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1. Introduction

1.1. Renormalization of unimodal maps. Let I ⊂ R be an interval. A C2-map
f : I → I is unimodal if it has a unique critical point c ∈ I, which of quadratic type:
i.e. f ′(c) = 0 and f ′′(c) 6= 0. Denote the critical value of f by v := f(c). We say that
f is normalized if c = 0 and v = 1. Let γ ∈ {r, ω}, where r ≥ 2 is an integer. The
space of normalized Cγ-unimodal maps is denoted Uγ.

Model examples of unimodal maps are given by real quadratic polynomials, which,
after normalization, can be represented by the following one parameter family of
maps:

Q := {fa(x) := 1− ax2 | a ∈ R}.
This is referred to as the quadratic family.

A unimodal map f : I → I is topologically renormalizable if there exists R-periodic
subinterval I1 ⊂ I such that

f i(I1) ∩ I1 = ∅ for 1 ≤ i < R and fR(I1) b I1.
1
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We say that f is valuably renormalizable if fR(I1) contains the critical value v.
If f is valuably renormalizable, then the pre-renormalization of f

pR1D(f) := fR|I1

is also unimodal. Let c1 ∈ I1 be the unique critical point of pR1D(f). We define the
renormalization of f to be

R1D(f) := S ◦ pR1D(f) ◦ S−1,

where S is the unique affine map such that S(v) = 1 and S(c1) = 0. Observe that
R1D(f) ∈ Uγ.

1.2. Hénon-like maps. Let B := I × I ⊂ R2 be a square, where 0 ∈ I ⊂ R is an
interval. A C2-diffemorphism F : B → F (B) b B is Hénon-like if F is of the form

F (x, y) = (f(x, y), x) for (x, y) ∈ B,

and for any y ∈ I, the map f(·, y) : I → I is a unimodal map. We say that F
is normalized if f(·, 0) is normalized. The set of normalized Cγ-Hénon-like maps is
denoted HLγ.

For β ∈ (0, 1], we say that F is β-thin (in Cγ) if

‖∂yf‖Cγ−1 < β.

The space of β-thin Hénon-like maps in HLγ is denoted HLγβ. In particular, if F ∈
HLγ1 , then F is dissipative (i.e. ‖ JacF‖ < 1). We say that a β-thin Hénon-like map
is perturbative if β � 1.

Model examples of Hénon-like maps are given by the following two parameter family
of maps:

H := {Fa,b(x, y) := (1− ax2 − by, x) | a, b ∈ R}.
This is referred to as the Hénon family. A straightforward computation shows that

JacFa,b ≡ b,

and for b 6= 0, the map Fa,b has a polynomial inverse (and hence, is a diffeomorphism).
For any 1D map g : I → I, define a degenerate 2D map ι(g) : I × R→ I × R by

ι(g)(x, y) := (g(x), x).

Let

πh(x, y) := x and πv(x, y) := y.

For any 2D map G : B → B, define its 1D profile Π1D(G) : I → I by

Π1D(G)(x) := πh ◦G(x, 0).

Note that we have Π1D ◦ ι(g) = g.
The space of degenerate Cγ-Hénon-like maps is given by HLγ0 := ι(Uγ). Observe

that Π1D(HLγ) = Uγ.
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1.3. Topological renormalization of 2D maps. Let F : Ω → F (Ω) b Ω be a
continuous map defined on a Jordan domain Ω ⊂ R2. We say that F is topologically
renormalizable if there exists an R-periodic Jordan domain B b Ω for some integer
R ≥ 2.

Let N ∈ N ∪ {∞}. If F is N -times renormalizable, then there exist sequences of
nested Jordan domains and natural numbers:

Ω =: B0 c . . . c BN and 1 =: R0 < . . . < RN

such that for 1 ≤ n ≤ N , the domain Bn is Rn-periodic. If there exists a uniform
constant b ≥ 2 such that

rn := Rn/Rn−1 ≤ b for 1 ≤ n ≤ N, (1.1)

then the return times {Rn}Nn=1 are said to be of (b-)bounded type. If N = ∞, then
the induced renormalization limit set of F is defined as

ΛF :=
∞⋂
n=1

2Rn−1⋃
i=Rn

F i(Bn). (1.2)

1.4. Hénon-like renormalization. For z ∈ R2, let Egv
z , E

gh
z ∈ P2

z denote the gen-
uine vertical and horizontal directions at z respectively.

A (Cr-)chart is a Cr-diffeomorphism Ψ : D → D from a quadrilateral D ⊂ R2 to
a rectangle D = I × J ⊂ R2, where I, J ⊂ R are intervals. The vertical/horizontal

direction E
v/h
p ∈ P2

p at p ∈ D (associated to Ψ) is given by

Ev/h
p := DΨ−1

(
E
gv/gh
Ψ(p)

)
.

The chart Ψ is said to be genuine vertical/horizontal if E
v/h
p = E

gv/gh
p for all p ∈ D.

A chart Ψ̃ : D → D̃ := Ĩ × J̃ is said to be vertically/horizontally equivalent to Ψ if
Ψ̃◦Ψ−1 is genuine vertical/horizontal. If Ψ̃ is both vertically and horizontal equivalent
to Ψ, then we simply say that Ψ̃ is equivalent to Ψ.

Consider a Cr-Hénon-like map F : B → B defined on a square B := I× I 3 0. Let
v ∈ I be the critical value of the unimodal map Π1D(F ). We say that F is Hénon-like
renormalizable if there exists an R-periodic quadrilateral (v, 0) ∈ B1 ⊂ B for some
integer R ≥ 2, and a genuine horizontal chart Ψ : B1 → B1 := I1 × I1 for some
interval 0 ∈ I1 ⊂ R such that πv ◦Ψ(·, 0) ≡ 0, and the pre-renormalization of F :

pR(F ) := Ψ ◦ FR|B1 ◦Ψ−1

is Hénon-like. Then (FR,Ψ) is referred to as a Hénon-like return of F .
Denote the critical point and the critical value of Π1D ◦ pR(F ) by c1, v1 ∈ I1

respectively, and let S : R2 → R2 be the affine map given by

S(x, y) := σ−1(x− c1, y) where σ := v1 − c1.

Define the renormalization of F as

R(F ) := S ◦Ψ ◦ FR|B1 ◦ (S ◦Ψ)−1.
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Observe that R(F ) ∈ HLr

1.5. Regular Hénon-like returns. Consider a Cr-diffeomorphism F : Ω→ F (Ω) b
Ω defined on a Jordan disk Ω b R2. Let λ, ε ∈ (0, 1); L ≥ 1 and N ∈ N ∪ {0,∞}. A
point p ∈ Ω is N-times forward (L, ε, λ)-regular along E+

p ∈ P2
p if for s ∈ {−r, r− 1},

we have

L−1λ(1+ε)n ≤ (Jacp F
n)s

‖DF n|E+
p
‖s−1

≤ Lλ(1−ε)n for all 1 ≤ n ≤ N. (1.3)

Similarly, p is N-times backward (L, ε, λ)-regular along E−p ∈ P2
p if for s ∈ {−r, r−1},

we have

L−1λ−(1−ε)n ≤ (Jacp F
−n)s

‖DF−n|E−p ‖s−1
≤ Lλ−(1+ε)n for all 1 ≤ n ≤ N. (1.4)

The constants L, ε and λ are referred to as an irregularity factor, a marginal exponent
and a contraction base respectively.

