ON REGULAR HÉNON-LIKE RENORMALIZATION

SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG

Contents

1. Introduction 1
2. Chart Relations 9
3. The Critical Value 10
4. Avoiding the Critical Value 16
5. Return Times of Bounded Type 22
6. A Priori Bounds 27
7. Uniform C^{1}-Bounds 37
8. Compositions of Nearby Maps 40
9. Robustness of Regularity 41
10. Uniform C^{r}-Bounds 42
11. Exponentially Small Pieces 46
12. Regular Unicriticality 48
13. Renormalization Convergence 53
Appendix A. Quantitative Pesin Theory 57
Appendix B. Distortion Theorems for 1D Maps 62
References 63

1. Introduction

1.1. Renormalization of unimodal maps. Let $I \subset \mathbb{R}$ be an interval. A C^{2}-map $f: I \rightarrow I$ is unimodal if it has a unique critical point $c \in I$, which of quadratic type: i.e. $f^{\prime}(c)=0$ and $f^{\prime \prime}(c) \neq 0$. Denote the critical value of f by $v:=f(c)$. We say that f is normalized if $c=0$ and $v=1$. Let $\gamma \in\{r, \omega\}$, where $r \geq 2$ is an integer. The space of normalized C^{γ}-unimodal maps is denoted \mathfrak{U}^{γ}.

Model examples of unimodal maps are given by real quadratic polynomials, which, after normalization, can be represented by the following one parameter family of maps:

$$
\mathfrak{Q}:=\left\{f_{a}(x):=1-a x^{2} \mid a \in \mathbb{R}\right\} .
$$

This is referred to as the quadratic family.
A unimodal map $f: I \rightarrow I$ is topologically renormalizable if there exists R-periodic subinterval $I^{1} \subset I$ such that

$$
f^{i}\left(I^{1}\right) \cap I^{1}=\varnothing \quad \text { for } \quad 1 \leq i<R \quad \text { and } \quad f^{R}\left(I^{1}\right) \Subset I^{1}
$$

We say that f is valuably renormalizable if $f^{R}\left(I^{1}\right)$ contains the critical value v.
If f is valuably renormalizable, then the pre-renormalization of f

$$
p \mathcal{R}_{1 \mathrm{D}}(f):=\left.f^{R}\right|_{I^{1}}
$$

is also unimodal. Let $c^{1} \in I^{1}$ be the unique critical point of $p \mathcal{R}_{1 \mathrm{D}}(f)$. We define the renormalization of f to be

$$
\mathcal{R}_{1 \mathrm{D}}(f):=S \circ p \mathcal{R}_{1 \mathrm{D}}(f) \circ S^{-1}
$$

where S is the unique affine map such that $S(v)=1$ and $S\left(c^{1}\right)=0$. Observe that $\mathcal{R}_{1 \mathrm{D}}(f) \in \mathfrak{U}^{\gamma}$.
1.2. Hénon-like maps. Let $B:=I \times I \subset \mathbb{R}^{2}$ be a square, where $0 \in I \subset \mathbb{R}$ is an interval. A C^{2}-diffemorphism $F: B \rightarrow F(B) \Subset B$ is Hénon-like if F is of the form

$$
F(x, y)=(f(x, y), x) \quad \text { for } \quad(x, y) \in B
$$

and for any $y \in I$, the map $f(\cdot, y): I \rightarrow I$ is a unimodal map. We say that F is normalized if $f(\cdot, 0)$ is normalized. The set of normalized C^{γ}-Hénon-like maps is denoted $\mathfrak{H} \mathfrak{L}^{\gamma}$.

For $\beta \in(0,1]$, we say that F is β-thin (in C^{γ}) if

$$
\left\|\partial_{y} f\right\|_{C^{\gamma-1}}<\beta
$$

The space of β-thin Hénon-like maps in $\mathfrak{H} \mathfrak{L}^{\gamma}$ is denoted $\mathfrak{H} \mathfrak{L}_{\beta}^{\gamma}$. In particular, if $F \in$ $\mathfrak{H} \mathfrak{L}_{1}^{\gamma}$, then F is dissipative (i.e. $\|\operatorname{Jac} F\|<1$). We say that a β-thin Hénon-like map is perturbative if $\beta \ll 1$.

Model examples of Hénon-like maps are given by the following two parameter family of maps:

$$
\mathfrak{H}:=\left\{F_{a, b}(x, y):=\left(1-a x^{2}-b y, x\right) \mid a, b \in \mathbb{R}\right\} .
$$

This is referred to as the Hénon family. A straightforward computation shows that

$$
\mathrm{Jac} F_{a, b} \equiv b
$$

and for $b \neq 0$, the map $F_{a, b}$ has a polynomial inverse (and hence, is a diffeomorphism).
For any 1D map $g: I \rightarrow I$, define a degenerate $2 \mathrm{D} \operatorname{map} \iota(g): I \times \mathbb{R} \rightarrow I \times \mathbb{R}$ by

$$
\iota(g)(x, y):=(g(x), x)
$$

Let

$$
\pi_{h}(x, y):=x \quad \text { and } \quad \pi_{v}(x, y):=y
$$

For any 2D map $G: B \rightarrow B$, define its $1 D$ profile $\Pi_{1 \mathrm{D}}(G): I \rightarrow I$ by

$$
\Pi_{1 \mathrm{D}}(G)(x):=\pi_{h} \circ G(x, 0)
$$

Note that we have $\Pi_{1 \mathrm{D}} \circ \iota(g)=g$.
The space of degenerate C^{γ}-Hénon-like maps is given by $\mathfrak{H} \mathfrak{L}_{0}^{\gamma}:=\iota\left(\mathfrak{U}^{\gamma}\right)$. Observe that $\Pi_{1 \mathrm{D}}\left(\mathfrak{H}^{\mathfrak{L}^{\gamma}}\right)=\mathfrak{U}^{\gamma}$.
1.3. Topological renormalization of 2D maps. Let $F: \Omega \rightarrow F(\Omega) \Subset \Omega$ be a continuous map defined on a Jordan domain $\Omega \subset \mathbb{R}^{2}$. We say that F is topologically renormalizable if there exists an R-periodic Jordan domain $\mathcal{B} \Subset \Omega$ for some integer $R \geq 2$.

Let $N \in \mathbb{N} \cup\{\infty\}$. If F is N-times renormalizable, then there exist sequences of nested Jordan domains and natural numbers:

$$
\Omega=: \mathcal{B}^{0} \ni \ldots \ni \mathcal{B}^{N} \quad \text { and } \quad 1=: R_{0}<\ldots<R_{N}
$$

such that for $1 \leq n \leq N$, the domain \mathcal{B}^{n} is R_{n}-periodic. If there exists a uniform constant $\mathbf{b} \geq 2$ such that

$$
\begin{equation*}
r_{n}:=R_{n} / R_{n-1} \leq \mathbf{b} \quad \text { for } \quad 1 \leq n \leq N, \tag{1.1}
\end{equation*}
$$

then the return times $\left\{R_{n}\right\}_{n=1}^{N}$ are said to be of (b-)bounded type. If $N=\infty$, then the induced renormalization limit set of F is defined as

$$
\begin{equation*}
\Lambda_{F}:=\bigcap_{n=1}^{\infty} \bigcup_{i=R_{n}}^{2 R_{n}-1} F^{i}\left(\mathcal{B}^{n}\right) \tag{1.2}
\end{equation*}
$$

1.4. Hénon-like renormalization. For $z \in \mathbb{R}^{2}$, let $E_{z}^{g v}, E_{z}^{g h} \in \mathbb{P}_{z}^{2}$ denote the genuine vertical and horizontal directions at z respectively.

A (C^{r}-) chart is a C^{r}-diffeomorphism $\Psi: \mathcal{D} \rightarrow D$ from a quadrilateral $\mathcal{D} \subset \mathbb{R}^{2}$ to a rectangle $D=I \times J \subset \mathbb{R}^{2}$, where $I, J \subset \mathbb{R}$ are intervals. The vertical/horizontal direction $E_{p}^{v / h} \in \mathbb{P}_{p}^{2}$ at $p \in \mathcal{D}$ (associated to Ψ) is given by

$$
E_{p}^{v / h}:=D \Psi^{-1}\left(E_{\Psi(p)}^{g v / g h}\right) .
$$

The chart Ψ is said to be genuine vertical/horizontal if $E_{p}^{v / h}=E_{p}^{g v / g h}$ for all $p \in \mathcal{D}$. A chart $\tilde{\Psi}: \mathcal{D} \rightarrow \tilde{D}:=\tilde{I} \times \tilde{J}$ is said to be vertically/horizontally equivalent to Ψ if $\tilde{\Psi} \circ \Psi^{-1}$ is genuine vertical/horizontal. If $\tilde{\Psi}$ is both vertically and horizontal equivalent to Ψ, then we simply say that $\tilde{\Psi}$ is equivalent to Ψ.

Consider a C^{r}-Hénon-like map $F: B \rightarrow B$ defined on a square $B:=I \times I \ni 0$. Let $v \in I$ be the critical value of the unimodal map $\Pi_{1 \mathrm{D}}(F)$. We say that F is Hénon-like renormalizable if there exists an R-periodic quadrilateral $(v, 0) \in \mathcal{B}^{1} \subset B$ for some integer $R \geq 2$, and a genuine horizontal chart $\Psi: \mathcal{B}^{1} \rightarrow B^{1}:=I^{1} \times I^{1}$ for some interval $0 \in I^{1} \subset \mathbb{R}$ such that $\pi_{v} \circ \Psi(\cdot, 0) \equiv 0$, and the pre-renormalization of F :

$$
p \mathcal{R}(F):=\left.\Psi \circ F^{R}\right|_{\mathcal{B}^{1}} \circ \Psi^{-1}
$$

is Hénon-like. Then $\left(F^{R}, \Psi\right)$ is referred to as a Hénon-like return of F.
Denote the critical point and the critical value of $\Pi_{1 \mathrm{D}} \circ p \mathcal{R}(F)$ by $c^{1}, v^{1} \in I^{1}$ respectively, and let $\mathcal{S}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the affine map given by

$$
\mathcal{S}(x, y):=\sigma^{-1}\left(x-c^{1}, y\right) \quad \text { where } \quad \sigma:=v^{1}-c^{1} .
$$

Define the renormalization of F as

$$
\mathcal{R}(F):=\left.\mathcal{S} \circ \Psi \circ F^{R}\right|_{\mathcal{B}^{1}} \circ(\mathcal{S} \circ \Psi)^{-1} .
$$

Observe that $\mathcal{R}(F) \in \mathfrak{H} \mathfrak{L}^{r}$
1.5. Regular Hénon-like returns. Consider a C^{r}-diffeomorphism $F: \Omega \rightarrow F(\Omega) \Subset$ Ω defined on a Jordan disk $\Omega \Subset \mathbb{R}^{2}$. Let $\lambda, \varepsilon \in(0,1) ; L \geq 1$ and $N \in \mathbb{N} \cup\{0, \infty\}$. A point $p \in \Omega$ is N-times forward $(L, \varepsilon, \lambda)$-regular along $E_{p}^{+} \in \mathbb{P}_{p}^{2}$ if for $s \in\{-r, r-1\}$, we have

$$
\begin{equation*}
L^{-1} \lambda^{(1+\varepsilon) n} \leq \frac{\left(\operatorname{Jac}_{p} F^{n}\right)^{s}}{\left\|\left.D F^{n}\right|_{E_{p}^{+}}\right\|^{s-1}} \leq L \lambda^{(1-\varepsilon) n} \quad \text { for all } \quad 1 \leq n \leq N \tag{1.3}
\end{equation*}
$$

Similarly, p is N-times backward $(L, \varepsilon, \lambda)$-regular along $E_{p}^{-} \in \mathbb{P}_{p}^{2}$ if for $s \in\{-r, r-1\}$, we have

$$
\begin{equation*}
L^{-1} \lambda^{-(1-\varepsilon) n} \leq \frac{\left(\operatorname{Jac}_{p} F^{-n}\right)^{s}}{\left\|\left.D F^{-n}\right|_{E_{p}^{-}}\right\|^{s-1}} \leq L \lambda^{-(1+\varepsilon) n} \quad \text { for all } \quad 1 \leq n \leq N \tag{1.4}
\end{equation*}
$$

The constants L, ε and λ are referred to as an irregularity factor, a marginal exponent and a contraction base respectively.

There exists a uniform constant $\varepsilon_{0} \in(0,1)$ independent of F such that if (1.3) (or (1.4) resp.) holds with $\varepsilon \leq \varepsilon_{0}$, then the local dynamics of F near the forward (or backward resp.) orbit of p can be linearized up to the N th iterate (see Theorem A.2]. If $N=\infty$, this implies in particular that p has a well-defined strong-stable manifold $W^{s s}(p)$ (or center manifold $W^{c}(p)$ resp.), which is C^{r}-smooth and tangent to $E_{p}^{s s}$ (or E_{p}^{c} resp.). It should be noted that the center manifold at an infinitely backward regular point p is not uniquely defined. However, its C^{r}-jet at p is unique (see Proposition A.12).

Definition 1.1. A Hénon-like return $\left(F^{R}, \Psi: \mathcal{B}^{1} \rightarrow B^{1}\right)$ is said to be $(L, \varepsilon, \lambda)$-regular if the following conditions hold.

- For any $p \in \mathcal{B}^{1}$, we have $\measuredangle\left(E_{p}^{v}, E_{p}^{h}\right)>1 / L$, where

$$
E_{p}^{v / h}:=D \Psi^{-1}\left(E_{\Psi(p)}^{g v / g h}\right)
$$

- Every $p \in \mathcal{B}^{1}$ is R-times forward $(L, \varepsilon, \lambda)$-regular along E_{p}^{v}.
- Every $q \in F^{R}\left(\mathcal{B}^{1}\right) \Subset \mathcal{B}^{1}$ is R-times backward $(L, \varepsilon, \lambda)$-regular along E_{q}^{h}.

In this case, we say that F is $(L, \varepsilon, \lambda)$-regular Hénon-like renormalizable.
Example 1.2. let $f: I \rightarrow I$ be a valuably renormalizable unimodal map. prerenormalization $p \mathcal{R}(f):=\left.f^{R}\right|_{I^{1}}$ is the first return map of f on an R-periodic interval $I^{1} \Subset I$ containing the critical value v. Then for any $\varepsilon>0$, there exists $\lambda>0$ such that any C^{r}-diffeomorphism of the form

$$
F(x, y)=(f(x)+e(x, y), x)
$$

with $\|e\|_{C^{r}}<\lambda$ has a $(1, \varepsilon, \lambda)$-regular Hénon-like return $\left(F^{R}, \Psi: \mathcal{B}^{1} \rightarrow B^{1}\right)$, with \mathcal{B}^{1} $\lambda^{1-\varepsilon}$-close in Hausdorff topology to $I^{1} \times I^{1}$ and $\Psi \lambda^{1-\varepsilon}$-close in C^{r}-topology to the identity.

For $N \in \mathbb{N} \cup\{\infty\}$, we say that $F: \Omega \rightarrow \Omega$ is N-times Hénon-like renormalizable if there exist a nested sequence of quadrilaterals $\left\{\mathcal{B}^{n}\right\}_{n=1}^{N}$ contained in Ω, and a sequence of horizontally equivalent C^{r}-charts:

$$
\Psi^{n}: \mathcal{B}^{n} \rightarrow B^{n}=I^{n} \times I^{n} \subset \mathbb{R}^{2} \quad \text { for } \quad 1 \leq n \leq N
$$

such that $\left(F^{R_{n}}, \Psi^{n}\right)$ is a Hénon-like return of F. In this case, we say that the sequence of Hénon-like returns is nested.

The nth pre-renormalization of F is defined as

$$
F_{n}=p \mathcal{R}^{n}(F):=\left.\Psi^{n} \circ F^{R_{n}}\right|_{\mathcal{B}^{n}} \circ\left(\Psi^{n}\right)^{-1} .
$$

Let $f_{n}: I^{n} \rightarrow I^{n}$ be the unimodal map given by $f_{n}:=\Pi_{1 \mathrm{D}}\left(F_{n}\right)$. Denote the critical point and the critical value of f_{n} by $c^{n}, v^{n} \in I^{n}$ respectively.

Let $\mathcal{S}^{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the affine map given by

$$
\mathcal{S}^{n}(x, y):=\sigma_{n}^{-1}\left(x-c^{n}, y\right) \quad \text { where } \quad \sigma_{n}:=v^{n}-c^{n} .
$$

The nth renormalization of F is given by

$$
\mathcal{R}^{n}(F):=\left.\mathcal{S}^{n} \circ \Psi^{n} \circ F^{R_{n}}\right|_{\mathcal{B}^{n}} \circ\left(\mathcal{S}^{n} \circ \Psi^{n}\right)^{-1} .
$$

Suppose that there exist constants $\lambda, \varepsilon_{0} \in(0,1)$ and $L \geq 1$ such that the Hénonlike returns $\left\{\left(F^{R_{n}}, \Psi^{n}\right)\right\}_{n=1}^{N}$ are $\left(L, \varepsilon_{0}, \lambda\right)$-regular. Then we say that F is N-times ($L, \varepsilon_{0}, \lambda$)-regular Hénon-like renormalizable.

Assume additionally that the return times $\left\{R_{n}\right\}_{n=1}^{N}$ are of b-bounded type for some integer $\mathbf{b} \geq 2$. For many of our results, the specific values of L, λ and ε_{0} are not so important, as long as ε_{0} is sufficiently small to compensate for the size of \mathbf{b}. That is, we have

$$
\begin{equation*}
\mathbf{b} \overline{\varepsilon_{0}}<1, \tag{1.5}
\end{equation*}
$$

where $\overline{\varepsilon_{0}}:=\varepsilon_{0}^{d}$ for some suitably small uniform constant $d \in(0,1)$ independent of F. In this case, we sometimes simply say that F is N-times regular Hénon-like renormalizable without specifying the constants of regularity.

Theorem A. Let $r \geq 2$ be an integer, and consider a C^{r}-diffeomorphism $F: \Omega \rightarrow$ $F(\Omega) \Subset \Omega$ defined on a Jordan disk $\Omega \Subset \mathbb{R}^{2}$. Given constants $\mathbf{b} \in \mathbb{N}, L \geq 1$, $\lambda \in(0,1)$ and $\varepsilon_{0} \in(0,1)$ satisfying (1.5), there exists a uniform constant $\mathbf{N} \in \mathbb{N}$ depending only on $\|F\|_{C^{2}}, \lambda$ and L such that the following holds. Suppose that F is infinitely topologically renormalizable with return times of \mathbf{b}-bounded type. If the first \mathbf{N} renormalizations are $\left(L, \varepsilon_{0}, \lambda\right)$-regular Hénon-like, then F is infinitely regular Hénon-like renormalizable.

Theorem B. Let $r \geq 2$ be an integer, and consider a C^{r}-diffeomorphism $F: \Omega \rightarrow$ $F(\Omega) \Subset \Omega$ defined on a Jordan domain $\Omega \Subset \mathbb{R}^{2}$. Suppose that F is infinitely regular Hénon-like renormalizable with return times of bounded type. Then the Hausdorff dimension of the induced renormalization limit set Λ_{F} is less than 1. Consequently, Λ_{F} is totally disconnected, minimal, and supports a unique invariant probability measure μ.
1.6. Regular unicriticality. Consider a C^{r}-diffeomorphism $F: \Omega \rightarrow F(\Omega) \Subset \Omega$ defined on a Jordan domain $\Omega \Subset \mathbb{R}^{2}$. Suppose that F is infinitely renormalizable, and is uniquely ergodic on the induced renormalization limit set Λ_{F} given by (1.2). Then with respect to the unique invariant probability measure μ, the Lyapunov exponents of F are 0 and $\log \lambda_{\mu}<0$ for some $\lambda_{\mu} \in(0,1)$ (see [CLPY]). By Oseledets theorem, μ-a.e. point $p \in \Lambda_{F}$ has strong-stable and center directions $E_{p}^{s s}, E_{p}^{c} \in \mathbb{P}_{p}^{2}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left\|\left.D F^{n}\right|_{E_{p}^{s s}}\right\|=\log \lambda_{\mu} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left\|\left.D F^{-n}\right|_{E_{p}^{c}}\right\|=0 \tag{1.7}
\end{equation*}
$$

Let $\varepsilon>0$. Since $\left.F\right|_{\Lambda_{F}}$ is uniquely ergodic, (1.6) (1.7) resp.) implies that p is infinitely forward (backward resp.) ($L, \varepsilon, \lambda_{\mu}$)-regular for some $L=L(p, \varepsilon) \geq 1$ (see [CLPY]).

If $p \in \Lambda_{F}$ satisfies (1.6) and (1.7) with

$$
E_{p}^{*}:=E_{p}^{s s}=E_{p}^{c}
$$

then $\left\{F^{m}(p)\right\}_{m \in \mathbb{Z}}$ is referred to as a regular critical orbit. Note that in this case, the local strong-stable manifold $W_{\text {loc }}^{s s}(p)$ and the center manifold $W^{c}(p)$ form a tangency at p. If this tangency is quadratic, then $\left\{F^{m}(p)\right\}_{m \in \mathbb{Z}}$ is referred to as a regular quadratic critical orbit.

For $t>0$ and $p \in \mathbb{R}^{2}$, we denote the ball

$$
\mathbb{D}_{p}(t):=\left\{q \in \mathbb{R}^{2} \mid \operatorname{dist}(q, p)<t\right\} .
$$

Definition 1.3. For $0<\varepsilon<\delta<1$, we say that F is (δ, ε)-regularly unicritical on the limit set Λ_{F} if the following conditions hold.
i) There is a regular quadratic critical orbit point $v \in \Lambda_{F}$ (referred to as the critical value).
ii) For all $t>0$, there exists $L(t) \geq 1$ such that for any $N \in \mathbb{N}$, if

$$
\begin{equation*}
p \in \Lambda_{F} \backslash \bigcup_{n=0}^{N-1} \mathbb{D}_{F^{-n}(v)}\left(t \lambda_{\mu}^{\varepsilon n}\right), \tag{1.8}
\end{equation*}
$$

then p is N-times forward $\left(L(t), \delta, \lambda_{\mu}\right)$-regular.
When δ and ε are implicit, we simply say that F is regularly unicritical on Λ_{F}.
In CLPY, we prove that if F infinitely topologically renormalizable (with return times not necessarily of bounded type), and is regular unicritical on the induced renormalization limit set, then the renormalizations of F are eventually regular henonlike.

Theorem C. Let $r \geq 2$ be an integer, and consider a C^{r}-diffeomorphism $F: \Omega \rightarrow$ $F(\Omega) \Subset \Omega$ defined on a Jordan domain $\Omega \Subset \mathbb{R}^{2}$. Suppose for some $L \geq 1 ; \lambda, \varepsilon_{0} \in(0,1)$
and $\mathbf{b} \geq 2$ satisfying (1.5), the map F has infinite nested $\left(L, \varepsilon_{0}, \lambda\right)$-regular Hénon-like returns:

$$
\left\{\left(F^{R_{n}}, \Psi^{n}: \mathcal{B}^{n} \rightarrow B^{n}\right)\right\}_{n=1}^{\infty}
$$

with return times of \mathbf{b}-bounded type. Then for any $\varepsilon>0$, there exists $L_{\varepsilon} \geq 1$ such that for all $n \in \mathbb{N}$, the Hénon-like return $\left(F^{R_{n}}, \Psi^{n}\right)$ is $\left(L_{\varepsilon}, \varepsilon, \lambda_{\mu}\right)$-regular. Moreover, F is $\left(\varepsilon, \varepsilon^{d}\right)$-regularly unicritical on the induced renormalization limit set Λ_{F}, where $d \in(0,1)$ is some suitably small uniform constant independent of F. Lastly, we have

$$
\bigcap_{n=1}^{\infty} F^{R_{n}}\left(\mathcal{B}^{n}\right)=\{v\}
$$

where $v \in \Lambda_{F}$ is the regular quadratic critical value.
1.7. Renormalization convergence. The 1D Renormalization $\mathcal{R}_{1 \mathrm{D}}$ defined in Subsection 1.1 can be viewed as an operator acting on the Banach space \mathfrak{U}^{γ} of unimodal maps. In [L], Lyubich shows that $\mathcal{R}_{1 \mathrm{D}}$ restricted to \mathfrak{U}^{ω} is an analytic operator that has a hyperbolic attractor $\mathfrak{A} \subset \mathfrak{U}^{\omega}$ with exactly one unstable dimension. This attractor is referred to as the full renormalization horseshoe.

Given an integer $\mathbf{b} \geq 2$, we identify the compact invariant subset $\mathfrak{A}_{\mathbf{b}}$ of \mathfrak{A} that consist of maps of b-bounded type. In dFdMPi], de Faria-de Melo-Pinto show that for the renormalization operator $\mathcal{R}_{1 \mathrm{D}}$ acting on the more general space $\mathfrak{U}^{3} \supset \mathfrak{U}^{\omega}$, the set $\mathfrak{A}_{\mathbf{b}}$ remains a hyperbolic attractor with one unstable dimension.

Theorem D. Let $r \geq 2$ be an integer, and consider a C^{r}-diffeomorphism $F: \Omega \rightarrow$ $F(\Omega) \Subset \Omega$ defined on a Jordan domain $\Omega \Subset \mathbb{R}^{2}$. Suppose for some $L \geq 1 ; \lambda \in(0,1)$; $\varepsilon \in\left(0, \varepsilon_{0}\right]$ and $\mathbf{b} \geq 2$ satisfying (1.5), the map F has infinite nested $(L, \varepsilon, \lambda)$-regular Hénon-like returns:

$$
\left\{\left(F^{R_{n}}, \Psi^{n}: \mathcal{B}^{n} \rightarrow B^{n}\right)\right\}_{n=1}^{\infty}
$$

with return times of \mathbf{b}-bounded type. Then, after replacing $\left\{\Psi^{n}\right\}_{n=1}^{\infty}$ if necessary, the following statements hold for all $n \in \mathbb{N}$:
i) $\left\|\left(\Psi^{n}\right)^{ \pm 1}\right\|_{C^{r}}<\bar{L}$ and $\left\|\Psi^{n+1}-\left.\Psi^{n}\right|_{\mathcal{B}^{n+1}}\right\|_{C^{r}}<\bar{L} \lambda^{(1-\bar{\varepsilon}) R_{n}}$;
ii) $\mathcal{R}^{n}(F)$ is a δ_{n}-thin C^{r}-Hénon-like map with $\delta_{n}<\bar{L} \lambda^{(1-\bar{\varepsilon}) R_{n}}$; and
iii) $\left\|\mathcal{R}^{n}(F)\right\|_{C^{r}}=O(1)$ if n is sufficiently large;
where $\bar{L}:=K L^{D}>L$ and $\bar{\varepsilon}:=\varepsilon^{1 / D}>\varepsilon$ for some uniform constants $K>1$ (dependent only on $\|F\|_{C^{r}}$) and $D>1$ (independent of F).

If, additionally, we have $r \geq 4$, then there exists a real analytic unimodal map $f_{*} \in \mathfrak{A}_{\mathbf{b}}$ and a universal constant $\rho=\rho(\mathbf{b}) \in(0,1)$ such that

$$
\left\|\Pi_{1 \mathrm{D}} \circ \mathcal{R}^{n}(F)-\mathcal{R}_{1 \mathrm{D}}^{n}\left(f_{*}\right)\right\|_{C^{r-1}}=O\left(\rho^{n}\right) \quad \text { for } \quad n \in \mathbb{N} .
$$

1.8. Conventions. Unless otherwise specified, we adopt the following conventions.

Any diffeomorphism on a domain in \mathbb{R}^{2} is assumed to be orientation-preserving. The projective tangent space at a point $p \in \mathbb{R}^{2}$ is denoted by \mathbb{P}_{p}^{2}.

We typically denote constants by $K \geq 1, k>0$ (and less frequently $C \geq 1, c>0$). Given a number $\kappa>0$, we use $\bar{\kappa}$ to denote any number that satisfy

$$
\kappa<\bar{\kappa}<C \kappa^{D}
$$

for some universal constants $C>1$ and $D>1$ (if $\kappa>1$) or $D \in(0,1)($ if $\kappa<1)$ independent of the considered map. We allow $\bar{\kappa}$ to absorb any uniformly bounded coefficient or power. So for example, if $\bar{\kappa}>1$, then we may write

$$
" 10 \bar{\kappa}^{5}=\bar{\kappa} "
$$

Similarly, we use $\underline{\kappa}$ to denote any number that satisfy

$$
c \kappa^{d}<\underline{\kappa}<\kappa
$$

for some uniform constants $c \in(0,1)$ and $d \in(0,1)$ (if $\kappa>1$) or $d>1$ (if $\kappa<1$) independent of the map. As before, we allow $\underline{\kappa}$ to absorb any uniformly bounded coefficient or power. So for example, if $\underline{\kappa}>1$, then we may write

$$
" \frac{1}{3} \underline{\kappa}^{1 / 4}=\underline{\kappa} " .
$$

These notations apply to any positive real number: e.g. $\bar{\varepsilon}>\varepsilon, \underline{\delta}<\delta, \bar{L}>L$, etc.
Note that $\bar{\kappa}$ can be much larger than κ (similarly, $\underline{\kappa}$ can be much smaller than κ). Sometimes, we may avoid the $\bar{\kappa}$ or $\underline{\kappa}$ notation when indicating numbers that are somewhat or very close to the original value of κ. For example, if $\kappa \in(0,1)$ is a small number, then we may denote $\kappa^{\prime}:=(1-\bar{\kappa}) \kappa$. Then $\underline{\kappa} \ll \kappa^{\prime}<\kappa$.

For any set $X_{m} \subset \Omega$ with a numerical index $m \in \mathbb{Z}$, we denote

$$
X_{m+l}:=F^{l}\left(X_{m}\right)
$$

for all $l \in \mathbb{Z}$ for which the right-hand side is well-defined. Similarly, for any direction $E_{p_{m}} \in \mathbb{P}_{p_{m}}^{2}$ at a point $p_{m} \in \Omega$, we denote

$$
E_{p_{m+l}}:=D F^{l}\left(E_{p_{m}}\right) .
$$

We use n, m, i, j to denote integers (and less frequently l, k). Typically (but not always), $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. We sometimes use $l>0$ for positive geometric quantities (such as length). The letter i is never the imaginary number.

We typically use N, M to indicate fixed integers (often related to variables n, m).
We use calligraphic font $\mathcal{U}, \mathcal{T}, \mathcal{I}$, etc, for objects in the phase space and regular fonts U, T, I, etc, for corresponding objects in the linearized/uniformized coordinates. A notable exception is for the invariant manifolds $W^{s s}, W^{c}$.

We use p, q to indicate points in the phase space, and z, w for points in linearized/uniformized coordinates.

2. Chart Relations

Let $\Psi: \mathcal{B} \rightarrow B$ be a C^{r}-chart. A vertical leaf in \mathcal{B} is a curve l^{v} such that

$$
l^{v} \subseteq \Psi^{-1}\left(\{a\} \times \pi_{v}(B)\right) \quad \text { for some } \quad a \in \pi_{h}(B)
$$

If the above containment is an equality, then l^{v} is said to be full. A (full) horizontal leaf l^{h} in \mathcal{B} is defined analogously.

Let $p \in \mathcal{B}$ and $E_{p} \in \mathbb{P}^{2}$. Denote

$$
z:=\Psi(p) \quad \text { and } \quad E_{z}:=D \Psi\left(E_{p}\right)
$$

For $t>0$, the direction E_{p} is said to be t-vertical in \mathcal{B} if

$$
\frac{\measuredangle\left(E_{z}, E_{z}^{g v}\right)}{\measuredangle\left(E_{z}, E_{z}^{g h}\right)}<t
$$

A t-horizontal direction in \mathcal{B} is analogously defined.
A C^{0}-curve $\Gamma^{v} \subset \mathcal{B}$ is said to be vertical in \mathcal{B} if $\Psi\left(\Gamma^{v}\right)$ is a vertical graph in B in the usual sense. That is, there exists an interval $I^{v} \subseteq \pi_{v}(B)$ and a map $g_{v}: I^{v} \rightarrow \pi_{h}(B)$ such that

$$
\Psi\left(\Gamma^{v}\right)=\mathcal{G}^{v}\left(g_{v}\right):=\left\{\left(g_{v}(y), y\right) \mid y \in I^{v}\right\}
$$

If $I^{v}=\pi_{v}(B)$, then Γ^{v} is said to be vertically proper in \mathcal{B}. If Γ^{v} is C^{2}, and g_{v} has a unique critical point $c \in I^{v}$ of quadratic type $\left(g_{v}^{\prime}(c)=0\right.$ and $\left.g_{v}^{\prime \prime}(c) \neq 0\right)$, then Γ^{v} is a vertical quadratic curve in \mathcal{B}. If Γ^{v} is C^{r}, and $\left\|g_{v}^{\prime}\right\|_{C^{r-1}} \leq t$ for some $t \geq 0$, then we say that Γ^{v} is t-vertical in \mathcal{B}. Note that Γ^{v} is a (vertically proper) 0 -vertical curve if and only if it is a (full) vertical leaf.

Let $\mathcal{E}^{v}: \mathcal{B} \rightarrow T^{1}(\mathcal{B})$ be the C^{r-1}-unit vector field given by

$$
\mathcal{E}^{v}(p):=D \Psi^{-1}\left(E_{\Psi(p)}^{g v}\right)
$$

A C^{r-1}-unit vector field $\tilde{\mathcal{E}}^{v}: \mathcal{U} \rightarrow T^{1}(\mathcal{U})$ defined on a domain $\mathcal{U} \subset \mathcal{B}$ is said to be t-vertical in \mathcal{B} for some $t \geq 0$ if $\left\|\tilde{\mathcal{E}}^{v}-\mathcal{E}^{v}\right\|_{C^{r-1}} \leq t$.

Let $\tilde{\Psi}: \tilde{\mathcal{B}} \rightarrow \tilde{B}$ be another chart with $\tilde{\mathcal{B}} \subset \mathcal{B}$. We define the following relations between Ψ and $\tilde{\Psi}$.

- We say that $\tilde{\mathcal{B}}$ is vertically proper in \mathcal{B} if every full vertical leaf in $\tilde{\mathcal{B}}$ is vertically proper in \mathcal{B}.
- We say that Ψ and $\tilde{\Psi}$ are horizontally equivalent on $\tilde{\mathcal{B}}$ if every horizontal leaf in $\tilde{\mathcal{B}}$ is a horizontal leaf in \mathcal{B}.
- For $t \geq 0$, we say that $\tilde{\mathcal{B}}$ is t-vertical in \mathcal{B} if Ψ and $\tilde{\Psi}$ are horizontally equivalent, and the unit vector field given by

$$
\tilde{\mathcal{E}}^{v}(p):=D \tilde{\Psi}^{-1}\left(E_{\tilde{\Psi}(p)}^{g v}\right) \quad \text { for } \quad p \in \tilde{\mathcal{B}}
$$

is t-vertical in \mathcal{B}.

