B" — B")}>,
with return times of b-bounded type. Then for any € > 0, there exists L. > 1 such
that for all n € N, the Hénon-like return (Ffn 0™ is (L., e, \,)-reqular. Moreover,

F is (g,e%)-reqularly unicritical on the induced renormalization limit set Ap, where
d € (0,1) is some suitably small uniform constant independent of F. Lastly, we have

o0

() £ (B") = {u},

n=1

where v € Ap is the reqular quadratic critical value.

1.7. Renormalization convergence. The 1D Renormalization R,p defined in Sub-
section [1.1| can be viewed as an operator acting on the Banach space L of unimodal
maps. In [L], Lyubich shows that R;p restricted to {* is an analytic operator that has
a hyperbolic attractor 2 C U“ with exactly one unstable dimension. This attractor
is referred to as the full renormalization horseshoe.

Given an integer b > 2, we identify the compact invariant subset 2, of 2 that
consist of maps of b-bounded type. In [dFdMPi|, de Faria-de Melo-Pinto show that
for the renormalization operator Rp acting on the more general space 42 O ¥, the
set 2}, remains a hyperbolic attractor with one unstable dimension.

Theorem D. Let r > 2 be an integer, and consider a C"-diffeomorphism F : Q) —
F(Q) € Q defined on a Jordan domain Q € R2. Suppose for some L > 1; A € (0,1);
e € (0,e0] and b > 2 satisfying , the map F has infinite nested (L, e, \)-reqular
Hénon-like returns:

{(Ff,@": B" = B")}>2,

with return times of b-bounded type. Then, after replacing {VU"}> | if necessary, the
following statements hold for all n € N:

Z) H(\I/n)ilucr < L and H\IﬂH—l — \Ifn’Bn-&-l”Cr < [_/)\(l_é_)R",'

i) R™(F) is a 0,-thin C"-Hénon-like map with &, < LAY=9F and

ii1) [|R™(F)|cr = O(1) if n is sufficiently large;
where L == KLP > L and € := €YP > ¢ for some uniform constants K > 1
(dependent only on ||F||cr) and D > 1 (independent of F).

If, additionally, we have r > 4, then there exists a real analytic unimodal map
f« € Ay and a universal constant p = p(b) € (0,1) such that

L 0 RM(F) — Rio(f)llers = O(p")  for neN.

1.8. Conventions. Unless otherwise specified, we adopt the following conventions.
Any diffeomorphism on a domain in R? is assumed to be orientation-preserving.
The projective tangent space at a point p € R? is denoted by ]P’I%.
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We typically denote constants by K > 1, k > 0 (and less frequently C' > 1, ¢ > 0).
Given a number x > 0, we use K to denote any number that satisfy

k<R <CkP

for some universal constants C' > 1 and D > 1 (if Kk > 1) or D € (0,1) (if & < 1)
independent of the considered map. We allow k to absorb any uniformly bounded
coefficient or power. So for example, if £ > 1, then we may write

“10R° =R 7.
Similarly, we use s to denote any number that satisfy
ck?d < K <K

for some uniform constants ¢ € (0,1) and d € (0,1) (if Kk > 1) ord > 1 (if Kk < 1)
independent of the map. As before, we allow x to absorb any uniformly bounded
coefficient or power. So for example, if K > 1, then we may write

« ﬁ1/4 =K "

W

These notations apply to any positive real number: e.g. £ > ¢, d <6, L > L, etc.

Note that % can be much larger than  (similarly, £ can be much smaller than
k). Sometimes, we may avoid the kK or k notation when indicating numbers that are
somewhat or very close to the original value of k. For example, if x € (0,1) is a small
number, then we may denote &' := (1 — k)x. Then k£ < K’ < k.

For any set X,, C 2 with a numerical index m € Z, we denote
X i= F(X,)

for all [ € Z for which the right-hand side is well-defined. Similarly, for any direction
E,, € P2 ata point p,, € Q, we denote

E

Pm+1

= DF'(E,).

We use n,m,i,j to denote integers (and less frequently [, k). Typically (but not
always), n € N and m € Z. We sometimes use [ > 0 for positive geometric quantities
(such as length). The letter i is never the imaginary number.

We typically use N, M to indicate fixed integers (often related to variables n,m).

We use calligraphic font U, T ,Z, etc, for objects in the phase space and regular
fonts U, T I, etc, for corresponding objects in the linearized /uniformized coordinates.
A notable exception is for the invariant manifolds W= W¢.

We use p,q to indicate points in the phase space, and z,w for points in lin-
earized /uniformized coordinates.
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2. CHART RELATIONS

Let ¥ : B — B be a C"-chart. A vertical leaf in B is a curve [V such that
1" C W '({a} x 7,(B)) for some a € m,y(B).

If the above containment is an equality, then (" is said to be full. A (full) horizontal
leaf I" in B is defined analogously.
Let p € B and E, € P?. Denote

z:=V(p) and E,:=DV(E,).
For ¢t > 0, the direction E, is said to be t-vertical in B if
£(E., EY")
L(E., E2")
A t-horizontal direction in B is analogously defined.

A C%curve I'" C B is said to be vertical in B if ¥(I'") is a vertical graph in B in the
usual sense. That is, there exists an interval 1" C m,(B) and a map g, : [ — 7,(B)
such that

V() = G%(90) == {(9u(¥),y) [y € I"}.
If I = 7,(B), then 'V is said to be wvertically proper in B. If TV is C?, and g, has a
unique critical point ¢ € I” of quadratic type (g,(c) = 0 and gJ/(c) # 0), then I'V is a
vertical quadratic curve in B. If I'V is C", and ||g,||cr—1 < t for some ¢ > 0, then we
say that I'V is t-vertical in B. Note that I'V is a (vertically proper) O-vertical curve if

and only if it is a (full) vertical leaf.
Let &Y : B — T*(B) be the C"'-unit vector field given by

E°(p) == DU (B ).

A C" !unit vector field £ : U — T (U) defined on a domain U C B is said to be
t-vertical in B for some t > 0 if [|EY — £ cr1 < t.
Let ¥ : B — B be another chart with B C B. We define the following relations
between ¥ and .
o We say that B is vertically proper in B if every full vertical leaf in B is vertically
proper in B.
e We say that ¥ and W are horizontally equivalent on B if every horizontal leaf
in B is a horizontal leaf in B.
e For t > 0, we say that B is t-vertical in B if ¥ and ¥ are horizontally equiva-
lent, and the unit vector field given by
E(p) = D\I/_I(Egzp)) for peB
is t-vertical in B.
e We say that ¥ and ¥ are equivalent on B if B is 0-vertical in B.
Let ¥ : B — B be a chart satisfying the following properties.

e We have 0 € B.
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o Let
IMt) == U~Y(t,0) for temy(B),
and
I°(s) :=010,s) for sem(B).
Then |(Z"*)'|| = 1.
In this case, we say that W is centered (at ¥1(0)).

A C%curve I C B is said to be horizontal in B if \i/(Fh) is the horizontal graph
in B of a map g, : I" — m,(B) defined on an interval I" C m,(B). If I" is C", then
we say that I is t-horizontal in B if ||g||c- < t. In particular, I'* is O-horizontal in
B if and only if I'" is a subarc of the full horizontal leaf containing ¥~1(0).

Lemma 2.1. Let ¥V : B — B be a chart. For any point q € B, there exists a unique
chart ¥ : (B, q) — (B,0) centered at q such that V and U are equivalent on B.

3. THE CRITICAL VALUE

3.1. The set up. Let » > 2 be an integer, and consider a C"-diffeomorphism F' :
Q — F(Q) defined on a domain @ C R?. For simplicity, we assume that || F|
uniformly bounded:

cr IS

[1Fllcr = O(1). (3.1)
Denote B := Q and Ry := 1. For 1 <n < N < oo, suppose there exist an R,,-periodic
quadrilateral B} € By ™" with

Tp—1 = Rn/Rn—l > 27

and a C"-chart U : B} — BpP such that {(F% U")}Y  is a (possibly infinite)
sequence of nested Hénon-like returns of F. Furthermore, assume that the sequence
of returns is (L, g, \)-regular for some A, ¢ € (0,1) and L > 1 such that € < 1. Lastly,
suppose that N is sufficiently large, so that by replacing (F™, ¥!) with (Ffn, ¥m)
for some n; < N, we may assume additionally that:

LAIOR (3.2)
where p € (0, 1) is a suitably small universal constant.

Remark 3.1. In Sections [3|and [4 we do not assume that the sequence of Hénon-like
returns of F' is necessarily of bounded type.

3.2. Locating the critical value. For i € Z, denote Bl := F'(BY}). Observe that
B}éﬁl € Bf . Let

N
ZQ = ﬂ Bnn
n=1

Let vy € Zy be a point to be specified later (as the critical value of F'). By Lemma ,
we may assume that U” for all 1 < n < N is centered at vy. Define

I =m(BY) and  I7 = (U™ H(ID x {0}).
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Then it follows that I§ € Ij and ¥"|zn = W'|zn. Denote I} := F*(Zy') for i > 0.
For py € By, write zg := U"(py), and let

h . n\— h vn oL n\— v
E! =D (E®) and EL":= D(W")TH(EY).
Additionally, let
h,n R Rn,—1 h v
Eyt = DF (Epo) and EpRn

n—1

= DF~ (B}, )= DF™ Y (Ex").

-1
By increasing L by a uniform amount (depending only on DF') if necessary, we may
assume that every ¢ € By is (R, — 1)-times backward (L, ¢, \)-regular along E.

Proposition 3.2. After replacing the charts {U"}_, if necessary, the following prop-

erties hold. For 1 <n < N, the domain By of the chart U" is vertically proper and
p-vertical in B. Moreover, we have

[ — U | gni | < AT, (3.3)

Proof. For py € B, let
{®y,, - Up,, = Up, Jiy
be a linearization of F' along the R, forward orbit of py with vertical direction E}".
Let £ = Uy, — T'(U,,) be the C"~'-unit vector field given by £2"(q) € EY"™ for
q €Uy,
Let l;jél be the full vertical leaf in B} containing py. For gy € [}, let

po
{®Qm : UQm - UQm}’Vil:O

be a linearization of F' along the R; forward orbit of gy with vertical direction Ego’l.
Let M be a nearest integer to R;/2. Since p is sufficiently small, it follows from

(3.2), Theorem [A.2} and Propositions and that
U, = FM(U;)M) cy,

PM
By Proposition , gy and py; are M-times forward (LA=M e, \),-regular along
E;’A; and [E," respectively. Hence, Proposition implies that 5;’;‘?|ng is t-vertical

in U, for some ¢ > 0 uniformly small. Thus, we may extend &> to Z/l[fy as

&gy = DFME s, )

pm

Then we have [|E2" — E2t|c1 < p. Rectifying the vertical directions near I%»! given
by &,;", we obtain the desired extension of U".
Replacing the renormalization depth 1 in the above argument by n, we obtain

(33). 0

Consider C"-curves 'y, 'y C R? with |J;| > |Jo|. For i € {1,2}, let ¢r, : J; CR —
I'; be a parameterization of I'; such that
o [¢r.|=1;
® Jl D) JQ,
e ||or, | — ¢r,|lcr is minimal.
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In this case, define

dister (T, T2) := [lér, L, — érylor
Lemma 3.3. For 1 <n < N, let g be a full horizontal leaf in By. Then we have
dister (I, _y, 5t ) < AU,
Proof. For p_1 € Z_1 := F7Y(Z), let
(@ Uy = Up iy

be a linearization of F' along the Ry-times backward orbit of p_; with vertical di-
rection By | (if N = oo, then R, = 00). Let V_g, be the connected component of
F Rt () 0 By containing p_g,. Note that U"|,_, defines a chart on V_g,, so
that V_p, is O-vertical in Bf. Moreover, arguing as in the proof of Proposition |3.2]
we see that V_p is also vertically proper in Bj. Hence, by Theorem and Propo-
sition , the curve I | is A1=8)En_horizontal in U,_,. The result follows. O

Proposition 3.4. If N = oo, then the following statements hold.

i) For any point py € 2, there exists a unique strong stable direction ES € ]P’]%(J
such that
B — B2l < A9 for meN.

0
Moreover, py is infinitely forward (L, e, \)-regular along E,:.
i) Any pointp_y € Z_y is infinitely backward (L, €, X)-reqular along E; | . Moreover,
there exists a unique center direction E; | € Pﬁf . such that

|EP" — ES | < A9 for neN.
iii) There exists a unique point vy € 2y such that
£ = DE(E; ).

Moreover, the strong stable manifold W**(vy) and the center manifold F(W*¢(v_y))
have a quadratic tangency at vy.

Proof. The first and second claim follow immediately from Propositions and [A.9]
For n € N, let [j be a full horizontal leaf in Bj. Recall that [}; is a vertical

quadratic curve in B. Let vg € [ be the unique point such that
: Ry (b
E”J; = DF™(Ej).

VR
By Lemma [3.3] we have
dist(v?zn,v}éﬁl) < \1=8)Fn
Thus, there exists a unique point vy € Z, such that
dist(vly ,vo) , dister (15, We(vg)) < AI72En,
By (B.3)), we see that W**(vy) and W¢(vp) have a quadratic tangency at vo.
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Lastly, let U, be a neighborhood of vy. Then there exists a uniform constant £ > 0
such that for all n sufficiently large, if pg, € I% \ U,, then
L(Ey" DFf(Ep)) > k.

Thus, v is the unique point in Zy satisfying £’ = E . O

We define the critical value vy € 2y as follows. If N = oo, let vy be the point given
in Proposition iii). Otherwise, let vy be the unique point in IgN such that

DS (B!, )= By

(recall that ZJ is a vertical quadratic curve in Bf'). Define the critical point as
v := F1(vy).