There exists a uniform constant ε0 ∈ (0, 1) independent of F such that if (1.3)
(or (1.4) resp.) holds with ε ≤ ε0, then the local dynamics of F near the forward
(or backward resp.) orbit of p can be linearized up to the Nth iterate (see Theo-
rem A.2). If N =∞, this implies in particular that p has a well-defined strong-stable
manifold W ss(p) (or center manifold W c(p) resp.), which is Cr-smooth and tangent
to Ess

p (or Ec
p resp.). It should be noted that the center manifold at an infinitely

backward regular point p is not uniquely defined. However, its Cr-jet at p is unique
(see Proposition A.12).

Definition 1.1. A Hénon-like return (FR,Ψ : B1 → B1) is said to be (L, ε, λ)-regular
if the following conditions hold.

• For any p ∈ B1, we have ](Ev
p , E

h
p ) > 1/L, where

Ev/h
p := DΨ−1

(
E
gv/gh
Ψ(p)

)
.

• Every p ∈ B1 is R-times forward (L, ε, λ)-regular along Ev
p .

• Every q ∈ FR(B1) b B1 is R-times backward (L, ε, λ)-regular along Eh
q .

In this case, we say that F is (L, ε, λ)-regular Hénon-like renormalizable.

Example 1.2. let f : I → I be a valuably renormalizable unimodal map. pre-
renormalization pR(f) := fR|I1 is the first return map of f on an R-periodic interval
I1 b I containing the critical value v. Then for any ε > 0, there exists λ > 0 such
that any Cr-diffeomorphism of the form

F (x, y) = (f(x) + e(x, y), x)

with ‖e‖Cr < λ has a (1, ε, λ)-regular Hénon-like return (FR,Ψ : B1 → B1), with B1

λ1−ε-close in Hausdorff topology to I1 × I1 and Ψ λ1−ε-close in Cr-topology to the
identity.
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For N ∈ N∪ {∞}, we say that F : Ω→ Ω is N-times Hénon-like renormalizable if
there exist a nested sequence of quadrilaterals {Bn}Nn=1 contained in Ω, and a sequence
of horizontally equivalent Cr-charts:

Ψn : Bn → Bn = In × In ⊂ R2 for 1 ≤ n ≤ N

such that (FRn ,Ψn) is a Hénon-like return of F . In this case, we say that the sequence
of Hénon-like returns is nested.

The nth pre-renormalization of F is defined as

Fn = pRn(F ) := Ψn ◦ FRn|Bn ◦ (Ψn)−1.

Let fn : In → In be the unimodal map given by fn := Π1D(Fn). Denote the critical
point and the critical value of fn by cn, vn ∈ In respectively.

Let Sn : R2 → R2 be the affine map given by

Sn(x, y) := σ−1
n (x− cn, y) where σn := vn − cn.

The nth renormalization of F is given by

Rn(F ) := Sn ◦Ψn ◦ FRn|Bn ◦ (Sn ◦Ψn)−1.

Suppose that there exist constants λ, ε0 ∈ (0, 1) and L ≥ 1 such that the Hénon-
like returns {(FRn ,Ψn)}Nn=1 are (L, ε0, λ)-regular. Then we say that F is N-times
(L, ε0, λ)-regular Hénon-like renormalizable.

Assume additionally that the return times {Rn}Nn=1 are of b-bounded type for some
integer b ≥ 2. For many of our results, the specific values of L, λ and ε0 are not so
important, as long as ε0 is sufficiently small to compensate for the size of b. That is,
we have

bε0 < 1, (1.5)

where ε0 := εd0 for some suitably small uniform constant d ∈ (0, 1) independent
of F . In this case, we sometimes simply say that F is N-times regular Hénon-like
renormalizable without specifying the constants of regularity.

Theorem A. Let r ≥ 2 be an integer, and consider a Cr-diffeomorphism F : Ω →
F (Ω) b Ω defined on a Jordan disk Ω b R2. Given constants b ∈ N, L ≥ 1,
λ ∈ (0, 1) and ε0 ∈ (0, 1) satisfying (1.5), there exists a uniform constant N ∈ N
depending only on ‖F‖C2, λ and L such that the following holds. Suppose that F
is infinitely topologically renormalizable with return times of b-bounded type. If the
first N renormalizations are (L, ε0, λ)-regular Hénon-like, then F is infinitely regular
Hénon-like renormalizable.

Theorem B. Let r ≥ 2 be an integer, and consider a Cr-diffeomorphism F : Ω →
F (Ω) b Ω defined on a Jordan domain Ω b R2. Suppose that F is infinitely regular
Hénon-like renormalizable with return times of bounded type. Then the Hausdorff di-
mension of the induced renormalization limit set ΛF is less than 1. Consequently, ΛF

is totally disconnected, minimal, and supports a unique invariant probability measure
µ.
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1.6. Regular unicriticality. Consider a Cr-diffeomorphism F : Ω → F (Ω) b Ω
defined on a Jordan domain Ω b R2. Suppose that F is infinitely renormalizable, and
is uniquely ergodic on the induced renormalization limit set ΛF given by (1.2). Then
with respect to the unique invariant probability measure µ, the Lyapunov exponents
of F are 0 and log λµ < 0 for some λµ ∈ (0, 1) (see [CLPY]). By Oseledets theorem,
µ-a.e. point p ∈ ΛF has strong-stable and center directions Ess

p , E
c
p ∈ P2

p such that

lim
n→+∞

1

n
log ‖DF n|Essp ‖ = log λµ (1.6)

and

lim
n→+∞

1

n
log ‖DF−n|Ecp‖ = 0. (1.7)

Let ε > 0. Since F |ΛF is uniquely ergodic, (1.6) ((1.7) resp.) implies that p is infinitely
forward (backward resp.) (L, ε, λµ)-regular for some L = L(p, ε) ≥ 1 (see [CLPY]).

If p ∈ ΛF satisfies (1.6) and (1.7) with

E∗p := Ess
p = Ec

p,

then {Fm(p)}m∈Z is referred to as a regular critical orbit. Note that in this case, the
local strong-stable manifoldW ss

loc(p) and the center manifold W c(p) form a tangency at
p. If this tangency is quadratic, then {Fm(p)}m∈Z is referred to as a regular quadratic
critical orbit.

For t > 0 and p ∈ R2, we denote the ball

Dp(t) := {q ∈ R2 | dist(q, p) < t}.

Definition 1.3. For 0 < ε < δ < 1, we say that F is (δ, ε)-regularly unicritical on
the limit set ΛF if the following conditions hold.

i) There is a regular quadratic critical orbit point v ∈ ΛF (referred to as the critical
value).

ii) For all t > 0, there exists L(t) ≥ 1 such that for any N ∈ N, if

p ∈ ΛF \
N−1⋃
n=0

DF−n(v)(tλ
εn
µ ), (1.8)

then p is N -times forward (L(t), δ, λµ)-regular.

When δ and ε are implicit, we simply say that F is regularly unicritical on ΛF .