- We say that Ψ and $\tilde{\Psi}$ are equivalent on $\tilde{\mathcal{B}}$ if $\tilde{\mathcal{B}}$ is 0 -vertical in \mathcal{B}.

Let $\hat{\Psi}: \hat{\mathcal{B}} \rightarrow \hat{B}$ be a chart satisfying the following properties.

- We have $0 \in \hat{B}$.
- Let

$$
\mathcal{I}^{h}(t):=\hat{\Psi}^{-1}(t, 0) \quad \text { for } \quad t \in \pi_{h}(\hat{B})
$$

and

$$
\mathcal{I}^{v}(s):=\hat{\Psi}^{-1}(0, s) \quad \text { for } \quad s \in \pi_{v}(\hat{B}) .
$$

Then $\left\|\left(\mathcal{I}^{h / v}\right)^{\prime}\right\| \equiv 1$.
In this case, we say that $\hat{\Psi}$ is centered (at $\left.\hat{\Psi}^{-1}(0)\right)$.
A C^{0}-curve $\Gamma^{h} \subset \hat{\mathcal{B}}$ is said to be horizontal in $\hat{\mathcal{B}}$ if $\hat{\Psi}\left(\Gamma^{h}\right)$ is the horizontal graph in \hat{B} of a map $g_{h}: I^{h} \rightarrow \pi_{v}(\hat{B})$ defined on an interval $I^{h} \subset \pi_{h}(\hat{B})$. If Γ^{h} is C^{r}, then we say that Γ^{h} is t-horizontal in $\hat{\mathcal{B}}$ if $\left\|g_{h}\right\|_{C^{r}} \leq t$. In particular, Γ^{h} is 0 -horizontal in $\hat{\mathcal{B}}$ if and only if Γ^{h} is a subarc of the full horizontal leaf containing $\hat{\Psi}^{-1}(0)$.

Lemma 2.1. Let $\Psi: \mathcal{B} \rightarrow B$ be a chart. For any point $q \in \mathcal{B}$, there exists a unique chart $\hat{\Psi}:(\mathcal{B}, q) \rightarrow(\hat{B}, 0)$ centered at q such that $\hat{\Psi}$ and Ψ are equivalent on \mathcal{B}.

3. The Critical Value

3.1. The set up. Let $r \geq 2$ be an integer, and consider a C^{r}-diffeomorphism F : $\Omega \rightarrow F(\Omega)$ defined on a domain $\Omega \subset \mathbb{R}^{2}$. For simplicity, we assume that $\|F\|_{C^{r}}$ is uniformly bounded:

$$
\begin{equation*}
\|F\|_{C^{r}}=O(1) \tag{3.1}
\end{equation*}
$$

Denote $\mathcal{B}_{0}^{0}:=\Omega$ and $R_{0}:=1$. For $1 \leq n \leq N \leq \infty$, suppose there exist an R_{n}-periodic quadrilateral $\mathcal{B}_{0}^{n} \Subset \mathcal{B}_{0}^{n-1}$ with

$$
r_{n-1}:=R_{n} / R_{n-1} \geq 2
$$

and a C^{r}-chart $\Psi^{n}: \mathcal{B}_{0}^{n} \rightarrow B_{0}^{n}$ such that $\left\{\left(F^{R_{n}}, \Psi^{n}\right)\right\}_{n=1}^{N}$ is a (possibly infinite) sequence of nested Hénon-like returns of F. Furthermore, assume that the sequence of returns is $(L, \varepsilon, \lambda)$-regular for some $\lambda, \varepsilon \in(0,1)$ and $L \geq 1$ such that $\bar{\varepsilon}<1$. Lastly, suppose that N is sufficiently large, so that by replacing $\left(F^{R_{1}}, \Psi^{1}\right)$ with $\left(F^{R_{n_{1}}}, \Psi^{n_{1}}\right)$ for some $n_{1} \leq N$, we may assume additionally that:

$$
\begin{equation*}
\bar{L} \lambda^{(1-\bar{\varepsilon}) R_{1}}<\rho, \tag{3.2}
\end{equation*}
$$

where $\rho \in(0,1)$ is a suitably small universal constant.
Remark 3.1. In Sections 3 and 4, we do not assume that the sequence of Hénon-like returns of F is necessarily of bounded type.
3.2. Locating the critical value. For $i \in \mathbb{Z}$, denote $\mathcal{B}_{i}^{n}:=F^{i}\left(\mathcal{B}_{0}^{n}\right)$. Observe that $\mathcal{B}_{R_{n+1}}^{n+1} \Subset \mathcal{B}_{R_{n}}^{n}$. Let

$$
\mathcal{Z}_{0}:=\bigcap_{n=1}^{N} \mathcal{B}_{R_{n}}^{n} .
$$

Let $v_{0} \in \mathcal{Z}_{0}$ be a point to be specified later (as the critical value of F). By Lemma 2.1, we may assume that Ψ^{n} for all $1 \leq n \leq N$ is centered at v_{0}. Define

$$
I_{0}^{n}:=\pi_{h}\left(B_{0}^{n}\right) \quad \text { and } \quad \mathcal{I}_{0}^{n}:=\left(\Psi^{n}\right)^{-1}\left(I_{0}^{n} \times\{0\}\right)
$$

Then it follows that $I_{0}^{n} \Subset I_{0}^{1}$ and $\left.\Psi^{n}\right|_{\mathcal{I}_{0}^{n}}=\left.\Psi^{1}\right|_{\mathcal{I}_{0}^{n}}$. Denote $\mathcal{I}_{i}^{n}:=F^{i}\left(\mathcal{I}_{0}^{n}\right)$ for $i \geq 0$.
For $p_{0} \in \mathcal{B}_{0}^{n}$, write $z_{0}:=\Psi^{n}\left(p_{0}\right)$, and let

$$
E_{p_{0}}^{h}:=D\left(\Psi^{n}\right)^{-1}\left(E_{z_{0}}^{g h}\right) \quad \text { and } \quad E_{p_{0}}^{v, n}:=D\left(\Psi^{n}\right)^{-1}\left(E_{z_{0}}^{g v}\right) .
$$

Additionally, let

$$
E_{p_{R_{n}-1}}^{h, n}:=D F^{R_{n}-1}\left(E_{p_{0}}^{h}\right) \quad \text { and } \quad E_{p_{R_{n}-1}}^{v}:=D F^{-1}\left(E_{p_{R_{n}}}^{h}\right)=D F^{R_{n}-1}\left(E_{p_{0}}^{v, n}\right)
$$

By increasing L by a uniform amount (depending only on $D F$) if necessary, we may assume that every $q \in \mathcal{B}_{R_{n}-1}^{n}$ is $\left(R_{n}-1\right)$-times backward $(L, \varepsilon, \lambda)$-regular along E_{q}^{v}.

Proposition 3.2. After replacing the charts $\left\{\Psi^{n}\right\}_{n=1}^{N}$ if necessary, the following properties hold. For $1 \leq n \leq N$, the domain \mathcal{B}_{0}^{n} of the chart Ψ^{n} is vertically proper and ρ-vertical in \mathcal{B}_{0}^{1}. Moreover, we have

$$
\begin{equation*}
\left\|\Psi^{n+1}-\left.\Psi^{n}\right|_{\mathcal{B}_{0}^{n+1}}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{n}} . \tag{3.3}
\end{equation*}
$$

Proof. For $p_{0} \in \mathcal{B}_{0}^{n}$, let

$$
\left\{\Phi_{p_{m}}: \mathcal{U}_{p_{m}} \rightarrow U_{p_{m}}\right\}_{m=0}^{R_{n}}
$$

be a linearization of F along the R_{n} forward orbit of p_{0} with vertical direction $E_{p_{0}}^{v, n}$. Let $\mathcal{E}_{p_{m}}^{v, n}: \mathcal{U}_{p_{m}} \rightarrow T^{1}\left(\mathcal{U}_{p_{m}}\right)$ be the C^{r-1}-unit vector field given by $\mathcal{E}_{p_{m}}^{v, n}(q) \in E_{q}^{v, n}$ for $q \in \mathcal{U}_{p_{m}}$.

Let $l_{p_{0}}^{v, 1}$ be the full vertical leaf in \mathcal{B}_{0}^{1} containing p_{0}. For $q_{0} \in l_{p_{0}}^{v, 1}$, let

$$
\left\{\Phi_{q_{m}}: \mathcal{U}_{q_{m}} \rightarrow U_{q_{m}}\right\}_{m=0}^{R_{1}}
$$

be a linearization of F along the R_{1} forward orbit of q_{0} with vertical direction $E_{q_{0}}^{v, 1}$.
Let M be a nearest integer to $R_{1} / 2$. Since ρ is sufficiently small, it follows from (3.2), Theorem A.2, and Propositions A.5 and A.3 that

$$
\check{\mathcal{U}}_{q_{M}}:=F^{M}\left(\mathcal{U}_{q_{0}}^{\bar{\varepsilon} M}\right) \subset \mathcal{U}_{p_{M}} .
$$

By Proposition A.1, q_{M} and p_{M} are M-times forward $\left(\bar{L} \lambda^{-\bar{\varepsilon} M}, \varepsilon, \lambda\right)_{v}$-regular along $E_{q_{M}}^{v, 1}$ and $E_{p_{M}}^{v, n}$ respectively. Hence, Proposition A. 8 implies that $\mathcal{E}_{p_{M}}^{v, n}{\check{u_{q_{M}}}}$ is t-vertical in $\mathcal{U}_{q_{m}}$ for some $t>0$ uniformly small. Thus, we may extend $\mathcal{E}_{p_{0}}^{v, n}$ to $\mathcal{U}_{q_{0}}^{\overline{\bar{M}}}$ as

$$
\left.\mathcal{E}_{p_{0}}^{v, n}\right|_{\mathcal{U}_{q_{0}}^{\bar{M}}}:=D F_{*}^{-M}\left(\mathcal{E}_{p_{M}}^{v, n}{\check{\mathcal{U}_{q_{M}}}}\right) .
$$

Then we have $\left\|\mathcal{E}_{p_{0}}^{v, n}-\mathcal{E}_{q_{0}}^{v, 1}\right\|_{C^{1}} \leq \rho$. Rectifying the vertical directions near $l_{p_{0}}^{v, 1}$ given by $\mathcal{E}_{p_{0}}^{v, n}$, we obtain the desired extension of Ψ^{n}.

Replacing the renormalization depth 1 in the above argument by n, we obtain (3.3).

Consider C^{r}-curves $\Gamma_{1}, \Gamma_{2} \subset \mathbb{R}^{2}$ with $\left|J_{1}\right| \geq\left|J_{2}\right|$. For $i \in\{1,2\}$, let $\phi_{\Gamma_{i}}: J_{i} \subset \mathbb{R} \rightarrow$ Γ_{i} be a parameterization of Γ_{i} such that

- $\left|\phi_{\Gamma_{i}}^{\prime}\right| \equiv 1 ;$
- $J_{1} \supset J_{2}$;
- $\left\|\left.\phi_{\Gamma_{1}}\right|_{J_{2}}-\phi_{\Gamma_{2}}\right\|_{C^{r}}$ is minimal.

In this case, define

$$
\operatorname{dist}_{C^{r}}\left(\Gamma_{1}, \Gamma_{2}\right):=\left\|\left.\phi_{\Gamma_{1}}\right|_{J_{2}}-\phi_{\Gamma_{2}}\right\|_{C^{r}}
$$

Lemma 3.3. For $1 \leq n \leq N$, let l_{0}^{n} be a full horizontal leaf in \mathcal{B}_{0}^{n}. Then we have

$$
\operatorname{dist}_{C^{r}}\left(l_{R_{n}-1}^{n}, l_{R_{n+1}-1}^{n+1}\right)<\lambda^{(1-\bar{\varepsilon}) R_{n}}
$$

Proof. For $p_{-1} \in \mathcal{Z}_{-1}:=F^{-1}\left(\mathcal{Z}_{0}\right)$, let

$$
\left\{\Phi_{p_{-m}}: \mathcal{U}_{p_{-m}} \rightarrow U_{p_{-m}}\right\}_{m=1}^{R_{N}}
$$

be a linearization of F along the R_{N}-times backward orbit of p_{-1} with vertical direction $E_{p_{-1}}^{v}$ (if $N=\infty$, then $\left.R_{\infty}=\infty\right)$. Let $\mathcal{V}_{-R_{n}}$ be the connected component of $F^{-R_{n}+1}\left(\mathcal{U}_{p_{-1}}^{\bar{\varepsilon} R_{n}}\right) \cap \mathcal{B}_{0}^{n}$ containing $p_{-R_{n}}$. Note that $\left.\Psi^{n}\right|_{\mathcal{V}_{-R_{n}}}$ defines a chart on $\mathcal{V}_{-R_{n}}$, so that $\mathcal{V}_{-R_{n}}$ is 0 -vertical in \mathcal{B}_{0}^{n}. Moreover, arguing as in the proof of Proposition 3.2, we see that $\mathcal{V}_{-R_{n}}$ is also vertically proper in \mathcal{B}_{0}^{n}. Hence, by Theorem A. 2 and Proposition A.5. the curve $l_{R_{n}-1}^{n}$ is $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-horizontal in $\mathcal{U}_{p_{-1}}$. The result follows.

Proposition 3.4. If $N=\infty$, then the following statements hold.
i) For any point $p_{0} \in \mathcal{Z}_{0}$, there exists a unique strong stable direction $E_{p_{0}}^{s s} \in \mathbb{P}_{p_{0}}^{2}$ such that

$$
\left\|E_{p_{0}}^{v, n}-E_{p_{0}}^{s s}\right\|<\lambda^{(1-\bar{\varepsilon}) R_{n}} \quad \text { for } \quad n \in \mathbb{N}
$$

Moreover, p_{0} is infinitely forward $(L, \varepsilon, \lambda)$-regular along $E_{p_{0}}^{s s}$.
ii) Any point $p_{-1} \in \mathcal{Z}_{-1}$ is infinitely backward $(L, \varepsilon, \lambda)$-regular along $E_{p_{-1}}^{v}$. Moreover, there exists a unique center direction $E_{p_{-1}}^{c} \in \mathbb{P}_{p_{-1}}^{2}$ such that

$$
\left\|E_{p_{-1}}^{h, n}-E_{p_{-1}}^{c}\right\|<\lambda^{(1-\bar{\varepsilon}) R_{n}} \quad \text { for } \quad n \in \mathbb{N} .
$$

iii) There exists a unique point $v_{0} \in \mathcal{Z}_{0}$ such that

$$
E_{v_{0}}^{s s}=D F\left(E_{v_{-1}}^{c}\right)
$$

Moreover, the strong stable manifold $W^{s s}\left(v_{0}\right)$ and the center manifold $F\left(W^{c}\left(v_{-1}\right)\right)$ have a quadratic tangency at v_{0}.

Proof. The first and second claim follow immediately from Propositions A. 8 and A.9.
For $n \in \mathbb{N}$, let l_{0}^{n} be a full horizontal leaf in \mathcal{B}_{0}^{n}. Recall that $l_{R_{n}}^{n}$ is a vertical quadratic curve in \mathcal{B}_{0}^{n}. Let $v_{0}^{n} \in l_{0}^{n}$ be the unique point such that

$$
E_{v_{R_{n}}}^{v, n}=D F^{R_{n}}\left(E_{v_{0}^{n}}^{h}\right) .
$$

By Lemma 3.3, we have

$$
\operatorname{dist}\left(v_{R_{n}}^{n}, v_{R_{n+1}}^{n+1}\right)<\lambda^{(1-\bar{\varepsilon}) R_{n}} .
$$

Thus, there exists a unique point $v_{0} \in \mathcal{Z}_{0}$ such that

$$
\operatorname{dist}\left(v_{R_{n}}^{n}, v_{0}\right), \operatorname{dist}_{C^{r}}\left(l_{R_{n}}^{n}, W^{c}\left(v_{0}\right)\right)<\lambda^{(1-\bar{\varepsilon}) R_{n}}
$$

By (3.3), we see that $W^{s s}\left(v_{0}\right)$ and $W^{c}\left(v_{0}\right)$ have a quadratic tangency at v_{0}.

Lastly, let $\mathcal{U}_{v_{0}}$ be a neighborhood of v_{0}. Then there exists a uniform constant $k>0$ such that for all n sufficiently large, if $p_{R_{n}} \in l_{R_{n}}^{n} \backslash \mathcal{U}_{v_{0}}$ then

$$
\measuredangle\left(E_{p_{R_{n}}}^{v, n}, D F^{R_{n}}\left(E_{p_{0}}^{h}\right)\right)>k
$$

Thus, v_{0} is the unique point in \mathcal{Z}_{0} satisfying $E_{v_{0}}^{s s}=E_{v_{0}}^{c}$.
We define the critical value $v_{0} \in \mathcal{Z}_{0}$ as follows. If $N=\infty$, let v_{0} be the point given in Proposition 3.4 iii). Otherwise, let v_{0} be the unique point in $\mathcal{I}_{R_{N}}^{N}$ such that

$$
D F^{R_{N}}\left(E_{v_{-R_{N}}}^{h}\right)=E_{v_{0}}^{v, N}
$$

(recall that $\mathcal{I}_{R_{N}}^{N}$ is a vertical quadratic curve in \mathcal{B}_{0}^{N}). Define the critical point as $v_{-1}:=F^{-1}\left(v_{0}\right)$.

Remark 3.5. In fact, we will show that if $N=\infty$, then $\mathcal{Z}_{0}=\left\{v_{0}\right\}$ (see Theorem4.7).
Theorem 3.6 (Valuable charts). There exist charts

$$
\Phi_{0}:\left(\mathcal{B}_{0}, v_{0}\right) \rightarrow\left(B_{0}, 0\right) \quad \text { and } \quad \Phi_{-1}:\left(\mathcal{B}_{-1}, v_{-1}\right) \rightarrow\left(B_{-1}, 0\right)
$$

with

$$
\mathcal{B}_{0} \supset \mathcal{B}_{0}^{1}, \quad \mathcal{B}_{-1} \supset \mathcal{B}_{R_{1}-1}^{1} \quad \text { and } \quad F\left(\mathcal{B}_{-1}\right) \Subset \mathcal{B}_{0}
$$

and

$$
\left\|\Phi_{i}^{ \pm 1}\right\|_{C^{r}}<\bar{L} \quad \text { for } \quad i \in\{0,-1\}
$$

such that

$$
\begin{equation*}
\Phi_{0} \circ F \circ \Phi_{-1}^{-1}(x, y)=\left(f_{0}(x)-\lambda y, x\right) \quad \text { for } \quad(x, y) \in B_{-1} \tag{3.4}
\end{equation*}
$$

for some C^{r}-unimodal interval map

$$
f_{0}:\left(\pi_{h}\left(B_{-1}\right), 0\right) \rightarrow\left(\pi_{h}\left(B_{0}\right), 0\right)
$$

with a unique critical point at 0 with $f_{0}^{\prime \prime}(0)<0$. Moreover, the following properties hold for $1 \leq n \leq N$.
i) Let $p_{0} \in \mathcal{B}_{0}^{n}$. Then

$$
D \Phi_{0}\left(E_{p_{0}}^{h}\right)=E_{\Phi_{0}\left(p_{0}\right)}^{g h} \quad \text { and } \quad D \Phi_{-1}\left(E_{p_{R_{n}-1}}^{v}\right)=E_{\Phi_{-1}\left(p_{R_{n}-1}\right)}^{g v} .
$$

ii) We have $\left.\Psi^{n}\right|_{\mathcal{I}_{0}^{n}}=\left.\Phi_{0}\right|_{\mathcal{I}_{0}^{n}}$.
iii) We have

$$
\left\|\Psi^{n} \circ\left(\left.\Phi_{0}\right|_{\mathcal{B}_{0}^{n}}\right)^{-1}-\operatorname{Id}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{n}} .
$$

iv) Let

$$
H_{n}:=\Phi_{-1} \circ F^{R_{n}-1} \circ\left(\Psi^{n}\right)^{-1}
$$

Then $H_{n}(x, y)=\left(h_{n}(x), e_{n}(x, y)\right)$, where $h_{n}: I_{0}^{n} \rightarrow h_{n}\left(I_{0}^{n}\right)$ is a C^{r}-diffeomorphism and e_{n} is a C^{r}-map such that

$$
\begin{equation*}
\inf _{x \in I_{0}^{n}}\left|h_{n}^{\prime}(x)\right|>\bar{L}^{-1} \lambda^{\bar{\varepsilon} R_{n}} \quad \text { and } \quad\left\|e_{n}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{n}} \tag{3.5}
\end{equation*}
$$

Proof. For $t \geq 0$ and $X \subset \mathbb{R}^{2}$, denote

$$
X(t):=\left\{p \in \mathbb{R}^{2} \mid \operatorname{dist}(p, X) \leq t\right\}
$$

Let

$$
\mathcal{B}_{0}:=\mathcal{B}_{0}^{1}\left(\lambda^{\bar{\varepsilon} R_{1}}\right) \quad \text { and } \quad \mathcal{C}_{0}^{n}:=\mathcal{B}_{0}^{n}\left(\lambda^{\bar{\varepsilon} R_{n}}\right) \backslash \mathcal{B}_{0}^{n}
$$

By (3.3), there exists a C^{r}-diffeomorphism Φ_{0} defined in a neighborhood of \mathcal{Z}_{0} such that

$$
\left\|\left.\Psi^{n}\right|_{\mathcal{Z}_{0}}-\Phi_{0}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{n}} \quad \text { for all } \quad 1 \leq n \leq N .
$$

Moreover, Φ_{0} can be extended a centered chart $\Phi_{0}:\left(\mathcal{B}_{0}, v_{0}\right) \rightarrow\left(B_{0}, 0\right)$ such that

$$
\left.\Phi_{0}\right|_{\mathcal{B}_{0}^{n} \backslash\left(\mathcal{B}_{0}^{n+1} \cup \mathcal{C}_{0}^{n+1}\right)}=\left.\Psi^{n}\right|_{\mathcal{B}_{0}^{n} \backslash\left(\mathcal{B}_{0}^{n+1} \cup \mathcal{C}_{0}^{n+1}\right)}
$$

and

$$
\left\|\left.\Phi_{0}\right|_{\mathcal{C}_{0}^{n+1}}-\left.\Psi^{n}\right|_{\mathcal{C}_{0}^{n+1}}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{n}}
$$

Let $\mathcal{I}_{-1}^{h}:=W^{c}\left(v_{-1}\right)$. Observe that $F\left(\mathcal{I}_{-1}^{h}\right)$ is a vertical quadratic curve in \mathcal{B}_{0}. Hence, there exists a C^{r}-unimodal interval map

$$
f_{0}:\left(\pi_{h}\left(B_{-1}\right), 0\right) \rightarrow\left(\pi_{h}\left(B_{0}\right), 0\right)
$$

with a unique quadratic critical point at 0 such that

$$
\Phi_{0} \circ F\left(\mathcal{I}_{-1}^{h}\right)=\left\{\left(f_{0}(y), y\right) \mid y \in \pi_{v}\left(B_{0}\right)\right\} .
$$

For some $l_{-1}=\bar{L}^{-1}$, let

$$
D_{0}:=\left\{\left(f_{0}(y)+t, y\right) \in B_{0}| | t \mid \leq \lambda l_{-1} \text { and } y \in \pi_{v}\left(B_{0}\right)\right\}
$$

and

$$
\mathcal{B}_{-1}:=\left(\Phi_{0} \circ F\right)^{-1}\left(D_{0}\right) .
$$

We define $\Phi_{-1}:\left(\mathcal{B}_{-1}, v_{-1}\right) \rightarrow\left(B_{-1}, 0\right)$ to be the unique chart satisfying

$$
\Phi_{0} \circ F \circ \Phi_{-1}^{-1}(x, y)=\left(f_{0}(x)-\lambda y, x\right) \quad \text { for } \quad(x, y) \in B_{-1}
$$

Claims i), ii) and iii) follow immediately.
The second inequality in (3.5) follows from Lemma 3.3. Hence, for $p_{0} \in \mathcal{B}_{0}^{n}$, we have

$$
\left\|\left.D F^{R_{n}-1}\right|_{E_{p_{0}}^{v, n}}\right\|=\left\|\left.\Phi_{-1}^{-1} \circ H_{n} \circ \Psi^{n}\right|_{E_{p_{0}}^{v, n}}\right\|<\bar{L}\left\|\left.H_{n}\right|_{E_{\Psi^{n}\left(p_{0}\right)}^{g v}}\right\|<\bar{L} \lambda^{(1-\bar{\varepsilon}) R_{n}} .
$$

By regularity of the Hénon-like return $\left(F^{R_{n}}, \Psi^{n}\right)$, we have

$$
\measuredangle\left(E_{p_{0}}^{v, n}, E_{p_{0}}^{h}\right)>L^{-1} .
$$

This implies that

$$
\mathrm{Jac}_{p_{0}} F^{R_{n}-1}<\bar{L}\left\|\left.D F^{R_{n}-1}\right|_{E_{p_{0}}^{v, n}}\right\| \cdot\left\|\left.D F^{R_{n}-1}\right|_{E_{p_{0}}^{h}}\right\|
$$

Thus, (1.3) imply that

$$
\bar{L} \lambda^{(1-\bar{\varepsilon}) R_{n}}\left\|\left.D F^{R_{n}-1}\right|_{E_{p_{0}}^{h}}\right\|^{r-1}>\bar{L}^{-1} \lambda^{(1+\varepsilon) R_{n}} .
$$

The first inequality in (3.5) follows.

Remark 3.7. In Theorem 7.7, we show that if $N=\infty$ and the return times are of bounded type, then the first inequality in (3.5) can be improved to

$$
\inf _{x \in I_{0}^{n}}\left|h_{n}^{\prime}(x)\right|>\mathbf{k}
$$

for some uniform constant $\mathbf{k}>0$.
For $i \in\{0,-1\}$, denote

$$
\begin{equation*}
I_{i}^{h / v}:=\pi_{h / v}\left(B_{i}\right) \quad \text { and } \quad \mathcal{I}_{i}^{h}:=\Phi_{i}^{-1}\left(I_{i}^{h} \times\{0\}\right) . \tag{3.6}
\end{equation*}
$$

Observe that

$$
I_{0}^{h} \ni I_{0}^{1} \ni I_{0}^{2} \ni \ldots \quad \text { and } \quad I_{-1}^{h} \ni h_{1}\left(I_{0}^{1}\right) \ni h_{2}\left(I_{0}^{2}\right) \ni \ldots
$$

Moreover, if $X \subset \mathcal{B}_{0}^{n}$, then (3.5) implies

$$
\begin{equation*}
\Phi_{-1} \circ F^{R_{n}-1}(X) \subset h_{n}\left(I_{0}^{n}\right) \times\left[-\lambda^{(1-\bar{\varepsilon}) R_{n}}, \lambda^{(1-\bar{\varepsilon}) R_{n}}\right] . \tag{3.7}
\end{equation*}
$$

3.3. Horizontal projections. For $1 \leq n \leq N$, define $P_{-1}:\left(\mathcal{B}_{-1}, v_{-1}\right) \rightarrow\left(I_{-1}^{h}, 0\right)$ and $P_{0}^{n}:\left(\mathcal{B}_{0}^{n}, v_{0}\right) \rightarrow\left(I_{0}^{n}, 0\right)$ by

$$
P_{-1}:=\pi_{h} \circ \Phi_{-1} \quad \text { and } \quad P_{0}^{n}:=\pi_{h} \circ \Psi^{n} .
$$

Denote

$$
I_{R_{n}-1}^{n}:=P_{-1}\left(\mathcal{B}_{R_{n}-1}^{n}\right)=P_{-1}\left(\mathcal{I}_{R_{n}-1}^{n}\right)=h_{n}\left(I_{0}^{n}\right),
$$

where h_{n} is given in Theorem 3.6 iv). Define $\mathcal{P}_{0}^{n}: \mathcal{B}_{0}^{n} \rightarrow \mathcal{I}_{0}^{n}$ by

$$
\mathcal{P}_{0}^{n}(p):=\left(\Psi^{n}\right)^{-1}\left(P_{0}^{n}(p), 0\right) \quad \text { for } \quad p \in \mathcal{B}_{0}^{n}
$$

Observe that $\left.\mathcal{P}_{0}^{n}\right|_{\mathcal{I}_{0}^{n}}=\mathrm{Id}$.
We record the following immediate consequences of Theorem 3.6.
Lemma 3.8. For $1 \leq n \leq N$, let $p_{0}, q_{0} \in \mathcal{B}_{0}^{n}$ be two points such that

$$
\left|P_{0}^{n}\left(p_{0}\right)-P_{0}^{n}\left(q_{0}\right)\right|>\lambda^{\bar{\varepsilon} R_{n}} .
$$

Then we have

$$
\left|P_{-1}\left(p_{R_{n}-1}\right)-P_{-1}\left(q_{R_{n}-1}\right)\right|>\lambda^{\bar{\varepsilon} R_{n}} .
$$

If, additionally, we have

$$
P_{0}^{n}\left(p_{R_{n}}\right), P_{0}^{n}\left(q_{R_{n}}\right)<-\lambda^{\bar{\varepsilon} R_{n}}
$$

then

$$
\left|P_{0}^{n}\left(p_{R_{n}}\right)-P_{0}^{n}\left(q_{R_{n}}\right)\right|>\lambda^{\bar{\varepsilon} R_{n}}
$$

Lemma 3.9. For $1 \leq n \leq N$, denote $\rho_{n}:=\lambda^{(1-\bar{\varepsilon}) R_{n}}$. Let $0<t<\lambda^{-\bar{\varepsilon} R_{n}}$. Then the following statements hold.
i) Let $\tilde{E}_{p_{0}} \in \mathbb{P}_{p_{0}}^{2}$ be a t-horizontal direction at $p_{0} \in \mathcal{B}_{0}^{n}$. Then $\tilde{E}_{p_{R_{n}-1}}$ is $(1+t) \rho_{n}$ horizontal in \mathcal{B}_{-1}.
ii) Let $E_{p_{R_{n}-1}} \in \mathbb{P}_{p_{R_{n}-1}}^{2}$ be a t-vertical direction at $p_{R_{n}-1} \in \mathcal{B}_{R_{n}-1}^{n}$. Then $E_{p_{0}}$ is $t \rho_{n}$-vertical in \mathcal{B}_{0}^{n}.
iii) Let Γ_{0}^{h} be a t-horizontal curve in \mathcal{B}_{0}^{n}. Then $\Gamma_{R_{n}-1}^{h}$ is $(1+t) \rho_{n}$-horizontal in \mathcal{B}_{-1}.
iv) Let $\Gamma_{R_{n}-1}^{v}$ be a t-vertical curve in $\mathcal{B}_{R_{n}-1}^{n}$. Then Γ_{0}^{v} is t ρ_{n}-vertical in \mathcal{B}_{0}^{n}.

By Lemma 3.9 iii), $\mathcal{I}_{R_{n}-1}^{n}$ is ρ_{n}-horizontal in \mathcal{B}_{-1}. Thus, there exists a C^{r}-map $g_{n}: I_{R_{n}-1}^{n} \rightarrow \mathbb{R}$ with $\left\|g_{n}\right\|_{C^{r}}<\rho_{n}$ such that

$$
\Phi_{-1}\left(\mathcal{I}_{R_{n}-1}^{n}\right)=\left\{\left(x, g_{n}(x)\right) \mid x \in I_{R_{n}-1}^{n}\right\}
$$

Define $G_{n}: I_{R_{n}-1}^{n} \rightarrow \Phi_{-1}\left(\mathcal{I}_{R_{n}-1}^{n}\right)$ by $G_{n}(x):=\left(x, g_{n}(x)\right)$. Define the nth critical projection map $\mathcal{P}_{-1}^{n}: P_{-1}^{-1}\left(I_{R_{n}-1}^{n}\right) \rightarrow \mathcal{I}_{R_{n}-1}^{n}$ by

$$
\mathcal{P}_{-1}^{n}:=\Phi_{-1}^{-1} \circ G_{n} \circ P_{-1}
$$

Lemma 3.10. For $1 \leq n \leq N$, let Γ_{0} be a horizontal curve in \mathcal{B}_{0}^{n}. Then

$$
\left.F^{R_{n}-1}\right|_{\Gamma_{0}}=\left.\left(\left.\mathcal{P}_{-1}^{n}\right|_{\Gamma_{R_{n}-1}}\right)^{-1} \circ F^{R_{n}-1} \circ \mathcal{P}_{0}^{n}\right|_{\Gamma_{0}}
$$

Proof. Note that \mathcal{P}_{-1}^{n} is a projection along the vertical foliation \mathcal{F}_{-1}^{v} on \mathcal{B}_{-1}, and \mathcal{P}_{0}^{n} is a projection along the vertical foliation on \mathcal{B}_{0}^{n} obtained by pulling back \mathcal{F}_{-1}^{v} by $F^{-R_{n}+1}$. The claim follows immediately.

Lemma 3.11. There exists a uniform constant $k>0$ such that the following holds. Let $g: I \rightarrow \mathbb{R}$ be a C^{r}-map on an interval $I \subset I_{-1}^{h}$ such that $\|g\|_{C^{r}}<k$. Denote $G(x):=(x, g(x))$. Then there exist $a \in I_{0}^{h}$ and a C^{r}-diffeomorphism $\psi_{g}: I \rightarrow \psi_{g}(I)$ with $\left\|\psi_{g}^{ \pm 1}\right\|_{C^{r}}=O(1)$ such that we have

$$
\begin{equation*}
Q(x):=P_{0}^{n} \circ F \circ \Phi_{-1}^{-1} \circ G(x)=a-\left(\psi_{g}(x)\right)^{2} \tag{3.8}
\end{equation*}
$$

where defined.

4. Avoiding the Critical Value

For $N \in \mathbb{N} \cup\{\infty\}$, let F be the N-times regular Hénon-like renormalizable diffeomorphism considered in Subsection 3.1. Suppose that N is sufficiently large, so that by replacing $\left(F^{R_{1}}, \Psi^{1}\right)$ with $\left(F^{R_{n_{1}}}, \Psi^{n_{1}}\right)$ for some $n_{1} \leq N$, we may assume that:

$$
\begin{equation*}
\bar{L} \lambda^{\varepsilon R_{1}}<\rho, \tag{4.1}
\end{equation*}
$$

where $\rho \in(0,1)$ is a suitably small universal constant. Note that (4.1) is a stronger condition than (3.2).