Remark 3.5. In fact, we will show that if N = oo, then Z, = {vg} (see Theorem 4.7)).
Theorem 3.6 (Valuable charts). There exist charts
q)o : (B(),Uo) — (Bo,O) and d_4: (B_l,’l}_l) — (B_l,())

with
By DBy, B_iD>Bp_, and F(B_;) € By;
and
|0 - < L for i€ {0,—1};
such that

Pyo Fod |(z,y) = (fo(z) — A\y,x) for (x,y) € B_; (3.4)
for some C"-unimodal interval map
fo: (mn(B-1),0) = (mn(Bo), 0)
with a unique critical point at 0 with fY(0) < 0. Moreover, the following properties
hold for 1 <n < N.
i) Let po € Bf. Then

DCI)O(EI}JLO) - Eg’];(po)

ZZ) We have \Pn|161 = @0|161.
iii) We have

and DO (B, _)=E

@_1(pR,-1)"

0" o (Polgy) " —1d [|er < ATDFn,
iv) Let
H, = ®_ 0 Finlo (7)1,
Then Hy,(z,y) = (hn(x), en(x,y)), where hy, : I} — hy,(I3) is a C"-diffeomorphism
and e, is a C"-map such that

inf |f,(z)] > L7 and  |len||er < NE79Bn, (3.5)
zely
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Proof. For t > 0 and X C R?, denote
X(t) := {p € R* | dist(p, X) < t}.
Let
By :=Bs(\F) and  CJ := By (A \ By,
By , there exists a C"-diffeomorphism @, defined in a neighborhood of Z; such

that
9"z, — Pollcr < A=&F forall 1<n<N.

Moreover, ®y can be extended a centered chart ®¢ : (By, vg) — (By,0) such that

q’0|83\(3{;+1ucg+1) - ‘I’n|33\(83+1ucg+1)
and )
||CI)0|CS+1 — \I’n|cg+1 ||C'r < \I=8)Fn,
Let Z", := W¢w_,). Observe that F(Z",) is a vertical quadratic curve in Bj.
Hence, there exists a C"-unimodal interval map
fo = (mn(B-1),0) = (mn(Bo), 0)

with a unique quadratic critical point at 0 such that
O 0 F(I) = {(fo(y).y) | y € m(Bo)}-

For some [_; = L1, let
Dy :={(fo(y) +t,y) € Bo | [t| < My and y € m,(Bo)},
and
B_l = ((I)O ¢) F)_I(Do).
We define ®_ : (B_;,v_1) — (B_1,0) to be the unique chart satisfying
Byo Fodl(n,y) = (fol) — Mpoz) for (z,y) € By,

Claims i), ii) and iii) follow immediately.
The second inequality in (3.5 follows from Lemma . Hence, for py € Bj, we
have

[DF™ gy | = 97 0 Hy 0 W gy | < L|[Holggs, || < LAI9,

™ (po)
By regularity of the Hénon-like return (Ff» ¥™), we have
LB Er) > L7
This implies that
Jacy, FA1 < LIIDFR Y ger | - [DFR g ||
Thus, imply that
D\(1—5)RnHDFRn_1|E;LO =1 > LA,

The first inequality in (3.5]) follows. O
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Remark 3.7. In Theorem [7.7] we show that if N = co and the return times are of
bounded type, then the first inequality in (3.5) can be improved to

inf |h (z)] > k
for some uniform constant k > 0.

For i € {0, —1}, denote

M= m,(B;)  and I = &7 (I x {0}). (3.6)
Observe that
'3 >... and I" 39h(I})dh(3)D....
Moreover, if X C Bj, then implies
Oy o FEnH(X) C hy(I7) x [-AI79B \(1=e)Rn), (3.7)

3.3. Horizontal projections. For 1 < n < N, define P_; : (B_j,v_1) — (I",,0)
and P} : (By,vo) — (I},0) by

P_1 ::WhoCI)_l and P(;Z ::Who\Il".
Denote
I, 1= Pa(Bg, 1) = Pa(Ig, 1) = ha(17),
where h,, is given in Theorem [3.6]iv). Define P} : By — I3 by
Po(p) = (")~ (F'(p),0) for pe By
Observe that Pg |z = Id.
We record the following immediate consequences of Theorem |3.6|

Lemma 3.8. For1 <n < N, let py,qo € Bf be two points such that
| F5'(po) — Fy'(q0)] > X
Then we have

|P_1(pr,—1) = Poa(ar,—1)| > X,
If, additionally, we have
Py (pr,) » Fy'(ar,) < =",
then )
P (pr.) — Fo'(ar, )| > A
Lemma 3.9. For 1 < n < N, denote p, := \1=9Fn Let 0 <t < X~ Then the
following statements hold.
i) Let E,, € P2 be a t-horizontal direction at py € Bg. Then EpRn_l is (14 t)py,-
horizontal in B_;.
i) Let E,, | € ]PZRn_l be a t-vertical direction at pr,—1 € By _,. Then Ep, s
tpn-vertical in By.
iti) Let T be a t-horizontal curve in BY. Then T _, is (1+ t)p,-horizontal in B_;.



16 SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG
i) Let I'y _; be a t-vertical curve in By _ . Then I'§ is tp,-vertical in Bf.

By Lemma iii), Zp _, is py-horizontal in B_;. Thus, there exists a C"-map
Gn : I 1 — R with ||gn||cr < p, such that

(T, 1) ={(z,9n(2)) [z € I}
Define G, : I |, — ®_1(Zj 1) by Gu(z) := (x,gn(2)). Define the nth critical
projection map Py : P={ (I} ) —Ip | by
Pfl = @:% O GTL (] P—l'
Lemma 3.10. For1 <n < N, let I'y be a horizontal curve in By. Then
FRnil’FO = (pfl‘FRTrl)il © FRnil © Pg’FO'

Proof. Note that P, is a projection along the vertical foliation F*; on B_;, and Py
is a projection along the vertical foliation on Bj obtained by pulling back F; by
F~En+l The claim follows immediately. 0

Lemma 3.11. There exists a uniform constant k > 0 such that the following holds.
Let g : I — R be a C"-map on an interval I C I", such that ||g|lc- < k. Denote
G(z) := (z,9(x)). Then there exist a € I} and a C"-diffeomorphism 1, : I — 1,(I)
with |1 |or = O(1) such that we have

Q) =Pl oFod® [ oG(x) =a— (1,(x)) (3.8)
where defined.

4. AvVOIDING THE CRITICAL VALUE

For N € NU {o0}, let F' be the N-times regular Hénon-like renormalizable diffeo-
morphism considered in Subsection [3.1} Suppose that N is sufficiently large, so that
by replacing (Ff, Wl) with (Ffm ™) for some n; < N, we may assume that:

LN < p, (4.1)

where p € (0,1) is a suitably small universal constant. Note that (4.1]) is a stronger
condition than (3.2)).
Let z = (a,b) and w = (¢, d) with a,c € R and b,d € I§. Denote

m :=min{a,c} and M := max{a,c}.
For t > 0, define
Vo(t):=la—tia+t]x Iy and V() :=[m—t,M+t] x 1,

where I is given in (3.6)). If Vin(y,)(t) C By for some 1 <n < N; p € By and t > 0,
then we denote
Vo (t) = (") (Vo) (1)
We record the following two immediate consequences of Theorem [3.6]
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Lemma 4.1. For 1 < n < N, let E,
p_1 € B_y. If

. € IP’IQL L bea Neftn_horizontal direction at

po € BY\VL(t) with t> X'
then E,, is O(1/t)-horizontal in By .
Similarly, let T'_y be \Fn-horizontal curve in B_,. If
Lo C B\ Vi (t) with t> N,
then Ty is O(1/t)-horizontal in By .
Lemma 4.2. For 1 <n < N, let Epo € IP’IQJO be a Nftn_vertical direction at py € By.

If
po € B \ Vi (t) with t> N,

then E,, is O(1/t)-vertical in B_;.
Similarly, let Ty be NBn-vertical curve in BY. If
Lo CBE \ViL(t) with t> N\

then T_y is O(1/t)-vertical in B_;.
Proposition 4.3. For 1 <n < N, let py € By, \ Vi. (\¥"™). If E,, is A -vertical
in By, then E, , is \'=9%_vertical in BY. Moreover, p_p, is R,-times forward
(L,&,\)-regular along E, ,, .
Proof. Consider a linearization

{(I)me :upfm — Upfm 51":0
of F" along the R,-backward orbit of py with vertical direction

RO ny—1 h

BV = (DY) (Egn(po)) .

Note that since (Ff» ¥") is a Hénon-like return, we have

D‘Ijn <E;7)Lan> - Egv

U (p—ry)
Denote
no._ h - h
i = Do, (Ef") and Bl =D (B ),

where ®_; : U4y — U_; is the chart defined over the critical point given in Theo-

rem [3.6] By Theorem ii) and ({3.5)), we see that

||DF7Rn+1|E£!L1 ’ ‘|DF7Rn+1|EI’}71 H > E*l)\an.

Hence, it follows from Proposition that
L(EM Er ) < LU,

p-17?
Thus, by (3.4), we have
L(EM" B, ) > L2,

p-1’
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For 1 <17 < R,,, denote
e—i = A(Egh> D®p7i(Ep7i))'

Choose a suitable uniform constant ¢ € (0,7/2) independent of F, and let 1 < M <
R, be the smallest number such that 6_,; > ¢. By Theorem and Proposition[A.F]
we see that
0—2' > )\—(l—g)ie_l > E—l/\—(l—é)i)\e_Rn'

Consequently,
log L _ R,
log A
where in the last equality, we used . Let M’ := C'M for some suitable uniform
constant C' > 1 independent of F'.

By Proposition [A.5 we have

M < eR,, —

||DF|EP—R,n+i || = ||DFi|E;;an+i || for 0<i1< R, — M’ (42)

Denote
F'y=®,  oF'o (®,_,)""
By Proposition [A.4] we have
A < XM IDF? g < AT < A (4.3)
— M’
for any E, , € P> . Since |9, [[;n < LA™, we conclude that for 0 <i < M’, we
have o
HDFRFM/H‘EP_R,@ i .

The (L, &, \) forward regularity of p_p, along E,_ &, follows. O

Proposition 4.4. For 1 < n < N, let py € B. If po is infinitely forward (L, \)-
reqular, then W5 (pg) is NI=8En _yertical and vertically proper in B .

Proof. The verticality of W**(p,) follows immediately from Proposition[A.8 Consider
a linearization

{(bpm : upm — Upm}xzo
of F' along the infinite forward orbit of py with vertical direction E;°. Recall that

©p, (Wie(pm)) € {(0,9) € Uy, [y € R} (4.4)

loc

Let
Vo = V;}O(AE_R").

Arguing as in the proof of Proposition 3.2, we see that if M is the nearest integer to
R, /2, then

By (FM (V) C (=70 NF) 5 (AU OM Q1290 (4.5)
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For gy € V,,, denote
/b ny—1 v/gh
Byt = (DY) H(EGE).

The forward regularity of gy, Theorem and Proposition imply that
|DF™ g | < LA™ and || DF™|z || > LA™,
a0 a0
Thus, follows from Proposition that ¢, € U, for all m sufficiently large so that
E}\(l—g)m < E—l/\ém.

We conclude by (4.4)), (4.5) and Proposition that W2 (par) is vertically proper in
FM(V,,). The result follows. O

Proposition 4.5. For 1 <n < N, let Cy C Bj be a totally invariant connected set
under FUn with 2 < d <b. If
d—1
Vi (Xyne=o, where C:=|JCi,,
i=0
then either Cy is a singleton, or it contains a sink.

Proof. Let EY : By — T'BY be a C"'-unit vector field such that
£'(p) € (DY")(EY.,)) for peBy.
For i € N, define
g—i — (FiR7L)*(5v|c).

For p € C, let E;* € P2 be the direction containing £*(p). By Proposition , p is
iR,-times forward (L, &, \)-regular along ES ¢, Thus, it follows from Proposition
that E," converges super-exponentially fast to E* along which p is infinitely forward
(L,&, \)-regular.

Let W (p) be the connected component of W**(p) N Bj containing p. Define

Veo = |J Wi (o).

p€Co

By Proposition [1.4] the foliation of Ve, given by {W; (p)}pec is A1~ Fn_vertical and
vertically proper in Bj. Let

\IICO : VC() — VC() = ICO X Ig
be the genuine horizontal chart that rectifies this vertical foliation.

Consider the map

H := Wg, 0 FHn o (e )7t

By (3.7), (3.4) and the fact that
Ve, N V&(AéR") =4,

it follows that IIyp(H) is a homeomorphism. If Cy is not a singleton, then IIyp(H) is
a map on a closed interval, which immediately implies that it has a sink. 0]
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Proposition 4.6. For 1 <n < N and m > —1, denote
upy, = V" (vmg,) € By and ap, = mp(upy,).

If vgr, does mot converge to a sink as k — oo, then the following statements hold.
i) Fori >0 such that i = O(1), we have

la? —a™ | > A,
ii) We have a} < a™; < af = 0.
Proof. Let 6 € (£,1) with § < 1. Suppose towards a contradiction that
Vir (V) O Vi (M) 2£ @, (4.6)

Without loss of generality, assume that ¢ > 0 is the smallest number for which (4.6)
holds.
For y € Ijj, consider

Ty (= ) and 5= 0 < u}) € Vi (00,
By Propositions and [A.5] and (4.1]), we see that
| Tipcal < XTI < N3

Moreover, since
e NV (M) =@ for 0<j<i,

we can argue by induction using Lemma/|3.9]iii) and Lemmathat iR, 118 ANA=8)Fn_
horizontal in B_;. Then it follows from (4.6 and (3.4) that

|Pe (T, )| < N\ T | < AT | g .