In [CLPY], we prove that if F infinitely topologically renormalizable (with return
times not necessarily of bounded type), and is regular unicritical on the induced
renormalization limit set, then the renormalizations of F are eventually regular henon-
like.

Theorem C. Let r ≥ 2 be an integer, and consider a Cr-diffeomorphism F : Ω →
F (Ω) b Ω defined on a Jordan domain Ω b R2. Suppose for some L ≥ 1; λ, ε0 ∈ (0, 1)
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and b ≥ 2 satisfying (1.5), the map F has infinite nested (L, ε0, λ)-regular Hénon-like
returns:

{(FRn ,Ψn : Bn → Bn)}∞n=1

with return times of b-bounded type. Then for any ε > 0, there exists Lε ≥ 1 such
that for all n ∈ N, the Hénon-like return (FRn ,Ψn) is (Lε, ε, λµ)-regular. Moreover,
F is (ε, εd)-regularly unicritical on the induced renormalization limit set ΛF , where
d ∈ (0, 1) is some suitably small uniform constant independent of F . Lastly, we have

∞⋂
n=1

FRn(Bn) = {v},

where v ∈ ΛF is the regular quadratic critical value.

1.7. Renormalization convergence. The 1D RenormalizationR1D defined in Sub-
section 1.1 can be viewed as an operator acting on the Banach space Uγ of unimodal
maps. In [L], Lyubich shows thatR1D restricted to Uω is an analytic operator that has
a hyperbolic attractor A ⊂ Uω with exactly one unstable dimension. This attractor
is referred to as the full renormalization horseshoe.

Given an integer b ≥ 2, we identify the compact invariant subset Ab of A that
consist of maps of b-bounded type. In [dFdMPi], de Faria-de Melo-Pinto show that
for the renormalization operator R1D acting on the more general space U3 ⊃ Uω, the
set Ab remains a hyperbolic attractor with one unstable dimension.

Theorem D. Let r ≥ 2 be an integer, and consider a Cr-diffeomorphism F : Ω →
F (Ω) b Ω defined on a Jordan domain Ω b R2. Suppose for some L ≥ 1; λ ∈ (0, 1);
ε ∈ (0, ε0] and b ≥ 2 satisfying (1.5), the map F has infinite nested (L, ε, λ)-regular
Hénon-like returns:

{(FRn ,Ψn : Bn → Bn)}∞n=1

with return times of b-bounded type. Then, after replacing {Ψn}∞n=1 if necessary, the
following statements hold for all n ∈ N:

i) ‖(Ψn)±1‖Cr < L̄ and ‖Ψn+1 −Ψn|Bn+1‖Cr < L̄λ(1−ε̄)Rn;
ii) Rn(F ) is a δn-thin Cr-Hénon-like map with δn < L̄λ(1−ε̄)Rn; and

iii) ‖Rn(F )‖Cr = O(1) if n is sufficiently large;

where L̄ := KLD > L and ε̄ := ε1/D > ε for some uniform constants K > 1
(dependent only on ‖F‖Cr) and D > 1 (independent of F ).

If, additionally, we have r ≥ 4, then there exists a real analytic unimodal map
f∗ ∈ Ab and a universal constant ρ = ρ(b) ∈ (0, 1) such that

‖Π1D ◦ Rn(F )−Rn
1D(f∗)‖Cr−1 = O(ρn) for n ∈ N.

1.8. Conventions. Unless otherwise specified, we adopt the following conventions.
Any diffeomorphism on a domain in R2 is assumed to be orientation-preserving.

The projective tangent space at a point p ∈ R2 is denoted by P2
p.
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We typically denote constants by K ≥ 1, k > 0 (and less frequently C ≥ 1, c > 0).
Given a number κ > 0, we use κ̄ to denote any number that satisfy

κ < κ̄ < CκD

for some universal constants C > 1 and D > 1 (if κ > 1) or D ∈ (0, 1) (if κ < 1)
independent of the considered map. We allow κ̄ to absorb any uniformly bounded
coefficient or power. So for example, if κ̄ > 1, then we may write

“ 10κ̄5 = κ̄ ”.

Similarly, we use κ to denote any number that satisfy

cκd < κ < κ

for some uniform constants c ∈ (0, 1) and d ∈ (0, 1) (if κ > 1) or d > 1 (if κ < 1)
independent of the map. As before, we allow κ to absorb any uniformly bounded
coefficient or power. So for example, if κ > 1, then we may write

“ 1
3
κ1/4 = κ ”.

These notations apply to any positive real number: e.g. ε̄ > ε, δ < δ, L̄ > L, etc.
Note that κ̄ can be much larger than κ (similarly, κ can be much smaller than

κ). Sometimes, we may avoid the κ̄ or κ notation when indicating numbers that are
somewhat or very close to the original value of κ. For example, if κ ∈ (0, 1) is a small
number, then we may denote κ′ := (1− κ̄)κ. Then κ� κ′ < κ.

For any set Xm ⊂ Ω with a numerical index m ∈ Z, we denote

Xm+l := F l(Xm)

for all l ∈ Z for which the right-hand side is well-defined. Similarly, for any direction
Epm ∈ P2

pm at a point pm ∈ Ω, we denote

Epm+l
:= DF l(Epm).

We use n,m, i, j to denote integers (and less frequently l, k). Typically (but not
always), n ∈ N and m ∈ Z. We sometimes use l > 0 for positive geometric quantities
(such as length). The letter i is never the imaginary number.

We typically use N,M to indicate fixed integers (often related to variables n,m).
We use calligraphic font U , T , I, etc, for objects in the phase space and regular

fonts U, T, I, etc, for corresponding objects in the linearized/uniformized coordinates.
A notable exception is for the invariant manifolds W ss,W c.

We use p, q to indicate points in the phase space, and z, w for points in lin-
earized/uniformized coordinates.
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2. Chart Relations

Let Ψ : B → B be a Cr-chart. A vertical leaf in B is a curve lv such that

lv ⊆ Ψ−1({a} × πv(B)) for some a ∈ πh(B).

If the above containment is an equality, then lv is said to be full. A (full) horizontal
leaf lh in B is defined analogously.

Let p ∈ B and Ep ∈ P2. Denote

z := Ψ(p) and Ez := DΨ(Ep).

For t > 0, the direction Ep is said to be t-vertical in B if

](Ez, E
gv
z )

](Ez, E
gh
z )

< t.

A t-horizontal direction in B is analogously defined.
A C0-curve Γv ⊂ B is said to be vertical in B if Ψ(Γv) is a vertical graph in B in the

usual sense. That is, there exists an interval Iv ⊆ πv(B) and a map gv : Iv → πh(B)
such that

Ψ(Γv) = Gv(gv) := {(gv(y), y) | y ∈ Iv}.
If Iv = πv(B), then Γv is said to be vertically proper in B. If Γv is C2, and gv has a
unique critical point c ∈ Iv of quadratic type (g′v(c) = 0 and g′′v (c) 6= 0), then Γv is a
vertical quadratic curve in B. If Γv is Cr, and ‖g′v‖Cr−1 ≤ t for some t ≥ 0, then we
say that Γv is t-vertical in B. Note that Γv is a (vertically proper) 0-vertical curve if
and only if it is a (full) vertical leaf.