Let $z=(a, b)$ and $w=(c, d)$ with $a, c \in \mathbb{R}$ and $b, d \in I_{0}^{v}$. Denote

$$
m:=\min \{a, c\} \quad \text { and } \quad M:=\max \{a, c\}
$$

For $t \geq 0$, define

$$
V_{z}(t):=[a-t, a+t] \times I_{0}^{v} \quad \text { and } \quad V_{[z, w]}(t):=[m-t, M+t] \times I_{0}^{v},
$$

where I_{0}^{v} is given in (3.6). If $V_{\Psi^{n}(p)}(t) \subset B_{0}^{n}$ for some $1 \leq n \leq N ; p \in \mathcal{B}_{0}^{n}$ and $t \geq 0$, then we denote

$$
\mathcal{V}_{p}^{n}(t):=\left(\Psi^{n}\right)^{-1}\left(V_{\Psi^{n}(p)}(t)\right)
$$

We record the following two immediate consequences of Theorem 3.6.

Lemma 4.1. For $1 \leq n \leq N$, let $E_{p_{-1}} \in \mathbb{P}_{p_{-1}}^{2}$ be a $\lambda^{\bar{\varepsilon} R_{n}}$-horizontal direction at $p_{-1} \in \mathcal{B}_{-1}$. If

$$
p_{0} \in \mathcal{B}_{0}^{n} \backslash \mathcal{V}_{v_{0}}^{n}(t) \quad \text { with } \quad t>\lambda^{\bar{\varepsilon} R_{n}}
$$

then $E_{p_{0}}$ is $O(1 / t)$-horizontal in \mathcal{B}_{0}^{n}.
Similarly, let Γ_{-1} be $\lambda^{\bar{\varepsilon} R_{n}}$-horizontal curve in \mathcal{B}_{-1}. If

$$
\Gamma_{0} \subset \mathcal{B}_{0}^{n} \backslash \mathcal{V}_{v_{0}}^{n}(t) \quad \text { with } \quad t>\lambda^{\bar{\varepsilon} R_{n}}
$$

then Γ_{0} is $O(1 / t)$-horizontal in \mathcal{B}_{0}^{n}.
Lemma 4.2. For $1 \leq n \leq N$, let $\tilde{E}_{p_{0}} \in \mathbb{P}_{p_{0}}^{2}$ be a $\lambda^{\bar{\varepsilon} R_{n}}$-vertical direction at $p_{0} \in \mathcal{B}_{0}^{n}$. If

$$
p_{0} \in \mathcal{B}_{R_{n}}^{n} \backslash \mathcal{V}_{v_{0}}^{n}(t) \quad \text { with } \quad t>\lambda^{\bar{\varepsilon} R_{n}}
$$

then $\tilde{E}_{p_{0}}$ is $O(1 / t)$-vertical in \mathcal{B}_{-1}.
Similarly, let $\tilde{\Gamma}_{0}$ be $\lambda^{\bar{\varepsilon} R_{n}}$-vertical curve in \mathcal{B}_{0}^{n}. If

$$
\tilde{\Gamma}_{0} \subset \mathcal{B}_{R_{n}}^{n} \backslash \mathcal{V}_{v_{0}}^{n}(t) \quad \text { with } \quad t>\lambda^{\bar{\varepsilon} R_{n}}
$$

then $\tilde{\Gamma}_{-1}$ is $O(1 / t)$-vertical in \mathcal{B}_{-1}.
Proposition 4.3. For $1 \leq n \leq N$, let $p_{0} \in \mathcal{B}_{R_{n}}^{n} \backslash \mathcal{V}_{v_{0}}^{n}\left(\lambda^{\bar{\varepsilon} R_{n}}\right)$. If $E_{p_{0}}$ is $\lambda^{\bar{\varepsilon} R_{n}}$-vertical in \mathcal{B}_{0}^{n}, then $E_{p_{-R_{n}}}$ is $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-vertical in \mathcal{B}_{0}^{n}. Moreover, $p_{-R_{n}}$ is R_{n}-times forward $(\bar{L}, \bar{\varepsilon}, \lambda)$-regular along $E_{p_{-R_{n}}}$.
Proof. Consider a linearization

$$
\left\{\Phi_{p_{-m}}: \mathcal{U}_{p_{-m}} \rightarrow U_{p_{-m}}\right\}_{m=0}^{R_{n}}
$$

of F along the R_{n}-backward orbit of p_{0} with vertical direction

$$
E_{p_{0}}^{v, n}:=\left(D \Psi^{n}\right)^{-1}\left(E_{\Psi^{n}\left(p_{0}\right)}^{g h}\right) .
$$

Note that since $\left(F^{R_{n}}, \Psi^{n}\right)$ is a Hénon-like return, we have

$$
D \Psi^{n}\left(E_{p_{-R_{n}}}^{v, n}\right)=E_{\Psi^{n}\left(p_{-R_{n}}\right)}^{g v}
$$

Denote

$$
E_{p_{-1}}^{h, n}:=D \Phi_{p_{-1}}\left(E_{0}^{g h}\right) \quad \text { and } \quad E_{p_{-1}}^{h}:=D \Phi_{-1}\left(E_{\Phi_{-1}\left(p_{-1}\right)}^{g h}\right)
$$

where $\Phi_{-1}: \mathcal{U}_{-1} \rightarrow U_{-1}$ is the chart defined over the critical point given in Theorem 3.6. By Theorem A.2 ii) and (3.5), we see that

$$
\left\|\left.D F^{-R_{n}+1}\right|_{E_{p-1}^{h, n}}\right\|,\left\|\left.D F^{-R_{n}+1}\right|_{E_{p-1}^{h}}\right\|>\bar{L}^{-1} \lambda^{\bar{\varepsilon} R_{n}} .
$$

Hence, it follows from Proposition A.9 that

$$
\measuredangle\left(E_{p_{-1}}^{h, n}, E_{p_{-1}}^{h}\right)<\bar{L} \lambda^{(1-\bar{\varepsilon}) R_{n}} .
$$

Thus, by (3.4), we have

$$
\measuredangle\left(E_{p_{-1}}^{h, n}, E_{p_{-1}}\right)>\bar{L}^{-1} \lambda^{\bar{\varepsilon} R_{n}} .
$$

For $1 \leq i \leq R_{n}$, denote

$$
\theta_{-i}:=\measuredangle\left(E_{0}^{g h}, D \Phi_{p_{-i}}\left(E_{p_{-i}}\right)\right) .
$$

Choose a suitable uniform constant $c \in(0, \pi / 2)$ independent of F, and let $1 \leq M \leq$ R_{n} be the smallest number such that $\theta_{-M}>c$. By TheoremA.2 and PropositionA.5, we see that

$$
\theta_{-i}>\lambda^{-(1-\bar{\varepsilon}) i} \theta_{-1}>\bar{L}^{-1} \lambda^{-(1-\bar{\varepsilon}) i} \lambda^{\bar{\varepsilon} R_{n}} .
$$

Consequently,

$$
M<\bar{\varepsilon} R_{n}-\frac{\log \bar{L}}{\log \lambda}=\bar{\varepsilon} R_{n}
$$

where in the last equality, we used (4.1). Let $M^{\prime}:=C M$ for some suitable uniform constant $C \geq 1$ independent of F.

By Proposition A.5, we have

$$
\begin{equation*}
\left\|\left.D F\right|_{E_{p_{-R}+i}+i}\right\| \asymp\left\|\left.D F^{i}\right|_{E_{P_{-R_{n}+i}}^{v, n}}\right\| \quad \text { for } \quad 0 \leq i<R_{n}-M^{\prime} \tag{4.2}
\end{equation*}
$$

Denote

$$
F_{-j}^{i}:=\Phi_{p_{-j+i}} \circ F^{i} \circ\left(\Phi_{p_{-j}}\right)^{-1} .
$$

By Proposition A.4, we have

$$
\begin{equation*}
\lambda^{\bar{\varepsilon} R_{n}}<\lambda^{(1+\bar{\varepsilon}) M^{\prime}}<\left\|\left.D F_{-M^{\prime}}^{i}\right|_{\tilde{E}_{p_{-M^{\prime}}}}\right\|<\lambda^{-\bar{\varepsilon} M^{\prime}}<\lambda^{-\bar{\varepsilon} R_{n}} \tag{4.3}
\end{equation*}
$$

for any $\tilde{E}_{p_{-M^{\prime}}} \in \mathbb{P}_{p_{-M^{\prime}}}^{2}$. Since $\left\|\Phi_{p_{-i}}^{ \pm 1}\right\|_{C^{1}}<\bar{L} \lambda^{-\bar{\varepsilon} i}$, we conclude that for $0 \leq i<M^{\prime}$, we have

$$
\lambda^{\bar{\varepsilon} R_{n}}<\frac{\left\|\left.D F^{R_{n}-M^{\prime}+i}\right|_{E_{p_{-R_{n}}^{v, n}}}\right\|}{\left\|\left.D F^{R_{n}-M^{\prime}+i}\right|_{E_{p_{-}-R_{n}}}\right\|}<\lambda^{-\bar{\varepsilon} R_{n}} .
$$

The ($\bar{L}, \bar{\varepsilon}, \lambda$) forward regularity of $p_{-R_{n}}$ along $E_{p_{-R_{n}}}$ follows.
Proposition 4.4. For $1 \leq n \leq N$, let $p_{0} \in \mathcal{B}_{0}^{n}$. If p_{0} is infinitely forward $(\bar{L}, \bar{\varepsilon}, \lambda)$ regular, then $W^{s s}\left(p_{0}\right)$ is $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-vertical and vertically proper in \mathcal{B}_{0}^{n}.
Proof. The verticality of $W^{s s}\left(p_{0}\right)$ follows immediately from PropositionA.8. Consider a linearization

$$
\left\{\Phi_{p_{m}}: \mathcal{U}_{p_{m}} \rightarrow U_{p_{m}}\right\}_{m=0}^{\infty}
$$

of F along the infinite forward orbit of p_{0} with vertical direction $E_{p_{0}}^{s s}$. Recall that

$$
\begin{equation*}
\Phi_{p_{m}}\left(W_{\mathrm{loc}}^{s s}\left(p_{m}\right)\right) \subset\left\{(0, y) \in U_{p_{m}} \mid y \in \mathbb{R}\right\} . \tag{4.4}
\end{equation*}
$$

Let

$$
\mathcal{V}_{p_{0}}:=\mathcal{V}_{p_{0}}^{n}\left(\lambda^{\bar{\varepsilon} R_{n}}\right)
$$

Arguing as in the proof of Proposition 3.2, we see that if M is the nearest integer to $R_{n} / 2$, then

$$
\begin{equation*}
\Phi_{p_{M}}\left(F^{M}\left(\mathcal{V}_{p_{0}}\right)\right) \subset\left(-\lambda^{\bar{\varepsilon} R_{n}}, \lambda^{\bar{\varepsilon} R_{n}}\right) \times\left(-\lambda^{(1-\bar{\varepsilon}) M}, \lambda^{(1-\bar{\varepsilon}) M}\right) \tag{4.5}
\end{equation*}
$$

For $q_{0} \in \mathcal{V}_{p_{0}}$, denote

$$
\hat{E}_{q_{0}}^{v / h}:=\left(D \Psi^{n}\right)^{-1}\left(E_{\Psi^{n}\left(q_{0}\right)}^{g v / g h}\right) .
$$

The forward regularity of q_{0}, Theorem A. 2 and Proposition A. 5 imply that

$$
\left\|\left.D F^{m}\right|_{\hat{E}_{q_{0}}^{h}}\right\|<\bar{L} \lambda^{(1-\bar{\varepsilon}) m} . \quad \text { and } \quad\left\|\left.D F^{m}\right|_{\hat{E}_{q_{0}}^{h}}\right\|>\bar{L}^{-1} \lambda^{\bar{\varepsilon} m}
$$

Thus, follows from Proposition A. 3 that $q_{m} \in \mathcal{U}_{p_{m}}$ for all m sufficiently large so that

$$
\bar{L} \lambda^{(1-\bar{\varepsilon}) m}<\bar{L}^{-1} \lambda^{\bar{\varepsilon} m} .
$$

We conclude by (4.4), (4.5) and Proposition A.9 that $W_{\text {loc }}^{s s}\left(p_{M}\right)$ is vertically proper in $F^{M}\left(\mathcal{V}_{p_{0}}\right)$. The result follows.
Proposition 4.5. For $1 \leq n \leq N$, let $\mathcal{C}_{0} \subset \mathcal{B}_{0}^{n}$ be a totally invariant connected set under $F^{d R_{n}}$ with $2 \leq d \leq \mathbf{b}$. If

$$
\mathcal{V}_{v_{0}}^{n}\left(\lambda^{\bar{\varepsilon} R_{n}}\right) \cap \mathcal{C}=\varnothing, \quad \text { where } \quad \mathcal{C}:=\bigcup_{i=0}^{d-1} \mathcal{C}_{i R_{n}}
$$

then either \mathcal{C}_{0} is a singleton, or it contains a sink.
Proof. Let $\mathcal{E}^{v}: \mathcal{B}_{0}^{n} \rightarrow T^{1} \mathcal{B}_{0}^{n}$ be a C^{r-1}-unit vector field such that

$$
\mathcal{E}^{v}(p) \in\left(D \Psi^{n}\right)^{-1}\left(E_{\Psi^{n}(p)}^{g v}\right) \quad \text { for } \quad p \in \mathcal{B}_{0}^{n}
$$

For $i \in \mathbb{N}$, define

$$
\mathcal{E}^{-i}:=\left(F^{i R_{n}}\right)^{*}\left(\left.\mathcal{E}^{v}\right|_{\mathcal{C}}\right)
$$

For $p \in \mathcal{C}$, let $E_{p}^{-i} \in \mathbb{P}_{p}^{2}$ be the direction containing $\mathcal{E}^{-i}(p)$. By Proposition $4.3, p$ is $i R_{n}$-times forward $(\bar{L}, \bar{\varepsilon}, \lambda)$-regular along E_{p}^{-i}. Thus, it follows from Proposition A. 8 that E_{p}^{-i} converges super-exponentially fast to $E_{p}^{s s}$ along which p is infinitely forward ($\bar{L}, \bar{\varepsilon}, \lambda$)-regular.

Let $W_{\text {loc }}^{s s}(p)$ be the connected component of $W^{s s}(p) \cap \mathcal{B}_{0}^{n}$ containing p. Define

$$
\mathcal{V}_{\mathcal{C}_{0}}:=\bigcup_{p \in \mathcal{C}_{0}} W_{\mathrm{loc}}^{s s}(p)
$$

By Proposition 4.4, the foliation of $\mathcal{V}_{\mathcal{C}_{0}}$ given by $\left\{W_{\text {loc }}^{s s}(p)\right\}_{p \in \mathcal{C}}$ is $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-vertical and vertically proper in \mathcal{B}_{0}^{n}. Let

$$
\Psi_{\mathcal{C}_{0}}: \mathcal{V}_{\mathcal{C}_{0}} \rightarrow V_{\mathcal{C}_{0}}:=I_{\mathcal{C}_{0}} \times I_{0}^{v}
$$

be the genuine horizontal chart that rectifies this vertical foliation.
Consider the map

$$
H:=\Psi_{\mathcal{C}_{0}} \circ F^{d R_{n}} \circ\left(\Psi_{\mathcal{C}_{0}}\right)^{-1}
$$

By (3.7), (3.4) and the fact that

$$
\mathcal{V}_{\mathcal{C}_{0}} \cap \mathcal{V}_{v_{0}}^{n}\left(\lambda^{\bar{\varepsilon} R_{n}}\right)=\varnothing
$$

it follows that $\Pi_{1 \mathrm{D}}(H)$ is a homeomorphism. If \mathcal{C}_{0} is not a singleton, then $\Pi_{1 \mathrm{D}}(H)$ is a map on a closed interval, which immediately implies that it has a sink.

Proposition 4.6. For $1 \leq n \leq N$ and $m \geq-1$, denote

$$
u_{m}^{n}:=\Psi^{n}\left(v_{m R_{n}}\right) \in B_{0}^{n} \quad \text { and } \quad a_{m}^{n}:=\pi_{h}\left(u_{m}^{n}\right) .
$$

If $v_{k R_{n}}$ does not converge to a sink as $k \rightarrow \infty$, then the following statements hold.
i) For $i \geq 0$ such that $i=O(1)$, we have

$$
\left|a_{i}^{n}-a_{-1}^{n}\right|>\lambda^{\bar{\varepsilon} R_{n}} .
$$

ii) We have $a_{1}^{n}<a_{-1}^{n}<a_{0}^{n}=0$.

Proof. Let $\delta \in(\bar{\varepsilon}, 1)$ with $\bar{\delta}<1$. Suppose towards a contradiction that

$$
\begin{equation*}
V_{u_{i}^{n}}\left(\lambda^{\bar{\delta} R_{n}}\right) \cap V_{u_{-1}^{n}}\left(\lambda^{\bar{\delta} R_{n}}\right) \neq \varnothing . \tag{4.6}
\end{equation*}
$$

Without loss of generality, assume that $i \geq 0$ is the smallest number for which 4.6) holds.

For $y \in I_{0}^{v}$, consider

$$
J_{0}^{n} \subset\left(-\lambda^{\bar{\delta} R_{n}}, \lambda^{\bar{\delta} R_{n}}\right) \quad \text { and } \quad \mathcal{J}_{0}^{n}:=\Psi^{-n}\left(J_{0}^{n} \times\{y\}\right) \subset \mathcal{V}_{v_{0}}^{n}\left(\lambda^{\bar{\delta} R_{n}}\right)
$$

By Propositions A.4 and A.5, and 4.1, we see that

$$
\left|\mathcal{J}_{i R_{n}-1}^{n}\right|<\lambda^{-\bar{\varepsilon} R_{n}}\left|J_{0}^{n}\right|<\lambda^{\underline{\delta} R_{n}} .
$$

Moreover, since

$$
\mathcal{J}_{j R_{n}}^{n} \cap V_{u_{-1}^{n}}\left(\lambda^{\bar{\delta} R_{n}}\right)=\varnothing \quad \text { for } \quad 0 \leq j<i
$$

we can argue by induction using Lemma 3.9 iii) and Lemma 4.1 that $\mathcal{J}_{i R_{n}-1}^{n}$ is $\lambda^{(1-\bar{\varepsilon}) R_{n}}$ horizontal in \mathcal{B}_{-1}. Then it follows from (4.6) and (3.4) that

$$
\left|P_{0}^{n}\left(\mathcal{J}_{i R_{n}}^{n}\right)\right|<\lambda^{\delta R_{n}}\left|\mathcal{J}_{i R_{n}-1}^{n}\right|<\lambda^{\delta R_{n}}\left|J_{0}^{n}\right| .
$$

We conclude that

$$
F^{i R_{n}}\left(\mathcal{V}_{v_{0}}^{n}\left(\lambda^{\bar{\delta} R_{n}}\right)\right) \Subset \mathcal{V}_{v_{0}}^{n}\left(\lambda^{\bar{\delta} R_{n}}\right)
$$

By Propositions A.4 and A.5, and (4.1), we see that for $p_{0} \in \mathcal{J}_{0}^{n}$:

$$
\left\|\left.D F^{i R_{n}}\right|_{E_{p_{0}}^{h}}\right\|<\lambda^{-\bar{\varepsilon} R_{n}} .
$$

Arguing by induction using Lemma 3.9 i) and Lemma 4.1, we also see that $E_{p_{i R_{n}-1}}^{h}$ is $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-horizontal in \mathcal{B}_{-1}. Consequently, by (4.6) and (3.4), we have

$$
\measuredangle\left(D F^{i R_{n}}\left(E_{p_{0}}^{h}\right), E_{p_{i R_{n}}}^{v, n}\right)<\lambda^{\underline{\delta} R_{n}} .
$$

It follows by Proposition A. 5 that

$$
\left\|D_{p_{0}} F^{2 i R_{n}}\right\|<\lambda^{\delta R_{n}} .
$$

We conclude that $\mathcal{V}_{v_{0}}^{n}\left(\lambda^{\bar{\varepsilon} R_{n}}\right)$ is contained in an $2 i R_{n}$-periodic sink. This is a contradiction.

Suppose towards a contradiction that $a_{1}^{n}<a_{-1}^{n}<0$ is not true. Denote

$$
\check{B}_{0}^{n}:=\left[a_{-1}^{n}+\lambda^{\bar{\varepsilon} R_{n}},-\lambda^{\bar{\varepsilon} R_{n}}\right] \times I_{0}^{v} .
$$

Let $K_{0}^{n}:=\left\{(t, 0) \in \check{B}_{0}^{n}\right\}$. By Lemma 3.9 and (3.4), we see that K_{0}^{n} maps injectively into itself under the map $P_{0}^{n} \circ F^{R_{n}} \circ\left(\Psi^{n}\right)^{-1}$. Consequently, v_{0} must converge to an R^{n}-periodic sink. This is a contradiction.

Theorem 4.7 (Critical Recurrence). Suppose that $N=\infty$. Then

$$
\mathcal{Z}_{0}:=\bigcap_{n=1}^{\infty} \mathcal{B}_{R_{n}}^{n}=\left\{v_{0}\right\}
$$

Consequently, the orbit of v_{0} is recurrent.
Proof. Let

$$
\mathcal{Y}_{0}:=\bigcap_{n=1}^{\infty} \mathcal{B}_{0}^{n}, \quad \mathcal{I}_{0}^{\infty}:=\mathcal{I}_{0}^{1} \cap \mathcal{Y}_{0} \quad \text { and } \quad I_{0}^{\infty}:=\pi_{h} \circ \Phi_{0}\left(\mathcal{I}_{0}^{\infty}\right)
$$

Note that every point $p_{0} \in \mathcal{Y}_{0}$ is infinitely forward $(L, \varepsilon, \lambda)$-regular. Moreover, by Proposition 3.2, $W^{s s}\left(p_{0}\right)$ is vertically proper in \mathcal{B}_{0}^{1}. Hence, we have

$$
\mathcal{Y}_{0}=\bigcup_{p_{0} \in \mathcal{I}_{0}^{\infty}}\left(W^{s s}\left(p_{0}\right) \cap \mathcal{B}_{0}^{1}\right)
$$

We claim that $\mathcal{Y}_{0}=W^{s s}\left(v_{0}\right) \cap \mathcal{B}_{0}^{1}$.
Recall that for $n \in \mathbb{N}$, the curve $\mathcal{I}_{R_{n}}^{n}$ is vertical quadratic in \mathcal{B}_{0}^{n}. Let $v_{0}^{n} \in \mathcal{I}_{0}^{n}$ be the unique point such that

$$
E_{v_{R_{n}}}^{v, n}=D F^{R_{n}}\left(E_{v_{0}^{n}}^{h}\right)
$$

Denote

$$
a_{0}:=\pi_{h} \circ \Phi_{0}\left(v_{0}\right) \quad \text { and } \quad a_{n}:=P_{0}^{n}\left(v_{R_{n}}^{n}\right)
$$

By (3.3) and Lemma 3.3, we have

$$
\left|P_{0}^{n}\left(v_{0}\right)-a_{0}\right|,\left|a_{n}-a_{0}\right|<\lambda^{(1-\bar{\varepsilon}) R_{n}} .
$$

Assume the correct orientation of Ψ^{n} so that we have $P_{0}^{n}\left(p_{R_{n}}\right) \leq a_{n}$ for $p_{0} \in \mathcal{I}_{0}^{n}$. Suppose towards a contradiction that there exists a uniform constant $b>0$ such that $\left(a_{0}-b, a_{0}\right) \subset I_{0}^{\infty}$.

Let $M \in \mathbb{N}$ be sufficiently large so that for $n \geq M$, we have

$$
a_{0}-b / 2<a_{0}-\lambda^{\bar{\varepsilon} R_{M}}<a_{n} .
$$

Using induction and Lemma 4.1, we see that for $0 \leq k<R_{n} / R_{M}$, the curve $\mathcal{I}_{k R_{M}}^{n}$ is $O(1)$-horizontal in \mathcal{B}_{0}^{n}, and $\mathcal{I}_{(k+1) R_{M}-1}^{n}$ is $\lambda^{(1-\bar{\varepsilon}) R_{M}}$-horizontal in \mathcal{B}_{-1}.

We define $\mathcal{B}_{-k R_{M}}^{n}$ with $0 \leq k<R_{n} / R_{M}$ inductively as follows. Let $\mathcal{B}_{-k R_{M}-1}^{n}$ be the connected component of

$$
F^{-1}\left(\mathcal{B}_{-k R_{M}}^{n}\right) \cap \mathcal{B}_{R_{M}-1}^{M}
$$

containing $\mathcal{I}_{R_{n}-k R_{M-1}}^{n}$, and let

$$
\mathcal{B}_{-(k+1) R_{M}}^{n}:=F^{-R_{M}+1}\left(\mathcal{B}_{-k R_{M}-1}^{n}\right) .
$$

Using induction and Lemma 4.2, we see that

$$
\partial \mathcal{B}_{-k R_{M}-1}^{n} \backslash \partial \mathcal{B}_{R_{M}-1}^{M}
$$

consists of two $O(1)$-vertical curves $\Gamma_{-k R_{M}-1}^{n, \pm}$ in \mathcal{B}_{-1}, and

$$
\Gamma_{-(k+1) R_{M}}^{n, \pm}:=F^{-R_{M}+1}\left(\Gamma_{-k R_{M}-1}^{n, \pm}\right)
$$

are $\lambda^{(1-\bar{\varepsilon}) R_{M}}$-vertical in \mathcal{B}_{0}^{M}. We conclude that for $0 \leq k<R_{n} / R_{M}$, the sets

$$
\mathcal{B}_{-(k+1) R_{M}}^{n} \supset \mathcal{I}_{R_{n}-(k+1) R_{M}}^{n}
$$

are disjoint. Hence,

$$
I_{k R_{M}}^{n}:=P_{0}^{M}\left(\mathcal{I}_{k R_{M}}^{n}\right)
$$

are disjoint intervals in I_{0}^{M}.
Consider the following map

$$
g_{k}^{n}:=\left.\mathcal{P}_{0}^{M} \circ F \circ\left(\left.\mathcal{P}_{-1}^{M}\right|_{I_{(k+1) R_{M}-1}^{n}}\right)^{-1} \circ F^{R_{M}-1}\right|_{I_{k R_{M}}}
$$

Since $\mathcal{I}_{(k+1) R_{M}-1}^{n}$ and $\mathcal{I}_{(k+1) R_{M}}^{n}$ are uniformly horizontal in \mathcal{B}_{-1} and \mathcal{B}_{0} respectively, it follows that $\left\|g_{k}^{n}\right\|_{C^{r}}=O(1)$. Moreover,

$$
\sum_{k=0}^{R_{n} / R_{M}-1}\left|I_{k R_{M}}^{n}\right|<\left|I_{0}^{M}\right|=O(1)
$$

and thus, we conclude from Theorem B. 1 that

$$
G^{n}:=g_{R_{n} / R_{M}-1}^{n} \circ \ldots \circ g_{0}^{n}
$$

has uniformly bounded distortion.
Let

$$
I_{-R_{n}}^{n+1}=P_{0}^{M}\left(\mathcal{B}_{-R_{n}}^{n+1}\right)
$$

Then $I_{-R_{n}}^{n+1}$ and I_{0}^{n+1} are disjoint intervals in I_{0}^{n}. Moreover, we have $\left|I_{0}^{n+1}\right|=O(1)$ and

$$
\left|I_{-R_{n}}^{n+1}\right|,\left|I_{R_{n}}^{n+1}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

However,

$$
G^{n}\left(I_{-R_{n}}^{n+1}\right)=I_{0}^{n+1} \quad \text { and } \quad G^{n}\left(I_{0}^{n+1}\right)=I_{R_{n}}^{n+1}
$$

This is a contradiction. The result follows.

5. Return Times of Bounded Type

For $N \in \mathbb{N} \cup\{\infty\}$, let F be the N-times regular Hénon-like renormalizable diffeomorphism considered in Subsection 3.1. Suppose that the return times are of \mathbf{b}-bounded type for some integer $\mathbf{b} \geq 2$. Moreover, assume that ε is sufficiently small so that (1.5) holds with $\varepsilon_{0} \geq \bar{\varepsilon}$. By only considering every other returns if necessary, we may also assume without loss of generality that $r_{n} \geq 3$.
Lemma 5.1. For $s \in\{1,2\}$ and $1 \leq n \leq N-s$, let Γ_{0} be a $\lambda^{-\bar{\varepsilon} R_{n}}$-horizontal curve in \mathcal{B}_{0}^{n+s}. Then for $1 \leq k \leq R_{n+s} / R_{n}$, the following statements hold:
i) $\Gamma_{(k-1) R_{n}}$ is $\lambda^{-\bar{\varepsilon} R_{n}}$-horizontal in \mathcal{B}_{0}^{n}; and
ii) $\Gamma_{k R_{n}-1}$ is $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-horizontal in \mathcal{B}_{-1}.

Proof. The result is an immediate consequence of Lemmas 3.9 iii) and 4.1, and Proposition 4.6

Proposition 5.2. For $1 \leq n<N$, denote

$$
u_{k}^{n}:=\Psi^{n}\left(v_{k R_{n}}\right) \in B_{0}^{n} \quad \text { and } \quad a_{k}^{n}:=\pi_{h}\left(u_{k}^{n}\right) \quad \text { for } \quad k \geq-1 .
$$

If $v_{k R_{n}}$ does not converge to a sink as $k \rightarrow \infty$, then the following holds.
i) We have

$$
a_{1}^{n}<a_{2}^{n}<a_{0}^{n}=0 \quad \text { and } \quad\left|a_{i}^{n}-a_{2}^{n}\right|>\lambda^{\bar{\varepsilon} R_{n}} \quad \text { for } \quad i \in\{0,1\} .
$$

ii) Define

$$
\tilde{\mathcal{B}}_{0}^{n}:=V_{\left[u_{1}^{n}, u_{0}^{n}\right]}\left(\lambda^{\bar{\varepsilon} R_{n}}\right) \quad \text { and } \quad \tilde{\mathcal{B}}_{0}^{n}:=\left(\Psi^{n}\right)^{-1}\left(\tilde{B}_{0}^{n}\right)
$$

Then $F^{R_{n}}\left(\tilde{\mathcal{B}}_{0}^{n}\right) \Subset \tilde{\mathcal{B}}_{0}^{n}$.
Proof. By Proposition 4.6, we have

$$
\left|a_{1}^{n}-a_{-1}^{n}\right|>\lambda^{\bar{\varepsilon} R_{n}} .
$$

Thus, by Theorem 3.6, we have

$$
\left|a_{2}^{n}-a_{0}^{n}\right|>\left(\lambda^{\bar{\varepsilon} R_{n}}\right)^{2}-\lambda^{(1-\bar{\varepsilon}) R_{n}}>\lambda^{\bar{\varepsilon} R_{n}} .
$$

Suppose towards a contradiction that

$$
\left|a_{1}^{n}-a_{2}^{n}\right|<\lambda^{\bar{\varepsilon} R_{n}} .
$$

Proceeding by induction, suppose that

$$
\left|a_{i-1}^{n}-a_{i}^{n}\right|<\lambda^{\bar{\varepsilon} R_{n}} \quad \text { for } \quad 1<i<r_{n} .
$$

Iterating $v_{(i-1) R_{n}}$ and $v_{i R_{n}}$, and applying Propositions A.4 and A.5, and Theorem 3.6, we see that

$$
\left|a_{i}^{n}-a_{i+1}^{n}\right|<\lambda^{-\bar{\varepsilon} R_{n}}\left|a_{i-1}^{n}-a_{i}^{n}\right|+\lambda^{(1-\bar{\varepsilon}) R_{n}}<\lambda^{\bar{\varepsilon} R_{n}} .
$$

Consequently,

$$
\left|a_{1}^{n}-a_{r_{n}}^{n}\right|<r_{n} \lambda^{\bar{\varepsilon} R_{n}}<\lambda^{\bar{\varepsilon} R_{n}} .
$$

By Propositions 3.2 and 4.6, we have $v_{-R_{n}} \in \mathcal{B}_{0}^{n+1}$. This is a contradiction.
Suppose towards a contradiction that

$$
\begin{equation*}
a_{2}^{n}<a_{1}^{n}-\lambda^{\bar{\varepsilon} R_{n}}<a_{1}^{n} \tag{5.1}
\end{equation*}
$$

Consider

$$
J_{0}^{n}:=\left[a_{1}^{n}-\lambda^{\bar{\varepsilon} R_{n}}, a_{-1}^{n}-\lambda^{\varepsilon R_{n}}\right] \quad \text { and } \quad \mathcal{J}_{0}^{n}:=\left(\Psi^{n}\right)^{-1}\left(J_{0}^{n} \times\{0\}\right) .
$$

By Lemma 4.1, we see that $\mathcal{J}_{R_{n}}^{n}$ is $\lambda^{-\bar{\varepsilon} R_{n}}$-horizontal in \mathcal{B}_{0}^{n}. Let $F_{n}:=p \mathcal{R}^{n}(F)$ and $f_{n}:=\Pi_{1 \mathrm{D}}\left(\overline{F_{n}}\right)$. It follows that f_{n} maps J_{0}^{n} onto its image $f_{n}\left(J_{0}^{n}\right)$ as an orientation preserving diffeomorphism. Observe that by (5.1), $f_{n}\left(J_{0}^{n}\right)$ must contain a $\lambda^{\bar{\varepsilon} R_{n}}$ neighborhood of J_{0}^{n}.

For $y \in I_{0}^{v}$, let

$$
\mathcal{J}_{0}^{n, y}:=\left(\Psi^{n}\right)^{-1}\left(J_{0}^{n} \times\{y\}\right)
$$

By Lemma 3.9, we conclude that

$$
\left\|\mathcal{J}_{R_{n}}^{n, y}-\mathcal{J}_{R_{n}}^{n}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{n}}
$$

Let

$$
D_{0}^{n}:=J_{0}^{n} \times I_{0}^{v} \quad \text { and } \quad \mathcal{D}_{0}^{n}:=\left(\Psi^{n}\right)^{-1}\left(D_{0}^{n}\right)
$$

Consider the quadrilateral

$$
\hat{\mathcal{D}}_{R_{n}}^{n}:=\mathcal{D}_{R_{n}}^{n} \cap \mathcal{B}_{0}^{n}
$$

as horizontally foliated by $\left\{\mathcal{J}_{R_{n}}^{n, y}\right\}$ and vertically foliated by the vertical leaves in \mathcal{B}_{0}^{n}. Define

$$
\mathcal{K}_{0}:=\left(\Psi^{n}\right)^{-1}\left(\left\{\left(a_{1}^{n}, t\right) \mid t \in I_{0}^{v}\right\}\right)
$$

and

$$
\mathcal{K}_{-i}:=F^{-R_{n}}\left(\mathcal{K}_{-i+1} \cap \hat{\mathcal{D}}_{R_{n}}^{n}\right) \quad \text { for } \quad i \in \mathbb{N}
$$

It follows from Lemma 4.2 and Lemma 3.9 iv) that $\left\{\mathcal{K}_{-i}\right\}_{i=0}^{\infty}$ is a sequence of vertically proper and $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-vertical curves in $\overline{\mathcal{D}}_{0}^{n}$. Moreover, by Lemma 4.3, we see that any point $p \in \mathcal{K}_{-i}$ is $i R_{n}$-times forward $(\bar{L}, \bar{\varepsilon}, \lambda)$-regular along the tangent direction to \mathcal{K}_{-i} at p. It follows that \mathcal{K}_{-i} converges as $i \rightarrow \infty$ to a subarc in the stable manifold of some R_{n}-periodic saddle $q \in \mathcal{D}_{0}^{n}$ of non-flip type.