We conclude that ) )

Fln (v (X)) € Vi (M),

By Propositions and and (4.1), we see that for py € JJ":
IDFRe |y || < AR,

Arguing by induction using Lemma i) and Lemma , we also see that E;:Rnil is
A1=8)Ea_horizontal in B_;. Consequently, by (4.6) and (3.4)), we have

L(DF™(Ep ), By ) < A,
It follows by Proposition that

[ Dy 255 | < AT,

We conclude that Vi (\*f") is contained in an 2iR,-periodic sink. This is a contra-
diction.
Suppose towards a contradiction that a} < a”, < 0 is not true. Denote

By = [a™, + X N Y
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Let K := {(t,0) € By}. By Lemma 3.9 and (3.4)), we see that K7 maps injectively
into itself under the map PJ' o F% o (I™)~!. Consequently, vy must converge to an
R™periodic sink. This is a contradiction. ([l

Theorem 4.7 (Critical Recurrence). Suppose that N = oo. Then

ZO = m Bnn = {Uo}.
n=1

Consequently, the orbit of vy is recurrent.

Proof. Let
Vo= (B, I =IZ;NnY and I5°:=m,o0P(L5°).
n=1

Note that every point py € )y is infinitely forward (L,e, \)-regular. Moreover, by
Proposition , W*%(pyg) is vertically proper in Bj. Hence, we have

Vo= U () N BY.
po€LS®
We claim that Yy = W*(vg) N By.
Recall that for n € N, the curve Iy is vertical quadratic in By. Let vy € Zg be
the unique point such that

EUY = DFfR(EM).
Rn 0
Denote

ag := 7,0 ®o(vg) and a, = F'(vg, ).

By (8.3) and Lemma [3-3] we have
| Py (vo) — aol , |an — aol < A1=8)EBn

Assume the correct orientation of ¥" so that we have Pj'(pr,) < a, for p, € Ij.
Suppose towards a contradiction that there exists a uniform constant b > 0 such that
(ap — b,ag) C Ig°.

Let M € N be sufficiently large so that for n > M, we have

ag — b/2 < ag — X < q,,.

Using induction and Lemma , we see that for 0 < k < R, /Ry, the curve IiR,, 18
O(1)-horizontal in By, and Z7j 1y, is AA=8) B _horizontal in B_;.
We define B”, p ~with 0 < k < R, /Ry inductively as follows. Let B";, _; be the

connected component of
FHBgy) N By,

containing Zp, ;. 4, and let

BE(k+1)RM = FﬁRMJA(BﬁkRMfl)-
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Using induction and Lemma we see that
M
OB gy -1\ OBg,, 1
consists of two O(1)-vertical curves I‘T_L’,f R, 1 in B_j, and
M

n,t o —Ry+1 n,t
1-‘—(k:—i-l)RM = (F*kRMfl)

are \(1=98M_yertical in Bé”. We conclude that for 0 < k < R,/ Ry, the sets

Bz(k-i-l)RM - Inn—(k-i-l)RM
are disjoint. Hence,
_ pM
[]?RJ\/[ T PO ( ;JLR]\/[)

are disjoint intervals in I}7.
Consider the following map

gk =Py o Fo (Pl

)—1 o FR]V[—I |["
(k+1)Rpr—1

kERp; "
Since Ll 1) Rar—1 and Lis1)R,, are uniformly horizontal in B_; and By respectively, it
follows that ||g7|lcr = O(1). Moreover,

Ry /Rp—1

Y. ik, < IL'I=0(),

k=0
and thus, we conclude from Theorem that

G" =9k, /Ry-1°---°90

has uniformly bounded distortion.

Let
I"h, =P (B"%,).
Then I"};' and I§*" are disjoint intervals in If'. Moreover, we have |I§*!| = O(1)
and
P R =0 as n— .
However,
GM(I'R) =13 and  GM(IGTY) = IR

This is a contradiction. The result follows. 0

5. RETURN TIMES OF BOUNDED TYPE

For N € NU {oo}, let F' be the N-times regular Hénon-like renormalizable dif-
feomorphism considered in Subsection 3.1 Suppose that the return times are of
b-bounded type for some integer b > 2. Moreover, assume that ¢ is sufficiently small
so that holds with g9 > £. By only considering every other returns if necessary,
we may also assume without loss of generality that r, > 3.

Lemma 5.1. For s € {1,2} and 1 <n < N — s, let Ty be a A\=*F»-horizontal curve
in By, Then for 1 <k < R,.s/ Ry, the following statements hold:
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i) Tk—1yr, is X\~ -horizontal in B; and

i) Trg,—1 is N9 _horizontal in B_;.
Proof. The result is an immediate consequence of Lemmas iii) and , and Propo-
sition [4.6l 0
Proposition 5.2. For 1 <n < N, denote

up = V"(vkr,) € By and ay :=m(up) for k>-—1.

If vggr, does not converge to a sink as k — 0o, then the following holds.

i) We have

ab <ay <ay =0 and |af —a}| > T for i€ {0,1}.
ii) Define
By := Vigpuy (X)) and By = (V") 1(By).
Then FB(B}) € By.
Proof. By Proposition 4.6, we have
at — a™ | > N
Thus, by Theorem we have
lay — ag| > (AF)? = AI=DHn 5 N,
Suppose towards a contradiction that
la? — al| < A,
Proceeding by induction, suppose that
la? | —al| < X for 1 <i<m,.

Iterating v(;_1)r, and vig,, and applying Propositions[A.4 and [A.5] and Theorem 3.6}

we see that

i — a?+1| < )‘_anM?_l —al| + A1) Fn - \eRn

Consequently, ) i
la} — al' | < rp AT < A,
By Propositions and we have v_p, € By This is a contradiction.
Suppose towards a contradiction that
ay < a — N <l (5.1)
Consider
Jo = la} — A @™, — 2] and  J = (U0)THJE % {0}).

By Lemma , we see that Jj is A=*F~-horizontal in Bj. Let F, := pR"(F) and
fn = IIip(Fy,). It follows that f, maps J§' onto its image f,(JJ) as an orienta-
tion preserving diffeomorphism. Observe that by , fn(JE) must contain a \*F-
neighborhood of Jj.
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For y € I, let

Jo = ()7 JTg x {y}).
By Lemma [3.9] we conclude that

|75 = T, ler < AU,
Let

Dy = J'x I and Dy = (¥")"*(Dy).
Consider the quadrilateral
Dy =Dy NBY

as horizontally foliated by {J5"*} and vertically foliated by the vertical leaves in Bj.
Define

Ko = (¥") ' ({(a},?) | t € [§})
and
K_i=F"®™K_ ,nDy) for ieN.
It follows from Lemmal4.2)and Lemma[3.9iv) that {KC_;}52, is a sequence of vertically
proper and A1~ _yertical curves in Dy. Moreover, by Lemma , we see that any
point p € K_; is iR,-times forward (L, &, A)-regular along the tangent direction to

K_; at p. It follows that C_; converges as i — 0o to a subarc in the stable manifold
of some R,-periodic saddle ¢ € Df of non-flip type.

Let By and B{"' be the connected components of B} \ W*(q) containing v, and

vg, respectively. It follows that Bz’:/ "< B, This is a contradiction.
Property ii) now follows immediately. O

By Proposition ii), we may henceforth assume that
By = Viup w)(A™)  and  Bp = (V")"Y(Bj) for 1<n<N.
Proposition 5.3. Let s € {1,2} and1 <n < N —s. For0 <k < R,.s/R,, Denote
Define
B, = Vipup (X)) C By and - By = (") (BR).
If vgr, does not converge to a sink as k — oo, then the following properties hold.
i) For integers 2 < k < R,.s/R,, we have

ay < b} <ap , by <bj <ay=0.
ii) For integers 0 < k,l < R,/ R, with k # 1, we have
|a2 - a’ln| ) ‘kaL o bm ) ’CLZ - bﬂ ) |CLZ - b;ﬂ > /\an'
iii) For 0 <k < Ryis/R,, we have

By DBpE and  FRevRRa(Brs ) @ Bpts,
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Proof. By Propositions [4.6] and we have
lag — by > X and - FRe(Bp0) € By
respectively. Applying Lemma (Rn4s/ Ry — 1)-times starting from ug and wy, we

obtain
lap — b > A for 0 <k < Rpys/Rn.

By and , we see that
FR”(Z’;’Z};) € B?}éil)Rn'
Hence, by Proposition ii), we also have
Flnes—klin (B ) € By,
It follows that for 0 < k,l < R, s/ R, with k # [, we have
B, N B, = 2.
This implies the result. 0

Theorem 5.4. Suppose Fy is topologically renormalizable with return time 2 < ry <
b, and that not every ry-periodic Jordan domain of Fy contains a sink. Then F s
(N + 1)-times (L, g, \)-reqular Hénon-like renormalizable.

Proof. Let DY*! € By be an Ry -periodic Jordan domain with
721\] = RN—H/RN S b.
Define

oo

__ N+1
Ay = Dz‘RNH'
i=1
By Proposition [4.5 we see that

Pn—1

VNN N A+ @, where A= | ] Ai,.
=0

Without loss of generality, assume that
V%(AERN) NAy # .
By (3.5) and Proposition [A.4] it follows that
. eR
dist(vg, . Ao) < AT
For m > —1, let

al =m0 \IJN(UmRN).

Define
Iy = (al, + X =X ) and - Vg = (8Y) (1 x 1),
We claim that for some ry < 7y, we have

ay € my 0 WY (Vi my)-
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Suppose not. For y € I, let
I =1y x {y} and Z¢:= (TV)71(1Y).
Arguing inductively using Lemmas and and Propositions , ii), and
[A.5] we see that for [ > 1 such that

a, & mp, o UN(TY

(m_1ry) for 0<m <1, (5.2)

the arc j—lyRN—l is A1~ _horizontal in B_;, and
fIyRN N (vaN U VZJ,\OT(FRN)) =g for 0<m<l.

If (5.2) holds for all I € N, then it is easy to see that the sequence Vjg, converges
to a sink. Otherwise, let [ > 7y be the smallest integer such that

aly € my 0 TN (Vy_ppy)-
Denote ) ]
Ligy =m0 \I!N(ZZQRN) for 0<¢<L.

Note that for s € IVZ-RN and t € .ijN with ¢ < 7, we have

t<s< =\,
For 0 <m </, let fm be the convex hull of the union

m—1

U finy € I

i=0
Proposition implies that f4| ;, s a unimodal map that maps I,_; as an orientation
preserving diffeomorphism to the interval fN(fl,l) disjoint from I, and maps the
turning point ¢V € I;\ [;_; of fx to fx(cV) that is \1=®8~_close to 0. This is clearly
impossible.

Denote Ryyq := ryRy. Define
I = (agy,, — AN 5 T,
and let
BYtli= I8 x 1Y and By = (UY)TH(BY.
We showed that Bg;jl_l > v_4, and that for any y € [, the following holds:
o IV NVNIEY) =g for 1 <m < fy;
) fj’% L Is NI=8E~N+1_horizontal in B_;; and
-

e 7Y  is vertical quadratic in Bj.
Ry

Arguing as in Proposition 5.2, we see that F&v+1 (BN € Bt
Adjust the left and right boundaries of Bg;l . C B_ so that they map to genuine
+1—

vertical leaves under ®_;. Consider the genuine vertical foliation over ®_; <Bg;11 1) .
e

By Lemma [4.2] we see that the pull back of this foliation under ®_; o FAN+1-1 is a



ON REGULAR HENON-LIKE RENORMALIZATION 27

A8 BN +1_vertical and vertically proper foliation over By ™. Let W¥*+! be the genuine
horizontal chart that rectifies this foliation. We conclude that (FR~+1 WNTL) ig a
Hénon-like return.

It remains to prove that this Hénon-like return is (L, Z, \)-regular. The forward
regularity follows immediately from Proposition 4.3

For s € {0,1} and py € BY* | let

Ry4s?

v,N+s .__ -1 h
Epo = D, (E‘%o(po))'

Let s = 1. By the regularity of the Nth Hénon-like return, py is Ry-times backward
(L,e, \)-regular along
v,N+1 __ rpw,N

EPO - Epo :
Proceeding by induction, suppose that for some 1 <1 < 7y, the point py is [Ry-
times backward (L, &, \)-regular along EXN+1.
hBy Proposition [A.8] E;j’_]y;Nl is A1=9)E~_vertical in B). By (4.2)) and (4.3)), we see
that

IDE™ g |

—ZR .
TDF o ||<)\5N for 1<1¢< Ry.
Ep iR,

Concatenating with the [Ry-times backward (l:},é, A)-regularity of py, we conclude
that po is actually (I 4+ 1)Ry-times backward (L, &, A)-regular along E2N*! (with L
and ¢ increased some uniform amount from the [th step). U

6. A PRIORI BOUNDS

For N € NU {00}, let F' be the N-times regularly Hénon-like diffeomorphism
considered in Section [l

For 1 < n < N, we define a sequence of maps {H'}°, as follows. First, let
HY := F*. Proceeding inductively, suppose H;'"! is defined. Write i = j + kR,, with
k>0and 0 <j < R,. Define

H} := H} "' o Pyl o ¥,

Observe that H is well-defined on F~*fn(Br).
Recall that

Iy = (U")7'(Ig x {0}) = 5" (I x {0}) = Zg N By > wo.

Lemma 6.1. Let s € {1,2} and 1 <n < N —s. Then H |+ is a diffemorphism
for 0 <1 < R,.s.