Let Ev : B → T 1(B) be the Cr−1-unit vector field given by

Ev(p) := DΨ−1(Egv
Ψ(p)).

A Cr−1-unit vector field Ẽv : U → T 1(U) defined on a domain U ⊂ B is said to be
t-vertical in B for some t ≥ 0 if ‖Ẽv − Ev‖Cr−1 ≤ t.

Let Ψ̃ : B̃ → B̃ be another chart with B̃ ⊂ B. We define the following relations
between Ψ and Ψ̃.

• We say that B̃ is vertically proper in B if every full vertical leaf in B̃ is vertically
proper in B.
• We say that Ψ and Ψ̃ are horizontally equivalent on B̃ if every horizontal leaf

in B̃ is a horizontal leaf in B.
• For t ≥ 0, we say that B̃ is t-vertical in B if Ψ and Ψ̃ are horizontally equiva-

lent, and the unit vector field given by

Ẽv(p) := DΨ̃−1(Egv

Ψ̃(p)
) for p ∈ B̃

is t-vertical in B.
• We say that Ψ and Ψ̃ are equivalent on B̃ if B̃ is 0-vertical in B.

Let Ψ̂ : B̂ → B̂ be a chart satisfying the following properties.

• We have 0 ∈ B̂.
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• Let
Ih(t) := Ψ̂−1(t, 0) for t ∈ πh(B̂),

and
Iv(s) := Ψ̂−1(0, s) for s ∈ πv(B̂).

Then ‖(Ih/v)′‖ ≡ 1.

In this case, we say that Ψ̂ is centered (at Ψ̂−1(0)).

A C0-curve Γh ⊂ B̂ is said to be horizontal in B̂ if Ψ̂(Γh) is the horizontal graph

in B̂ of a map gh : Ih → πv(B̂) defined on an interval Ih ⊂ πh(B̂). If Γh is Cr, then

we say that Γh is t-horizontal in B̂ if ‖gh‖Cr ≤ t. In particular, Γh is 0-horizontal in

B̂ if and only if Γh is a subarc of the full horizontal leaf containing Ψ̂−1(0).

Lemma 2.1. Let Ψ : B → B be a chart. For any point q ∈ B, there exists a unique
chart Ψ̂ : (B, q)→ (B̂, 0) centered at q such that Ψ̂ and Ψ are equivalent on B.

3. The Critical Value

3.1. The set up. Let r ≥ 2 be an integer, and consider a Cr-diffeomorphism F :
Ω → F (Ω) defined on a domain Ω ⊂ R2. For simplicity, we assume that ‖F‖Cr is
uniformly bounded:

‖F‖Cr = O(1). (3.1)

Denote B0
0 := Ω and R0 := 1. For 1 ≤ n ≤ N ≤ ∞, suppose there exist an Rn-periodic

quadrilateral Bn0 b Bn−1
0 with

rn−1 := Rn/Rn−1 ≥ 2,

and a Cr-chart Ψn : Bn0 → Bn
0 such that {(FRn ,Ψn)}Nn=1 is a (possibly infinite)

sequence of nested Hénon-like returns of F . Furthermore, assume that the sequence
of returns is (L, ε, λ)-regular for some λ, ε ∈ (0, 1) and L ≥ 1 such that ε̄ < 1. Lastly,
suppose that N is sufficiently large, so that by replacing (FR1 ,Ψ1) with (FRn1 ,Ψn1)
for some n1 ≤ N , we may assume additionally that:

L̄λ(1−ε̄)R1 < ρ, (3.2)

where ρ ∈ (0, 1) is a suitably small universal constant.

Remark 3.1. In Sections 3 and 4, we do not assume that the sequence of Hénon-like
returns of F is necessarily of bounded type.

3.2. Locating the critical value. For i ∈ Z, denote Bni := F i(Bn0 ). Observe that
Bn+1
Rn+1

b BnRn . Let

Z0 :=
N⋂
n=1

BnRn .

Let v0 ∈ Z0 be a point to be specified later (as the critical value of F ). By Lemma 2.1,
we may assume that Ψn for all 1 ≤ n ≤ N is centered at v0. Define

In0 := πh(B
n
0 ) and In0 := (Ψn)−1(In0 × {0}).
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Then it follows that In0 b I1
0 and Ψn|In0 = Ψ1|In0 . Denote Ini := F i(In0 ) for i ≥ 0.

For p0 ∈ Bn0 , write z0 := Ψn(p0), and let

Eh
p0

:= D(Ψn)−1(Egh
z0

) and Ev,n
p0

:= D(Ψn)−1(Egv
z0

).

Additionally, let

Eh,n
pRn−1

:= DFRn−1(Eh
p0

) and Ev
pRn−1

:= DF−1(Eh
pRn

) = DFRn−1(Ev,n
p0

).

By increasing L by a uniform amount (depending only on DF ) if necessary, we may
assume that every q ∈ BnRn−1 is (Rn − 1)-times backward (L, ε, λ)-regular along Ev

q .

Proposition 3.2. After replacing the charts {Ψn}Nn=1 if necessary, the following prop-
erties hold. For 1 ≤ n ≤ N , the domain Bn0 of the chart Ψn is vertically proper and
ρ-vertical in B1

0. Moreover, we have

‖Ψn+1 −Ψn|Bn+1
0
‖Cr < λ(1−ε̄)Rn . (3.3)

Proof. For p0 ∈ Bn0 , let

{Φpm : Upm → Upm}Rnm=0

be a linearization of F along the Rn forward orbit of p0 with vertical direction Ev,n
p0

.

Let Ev,npm : Upm → T 1(Upm) be the Cr−1-unit vector field given by Ev,npm (q) ∈ Ev,n
q for

q ∈ Upm .
Let lv,1p0

be the full vertical leaf in B1
0 containing p0. For q0 ∈ lv,1p0

, let

{Φqm : Uqm → Uqm}R1
m=0

be a linearization of F along the R1 forward orbit of q0 with vertical direction Ev,1
q0

.
Let M be a nearest integer to R1/2. Since ρ is sufficiently small, it follows from

(3.2), Theorem A.2, and Propositions A.5 and A.3 that

ǓqM := FM(U ε̄Mq0 ) ⊂ UpM .

By Proposition A.1, qM and pM are M -times forward (L̄λ−ε̄M , ε, λ)v-regular along
Ev,1
qM

and Ev,n
pM

respectively. Hence, Proposition A.8 implies that Ev,npM |ǓqM is t-vertical

in Uqm for some t > 0 uniformly small. Thus, we may extend Ev,np0
to U ε̄Mq0 as

Ev,np0
|U ε̄Mq0 := DF−M∗ (Ev,npM |ǓqM ).

Then we have ‖Ev,np0
− Ev,1q0

‖C1 ≤ ρ. Rectifying the vertical directions near lv,1p0
given

by Ev,np0
, we obtain the desired extension of Ψn.

Replacing the renormalization depth 1 in the above argument by n, we obtain
(3.3). �

Consider Cr-curves Γ1,Γ2 ⊂ R2 with |J1| ≥ |J2|. For i ∈ {1, 2}, let φΓi : Ji ⊂ R→
Γi be a parameterization of Γi such that

• |φ′Γi | ≡ 1;
• J1 ⊃ J2;
• ‖φΓ1 |J2 − φΓ2‖Cr is minimal.
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In this case, define

distCr(Γ1,Γ2) := ‖φΓ1|J2 − φΓ2‖Cr .