Let $\mathcal{B}_{0}^{n, r}$ and $\mathcal{B}_{0}^{n, l}$ be the connected components of $\mathcal{B}_{0}^{n} \backslash W^{s s}(q)$ containing v_{0} and $v_{R_{n}}$ respectively. It follows that $\mathcal{B}_{R_{n}}^{n, r / l} \subset \mathcal{B}_{0}^{n, r / l}$. This is a contradiction.

Property ii) now follows immediately.
By Proposition 5.2 ii), we may henceforth assume that

$$
B_{0}^{n}:=V_{\left[v_{R_{n}}, v_{0}\right]}\left(\lambda^{\bar{\varepsilon} R_{n}}\right) \quad \text { and } \quad \mathcal{B}_{0}^{n}:=\left(\Psi^{n}\right)^{-1}\left(B_{0}^{n}\right) \quad \text { for } \quad 1 \leq n \leq N
$$

Proposition 5.3. Let $s \in\{1,2\}$ and $1 \leq n \leq N-s$. For $0 \leq k<R_{n+s} / R_{n}$, Denote

$$
u_{k}^{n}:=\Psi^{n}\left(v_{k R_{n}}\right), \quad w_{k}^{n}:=\Psi^{n}\left(v_{R_{n+s}+k R_{n}}\right), \quad a_{k}^{n}:=\pi_{h}\left(u_{k}^{n}\right) \quad \text { and } \quad b_{k}^{n}:=\pi_{h}\left(w_{k}^{n}\right) .
$$

Define

$$
\hat{B}_{k R_{n}}^{n, s}:=V_{\left[u_{k}^{n}, w_{k}^{n}\right]}\left(\lambda^{\bar{\varepsilon} R_{n}}\right) \subset B_{0}^{n} \quad \text { and } \quad \hat{\mathcal{B}}_{k R_{n}}^{n, s}:=\left(\Psi^{n}\right)^{-1}\left(\hat{B}_{k R_{n}}^{n, s}\right)
$$

If $v_{k R_{n}}$ does not converge to a sink as $k \rightarrow \infty$, then the following properties hold.
i) For integers $2 \leq k<R_{n+s} / R_{n}$, we have

$$
a_{1}^{n}<b_{1}^{n}<a_{k}^{n}, b_{k}^{n}<b_{0}^{n}<a_{0}^{n}=0 .
$$

ii) For integers $0 \leq k, l \leq R_{n+s} / R_{n}$ with $k \neq l$, we have

$$
\left|a_{k}^{n}-a_{l}^{n}\right|,\left|b_{k}^{n}-b_{l}^{n}\right|,\left|a_{k}^{n}-b_{l}^{n}\right|,\left|a_{k}^{n}-b_{k}^{n}\right|>\lambda^{\bar{\varepsilon} R_{n}}
$$

iii) For $0 \leq k<R_{n+s} / R_{n}$, we have

$$
\hat{\mathcal{B}}_{k R_{n}}^{n, s} \supset \mathcal{B}_{k R_{n}}^{n+s} \quad \text { and } \quad F^{R_{n+s}-k R_{n}}\left(\hat{\mathcal{B}}_{k R_{n}}^{n, s}\right) \Subset \mathcal{B}_{0}^{n+s}
$$

Proof. By Propositions 4.6 and 5.2, we have

$$
\left|a_{0}^{n}-b_{0}^{n}\right|>\lambda^{\bar{\varepsilon} R_{n}} \quad \text { and } \quad F^{R_{n+s}}\left(\hat{\mathcal{B}}_{0}^{n, s}\right) \Subset \hat{\mathcal{B}}_{0}^{n, s}
$$

respectively. Applying Lemma $3.8\left(R_{n+s} / R_{n}-1\right)$-times starting from u_{0}^{n} and w_{0}^{n}, we obtain

$$
\left|a_{k}^{n}-b_{k}^{n}\right|>\lambda^{\bar{\varepsilon} R_{n}} \quad \text { for } \quad 0 \leq k<R_{n+s} / R_{n}
$$

By (3.7) and (3.4), we see that

$$
F^{R_{n}}\left(\hat{\mathcal{B}}_{k R_{n}}^{n, s}\right) \Subset \hat{\mathcal{B}}_{(k+1) R_{n}}^{n, s}
$$

Hence, by Proposition 5.2 ii), we also have

$$
F^{R_{n+s}-k R_{n}}\left(\hat{\mathcal{B}}_{k R_{n}}^{n, s}\right) \Subset \mathcal{B}_{0}^{n+s}
$$

It follows that for $0 \leq k, l<R_{n+s} / R_{n}$ with $k \neq l$, we have

$$
\hat{\mathcal{B}}_{k R_{n}}^{n, s} \cap \hat{\mathcal{B}}_{l R_{n}}^{n, s}=\varnothing
$$

This implies the result.
Theorem 5.4. Suppose F_{N} is topologically renormalizable with return time $2 \leq r_{N} \leq$ \mathbf{b}, and that not every r_{N}-periodic Jordan domain of F_{N} contains a sink. Then F is $(N+1)$-times $(\bar{L}, \bar{\varepsilon}, \lambda)$-regular Hénon-like renormalizable.

Proof. Let $\mathcal{D}_{0}^{N+1} \Subset \mathcal{B}_{0}^{n}$ be an \hat{R}_{N+1}-periodic Jordan domain with

$$
\hat{r}_{N}:=\hat{R}_{N+1} / R_{N} \leq \mathbf{b}
$$

Define

$$
\mathcal{A}_{0}:=\bigcap_{i=1}^{\infty} \mathcal{D}_{i \hat{R}_{N+1}}^{N+1}
$$

By Proposition 4.5, we see that

$$
\mathcal{V}_{v_{0}}^{N}\left(\lambda^{\bar{\varepsilon} R_{N}}\right) \cap \mathcal{A} \neq \varnothing, \quad \text { where } \quad \mathcal{A}:=\bigcup_{i=0}^{\hat{r}_{N}-1} \mathcal{A}_{i R_{N}}
$$

Without loss of generality, assume that

$$
\mathcal{V}_{v_{0}}^{N}\left(\lambda^{\bar{\varepsilon} R_{N}}\right) \cap \mathcal{A}_{0} \neq \varnothing
$$

By (3.5) and Proposition A.4, it follows that

$$
\operatorname{dist}\left(v_{\hat{R}_{N+1}}, \mathcal{A}_{0}\right)<\lambda^{\bar{\varepsilon} R_{N}}
$$

For $m \geq-1$, let

$$
a_{m}^{N}:=\pi_{h} \circ \Psi^{N}\left(v_{m R_{N}}\right)
$$

Define

$$
\check{I}_{0}:=\left(a_{\hat{r}_{N}}^{N}+\lambda^{\bar{\varepsilon} R_{N}},-\lambda^{\bar{\varepsilon} R_{N}}\right) \quad \text { and } \quad \check{\mathcal{V}}_{0}:=\left(\Psi^{N}\right)^{-1}\left(\check{I}_{0} \times I_{0}^{v}\right)
$$

We claim that for some $r_{N} \leq \hat{r}_{N}$, we have

$$
a_{-1}^{N} \in \pi_{h} \circ \Psi^{N}\left(\check{\mathcal{V}}_{\left(r_{N}-1\right) R_{N}}\right)
$$

Suppose not. For $y \in I_{0}^{v}$, let

$$
\check{I}_{0}^{y}:=\check{I}_{0} \times\{y\} \quad \text { and } \quad \check{\mathcal{I}}_{0}^{y}:=\left(\Psi^{N}\right)^{-1}\left(\check{I}_{0}^{y}\right) .
$$

Arguing inductively using Lemmas 3.9 and 4.1, and Propositions 4.6, 5.3 ii), A.4 and A.5, we see that for $l \geq 1$ such that

$$
\begin{equation*}
a_{-1}^{N} \notin \pi_{h} \circ \Psi^{N}\left(\check{\mathcal{I}}_{(m-1) R_{N}}^{y}\right) \quad \text { for } \quad 0 \leq m \leq l, \tag{5.2}
\end{equation*}
$$

the $\operatorname{arc} \hat{\mathcal{I}}_{l R_{N}-1}^{y}$ is $\lambda^{(1-\bar{\varepsilon}) l R_{N}}$-horizontal in \mathcal{B}_{-1}, and

$$
\check{\mathcal{I}}_{l R_{N}}^{y} \cap\left(\check{\mathcal{V}}_{m R_{N}} \cup \mathcal{V}_{v_{0}}^{N}\left(\lambda^{\bar{\varepsilon} R_{N}}\right)\right)=\varnothing \quad \text { for } \quad 0 \leq m<l .
$$

If (5.2) holds for all $l \in \mathbb{N}$, then it is easy to see that the sequence $\check{\mathcal{V}}_{l R_{N}}$ converges to a sink. Otherwise, let $l>\hat{r}_{N}$ be the smallest integer such that

$$
a_{-1}^{N} \in \pi_{h} \circ \Psi^{N}\left(\check{\mathcal{V}}_{(l-1) R_{N}}\right)
$$

Denote

$$
\check{I}_{i R_{N}}:=\pi_{h} \circ \Psi^{N}\left(\check{\mathcal{I}}_{i R_{N}}^{0}\right) \quad \text { for } \quad 0 \leq i \leq l
$$

Note that for $s \in \check{I}_{i R_{N}}$ and $t \in \check{I}_{j R_{N}}$ with $i<j$, we have

$$
t<s<-\lambda^{\bar{\varepsilon} R_{N}} .
$$

For $0 \leq m \leq l$, let \hat{I}_{m} be the convex hull of the union

$$
\bigcup_{i=0}^{m-1} \check{I}_{i R_{N}} \subset I_{0}^{N}
$$

Proposition 7.7 implies that $\left.f_{N}^{l}\right|_{\hat{I}_{l}}$ is a unimodal map that maps \hat{I}_{l-1} as an orientation preserving diffeomorphism to the interval $f_{N}\left(\hat{I}_{l-1}\right)$ disjoint from \check{I}_{0}, and maps the turning point $c^{N} \in \hat{I}_{l} \backslash \hat{I}_{l-1}$ of f_{N} to $f_{N}\left(c^{N}\right)$ that is $\lambda^{(1-\bar{\varepsilon}) R_{N}}$-close to 0 . This is clearly impossible.

Denote $R_{N+1}:=r_{N} R_{N}$. Define

$$
I_{0}^{N+1}:=\left(a_{R_{N+1}}^{N}-\lambda^{\bar{\varepsilon} R_{N}}, \lambda^{\bar{\varepsilon} R_{N}}\right) \ni \check{I}_{0}
$$

and let

$$
B_{0}^{N+1}:=I_{0}^{N+1} \times I_{0}^{v} \quad \text { and } \quad \mathcal{B}_{0}^{N+1}:=\left(\Psi^{N}\right)^{-1}\left(B_{0}^{N+1}\right)
$$

We showed that $\mathcal{B}_{R_{N+1}-1}^{N+1} \ni v_{-1}$, and that for any $y \in I_{0}^{v}$, the following holds:

- $\check{\mathcal{I}}_{m R_{N}}^{y} \cap \mathcal{V}_{v_{0}}^{N}\left(\lambda^{\bar{\varepsilon} R_{N}}\right)=\varnothing$ for $1 \leq m<\hat{r}_{N}$;
- $\check{\mathcal{I}}_{\hat{R}_{N}-1}^{y}$ is $\lambda^{(1-\bar{\varepsilon})} \hat{R}_{N+1}$-horizontal in \mathcal{B}_{-1}; and
- $\check{\mathcal{I}}_{\hat{R}_{N+1}}^{y}$ is vertical quadratic in \mathcal{B}_{0}^{n}.

Arguing as in Proposition 5.2, we see that $F^{R_{N+1}}\left(\mathcal{B}_{0}^{N+1}\right) \Subset \mathcal{B}_{0}^{N+1}$.
Adjust the left and right boundaries of $\mathcal{B}_{\hat{R}_{N+1}-1}^{N+1} \subset \mathcal{B}_{-1}$ so that they map to genuine vertical leaves under Φ_{-1}. Consider the genuine vertical foliation over $\Phi_{-1}\left(\mathcal{B}_{\hat{R}_{N+1}-1}^{N+1}\right)$. By Lemma 4.2, we see that the pull back of this foliation under $\Phi_{-1} \circ F^{R_{N+1}-1}$ is a
 horizontal chart that rectifies this foliation. We conclude that $\left(F^{R_{N+1}}, \Psi^{N+1}\right)$ is a Hénon-like return.

It remains to prove that this Hénon-like return is $(\bar{L}, \bar{\varepsilon}, \lambda)$-regular. The forward regularity follows immediately from Proposition 4.3.

For $s \in\{0,1\}$ and $p_{0} \in \mathcal{B}_{R_{N+s}}^{N+s}$, let

$$
E_{p_{0}}^{v, N+s}:=D \Phi_{0}^{-1}\left(E_{\Phi_{0}\left(p_{0}\right)}^{g h}\right) .
$$

Let $s=1$. By the regularity of the N th Hénon-like return, p_{0} is R_{N}-times backward (L, ε, λ)-regular along

$$
E_{p_{0}}^{v, N+1}=E_{p_{0}}^{v, N} .
$$

Proceeding by induction, suppose that for some $1 \leq l<r_{N+1}$, the point p_{0} is $l R_{N^{-}}$ times backward $(\bar{L}, \bar{\varepsilon}, \lambda)$-regular along $E_{p_{0}}^{v, N+1}$.

By Proposition A.8, $E_{p_{-l R_{N}}^{v, N+1}}^{, ~ i s ~} \lambda^{(1-\bar{\varepsilon}) R_{N}}$-vertical in \mathcal{B}_{0}^{N}. By 4.2) and 4.3), we see that

$$
\lambda^{\bar{\varepsilon} R_{N}}<\frac{\left\|\left.D F^{-i}\right|_{E_{p_{l-l}^{v}}^{v, N+1}} ^{, N}\right\|}{\left\|\left.D F^{-i}\right|_{E_{p_{-l R_{n}}^{v}}^{v, N}}\right\|}<\lambda^{-\bar{\varepsilon} R_{N}} \quad \text { for } \quad 1 \leq i \leq R_{N}
$$

Concatenating with the $l R_{N}$-times backward $(\bar{L}, \bar{\varepsilon}, \lambda)$-regularity of p_{0}, we conclude that p_{0} is actually $(l+1) R_{N}$-times backward $(\bar{L}, \bar{\varepsilon}, \lambda)$-regular along $E_{p_{0}}^{v, N+1}$ (with \bar{L} and $\bar{\varepsilon}$ increased some uniform amount from the l th step).

6. A Priori Bounds

For $N \in \mathbb{N} \cup\{\infty\}$, let F be the N-times regularly Hénon-like diffeomorphism considered in Section 5 ,

For $1 \leq n \leq N$, we define a sequence of maps $\left\{H_{i}^{n}\right\}_{i=0}^{\infty}$ as follows. First, let $H_{i}^{0}:=F^{i}$. Proceeding inductively, suppose H_{i}^{n-1} is defined. Write $i=j+k R_{n}$ with $k \geq 0$ and $0 \leq j<R_{n}$. Define

$$
H_{i}^{n}:=H_{j}^{n-1} \circ \mathcal{P}_{0}^{n} \circ F^{k R_{n}} .
$$

Observe that H_{i}^{n} is well-defined on $F^{-k R_{n}}\left(\mathcal{B}_{0}^{n}\right)$.
Recall that

$$
\mathcal{I}_{0}^{n}:=\left(\Psi^{n}\right)^{-1}\left(I_{0}^{n} \times\{0\}\right)=\Phi_{0}^{-1}\left(I_{0}^{n} \times\{0\}\right)=\mathcal{I}_{0}^{h} \cap \mathcal{B}_{0}^{n} \ni v_{0}
$$

Lemma 6.1. Let $s \in\{1,2\}$ and $1 \leq n \leq N-s$. Then $\left.H_{i}^{n}\right|_{\mathcal{I}_{1}^{n+s}}$ is a diffemorphism for $0 \leq i<R_{n+s}$.

Proof. The statement is clearly true for $n=0$. Suppose the statement is true for $n-1$. If $i<R_{n}$, then

$$
\left.H_{i}^{n}\right|_{\mathcal{I}_{1}^{n+s}}=\left.H_{i}^{n-1}\right|_{\mathcal{I}_{1}^{n+s}}
$$

is a diffeomorphism. Suppose the same is true for $i<(k-1) R_{n}$ with $2 \leq k<$ R_{n+s} / R_{n}. Observe that

$$
H_{k R_{n}}^{n}=\mathcal{P}_{0}^{n} \circ F^{k R_{n}}
$$

By Lemma 5.1 i), the map $\left.\mathcal{P}_{0}^{n}\right|_{\mathcal{I}_{k R_{n}}^{n+s}}$ is a diffeomorphism. For $i=j+k R_{n}$ with $j<R_{n}$, we have

$$
H_{i}^{n}:=H_{j}^{n-1} \circ \mathcal{P}_{0}^{n} \circ F^{k R_{n}} .
$$

Since

$$
\mathcal{P}_{0}^{n}\left(\mathcal{I}_{k R_{n}}^{n+s}\right) \subset \mathcal{I}_{0}^{n},
$$

the result follows.
Lemma 6.2. For $s \in\{1,2\}$ and $1 \leq n \leq N-s$, let Γ_{0} be a C^{r}-curve which is $\lambda^{-\bar{\varepsilon} R_{n}}$-horizontal in \mathcal{B}_{0}^{n+s}. Then for $1 \leq k \leq R_{n+s} / R_{n}$, we have

$$
\left.F^{k R_{n}-1}\right|_{\Gamma_{0}}=\left.\left(\left.\mathcal{P}_{-1}^{1}\right|_{\Gamma_{k R_{n}-1}}\right)^{-1} \circ H_{k R_{n}-1}^{n}\right|_{\Gamma_{0}}
$$

Proof. If $n=k=1$, then the result follows immediately from Lemma 3.10. Suppose the result is true for some $1 \leq n<N-s$ and $1 \leq k<R_{n+s} / R_{n}$. By definition, we have

$$
H_{(k+1) R_{n}-1}^{n}=H_{k R_{n}-1}^{n} \circ F^{R_{n}} .
$$

If Γ_{0} is a C^{r}-curve which is $\lambda^{-\bar{\varepsilon} R_{n}}$-horizontal in \mathcal{B}_{0}^{n+s}, then by Lemma 5.1 i), we see that $\Gamma_{R_{n}}:=F^{R_{n}}\left(\Gamma_{0}\right)$ is a C^{r}-curve which is $\lambda^{-\bar{\varepsilon} R_{n}}$-horizontal in \mathcal{B}_{0}^{n}. Thus, by induction, we have

$$
\left.F^{k R_{n}-1}\right|_{\Gamma_{R_{n}}}=\left.\left(\left.\mathcal{P}_{-1}^{1}\right|_{\Gamma_{(k+1) R_{n}-1}}\right)^{-1} \circ H_{k R_{n}-1}^{n}\right|_{\Gamma_{R_{n}}}
$$

Composing on the right by $\left.F^{R_{n}}\right|_{\Gamma_{0}}$, the result is true in this case.
Finally, suppose that the result is true for some $1 \leq n<N-s$ and $k=R_{n+1} / R_{n}$. Let $\gamma_{0}:=\mathcal{P}_{0}^{n+1}\left(\Gamma_{0}\right)$. By the induction hypothesis, we have:

$$
\left.F^{R_{n+1}-1}\right|_{\gamma_{0}}=\left.\left(\left.\mathcal{P}_{-1}^{1}\right|_{\gamma_{R_{n+1}-1}}\right)^{-1} \circ H_{R_{n+1}-1}^{n}\right|_{\gamma_{0}}
$$

Applying Lemma 3.10.

$$
\begin{aligned}
\left.F^{R_{n+1}-1}\right|_{\Gamma_{0}} & =\left.\left(\left.\mathcal{P}_{-1}^{n+1}\right|_{\Gamma_{R_{n+1}-1}}\right)^{-1} \circ\left(\left.\mathcal{P}_{-1}^{1}\right|_{\gamma_{R_{n+1}-1}}\right)^{-1} \circ H_{R_{n+1}-1}^{n} \circ \mathcal{P}_{0}^{n+1}\right|_{\Gamma_{0}} \\
& =\left.\left(\left.\mathcal{P}_{-1}^{1}\right|_{\Gamma_{R_{n+1}-1}}\right)^{-1} \circ H_{R_{n+1}-1}^{n+1}\right|_{\Gamma_{0}}
\end{aligned}
$$

We also define another sequence of maps $\left\{\hat{H}_{i}\right\}_{i=0}^{R_{N}-1}$ as follows (if $N=\infty$, then $\left.R_{N}=\infty\right)$. If $i<2 R_{1}$, let $\hat{H}_{i}:=F^{i}$. Otherwise, let $1 \leq n<N$ be the largest number such that $i \geq 2 R_{n}$, and define $\hat{H}_{i}:=H_{i}^{n}$. Observe that by Lemma 5.1, we have

$$
\begin{equation*}
\left.\hat{H}_{R_{n}-1}\right|_{\mathcal{I}_{0}^{n}}=\left.H_{R_{n}-1}^{n-1}\right|_{\mathcal{I}_{0}^{n}}=\left.\left.\mathcal{P}_{-1}^{1}\right|_{\mathcal{I}_{R_{n}-1}^{n}} \circ F^{R_{n}-1}\right|_{\mathcal{I}_{0}^{n}} \tag{6.1}
\end{equation*}
$$

Theorem 6.3. There exists a uniform constant $\mathbf{K}=\mathbf{K}\left(\|F\|_{C^{2}}, R_{1}\right)>1$ such that for all $1 \leq n \leq N$, we have

$$
\operatorname{Dis}\left(\hat{H}_{i}, \mathcal{I}_{0}^{n}\right)<\mathbf{K} \quad \text { for } \quad 0 \leq i<R_{n}
$$

Corollary 6.4. For $1 \leq n \leq N$, let $h_{n}: I_{0}^{n} \rightarrow h_{n}\left(I_{0}^{n}\right)$ be the diffeomorphism given in Theorem 3.6 iv). Then $\operatorname{Dis}\left(h_{n}, I_{0}^{n}\right)<\mathbf{K}$, where $\mathbf{K}>1$ is the uniform constant given in Theorem 6.3.

Observe that any number $2 R_{1} \leq i<R_{N}$ can be uniquely expressed as

$$
i=j+a_{1} R_{1}+a_{2} R_{2}+\ldots+a_{n} R_{n}
$$

for some $1 \leq n<N$, where
i) $0 \leq j<R_{1}$;
ii) $0 \leq a_{m}<r_{m}$ for $1 \leq m<n$; and
iii) $2 \leq a_{n}<2 r_{n}$.

In this case, we denote

$$
i:=j+\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

We extend this notation to $i<2 R_{1}$ by writing

$$
i=j+\left[a_{1}\right] \quad \text { for some } \quad a_{1} \in\{0,1\}
$$

We record the following easy observation.
Lemma 6.5. Let $2 R_{1} \leq i<R_{N}$ be given by

$$
i=j+\left[a_{1}, \ldots, a_{n}\right] .
$$

Then we have

$$
\hat{H}_{i}=H_{i}^{n}=F^{j} \circ\left(\mathcal{P}_{0}^{1} \circ F^{a_{1} R_{1}}\right) \circ \ldots \circ\left(\mathcal{P}_{0}^{n} \circ F^{a_{n} R_{n}}\right) .
$$

For $1 \leq n \leq N$, we define a collection of $\operatorname{arcs}\left\{\mathcal{J}_{i}^{n}\right\}_{i=0}^{R_{n}-1}$ by

$$
\begin{equation*}
\mathcal{J}_{i}^{n}:=\hat{H}_{i}\left(\mathcal{I}_{0}^{n}\right) \quad \text { for } \quad 0 \leq i<R_{n} . \tag{6.2}
\end{equation*}
$$

Lemma 6.6. Let $1 \leq n \leq N$ and $0 \leq i<R_{n}$. If

$$
i=\left[0, \ldots, 0, a_{m}, a_{m+1}, \ldots, a_{k}\right]
$$

for some $1 \leq m \leq k<n$, then we have $\mathcal{J}_{i}^{n} \subset \mathcal{I}_{0}^{m}$. Moreover, we have

$$
\mathcal{J}_{i+l}^{n}=H_{l}^{m-1}\left(\mathcal{J}_{i}^{n}\right) \quad \text { for } \quad 0 \leq l<R_{m} .
$$

Proof. Observe that

$$
\mathcal{P}_{1}^{k} \circ F^{a_{k} R_{k}}\left(\mathcal{I}_{1}^{k+1}\right) \subset \mathcal{I}_{1}^{k}
$$

By Lemma 6.5, the result follows from induction.
Lemma 6.7. For $1 \leq n \leq N$ and $0 \leq i<R_{n}$, we have $\mathcal{J}_{i}^{n} \subset \mathcal{I}_{i\left(\bmod R_{1}\right)}^{1}$.
Proof. The result follows immediately from Lemma 6.6.

Let $\Gamma:[0,1] \rightarrow \mathbb{R}^{2}$ be a parameterized Jordan arc. For

$$
0 \leq a<b<c<d \leq 1
$$

Let

$$
\Gamma_{1}:=\Gamma(a, b) \quad \text { and } \quad \Gamma_{2}:=\Gamma(c, d)
$$

Then we denote $\Gamma_{1}<_{\Gamma} \Gamma_{2}$. Let Γ_{3} be a subarc of Γ. We denote $\Gamma_{1} \leq_{\Gamma} \Gamma_{3}$ if either $\Gamma_{1}<_{\Gamma} \Gamma_{3}$ or $\Gamma_{1}=\Gamma_{3}$.

Henceforth, we consider \mathcal{I}_{0}^{1} with parameterization given by

$$
\mathcal{I}_{0}^{1}(t):=\left(\Psi^{1}\right)^{-1}(t, 0) \quad \text { for } \quad t \in I_{0}^{1}
$$

Note that $\mathcal{I}_{0}^{1} \circ P_{0}^{1}=\mathcal{P}_{0}^{1}$. Moreover,

$$
P_{0}^{1}\left(v_{R_{1}}\right)<0=P_{0}^{1}\left(v_{0}\right)
$$

Lemma 6.8. For $s \in\{1,2\} ; 1 \leq n \leq N-s$ and $1<k<R_{n+s} / R_{n}$, we have

$$
\mathcal{J}_{R_{n}}^{n+s}<\mathcal{I}_{0}^{1} \mathcal{J}_{k R_{n}}^{n+s}<\mathcal{I}_{0}^{1} \mathcal{J}_{0}^{n+s}
$$

Proof. Observe that

- For $s \in\{1,2\}$:

$$
\mathcal{J}_{R_{n}}^{n+s}=H_{R_{n}}^{n-1}\left(\mathcal{I}_{0}^{n+s}\right)=\mathcal{P}_{0}^{n-1} \circ F^{R_{n}}\left(\mathcal{I}_{0}^{n+s}\right)
$$

- For $1<k<r_{n}$:

$$
\mathcal{J}_{k R_{n}}^{n+1}=H_{k R_{n}}^{n}\left(\mathcal{I}_{0}^{n+1}\right)=\mathcal{P}_{0}^{n} \circ F^{k R_{n}}\left(\mathcal{I}_{0}^{n+1}\right)
$$

- For $1<k<2 r_{n}$:

$$
\mathcal{J}_{k R_{n}}^{n+2}=H_{k R_{n}}^{n}\left(\mathcal{I}_{0}^{n+2}\right)=\mathcal{P}_{0}^{n} \circ F^{k R_{n}}\left(\mathcal{I}_{k R_{n}}^{n+2}\right)
$$

In the case $s=1$, and the case $s=2$ and $1<k<2 r_{n}$ follow immediately from Proposition 5.3 .

Replacing n by $n+1$ and applying the above conclusion, we see that for $1<l<r_{n+1}$:

$$
\mathcal{J}_{R_{n+1}}^{n+2}<_{\mathcal{I}_{0}^{1}} \mathcal{J}_{l R_{n+1}}^{n+2}<_{\mathcal{I}_{0}^{1}} \mathcal{J}_{0}^{n+2} .
$$

Note that for $2<k<r_{n}$:

$$
\mathcal{J}_{l R_{n+1}+k R_{n}}^{n+2}=\left.H_{k R_{n}}^{n}\right|_{\mathcal{I}_{0}^{n+1}}\left(\mathcal{J}_{l R_{n+1}}^{n+2}\right)
$$

The result now follows from Lemma 6.1.
Let $\Gamma_{0}:\left[0,\left|\Gamma_{0}\right|\right] \rightarrow \mathbb{R}^{2}$ be a C^{1}-curve parameterized by its arclength, and let $\Gamma_{1}=\Gamma_{0}(a, b)$ with $(a, b) \subset\left[0,\left|\Gamma_{0}\right|\right]$ be a subarc of Γ_{0}. If for some $0<l<\left|\Gamma_{0}\right| / 2$, we have $a<l$ and $b>\left|\Gamma_{0}\right|-l$ then we denote

$$
\Gamma_{1}=\Gamma_{0}\{-l\} \quad \text { and } \quad \Gamma_{0}=\Gamma_{1}\{+l\} .
$$

Let $\Gamma_{2}:=\Gamma_{0}\left(l,\left|\Gamma_{0}\right|-l\right)$. Then we denote

$$
\Gamma_{2}=\Gamma_{0}[-l] \quad \text { and } \quad \Gamma_{0}=\Gamma_{2}[+l] .
$$

If Γ_{3} and Γ_{4} are C^{1}-curves in \mathbb{R}^{2} and we have $\Gamma_{3}[-l] \subset \Gamma_{4} \subset \Gamma_{3}[+l]$, then we denote

$$
\Gamma_{4}=\Gamma_{3}\{\sim l\}
$$

These notations can be extended to intervals in \mathbb{R} in the obvious way.
Let $2 \leq n \leq N$, and consider the collection of $\operatorname{arcs}\left\{\mathcal{J}_{i}^{n}\right\}_{i=0}^{R_{n}-1}$. By Lemma 6.7 and Lemma 6.8, for $2 R_{1} \leq i<R_{n}$, there exist unique numbers $0 \leq \iota_{-}^{n}(i), \iota_{+}^{n}(i)<R_{n}$ such that

$$
\iota_{ \pm}^{n}(i)=i\left(\bmod R_{1}\right)
$$

and the arcs $\mathcal{J}_{\iota_{-}^{n}(i)}^{n}$ and $\mathcal{J}_{\iota_{+}^{n}(i)}^{n}$ are the two nearest neighbors of \mathcal{J}_{i}^{n} (one on each side) in $\mathcal{I}_{i\left(\bmod R_{1}\right)}^{1}$. Define $\hat{\mathcal{J}}_{i}^{n}$ as the convex hull of $\mathcal{J}_{\iota_{-}^{n}(i)}^{n} \cup \mathcal{J}_{i}^{n} \cup \mathcal{J}_{\iota_{+}^{n}(i)}^{n}$ in $\mathcal{I}_{i\left(\bmod R_{1}\right)}^{1}$.

We also define a subarc $\tilde{\mathcal{J}}_{i}^{n}$ of $\mathcal{I}_{i\left(\bmod R_{1}\right)}^{1}$ containing \mathcal{J}_{i}^{n} as follows. Write

$$
i=j+\left[a_{1}, a_{2}, \ldots, a_{m}\right]
$$

for some $1 \leq m<n$. If $m<n-1$, define

$$
\tilde{\mathcal{J}}_{i}^{n}:=\hat{\mathcal{J}}_{i}^{n}\left[+\lambda^{\bar{\varepsilon} R_{m}}\right] .
$$

Otherwise, define

$$
\tilde{\mathcal{J}}_{i}^{n}:=\hat{\mathcal{J}}_{i}^{n}\left[-\lambda^{\bar{\varepsilon} R_{n-1}}\right] .
$$

Proposition 6.9. There exists a uniform constant $K>0$ such that for $1 \leq n \leq N$, we have

$$
\sum_{i=2 R_{1}}^{R_{n}-1}\left|\tilde{\mathcal{J}}_{i}^{n}\right|<K
$$

Proof. Observe that

$$
\sum_{i=2 R_{1}}^{R_{n}-1}\left|\tilde{\mathcal{J}}_{i}^{n}\right|<\sum_{i=2 R_{1}}^{R_{n}-1}\left|\hat{\mathcal{J}}_{i}^{n}\right|+\sum_{m=1}^{n-1} 2 R_{m+1} \lambda^{\bar{\varepsilon} R_{m}}
$$

By Lemma 6.8, the maximum number of overlaps among arcs in $\left\{\hat{\mathcal{J}}_{i}^{n}\right\}_{2 R_{1}}^{R_{n}-1}$ is three. Hence, the above sum has a uniform upper bound.