Proof. The statement is clearly true for n = 0. Suppose the statement is true for
n—1. 1Ifi < R,, then

Hmzf“ = H?_1|I{L+s
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is a diffeomorphism. Suppose the same is true for i < (kK — 1)R, with 2 < k <
R,.s/R,. Observe that

Hiy, = Py o P
By Lemma i), the map PS!IQES is a diffeomorphism. For i = j+ kR, with j < R,
we have "
H} == H}"" o P o FHn,
Since
PRI € T,
the result follows. OJ
Lemma 6.2. For s € {1,2} and 1 < n < N — s, let Iy be a C"-curve which is
A\"Bn _horizontal in Byte. Then for 1 <k < R,.s/R,, we have

_ —1
FkRn 1|F0 = (PillrkRnfl) © HI?Rn—1|F0‘

Proof. It n =k = 1, then the result follows immediately from Lemma [3.10, Suppose
the result is true for some 1 <n < N —sand 1 <k < R,./R,. By definition, we
have

n _ n Rn
H(k:-i-l)Rn—l = Hyp, 10 F™.

If Ty is a C"-curve which is A™*F»-horizontal in Bj*®, then by Lemma i), we
see that ', := Ff(Ty) is a C"-curve which is A=*f"-horizontal in By. Thus, by
induction, we have

—1
kRp—1 _ 1 n
F |FRn - <7D—1|F(k+1)Rn71> © HkRn—1|FRn'

Composing on the right by F|p | the result is true in this case.
Finally, suppose that the result is true for some 1 <n < N — s and k = R,,,1/R,.
Let o := Py (I'y). By the induction hypothesis, we have:

FR”+1_1|’YO = (Pi1|7Rn+1*1>
Applying Lemma

-1
R +1—1 o n+1 1
F ‘Fo - <7D—1 ‘FRnJrl—l) © (P—1’7Rn+1—1>

= (P£1|Fan+171> :

1
n
© HRn+1—1 |'YO *

1
n n+1
© HRn+1—1 o Py Iry

1
n+1
© HRn+1—1 |F0 .

O

We also define another sequence of maps {I:I,-}f;%_l as follows (if N = oo, then
Ry = 00). If i < 2Ry, let H; := F*. Otherwise, let 1 <n < N be the largest number
such that ¢+ > 2R,,, and define H; := H['. Observe that by Lemma , we have

Hp, |y = Hp Mylg = Philzy, o F™ g (6.1)



ON REGULAR HENON-LIKE RENORMALIZATION 29

Theorem 6.3. There exists a uniform constant K = K(||F||cz, R1) > 1 such that
forall1 <n < N, we have

Dis(H;,I7) <K for 0<i<R,.

Corollary 6.4. For 1 <n < N, let h,, : I} = h,(I}}) be the diffeomorphism given in
Theorem [3.6 ). Then Dis(hy, [}') < K, where K > 1 is the uniform constant given
in Theorem [6.3.

Observe that any number 2R, < i < Ry can be uniquely expressed as
i:j—l—a1R1+a2R2+...+aan

for some 1 < n < N, where

i) 0<j <Ry

ii) 0 < ay, <1y for 1 <m < n; and

i) 2 < a, < 2r,.
In this case, we denote

i:=7j+a,a,...,a,].

We extend this notation to ¢ < 2R; by writing
i=j+[a1] for some a;€{0,1}
We record the following easy observation.
Lemma 6.5. Let 2R, <1 < Ry be given by
i=7+a,. .. a,)
Then we have
H,=H'=Fio(PjoF"f)o.. o(PyoFmf),
For 1 <n < N, we define a collection of arcs {7} ! by
JM = H,(Ip) for 0<i<R,. (6.2)
Lemma 6.6. Let 1 <n < N and0<i< R,. If
i=100,...,0,Gm, Qms1,- - -, ax]
for some 1 <m < k <mn, then we have J C I*. Moreover, we have
no=HHTM)  for 0<1< Ry,

Proof. Observe that
Py o Fosfis (T8 C I}
By Lemma the result follows from induction. O

Lemma 6.7. For 1 <n < N and 0 <i < R,, we have J" C I}(mod Ri)-

Proof. The result follows immediately from Lemma [6.6] O
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Let I': [0,1] — R? be a parameterized Jordan arc. For
0<a<b<e<d<l,

Let
'y :=T(a,b) and Ty:=T(cd).

Then we denote I'y <r I'y. Let I'3 be a subarc of I'. We denote I'; <p I's if either
Fl <r F3 or Fl = F3
Henceforth, we consider Z} with parameterization given by

I5(t) == (¥ H(t,0) for tel.
Note that Zj o Py = P;. Moreover,
P (vg,) < 0= Py(v).
Lemma 6.8. Forse€ {1,2}; 1<n< N —sand 1<k < R,s/R,, we have
Tiy " <2y T, <2y T
Proof. Observe that
e For s € {1,2}:
Tirt = Hy \(Z3) = Pyt o Fn(53).
e For 1 <k <ry,:
T, = Hip, (I3 =Py o FH(ZgH).
e For 1 < k < 2r,:
Tin! = Hip, (I3™?) = Py o FM(I32).

In the case s = 1, and the case s = 2 and 1 < k < 2r, follow immediately from
Proposition [5.3}
Replacing n by n+1 and applying the above conclusion, we see that for 1 < < r,,1:
Tils <zy Ty <23 T

Note that for 2 < k < r,:
‘Z%tiﬁ-kRn - H?Rn‘zg+l(‘7irflzﬁl)~
The result now follows from Lemma [6.1] O

Let Ty : [0,|T9]] — R? be a C'-curve parameterized by its arclength, and let
'y = To(a,b) with (a,b) C [0,|Tg|] be a subarc of T'y. If for some 0 < I < |Tg|/2, we
have a < [ and b > |T'y| — [ then we denote

Fl = Fo{—l} and FO = Fl{—l—l}
Let I'y :=T'o(l, |T'g| — ). Then we denote
Fg = Fo[—l] and FO = FQ["—Z]
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If T'3 and Ty are C'-curves in R? and we have I's[—1] C T'y C I'3[+{], then we denote
Ly =T3{~1}.
These notations can be extended to intervals in R in the obvious way.

Let 2 <n < N, and consider the collection of arcs {7}, By Lemma and
Lemma , for 2R, < i < R,, there exist unique numbers 0 < ™ (7), '} (i) < R, such
that

(1 (1) =1 (mod Ry),
and the arcs Jn ;) and ‘7& (1) are the two nearest neighbors of 7" (one on each side)
in Z} (o gy~ Define J as fhe convex hull of Ji% y U Ji" U T ;) in T} (mod Ry

We also define a subarc J;" of Il.l(mo a4 Ry containing J;" as follows. Write

1=7+ [a1,a2,...,am]
for some 1 <m < n. If m <n —1, define
T = J AT,
Otherwise, define
T = Jr X
Proposition 6.9. There exists a uniform constant K > 0 such that for 1 <n < N,

we have
Rp—1
> T < K.
i=2R;
Proof. Observe that
Rn—1 Rn—1 n—1
ST < DT+ D 2Ry X
i=2R; i=2R; m=1
By Lemma , the maximum number of overlaps among arcs in {J;" fg;l is three.
Hence, the above sum has a uniform upper bound. 0]

Lemma 6.10. For1 <n < N, let 'y C Z} be an arc. Then we have
|H]' (L)
Tol
Proof. For py € Iy, let E,,, € IP’?,O be the direction tangent to I'y at py. Note that pg

is R,-times forward (L, ¢, A)-regular along E} . Thus, by Theorem and Proposi-
tion [A.5] we have

LN < |[DF'|g, || < LA™ for 0<I<R,.

By Proposition and Lemma i), the curve ['yg,, = F*m(Ty) for 0 < k <1y,
is A\~¢f' horizontal in BY'. Hence, by Theorem , we see that

L™\ < |DPPs, | < L.

LI\ < < LA for 0<i<R,.

‘Ekam
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Write
i=7+[a,. .., an]
for some 1 < m < n. Then by Lemma [6.5| we have
H! =V oPloFufio oPlo Fombim
Concatenating the previous estimates, we obtain the desired result. 0]

Lemma 6.11. Fors € {1,2}; 1 <n < N—-sand2 <k <2r,, let X_; C By _, be
a set such that

Pi1(Xfl) = kn};rns—r
Then
,P(;L o F(Xfl) _ jkn}%i;s{w A(lfs)Rn}'

Proof. By Lemma [6.2] we have

-1
n+s _ 1 n+s o 1
Lyr, 1 = <P71|zgg;_1> (ijn—1> - (P71|zg};§;_

1

>_1 o Pl (X ).

Since
Tig, = P50 F(Lig 1),
the claim follows from (3.4) and (3.7). O

Proposition 6.12. For 1 < n < N —2 and 2R, <1 < 2R, .1, there exists an arc
Ko,i containing T2 such that the following properties are satisfied.

i) We have Ko; D Ko iy1-
ii) The map ﬁi|;¢07i s a diffeomorphism.
iii) We have Hy(Ko;) D J" .
i) Denote K; := F'(Ko;). Then for 2 < k < 2r,, the arc Kyp, 1 is N1
horizontal in B_1, and

Kir, C By \ Vi (A),

Proof. We first extend I35 _; to an arc Kaogr,—1 C B_y such that Kog, 1 is X179
horizontal in B_;, and the curve Kog, := F(Kog,—1) maps diffeomorphically onto
T3\ V(A1) under P}, 5, - We define

Koor, == F 2 (Kag,).
Proceeding by induction, suppose the result holds for i < (k — 1)R,, with 2 < k <
2r,. For 0 <[l < R, define
Ko,(kq)RnH = ’CO,(kfl)Rn-
Observe that
Hi 1y, = H o F*—DEn,

Thus, property ii) follows from Lemma ; property iii) follows from Lemmas
and [6.10} and property iv) for Kyg, 1 follows from Lemma [5.1]ii).
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If k < 2r,, then define Kyr, to be the component of F(Kxr, 1) \ Ve, (AF") con-
taining Z;'#?. By Lemma i), Krr, maps injectively under PJ. Lastly, property
iii) follows from Lemma

If k = 2ry, then define Kyg,,, to be the component of

F(ICQRHH—l) N (BSH'I \ Vv()()\gR"H))

containing Properties ii) and iii) for Ksg,,, can be checked similarly as
above. O

n+3
IZ

By Lemmal6.8] for 1 <n < N — 2, there exists a unique number 2 < k,, < r,, such
that
Tt <p Trig <o T+t forall 1<k <r,.

After relabelling ¢} if necessary, the following results hold.
Lemma 6.13. Let 1 <n < N —2. Then
i+1()—i+/£an for 2R; <i<R,.
Proof. The claim follows immediately from Lemmas [6.1] and [6.6] O

Lemma 6.14. Let 3<n < N. For1<m<n-—2and2 <k < 2r,,, we have
" (kR,y,) = " 2(kRy,) = iR, for some 1<i < 2r,.

Proof. By Lemmas . ! and m we see that the extremal intervals in jlm“ for
0<l<ryare Jp, and Jjp g, .- Moreover, by Lemma , we have

‘ZE(ZRm'i'ijle) “7lm+1 for .] E {07 ]-}
The claim follows. u

Proposition 6.15. For 3 <n < N and 2R, <1 < R, there exists an arc f&i such
that the following conditions hold for all 2R, < j < 1.

i) We have IJ C j{}z C Ko,-

ii) Denote

Tji-j = Hi(Zg,)-
Then we have } } 3 3
Jhi; Il and Ty D T

Proof. First consider the case when ¢ < 2R,,_;. Proceeding by induction, suppose
that the result is true for j < kR, with 1 <m <n —2and 2 < k < 2r,,. Then the

result holds for kR,, < j < (k+ 1)R,, by Lemmas and [6.6]
Note that we have,

Pg)n(ICkRm) 5 jm+2 5 jm—i-? Ujm+2 Ujm+2

2 (kR P (kR
where by Lemmas and [6.14], we have
Tty = T er) 2 T ary 04 T ” D T, U T )
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Hence, there exists an arc I,’CRm C Kkr,, such that
Py (Il,cRm> = jk”;%f,
By Lemmas and we have
Plio Ffn YT, ) = Tt p, [T
Thus, by Lemmas and [6.13, we see that
P o Fim (T, R,) D \7(7;:12) R
and hence, the result holds for j = (k + 1)R,,.
Next, consider the case when ¢ > 2R,,_,. For j < 2R,_1, the result follows by

the same argument as in the previous case. Proceeding by induction, suppose that
the result is true for 7 < kR, ; with 2 < k < r,_;. Then the result holds for

kR, 1 < j < (k+1)R,_1 by Lemmas|[6.1] [6.6] and Lemma [6.10]

Similar to the previous case, there exists an arc Z;, = C Kyg,_, such that

Py (Tin, ) O Tin,_,

and . _
,Pil ° FRn71_1<Il/cRn71> — ‘7(?—:_12)1%71,1_1[_)\61%]'

Let Z&, )R be the connected component of

F(Zhiyr, )\ Vo (A7)
containing I&H)an' By Lemma , we have

P(’,;/il( E§€+1)Rn_1) D ‘-7(712+1)Rn_1[_)\§Rn]'

Thus, the result holds for j = (kK + 1)R,,_;. O

Let : > 2R, be a number given by
i=100,...,0,Gm, A1, - - -, ax]

for some 1 < m < k so that a,, > 0. Denote

m(i):=m, k(@):=k and a(i):= ap.
We extend this notation to the case when i = a; Ry with a; € {0, 1} by letting

m@i) =1, k():=1 and a(i):=a.
Proposition 6.16. Let 1 <n < N andi1=j+ sR; with0 < j < Ry and 0 < s <
R,./Ry. For 0 <1 <s, denote

my = m(lRy), ki :=k(R)) and @ :=a(lR,).
If iy = ky, let ) )
I = F™ NIy,

Otherwise, let

n .__ 7+l
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Then fl” is \O= B _porizontal. Moreover, define

[T — P oo Fo (P [Ri-1
= P O ¢] Fn o} .
l 0 ( 71|Il) |Ig
Then we have
Hilzp = Fl|lgpo Hyo...0 Hyo Hyo Py o F*z, .