Lemma 3.3. For 1 ≤ n ≤ N , let ln0 be a full horizontal leaf in Bn0 . Then we have

distCr(l
n
Rn−1, l

n+1
Rn+1−1) < λ(1−ε̄)Rn .

Proof. For p−1 ∈ Z−1 := F−1(Z0), let

{Φp−m : Up−m → Up−m}
RN
m=1

be a linearization of F along the RN -times backward orbit of p−1 with vertical di-
rection Ev

p−1
(if N = ∞, then R∞ = ∞). Let V−Rn be the connected component of

F−Rn+1(U ε̄Rnp−1
) ∩ Bn0 containing p−Rn . Note that Ψn|V−Rn defines a chart on V−Rn , so

that V−Rn is 0-vertical in Bn0 . Moreover, arguing as in the proof of Proposition 3.2,
we see that V−Rn is also vertically proper in Bn0 . Hence, by Theorem A.2 and Propo-
sition A.5, the curve lnRn−1 is λ(1−ε̄)Rn-horizontal in Up−1 . The result follows. �

Proposition 3.4. If N =∞, then the following statements hold.

i) For any point p0 ∈ Z0, there exists a unique strong stable direction Ess
p0
∈ P2

p0

such that

‖Ev,n
p0
− Ess

p0
‖ < λ(1−ε̄)Rn for n ∈ N.

Moreover, p0 is infinitely forward (L, ε, λ)-regular along Ess
p0

.
ii) Any point p−1 ∈ Z−1 is infinitely backward (L, ε, λ)-regular along Ev

p−1
. Moreover,

there exists a unique center direction Ec
p−1
∈ P2

p−1
such that

‖Eh,n
p−1
− Ec

p−1
‖ < λ(1−ε̄)Rn for n ∈ N.

iii) There exists a unique point v0 ∈ Z0 such that

Ess
v0

= DF (Ec
v−1

).

Moreover, the strong stable manifold W ss(v0) and the center manifold F (W c(v−1))
have a quadratic tangency at v0.

Proof. The first and second claim follow immediately from Propositions A.8 and A.9.
For n ∈ N, let ln0 be a full horizontal leaf in Bn0 . Recall that lnRn is a vertical

quadratic curve in Bn0 . Let vn0 ∈ ln0 be the unique point such that

Ev,n
vnRn

= DFRn(Eh
vn0

).

By Lemma 3.3, we have

dist(vnRn , v
n+1
Rn+1

) < λ(1−ε̄)Rn .

Thus, there exists a unique point v0 ∈ Z0 such that

dist(vnRn , v0) , distCr(l
n
Rn ,W

c(v0)) < λ(1−ε̄)Rn .

By (3.3), we see that W ss(v0) and W c(v0) have a quadratic tangency at v0.
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Lastly, let Uv0 be a neighborhood of v0. Then there exists a uniform constant k > 0
such that for all n sufficiently large, if pRn ∈ lnRn \ Uv0 then

](Ev,n
pRn

, DFRn(Eh
p0

)) > k.

Thus, v0 is the unique point in Z0 satisfying Ess
v0

= Ec
v0
. �

We define the critical value v0 ∈ Z0 as follows. If N =∞, let v0 be the point given
in Proposition 3.4 iii). Otherwise, let v0 be the unique point in INRN such that

DFRN (Eh
v−RN

) = Ev,N
v0

(recall that INRN is a vertical quadratic curve in BN0 ). Define the critical point as
v−1 := F−1(v0).

Remark 3.5. In fact, we will show that if N =∞, then Z0 = {v0} (see Theorem 4.7).

Theorem 3.6 (Valuable charts). There exist charts

Φ0 : (B0, v0)→ (B0, 0) and Φ−1 : (B−1, v−1)→ (B−1, 0)

with

B0 ⊃ B1
0, B−1 ⊃ B1

R1−1 and F (B−1) b B0;

and

‖Φ±1
i ‖Cr < L̄ for i ∈ {0,−1};

such that

Φ0 ◦ F ◦ Φ−1
−1(x, y) = (f0(x)− λy, x) for (x, y) ∈ B−1 (3.4)

for some Cr-unimodal interval map

f0 : (πh(B−1), 0)→ (πh(B0), 0)

with a unique critical point at 0 with f ′′0 (0) < 0. Moreover, the following properties
hold for 1 ≤ n ≤ N .

i) Let p0 ∈ Bn0 . Then

DΦ0(Eh
p0

) = Egh
Φ0(p0) and DΦ−1(Ev

pRn−1
) = Egv

Φ−1(pRn−1).

ii) We have Ψn|In0 = Φ0|In0 .
iii) We have

‖Ψn ◦ (Φ0|Bn0 )−1 − Id ‖Cr < λ(1−ε̄)Rn .

iv) Let

Hn := Φ−1 ◦ FRn−1 ◦ (Ψn)−1.

Then Hn(x, y) = (hn(x), en(x, y)), where hn : In0 → hn(In0 ) is a Cr-diffeomorphism
and en is a Cr-map such that

inf
x∈In0
|h′n(x)| > L̄−1λε̄Rn and ‖en‖Cr < λ(1−ε̄)Rn . (3.5)
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Proof. For t ≥ 0 and X ⊂ R2, denote

X(t) := {p ∈ R2 | dist(p,X) ≤ t}.
Let

B0 := B1
0(λε̄R1) and Cn0 := Bn0 (λε̄Rn) \ Bn0 .

By (3.3), there exists a Cr-diffeomorphism Φ0 defined in a neighborhood of Z0 such
that

‖Ψn|Z0 − Φ0‖Cr < λ(1−ε̄)Rn for all 1 ≤ n ≤ N.

Moreover, Φ0 can be extended a centered chart Φ0 : (B0, v0)→ (B0, 0) such that

Φ0|Bn0 \(Bn+1
0 ∪Cn+1

0 ) = Ψn|Bn0 \(Bn+1
0 ∪Cn+1

0 )

and
‖Φ0|Cn+1

0
−Ψn|Cn+1

0
‖Cr < λ(1−ε̄)Rn .

Let Ih−1 := W c(v−1). Observe that F (Ih−1) is a vertical quadratic curve in B0.
Hence, there exists a Cr-unimodal interval map

f0 : (πh(B−1), 0)→ (πh(B0), 0)

with a unique quadratic critical point at 0 such that

Φ0 ◦ F (Ih−1) = {(f0(y), y) | y ∈ πv(B0)}.
For some l−1 = L̄−1, let

D0 := {(f0(y) + t, y) ∈ B0 | |t| ≤ λl−1 and y ∈ πv(B0)},
and

B−1 := (Φ0 ◦ F )−1(D0).

We define Φ−1 : (B−1, v−1)→ (B−1, 0) to be the unique chart satisfying

Φ0 ◦ F ◦ Φ−1
−1(x, y) = (f0(x)− λy, x) for (x, y) ∈ B−1.