Lemma 6.10. For $1 \leq n \leq N$, let $\Gamma_{0} \subset \mathcal{I}_{0}^{n}$ be an arc. Then we have

$$
\bar{L}^{-1} \lambda^{\bar{\varepsilon} i}<\frac{\left|H_{i}^{n}\left(\Gamma_{0}\right)\right|}{\left|\Gamma_{0}\right|}<\bar{L} \lambda^{-\bar{\varepsilon} i} \quad \text { for } \quad 0 \leq i<R_{n}
$$

Proof. For $p_{0} \in \Gamma_{0}$, let $E_{p_{0}} \in \mathbb{P}_{p_{0}}^{2}$ be the direction tangent to Γ_{0} at p_{0}. Note that p_{0} is R_{n}-times forward $(L, \varepsilon, \lambda)$-regular along $E_{p_{0}}^{v}$. Thus, by Theorem A. 2 and Proposition A.5, we have

$$
\bar{L}^{-1} \lambda^{\bar{\varepsilon} l}<\left\|\left.D F^{l}\right|_{E_{p_{0}}}\right\|<\bar{L} \lambda^{-\bar{\varepsilon} l} \quad \text { for } \quad 0 \leq l<R_{n}
$$

By Proposition 5.3 and Lemma 5.1 i), the curve $\Gamma_{k R_{m}}:=F^{k R_{m}}\left(\Gamma_{0}\right)$ for $0 \leq k<r_{m}$ is $\lambda^{-\bar{\varepsilon} R_{m}}$ horizontal in \mathcal{B}_{0}^{m}. Hence, by Theorem 3.6, we see that

$$
\bar{L}^{-1} \lambda^{\bar{\varepsilon} R_{m}}<\left\|\left.D \mathcal{P}_{0}^{m}\right|_{E_{p_{k R_{m}}}}\right\|<\bar{L}
$$

Write

$$
i=j+\left[a_{1}, \ldots, a_{m}\right]
$$

for some $1 \leq m<n$. Then by Lemma 6.5 we have

$$
H_{i}^{n}=F^{j} \circ \mathcal{P}_{1}^{1} \circ F^{a_{1} R_{1}} \circ \ldots \circ \mathcal{P}_{1}^{m} \circ F^{a_{m} R_{m}} .
$$

Concatenating the previous estimates, we obtain the desired result.
Lemma 6.11. For $s \in\{1,2\} ; 1 \leq n \leq N-s$ and $2 \leq k<2 r_{n}$, let $X_{-1} \subset \mathcal{B}_{R_{n}-1}^{n}$ be a set such that

$$
\mathcal{P}_{-1}^{1}\left(X_{-1}\right)=\mathcal{J}_{k R_{n}-1}^{n+s} .
$$

Then

$$
\mathcal{P}_{0}^{n} \circ F\left(X_{-1}\right)=\mathcal{J}_{k R_{n}}^{n+s}\left\{\sim \lambda^{(1-\bar{\varepsilon}) R_{n}}\right\} .
$$

Proof. By Lemma 6.2, we have

$$
\mathcal{I}_{k R_{n}-1}^{n+s}=\left(\left.\mathcal{P}_{-1}^{1}\right|_{\mathcal{I}_{k R_{n}-1}^{n+s}}\right)^{-1}\left(\mathcal{J}_{k R_{n}-1}^{n+s}\right)=\left(\left.\mathcal{P}_{-1}^{1}\right|_{\mathcal{I}_{k R_{n-1}}^{n+s}}\right)^{-1} \circ \mathcal{P}_{-1}^{1}\left(X_{-1}\right)
$$

Since

$$
\mathcal{J}_{k R_{n}}^{n+s}=\mathcal{P}_{0}^{n} \circ F\left(\mathcal{I}_{k R_{n}-1}^{n+s}\right),
$$

the claim follows from (3.4) and (3.7).
Proposition 6.12. For $1 \leq n \leq N-2$ and $2 R_{n} \leq i<2 R_{n+1}$, there exists an arc $\mathcal{K}_{0, i}$ containing \mathcal{I}_{0}^{n+2} such that the following properties are satisfied.
i) We have $\mathcal{K}_{0, i} \supset \mathcal{K}_{0, i+1}$.
ii) The map $\left.\hat{H}_{i}\right|_{\mathcal{K}_{0, i}}$ is a diffeomorphism.
iii) We have $\hat{H}_{i}\left(\mathcal{K}_{0, i}\right) \supset \tilde{\mathcal{J}}_{i}^{n+1}$.
iv) Denote $\mathcal{K}_{i}:=F^{i}\left(\mathcal{K}_{0, i}\right)$. Then for $2<k \leq 2 r_{n}$, the arc $\mathcal{K}_{k R_{n}-1}$ is $\lambda^{(1-\bar{\varepsilon}) R_{n}}$ horizontal in \mathcal{B}_{-1}, and

$$
\mathcal{K}_{k R_{n}} \subset \mathcal{B}_{R_{n}}^{n} \backslash \mathcal{V}_{v_{0}}\left(\lambda^{\bar{\varepsilon} R_{n}}\right)
$$

Proof. We first extend $\mathcal{I}_{2 R_{1}-1}^{2}$ to an arc $\mathcal{K}_{2 R_{1}-1} \subset \mathcal{B}_{-1}$ such that $\mathcal{K}_{2 R_{1}-1}$ is $\lambda^{(1-\bar{\varepsilon}) R_{1}}$ horizontal in \mathcal{B}_{-1}, and the curve $\mathcal{K}_{2 R_{1}}:=F\left(\mathcal{K}_{2 R_{1}-1}\right)$ maps diffeomorphically onto $\mathcal{I}_{0}^{1} \backslash \mathcal{V}_{v_{0}}\left(\lambda^{\bar{\varepsilon} R_{1}}\right)$ under $\left.\mathcal{P}_{0}^{1}\right|_{\mathcal{K}_{2 R_{1}}}$. We define

$$
\mathcal{K}_{0,2 R_{1}}:=F^{-2 R_{1}}\left(\mathcal{K}_{2 R_{1}}\right)
$$

Proceeding by induction, suppose the result holds for $i \leq(k-1) R_{n}$ with $2<k \leq$ $2 r_{n}$. For $0 \leq l<R_{n}$, define

$$
\mathcal{K}_{0,(k-1) R_{n}+l}:=\mathcal{K}_{0,(k-1) R_{n}} .
$$

Observe that

$$
\hat{H}_{(k-1) R_{n}+l}=H_{l}^{n} \circ F^{(k-1) R_{n}} .
$$

Thus, property ii) follows from Lemma 6.1; property iii) follows from Lemmas 6.6 and 6.10; and property iv) for $\mathcal{K}_{k R_{n}-1}$ follows from Lemma 5.1 ii).

If $k<2 r_{n}$, then define $\mathcal{K}_{k R_{n}}$ to be the component of $F\left(\mathcal{K}_{k R_{n}-1}\right) \backslash \mathcal{V}_{v_{0}}\left(\lambda^{\bar{\varepsilon} R_{n}}\right)$ containing $\mathcal{I}_{k R_{n}}^{n+2}$. By Lemma 5.1 i , $\mathcal{K}_{k R_{n}}$ maps injectively under \mathcal{P}_{0}^{n}. Lastly, property iii) follows from Lemma 6.11.

If $k=2 r_{n}$, then define $\mathcal{K}_{2 R_{n+1}}$ to be the component of

$$
F\left(\mathcal{K}_{2 R_{n+1}-1}\right) \cap\left(\mathcal{B}_{0}^{n+1} \backslash \mathcal{V}_{v_{0}}\left(\lambda^{\bar{\varepsilon} R_{n+1}}\right)\right)
$$

containing $\mathcal{I}_{2 R_{n+1}}^{n+3}$. Properties ii) and iii) for $\mathcal{K}_{2 R_{n+1}}$ can be checked similarly as above.

By Lemma 6.8, for $1 \leq n \leq N-2$, there exists a unique number $2 \leq \kappa_{n}<r_{n}$ such that

$$
\mathcal{J}_{k R_{n}}^{n+1}<\mathcal{I}_{0}^{1} \mathcal{J}_{\kappa_{n} R_{n}}^{n+1} \leq_{\mathcal{I}_{0}^{1}} \mathcal{J}_{0}^{n+1} \quad \text { for all } \quad 1 \leq r_{n} .
$$

After relabelling $\iota_{ \pm}^{n}$ if necessary, the following results hold.
Lemma 6.13. Let $1 \leq n \leq N-2$. Then

$$
\iota_{+}^{n+1}(i)=i+\kappa_{n} R_{n} \quad \text { for } \quad 2 R_{1} \leq i<R_{n} .
$$

Proof. The claim follows immediately from Lemmas 6.1 and 6.6.
Lemma 6.14. Let $3 \leq n \leq N$. For $1 \leq m \leq n-2$ and $2 \leq k<2 r_{m}$, we have

$$
\iota_{-}^{n}\left(k R_{m}\right)=\iota_{-}^{m+2}\left(k R_{m}\right)=i R_{m} \quad \text { for some } \quad 1 \leq i<2 r_{m} .
$$

Proof. By Lemmas 6.8, 6.1 and 6.6, we see that the extremal intervals in $\mathcal{J}_{l_{m}}^{m+1}$ for $0 \leq l<r_{m}$ are $\mathcal{J}_{l R_{m}}^{n}$ and $\mathcal{J}_{l R_{m}+R_{m+1}}^{n}$. Moreover, by Lemma 6.13, we have

$$
\mathcal{J}_{\iota_{+}^{n}\left(l R_{m}+j R_{m+1}\right)}^{n} \subset \mathcal{J}_{l R_{m}}^{m+1} \quad \text { for } \quad j \in\{0,1\} .
$$

The claim follows.
Proposition 6.15. For $3 \leq n \leq N$ and $2 R_{1} \leq i<R_{n}$, there exists an arc $\tilde{\mathcal{I}}_{0, i}^{n}$ such that the following conditions hold for all $2 R_{1} \leq j \leq i$.
i) We have $\mathcal{I}_{0}^{n} \subset \tilde{\mathcal{I}}_{0, i}^{n} \subset \mathcal{K}_{0, i}$.
ii) Denote

$$
\tilde{\mathcal{J}}_{j, i-j}^{n}:=\hat{H}_{j}\left(\tilde{\mathcal{I}}_{0, i}^{n}\right) .
$$

Then we have

$$
\tilde{\mathcal{J}}_{j, i-j}^{n} \subset \tilde{\mathcal{J}}_{j}^{n} \quad \text { and } \quad \tilde{\mathcal{J}}_{i, 0}^{n} \supset \tilde{\mathcal{J}}_{i}^{n} .
$$

Proof. First consider the case when $i<2 R_{n-1}$. Proceeding by induction, suppose that the result is true for $j \leq k R_{m}$ with $1 \leq m \leq n-2$ and $2 \leq k<2 r_{m}$. Then the result holds for $k R_{m}<j<(k+1) R_{m}$ by Lemmas 6.1 and 6.6.

Note that we have,

$$
\mathcal{P}_{0}^{m}\left(\mathcal{K}_{k R_{m}}\right) \supset \tilde{\mathcal{J}}_{k R_{m}}^{m+2} \supset \mathcal{J}_{\iota_{-}^{m+2}\left(k R_{m}\right)}^{m+2} \cup \mathcal{J}_{k R_{m}}^{m+2} \cup \mathcal{J}_{\iota_{+}^{m+2}\left(k R_{m}\right)}^{m+2},
$$

where by Lemmas 6.13 and 6.14 , we have

$$
\mathcal{J}_{\iota_{-}^{m}\left(k R_{m}\right)}^{m+2}=\mathcal{J}_{\iota_{-}^{n}\left(k R_{m}\right)}^{m+2} \supset \mathcal{J}_{\iota_{-}^{n}\left(k R_{m}\right)}^{n} \quad \text { and } \quad \mathcal{J}_{k R_{m}}^{m+2} \supset \mathcal{J}_{k R_{m}}^{n} \cup \mathcal{J}_{\iota_{+}^{n}\left(k R_{m}\right)}^{n} .
$$

Hence, there exists an arc $\mathcal{I}_{k R_{m}}^{\prime} \subset \mathcal{K}_{k R_{m}}$ such that

$$
\mathcal{P}_{0}^{m}\left(\mathcal{I}_{k R_{m}}^{\prime}\right)=\tilde{\mathcal{J}}_{k R_{m}}^{m+2} .
$$

By Lemmas 6.10 and 6.2, we have

$$
\mathcal{P}_{-1}^{1} \circ F^{R_{m}-1}\left(\mathcal{I}_{k R_{m}}^{\prime}\right)=\hat{\mathcal{J}}_{(k+1) R_{m}-1}^{m+2}\left[+\lambda^{\bar{\varepsilon} R_{m}}\right]
$$

Thus, by Lemmas 6.11 and 6.13, we see that

$$
\overline{\mathcal{P}_{0}^{m}} \circ F^{R_{m}}\left(\mathcal{I}_{k R_{m}}^{\prime}\right) \supset \hat{\mathcal{J}}_{(k+1) R_{m}}^{m+2}
$$

and hence, the result holds for $j=(k+1) R_{m}$.
Next, consider the case when $i \geq 2 R_{n-1}$. For $j<2 R_{n-1}$, the result follows by the same argument as in the previous case. Proceeding by induction, suppose that the result is true for $j \leq k R_{n-1}$ with $2 \leq k<r_{n-1}$. Then the result holds for $k R_{n-1}<j<(k+1) R_{n-1}$ by Lemmas 6.1, 6.6 and Lemma 6.10.

Similar to the previous case, there exists an $\operatorname{arc} \mathcal{I}_{k R_{n-1}}^{\prime} \subset \mathcal{K}_{k R_{n-1}}$ such that

$$
\mathcal{P}_{0}^{n-1}\left(\mathcal{I}_{k R_{n-1}}^{\prime}\right) \supset \tilde{\mathcal{J}}_{k R_{n-1}}^{n}
$$

and

$$
\mathcal{P}_{-1}^{1} \circ F^{R_{n-1}-1}\left(\mathcal{I}_{k R_{n-1}}^{\prime}\right)=\hat{\mathcal{J}}_{(k+1) R_{n-1}-1}^{m+2}\left[-\lambda^{\bar{\varepsilon} R_{n}}\right] .
$$

Let $\mathcal{I}_{(k+1) R_{n-1}}^{\prime \prime}$ be the connected component of

$$
F\left(\mathcal{I}_{(k+1) R_{n-1}}^{\prime}\right) \backslash \mathcal{V}_{v_{0}}\left(\lambda^{\bar{\varepsilon} R_{n}}\right)
$$

containing $\mathcal{I}_{(k+1) R_{n-1}}^{n}$. By Lemma 6.11, we have

$$
\mathcal{P}_{0}^{n-1}\left(\mathcal{I}_{(k+1) R_{n-1}}^{\prime \prime}\right) \supset \hat{\mathcal{J}}_{(k+1) R_{n-1}}^{n}\left[-\lambda^{\bar{\varepsilon} R_{n}}\right] .
$$

Thus, the result holds for $j=(k+1) R_{n-1}$.
Let $i \geq 2 R_{1}$ be a number given by

$$
i=\left[0, \ldots, 0, a_{m}, a_{m+1}, \ldots, a_{k}\right]
$$

for some $1 \leq m \leq k$ so that $a_{m}>0$. Denote

$$
\hat{m}(i):=m, \quad \hat{k}(i):=k \quad \text { and } \quad \hat{a}(i):=a_{m} .
$$

We extend this notation to the case when $i=a_{1} R_{1}$ with $a_{1} \in\{0,1\}$ by letting

$$
\hat{m}(i):=1, \quad \hat{k}(i):=1 \quad \text { and } \quad \hat{a}(i):=a_{1}
$$

Proposition 6.16. Let $1 \leq n \leq N$ and $i=j+s R_{1}$ with $0 \leq j<R_{1}$ and $0 \leq s<$ R_{n} / R_{1}. For $0 \leq l \leq s$, denote

$$
\hat{m}_{l}:=\hat{m}\left(l R_{1}\right), \quad \hat{k}_{l}:=\hat{k}\left(l R_{1}\right) \quad \text { and } \quad \hat{a}_{l}:=\hat{a}\left(l R_{1}\right) .
$$

If $\hat{m}_{l}=\hat{k}_{l}$, let

$$
\check{\mathcal{I}}_{l}^{n}:=F^{l R_{1}-1}\left(\tilde{\mathcal{I}}_{0, i}^{n}\right)
$$

Otherwise, let

$$
\check{\mathcal{I}}_{l}^{n}:=\mathcal{I}_{\hat{a}_{l} R_{\hat{m}_{l}}-1}^{\hat{m}_{n}+1}
$$

Then $\check{\mathcal{I}}_{l}^{n}$ is $\lambda^{(1-\bar{\varepsilon}) R_{\tilde{m}_{l}} \text {-horizontal. Moreover, define }}$

$$
\check{H}_{l}:=\left.\mathcal{P}_{0}^{\hat{m}_{l}} \circ F \circ\left(\mathcal{P}_{-1}^{1} \mid \check{\check{I}}_{l}^{n}\right)^{-1} \circ F^{R_{1}-1}\right|_{\mathcal{I}_{0}^{1}} .
$$

Then we have

$$
\left.\hat{H}_{i}\right|_{\tilde{\mathcal{I}}_{0, i}^{n}}=\left.\left.F^{j}\right|_{\mathcal{I}_{0}^{1}} \circ \check{H}_{s} \circ \ldots \circ \check{H}_{4} \circ \check{H}_{3} \circ \mathcal{P}_{0}^{1} \circ F^{2 R_{1}}\right|_{\tilde{\mathcal{I}}_{0, i}^{n}} .
$$

Proof. We proceed by induction. Clearly, the result is true for $i<2 R_{1}$. Suppose that the result is true for all $i^{\prime}<i$.

First, suppose $i=2 R_{k+1}$ for some $1 \leq k+1<n$. Denote

$$
\Gamma_{d}:=F^{d}\left(\tilde{\mathcal{I}}_{0, i}^{n}\right) \quad \text { for } \quad 0 \leq d \leq i .
$$

By Lemma 6.5:

$$
\begin{equation*}
\left.\hat{H}_{2 R_{k+1}}\right|_{\Gamma_{0}}=\mathcal{P}_{0}^{k+1} \circ F^{2 R_{k+1}}=\left.\mathcal{P}_{0}^{k+1} \circ F \circ F^{R_{k}-1} \circ F^{\left(2 r_{k}-1\right) R_{k}}\right|_{\Gamma_{0}} . \tag{6.3}
\end{equation*}
$$

By Proposition 6.12 iv), $\Gamma_{\left(2 r_{k}-1\right) R_{k}}$ is $\lambda^{-\bar{\varepsilon} R_{k}}$-horizontal in \mathcal{B}_{0}^{k}. So it follows from Lemma 3.10 that

$$
\left.F^{R_{k}-1}\right|_{\Gamma_{\left(2 r_{k}-1\right) R_{k}}}=\left.\left(\left.\mathcal{P}_{-1}^{1}\right|_{\Gamma_{2 R_{k+1}-1}}\right)^{-1} \circ F^{R_{k}-1} \circ \mathcal{P}_{0}^{k}\right|_{\Gamma_{\left(2 r_{k}-1\right) R_{k}}} .
$$

Note that

$$
\hat{H}_{\left(2 r_{k}-1\right) R_{k}}=H_{\left(2 r_{k}-1\right) R_{k}}^{k}=\mathcal{P}_{0}^{k} \circ F^{\left(2 r_{k}-1\right) R_{k}} .
$$

Substituting into (6.3), we obtain

$$
\left.\hat{H}_{2 R_{k+1}}\right|_{\Gamma_{0}}=\left.\mathcal{P}_{0}^{k+1} \circ F \circ\left(\left.\mathcal{P}_{-1}^{1}\right|_{\Gamma_{2 R_{k+1}-1}}\right)^{-1} \circ F^{R_{k}-1} \circ \hat{H}_{\left(2 r_{k}-1\right) R_{k}}\right|_{\Gamma_{0}}
$$

By Lemma 6.2, we have

$$
\left.F^{R_{k}-1}\right|_{\mathcal{I}_{0}^{k}}=\left.\left(\left.\mathcal{P}_{-1}^{1}\right|_{\mathcal{I}_{R_{k}-1}^{k}}\right)^{-1} \circ H_{R_{k}-1}^{k}\right|_{\mathcal{I}_{0}^{k}}
$$

Thus, we conclude:

$$
\left.\hat{H}_{2 R_{k+1}}\right|_{\Gamma_{0}}=\left.\left.\mathcal{P}_{0}^{k+1} \circ F \circ\left(\left.\mathcal{P}_{-1}^{1}\right|_{\Gamma_{2 R_{k+1}-1}}\right)^{-1} \circ H_{R_{k}-1}^{k}\right|_{\mathcal{I}_{0}^{k}} \circ \hat{H}_{\left(2 r_{k}-1\right) R_{k}}\right|_{\Gamma_{0}}
$$

We can apply the induction hypothesis to decompose $\hat{H}_{\left(2 r_{k}-1\right) R_{k}}$ into factors of the form \check{H}_{l}. Observe that for

$$
e_{0}:=\left(2 r_{k}-1\right) R_{k}<e<2 R_{k+1},
$$

we have

$$
\hat{m}(e)=\hat{m}\left(e-e_{0}\right)<\hat{k}(e) \leq k \quad \text { and } \quad \hat{a}(e)=\hat{a}\left(e-e_{0}\right) .
$$

Hence, we can also apply the induction hypothesis to $\left.H_{R_{k}-1}^{k}\right|_{\mathcal{I}_{1}^{k}}$ to decompose them into factors of the form \breve{H}_{l}. The claim follows.

Next, suppose that $i=a_{k} R_{k}$ for some $1 \leq k<n$ and $a_{k} \geq 3$. Proceeding in the same way as in the previous case, we obtain (in place of (6.3)):

$$
\left.\hat{H}_{i}\right|_{\Gamma_{0}}=\mathcal{P}_{0}^{k} \circ F^{a_{k} R_{k}}=\left.\mathcal{P}_{0}^{k} \circ F \circ F^{R_{k}-1} \circ F^{\left(a_{k}-1\right) R_{k}}\right|_{\Gamma_{0}} .
$$

The rest of the argument is identical mutatis mutandis.
Lastly, suppose that

$$
i=j+\left[a_{1}, \ldots, a_{k}\right]
$$

for some $1<k<n$ such that

$$
\hat{m}(i)<k=\hat{k}(i)<n .
$$

Then

$$
\hat{H}_{i}=H_{i-a_{k} R_{k}}^{k-1} \circ \mathcal{P}_{0}^{k} \circ F^{a_{k} R_{k}}=\left.H_{i-a_{k} R_{k}}^{k-1}\right|_{\mathcal{I}_{0}^{k}} \circ \hat{H}_{a_{k} R_{k}} .
$$

Applying the induction hypothesis to $\hat{H}_{a_{k} R_{k}}$ and $\left.H_{i-a_{k} R_{k}}^{k-1}\right|_{\mathcal{I}_{0}^{k}}$ and arguing as above, we obtain the desired result.

Let $G: U \rightarrow G(U)$ be a C^{1}-diffeomorphism defined on a domain $U \subset \mathbb{R}^{2}$. For a C^{1}-curve $\Gamma \subset U$, we define the cross-ratio distortion $\operatorname{CrD}(G, \Gamma)$ of G on Γ as the cross-ratio distortion of

$$
G_{\Gamma}:=\phi_{G(\Gamma)}^{-1} \circ G \circ \phi_{\Gamma},
$$

where ϕ_{Γ} and $\phi_{G(\Gamma)}$ are parameterizations of Γ and $G(\Gamma)$ by their respective arclengths (see Section B).

Proposition 6.17. Let $1 \leq n \leq N$ and $1 \leq i<R_{n}$. Then there exists a uniform constant $\nu>0$ such that the maps \hat{H}_{i} and $\hat{H}_{R_{n}-1} \circ \hat{H}_{i}^{-1}$ have ν-bounded cross-ratio distortion on $\tilde{\mathcal{I}}_{0, i}^{n}$ and $\hat{H}_{i}\left(\tilde{\mathcal{I}}_{0, R_{n}-1}^{n}\right)$ respectively.
Proof. Consider the decomposition of \hat{H}_{i} given in Proposition 6.16:

$$
\left.\hat{H}_{i}\right|_{\tilde{\mathcal{I}}_{n, i}^{n}}=\left.\left.F^{j}\right|_{\mathcal{I}_{0}^{1}} \circ \check{H}_{s} \circ \ldots \circ \check{H}_{3} \circ \mathcal{P}_{0}^{1} \circ F^{2 R_{1}}\right|_{\tilde{\mathcal{I}}_{0, i}^{n}} .
$$

Denote

$$
\mathcal{J}:=\mathcal{P}_{0}^{1} \circ F^{2 R_{1}}\left(\tilde{\mathcal{I}}_{0, i}^{n}\right) \quad \text { and } \quad \check{H}:=\check{H}_{s} \circ \ldots \circ \check{H}_{3} .
$$

To prove the cross-ratio distortion bound for \hat{H}_{i}, it suffices to prove it for \check{H} on \mathcal{J}.
The maps

$$
\phi_{0}:=\left(\left.P_{0}^{1}\right|_{\mathcal{I}_{0}^{1}}\right)^{-1}: I_{0}^{1} \rightarrow \mathcal{I}_{0}^{1} \quad \text { and } \quad \phi_{-1}:=\left(\left.P_{-1}\right|_{\mathcal{I}_{R_{1}-1}}\right)^{-1}: I_{R_{1}-1}^{1} \rightarrow \mathcal{I}_{R_{1}-1}^{1}
$$

give parameterizations of \mathcal{I}_{0}^{1} and $\mathcal{I}_{R_{1}-1}^{1}$ by their respective arclengths. Denote

$$
J_{2}:=\phi_{0}^{-1}(\mathcal{J}) \quad \text { and } \quad h_{1}:=\left.\phi_{-1}^{-1} \circ F^{R_{1}-1}\right|_{\mathcal{I}_{0}^{1}} \circ \phi_{0}
$$

For $3 \leq l \leq s$, let

$$
H_{l}:=\phi_{0}^{-1} \circ \check{H}_{l} \circ \ldots \circ \check{H}_{3} \circ \phi_{0} ;
$$

and

$$
J_{l}^{\prime}:=h_{1}\left(J_{l-1}\right) \quad \text { and } \quad J_{l}:=H_{l}\left(J_{2}\right) .
$$

By Propositions 6.16 and 3.11 , there exist a diffeomorphism $\psi_{l}: J_{l}^{\prime} \rightarrow \psi_{l}\left(J_{l}^{\prime}\right)$ and a constant $a_{l} \in \mathbb{R}$ such that

$$
H_{l}(x)=a_{l}-\left(\psi_{l} \circ h_{1} \circ H_{l-1}(x)\right)^{2} .
$$

By (B.2) and Lemma B.2, we see that

$$
\operatorname{CrD}(\check{H}, \mathcal{J}):=\operatorname{CrD}\left(H_{s}, J_{2}\right)>\left(\prod_{l=2}^{s-1} \operatorname{CrD}\left(h_{1}, J_{l}\right)\right) \cdot\left(\prod_{l=3}^{s} \operatorname{CrD}\left(\psi_{l}, J_{l}^{\prime}\right)\right)
$$

Note that the diffeomorphisms h_{1} and $\left\{\psi_{l}\right\}_{l=3}^{s}$ have uniformly bounded second derivatives. Moreover, Propositions 6.9 and 6.15 implies that the total length of $\left\{J_{l}, J_{l}^{\prime}\right\}_{l=3}^{s}$ is uniformly bounded. The bound on the cross ratio distortion of \hat{H}_{i} now follows from Lemma B.3.

Now, consider the decomposition of $\hat{H}_{R_{n}-1}$ on $\tilde{\mathcal{I}}_{0, R_{n}-1}^{n}$:

$$
\left.\hat{H}_{R_{n}-1}\right|_{\tilde{\mathcal{I}}_{0, R_{n}-1}^{n}}=\left.\left.F^{R_{1}-1}\right|_{\mathcal{I}_{0}^{1}} \circ \check{H}_{S} \circ \ldots \circ \check{H}_{3} \circ \mathcal{P}_{0}^{1} \circ F^{2 R_{1}}\right|_{\tilde{\mathcal{I}}_{0, R_{n}-1}^{n}},
$$

where $S:=R_{n} / R_{1}-1$. The same argument as above implies the bound on the cross ratio distortion of

$$
\left.\hat{H}_{R_{n}-1} \circ \hat{H}_{i}^{-1}\right|_{\mathcal{I}}=\left.\left.F^{R_{1}-1}\right|_{\mathcal{I}_{0}^{1}} \circ \check{H}_{S} \circ \ldots \circ \check{H}_{S-s} \circ F^{R_{1}-1-j}\right|_{\mathcal{I}}
$$

on $\mathcal{I}:=\hat{H}_{i}\left(\tilde{\mathcal{I}}_{0, R_{n}-1}^{n}\right)$.
Proof of Theorem 6.3. Consider the arcs $\left\{\mathcal{J}_{i}^{n}\right\}_{i=0}^{R_{n}-1}$. There exists $2 R_{1} \leq i_{1}<R_{n}$ such that

$$
\left|\mathcal{J}_{\iota_{+}^{n}\left(i_{1}\right)}^{n}\right|,\left|\mathcal{J}_{\iota_{-}^{n}\left(i_{1}\right)}^{n}\right|>k\left|\mathcal{J}_{i_{1}}^{n}\right|
$$

for some uniform constant $k>0$. By Proposition 6.15, there exists an $\operatorname{arc} \tilde{\mathcal{I}}_{0, i_{1}}^{n} \supset \mathcal{I}_{0}^{n}$ which is mapped diffeomorphically onto $\tilde{\mathcal{J}}_{i_{1}}^{n}$ by $\hat{H}_{i_{1}}$.

Recall that the nearest neighbor of \mathcal{I}_{0}^{n} in \mathcal{I}_{0}^{1} is given by $\mathcal{J}_{\kappa_{n-1} R_{n-1}}^{n}$. Let $\hat{\mathcal{I}}_{0}^{n}$ be the convex hull of $\mathcal{I}_{0}^{n} \cup \mathcal{J}_{\kappa_{n-1} R_{n-1}}^{n}$. Then

$$
\left(\tilde{\mathcal{I}}_{0, i_{1}}^{n} \cap \mathcal{I}_{0}^{1}\right) \backslash \mathcal{I}_{0}^{n} \subset \hat{\mathcal{I}}_{0}^{n} \backslash \mathcal{I}_{0}^{n}
$$

Hence, Proposition 6.17 and Theorem B. 4 imply

$$
\left|\hat{\mathcal{I}}_{0}^{n} \backslash \mathcal{I}_{0}^{n}\right|>k\left|\mathcal{I}_{0}^{n}\right|
$$

By Lemma 6.11. we conclude that the two components of $\tilde{\mathcal{J}}_{R_{n}-1}^{n} \backslash \mathcal{J}_{R_{n}-1}^{n}$ have lengths greater than $k\left|\mathcal{J}_{R_{n}-1}^{n}\right|$. By Proposition 6.15. $\hat{H}_{R_{n}-1}$ maps $\tilde{\mathcal{I}}_{0, R_{n}-1}^{n} \supset \mathcal{I}_{0}^{n}$ diffeomorphically onto $\tilde{\mathcal{J}}_{R_{n}-1}^{n}$. The result now follows from Proposition 6.17 and Theorem B.4.

7. Uniform C^{1}-Bounds

7.1. For unimodal maps. Define

$$
\operatorname{sign}(x):= \begin{cases}+1 & : \text { if } x \geq 0 \\ -1 & : \text { otherwise }\end{cases}
$$

Lemma 7.1. Let $f: I \rightarrow I$ be a C^{r}-unimodal map with the critical point at $c \in I$. Then there exists a unique orientation-preserving C^{r}-diffeomorphism $h_{f}: I \rightarrow h_{f}(I)$ such that $h_{f}(c)=0$ and

$$
f(x)=f(c)+\operatorname{sign}\left(f^{\prime \prime}(c)\right)\left(h_{f}(x)\right)^{2} .
$$

Consider a C^{2}-unimodal map $f: I \rightarrow I$, and let $h:=h_{f}$ be the diffeomorphism given in Lemma 7.1. Suppose that for some $K \geq 1$, we have

$$
\begin{equation*}
\sup _{x, y \in I} \frac{h^{\prime}(x)}{h^{\prime}(y)} \leq K \tag{7.1}
\end{equation*}
$$

Proposition 7.2. There exists a constant $C \geq 1$ independent of f such that $\|f\|_{C^{1}}<$ CK.

Proof. Let $\hat{f}: \hat{I} \rightarrow \hat{I}$ be the normalization of f_{n}, so that $|\hat{I}| \asymp 1$. Let $\hat{h}:=h_{\hat{f}}$ given in Lemma 7.1. Note that \hat{h} is h composed with some affine transformation, which does not affect its distortion. Hence:

$$
\sup _{x, y \in \hat{I}} \frac{\hat{h}^{\prime}(x)}{\hat{h}^{\prime}(y)}<K
$$

Since $|\hat{h}(\hat{I})|=O(1)$, it follows that there exists a uniform constant $\tilde{C} \geq 1$ independent of f such that $\|\hat{h}\|_{C^{1}}<\tilde{C} K$. Since $\left\|\hat{f}^{\prime}\right\|=\left\|f^{\prime}\right\|$, the result follows.

Proposition 7.3. Suppose that the critical orbit of f does not converge to a sink. Then for any $N \in \mathbb{N}$, there exists a uniform constant $\tau=\tau(K, N)>0$ such that

$$
\left|f^{n}(c)-c\right|>\tau|I| \quad \text { for } \quad n \leq N
$$

Proof. By conjugating with an affine map, we may assume that $c=0$ and $f(c)=1$. Since $f(I) \Subset I$, we see that there exists a uniform constant $C=C(K)>0$ such that $|I|<C$.

There exists a uniform constant $C^{\prime}=C^{\prime}(K, N)>1$ such that for any interval $J \subset I$, we have $\left|f^{n}(J)\right|<C^{\prime}|J|$. Let $J:=(-t, t)$ for some $t \ll 1 / C^{\prime}$. Observe that $\left|f^{n}(J)\right|<C^{\prime} t^{2} \ll t$. Hence, if $f^{n}(0) \in(-t / 2, t / 2)$, then the orbit of 0 converges to sink.

Proposition 7.4. Suppose that $|I|=O(1)$. Then there exists a uniform constant $c>0$ independent of f such that

$$
\inf _{x \in I}\left|h_{f}^{\prime}(x)\right|>c K^{-1}
$$

Proof. Observe that $\left|h_{f}(I)\right|^{2} \asymp|I|$. It follows that $\left|h_{f}(I)\right|>C|I|$ for some uniform constant $C>0$ independent of f. Thus, there exists $x \in I$ such that $h_{f}^{\prime}(x)$ is uniformly bounded below. The result follows.

Proposition 7.5. Suppose that f is valuably renormalizable: there exist $I^{1} \subset I$ and $R \geq 2$ such that $v \in f^{R}\left(I^{1}\right) \subset I^{1}$. If the critical orbit of f does not converge to a sink, then

$$
\left|f^{i}\left(I^{1}\right)\right|>\rho|I| \quad \text { for } \quad 0 \leq i \leq R
$$

where $\rho=\rho(K, R) \in(0,1)$ is a uniform constant.
Proof. The result is an immediate consequence of Proposition 7.3 .
Proposition 7.6. Suppose that f is twice valuably renormalizable: there exist $I^{2} \subset$ $I^{1} \subset I$ and $R_{2}>R_{1} \geq 2$ such that $v \in f^{R_{n}}\left(I^{n}\right) \subset I^{n}$ for $n \in\{1,2\}$. Let J be a connected component of

$$
I \backslash \bigcup_{i=0}^{R_{1}-1} f^{i}\left(I^{1}\right)
$$

If the critical orbit of f does not converge to a sink, then we have $|J|>\rho|I|$, where $\rho=\rho\left(K, R_{2}\right) \in(0,1)$ is a uniform constant.

Proof. Denote $I_{i}^{1}:=f^{i}\left(I^{1}\right)$ for $0 \leq i<R_{1}$. By Lemma 13.1, we may choose $I_{i}^{1}:=$ $\left[f^{i}(v), f^{i+R_{1}}(v)\right]$.

For $t>0$, suppose that the gap J_{0} between I_{k}^{1} and I_{l}^{1} with $0 \leq k<l<R_{1}$ is smaller than t. If $J_{m}:=f^{m}\left(J_{0}\right)$ with $m=O\left(R_{2}\right)$ maps onto an interval I_{i}^{1} for some $0 \leq i<R_{1}$, then by Proposition 7.2, we have $t \asymp\left|I_{i}^{1}\right|$.