Proof. We proceed by induction. Clearly, the result is true for i < 2R;. Suppose that
the result is true for all ¢/ < 7.
First, suppose ¢ = 2Ry, for some 1 < k+ 1 < n. Denote

Tg:=FYZy,) for 0<d<i
By Lemma [6.5}
Hop,,\|ry = Pt o F2t = Pitl o Fo Rt o pn=DRi | (6.3)
By Proposition iv), Dgr—1)r, is A -horizontal in Bf. So it follows from
Lemma B.10] that

-1
Ry—1 _ 1 Ry—1 k
F |F(2rk71)Rk - (P—1|F2Rk+1—1> ol © PO |F(27-k71)Rk‘

Note that A
Hr,—1)r, = H(k2rk—1)Rk = 'P(]f o Fre—1ERk,

Substituting into (6.3]), we obtain

—1
2 _ k+1 1 Rip—1 2
Hopy \|lre =Py oFo <73—1|F23k+171> o F"™ ™" 0 Har,—1)re|1o-

By Lemma [6.2] we have

—1
FRt| g = <P£1\I§k71> o Hpy, _ilzs-

Thus, we conclude:
—1
F _ pk+l 1 k 2
H2Rk+1 |Fo =Py oFo (P—1|F2Rk+1—1> © HRk—l‘Ig © H(27'Ic*1)Rk‘FO'

We can apply the induction hypothesis to decompose H (2re—1)R, into factors of the
form H,. Observe that for
€y = (2Tk — 1)Rk <e< 2Rk+1,
we have )
m(e) =m(e—ey) < k(e) <k and a(e)=ale—ep).
Hence, we can also apply the induction hypothesis to H 1’3@-1’1{6 to decompose them

into factors of the form H,. The claim follows.
Next, suppose that ¢ = a; Ry for some 1 < k < n and a; > 3. Proceeding in the
same way as in the previous case, we obtain (in place of (6.3)):

I:[ih‘o = 735 o Forfte — 73(’)C o F o Fix14 F(akfl)Rk|FO.
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The rest of the argument is identical mutatis mutandsis.
Lastly, suppose that

i:j—l—[al,...,ak]
for some 1 < k£ < n such that

Then
o prk—1 k anRe _ r7k—1 2
H, = H: oPyol = H |1{;0HakRk-

i—ap Ry i—ap Ry

Applying the induction hypothesis to ]:Iak r, and H kol |I§ and arguing as above, we

i—a Ry

obtain the desired result. O

Let G : U — G(U) be a C'-diffeomorphism defined on a domain U C R% For
a Cl-curve I' C U, we define the cross-ratio distortion CrD(G,T') of G on T as the
cross-ratio distortion of

Gr = dghp 0 G o o,
where ¢r and ¢¢ r) are parameterizations of I' and G(I") by their respective arclengths

(see Section [B).

Proposition 6.17. Let 1 <n < N and 1 <1i < R,. Then there exists a uniform
constant v > 0 such that the maps H; and Hgr, 1 o H[l have v-bounded cross-ratio
distortion on Iy, and H;(Zgp ) respectively.

Proof. Consider the decomposition of H; given in Proposition m
Hilzp, = F'|gy 0 Hyo...0 Hyo Py o F*Mz, .
Denote
J =PyoF*™(I3,) and H:=Ho...0Hs;.

To prove the cross-ratio distortion bound for f]i, it suffices to prove it for H on J.
The maps

(Pl \—1. 71 1 ,_ —1. 71 1
b0 = (B ’I&) tly =1, and ¢y := (P71|Z}21_1) R O
give parameterizations of Z} and I}%l_l by their respective arclengths. Denote

Jo:=¢ (J) and Dy = ¢y 0 FH7 g0 gy,
For 3 <[ < s, let
H, ::gbalo[:]lo...ofzfgogbo;
and
J :=hi(Ji—1) and J; = H(Js).
By Propositions and [3.11] there exist a diffeomorphism ¢y : J/ — ¢(J]) and a
constant a; € R such that

Hl(ili') = — (1/}[ ©) h1 e} Hl,1<£lj'>>2.
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By (B.2) and Lemma we see that
CrD(H, J) := CtD(H,, J5) > (H CrD(hy, J;) > . <H CrD(¢y, Jl’)) :
1=3

=2

Note that the diffeomorphisms hy and {¢;};_5 have uniformly bounded second deriva-
tives. Moreover, Propositions and implies that the total length of {J;, J/}i_,

is uniformly bounded. The bound on the cross ratio distortion of H; now follows from
Lemma [B.3] ) )
Now, consider the decomposition of Hg, 1 on Igp :

3 Ry—1 ] 2R
Hp,—1lzn = F7 !y o Hgo ..o Hyo Py o F?M;,

0,Rp—1 0.Rp—1"
where S := R, /R; — 1. The same argument as above implies the bound on the cross
ratio distortion of

ﬁRn—l © H¢_1|I = FR1_1|I(§ oHgo...oHg 4o FRl_l_j|I
onZ := ﬁi(fgﬁrl), 0

Proof of Theorem[0.3. Consider the arcs {jn}R" 1 There exists 2R, < i; < R,, such
that

T ol + 1T | > Wm

for some uniform constant £ > 0. By Proposition , there exists an arc Ig D1y
which is mapped diffeomorphically onto j " by HZ
Recall that the nearest neighbor of Z7 in Z} is given by Let 77 be the

convex hull of Zg U J" . Then

n
Kn—1Rn—1°

(Zs:, NIH\T5 C I3\ I3
Hence, Proposition and Theorem imply
Iy \ Iy

> k|T7).

By Lemma ., we conclude that the two components of j R, L \J R 1 have lengths
greater than k ’JR _1‘ By Proposition [6.15, Hg, _; maps Z r,—1 2 Ly diffeomorphi-
cally onto j R . The result now follows from Proposition [6.17|and Theorem . O

7. UNIFORM C'-BOUNDS

7.1. For unimodal maps. Define

sign(z) := +1 :if x>0
& "1 —1 : otherwise.
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Lemma 7.1. Let f : I — I be a C"-unimodal map with the critical point at c € I.

Then there exists a unique orientation-preserving C”-diffeomorphism hy : I — h¢(I)
such that h¢(c) =0 and

f(x) = f(e) +sign(f"(c))(hy())*.
Consider a C?-unimodal map f : I — I, and let h := h; be the diffeomorphism
given in Lemma [7.1] Suppose that for some K > 1, we have
W (x)
su <
cuer H(y) =

Proposition 7.2. There exists a constant C' > 1 independent of f such that || f||cr <
CK.

(7.1)

Proof. Let f : I — I be the normalization of f,, so that [I| < 1. Let h := h; given in

Lemma . Note that h is h composed with some affine transformation, which does
not affect its distortion. Hence:

Since |h(I)| = O(1), it follows that there exists a uniform constant C' > 1 independent
of f such that ||hl|cr < CK. Since || f'|| = || f'||, the result follows. O

Proposition 7.3. Suppose that the critical orbit of f does not converge to a sink.
Then for any N € N, there exists a uniform constant 7 = 7(K, N) > 0 such that

|f"(c) —c| >7|I| for n<N.

Proof. By conjugating with an affine map, we may assume that ¢ = 0 and f(c) = 1.
Since f(I) € I, we see that there exists a uniform constant C' = C(K) > 0 such that
Il < C.

There exists a uniform constant ¢’ = C’(K, N) > 1 such that for any interval
J C I, we have |f"(J)| < C'|J|. Let J := (—t,t) for some t < 1/C". Observe that
|fm(J)| < C't?* < t. Hence, if f*(0) € (—t/2,t/2), then the orbit of 0 converges to
sink. U

Proposition 7.4. Suppose that |I| = O(1). Then there ezists a uniform constant
¢ > 0 independent of f such that

: -1
irelg W ()] > cK™.
Proof. Observe that |h;(I)|* =< |I|. It follows that |h;(I)| > C|I| for some uniform

constant C' > 0 independent of f. Thus, there exists € [ such that h’f(w) is
uniformly bounded below. The result follows. OJ
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Proposition 7.5. Suppose that f is valuably renormalizable: there exist I' C I and
R > 2 such that v € fE(IY) C I'. If the critical orbit of f does not converge to a
sink, then

(I > plll - for 0<i<R,
where p = p(K, R) € (0,1) is a uniform constant.

Proof. The result is an immediate consequence of Proposition [7.3 0

Proposition 7.6. Suppose that f is twice valuably renormalizable: there exist I* C
I'' € I and Ry > Ry > 2 such that v € ff(I") C I" for n € {1,2}. Let J be a

connected component of
Ri—1

AN RATH]

If the critical orbit of f does not converge to a sink, then we have |J| > p|I|, where
p = p(K, Ry) € (0,1) is a uniform constant.

Proof. Denote I} := fi(I') for 0 < ¢ < R;. By Lemma we may choose I} :=

[f (), fHH ().

For t > 0, suppose that the gap Jy between I} and I with 0 < k < < Ry is
smaller than t. If J,, := f™(Jy) with m = O(Ry) maps onto an interval I} for some
0 <i < Ry, then by Proposition [7.2] we have ¢ =< |I}.

By this previous observation, we may assume, after replacing Jy with Jg, if neces-
sary, that 0.Jy > f* 1 (v). Under fR2=*%1 the point f51(v) maps to the endpoint
ff2(v) of I?. Since

Ill—l—R2—k+R1 N I& = O,
the image Jr, g, of the gap must contain I} \ IZ. Again, by Proposition [7.2, we
have ¢ < |I2|. The result now follows from Proposition [7.5] O

7.2. For Hénon-like maps. For N € N U {oo}, let F' be the N-times regularly
Hénon-like diffeomorphism considered in Section [5l For 1 < n < N, recall that the
nth pre-renormalization of F' is given by

F, = pR"(F) := V"o Ffin o (™)1
and its 1D profile is given by
Jn = IIip o pR"(F).
Additionally, let h,, := hy, be the diffeomorphism given by Lemma

Proposition 7.7. Let K be the constant given in Theorem[6.3. Then there exists a
uniform constant C > 1 independent of F' such that for all 1 < n < N, we have

| fullcr s | Enller < CK  and iéllfn |n! (2)] > (CK) ™.
T&lo
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Proof. The estimate on ||f,||ct is an immediate consequence of Theorem and
Proposition [7.2, The estimate on ||F,|c1 then follows from the fact that F, is a
A1=8)Fn_thin Hénon-like map. Lastly, the estimate on |/ | is implied by Theorem
and Proposition [7.4] 0

8. COMPOSITIONS OF NEARBY MAPS

We first record the following general estimate.

Lemma 8.1. Let d € N. Consider C™Y-maps Hy,Hy : U — U’ and C"-maps
Hy, H, : V — V' defined on domains U,V C R* with Hy(U) € V. Suppose

||E[z — Hi”C’”*1 <0 f07” 1€ {07 1}
Then we have

|Hy 0 Hy — Hy o Hy||cr—1 < 6P(||Hyl|cr, || Hol

Crfl),

where P is a two-variable polynomial of degree r independent of the maps H;, H; for

i€{0,1}.
Proof. Let d; := H; — H;. A straightforward computation shows that
HyoHy= H, o (Hy— dy)
= Hy o Hy + O(| DH; o H||||doll)
= Hy 0 Hy+ dy o Hy + O(||DHy o Hy|l[|dol]).
The result follows. O

For N € N U {oo}, let F' be the N-times regularly Hénon-like diffeomorphism
considered in Section 5l Denote

F,:=U"0 Ffno (U™~ and f, := IIip(F,).
Define
Iy (z,y) := (2,0) and II,(z,y) = (0,y).
Proposition 8.2. Let 1 <n < N. Then for 1 <k < r,, we have
1 = Thp o Fyflors < [|Ey = Fy o yflors < KA,
where K > 1 is a constant depending only on || fu|lcr and b.

Proof. By Theorem [3.6] and Proposition [7.7, ||, o ¥"||cr and [|F,||¢c1 are uniformly
bounded. Moreover, by Theorem iv), we have

|F, — Fy o Iyfjer < AU,
where II,(z,y) := (z,0). The result now follows from Lemma 8.1] O
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9. ROBUSTNESS OF REGULARITY

For N € NU {oo}, let F' be the N-times regularly Hénon-like diffeomorphism
considered in Section [5

Proposition 9.1. There exists a uniform constant K > 1 depending only on ||F||cz=,
Ry and b such that the following condition holds. For 1 <n < N and 0 <k < r,, let

Po € BZH C By and zy= (zo,Y0) = ¥"(po)

Then

1 i i ,

K < | D(mp, o Fn)\E%LH < HDFn\E%LH <K for 0<i<r,—k.
Proof. The upper bound is given in Proposition [7.7} For the lower bound, by Propo-
sition [8.2] it suffices to show that

|fo(zo)] > 1/K  for zg=m,0W"(py) with po € Bit'.