Claims i), ii) and iii) follow immediately.
The second inequality in (3.5) follows from Lemma 3.3. Hence, for p0 ∈ Bn0 , we

have

‖DFRn−1|Ev,np0 ‖ = ‖Φ−1
−1 ◦Hn ◦Ψn|Ev,np0 ‖ < L̄‖Hn|Egv

Ψn(p0)
‖ < L̄λ(1−ε̄)Rn .

By regularity of the Hénon-like return (FRn ,Ψn), we have

](Ev,n
p0
, Eh

p0
) > L−1.

This implies that

Jacp0 F
Rn−1 < L̄‖DFRn−1|Ev,np0 ‖ · ‖DF

Rn−1|Ehp0‖.

Thus, (1.3) imply that

L̄λ(1−ε̄)Rn‖DFRn−1|Ehp0‖
r−1 > L̄−1λ(1+ε)Rn .

The first inequality in (3.5) follows. �
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Remark 3.7. In Theorem 7.7, we show that if N = ∞ and the return times are of
bounded type, then the first inequality in (3.5) can be improved to

inf
x∈In0
|h′n(x)| > k

for some uniform constant k > 0.

For i ∈ {0,−1}, denote

I
h/v
i := πh/v(Bi) and Ihi := Φ−1

i (Ihi × {0}). (3.6)

Observe that

Ih0 c I1
0 c I2

0 c . . . and Ih−1 c h1(I1
0 ) c h2(I2

0 ) c . . . .

Moreover, if X ⊂ Bn0 , then (3.5) implies

Φ−1 ◦ FRn−1(X) ⊂ hn(In0 )× [−λ(1−ε̄)Rn , λ(1−ε̄)Rn ]. (3.7)

3.3. Horizontal projections. For 1 ≤ n ≤ N , define P−1 : (B−1, v−1) → (Ih−1, 0)
and P n

0 : (Bn0 , v0)→ (In0 , 0) by

P−1 := πh ◦ Φ−1 and P n
0 := πh ◦Ψn.

Denote
InRn−1 := P−1(BnRn−1) = P−1(InRn−1) = hn(In0 ),

where hn is given in Theorem 3.6 iv). Define Pn0 : Bn0 → In0 by

Pn0 (p) := (Ψn)−1 (P n
0 (p), 0) for p ∈ Bn0 .

Observe that Pn0 |In0 = Id.
We record the following immediate consequences of Theorem 3.6.

Lemma 3.8. For 1 ≤ n ≤ N , let p0, q0 ∈ Bn0 be two points such that

|P n
0 (p0)− P n

0 (q0)| > λε̄Rn .

Then we have
|P−1(pRn−1)− P−1(qRn−1)| > λε̄Rn .

If, additionally, we have

P n
0 (pRn) , P n

0 (qRn) < −λε̄Rn ,
then

|P n
0 (pRn)− P n

0 (qRn)| > λε̄Rn .

Lemma 3.9. For 1 ≤ n ≤ N , denote ρn := λ(1−ε̄)Rn. Let 0 < t < λ−ε̄Rn. Then the
following statements hold.

i) Let Ẽp0 ∈ P2
p0

be a t-horizontal direction at p0 ∈ Bn0 . Then ẼpRn−1
is (1 + t)ρn-

horizontal in B−1.
ii) Let EpRn−1

∈ P2
pRn−1

be a t-vertical direction at pRn−1 ∈ BnRn−1. Then Ep0 is
tρn-vertical in Bn0 .

iii) Let Γh0 be a t-horizontal curve in Bn0 . Then ΓhRn−1 is (1 + t)ρn-horizontal in B−1.
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iv) Let ΓvRn−1 be a t-vertical curve in BnRn−1. Then Γv0 is tρn-vertical in Bn0 .

By Lemma 3.9 iii), InRn−1 is ρn-horizontal in B−1. Thus, there exists a Cr-map
gn : InRn−1 → R with ‖gn‖Cr < ρn such that

Φ−1(InRn−1) = {(x, gn(x)) | x ∈ InRn−1}.
Define Gn : InRn−1 → Φ−1(InRn−1) by Gn(x) := (x, gn(x)). Define the nth critical

projection map Pn−1 : P−1
−1 (InRn−1)→ InRn−1 by

Pn−1 := Φ−1
−1 ◦Gn ◦ P−1.

Lemma 3.10. For 1 ≤ n ≤ N , let Γ0 be a horizontal curve in Bn0 . Then

FRn−1|Γ0 = (Pn−1|ΓRn−1
)−1 ◦ FRn−1 ◦ Pn0 |Γ0 .

Proof. Note that Pn−1 is a projection along the vertical foliation Fv−1 on B−1, and Pn0
is a projection along the vertical foliation on Bn0 obtained by pulling back Fv−1 by
F−Rn+1. The claim follows immediately. �

Lemma 3.11. There exists a uniform constant k > 0 such that the following holds.
Let g : I → R be a Cr-map on an interval I ⊂ Ih−1 such that ‖g‖Cr < k. Denote
G(x) := (x, g(x)). Then there exist a ∈ Ih0 and a Cr-diffeomorphism ψg : I → ψg(I)
with ‖ψ±1

g ‖Cr = O(1) such that we have

Q(x) := P n
0 ◦ F ◦ Φ−1

−1 ◦G(x) = a− (ψg(x))2 (3.8)

where defined.

4. Avoiding the Critical Value

For N ∈ N ∪ {∞}, let F be the N -times regular Hénon-like renormalizable diffeo-
morphism considered in Subsection 3.1. Suppose that N is sufficiently large, so that
by replacing (FR1 ,Ψ1) with (FRn1 ,Ψn1) for some n1 ≤ N , we may assume that:

L̄λεR1 < ρ, (4.1)

where ρ ∈ (0, 1) is a suitably small universal constant. Note that (4.1) is a stronger
condition than (3.2).

Let z = (a, b) and w = (c, d) with a, c ∈ R and b, d ∈ Iv0 . Denote

m := min{a, c} and M := max{a, c}.
For t ≥ 0, define

Vz(t) := [a− t, a+ t]× Iv0 and V[z,w](t) := [m− t,M + t]× Iv0 ,
where Iv0 is given in (3.6). If VΨn(p)(t) ⊂ Bn

0 for some 1 ≤ n ≤ N ; p ∈ Bn0 and t ≥ 0,
then we denote

Vnp (t) := (Ψn)−1(VΨn(p)(t)).

We record the following two immediate consequences of Theorem 3.6.
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Lemma 4.1. For 1 ≤ n ≤ N , let Ep−1 ∈ P2
p−1

be a λε̄Rn-horizontal direction at
p−1 ∈ B−1. If

p0 ∈ Bn0 \ Vnv0
(t) with t > λε̄Rn ,

then Ep0 is O(1/t)-horizontal in Bn0 .
Similarly, let Γ−1 be λε̄Rn-horizontal curve in B−1. If

Γ0 ⊂ Bn0 \ Vnv0
(t) with t > λε̄Rn ,

then Γ0 is O(1/t)-horizontal in Bn0 .

Lemma 4.2. For 1 ≤ n ≤ N , let Ẽp0 ∈ P2
p0

be a λε̄Rn-vertical direction at p0 ∈ Bn0 .
If

p0 ∈ BnRn \ V
n
v0

(t) with t > λε̄Rn ,

then Ẽp0 is O(1/t)-vertical in B−1.