By this previous observation, we may assume, after replacing J_{0} with $J_{R_{1}}$ if necessary, that $\partial J_{0} \ni f^{k+R_{1}}(v)$. Under $f^{R_{2}-k+R_{1}}$, the point $f^{k+R_{1}}(v)$ maps to the endpoint $f^{R_{2}}(v)$ of I^{2}. Since

$$
I_{l+R_{2}-k+R_{1}}^{1} \cap I_{0}^{1}=\varnothing
$$

the image $J_{R_{2}-k+R_{1}}$ of the gap must contain $I_{0}^{1} \backslash I_{0}^{2}$. Again, by Proposition 7.2, we have $t \asymp\left|I_{0}^{2}\right|$. The result now follows from Proposition 7.5 .
7.2. For Hénon-like maps. For $N \in \mathbb{N} \cup\{\infty\}$, let F be the N-times regularly Hénon-like diffeomorphism considered in Section 5. For $1 \leq n \leq N$, recall that the nth pre-renormalization of F is given by

$$
F_{n}:=p \mathcal{R}^{n}(F):=\Psi^{n} \circ F^{R_{n}} \circ\left(\Psi^{n}\right)^{-1}
$$

and its 1 D profile is given by

$$
f_{n}:=\Pi_{1 \mathrm{D}} \circ p \mathcal{R}^{n}(F)
$$

Additionally, let $h_{n}:=h_{f_{n}}$ be the diffeomorphism given by Lemma 7.1.
Proposition 7.7. Let \mathbf{K} be the constant given in Theorem 6.3. Then there exists a uniform constant $C \geq 1$ independent of F such that for all $1 \leq n \leq N$, we have

$$
\left\|f_{n}\right\|_{C^{1}},\left\|F_{n}\right\|_{C^{1}}<C \mathbf{K} \quad \text { and } \quad \inf _{x \in I_{0}^{n}}\left|h_{n}^{\prime}(x)\right|>(C \mathbf{K})^{-1}
$$

Proof. The estimate on $\left\|f_{n}\right\|_{C^{1}}$ is an immediate consequence of Theorem 6.3 and Proposition 7.2. The estimate on $\left\|F_{n}\right\|_{C^{1}}$ then follows from the fact that F_{n} is a $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-thin Hénon-like map. Lastly, the estimate on $\left|h_{n}^{\prime}\right|$ is implied by Theorem 6.3 and Proposition 7.4 .

8. Compositions of Nearby Maps

We first record the following general estimate.
Lemma 8.1. Let $d \in \mathbb{N}$. Consider C^{r-1}-maps $H_{0}, \tilde{H}_{0}: U \rightarrow U^{\prime}$ and C^{r}-maps $H_{1}, \tilde{H}_{1}: V \rightarrow V^{\prime}$ defined on domains $U, V \subset \mathbb{R}^{d}$ with $H_{0}(U) \Subset V$. Suppose

$$
\left\|\tilde{H}_{i}-H_{i}\right\|_{C^{r-1}}<\delta \quad \text { for } \quad i \in\{0,1\} .
$$

Then we have

$$
\left\|H_{1} \circ H_{0}-\tilde{H}_{1} \circ \tilde{H}_{0}\right\|_{C^{r-1}}<\delta P\left(\left\|H_{1}\right\|_{C^{r}},\left\|\tilde{H}_{0}\right\|_{C^{r-1}}\right)
$$

where P is a two-variable polynomial of degree r independent of the maps H_{i}, \tilde{H}_{i} for $i \in\{0,1\}$.

Proof. Let $d_{i}:=H_{i}-\tilde{H}_{i}$. A straightforward computation shows that

$$
\begin{aligned}
H_{1} \circ H_{0} & =H_{1} \circ\left(\tilde{H}_{0}-d_{0}\right) \\
& =H_{1} \circ \tilde{H}_{0}+O\left(\left\|D H_{1} \circ \tilde{H}_{0}\right\|\left\|d_{0}\right\|\right) \\
& =\tilde{H}_{1} \circ \tilde{H}_{0}+d_{1} \circ \tilde{H}_{0}+O\left(\left\|D H_{1} \circ \tilde{H}_{0}\right\|\left\|d_{0}\right\|\right) .
\end{aligned}
$$

The result follows.
For $N \in \mathbb{N} \cup\{\infty\}$, let F be the N-times regularly Hénon-like diffeomorphism considered in Section 5, Denote

$$
F_{n}:=\Psi^{n} \circ F^{R_{n}} \circ\left(\Psi^{n}\right)^{-1} \quad \text { and } \quad f_{n}:=\Pi_{1 \mathrm{D}}\left(F_{n}\right) .
$$

Define

$$
\Pi_{h}(x, y):=(x, 0) \quad \text { and } \quad \Pi_{v}(x, y):=(0, y) .
$$

Proposition 8.2. Let $1 \leq n \leq N$. Then for $1 \leq k<r_{n}$, we have

$$
\left\|f_{n}^{k}-\Pi_{1 \mathrm{D}} \circ F_{n}^{k}\right\|_{C^{r-1}}<\left\|F_{n}^{k}-F_{n}^{k} \circ \Pi_{h}\right\|_{C^{r-1}}<K \lambda^{(1-\bar{\varepsilon}) R_{n}}
$$

where $K \geq 1$ is a constant depending only on $\left\|f_{n}\right\|_{C^{r}}$ and \mathbf{b}.
Proof. By Theorem 3.6 and Proposition 7.7, $\left\|\pi_{h} \circ \Psi^{n}\right\|_{C^{r}}$ and $\left\|F_{n}\right\|_{C^{1}}$ are uniformly bounded. Moreover, by Theorem 3.6 iv), we have

$$
\left\|F_{n}-F_{n} \circ \Pi_{h}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{n}}
$$

where $\Pi_{h}(x, y):=(x, 0)$. The result now follows from Lemma 8.1.

9. Robustness of Regularity

For $N \in \mathbb{N} \cup\{\infty\}$, let F be the N-times regularly Hénon-like diffeomorphism considered in Section 5 .

Proposition 9.1. There exists a uniform constant $\mathbf{K} \geq 1$ depending only on $\|F\|_{C^{2}}$, R_{1} and \mathbf{b} such that the following condition holds. For $1 \leq n<N$ and $0 \leq k<r_{n}$, let

$$
p_{0} \in \mathcal{B}_{k R_{n}}^{n+1} \subset \mathcal{B}_{0}^{n} \quad \text { and } \quad z_{0}=\left(x_{0}, y_{0}\right):=\Psi^{n}\left(p_{0}\right)
$$

Then

$$
\frac{1}{\mathbf{K}}<\left\|\left.D\left(\pi_{h} \circ F_{n}^{i}\right)\right|_{E_{z_{0}}^{g h}}\right\| \leq\left\|\left.D F_{n}^{i}\right|_{E_{z_{0}}^{g h}}\right\|<\mathbf{K} \quad \text { for } \quad 0 \leq i<r_{n}-k
$$

Proof. The upper bound is given in Proposition 7.7. For the lower bound, by Proposition 8.2, it suffices to show that

$$
\left|f_{n}^{\prime}\left(x_{0}\right)\right|>1 / \mathbf{K} \quad \text { for } \quad x_{0}=\pi_{h} \circ \Psi^{n}\left(p_{0}\right) \quad \text { with } \quad p_{0} \in \mathcal{B}_{k R_{n}}^{n+1}
$$

Denote the critical point and the critical value of f_{n} by c^{n} and v^{n} respectively. Normalize $f_{n}: I_{0}^{n} \rightarrow I_{0}^{n}$ to $\hat{f}_{n}: \hat{I}_{0}^{n} \rightarrow \hat{I}_{0}^{n}$ by conjugating it with an affine map $S: I_{0}^{n} \rightarrow \hat{I}_{0}^{n}$ so that the critical point and the critical value of \hat{f}_{n} are 0 and 1 respectively. Let $\hat{h}_{n}:=h_{\hat{f}_{n}}$ be the diffeomorphism given in Proposition 7.1. By Corollary 6.4, we have

$$
\inf _{x \in \hat{I}_{0}^{n}}\left|\hat{h}_{n}^{\prime}(x)\right|>1 / \mathbf{K}
$$

By Proposition 5.3 and Proposition 7.7, we see that $\hat{x}_{0}:=S\left(x_{0}\right)$ is contained in a $\lambda^{\bar{\varepsilon} R_{n}}$-neighborhood of the interval $\left(\hat{f}_{n}^{k}(1), \hat{f}_{n}^{k+r_{n}}(1)\right)$. Then Proposition 7.3 implies that $\left|\hat{x}_{0}\right|>\tau$, where τ only depends on \mathbf{K} and \mathbf{b}. The result follows.

Proposition 9.2. There exists a constant $\mathbf{L} \geq 1$ depending only on $\left\|\Phi_{0}\right\|_{C^{1}}$ such that the following holds. Let $\mathbf{K} \geq 1$ be the constant given in Proposition 9.1. For $1 \leq n \leq N$, let $p_{0} \in \mathcal{B}_{0}^{n}$. Then

$$
\left(\mathbf{L K}^{n}\right)^{-1} \lambda^{(1+\varepsilon) i}<\operatorname{Jac}_{p_{0}} F^{i}<\mathbf{L K}^{n} \lambda^{(1-\varepsilon) i} \quad \text { for } \quad 0 \leq i<R_{n}
$$

Proof. Let $z_{0}:=\Psi^{n}\left(p_{0}\right)$, and define

$$
E_{p_{0}}^{v / h, n}:=\left(D \Psi^{n}\right)^{-1}\left(E_{z_{0}}^{g v / g h}\right) .
$$

By Theorem 3.6, we have

$$
\left\|\left(\Psi^{n}\right)^{-1} \circ \Phi_{0}-\mathrm{Id}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{n}} .
$$

Consequently,

$$
\mathbf{L}^{-1}<\frac{\operatorname{Jac}_{p_{0}} F^{i}}{\left\|\left.D F^{i}\right|_{E_{p_{0}}^{h, n}}\right\|\left\|\left.D F^{i}\right|_{E_{p_{0}}^{v, n}}\right\|}<\mathbf{L}
$$

Plugging in the above inequality and the estimates in Proposition 9.1 into the forward regularity condition for p_{0} along $E_{p_{0}}^{v, n}$, the result follows.

Theorem 9.3. Fix $\delta \in(\bar{\varepsilon}, 1)$ such that $\mathbf{b} \bar{\delta}<1$. Suppose that

$$
\begin{equation*}
\mathbf{L K}^{N} \lambda^{\delta R_{N}}<1 \tag{9.1}
\end{equation*}
$$

where \mathbf{K} and \mathbf{L} are constants given in Propositions 9.1 and 9.2 respectively. Let

$$
\mathbf{C}:=\overline{\mathbf{L K}^{N}}
$$

Then the following holds.
For $m \in \mathbb{N} \cup\{\infty\}$, suppose that F_{N} is $(m+1)$-times topologically renormalizable with return times of \mathbf{b}-bounded type. Then F has $N+m$ nested $(\mathbf{C}, \delta, \lambda)$-regular Hénon-like returns.

Proof. Proceeding by induction, suppose that for $N \leq M<N+m$, the map F has M nested ($\mathbf{C}, \delta, \lambda$)-regular Hénon-like returns

$$
\left\{\left(F^{R_{n}}, \Psi^{n}: \mathcal{B}_{0}^{n} \rightarrow B_{0}^{n}\right)\right\}_{n=1}^{M} .
$$

By Theorem 5.4, F has a $(\overline{\mathbf{C}}, \bar{\delta}, \lambda)$-regular Hénon-like return

$$
\left(F^{R_{M+1}}, \Psi^{M+1}: \mathcal{B}_{0}^{M+1} \rightarrow B_{0}^{M+1}\right)
$$

Let $p_{0} \in \mathcal{B}_{0}^{M+1}$ and

$$
E_{p_{0}}^{v / h}:=\left(D \Psi^{M+1}\right)^{-1}\left(E_{\Psi^{M+1}\left(p_{0}\right)}^{g v / g h}\right) .
$$

By Propositions 9.1 and $9.2, p_{0}$ is R_{M+1}-times forward ($\mathbf{L K}^{N}, \bar{\varepsilon}, \lambda$)-regular horizontally along $E_{p_{0}}^{h}$, and $p_{R_{M+1}}$ is R_{M+1}-times backward ($\mathbf{L K}^{N}, \bar{\varepsilon}, \lambda$)-regular horizontally along $E_{p_{R_{M+1}}}^{h}$. By Propositions A.13 and A.14. it follows that p_{0} is R_{M+1}-times forward ($\mathbf{C}, \delta, \lambda$)-regular (vertically) along $\overline{E_{p_{0}}^{v}}$, and $p_{R_{M+1}}$ is R_{M+1}-times backward $(\mathbf{C}, \delta, \lambda)$-regular (vertically) along $E_{p_{R_{M+1}}}^{v}$.

10. Uniform C^{r}-Bounds

Let F be the diffeomorphism considered in Section 5. Suppose that $N=\infty$, so that F is infinitely regular Hénon-like renormalizable. For $n \in \mathbb{N}$, denote the nth pre-renormalization F and its 1D profile by

$$
F_{n}=p \mathcal{R}^{n}(F):=\Psi^{n} \circ F^{R_{n}} \circ\left(\Psi^{n}\right)^{-1} \quad \text { and } \quad f_{n}:=\Pi_{1 \mathrm{D}}\left(F_{n}\right)
$$

respectively.
Consider the arcs

$$
\mathcal{I}_{0}^{n}:=\left(\Psi^{n}\right)^{-1}\left(I_{0}^{n} \times\{0\}\right)=\mathcal{I}_{0}^{h} \cap \mathcal{B}_{0}^{n} \ni v_{0}
$$

and $\mathcal{I}_{i}^{n}:=F^{i}\left(\mathcal{I}_{0}^{n}\right)$ for $i \in \mathbb{N}$. Let $\left\{\mathcal{J}_{i}^{n}\right\}_{i=0}^{R_{n}-1}$ be the collection of arcs given in (6.2). Recall that for $1 \leq m \leq n ; 0 \leq k<R_{n} / R_{m}$ and $0 \leq i<R_{m}$, we have

$$
\begin{equation*}
\mathcal{J}_{0}^{n}:=\mathcal{I}_{0}^{n}, \quad \mathcal{J}_{k R_{m}}^{n} \subset \mathcal{J}_{0}^{m} \quad \text { and } \quad \mathcal{J}_{i+k R_{m}}^{n}=\hat{H}_{i}\left(\mathcal{J}_{k R_{m}}^{n}\right) . \tag{10.1}
\end{equation*}
$$

Moreover, $\left\{\mathcal{J}_{i}^{n}\right\}_{i=0}^{R_{n}-1}$ is pairwise disjoint by Lemma 6.8.
The map

$$
\phi_{0}:=\left.P_{0}\right|_{\mathcal{I}_{0}^{h}}: \mathcal{I}_{0}^{h} \rightarrow I_{0}^{h}
$$

gives a parameterization of \mathcal{I}_{0}^{h} by its arclength. For $n \in \mathbb{N}$ and $0 \leq l<R_{n} / R_{1}$, let

$$
J_{l R_{1}}^{n}:=\phi_{0}\left(\mathcal{J}_{l R_{1}}^{n}\right)
$$

Observe that $\left\{J_{l R_{1}}^{n}\right\}_{l=0}^{R_{n} / R_{1}-1}$ is a pairwise disjoint set of intervals contained in \mathbb{R}. Moreover,

$$
\begin{equation*}
J_{k R_{n}}^{n+1}=\Pi_{1 \mathrm{D}} \circ F_{n}^{k}\left(J_{0}^{n+1}\right) \quad \text { for } \quad 0 \leq k<r_{n} \tag{10.2}
\end{equation*}
$$

Let $\gamma \subset \Gamma$ be C^{1}-curves in \mathbb{R}^{2}. We say that γ is commensurable with Γ if $|\gamma| \asymp|\Gamma|$. Proposition 10.1. Let $n \in \mathbb{N}$ and $0 \leq i<R_{n}$. Then any arc $\mathcal{J}_{i+k R_{n}}^{n+1}$ for some $0 \leq k<r_{n}$, or any component of

$$
\mathcal{J}_{i}^{n} \backslash \bigcup_{k=0}^{r_{n}-1} \mathcal{J}_{i+k R_{n}}^{n+1}
$$

is commensurable with \mathcal{J}_{i}^{n}. Consequently, there exists a uniform constant $\rho \in(0,1)$ such that

$$
\sum_{i=0}^{R_{n}-1}\left|\mathcal{J}_{i}^{n}\right|<O\left(\rho^{n}\right)
$$

Proof. By Lemma 7.7 and Proposition 8.2, it follows that

$$
\begin{equation*}
\left\|f_{n}^{k}-\Pi_{1 \mathrm{D}}\left(F_{n}^{k}\right)\right\|_{C^{0}}=O\left(\lambda^{(1-\bar{\varepsilon}) R_{n}}\right) \tag{10.3}
\end{equation*}
$$

Denote the critical value of f_{n} by v^{n}. Then by Corollary 6.4 and Proposition 7.3, we see that each component of

$$
J_{0}^{n} \backslash \bigcup_{k=0}^{2 r_{n}-1} f_{n}^{k}\left(v^{n}\right)
$$

is commensurate with J_{0}^{n}. Thus, by (10.2) and (10.3), this implies the result in the case $i=0$. The case $0<i<R_{n}$ then follows immediately from Theorem 6.3 and (10.1).

The map

$$
\phi_{-1}:=\left.P_{-1}\right|_{\mathcal{I}_{R_{1}-1}^{1}}: \mathcal{I}_{R_{1}-1}^{1} \rightarrow I_{R_{1}-1}^{1}
$$

gives a parameterization of $\mathcal{I}_{R_{1}-1}^{1}$ by its arclength. Denote

$$
J_{l R_{1}-1}^{n}:=\phi_{-1}\left(\mathcal{J}_{l R_{1}-1}^{n}\right) \quad \text { for } \quad 1 \leq l \leq R_{n} / R_{1} .
$$

Observe that $\left\{J_{l R_{1}-1}^{n}\right\}_{l=1}^{R_{n} / R_{1}}$ is a pairwise disjoint set of intervals contained in \mathbb{R}. Define

$$
\begin{equation*}
\gamma_{-1}^{n}:=\bigcup_{l=3}^{R_{n} / R_{1}-1} J_{l R_{1}-1}^{n} \subset I_{-1}^{h} \quad \text { and } \quad \gamma_{0}^{n}:=\bigcup_{l=3}^{R_{n} / R_{1}-1} J_{l R_{1}}^{n} \subset I_{0}^{h} . \tag{10.4}
\end{equation*}
$$

Proposition 6.16 gives the following decomposition of $\hat{H}_{R_{n}-1}$:

$$
\left.\hat{H}_{R_{n}-1}\right|_{\mathcal{I}_{0}^{n}}=\left.\left.F^{R_{1}-1}\right|_{\mathcal{I}_{0}^{1}} \circ \check{H}_{\frac{R_{n}}{R_{1}}-1} \circ \ldots \circ \check{H}_{3} \circ \mathcal{P}_{0}^{1} \circ F^{2 R_{1}}\right|_{\mathcal{I}_{0}^{n}}
$$

where for $3 \leq l<R_{n} / R_{1}$, we have

$$
\check{H}_{l}:=\left.\mathcal{P}_{0}^{\hat{m}_{l}} \circ F \circ\left(\mathcal{P}_{-1}^{1} \mid \check{\check{l}}_{l}^{n}\right)^{-1} \circ F^{R_{1}-1}\right|_{\mathcal{I}_{0}^{1}}
$$

Define

$$
\Gamma_{-1}^{n}:=\bigcup_{l=3}^{R_{n} / R_{1}-1} \check{\mathcal{I}}_{l}^{n} \subset \mathcal{U}_{-1} \subset \mathbb{R}^{2}
$$

Lemma 10.2. For $n \in \mathbb{N}$ and $3 \leq l<R_{n} / R_{1}$, the map P_{-1} restricts to a diffeomorphism from $\check{\mathcal{I}}_{l}^{n}$ to $J_{l R_{1}-1}^{n}$ (and hence, also from Γ_{-1}^{n} to γ_{-1}^{n}). Define

$$
g_{-1}^{n}:=\pi_{v} \circ \Phi_{-1} \circ\left(\left.P_{-1}\right|_{\Gamma_{-1}^{n}}\right)^{-1} .
$$

Then

$$
\left\|\left.g_{-1}^{n}\right|_{(-t, t)}\right\|_{C^{r}}=O\left(t^{1 / \varepsilon}\right)
$$

Proof. The first claim follows immediately from Proposition 6.16.
Observe that \hat{m}_{l} is the largest integer such that

$$
\{0\} \cup J_{l R_{1}-1}^{n} \subset J_{R_{\hat{m}_{l}-1}}^{\hat{m}_{l}}
$$

Moreover,

$$
J_{l R_{1}-1}^{n} \subset J_{\hat{a}_{l} R_{1}-1}^{\hat{m}_{l}+1} \quad \text { and } \quad 0 \notin J_{\hat{a}_{l} R_{1}-1}^{\hat{m}_{l}+1} .
$$

By Proposition 6.16, $\check{\mathcal{I}}_{l}^{n}$ is $\lambda^{(1-\bar{\varepsilon}) R_{\tilde{m}_{l}} \text {-horizontal. Additionally, by Proposition 10.1, }}$ we have

$$
\operatorname{dist}\left(0, \check{I}_{l}^{n}\right) \asymp \rho^{\hat{m}_{l}}
$$

for some uniform constant $\rho \in(0,1)$. The estimate on G_{-1}^{n} follows.
Let $G: \mathcal{I} \rightarrow \mathcal{J}$ be a C^{1}-diffeomorphism between two C^{1}-curves $\mathcal{I}, \mathcal{J} \subset \mathbb{R}^{2}$. Define the zoom-in operator \mathbf{Z} by

$$
\mathbf{Z}(G)(t):=|\mathcal{J}|^{-1} \cdot \phi_{\mathcal{J}}^{-1} \circ G \circ \phi_{\mathcal{I}}(|\mathcal{I}| t),
$$

where $\phi_{\mathcal{I}}:[0,|\mathcal{I}|] \rightarrow \mathcal{I}$ is the parameterization of \mathcal{I} by its arclength (and $\phi_{\mathcal{J}}$ similarly defined). Note that $\mathbf{Z}(G):[0,1] \rightarrow[0,1]$.

This rest of this section is devoted to proving the following theorem.
Theorem 10.3. There exists a universal constant $K>0$ such that for all $n \in \mathbb{N}$ sufficiently large and $1 \leq i<R_{n}$, we have

$$
\left\|\mathbf{Z}\left(\left.\hat{H}_{i}\right|_{\mathcal{I}_{0}^{n}}\right)\right\|_{C^{r}}<K
$$

Define

$$
\mathbf{q}(x):=\operatorname{sign}(x) x^{2}
$$

Denote $\check{I}_{0}^{h}:=\mathbf{q}^{-1}\left(I_{0}^{h}\right)$. For $n \in \mathbb{N}$ and $0 \leq l<R_{n} / R_{1}$, let $\check{J}_{l R_{1}}^{n}:=\mathbf{q}^{-1}\left(J_{l R_{1}}^{n}\right)$. The proof of Theorem 10.3 relies on the following key result.

Proposition 10.4. Let $n \in \mathbb{N}$. There exists a C^{r}-diffeomorphism $\breve{h}^{n}: I_{0}^{h} \rightarrow \check{I}_{0}^{h}$ with

$$
\left\|\left(\check{h}^{n}\right)^{ \pm 1}\right\|_{C^{r}}=O(1)
$$

such that for $1 \leq l \leq R_{n} / R_{1}$, we have

$$
\left.\phi_{0} \circ \hat{H}_{l R_{1}} \circ \phi_{0}^{-1}\right|_{I_{0}^{n}}=\left(\mathbf{q}_{l}^{n} \circ \check{h}_{l}^{n}\right) \circ \ldots \circ\left(\mathbf{q}_{2}^{n} \circ \check{h}_{2}^{n}\right) \circ\left(\mathbf{q}_{1}^{n} \circ \check{h}_{1}^{n}\right),
$$

where $\check{h}_{l}^{n}: J_{(l-1) R_{1}}^{n} \rightarrow \breve{J}_{l R_{1}}^{n}$ and $\mathbf{q}_{l}^{n}: \breve{J}_{l R_{1}}^{n} \rightarrow J_{l R_{1}}^{n}$ are diffeomorphisms given by

$$
\begin{equation*}
\check{h}_{l}^{n}:=\left.\check{h}^{n}\right|_{J_{(l-1) R_{1}}^{n}} \quad \text { and } \quad \mathbf{q}_{l}^{n}:=\left.\mathbf{q}\right|_{\check{J}_{l R_{1}}^{n}} . \tag{10.5}
\end{equation*}
$$

Lemma 10.5. For $n \in \mathbb{N}$ and $3 \leq l<R_{n} / R_{1}$, we have

$$
\left.P_{0}^{\hat{m}_{l}} \circ F \circ\left(\mathcal{P}_{-1}^{1} \mid \check{\tilde{I}}_{l}^{n}\right)^{-1} \circ F^{R_{1}-1} \circ \phi_{0}^{-1}\right|_{J_{(l-1) R_{1}}^{n}}=\mathbf{q}_{l}^{n} \circ \check{h}_{l}^{n}(x),
$$

where \breve{h}_{l}^{n} and \mathbf{q}_{l}^{n} are as defined in (10.5).
Proof. Define $\check{\gamma}_{0}^{n}:=\mathbf{q}^{-1}\left(\gamma_{0}^{n}\right)$, where γ_{0}^{n} is given in 10.4). By Lemmas 3.11 and 10.2, there exists a C^{r}-diffeomorphism $\psi_{-1,0}^{n}: \gamma_{-1}^{n} \rightarrow \check{\gamma}_{0}^{n}$ with

$$
\left\|\left(\psi_{-1,0}^{n}\right)^{ \pm 1}\right\|_{C^{r}}=O(1)
$$

such that

$$
\left.P_{0}^{\hat{m}_{l}} \circ F \circ \Phi_{-1}^{-1} \circ G_{-1}^{n}\right|_{\check{I}_{l}^{n}}=\left.\mathbf{q} \circ \psi_{-1,0}^{n}\right|_{I_{l}^{n}}
$$

where $G_{-1}^{n}(x):=\left(x, g_{-1}^{n}(x)\right)$. Precomposing with $\left.P_{-1} \circ F^{R_{1}-1} \circ \phi_{0}^{-1}\right|_{J_{(l-1) R_{1}}^{n}}$ gives the desired result.

Lemma 10.6. Let $\phi: U \rightarrow \phi(U)$ be a C^{r}-diffeomorphism defined on a domain $U \subset \mathbb{R}$. Then there exists a uniform constant

$$
K=K\left(\|\phi\|_{C^{r}},\left\|\phi^{\prime \prime} / \phi^{\prime}\right\|_{C^{0}}\right) \geq 1
$$

such that for any interval $I \subset U$, we have

$$
\left\|\mathbf{Z}\left(\left.\phi\right|_{I}\right)-\operatorname{Id}\right\|_{C^{r}} \leq K|I|
$$

Lemma 10.7. For $1 \leq i \leq n$, let $\phi_{i}:[0,1] \rightarrow[0,1]$ be a C^{r}-diffeomorphism such that

$$
\sum_{i=1}^{n}\left\|\phi_{i}-\mathrm{Id}\right\|_{C^{r}}=O(1)
$$

Then

$$
\left\|\phi_{n} \circ \ldots \circ \phi_{1}\right\|_{C^{r}}=O(1)
$$

Proof of Theorem 10.3. For $1 \leq l<R_{n} / R_{1}$, let $1 \leq \hat{m}_{l} \leq n$ be the largest integer such that

$$
\{0\} \cup \breve{J}_{l R_{1}}^{n} \subset \breve{J}_{R_{\tilde{m}_{l}}}^{\hat{m}_{l}}
$$

Denote $\mathbb{L}_{m}^{n}:=\left\{1 \leq l<R_{n} / R_{1} \mid \hat{m}_{l}=m\right\}$. Then $l \in \mathbb{L}_{m}^{n}$ if and only if

$$
\check{J}_{l R_{1}}^{n} \subset \check{J}_{R_{m}}^{m} \quad \text { and } \quad \check{J}_{l R_{1}-1}^{n} \cap \check{J}_{R_{m+1}}^{m+1}=\varnothing
$$

Note that

$$
\bigcup_{m=1}^{n} \mathbb{L}_{m}^{n}=\left\{1 \leq l<R_{n} / R_{1}\right\}
$$

Let $U_{R_{m}}^{m}$ be the component of $\breve{J}_{R_{m}}^{m} \backslash \breve{J}_{R_{m+1}}^{m+1}$ contained in \mathbb{R}^{-}. Applying Proposition 10.1 and Lemma 10.6 to $\mathbf{Z}\left(\left.\mathbf{q}\right|_{U_{R_{m}}^{m}}\right)$, we see that

$$
\sum_{l \in \mathbb{L}_{m}^{n}}\left\|\mathbf{Z}\left(\mathbf{q}_{l}^{n}\right)-\operatorname{Id}\right\|_{C^{r}}=O\left(\rho^{m}\right)
$$

for some uniform constant $\rho \in(0,1)$. The result now follows from Proposition 10.1, Proposition 10.4, and Lemmas 10.6 and 10.7 .
Theorem 10.8. For all $n \in \mathbb{N}$ sufficiently large, we have

$$
\left\|\mathcal{R}^{n}(F)\right\|_{C^{r}}=O(1)
$$

Proof. By Theorem 10.3 and (6.1), we see that

$$
\left\|\Pi_{1 \mathrm{D}} \circ \mathcal{R}^{n}(F)\right\|_{C^{r}}=O(1)
$$

Since $\mathcal{R}^{n}(F)$ is a $\lambda^{(1-\bar{\varepsilon}) R_{n}}$-thin Hénon-like map, the result follows.

11. Exponentially Small Pieces

Let F be the infinitely regular Hénon-like renormalizable diffeomorphism considered in Section 10 .

Recall that for $a \geq 0$, we have

$$
H_{a R_{n}}^{n}=\mathcal{P}_{0}^{n} \circ F^{a R_{n}}
$$

where $\mathcal{P}_{0}^{n}: \mathcal{B}_{0}^{n} \rightarrow \mathcal{I}_{0}^{n}$ is the projection map onto \mathcal{I}_{0}^{n}. Any integer $i \geq 2 R_{1}$ can be uniquely expressed as

$$
\begin{equation*}
i=a_{1} R_{n_{1}}+\ldots+a_{l} R_{n_{l}} \tag{11.1}
\end{equation*}
$$

where $1 \leq a_{k}<R_{n_{k}}$ for $1 \leq k<l$, and $2 \leq a_{l}<2 r_{n_{l}}$. Define

$$
\hat{\mathcal{H}}_{i}:=F^{a_{1} R_{n_{1}}} \circ H_{a_{2} R_{n_{2}}}^{n_{2}} \circ \ldots \circ H_{a_{l} R_{n_{l}}}^{n_{l}} \circ \mathcal{P}_{0}^{n_{l}} .
$$

Denote $\hat{m}(i):=n_{1}$ and $\hat{k}(i):=n_{l}$. Then

$$
\begin{equation*}
\mathcal{P}_{0}^{\hat{m}(i)} \circ \hat{\mathcal{H}}_{i}=\hat{H}_{i} \circ \mathcal{P}_{0}^{\hat{k}(i)} \tag{11.2}
\end{equation*}
$$

For convenience, we let $\hat{\mathcal{H}}_{0}:=\mathrm{Id}$.
Lemma 11.1. Let $2 R_{1} \leq i<R_{n}$. Then

$$
\left\|\hat{\mathcal{H}}_{i} \circ \mathcal{P}_{0}^{n}-\left.F^{i}\right|_{\mathcal{B}_{0}^{n}}\right\|_{C^{0}}<K^{n} \lambda^{(1-\bar{\varepsilon}) R_{\hat{m}(i)}}
$$

for some uniform constant $K \geq 1$.