Denote the critical point and the critical value of f,, by ¢" and v™ respectively. Nor-
malize f,, : I — I} to f, : I§ — I’ by conjugating it with an affine map S: I§ — I}
so that the critical point and the critical value of fn are 0 and 1 respectively. Let
By o= = h; be the diffeomorphism given in Proposition |7.1. By Corollary H we have

inf |/ (z)| > 1/K.
zely
By Proposition and Proposition , we see that Tg := S(zg) is contained in
a A*f»_neighborhood of the interval (f¥(1), f**™(1)). Then Proposition |7.3| implies
that |Zo| > 7, where 7 only depends on K and b. The result follows. O

Proposition 9.2. There ezists a constant L > 1 depending only on ||Pol|cr such
that the following holds. Let K > 1 be the constant given in Proposition |9.1. For
1<n <N, letpy € By. Then

(LK") "'\ < Jac,, F' < LK"AY"9"  for 0<i<R,.
Proof. Let zy := ¥"(po), and define
BV = (DU™) (B,
By Theorem |3.6, we have
”(\I/n)_l o®dy — Id ||Cr < )\(1—§)Rn

Consequently,
Jac,, F"
aCp, L

L' < .
|DFi |Eh”H||DFZ’E§6"H

Plugging in the above inequality and the estimates in Proposition[9.1]into the forward

regularity condition for py along E}:", the result follows. 0
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Theorem 9.3. Fiz § € (£,1) such that bd < 1. Suppose that

LK NN <1, (9.1)
where K and L are constants given in Propositions and respectively. Let
C = LKNV.

Then the following holds.

For m € NU {oo}, suppose that Fy is (m + 1)-times topologically renormalizable
with return times of b-bounded type. Then F has N + m nested (C,J, \)-reqular
Hénon-like returns.

Proof. Proceeding by induction, suppose that for N < M < N + m, the map F' has
M nested (C, 0, A)-regular Hénon-like returns
{(F", 0" - By — By)}nls.
By Theorem , F has a (C, 4§, \)-regular Hénon-like return
(Pl oML BRltt — BT,
Let po € BY'*! and
v — v ]’L
Epc{h = (DY) 1<E\%JV/fil(zoo))'

By Propositions and po is Ryryi-times forward (LK, &, \)-regular horizon-
tally along EP . and pg,,,, is Ry1-times backward (LK™, &, A)-regular horizontally

along EI}’LRMH‘ By Propositions [A.13] and [A.14} it follows that py is Rpsyi-times
forward (C, 9, A)-regular (vertically) along Ej , and pg,,,, is Rar1-times backward
(C,d, N)-regular (vertically) along E;RMH' O

10. UNIFORM C"-BOUNDS

Let F' be the diffeomorphism considered in Section [5] Suppose that N = oo, so
that F' is infinitely regular Hénon-like renormalizable. For n € N, denote the nth
pre-renormalization F' and its 1D profile by

F, =pR"(F):= V"o Ff" o (U™)~!' and f, :=p(F,)
respectively.
Consider the arcs
Ty = ()11 x {0}) = 0 By 5 v
and I := F(Z}) for i € N. Let {7} be the collection of arcs given in (6.2).
Recall that for 1 <m <n;0<k < R,/R,, and 0 <1i < R,,, we have
Jo =1y, Jpg, CT" and  Tlyg, = ﬁi(jkan)' (10.1)

Moreover, {J7"}! is pairwise disjoint by Lemma
The map
b0 = Polgy : Ig — I
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gives a parameterization of Z} by its arclength. For n € Nand 0 <1 < R,/Ry, let
Jﬁ*—il = Qb()(jf;h)

Observe that {Jﬁgl}lz"o/ =1 s a pairwise disjoint set of intervals contained in R.
Moreover,

St =Thpo FX(Jy™) for 0<k<r,. (10.2)

Let v C T be C'-curves in R%. We say that v is commensurable with T if |y| < |T|.

Proposition 10.1. Let n € N and 0 < ¢ < R,. Then any arc *7::1;}%” for some
0 <k <ry,, or any component of

rp—1

n n+1
TN\ Tk,
k=0

is commensurable with J. Consequently, there ezists a uniform constant p € (0,1)

such that
Rp—1

> 1T < 0.
i=0

Proof. By Lemma [7.7] and Proposition [8.2] it follows that
£ = (£ lleo = OA9%), (10.3)

Denote the critical value of f,, by v™. Then by Corollary [6.4 and Proposition [7.3] we

see that each component of
2rp—1

I\ U e

is commensurate with J§. Thus, by (10.2)) and (10.3)), this implies the result in the
case i = 0. The case 0 < i < R, then follows immediately from Theorem and
(10.1). 0

The map
(b*l = Pfllf}zl_l :1113171 — ]11%171

gives a parameterization of T 1 by its arclength. Denote

Ri—1 = o1 ( 17;21—1) for 1<I<R,/R;.

Observe that {Jﬁ%rl}l]z‘l/ ™ is a pairwise disjoint set of intervals contained in R. Define

Rn/R1—1 Rn/Ri1—1
o= J JmacI’ and yp= |J Jh CX (10.4)
=3 =3

Proposition m gives the following decomposition of H R,—1°

| _ pRi—1 ] ] 1 2R,
HRn—1|I{)L—F |150H%_1O...OH30730 ol |I(’f
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where for 3 <1 < R,,/R;, we have
5 . ~1
H :=Py"oFo <P£1|fln) o FR1_1|I(}.

Define
Rn/Ri—1

= |J Iciu,cRr:
1=3
Lemma 10.2. Forn € N and 3 <1 < R, /Ry, the map P_; restricts to a diffeomor-
phism from I} to Jjp _, (and hence, also from I'" | to 4", ). Define
921 =Ty © (I)—l @) (P—1|FT_Ll)_1-
Then
19”1 |-epllor = O(Y%).

Proof. The first claim follows immediately from Proposition [6.16
Observe that m; is the largest integer such that

n my
{0} U Jjk, 1 C Jle—r
Moreover,
n ’l”hl+1 ﬁ’Ll-‘y-].
ri-1 C ooy and  0¢ J7p .

By Proposition [6.16) Z;* is A1~ _horizontal. Additionally, by Proposition m,
we have

dist (0, I") =< p™
for some uniform constant p € (0,1). The estimate on G"; follows. O

Let G : Z — J be a C'-diffeomorphism between two C'-curves Z, J C R2. Define
the zoom-in operator Z by

Z(G)(t) = |T|7" - 97 0 Goor(IZ]t),
where ¢z : [0, |Z|] — Z is the parameterization of Z by its arclength (and ¢ similarly

defined). Note that Z(G) : [0,1] — [0, 1].
This rest of this section is devoted to proving the following theorem:.

Theorem 10.3. There exists a universal constant K > 0 such that for alln € N
sufficiently large and 1 < 1i < R,,, we have

|Z(Hilzg)ller < K.

Define

q(7) := sign(z)z?.

Denote I} := q7*(I}}). For n € Nand 0 <1 < R,/Ry, let Jjy = q '(Jjy,). The
proof of Theorem [10.3| relies on the following key result.
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Proposition 10.4. Let n € N. There exists a C"-diffeomorphism h™ : Il — I} with
I(R™)H ler = O(1)
such that for 1 <1< R,/R;, we have
g0 0 Hir, 0 ¢y Iy = (a)' o ') o o (a5 0 h3) o (aj o ),
where fz? : J('ltl)Rl — jﬁzl and qj' : jﬁzl — Jig, are diffeomorphisms given by

illn = lvln’Jn

(I-1)Rq

and q) := qule‘ (10.5)
Lemma 10.5. Forn € N and 3 <[ < R,/ Ry, we have

Py o Fo(Pllg) o FF  ogg !y |
where hy and qf are as defined in (10.5).
Proof. Define 4% := q~'(7), where 7} is given in (10.4). By Lemmas and [10.2]

there exists a C"-diffeomorphism 9", , : v, — 7§y with
H(wﬁl,o)ilﬂcr = 0(1)

= Q? © h?(l‘),

such that
Pém oFo (IDj o G711|jln =4qo ¢ﬁ1,o|il"a

where G™,(z) := (x, ¢g",(x)). Precomposing with P_; o Ff1=1o ¢51|J8 \n, 8ives the
- 1

desired result. O

Lemma 10.6. Let ¢ : U — ¢(U) be a C"-diffeomorphism defined on a domain
U C R. Then there exists a uniform constant

K = K(|[¢ller, 19"/¢lco) 2 1

such that for any interval I C U, we have
1Z(¢]r) —1d|ler < KII].
Lemma 10.7. For1 <i <mn, let ¢; : [0,1] — [0,1] be a C"-diffeomorphism such that

> ll¢r —Id|ler = O(1).
=1
Then

[¢no...0d1llcr = O(1).

Proof of Theorem[10.3. For 1 <1 < R,/Ry, let 1 < my < n be the largest integer
such that

{0}UJik, C J}?;TZ.
Denote L :={1 <l < R, /Ry | m;y =m}. Then [ € L7, if and only if

Sl C IR and Jfp NIt =@
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Note that
n
ULy ={1<l<R.,/R}.

m=1
Let Up be the component of j;gm \ jgij:l contained in R™. Applying Proposi-

10.6[ to Z (q|UgL ), we see that

> 1Z(a) —1dfler = O(p™)

leLn,
for some uniform constant p € (0,1). The result now follows from Proposition (10.1}
O

tion [10.1) and Lemma

Proposition and Lemmas [10.6] and [10.7]

Theorem 10.8. For all n € N sufficiently large, we have
IR*(F)ler = O(1).

Proof. By Theorem and (6.1]), we see that
ITlip 0o R™(F)||cr = O(1).
U

Since R"(F) is a A(!=®%=_thin Hénon-like map, the result follows.

11. EXPONENTIALLY SMALL PIECES

Let F' be the infinitely regular Hénon-like renormalizable diffeomorphism considered
in Section [10]

Recall that for a > 0, we have

Hiy, =Py o Fh,

where Pg : By — 1 is the projection map onto Z;. Any integer ¢ > 2R; can be
(11.1)

uniquely expressed as
i =Ry, + ... +aR,,,

where 1 < ay, < R, for 1 <k <, and 2 < q; < 2r,,. Define
H, = FBn o H;L;R@ 0...0 HZZRM o Pyt

Denote 1m(i) := ny and k(i) := n;. Then
(11.2)

7;6%(1') oH; = H; o pgf(i)_
For convenience, we let Ho = 1d
Lemma 11.1. Let 2R, <t < R,,. Then
1 0 Py — F'lgyl|co < KmAU-9n)

for some uniform constant K > 1.
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Proof. By Theorem and Proposition [7.7] |(¥™)*!||cr and || Ep|/cr are uniformly
bounded. Moreover, by Theorem iv), we have

| — Fy o Iy || or < A9 m, (11.3)

where I, (z,y) := (z,0).
Let ¢ be given by (L1.1]) with n; < n. Note that

Fhm = (U™)to F, o W™

and
Hr,, o Py = Fmo Py = (W)™ o (F,, oII;) 0 U™,
Moreover,
flflaanl = ((\I’nl)_l o Fsll_l o \Ifn’) o 7:[Rnl
and

Faanl = ((\I]nl>_l 0o F’sll_l o \Dnl) o FRnl
By Theorem 3.6 (IT.3) and Lemma 8T} we obtain
||7:[QZRW o P — Fultnt |gul|co < J\(1—8) R,

for some uniform constant K > 1.
Proceeding by induction, suppose that

L A ] R
where 1 < 7 < [ and

Li+1

bjp1 = Qnyy Ry 000+ ap Ry,

Write
7:[,-]. = (U")to FS;j_l o (Fnj o Hh) oV o 7:[ij+1
and
Fiilgy = (U)o By 0 F,, 00" o Fiiti|g,.
Applying Lemma [8.T] the result follows. 0
Lemma 11.2. There exists a uniform constant p € (0,1) such that
Ryp—1
> diam(H,(T3)) = O(p").
=0

Proof. For 3 <[ < R, /Ry, consider the curve fl” C U_; given in Proposition m
By (11.2)), we have

“ . —1
Hin(T) = F(Z7) = Fo (PLilg) o FP (T ),
Thus, {Hiz, (Z3)} /™ is the image of {T%, /B =1 under

1
o FRl_l,

G, =Fo (73£1|rgl>
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where
Rn/R1—1

o= J I
=3

Since I'™; is uniformly horizontal, ||G,|[c- = O(1). The result now follows from
Proposition [10.1 0

Theorem 11.3. There exists a uniform constant p € (0,1) such that for n € N, we

have
Rn—1

> diam(F*(Bg,)) = O(5").

i=0
Proof. Choose 1 < m < n to be determined later. By Lemma [11.1] we see that for
1 <1< R,/R,,, we have
diam(F'Fm (B2 ) < diam(Hyg,, (Zg)) + KA a0,
Thus, by Lemma [11.2] we have
Rn/Rm—1 R
> diam(FT(By, ) = O(p") + KA,
1=0 m
For m sufficiently large, the expression on the right is bounded by O(p}) for some
uniform constant p; € (p, 1).
Let i = ap + a1 Ry + ... + a1 Rpp—1 + IR, with 0 < a; <7 for 0 < j < m and
1 <1< R,/R,,. We can write
Fi—ZRm — [ o (\Ill)_l o F1a1 ° \Ill o...0 (\Dm—l)—l o ;:Lri—ll ° qjm—l.
By Theorem [3.6] and Proposition [7.7, we see that
HFiflRmHC1 < K™

for some uniform constant K > 1. Hence,

Rn—1 Ry /Rm—1
> diam(F' (B, )) = Rp K™ ) diam(F" (B, ) = O(R, K™p}).
=0 =0

For n/m sufficiently large, the expression on the right is bounded by O(p™) for some
uniform constant p € (p1,1). O

12. REGULAR UNICRITICALITY

Let F' be the infinitely regular Hénon-like renormalizable diffeomorphism considered
in Section [I0] Recall that the renormalization limit set of F' is given by

oo Rp—1

A= U B

n=1 =0
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By Theorem B, Ag supports a unique invariant probability measure p given by the
counting measure:

w(B')=1/R, for mn,i€N.

Proposition 12.1. With respect to j, the Lyapunov exponents of F on Ag are 0 and
log A, <0 for some A\, € (0,1).