Similarly, let Γ̃0 be λε̄Rn-vertical curve in Bn0 . If

Γ̃0 ⊂ BnRn \ V
n
v0

(t) with t > λε̄Rn ,

then Γ̃−1 is O(1/t)-vertical in B−1.

Proposition 4.3. For 1 ≤ n ≤ N , let p0 ∈ BnRn \ V
n
v0

(λε̄Rn). If Ep0 is λε̄Rn-vertical

in Bn0 , then Ep−Rn is λ(1−ε̄)Rn-vertical in Bn0 . Moreover, p−Rn is Rn-times forward
(L̄, ε̄, λ)-regular along Ep−Rn .

Proof. Consider a linearization

{Φp−m : Up−m → Up−m}Rnm=0

of F along the Rn-backward orbit of p0 with vertical direction

Ev,n
p0

:= (DΨn)−1
(
Egh

Ψn(p0)

)
.

Note that since (FRn ,Ψn) is a Hénon-like return, we have

DΨn
(
Ev,n
p−Rn

)
= Egv

Ψn(p−Rn ).

Denote

Eh,n
p−1

:= DΦp−1

(
Egh

0

)
and Eh

p−1
:= DΦ−1

(
Egh

Φ−1(p−1)

)
,

where Φ−1 : U−1 → U−1 is the chart defined over the critical point given in Theo-
rem 3.6. By Theorem A.2 ii) and (3.5), we see that

‖DF−Rn+1|Eh,np−1
‖ , ‖DF−Rn+1|Ehp−1

‖ > L̄−1λε̄Rn .

Hence, it follows from Proposition A.9 that

](Eh,n
p−1
, Eh

p−1
) < L̄λ(1−ε̄)Rn .

Thus, by (3.4), we have

](Eh,n
p−1
, Ep−1) > L̄−1λε̄Rn .
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For 1 ≤ i ≤ Rn, denote

θ−i := ](Egh
0 , DΦp−i(Ep−i)).

Choose a suitable uniform constant c ∈ (0, π/2) independent of F , and let 1 ≤ M ≤
Rn be the smallest number such that θ−M > c. By Theorem A.2 and Proposition A.5,
we see that

θ−i > λ−(1−ε̄)iθ−1 > L̄−1λ−(1−ε̄)iλε̄Rn .

Consequently,

M < ε̄Rn −
log L̄

log λ
= ε̄Rn,

where in the last equality, we used (4.1). Let M ′ := CM for some suitable uniform
constant C ≥ 1 independent of F .

By Proposition A.5, we have

‖DF |Ep−Rn+i
‖ � ‖DF i|Ev,np−Rn+i

‖ for 0 ≤ i < Rn −M ′ (4.2)

Denote

F i
−j := Φp−j+i ◦ F i ◦ (Φp−j)

−1.

By Proposition A.4, we have

λε̄Rn < λ(1+ε̄)M ′ < ‖DF i
−M ′ |Ẽp−M′ ‖ < λ−ε̄M

′
< λ−ε̄Rn (4.3)

for any Ẽp−M′ ∈ P2
p−M′

. Since ‖Φ±1
p−i
‖C1 < L̄λ−ε̄i, we conclude that for 0 ≤ i < M ′, we

have

λε̄Rn <
‖DFRn−M ′+i|Ev,np−Rn ‖
‖DFRn−M ′+i|Ep−Rn ‖

< λ−ε̄Rn .

The (L̄, ε̄, λ) forward regularity of p−Rn along Ep−Rn follows. �

Proposition 4.4. For 1 ≤ n ≤ N , let p0 ∈ Bn0 . If p0 is infinitely forward (L̄, ε̄, λ)-
regular, then W ss(p0) is λ(1−ε̄)Rn-vertical and vertically proper in Bn0 .

Proof. The verticality of W ss(p0) follows immediately from Proposition A.8. Consider
a linearization

{Φpm : Upm → Upm}∞m=0

of F along the infinite forward orbit of p0 with vertical direction Ess
p0

. Recall that

Φpm(W ss
loc(pm)) ⊂ {(0, y) ∈ Upm | y ∈ R}. (4.4)

Let

Vp0 := Vnp0
(λε̄Rn).

Arguing as in the proof of Proposition 3.2, we see that if M is the nearest integer to
Rn/2, then

ΦpM (FM(Vp0)) ⊂ (−λε̄Rn , λε̄Rn)× (−λ(1−ε̄)M , λ(1−ε̄)M). (4.5)
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For q0 ∈ Vp0 , denote

Êv/h
q0

:= (DΨn)−1(E
gv/gh
Ψn(q0)).

The forward regularity of q0, Theorem A.2 and Proposition A.5 imply that

‖DFm|Êhq0‖ < L̄λ(1−ε̄)m. and ‖DFm|Êhq0‖ > L̄−1λε̄m.

Thus, follows from Proposition A.3 that qm ∈ Upm for all m sufficiently large so that

L̄λ(1−ε̄)m < L̄−1λε̄m.

We conclude by (4.4), (4.5) and Proposition A.9 that W ss
loc(pM) is vertically proper in

FM(Vp0). The result follows. �

Proposition 4.5. For 1 ≤ n ≤ N , let C0 ⊂ Bn0 be a totally invariant connected set
under F dRn with 2 ≤ d ≤ b. If

Vnv0
(λε̄Rn) ∩ C = ∅, where C :=

d−1⋃
i=0

CiRn ,

then either C0 is a singleton, or it contains a sink.

Proof. Let Ev : Bn0 → T 1Bn0 be a Cr−1-unit vector field such that

Ev(p) ∈ (DΨn)−1(Egv
Ψn(p)) for p ∈ Bn0 .

For i ∈ N, define
E−i := (F iRn)∗(Ev|C).

For p ∈ C, let E−ip ∈ P2
p be the direction containing E−i(p). By Proposition 4.3, p is

iRn-times forward (L̄, ε̄, λ)-regular along E−ip . Thus, it follows from Proposition A.8

that E−ip converges super-exponentially fast to Ess
p along which p is infinitely forward

(L̄, ε̄, λ)-regular.
Let W ss

loc(p) be the connected component of W ss(p) ∩ Bn0 containing p. Define

VC0 :=
⋃
p∈C0

W ss
loc(p).

By Proposition 4.4, the foliation of VC0 given by {W ss
loc(p)}p∈C is λ(1−ε̄)Rn-vertical and

vertically proper in Bn0 . Let

ΨC0 : VC0 → VC0 := IC0 × Iv0
be the genuine horizontal chart that rectifies this vertical foliation.

Consider the map
H := ΨC0 ◦ F dRn ◦ (ΨC0)−1.

By (3.7), (3.4) and the fact that

VC0 ∩ Vnv0
(λε̄Rn) = ∅,

it follows that Π1D(H) is a homeomorphism. If C0 is not a singleton, then Π1D(H) is
a map on a closed interval, which immediately implies that it has a sink. �
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Proposition 4.6. For 1 ≤ n ≤ N and m ≥ −1, denote

unm := Ψn(vmRn) ∈ Bn
0 and anm := πh(u

n
m).