Proof. By Theorem 3.6 and Proposition $7.7,\left\|\left(\Psi^{m}\right)^{ \pm 1}\right\|_{C^{r}}$ and $\left\|F_{m}\right\|_{C^{1}}$ are uniformly bounded. Moreover, by Theorem 3.6 iv), we have

$$
\begin{equation*}
\left\|F_{m}-F_{m} \circ \Pi_{h}\right\|_{C^{r}}<\lambda^{(1-\bar{\varepsilon}) R_{m}} \tag{11.3}
\end{equation*}
$$

where $\Pi_{h}(x, y):=(x, 0)$.
Let i be given by (11.1) with $n_{l}<n$. Note that

$$
F^{R_{n_{l}}}=\left(\Psi^{n_{l}}\right)^{-1} \circ F_{n_{l}} \circ \Psi^{n_{l}}
$$

and

$$
\hat{\mathcal{H}}_{R_{n_{l}}} \circ \mathcal{P}_{0}^{n}=F^{R_{n_{l}}} \circ \mathcal{P}_{0}^{n}=\left(\Psi^{n_{l}}\right)^{-1} \circ\left(F_{n_{l}} \circ \Pi_{h}\right) \circ \Psi^{n}
$$

Moreover,

$$
\hat{\mathcal{H}}_{a_{l} R_{n_{l}}}=\left(\left(\Psi^{n_{l}}\right)^{-1} \circ F_{n_{l}}^{a_{l}-1} \circ \Psi^{n_{l}}\right) \circ \hat{\mathcal{H}}_{R_{n_{l}}}
$$

and

$$
F^{a_{l} R_{n_{l}}}=\left(\left(\Psi^{n_{l}}\right)^{-1} \circ F_{n_{l}}^{a_{l}-1} \circ \Psi^{n_{l}}\right) \circ F^{R_{n_{l}}}
$$

By Theorem 3.6, (11.3) and Lemma 8.1, we obtain

$$
\left\|\hat{\mathcal{H}}_{a_{l} R_{n_{l}}} \circ \mathcal{P}_{0}^{n}-\left.F^{a_{l} R_{n_{l}}}\right|_{\mathcal{B}_{0}^{n}}\right\|_{C^{0}}<K \lambda^{(1-\bar{\varepsilon}) R_{n_{l}}}
$$

for some uniform constant $K \geq 1$.
Proceeding by induction, suppose that

$$
\left\|\hat{\mathcal{H}}_{i_{j+1}} \circ \mathcal{P}_{0}^{n}-\left.F^{i_{j+1}}\right|_{\mathcal{B}_{0}^{n}}\right\|_{C^{0}}<K^{l-j} \lambda^{(1-\bar{\varepsilon}) R_{n_{j+1}}} .
$$

where $1 \leq j<l$ and

$$
i_{j+1}:=a_{n_{j+1}} R_{n_{j+1}}+\ldots+a_{n_{l}} R_{n_{l}} .
$$

Write

$$
\hat{\mathcal{H}}_{i_{j}}=\left(\Psi^{n_{j}}\right)^{-1} \circ F_{n_{j}}^{a_{n_{j}}-1} \circ\left(F_{n_{j}} \circ \Pi_{h}\right) \circ \Psi^{n_{j}} \circ \hat{\mathcal{H}}_{i_{j+1}}
$$

and

$$
\left.F^{i_{j}}\right|_{\mathcal{B}_{0}^{n}}=\left.\left(\Psi^{n_{j}}\right)^{-1} \circ F_{n_{j}}^{a_{n_{j}}-1} \circ F_{n_{j}} \circ \Psi^{n_{j}} \circ F^{i_{j+1}}\right|_{\mathcal{B}_{0}^{n}}
$$

Applying Lemma 8.1, the result follows.
Lemma 11.2. There exists a uniform constant $\rho \in(0,1)$ such that

$$
\sum_{i=0}^{R_{n}-1} \operatorname{diam}\left(\hat{\mathcal{H}}_{i}\left(\mathcal{I}_{0}^{n}\right)\right)=O\left(\rho^{n}\right)
$$

Proof. For $3 \leq l \leq R_{n} / R_{1}$, consider the curve $\check{\mathcal{I}}_{l}^{n} \subset \mathcal{U}_{-1}$ given in Proposition 6.16. By (11.2), we have

$$
\hat{\mathcal{H}}_{l R_{1}}\left(\mathcal{I}_{0}^{n}\right)=F\left(\check{\mathcal{I}}_{l}^{n}\right)=F \circ\left(\mathcal{P}_{-1}^{1} \mid \check{\mathcal{I}}_{l}^{n}\right)^{-1} \circ F^{R_{1}-1}\left(\mathcal{J}_{(l-1) R_{1}}^{n}\right) .
$$

Thus, $\left\{\hat{\mathcal{H}}_{l R_{1}}\left(\mathcal{I}_{0}^{n}\right)\right\}_{l=3}^{R_{n} / R_{1}}$ is the image of $\left\{\mathcal{J}_{l R_{1}}^{n}\right\}_{l=2}^{R_{n} / R_{1}-1}$ under

$$
G_{n}:=F \circ\left(\left.\mathcal{P}_{-1}^{1}\right|_{\Gamma_{-1}^{n}}\right)^{-1} \circ F^{R_{1}-1}
$$

where

$$
\Gamma_{-1}^{n}:=\bigcup_{l=3}^{R_{n} / R_{1}-1} \check{\mathcal{I}}_{l}^{n} .
$$

Since Γ_{-1}^{n} is uniformly horizontal, $\left\|G_{n}\right\|_{C^{r}}=O(1)$. The result now follows from Proposition 10.1.

Theorem 11.3. There exists a uniform constant $\tilde{\rho} \in(0,1)$ such that for $n \in \mathbb{N}$, we have

$$
\sum_{i=0}^{R_{n}-1} \operatorname{diam}\left(F^{i}\left(\mathcal{B}_{R_{n}}^{n}\right)\right)=O\left(\tilde{\rho}^{n}\right)
$$

Proof. Choose $1 \leq m<n$ to be determined later. By Lemma 11.1, we see that for $1 \leq l<R_{n} / R_{m}$, we have

$$
\operatorname{diam}\left(F^{l R_{m}}\left(\mathcal{B}_{R_{n}}^{n}\right)\right)<\operatorname{diam}\left(\hat{\mathcal{H}}_{l R_{m}}\left(\mathcal{I}_{0}^{n}\right)\right)+K^{n} \lambda^{(1-\bar{\varepsilon}) R_{\hat{m}(i)}}
$$

Thus, by Lemma 11.2, we have

$$
\sum_{l=0}^{R_{n} / R_{m}-1} \operatorname{diam}\left(F^{l R_{m}}\left(\mathcal{B}_{R_{n}}^{n}\right)\right)=O\left(\rho^{n}\right)+\frac{R_{n}}{R_{m}} K^{n} \lambda^{(1-\bar{\varepsilon}) R_{m}}
$$

For m sufficiently large, the expression on the right is bounded by $O\left(\rho_{1}^{n}\right)$ for some uniform constant $\rho_{1} \in(\rho, 1)$.

Let $i=a_{0}+a_{1} R_{1}+\ldots+a_{m-1} R_{m-1}+l R_{m}$ with $0 \leq a_{j}<r_{j}$ for $0 \leq j<m$ and $1 \leq l<R_{n} / R_{m}$. We can write

$$
F^{i-l R_{m}}=F^{a_{0}} \circ\left(\Psi^{1}\right)^{-1} \circ F_{1}^{a_{1}} \circ \Psi^{1} \circ \ldots \circ\left(\Psi^{m-1}\right)^{-1} \circ F_{m-1}^{a_{m-1}} \circ \Psi^{m-1}
$$

By Theorem 3.6 and Proposition 7.7, we see that

$$
\left\|F^{i-l R_{m}}\right\|_{C^{1}}<K^{m}
$$

for some uniform constant $K \geq 1$. Hence,

$$
\sum_{i=0}^{R_{n}-1} \operatorname{diam}\left(F^{i}\left(\mathcal{B}_{R_{n}}^{n}\right)\right)=R_{m} K^{m} \sum_{l=0}^{R_{n} / R_{m}-1} \operatorname{diam}\left(F^{l R_{m}}\left(\mathcal{B}_{R_{n}}^{n}\right)\right)=O\left(R_{m} K^{m} \rho_{1}^{n}\right)
$$

For n / m sufficiently large, the expression on the right is bounded by $O\left(\tilde{\rho}^{n}\right)$ for some uniform constant $\tilde{\rho} \in\left(\rho_{1}, 1\right)$.

12. Regular Unicriticality

Let F be the infinitely regular Hénon-like renormalizable diffeomorphism considered in Section 10. Recall that the renormalization limit set of F is given by

$$
\Lambda_{F}:=\bigcap_{n=1}^{\infty} \bigcup_{i=0}^{R_{n}-1} \mathcal{B}_{R_{n}+i}^{n}
$$

By Theorem B, Λ_{F} supports a unique invariant probability measure μ given by the counting measure:

$$
\mu\left(\mathcal{B}_{i}^{n}\right)=1 / R_{n} \quad \text { for } \quad n, i \in \mathbb{N} .
$$

Proposition 12.1. With respect to μ, the Lyapunov exponents of F on Λ_{F} are 0 and $\log \lambda_{\mu}<0$ for some $\lambda_{\mu} \in(0,1)$.

Proposition 12.2. For any $\eta>0$, there exist uniform constants $N_{\eta} \in \mathbb{N}$ and $C_{\eta} \geq 1$ such that for $p \in \mathcal{B}_{k}^{n}$ and $E_{p} \in \mathbb{P}_{p}^{2}$ with $n \geq N_{\eta}$ and $k \geq 0$, we have for all $i \in \mathbb{N}$:

$$
\begin{equation*}
C_{\eta}^{-1} \lambda_{\mu}^{(1+\eta) i}<\left\|\left.D F^{i}\right|_{E_{p}}\right\|<C_{\eta} \lambda_{\mu}^{-\eta i} \tag{12.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\eta}^{-1} \lambda_{\mu}^{(1+\eta) i}<\operatorname{Jac}_{p}\left(F^{i}\right)<C_{\eta} \lambda_{\mu}^{(1-\eta) i} . \tag{12.2}
\end{equation*}
$$

For $p \in \mathcal{B}_{0}^{n}$, define

$$
E_{p}^{v, n}:=D\left(\Psi^{n}\right)^{-1}\left(E_{\Psi^{n}(p)}^{g v}\right)
$$

and

$$
E_{p}^{h}:=D\left(\Psi^{n}\right)^{-1}\left(E_{\Psi^{n}(p)}^{g h}\right)=D\left(\Phi_{0}\right)^{-1}\left(E_{\Phi_{0}(p)}^{g h}\right)
$$

Theorem 12.3. For any $\varepsilon>0$, there exists $L_{\varepsilon} \geq 1$ such that for all $n \in \mathbb{N}$, the nth Hénon-like return $\left(F^{R_{n}}, \Psi^{n}\right)$ is $\left(L_{\varepsilon}, \varepsilon, \lambda_{\mu}\right)$-regular.

Proof. Choose $\eta \in(0, \underline{\varepsilon})$. It suffices to show the result for $n \geq N_{\eta}$ given Proposition 12.2. Let $p_{0} \in \mathcal{B}_{0}^{n}$. By Proposition 9.1 and 12.2 , we see that p_{0} is R_{n}-times forward $\left(O(1), \bar{\eta}, \lambda_{\mu}\right)$-regular horizontally along $E_{p_{0}}^{n}$; and $p_{R_{n}}$ is R_{n}-times backward $\left(O(1), \bar{\eta}, \lambda_{\mu}\right)$-regular horizontally along $E_{p_{R_{n}}}^{h}$. The result now follows from Propositions A. 13 and A. 14.

Recall that by Theorem 4.7, we have

$$
\bigcap_{n=1}^{\infty} \mathcal{B}_{R_{n}}^{n}=\left\{v_{0}\right\} .
$$

Theorem 12.4. The orbit $\left\{v_{m}\right\}_{m \in \mathbb{Z}}$ is a regular quadratic critical orbit.
Proof. By Theorem 12.3, v_{0} is infinitely forward and backward $\left(L_{\varepsilon}, \varepsilon, \lambda_{\mu}\right)$-regular along $E_{v_{0}}^{*}=E_{v_{0}}^{s s}=E_{v_{0}}^{c}$ for all $\varepsilon>0$. Thus, $\left\{v_{m}\right\}_{m \in \mathbb{Z}}$ is a regular critical orbit. The quadratic tangency of $W^{s s}\left(v_{0}\right)$ and $W^{c}\left(v_{0}\right)$ at v_{0} is given in Proposition 3.4 iii .
12.1. Critical cover. Let $\delta=\bar{\varepsilon}$ for some $\varepsilon \in(0,1)$. Choose $\eta \in(0, \underline{\varepsilon})$. Proposition 12.2 and Theorem 12.3 imply that by replacing F on Ω with $F^{R_{n_{1}}}$ on $\mathcal{B}_{0}^{n_{1}}$ for some $n_{1} \in \mathbb{N}$ sufficiently large, we may henceforth assume the following.

- The map F is η-homogeneous: for all $p \in \Omega$ and $E_{p} \in \mathbb{P}_{p}^{2}$, we have

$$
\lambda_{\mu}^{1+\eta}<\left\|\left.D F\right|_{E_{p}}\right\|<\lambda_{\mu}^{-\eta} \quad \text { and } \quad \lambda_{\mu}^{1+\eta}<\operatorname{Jac}_{p} F<\lambda_{\mu}^{1-\eta} .
$$

- For $n \in \mathbb{N}$, the nth Hénon-like return $\left(F^{R_{n}}, \Psi^{n}\right)$ is ($1, \eta, \lambda_{\mu}$)-regular.

Denote $\varepsilon^{\prime}:=(1+\bar{\varepsilon}) \varepsilon>\varepsilon$. For $z=(a, b) \in B_{0}^{n}$ and $t \geq 0$, let

$$
V_{z}(t):=[a-t, a+t] \times I_{0}^{v}
$$

If $V_{\Psi^{n}(p)}(t) \subset B_{0}^{n}$ for some $p \in \mathcal{B}_{0}^{n} ; t \geq 0$ and $1 \leq n \leq N$, then we denote

$$
\mathcal{V}_{p}^{n}(t):=\left(\Psi^{n}\right)^{-1}\left(V_{\Psi^{n}(p)}(t)\right)
$$

We now show that F is (δ, ε)-regularly unicritical on Λ_{F}. First, we need to define a suitable cover of the iterated preimages of critical value v_{0}. For $n \geq 0$ and $1 \leq i<r_{n}$, let \mathcal{C}^{n} be the connected component of

$$
\mathcal{B}_{R_{n}}^{n} \cap \mathcal{V}_{v_{-R_{n}}}^{n}\left(\lambda_{\mu}^{\varepsilon^{\prime} R_{n}}\right)
$$

containing $v_{-R_{n}}$. Define

$$
\mathcal{C}_{i}^{n}:=F^{i}\left(\mathcal{C}^{n}\right) \quad \text { for } \quad 0 \leq j<R_{n}
$$

and

$$
\mathbf{C}^{N}:=\bigcup_{n=0}^{N} \bigcup_{i=0}^{R_{n+1}-1} \mathcal{C}_{i}^{n+1}
$$

Note that $\left\{v_{-i}\right\}_{i=1}^{R_{N+1}} \subset \mathbf{C}^{N}$.
Proposition 12.5. We have

$$
\operatorname{diam}\left(\mathcal{C}_{i}^{n}\right)<\lambda_{\mu}^{\varepsilon R_{n}}
$$

Consequently,

$$
\mathbf{C}^{N} \subset \bigcup_{i=1}^{R_{N+1}} \mathbb{D}_{v_{-i}}\left(\lambda_{\mu}^{\varepsilon i}\right)
$$

Proof. By Theorem 3.6 iv), $\mathcal{B}_{R_{n}}^{n}$ is a $\lambda_{\mu}^{(1-\bar{\varepsilon}) R_{n}}$-thick strip around the curve $F^{R_{n}}\left(\mathcal{I}_{0}^{n}\right)$, which is vertical quadratic in \mathcal{B}_{0}^{n} with the vertical tangency $\lambda_{\mu}^{(1-\bar{\eta}) R_{n}}$-close to v_{0}. By Proposition 4.6, we have

$$
\mathcal{V}_{v_{-R_{n}}}\left(\lambda_{\mu}^{\bar{\eta} R_{n}}\right) \cap \mathcal{V}_{v_{0}}\left(\lambda_{\mu}^{\bar{\eta} R_{n}}\right)=\varnothing
$$

By Lemma 4.1, the connected component Γ^{n} of the curve

$$
\mathcal{I}_{R_{n}}^{n} \cap \mathcal{V}_{v_{-R_{n}}}\left(\lambda_{\mu}^{\bar{\eta} R_{n}}\right)
$$

is $\lambda^{\bar{\eta} R_{n}}$-horizontal in \mathcal{B}_{0}^{n}. Consequently,

$$
\operatorname{diam}\left(\mathcal{C}^{n}\right) \asymp\left|\Gamma^{n}\right|<\lambda^{-\bar{\eta} R_{n}} \lambda^{\varepsilon^{\prime} R_{n}}
$$

Then by η-homogeneity of F, we have

$$
\operatorname{diam}\left(\mathcal{C}_{i}^{n}\right)<\lambda^{-\bar{\eta} i} \operatorname{diam}\left(\mathcal{C}^{n}\right)
$$

for $0 \leq i<R_{n}$. The result follows.
12.2. Forward regularity away from the critical cover. For all $p \in \Lambda_{F} \backslash\left\{v_{0}\right\}$, there exists a unique number $d_{p} \geq 0$ such that $p \in \mathcal{B}_{0}^{d_{p}} \backslash \mathcal{B}_{0}^{d_{p}+1}$. Define depth $(p):=d_{p}$. If $p=v_{0}$, define $\operatorname{depth}(p)=\infty$. Let $p_{0} \in \Lambda_{F}$. For $N \in \mathbb{N}$, let $0 \leq S \leq N$ be the largest number satisfying

$$
d=\operatorname{depth}\left(p_{S}\right) \geq \operatorname{depth}\left(p_{i}\right) \quad \text { for } \quad 0 \leq i \leq N
$$

Define the valuable moment and the valuable depth of the N-times forward orbit of p_{0} as

$$
\operatorname{vm}\left(p_{0}, N\right):=S \quad \text { and } \quad \operatorname{vd}\left(p_{0}, N\right):=d
$$

respectively.
Lemma 12.6. Let $p_{0} \in \Lambda_{F}$ and $N \in \mathbb{N}$. Denote $S:=\operatorname{vm}\left(p_{0}, N\right)$ and $d:=\operatorname{vd}\left(p_{0}, N\right)$. Write

$$
S=s_{0}+s_{1} R_{1}+\ldots+s_{d} R_{d}
$$

where $0 \leq s_{i}<r_{i}$ for $0 \leq i \leq d$. If $p_{0} \backslash \mathbf{C}^{d}$, then for $0 \leq n \leq d$ and $0 \leq s \leq s_{n}$, we have

$$
p_{S_{n-1}+s R_{n}} \notin \mathcal{V}_{v_{0}}^{n}\left(\lambda_{\mu}^{\bar{\varepsilon} R_{n}}\right) \quad \text { where } \quad S_{n-1}:=s_{0}+s_{1} R_{1}+\ldots+s_{n-1} R_{n-1}
$$

Proof. If $q_{0} \in \Lambda_{F} \cap \mathcal{V}_{v_{0}}^{n}\left(\lambda^{\bar{\varepsilon} R_{n}}\right)$, then it follows from Theorem 3.6 iv) and η-homogeneity that $q_{-R_{n+1}} \in \mathcal{C}^{n+1}$. Thus, if $p_{S^{\prime}} \in \mathcal{V}_{v_{0}}^{n}\left(\lambda_{\mu}^{\bar{\varepsilon} R_{n}}\right)$, where $S^{\prime}:=S_{n-1}+s R_{n}$, then $p_{-R_{n+1}+S^{\prime}} \in \mathcal{C}^{n+1}$. Therefore,

$$
p_{0} \in \mathcal{C}_{R_{n+1}-S^{\prime}}^{n+1} \subset \mathbf{C}^{n} \subset \mathbf{C}^{d}
$$

This is a contradiction.
Lemma 12.7. Denote

$$
\varepsilon_{i}=(1+\bar{\varepsilon})^{i} \bar{\varepsilon} \quad \text { for } \quad i \geq 0
$$

Let $q_{0} \in \mathcal{B}_{0}^{n}$ and $E_{q_{0}} \in \mathbb{P}_{q_{0}}^{2}$. If

$$
\measuredangle\left(E_{q_{0}}, E_{q_{0}}^{v, n}\right)>\lambda_{\mu}^{\varepsilon_{1} R_{n}}
$$

then

$$
\left\|\left.D F^{R_{n}}\right|_{E_{q_{0}}}\right\|>\lambda_{\mu}^{\varepsilon_{2} R_{n}}
$$

Moreover, if $q_{R_{n}} \notin \mathcal{V}_{v_{0}}^{n}\left(\lambda_{\mu}^{\varepsilon_{0} R_{n}}\right)$, then

$$
\measuredangle\left(E_{q_{R_{n}}}, E_{q_{R_{n}}}^{v, n}\right)>\lambda_{\mu}^{\varepsilon_{1} R_{n}} .
$$

Proof. The estimate on $\left\|\left.D F^{R_{n}}\right|_{E_{q_{0}}}\right\|$ follows immediately from the $\left(1, \eta, \lambda_{\mu}\right)$-regularity of the Hénon-like return $\left(F^{R_{n}}, \Psi^{n}\right)$. The estimate on $\measuredangle\left(E_{q_{R_{n}}}, E_{q_{R_{n}}}^{v, n}\right)$ follows immediately from Lemma 4.1.
Lemma 12.8. For $n, k \in \mathbb{N}$, let $q_{0} \in \mathcal{B}_{0}^{n+k}$ and $E_{q_{0}} \in \mathbb{P}_{q_{0}}^{2}$. If

$$
R_{n} \geq \bar{\varepsilon} R_{n+k} \quad \text { and } \quad \measuredangle\left(E_{q_{0}}, E_{q_{0}}^{v, n+k}\right)>\lambda_{\mu}^{\bar{\varepsilon} R_{n+k}}
$$

then

$$
\left\|\left.D F^{R_{n}}\right|_{E_{q_{0}}}\right\|>\lambda_{\mu}^{\bar{\varepsilon} R_{n}} \quad \text { and } \quad \measuredangle\left(E_{q_{R_{n}}}, E_{q_{R_{n}}}^{v, n}\right)>\lambda_{\mu}^{\bar{\eta} R_{n}} .
$$

Proof. Observe that

$$
\bar{\eta} R_{n}>\bar{\eta} \bar{\varepsilon} R_{n+k}=\bar{\varepsilon} R_{n+k}
$$

So

$$
\lambda_{\mu}^{\bar{\eta} R_{n}}<\lambda_{\mu}^{\bar{c} R_{n+k}} .
$$

By Theorem 3.6 iii), we have

$$
\measuredangle\left(E_{q_{0}}^{v, n+k}, E_{q_{0}}^{v, n}\right)<\lambda_{\mu}^{(1-\bar{\eta}) R_{n}} .
$$

Hence,

$$
\measuredangle\left(E_{q_{0}}, E_{q_{0}}^{v, n}\right)>\lambda_{\mu}^{\bar{\varepsilon} R_{n+k}}-\lambda_{\mu}^{(1-\bar{\eta}) R_{n}}>\lambda_{\mu}^{\bar{\eta} R_{n}}-\lambda_{\mu}^{(1-\bar{\eta}) R_{n}}=\lambda_{\mu}^{\bar{\eta} R_{n}} .
$$

Since depth $\left(q_{R_{n}}\right)<n$, we have $q_{R_{n}} \notin \mathcal{V}_{v_{0}}^{n}\left(\lambda_{\mu}^{\bar{\eta} R_{n}}\right)$ by Proposition 4.6. The result then follows from Lemma 4.1.

Theorem 12.9. Let $p_{0} \in \Lambda_{F}$ and $N \in \mathbb{N}$. Define

$$
\hat{E}_{p_{i}}:=D\left(F^{i} \circ \Phi_{0}^{-1}\right)\left(E_{p_{0}}^{g h}\right) \quad \text { for } \quad i \geq 0
$$

If $p_{0} \notin \mathbf{C}^{d}$ with $d:=\operatorname{vd}\left(p_{0}, N\right)$, then

$$
\left\|\left.D F^{N}\right|_{\hat{E}_{p_{0}}}\right\|>\lambda_{\mu}^{\bar{\varepsilon} N}
$$

Proof. Write

$$
S:=\operatorname{vm}\left(p_{0}, N\right)=s_{0} R_{0}+\ldots+s_{d_{\mathrm{in}}} R_{d_{\mathrm{in}}}
$$

with $0 \leq s_{n}<r_{n}$ for $0 \leq n \leq d_{\text {in }} \leq d$. Using Lemmas 12.6 and 12.7, and arguing inductively, we see that

$$
\left.\left\|\left.D F^{S}\right|_{\hat{E}_{p_{0}}}\right\|>\lambda_{\mu}^{\overline{\varepsilon S}}, \quad p_{S} \notin \mathcal{V}_{v_{0}}^{d_{\mathrm{in}}}\left(\lambda_{\mu}^{\bar{\eta} R_{d_{\mathrm{in}}}}\right) \quad \text { and } \quad \measuredangle\left(\hat{E}_{p_{S}}, E_{p_{S}}^{v, d_{\mathrm{in}}}\right)\right)>\lambda_{\mu}^{\bar{\eta} R_{d_{\mathrm{in}}}}
$$

Let

$$
T:=N-S=t_{0} R_{0}+\ldots+t_{d_{\mathrm{out}}} R_{d_{\mathrm{out}}}
$$

with $0 \leq t_{n}<r_{n}$ for $0 \leq n \leq d_{\text {out }}<d$. If $d_{\text {out }} \geq d_{\text {in }}$, then

$$
\left.p_{S} \notin \mathcal{V}_{v_{0}}^{d_{\text {out }}}\left(\lambda_{\mu}^{\bar{\eta} R_{d_{\text {out }}}}\right) \subset \mathcal{V}_{v_{0}}^{d_{\text {in }}}\left(\lambda_{\mu}^{\varepsilon R_{d_{\text {in }}}}\right) \quad \text { and } \quad \measuredangle\left(\hat{E}_{p_{S}}, E_{p_{S}}^{v, d_{\text {out }}}\right)\right)>\lambda_{\mu}^{\bar{\eta} R_{d_{\text {out }}}}
$$

Thus, by Lemma 12.6, we have

$$
\left\|\left.D F^{t_{d_{\text {out }}} R_{d_{\text {out }}}}\right|_{\hat{E}_{P_{S}}}\right\|>\lambda_{\mu}^{\bar{\varepsilon} t_{d_{\text {out }}} R_{d_{\text {out }}}} .
$$

Denote

$$
T_{n}:=t_{0} R_{0}+\ldots+t_{n} R_{n} \quad \text { and } \quad 0 \leq n \leq d_{\text {out }}
$$

Note that $T_{n}<R_{n+1} \leq \mathbf{b} R_{n}$.
If $d_{\text {out }}<d_{\text {in }}$, let $\check{d}:=d_{\text {out }}$, and denote $t_{d_{\text {in }}}:=s_{d_{\text {in }}}$. Otherwise, let $\check{d}<d_{\text {out }}$ be the largest integer such that $t_{\check{d}}>0$. Proceeding by induction, suppose for some $n \leq \check{d}$ with $t_{n}>0$, we have

$$
\left.\left\|\left.D F^{N-T_{n}}\right|_{\hat{E}_{p_{0}}}\right\|>\lambda_{\mu}^{\bar{\varepsilon}\left(N-T_{n}\right)} \quad \text { and } \quad \measuredangle\left(\hat{E}_{p_{N-T_{n}}}, E_{p_{N-T_{n}}}^{v, n+k}\right)\right)>\lambda_{\mu}^{\bar{\eta} R_{n+k}},
$$

where $k>0$ is the smallest number such that $t_{n+k}>0$.

If $R_{n} \geq \bar{\varepsilon} R_{n+k}$, then Lemma 12.8 implies that

$$
\left.\left\|\left.D F^{t_{n} R_{n}}\right|_{\hat{E}_{p_{N-T}}}\right\|>\lambda_{\mu}^{\bar{\varepsilon} t_{n} R_{n}} \quad \text { and } \quad \measuredangle\left(\hat{E}_{p_{N-T_{n-1}}}, E_{p_{N-T_{n-1}}^{v, n}}^{v,}\right)\right)>\lambda_{\mu}^{\bar{\eta} R_{n}} .
$$

If $R_{n}<\bar{\varepsilon} R_{n+k}$, then by η-homogeneity, we have

$$
\left\|\left.D F^{N}\right|_{\hat{E}_{p_{0}}}\right\|>\lambda_{\mu}^{(1+\eta) T_{n}}\left\|\left.D F^{N-T_{n+k}}\right|_{\hat{E}_{p_{0}}}\right\|>\lambda_{\mu}^{\bar{\varepsilon} R_{n+k}} \lambda_{\mu}^{\bar{\varepsilon}\left(N-T_{n+k}\right)}>\lambda_{\mu}^{\bar{\varepsilon} N} .
$$

13. Renormalization Convergence

13.1. For unimodal maps. Let $r \geq 2$ be an integer. Consider a C^{r}-unimodal map $f: I \rightarrow I$ with the critical value $v \in I$. For an integer $0 \leq s \leq r$ and a number $t>0$, the t-neighborhood of f with respect to the C^{s}-topology is denoted $\mathfrak{N}^{s}(f, t)$. For $K \geq 1$, we say that f has K-bounded non-linearity if (7.1) holds for the diffeomorphism $h:=h_{f}$ given by Lemma 7.1. Let \mathfrak{U}^{r} be the space of all normalized C^{r}-unimodal maps, and let $\mathfrak{U}^{r}(K)$ the set of maps in \mathfrak{U}^{r} with K-bounded non-linearity.

Suppose f is valuably renormalizable: there exists an R-periodic interval $I^{1} \subset I$ for some integer $R \geq 2$ such that $f^{R}\left(I^{1}\right) \ni v$. Then the corresponding renormalization type $\tau(f)$ is given by the order of points in $\left\{f^{i}(v)\right\}_{i=0}^{R_{n}-1} \subset I$. Note that there is only one renormalization type for the period-doubling case $R=2$. If f is N-times renormalizable, then its N-renormalization type is given by

$$
\tau_{N}(f):=\left[\tau(f), \ldots, \tau\left(\mathcal{R}_{1 \mathrm{D}}^{N-1}(f)\right)\right]
$$

Lemma 13.1. Let $f: I \rightarrow I$ be a C^{2}-unimodal map with the critical value v. If f is topologically renormalizable with return time $R \geq 2$, and not every R-periodic subinterval $I^{1} \subset I$ of f contains a sink, then f is valuably renormalizable. In this case, the minimal R-periodic interval containing v is given by $I^{1}=\left[f^{R}(v), v\right]$.
Lemma 13.2. For an integer $\mathbf{b} \geq 2$ and a constant $K \geq 1$, there exists a uniform constant $t_{0}=t_{0}(\mathbf{b}, K)>0$ such that the following holds. Let $f \in \mathfrak{U}^{r}(K)$ be twice valuably renormalizable with return times of \mathbf{b}-bounded type, and suppose the critical orbit of f does not converge to sink. If $\tilde{f} \in \mathfrak{N}^{s}(f, t) \cap \mathfrak{U}^{2}$ with $0 \leq s<r$ and $t \in\left[0, t_{0}\right]$, then \tilde{f} is valuably renormalizable with $\tau(\tilde{f})=\tau(f)$. Moreover,

$$
\left\|\mathcal{R}_{1 \mathrm{D}}(f)-\mathcal{R}_{1 \mathrm{D}}(\tilde{f})\right\|_{C^{s}}<C t
$$

where $C \geq 1$ is a uniform constant depending only on \mathbf{b} and $\|f\|_{C^{s+1}}$.
Proof. Let R_{i} for $i \in\{1,2\}$ be the return times of the renormalizations of f. By Lemma 13.1, we have

$$
f(1)<f^{R_{1}+1}(1)<f^{R_{1}}(1)<f^{R_{2}+R_{1}}(1) \leq f^{2 R_{1}}(1) \leq f^{R_{2}}(1)<1 .
$$

Moreover, by Propositions 7.3, 7.5 and 7.6, there exists a uniform constant $\eta=$ $\eta(\mathbf{b}, K) \in(0,1)$ such that the components of

$$
I \backslash \bigcup_{i=-1}^{2 R_{1}} f^{i}(1)
$$

have length greater than η. The renormalizability of \tilde{f} now follows immediately from Lemma 13.1. Then Proposition 7.6 implies the claim $\tau(\tilde{f})=\tau(f)$.

By Lemma 8.1, we see that

$$
\left\|f^{R}-\tilde{f}^{R}\right\|_{C^{s}}<C t
$$

Proposition 7.5 implies that $\mathcal{R}_{1 \mathrm{D}}(f)$ is a rescaling of f^{R} by a uniform factor $\rho=$ $\rho(\mathbf{b}, K) \in(0,1)$. The result now follows.

Consider the full renormalization attractor \mathfrak{A} contained in the space \mathfrak{U}^{ω} of analytic unimodal maps. For an integer $\mathbf{b} \geq 2$, the compact invariant subset of \mathfrak{A} consisting of all infinitely renormalizable unimodal maps with return times of b-bounded type is denoted $\mathfrak{A}_{\mathbf{b}}$.

The following is a consequence of the fact that $\mathfrak{A}_{\mathrm{b}}$ is a hyperbolic attractor for the renormalization operator $\mathcal{R}_{1 \mathrm{D}}$ acting on \mathfrak{U}^{3}.

Lemma 13.3. Let $r \geq 3$ and $N \in \mathbb{N}$ be integers, and let $K \geq 1$ be a number. Suppose $f \in \mathfrak{U}^{r}(K)$ is N-times valuably renormalizable. Then for any $f^{*} \in \mathfrak{A}_{\mathbf{b}}$ with $\tau_{N}(f)=\tau_{N}\left(f^{*}\right)$, we have:

$$
\left\|\mathcal{R}_{1 \mathrm{D}}^{n}(f)-\mathcal{R}_{1 \mathrm{D}}^{n}\left(f^{*}\right)\right\|_{C^{r}}=C \rho^{n}\left\|f-f^{*}\right\|_{C^{r}} \quad \text { for } \quad 1 \leq n<N / 2,
$$

where $\rho=\rho(\mathbf{b}) \in(0,1)$ is a universal constant and $C \geq 1$ is a uniform constant depending only on \mathbf{b}, K and $\|f\|_{C^{r}}$.
13.2. For Hénon-like maps. Consider a C^{r}-Hénon-like map $F: B \rightarrow B$. For $K \geq 1$, we say that F has K-bounded non-linearity if $\Pi_{1 \mathrm{D}}(F) \in \mathfrak{U}^{r}(K)$. For $\beta \in(0,1]$, let $\mathfrak{H} \mathfrak{L}_{\beta}^{r}$ be the space of normalized β-thin C^{r}-Hénon maps, and let $\mathfrak{H} \mathfrak{L}_{\beta}^{r}(K)$ be the set of all maps in $\mathfrak{H} \mathfrak{L}_{\beta}^{r}$ with K-bounded non-linearity.

Proposition 13.4. For an integer $\mathbf{b} \geq 2$, let $\varepsilon \in(0,1)$ be a sufficiently small constant such that $\mathbf{b} \bar{\varepsilon}<1$. Then for $K \geq 1$, there exists a uniform constant $\beta_{0}=\beta_{0}\left(\varepsilon, K,\|F\|_{C^{r}}\right) \in(0,1)$ such that the following holds. Let $F \in \mathfrak{H}^{2} \mathfrak{L}_{\beta}^{r}(K)$ with $\beta \leq \beta_{0}$, and let $f:=\Pi_{1 \mathrm{D}}(F)$. If F is twice Hénon-like renormalizable with return times of \mathbf{b}-bounded type, and the orbit of the critical value of F does not converge to a sink, then f is valuably renormalizable. Conversely, if f is twice valuably renormalizable with return times of \mathbf{b}-bounded type, and the critical orbit of f does not converge to a sink, then F is $(1, \varepsilon, \beta)$-regular Hénon-like renormalizable. In either case, we have

$$
\left\|\Pi_{1 \mathrm{D}} \circ \mathcal{R}(F)-\mathcal{R}_{1 \mathrm{D}}(f)\right\|_{C^{r-1}}<\beta^{1-\varepsilon}
$$

Proof. Choose β_{0} sufficiently small such that we have $C \beta_{0}^{\varepsilon}<\rho$, where $C \geq 1$ (depending only on K and $\|F\|_{C^{r}}$) and $\rho \in(0,1)$ (independent of F) are suitable uniform constants. By Lemma 8.1, we have

$$
\begin{equation*}
\left\|f^{k}-\Pi_{1 \mathrm{D}}\left(F^{k}\right)\right\|_{C^{r-1}} \leq\left\|F^{k}-F^{k} \circ \Pi_{h}\right\|_{C^{r-1}}<\beta^{1-\underline{\varepsilon}} \quad \text { for } \quad 0 \leq k<\mathbf{b}^{2} \tag{13.1}
\end{equation*}
$$

where $\Pi_{h}(x, y):=(x, 0)$.