Proposition 12.2. For anyn > 0, there exist uniform constants N, € N and C,, > 1
such that for p € By and E, € IPZQ) with n > N,, and k > 0, we have for all i € N:

CAE < |DFY|, || < CyA™ (12.1)

and
C A < Jac, (F) < CpAl " (12.2)

For p € B, define
B = D(\I/")*l(E\%Z(p))
and

E} = D(U") " (EY. ) = D(®0)  (E5 )

(p)
Theorem 12.3. For any € > 0, there exists L. > 1 such that for all n € N, the nth
Hénon-like return (Ffn 0™ is (Le, e, \,)-regular.

Proof. Choose n € (0,¢). It suffices to show the result for n > N, given Proposi-

tion Let po € By. By Proposition and (12.2)), we see that py is R,-times
forward (O(1),7, A,)-regular horizontally along E! ; and pg, is R,-times backward

(O(1),7, A,)-regular horizontally along E;}Rn. The result now follows from Proposi-

tions [A.13l and [A.14l O
Recall that by Theorem 4.7, we have

() Bk, = {vo}-
n=1

Theorem 12.4. The orbit {v,, tmez s a reqular quadratic critical orbit.

Proof. By Theorem [12.3| v is infinitely forward and backward (L.,e, \,)-regular
along B = E3° = B for all € > 0. Thus, {vy}mez is a regular critical orbit. The
quadratic tangency of W% (vy) and W€(vg) at vg is given in Proposition [3.4iii). [

12.1. Critical cover. Let § = £ for some ¢ € (0,1). Choose n € (0,g). Proposi-
tion and Theorem imply that by replacing F' on Q with F® on Bj* for
some ny € N sufficiently large, we may henceforth assume the following.

e The map F' is n-homogeneous: for all p € 2 and E, € IP’?D, we have
)\}f" <||IDF|g,|| <A, and X\ < Jac, F < A,i_”.

e For n € N, the nth Hénon-like return (£, ¥™) is (1,7, \,)-regular.
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Denote ¢’ := (14 &)e > e. For z = (a,b) € B} and t > 0, let

V.(t) :=la—t,a+t] x Ij.
If Vn(p)(t) C By for some p € By; t > 0 and 1 <n < N, then we denote

Vo (t) = (") 7 (V) (1))

We now show that F'is (0, ¢)-regularly unicritical on Ap. First, we need to define a
suitable cover of the iterated preimages of critical value vg. Forn > 0and 1 < i < 1,
let C™ be the connected component of

/Rn
Br, NV, (™)
containing v_g,_ . Define

Cl':=F'(C") for 0<j<R,,

and
NRn+1*1
N . _ n+1
o= U e
n=0 =0

Note that {v_;}; ¥ ¢ CN,
Proposition 12.5. We have
diam(C]") < )\ZR”.

Consequently,
Ry

cVc (D).

i=1

Proof. By Theorem iv), By is a /\,(}_aR”—thick strip around the curve Ff(Z7),

which is vertical quadratic in By with the vertical tangency )\Ll_ﬁ)R"—close to vg. By
Proposition [4.6] we have

Vo n, ) NV, (A7) = 2.

By Lemma the connected component I'" of the curve
Ir, NV g, ()\ZR")

is A™tn_horizontal in B}. Consequently,

diam(C™) = [T < A7\ fn
Then by n-homogeneity of F', we have

diam(C?") < A~ diam(C")

for 0 <17 < R,,. The result follows. OJ
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12.2. Forward regularity away from the critical cover. For all p € Ar \ {vp},
there exists a unique number d, > 0 such that p € Bg” \ng“. Define depth(p) := d,.
If p = v, define depth(p) = oco. Let pg € Ap. For N € N, let 0 < S < N be the
largest number satisfying

d = depth(pg) > depth(p;) for 0<1i<N.

Define the valuable moment and the valuable depth of the N-times forward orbit of
Do as

vimn(py, N):=S and vd(py, N):=d
respectively.

Lemma 12.6. Let py € Ap and N € N. Denote S := vin(po, N) and d := vd(pg, N).
Write

S:SO+81R1+...+Sde,
where 0 < s; < 1r; for 0 <1 <d. [fpo\Cd, then for 0 <n <d and 0 < s < s,, we
have

PS,_1+sRn g Vgo()\iR") where  S,_1 =89+ s1R1+ ...+ S 1R,_1.

Proof. If gy € A FﬂV&()\gR”), then it follows from Theorem iv) and n-homogeneity
that ¢_p,,, € C""'. Thus, if pgy € V,;;()\iR”), where S’ := S,_1 + sR,, then
P—Roi1+s € C"T Therefore,

+1 d
po€CR, ¢ CC"CC

This is a contradiction. [

Lemma 12.7. Denote .
ei=(14+8)c for i>0.
Let qo € By and Ey, € P2 . If
L(Eq, Ept) > XM,

then
R, Ry,
|DF ]Eq0|| > )\ff )

Moreover, if qr, ¢ V;‘O()\ZoR”), then
L(E

v,n e1Rn
an,Ean) > AT

Proof. The estimate on || DF|, || follows immediately from the (1,7, A,)-regularity
of the Hénon-like return (F'%» ¥™). The estimate on £(E, Eg) follows immedi-

dRp )

ately from Lemma O
Lemma 12.8. Forn, k € N, let qo € By*" and E,, € P2 . If
Ry > &Rpy,  and  L(Eg, EXF) > Xk,
then
IDF" g, || > X[ and (B,

dRy

v,n Ry
E‘IRn) = /\# :



52 SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG
Proof. Observe that
iRy > &Ry = ERp k-

So
)\'F]Rn < )\ERn+k
1 .

By Theorem iii), we have
vnt+k  po,n 1-7)Rn,
L(EZTR oy < \(mD

n
Hence,
L(Egy, EZ™) > Noftmtt — N7 B0 o Nt \(A=DFn — )\ZR”.
Since depth(qg,) < n, we have qg, ¢ V). (A1) by Proposition 4.6 The result then
follows from Lemma [.1] O

Theorem 12.9. Let py € Ap and N € N. Define

E, == D(F' o ®;")(ES") for i>0.
If po & C* with d := vd(py, N), then

IDEN|, || > A,

Proof. Write

S = Vm(p(), N) = SoR() + ...+ Sdianin
with 0 < s, < r, for 0 < n < d;, < d. Using Lemmas and [12.7, and arguing
inductively, we see that

& in in V,qin R in

IDFS|5, | > A7, ps ¢ Vi (A Ay and (B, ERER)) > A,
Let
T:=N-S5= toRQ + ...+ tdouthout

with 0 <t, <r, for 0 <n < d,: <d. If doy > d;,, then

Ps ¢ Vdout( anout) C Vg(;n ()\iRdin) and 4<Ep5, Ev dout)) > )\ZRdout )
Thus, by Lemma [12.6] we have

|D Ftdouthout|E | > /\itdouthout'
Ps

Denote
T, =toRo+...+t,R, and 0<n <dy.
Note that T, < R,+1 < bR,.
If dow < din, let d = dout, and denote t4 = sq, . Otherwise, let d < dyy be the
largest integer such that ¢t; > 0. Proceeding by induction, suppose for some n < d
with ¢, > 0, we have

IDEN T > XN and - L(E EpitE)) > AT,

PN-Tn’ —pN-T

where k£ > 0 is the smallest number such that ¢, > 0.
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If R, > &R+, then Lemma [12.8 implies that

A

IDF" g > A and - L(E By ) > Al

PN-T, 17 “PN-T, _
If R, < €R, 1k, then by n-homogeneity, we have
HDFN|EPOH > )\EllJrn)TnHDFNfTHk‘EpOH > )\ian)\i(Nmek) > )\iN_

13. RENORMALIZATION CONVERGENCE

13.1. For unimodal maps. Let r > 2 be an integer. Consider a C"-unimodal
map f : I — I with the critical value v € I. For an integer 0 < s < r and a
number ¢ > 0, the t-neighborhood of f with respect to the C*-topology is denoted
M*(f,t). For K > 1, we say that f has K-bounded non-linearity if holds for the
diffeomorphism h := hy given by Lemma . Let 4" be the space of all normalized
C"-unimodal maps, and let U"(K) the set of maps in " with K-bounded non-linearity.

Suppose f is valuably renormalizable: there exists an R-periodic interval I* C I for
some integer R > 2 such that f#(I') > v. Then the corresponding renormalization
type 7(f) is given by the order of points in {f*(v)}f; ' C I. Note that there is
only one renormalization type for the period-doubling case R = 2. If f is N-times
renormalizable, then its N-renormalization type is given by

() = [r(f)- - 7 (Rap ()]
Lemma 13.1. Let f : I — I be a C*-unimodal map with the critical value v. If
f is topologically renormalizable with return time R > 2, and not every R-periodic
subinterval I' C I of f contains a sink, then f is valuably renormalizable. In this
case, the minimal R-periodic interval containing v is given by I' = [fE(v),v].

Lemma 13.2. For an integer b > 2 and a constant K > 1, there exists a uniform
constant ty = to(b, K) > 0 such that the following holds. Let f € U (K) be twice
valuably renormalizable with return times of b-bounded type, and suppose the critical
orbit of f does not converge to sink. If f € M (f,t)NU2 with0 < s < r andt € [0, 1),

then [ is valuably renormalizable with 7(f) =7(f). Moreover,

Rin(f) — Rin(f)|les < Ct,

where C' > 1 is a uniform constant depending only on b and || f|

Cs+1.
Proof. Let R; for i € {1,2} be the return times of the renormalizations of f. By
Lemma [13.1] we have
f(1) < A1) < (1) < i) < f2R1) < (1) < 1
Moreover, by Propositions [7.3] and [7.0] there exists a uniform constant n =
n(b, K) € (0, 1) such that the components of
2R,

I\ | J i

i=—1
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have length greater than n. The renormalizability of f now follows immediately from
Lemma |13.1] Then Proposition [7.6/ implies the claim 7(f) = 7(f).
By Lemma 8.1} we see that

Proposition implies that Rip(f) is a rescaling of ff by a uniform factor p =
p(b, K) € (0,1). The result now follows. O

Consider the full renormalization attractor 2l contained in the space 4 of analytic
unimodal maps. For an integer b > 2, the compact invariant subset of 2 consisting
of all infinitely renormalizable unimodal maps with return times of b-bounded type
is denoted 2y,.

The following is a consequence of the fact that 2y, is a hyperbolic attractor for the
renormalization operator Rip acting on 43.

Lemma 13.3. Let r > 3 and N € N be integers, and let K > 1 be a number.
Suppose f € U(K) is N-times valuably renormalizable. Then for any f* € Ay with

™w(f) = 71n(f"), we have:
IR (f) = Rin(f)ler = Co"llf = frller for 1<n<N/2,

where p = p(b) € (0,1) is a universal constant and C' > 1 is a uniform constant
depending only on b, K and ||f||c-.

13.2. For Hénon-like maps. Consider a C"-Hénon-like map F' : B — B. For
K > 1, we say that F has K-bounded non-linearity if II;p(F') € U"(K). For 8 € (0, 1],
let L7 be the space of normalized S-thin C"-Hénon maps, and let HL5(K) be the
set of all maps in 5’)22 with K-bounded non-linearity.

Proposition 13.4. For an integer b > 2, let ¢ € (0,1) be a sufficiently small
constant such that bé < 1. Then for K > 1, there exists a uniform constant
Bo = Bole, K, || Fllcr) € (0,1) such that the following holds. Let F' € $HL5(K) with
B < Bo, and let f = Iip(F). If F is twice Hénon-like renormalizable with return
times of b-bounded type, and the orbit of the critical value of F' does not converge to a
sink, then f is valuably renormalizable. Conversely, if f is twice valuably renormaliz-
able with return times of b-bounded type, and the critical orbit of f does not converge
to a sink, then F is (1,¢e,3)-reqular Hénon-like renormalizable. In either case, we
have

ITip 0 R(F) = Rin(f)llor1 < B°.

Proof. Choose (3, sufficiently small such that we have C35 < p, where C' > 1 (depend-
ing only on K and ||F||cr) and p € (0,1) (independent of F') are suitable uniform
constants. By Lemma [8.1 we have

| f* = Mip(F*)||grs < ||F* = FFoIly|jerr < B¢ for 0<k<b?  (13.1)
where I1j,(z,y) := (x,0).
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Suppose that F'is twice Hénon-like renormalizable. Let
{(F", 0" By — By}

be the Hénon-like returns of F. Then by Theorem we see that {(FF» U")}2_ is
(1,g, B)-regular. Note that the critical value of f is given by 1. Let vy € B2 be the
critical value of {(Ff», ¥")}2_, as defined in Section [3] Then by Theorem [3.6]iv), we
see that

|7n(vo) — 1| < BL=.

We conclude from Proposition and that f is valuably renormalizable.

Conversely, suppose that f is twice valuably renormalizable: for ¢ € {1,2}, there
exist R;-periodic subinterval I* 3 1 of f. Arguing as in the proof of Lemma, , we
have f2f1(1) € I' and the components of

2R,
o ro
i=—1
have lengths bounded below by some uniform constant n = n(b, K) € (0,1).
For 0 < @ < Ry, let I! be an interval that compactly contains f*(I'), and the
components of I \ f/(I') have lengths commensurate to 3°. Define

V= jzz-l X 1, (B).
By (13.1) and the previous observation, it follows that we have F(V;) € Vi1, and
F(Vlel) c ‘/E)
For py € Vj, let
v, . —Rq h
Evt = DF-R(BSh ),
By Lemma we see that DF'(EY") is B =-vertical for 0 < i < Ry. It follows

that there is a genuine chart ¥ : Vy — W(V;) that rectifies E;j’l for p € Vy to genuine
vertical directions such that

|94~ 1d or < 8=,

It follows immediately that (Ff1 W) is a (1,¢, 3)-regular Hénon-like return.
Finally, by Proposition (7.3, Rip(f) is a rescaling of f® by a uniform constant
p € (0,1) depending only on b and K. The last inequality now follows from ((13.1). O

Let F' be the infinitely regular Hénon-like renormalizable diffeomorphism considered
in Section [10 For n € N, denote

A

F,:=R"(F) and fn = H1D(Fn).