Suppose that F is twice Hénon-like renormalizable. Let

$$
\left\{\left(F^{R_{n}}, \Psi^{n}: \mathcal{B}_{0}^{n} \rightarrow B_{0}^{n}\right)\right\}_{n=1}^{2}
$$

be the Hénon-like returns of F. Then by Theorem 5.4, we see that $\left\{\left(F^{R_{n}}, \Psi^{n}\right)\right\}_{n=1}^{2}$ is $(1, \underline{\varepsilon}, \beta)$-regular. Note that the critical value of f is given by 1 . Let $v_{0} \in \mathcal{B}_{0}^{2}$ be the critical value of $\left\{\left(F^{R_{n}}, \Psi^{n}\right)\right\}_{n=1}^{2}$ as defined in Section 3. Then by Theorem 3.6iv), we see that

$$
\left|\pi_{h}\left(v_{0}\right)-1\right|<\beta^{1-\underline{\varepsilon}} .
$$

We conclude from Proposition 5.2 and (13.1) that f is valuably renormalizable.
Conversely, suppose that f is twice valuably renormalizable: for $i \in\{1,2\}$, there exist R_{i}-periodic subinterval $I^{i} \ni 1$ of f. Arguing as in the proof of Lemma 13.2, we have $f^{2 R_{1}}(1) \in I^{1}$ and the components of

$$
I^{1} \backslash \bigcup_{i=-1}^{2 R_{1}} f^{i}(1)
$$

have lengths bounded below by some uniform constant $\eta=\eta(\mathbf{b}, K) \in(0,1)$.
For $0 \leq i<R_{1}$, let \tilde{I}_{i}^{1} be an interval that compactly contains $f^{i}\left(I^{1}\right)$, and the components of $\tilde{I}_{i}^{1} \backslash f^{i}\left(I^{1}\right)$ have lengths commensurate to $\beta^{\bar{\varepsilon}}$. Define

$$
V_{i}:=\tilde{I}_{i}^{1} \times \pi_{v}(B) .
$$

By (13.1) and the previous observation, it follows that we have $F\left(V_{i}\right) \Subset V_{i+1}$, and $F\left(V_{R_{1}-1}\right) \Subset V_{0}$.

For $p_{0} \in V_{0}$, let

$$
E_{p_{0}}^{v, 1}:=D F^{-R_{1}}\left(E_{p_{R_{1}}}^{g h}\right) .
$$

By Lemma 4.2, we see that $D F^{i}\left(E_{p_{0}}^{v, 1}\right)$ is $\beta^{1-\varepsilon_{-}}$-vertical for $0 \leq i<R_{1}$. It follows that there is a genuine chart $\Psi: V_{0} \rightarrow \Psi\left(V_{0}\right)$ that rectifies $E_{p}^{v, 1}$ for $p \in V_{0}$ to genuine vertical directions such that

$$
\left\|\Psi^{ \pm 1}-\operatorname{Id}\right\|_{C^{r}}<\beta^{1-\underline{\varepsilon}}
$$

It follows immediately that $\left(F^{R_{1}}, \Psi\right)$ is a $(1, \varepsilon, \beta)$-regular Hénon-like return.
Finally, by Proposition 7.3, $\mathcal{R}_{1 \mathrm{D}}(f)$ is a rescaling of $f^{R_{1}}$ by a uniform constant $\rho \in(0,1)$ depending only on \mathbf{b} and K. The last inequality now follows from (13.1).

Let F be the infinitely regular Hénon-like renormalizable diffeomorphism considered in Section 10. For $n \in \mathbb{N}$, denote

$$
\hat{F}_{n}:=\mathcal{R}^{n}(F) \quad \text { and } \quad \hat{f}_{n}:=\Pi_{1 \mathrm{D}}\left(\hat{F}_{n}\right)
$$

By Theorem 3.6 iv) and Corollary 6.4 , there exists a uniform constant $\mathbf{K} \geq 1$ such that $\hat{F}_{n} \in \mathfrak{H} \mathfrak{L}_{\beta_{n}}^{r}(\mathbf{K})$ with $\beta_{n}=\lambda^{(1-\bar{\varepsilon})} R_{n}$. By replacing F with $\left.F^{R_{n_{0}}}\right|_{\mathcal{B}_{0}^{n_{0}}}$ for some sufficiently large $n_{0} \in \mathbb{N}$, we may assume that β_{n} is less than the value β_{0} given in

Proposition 13.4. Then \hat{f}_{n} is valuably renormalizable for $n \geq 0$. For $k \in \mathbb{N} \cup\{\infty\}$, define the k-renormalization type of \hat{F}_{n} as

$$
\tau_{k}\left(\hat{F}_{n}\right):=\left[\tau\left(\hat{f}_{n}\right), \tau\left(\hat{f}_{n+1}\right), \ldots, \tau\left(\hat{f}_{n+k-1}\right)\right] .
$$

Proposition 13.5 (Shadowing Lemma). For $N \in \mathbb{N}$, there exists $n_{1}=n_{1}(N) \in \mathbb{N}$ such that for all $n \geq n_{1}$, the map \hat{f}_{n} is N-times valuably renormalizable with $\tau_{N}\left(\hat{f}_{n}\right)=$ $\tau_{N}\left(\hat{F}_{n}\right)$. Moreover, we have

$$
\left\|f_{n+k}-\mathcal{R}_{1 \mathrm{D}}^{k}\left(f_{n}\right)\right\|_{C^{r-1}}<C^{k} \lambda^{(1-\bar{\varepsilon}) R_{n}} \quad \text { for } \quad 1 \leq k \leq N
$$

for some uniform constant $C \geq 1$.
Proof. The case $N=1$ follows from Proposition 13.4. Proceeding inductively, suppose that the result is true for all $1 \leq k<N$. In particular, we have

$$
\left\|f_{n+N-1}-\mathcal{R}_{1 \mathrm{D}}^{N-1}\left(f_{n}\right)\right\|_{C^{r-1}}<C^{N-1} \lambda^{(1-\bar{\varepsilon}) R_{n}} .
$$

Choosing $n_{1} \leq n$ sufficiently large, it follows from Lemma 13.2 and Proposition 13.4 that f_{n+N-1} and $\mathcal{R}_{1 \mathrm{D}}^{N-1}\left(f_{n}\right)$ are both valuably renormalizable, and

$$
\tau\left(f_{n+N-1}\right)=\tau\left(\mathcal{R}_{1 \mathrm{D}}^{N-1}\left(f_{n}\right)\right)
$$

Hence, f_{n} is N-times valuably renormalizable, and

$$
\tau_{N}\left(f_{n}\right)=\tau_{N}\left(\hat{F}_{n}\right)
$$

For $m \in \mathbb{N}$, Proposition 13.4 implies that

$$
\left\|f_{n+m}-\mathcal{R}_{1 \mathrm{D}}\left(f_{n+m-1}\right)\right\|_{C^{r-1}}<\lambda^{(1-\bar{\varepsilon}) R_{n+m}}
$$

Applying Lemma $13.20 \leq k<N$ times, we obtain

$$
\left\|\mathcal{R}_{1 \mathrm{D}}^{k}\left(f_{n+m}\right)-\mathcal{R}_{1 \mathrm{D}}^{k+1}\left(f_{n+m-1}\right)\right\|_{C^{r-1}}<C^{k} \lambda^{(1-\bar{\varepsilon}) R_{n+m}}
$$

Thus,

$$
\begin{aligned}
\left\|f_{n+N}-\mathcal{R}_{1 \mathrm{D}}^{N}\left(f_{n}\right)\right\|_{C^{r-1}} & \leq \sum_{k=0}^{N-1}\left\|\mathcal{R}_{1 \mathrm{D}}^{k}\left(f_{n+N-k}\right)-\mathcal{R}_{1 \mathrm{D}}^{k+1}\left(f_{n+N-(k+1)}\right)\right\|_{C^{r-1}} \\
& <\sum_{k=0}^{N-1} C^{k} \lambda^{(1-\bar{\varepsilon}) R_{n+N-k}} \\
& <O\left(C^{N} \lambda^{(1-\bar{\varepsilon}) R_{n}}\right) .
\end{aligned}
$$

Proof of Theorem D. Statements i) and ii) are given by Theorem 3.6. Statement iii) is given by Theorem 10.8 ,

Suppose $r \geq 4$. Let $f^{*} \in \mathfrak{A}_{\mathrm{b}}$ so that

$$
\mathcal{T}_{\infty}\left(f^{*}\right)=\tau_{\infty}(F):=\left[\tau\left(\hat{f}_{0}\right), \tau\left(\hat{f}_{1}\right), \ldots\right] .
$$

Denote $f_{n}^{*}:=\mathcal{R}_{1 \mathrm{D}}^{n}\left(f^{*}\right)$ for $n \geq 0$.

Consider the constants $C \geq 1$ and $\rho \in(0,1)$ given in Lemma 13.3. Choose $N \in \mathbb{N}$ sufficiently large so that $C \rho^{N}<\tilde{\rho}<1$. Let $n_{1}=n_{1}(2 N) \in \mathbb{N}$ be the number given in Proposition 13.5. Then for all $n \geq n_{1}$, we have

$$
\begin{aligned}
\left\|f_{n+N}-f_{n+N}^{*}\right\|_{C^{r-1}} & \leq\left\|f_{n+N}-\mathcal{R}_{1 \mathrm{D}}^{N}\left(f_{n}\right)\right\|_{C^{r-1}}+\left\|\mathcal{R}_{1 \mathrm{D}}^{N}\left(f_{n}\right)-\mathcal{R}_{1 \mathrm{D}}^{N}\left(f_{n}^{*}\right)\right\|_{C^{r-1}} \\
& \leq O\left(\lambda^{(1-\bar{\varepsilon}) R_{n}}\right)+\tilde{\rho}\left\|f_{n}-f_{n}^{*}\right\|_{C^{r-1}} \\
& <\tilde{\rho}^{\prime}\left\|f_{n}-f_{n}^{*}\right\|_{C^{r-1}}
\end{aligned}
$$

for some uniform constant $\tilde{\rho}^{\prime} \in(0,1)$.

Appendix A. Quantitative Pesin Theory

Consider an orientation preserving C^{r}-diffeomorphism $F: \Omega \rightarrow F(\Omega) \Subset \Omega$ satisfying $\|F\|_{C^{r}}=O(1)$. Let $\lambda, \varepsilon \in(0,1)$. Assume $\bar{\varepsilon}<1$.

Let $p_{0} \in \Omega$ and $E_{p_{0}}^{v} \in \mathbb{P}_{p_{0}}^{2}$. For $m \in \mathbb{Z}$, decompose the tangent space at p_{m} as

$$
\mathbb{P}_{p_{m}}^{2}=\left(E_{p_{m}}^{v}\right)^{\perp} \oplus E_{p_{m}}^{v} .
$$

In this decomposition, we have

$$
D_{p_{m}} F=:\left[\begin{array}{cc}
\alpha_{m} & 0 \\
\zeta_{m} & \beta_{m}
\end{array}\right]
$$

where $\alpha_{m}, \beta_{m}>0$ and $\zeta_{m} \in \mathbb{R}$.
For some $M, N \in \mathbb{N} \cup\{0, \infty\}$ and $L \geq 1$, suppose for $s \in\{r-1,-r\}$, we have

$$
L \lambda^{(1+\varepsilon) n} \leq\left(\alpha_{0} \ldots \alpha_{n-1}\right)^{s} \beta_{0} \ldots \beta_{n-1} \leq L \lambda^{(1-\varepsilon) n} \quad \text { for } \quad 1 \leq n \leq N
$$

and

$$
L \lambda^{(1+\varepsilon) n} \leq\left(\alpha_{-n} \ldots \alpha_{-1}\right)^{s} \beta_{-n} \ldots \beta_{-1} \leq L \lambda^{(1-\varepsilon) n} \quad \text { for } \quad 1 \leq n \leq M
$$

Then we say that p_{0} is (M, N)-times $(L, \varepsilon, \lambda)$-regular along $E_{p_{0}}^{v}$.
Proposition A.1. For $-M \leq m \leq N$, let $L_{p_{m}} \geq 1$ be the minimum value such that p_{m} is $(M+m, N-m)$-times $\left(L_{p_{m}}, \varepsilon, \lambda\right)$-regular along $E_{p_{m}}^{v}$. Then

$$
L_{p_{m}}<\bar{L} \lambda^{-\bar{\varepsilon}|m|}
$$

Theorem A.2. For $-M \leq m \leq N$, let

$$
l_{p_{m}}:=\bar{L}^{-1} \lambda^{\bar{\varepsilon}|m|}>0 \quad \text { and } \quad U_{p_{m}}:=\left[-l_{p_{m}}, l_{p_{m}}\right] \times\left[-l_{p_{m}}, l_{p_{m}}\right] \subset \mathbb{R}^{2}
$$

Then there exists a chart

$$
\Phi_{p_{m}}:\left(\mathcal{U}_{p_{m}}, p_{m}\right) \rightarrow\left(U_{p_{m}}, 0\right)
$$

such that

$$
\left\|\Phi_{p_{m}}^{ \pm 1}\right\|_{C^{r}}=O\left(\bar{L} \lambda^{-\bar{\varepsilon}|m|}\right), \quad D \Phi_{p_{m}}\left(E_{p_{m}}^{v}\right)=E_{0}^{g v}
$$

and $\left.\Phi_{p_{n+1}} \circ F\right|_{\mathcal{U}_{p_{m}}} \circ \Phi_{p_{m}}^{-1}$ extends to a globally defined C^{r}-diffeomorphism

$$
F_{p_{m}}:\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)
$$

satisfying the following properties.
i) We have $\left\|F_{p_{m}}^{ \pm 1}\right\|_{C^{r}}=O(1)$.
ii) The map $F_{p_{m}}$ is uniformly C^{1}-close to

$$
D_{0} F_{p_{m}}=A_{m}=\left[\begin{array}{cc}
a_{m} & 0 \\
0 & b_{m}
\end{array}\right]
$$

with

$$
b_{m}<\lambda^{1-\bar{\varepsilon}} \quad \text { and } \quad a_{m}>\lambda^{\bar{\varepsilon}}
$$

iii) We have

$$
F_{p_{m}}(x, y)=\left(f_{p_{m}}(x), e_{p_{m}}(x, y)\right) \quad \text { for } \quad(x, y) \in \mathbb{R}^{2}
$$

where $f_{p_{m}}:(\mathbb{R}, 0) \rightarrow(\mathbb{R}, 0)$ is a C^{r}-diffeomorphism, and $e_{p_{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{r}-map with $e_{p_{m}}(\cdot, 0) \equiv 0$.

The construction in Theorem A. 2 is referred to as a linearization of F along the (M, N)-orbit of p_{0} with vertical direction $E_{p_{0}}^{v}$. For $0 \leq n \leq N$, we refer to $\mathcal{U}_{p_{m}}$, $\Phi_{p_{m}}$ and $F_{p_{m}}$ as a regular neighborhood, a regular chart and a linearized map at p_{m} respectively.

Proposition A.3. For $-M \leq m \leq N$, we have

$$
\operatorname{diam}\left(\mathcal{U}_{p_{m}}\right) \asymp \bar{L}^{-1} \lambda^{\bar{\varepsilon}|m|}
$$

Lemma A.4. Consider the coefficients $\left\{a_{m}, b_{m}\right\}_{m=-M}^{N}$ given in Theorem A.2 ii). Then for all $0 \leq n \leq N$:

$$
b_{0} \cdot \ldots \cdot b_{n-1}>\bar{L}^{-1} \lambda^{(1+\bar{\varepsilon}) n} \quad \text { and } \quad a_{0} \cdot \ldots \cdot a_{n-1}<\bar{L} \lambda^{-\bar{\varepsilon} n}
$$

and for all $0 \leq m \leq M$:

$$
b_{-m} \cdot \ldots \cdot b_{-1}>\bar{L}^{-1} \lambda^{(1+\bar{\varepsilon}) n} \quad \text { and } \quad a_{-m} \cdot \ldots \cdot a_{-1}<\bar{L} \lambda^{-\bar{\varepsilon} n}
$$

For $1 \leq n \leq N-m$, we denote

$$
F_{p_{m}}^{n}:=F_{p_{m+n-1}} \circ \ldots \circ F_{p_{m+1}} \circ F_{p_{m}} .
$$

The following result states that restricted to the regular neighborhoods, iterates of F are nearly linear.

Proposition A.5. For any constant $k>0$, the values $\left\{l_{p_{m}}\right\}_{m=-M}^{N}$ in Theorem A.2 can be chosen sufficiently small so that the following holds. Let $-M \leq m \leq N$ and $-M-m \leq l \leq N-m$. Suppose that $q_{m+i} \in \mathcal{U}_{p_{m+i}}$ for $i \in[m, m+l] \cap \mathbb{Z}$. Write $z_{m}:=\Phi_{p_{m}}\left(q_{m}\right) \in U_{p_{m}}$. Then for all $v \in \mathbb{R}^{2}$, we have

$$
\left\|D_{z_{m}} F_{p_{m}}^{l}(v)-D_{0} F_{p_{m}}^{l}(v)\right\|<k\left\|D_{0} F_{p_{m}}^{l}(v)\right\|
$$

and

$$
\left\|D_{q_{m}} F^{l}(v)-D_{p_{m}} F^{l}(v)\right\|<k\left\|D_{p_{m}} F^{l}(v)\right\|
$$

Moreover,

$$
1-k<\frac{\mathrm{Jac}_{z_{m}} F_{p_{m}}^{l}}{\mathrm{Jac}_{0} F_{p_{m}}^{l}}, \frac{\mathrm{Jac}_{q_{m}} F^{l}}{\mathrm{Jac}_{p_{m}} F^{l}}<1+k .
$$

Let $-M \leq m \leq N$. For $q \in \mathcal{U}_{p_{m}}$, write $z:=\Phi_{p_{m}}(q)$. Denote

$$
E_{q}^{v / h}:=D \Phi_{p_{m}}^{-1}\left(E_{z}^{g v / g h}\right)
$$

By the construction of regular charts in Theorem A.2, vertical directions are invariant under F :

$$
\text { i.e. } \quad D F\left(E_{q}^{v}\right)=E_{F(q)}^{v} \quad \text { for } \quad q \in \mathcal{U}_{p_{m}} .
$$

Note that the same is not true for horizontal directions. However, the following result states that they are still nearly invariant under F.

Proposition A.6. Let $-M \leq m \leq N$ and $-M-m \leq l \leq N-m$. Suppose that

$$
q_{m+i} \in \mathcal{U}_{p_{m+i}} \quad \text { for } \quad i \in[m, m+l] \cap \mathbb{Z}
$$

Let

$$
\tilde{E}_{q_{m+l}}^{h}:=D F^{l}\left(E_{q_{m}}^{h}\right) .
$$

Write

$$
z_{m}=\left(x_{m}, y_{m}\right):=\Phi_{p_{m}}\left(q_{m}\right) \quad \text { and } \quad \tilde{E}_{z_{m+l}}^{h}:=D F_{p_{m}}^{l}\left(E_{z_{m}}^{g h}\right)=D \Phi_{p_{m+l}}\left(\tilde{E}_{q_{m+l}}^{h}\right)
$$

Then we have

$$
\measuredangle\left(\tilde{E}_{z_{m+l}}^{h}, E_{z_{m+l}}^{g h}\right), \quad \measuredangle\left(\tilde{E}_{q_{m+l}}^{h}, E_{q_{m+l}}^{h}\right)<K\left|y_{m+l}\right|^{1-\bar{\varepsilon}}
$$

for some uniform constant $K>1$.
For $n \in \mathbb{N}$, denote

$$
U_{p_{0}}^{\bar{\varepsilon} n}:=\left[-\lambda^{\bar{\varepsilon} n} l_{p_{0}}, \lambda^{\bar{\varepsilon} n} l_{p_{0}}\right] \times\left[-l_{p_{0}}, l_{p_{0}}\right]
$$

The n-times truncated regular neighborhood of p_{0} is defined as

$$
\begin{equation*}
\mathcal{U}_{p_{0}}^{\bar{\varepsilon} n}:=\Phi_{p_{0}}^{-1}\left(U_{p_{0}}^{\bar{\epsilon} n}\right) \subset \mathcal{U}_{p_{0}} \tag{A.1}
\end{equation*}
$$

Lemma A.7. For $1 \leq m \leq M$, we have

$$
F^{i}\left(\mathcal{U}_{p_{-m}}\right) \subset \mathcal{U}_{p_{-m+i}} \quad \text { for } \quad 0 \leq i \leq m
$$

Moreover, for $1 \leq n \leq N$, we have

$$
F^{i}\left(\mathcal{U}_{p_{0}}^{\bar{\varepsilon} n}\right) \subset \mathcal{U}_{p_{i}} \quad \text { for } \quad 0 \leq i \leq n
$$

Proposition A.8. Let $q_{0} \in \mathcal{U}_{p_{0}}$ and $\tilde{E}_{q_{0}}^{v} \in \mathbb{P}_{q_{0}}^{2}$. Suppose for some $0<n \leq N$, we have $q_{i} \in \mathcal{U}_{p_{i}}$ for $0 \leq i \leq n$. If

$$
\nu:=\left\|\left.D F^{n}\right|_{\tilde{E}_{q_{0}}^{v}}\right\|<\bar{L}^{-1} \lambda^{\bar{\varepsilon} n}
$$

then

$$
\measuredangle\left(\tilde{E}_{q_{0}}^{v}, E_{q_{0}}^{v}\right)<\bar{L} \lambda^{-\bar{\varepsilon} n} \nu+\bar{L} \lambda^{(1-\bar{\varepsilon}) n} .
$$

Proposition A.9. Let $q_{0} \in \mathcal{U}_{p_{0}}$ and $\tilde{E}_{q_{0}}^{h} \in \mathbb{P}_{q_{0}}^{2}$. Suppose for some $0<m \leq M$, we have $q_{-i} \in \mathcal{U}_{p_{-i}}$ for $0 \leq i \leq m$. If

$$
\mu:=\left\|\left.D F^{-m}\right|_{\tilde{E}_{q_{0}}^{h}}\right\|<\bar{L}^{-1} \lambda^{-(1-\bar{\varepsilon}) m}
$$

then

$$
\measuredangle\left(\tilde{E}_{q_{0}}^{h}, E_{q_{0}}^{h}\right)<\bar{L} \lambda^{(1-\bar{\varepsilon}) m}(1+\mu) .
$$

Let

$$
\mathcal{E}: \mathcal{D} \rightarrow T^{1} \mathcal{D}
$$

be a unit vector field on $\mathcal{D} \subset \Omega$. Define

$$
D F_{*}(\mathcal{E})(p):=\frac{D F(\mathcal{E}(p))}{\|D F(\mathcal{E}(p))\|} \in T_{F(p)}^{1} F(\mathcal{D}) \quad \text { for } \quad p \in \mathcal{D}
$$

Let

$$
\Psi: \mathcal{B} \rightarrow B
$$

be a chart with $\mathcal{D} \subset \mathcal{B}$. For $t \geq 0$, we say that \mathcal{E} is t-vertical in \mathcal{B} if

$$
\frac{\measuredangle\left(D \Psi(\mathcal{E}(p)), E_{\Psi(p)}^{g v}\right)}{\measuredangle\left(D \Psi(\mathcal{E}(p)), E_{\Psi(p)}^{g h}\right)} \leq t \quad \text { for } \quad p \in \mathcal{D} .
$$

For $-N \leq m \leq N$, define $\mathcal{E}_{p_{m}}^{v}: \mathcal{U}_{p_{m}} \rightarrow T^{1}\left(\mathcal{U}_{p_{m}}\right)$ to be a C^{r-1}-unit vector field given by

$$
\mathcal{E}_{p_{m}}^{v}(q) \in E_{q}^{v} \quad \text { for } \quad q \in \mathcal{U}_{p_{m}}
$$

Proposition A.10. Let $\mathcal{D}_{0} \subset \mathcal{U}_{p_{0}}$ and $0 \leq n \leq N$. Suppose

$$
\mathcal{D}_{i}:=F^{i}\left(\mathcal{D}_{0}\right) \subset \mathcal{U}_{p_{i}} \quad \text { for } \quad 0 \leq i \leq n
$$

Let $\mathcal{E}: \mathcal{D}_{n} \rightarrow T^{1}\left(\mathcal{D}_{n}\right)$ be a C^{r-1}-unit vector field. If \mathcal{E} is t-vertical in $\mathcal{U}_{p_{n}}$ for some $t \geq 0$, then we have

$$
\left\|D F_{*}^{-n}(\mathcal{E})-\left.\mathcal{E}_{p_{0}}^{v}\right|_{\mathcal{D}_{0}}\right\|_{C^{r-1}} \leq\left(1+t^{2}\right)\|\mathcal{E}\|_{C^{r-1}} \bar{L} \lambda^{(1-\bar{\varepsilon}) n}
$$

Proposition A.11. There exists a uniform constant $\delta_{0}>0$ depending only on $\|F\|_{C^{r}}$ such that the following holds. Let $\tilde{F}: \tilde{\Omega} \rightarrow \tilde{F}(\tilde{\Omega})$ be a C^{r}-diffeomorphism such that

$$
\|\tilde{F}-F\|_{C^{r}}=\delta \leq \delta_{0}
$$

Moreover, suppose that p_{0} is also N-times forward $(L, \varepsilon, \lambda)$-regular along $E_{p_{0}}^{v}$ under \tilde{F}. Let $\mathcal{E}: \mathcal{D}_{n} \rightarrow T^{1}\left(\mathcal{D}_{n}\right)$ be a t-vertical unit vector field considered in Proposition A. 10 with $t \leq \bar{L} \lambda^{-\bar{\varepsilon} n}$. Then we have

$$
\left\|D F_{*}^{-n}(\mathcal{E})-D \tilde{F}_{*}^{-n}(\mathcal{E})\right\|_{C^{r-1}} \leq\|\mathcal{E}\|_{C^{r-1}} \bar{L} \lambda^{(1-\bar{\varepsilon})} \delta .
$$

If $N=\infty$, then Proposition A.8 implies that $E_{p_{0}}^{v}$ is the unique direction along which p_{0} is infinitely forward $(L, \varepsilon, \lambda)$-regular. In this case, we denote $E_{p_{0}}^{s s}:=E_{p_{0}}^{v}$, and refer to this direction as the strong stable direction at p_{0}. Moreover, we define the local strong stable manifold at p_{0} as

$$
W_{\mathrm{loc}}^{s s}\left(p_{0}\right):=\Phi_{p_{0}}^{-1}\left(\left\{(0, y) \in U_{p_{0}}\right\}\right),
$$

and the strong stable manifold at p_{0} as

$$
W^{s s}\left(p_{0}\right):=\left\{q \in \Omega \mid F^{n}(q) \in W_{\mathrm{loc}}^{s s}\left(p_{m}\right) \text { for some } n \geq 0\right\}
$$

If $M=\infty$, we denote $E_{p_{0}}^{c}:=E_{p_{0}}^{h}$, and refer to this direction as the center direction at p_{0}. Moreover, we define the (local) center manifold at p_{0} as

$$
W^{c}\left(p_{0}\right):=\Phi_{p_{0}}^{-1}\left(\left\{(x, 0) \in U_{p_{0}}\right\}\right)
$$

Unlike stable manifolds, the center manifold at an infinitely backward regular point is not unique. However, the following result states that it still has a canonical jet.

Proposition A.12. Suppose $M=\infty$. Let

$$
\Gamma_{0}:(-l, l) \rightarrow \mathcal{U}_{p_{0}}
$$

be a C^{r}-curve parameterized by its arclength such that $\Gamma_{0}(0)=p_{0}$, and for all $n \in \mathbb{N}$, we have

$$
\left\|\left.D F^{-n}\right|_{\Gamma_{0}^{\prime}(t)}\right\|<\lambda^{-(1-\bar{\varepsilon}) n} \quad \text { for } \quad|t|<\lambda^{\varepsilon n}
$$

Then Γ_{0} has a degree r tangency with $W^{c}\left(p_{0}\right)$ at p_{0}.
We say that p is N-times forward horizontally (L, ε)-regular along $E_{p}^{h,+} \in \mathbb{P}_{p}^{2}$ if for $s \in\{-r+1, r\}$, we have

$$
\begin{equation*}
L^{-1} \lambda^{(1+\varepsilon) n} \leq \frac{\mathrm{Jac}_{p} F^{n}}{\left\|\left.D_{p} F^{n}\right|_{E_{p}^{h,+}}\right\|^{s+1}} \leq L \lambda^{(1-\varepsilon) n} \quad \text { for } \quad 1 \leq n \leq N \tag{A.2}
\end{equation*}
$$

Similarly, we say that p is M-times backward horizontally (L, ε)-regular along $E_{p}^{h,-} \in$ \mathbb{P}_{p}^{2} if for $s \in\{-r+1, r\}$, we have

$$
\begin{equation*}
L^{-1} \lambda^{-(1-\varepsilon) n} \leq \frac{\operatorname{Jac}_{p} F^{-n}}{\left\|\left.D_{p} F^{-n}\right|_{E_{p}^{h,-}}\right\|^{s+1}} \leq L \lambda^{-(1+\varepsilon) n} \quad \text { for } \quad 1 \leq n \leq M \tag{A.3}
\end{equation*}
$$

If both A.2 and A.3 hold with $E_{p}^{h}:=E_{p}^{h,+}=E_{p}^{h,-}$, then p is (M, N)-times horizontally (L, ε)-regular along E_{p}^{h}.

Proposition A. 13 (Vertical forward regularity $=$ horizontal forward regularity). If p is N-times forward horizontally (L, ε)-regular along $E_{p}^{h} \in \mathbb{P}_{p}^{2}$, then there exists $E_{p}^{v} \in \mathbb{P}_{p}^{2}$ such that p is N-times forward $(\bar{L}, \bar{\varepsilon})$-regular along E_{p}^{v}.

Proposition A. 14 (Horizontal backward regularity $=$ vertical backward regularity). Suppose p is M-times backward horizontally (L, ε)-regular along $E_{p}^{h} \in \mathbb{P}_{p}^{2}$. Let $E_{p}^{v} \in$ $\mathbb{P}_{p}^{2} \backslash\left\{E_{p}^{h}\right\}$. If $\measuredangle\left(E_{p}^{h}, E_{p}^{v}\right)>\theta$, then the point p is M-times backward $\left(\bar{L} / \theta^{2}, \varepsilon\right)$-regular along E_{p}^{v}.

Appendix B. Distortion Theorems for 1D Maps

Let $f: I \rightarrow f(I)$ be a C^{1}-diffeomorphism on an interval $I \subset \mathbb{R}$. For $J \subset I$, the distortion of f on J is defined as

$$
\operatorname{Dis}(f, J):=\sup _{x, y \in J} \frac{\left|f^{\prime}(x)\right|}{\left|f^{\prime}(y)\right|}
$$

We denote $\operatorname{Dis}(f):=\operatorname{Dis}(f, I)$. For $K \geq 1$, we say that f has K-bounded distortion on J if

$$
\operatorname{Dis}(f, J) \leq K
$$

Clearly, if $g: I^{\prime} \rightarrow g\left(I^{\prime}\right)$ is another C^{1}-diffeomorphism on an interval $I^{\prime} \supset f(J)$, then we have

$$
\begin{equation*}
\operatorname{Dis}(g \circ f, J) \leq \operatorname{Dis}(g, f(J)) \cdot \operatorname{Dis}(f, J) \tag{B.1}
\end{equation*}
$$

Theorem B. 1 (Denjoy Lemma). Let $f: I \rightarrow I$ be a C^{r}-map on an interval $I \subset \mathbb{R}$. Then there exists a uniform constant $K>0$ such that if $\left.f^{n}\right|_{J}$ is a diffeomorphism on a subinterval $J \subset I$ for some $n \in \mathbb{N}$, then

$$
\log \left(\operatorname{Dis}\left(f^{n}, J\right)\right) \leq K \sum_{i=0}^{n-1}|f(J)|
$$

B.1. Cross Ratios. Let $J \Subset I \subset \mathbb{R}$ be bounded open intervals. The complement $I \backslash \bar{J}$ consists of two intervals L and R. The cross-ratio of J in I is given by

$$
\operatorname{Cr}(I, J):=\frac{|I||J|}{|L||R|}
$$

For $\tau>0$, we say that I contains a τ-scaled neighborhood of J if

$$
|L|,|R|>\tau|J| .
$$

Let $f: I \rightarrow f(I)$ be a homeomorphism. The cross-ratio distortion under f of J in I is given by

$$
\operatorname{CrD}(f, I, J):=\frac{\operatorname{Cr}(f(I), f(J))}{\operatorname{Cr}(I, J)}
$$

Clearly, if $g: f(I) \rightarrow g \circ f(I)$ is another homeomorphism, then

$$
\begin{equation*}
\operatorname{CrD}(g \circ f, I, J)=\operatorname{CrD}(g, f(I), f(J)) \cdot \operatorname{CrD}(f, I, J) \tag{B.2}
\end{equation*}
$$

For $\nu>0$, we say that f has ν-bounded cross-ratio distortion on I if

$$
\operatorname{CrD}\left(f, I^{\prime}, J\right)>\nu
$$

for all bounded open intervals $J \Subset I^{\prime} \subset I$.
Lemma B.2. For $\alpha>1$, let $P_{\alpha}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an α-power map such that

$$
P_{\alpha}(x)=x^{\alpha} \quad \text { for } \quad x \in \mathbb{R}^{+} .
$$

Then $\left.P_{\alpha}\right|_{\mathbb{R}^{+}}$has negative Schwarzian derivative. Consequently, $\left.P_{\alpha}\right|_{\mathbb{R}^{+}}$has 1-bounded cross-ratio distortion on \mathbb{R}_{+}.

Lemma B.3. Let $I \subset \mathbb{R}$ be a bounded open interval, and let $f: I \rightarrow f(I)$ be a C^{1} diffeomorphism with K-bounded distortion on I for some $K>0$. Then there exists a uniform constant $\nu=\nu(K)>0$ such that f has ν-bounded cross-ratio distortion on I.

Theorem B. 4 (Koebe distortion theorem). Let $J \Subset I \subset \mathbb{R}$ be bounded open intervals, and let $f: I \rightarrow f(I)$ be a C^{1}-diffeomorphism with ν-bounded cross-ratio distortion on I for some $\nu>0$. If $f(I)$ contains a τ-scaled neighborhood of $f(J)$, then there exists a uniform constant $K=K(\nu, \tau)>0$ depending only on ν and τ such that f has K-bounded distortion on J.

References

[CLPY] S. Crovisier, M. Lyubich, E. Pujals, J. Yang. Renormalization of Unicritical Diffeomorphisms of the Disk, (2024), arXiv:2401.13559.
[dFdMPi] E. de Faria, W. de Melo, A. Pinto, Global Hyperbolicity of Renormalization for C^{r} Unimodal Mappings. Ann. of Math., 164 (2006), 731-824.
[L] M. Lyubich, Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture, Ann. of Math. 149 (1999), 319-420.