By Theorem iv) and Corollary , there exists a uniform constant K > 1 such
that F, € 95 (K) with 3, = A1 By replacing F with Fo gm0 for some
sufficiently large ng € N, we may assume that [, is less than the value £y given in
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Proposition m Then f, is valuably renormalizable for n > 0. For k € N U {oo},
define the k-renormalization type of F,, as

Tk(pn> = [T(]En)v T(fnJrl)v st 7T(fn+k71>]'
Proposition 13.5 (Shadowing Lemma). For N € N, there exists ny = n1(N) € N
such that for alln > nq, the map f, is N-times valuably renormalizable with Tx(f,) =

Tn(Fy). Moreover, we have
| fuin = Rip(f)llor—s < CEAU9E for 1 <k <N
for some uniform constant C' > 1.

Proof. The case N = 1 follows from Proposition|13.4. Proceeding inductively, suppose
that the result is true for all 1 < k < N. In particular, we have

[ fosnot — REL(F) | < CN-INA-2Rn,

Choosing n; < n sufficiently large, it follows from Lemma and Proposition
that f,,n_1 and RY;(f,) are both valuably renormalizable, and

T(farn-1) = (R ' (fa).

Hence, f, is N-times valuably renormalizable, and

7-N(fn) = TN(Fn)'

For m € N, Proposition implies that
aner - RlD(fnerfl)HCT—l < AUt
Applying Lemma 0 < k < N times, we obtain
IR (farm) = RS (farm-1)ller-1 < CEAUZ o,

Thus,

N-—1
| fnen = RIS (Fller— <) IRE (fasn—t) = RES (Fu o))l o
k=0

N-1
< Z CF\A=) RNk
k=0

< O(CNAU=2n),
O

Proof of Theorem D. Statements i) and ii) are given by Theorem . Statement iii)
is given by Theorem [10.8
Suppose r > 4. Let f* € 2, so that

Too(f") = 7oe(F) = [7(fo), 7(f1), - -
Denote [ := Ry (f*) for n > 0.
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Consider the constants C' > 1 and p € (0,1) given in Lemma [13.3] Choose N € N
sufficiently large so that Cp™ < p < 1. Let n; = n;(2N) € N be the number given in
Proposition [13.5, Then for all n > ny, we have

1fwinw = Fapnllor= < I faew = Rip(f)ller1 + IRIp (fa) — Rip(£)lers
< O™ + pllfo = fillor
<P fn = Filler,

for some uniform constant g’ € (0, 1). O

APPENDIX A. QUANTITATIVE PESIN THEORY

Consider an orientation preserving C”-diffeomorphism F': Q — F(Q2) € Q satisfy-
ing || F|lcr = O(1). Let A\,e € (0,1). Assume & < 1.
Let po € QY and E, € Pf,o. For m € Z, decompose the tangent space at p,, as
2 v L v
]P)pm - (Epm) @ Epm'
In this decomposition, we have

Dy 7= {cm @J ’

where «,,, 8, > 0 and (,, € R.
For some M, N € NU{0,00} and L > 1, suppose for s € {r — 1, —r}, we have

LA™ < (g a1)Bo - By S LAV for 1< n <N,
and

LA <o a ) Bop.. . oy S LA™ for 1<n <M.

Then we say that py is (M, N)-times (L, €, \)-reqular along E .

Proposition A.1. For —M <m < N, let L, , > 1 be the minimum value such that
pm s (M +m, N —m)-times (Ly,,, €, \)-regular along E . Then

L, < L =™
Theorem A.2. For —M < m < N, let
Ly, = LN >0 and U, = [y, 1] X [, 1] C R?

Then there exists a chart

®pm : (Z/{p'rrwpm) —> (Upm7 O)
such that B
105 | or = O(LA™), D&, (EY )= E§’,

oFly, o @;ﬂi extends to a globally defined C"-diffeomorphism
E,. : (R*0) — (R*0)
satisfying the following properties.

and ®

Pn+1
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i) We have ||F;:H|or = O(1).
i) The map F,,, is uniformly C'-close to
DoF,. = Ay, — {“é” bo} ,
with
by, < A8 and  a,, > ).
ii) We have
Fpm(x7y) = (fpm (CC), epm(‘r7 y)) for ('r7y) S RQ’
where f, : (R,0) — (R,0) is a C"-diffeomorphism, and e, : R*> — R is a
C"-map with e, (-,0) = 0.

The construction in Theorem is referred to as a linearization of F' along the
(M, N)-orbit of po with vertical direction E} . For 0 < n < N, we refer to U,,,
o, and F),  as a reqular neighborhood, a reqular chart and a linearized map at py,
respectively.

Proposition A.3. For —M <m < N, we have
diam(U,,,) =< L~IX™,

Lemma A.4. Consider the coefficients {am,, by }_ \; given in Theorem ii).
Then for all0 <n < N:

bo .. by >L N and ag- . a,q < LA
and for all0 < m < M:
b by > LTI and o, a < DT
For 1 <n < N —m, we denote
B o=F, ., ,°..0F  oF,.

The following result states that restricted to the regular neighborhoods, iterates of F’
are nearly linear.

Proposition A.5. For any constant k > 0, the values {l,, }__,; in Theorem
can be chosen sufficiently small so that the following holds. Let —M < m < N and
—M —m <1 <N —m. Suppose that ¢pii € Uy, for i € [m,m + 1] NZ. Write
Zm =Py, (qm) € Up,.. Then for all v € R?, we have

ID.,.F,, (v) = DoF,, (v)|| < k[ DoF, (v)]|
and

1Dy, F'(v) = Dy, F (v)|| < k|| Dy, ' (v)]-
Moreover,

! !
Jac,,, Fpm Jacqm F

1—-k< ,
Jaco I 7 Jacy,, F!

<1+k.
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Let —M <m < N. For ¢ € U, , write z := @, (q). Denote
h.— Pp—l h
EY" = D@ (B,

By the construction of regular charts in Theorem vertical directions are invariant
under F":
ie. DF(E])=FEp, for qel,,.

Note that the same is not true for horizontal directions. However, the following result
states that they are still nearly invariant under F'.

Proposition A.6. Let —M <m < N and —M —m <1 < N —m. Suppose that

Gmyi € Up,, ., for i€ mm+INZ.
Let
El = DFY(E! ).
Write
Zm = (T, Ym) = Pp, (¢m) and EQmH = DFIﬁm(Egm) = D¢Pm+z(Egm+z)'

Then we have
L(EL B, £(Ey,, By )< Klynal'™
for some uniform constant K > 1.
For n € N, denote
Upo = [ AT g A o] X [l o] -
The n-times truncated regular neighborhood of py is defined as
U = ) (U32) C Uy, (A1)

Lemma A.7. For 1 <m < M, we have

F'U, ,)CU,, ., for 0<i<m.
Moreover, for 1 < n < N, we have

F'ULr) cU, for 0<i<n.

Proposition A.8. Let qo € U, and E}I’O € IP’gO. Suppose for some 0 < n < N, we
have g; € Uy, for 0 <i <n. If
v:=|DF"|z || < LT\,
q0
then
L(EY EY) < LAy 4+ LAU=Om,

q0’
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Proposition A.9. Let qy € U, and Ego € Pgo. Suppose for some 0 < m < M, we
have g_; € Uy, , for 0 <i < m. If

pi= IDF"|gy || < A0,
0

then B ~ i
L(EM BNy < LA™ (1 4 p).
Let
E:D—-T'D
be a unit vector field on D C ). Define
DF(&(p)) 1
DF.(&E)p) = == € Tp ) F (D) for peD.
O = prEp)) € ot P)
Let
vV:B—> B
be a chart with D C B. For t > 0, we say that & is t-vertical in B if
L(DVY(E(p)), B
( (E®) ‘;’,ﬁp))gt for peD.
L(DU(Ep)), EY. )

For —-N <'m < N, define & U, — T*(Up,,) to be a C"~'-unit vector field given
by
& (q) € E] for qel,.

Proposition A.10. Let Dy C Uy, and 0 < n < N. Suppose
D; = F' (Do) CU, for 0<i<n.

Let £ : D,, — TYD,) be a C™*-unit vector field. If € is t-vertical in U, for some
t > 0, then we have

IDF™(E) = € [pyller < (14 8)|E]jorr LA™,

Proposition A.11. There exists a uniform constant 6 > 0 depending only on || F||cr
such that the following holds. Let F : Q — F(Q) be a C"-diffeomorphism such that

|F = Fller =6 < 6.

Moreover, suppose that py is also N-times forward (L, €, \)-regular along E; under F.
Let € : D, — T'(D,) be a t-vertical unit vector field considered in Proposition
with t < LA™, Then we have

IDF.™(E) — DET™(E)||err < ||Eller 1 LA,

If N = oo, then Proposition implies that £ is the unique direction along
which pg is infinitely forward (L, e, A)-regular. In this case, we denote B = E),
and refer to this direction as the strong stable direction at pg. Moreover, we define

the local strong stable manifold at py as
oe(P0) = @,/ ({(0,y) € Uy, }),
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and the strong stable manifold at py as
W*3(po) :={q € Q| F"(q) € Wi (pmm) for some n > 0}.

If M = oo, we denote £} := EZ’}O, and refer to this direction as the center direction
at pg. Moreover, we define the (local) center manifold at py as

Wc(po) = (P;Ol({(l‘,()) € Upo})'

Unlike stable manifolds, the center manifold at an infinitely backward regular point
is not unique. However, the following result states that it still has a canonical jet.

Proposition A.12. Suppose M = oco. Let
FO . (—l,l) — Upo

be a C"-curve parameterized by its arclength such that I'o(0) = po, and for alln € N,
we have

IDE |yl < X079 for |t < A"
Then Ty has a degree r tangency with W€(po) at po.

We say that p is N-times forward horizontally (L, )-reqular along EI’}* € IP’E, if for
s € {—r+ 1,7}, we have

e < G pyaean o << (A.2)
[DyF |

Similarly, we say that p is M -times backward horizontally (L, €)-reqular along EI}}’_ €
P2 if for s € {—r 4 1,7}, we have

paOmam < G ET e p << (A.3)
Dy

If both (A.2) and (A.3) hold with E := EM* = E" then p is (M, N)-times
horizontally (L, €)-regular along E}'.

Proposition A.13 (Vertical forward regularity = horizontal forward regularity). If
p is N-times forward horizontally (L,¢e)-regular along E;j € IP’?O, then there exists
IS IF’IQ) such that p is N-times forward (L, &)-reqular along Ey.

Proposition A.14 (Horizontal backward regularity = vertical backward regularity).
Suppose p is M-times backward horizontally (L,¢€)-reqular along E]’} € IP’?O. Let E} €
IP’I% \ {E;}} If A(E;j, EY) > 0, then the point p is M-times backward (L/0?, )-reqular
along E.
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APPENDIX B. DISTORTION THEOREMS FOR 1D MAPS

Let f: I — f(I) be a C'-diffeomorphism on an interval I C R. For J C I, the
distortion of f on J is defined as

Dis(f,7) = s (f505

We denote Dis(f) := Dis(f,I). For K > 1, we say that f has K-bounded distortion
on J it
Dis(f, J) < K.

Clearly, if g : I’ — g(I') is another C'-diffeomorphism on an interval I’ O f(J), then
we have

Dis(g o f, J) < Dis(g, f(.J)) - Dis(f, J). (B.1)

Theorem B.1 (Denjoy Lemma). Let f: I — I be a C"-map on an interval I C R.
Then there exists a uniform constant K > 0 such that if f"|; is a diffeomorphism on
a subinterval J C I for some n € N, then

los(Dis(", 1)) < K Y [7()|.

B.1. Cross Ratios. Let J @ I C R be bounded open intervals. The complement
I'\ J consists of two intervals L and R. The cross-ratio of J in I is given by

|I||J
Cr(1,J) := %

For 7 > 0, we say that I contains a T-scaled neighborhood of J if
L], R[] > 7]J].
Let f: 1 — f(I) be a homeomorphism. The cross-ratio distortion under f of J in

I is given by
Cr(f(1), f(]))
Cr(l,J)
Clearly, if g : f(I) — go f(I) is another homeomorphism, then
For v > 0, we say that f has v-bounded cross-ratio distortion on I if
CrD(f,I',J) > v
for all bounded open intervals J € I’ C I.

CtD(f,I1,J) =

Lemma B.2. For a > 1, let P, : Rt — R" be an a-power map such that
P,(x)=2z% for z€R".

Then P,|g+ has negative Schwarzian derivative. Consequently, P,|r+ has 1-bounded
cross-ratio distortion on R .
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Lemma B.3. Let I C R be a bounded open interval, and let f : I — f(I) be a C'-
diffeomorphism with K-bounded distortion on I for some K > 0. Then there exists a

uniform constant v = v(K) > 0 such that f has v-bounded cross-ratio distortion on
I.

Theorem B.4 (Koebe distortion theorem). Let J € I C R be bounded open intervals,
and let f : I — f(I) be a C'-diffeomorphism with v-bounded cross-ratio distortion
on I for some v > 0. If f(I) contains a T-scaled neighborhood of f(J), then there
exists a uniform constant K = K(v,7) > 0 depending only on v and T such that f
has K -bounded distortion on J.
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