If vkRn does not converge to a sink as k →∞, then the following statements hold.

i) For i ≥ 0 such that i = O(1), we have

|ani − an−1| > λε̄Rn .

ii) We have an1 < an−1 < an0 = 0.

Proof. Let δ ∈ (ε̄, 1) with δ̄ < 1. Suppose towards a contradiction that

Vuni (λδ̄Rn) ∩ Vun−1
(λδ̄Rn) 6= ∅. (4.6)

Without loss of generality, assume that i ≥ 0 is the smallest number for which (4.6)
holds.

For y ∈ Iv0 , consider

Jn0 ⊂ (−λδ̄Rn , λδ̄Rn) and J n
0 := Ψ−n(Jn0 × {y}) ⊂ Vnv0

(λδ̄Rn).

By Propositions A.4 and A.5, and (4.1), we see that

|J n
iRn−1| < λ−ε̄Rn|Jn0 | < λδRn .

Moreover, since

J n
jRn ∩ Vun−1

(λδ̄Rn) = ∅ for 0 ≤ j < i,

we can argue by induction using Lemma 3.9 iii) and Lemma 4.1 that J n
iRn−1 is λ(1−ε̄)Rn-

horizontal in B−1. Then it follows from (4.6) and (3.4) that

|P n
0 (J n

iRn)| < λδRn|J n
iRn−1| < λδRn|Jn0 |.

We conclude that

F iRn(Vnv0
(λδ̄Rn)) b Vnv0

(λδ̄Rn).

By Propositions A.4 and A.5, and (4.1), we see that for p0 ∈ J n
0 :

‖DF iRn|Ehp0‖ < λ−ε̄Rn .

Arguing by induction using Lemma 3.9 i) and Lemma 4.1, we also see that Eh
piRn−1

is

λ(1−ε̄)Rn-horizontal in B−1. Consequently, by (4.6) and (3.4), we have

](DF iRn(Eh
p0

), Ev,n
piRn

) < λδRn .

It follows by Proposition A.5 that

‖Dp0F
2iRn‖ < λδRn .

We conclude that Vnv0
(λε̄Rn) is contained in an 2iRn-periodic sink. This is a contra-

diction.
Suppose towards a contradiction that an1 < an−1 < 0 is not true. Denote

B̌n
0 := [an−1 + λε̄Rn ,−λε̄Rn ]× Iv0 .
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Let Kn
0 := {(t, 0) ∈ B̌n

0 }. By Lemma 3.9 and (3.4), we see that Kn
0 maps injectively

into itself under the map P n
0 ◦ FRn ◦ (Ψn)−1. Consequently, v0 must converge to an

Rn-periodic sink. This is a contradiction. �

Theorem 4.7 (Critical Recurrence). Suppose that N =∞. Then

Z0 :=
∞⋂
n=1

BnRn = {v0}.

Consequently, the orbit of v0 is recurrent.

Proof. Let

Y0 :=
∞⋂
n=1

Bn0 , I∞0 := I1
0 ∩ Y0 and I∞0 := πh ◦ Φ0(I∞0 ).

Note that every point p0 ∈ Y0 is infinitely forward (L, ε, λ)-regular. Moreover, by
Proposition 3.2, W ss(p0) is vertically proper in B1

0. Hence, we have

Y0 =
⋃

p0∈I∞0

(W ss(p0) ∩ B1
0).

We claim that Y0 = W ss(v0) ∩ B1
0.

Recall that for n ∈ N, the curve InRn is vertical quadratic in Bn0 . Let vn0 ∈ In0 be
the unique point such that

Ev,n
vnRn

= DFRn(Eh
vn0

).

Denote

a0 := πh ◦ Φ0(v0) and an := P n
0 (vnRn).

By (3.3) and Lemma 3.3, we have

|P n
0 (v0)− a0| , |an − a0| < λ(1−ε̄)Rn .

Assume the correct orientation of Ψn so that we have P n
0 (pRn) ≤ an for p0 ∈ In0 .

Suppose towards a contradiction that there exists a uniform constant b > 0 such that
(a0 − b, a0) ⊂ I∞0 .

Let M ∈ N be sufficiently large so that for n ≥M , we have

a0 − b/2 < a0 − λε̄RM < an.

Using induction and Lemma 4.1, we see that for 0 ≤ k < Rn/RM , the curve InkRM is

O(1)-horizontal in Bn0 , and In(k+1)RM−1 is λ(1−ε̄)RM -horizontal in B−1.

We define Bn−kRM with 0 ≤ k < Rn/RM inductively as follows. Let Bn−kRM−1 be the
connected component of

F−1(Bn−kRM ) ∩ BMRM−1

containing InRn−kRM−1, and let

Bn−(k+1)RM
:= F−RM+1(Bn−kRM−1).
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Using induction and Lemma 4.2, we see that

∂Bn−kRM−1 \ ∂BMRM−1

consists of two O(1)-vertical curves Γn,±−kRM−1 in B−1, and

Γn,±−(k+1)RM
:= F−RM+1(Γn,±−kRM−1)

are λ(1−ε̄)RM -vertical in BM0 . We conclude that for 0 ≤ k < Rn/RM , the sets

Bn−(k+1)RM
⊃ InRn−(k+1)RM

are disjoint. Hence,
InkRM := PM

0 (InkRM )

are disjoint intervals in IM0 .
Consider the following map

gnk := PM0 ◦ F ◦ (PM−1|In(k+1)RM−1
)−1 ◦ FRM−1|InkRM .

Since In(k+1)RM−1 and In(k+1)RM
are uniformly horizontal in B−1 and B0 respectively, it

follows that ‖gnk‖Cr = O(1). Moreover,

Rn/RM−1∑
k=0

|InkRM | < |I
M
0 | = O(1),

and thus, we conclude from Theorem B.1 that

Gn := gnRn/RM−1 ◦ . . . ◦ gn0
has uniformly bounded distortion.

Let
In+1
−Rn = PM

0 (Bn+1
−Rn).

Then In+1
−Rn and In+1

0 are disjoint intervals in In0 . Moreover, we have |In+1
0 | = O(1)

and
|In+1
−Rn |, |I

n+1
Rn
| → 0 as n→∞.

However,
Gn(In+1

−Rn) = In+1
0 and Gn(In+1

0 ) = In+1
Rn

.

This is a contradiction. The result follows. �

5. Return Times of Bounded Type

For N ∈ N ∪ {∞}, let F be the N -times regular Hénon-like renormalizable dif-
feomorphism considered in Subsection 3.1. Suppose that the return times are of
b-bounded type for some integer b ≥ 2. Moreover, assume that ε is sufficiently small
so that (1.5) holds with ε0 ≥ ε̄. By only considering every other returns if necessary,
we may also assume without loss of generality that rn ≥ 3.

Lemma 5.1. For s ∈ {1, 2} and 1 ≤ n ≤ N − s, let Γ0 be a λ−ε̄Rn-horizontal curve
in Bn+s

0 . Then for 1 ≤ k ≤ Rn+s/Rn, the following statements hold:
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i) Γ(k−1)Rn is λ−ε̄Rn-horizontal in Bn0 ; and

ii) ΓkRn−1 is λ(1−ε̄)Rn-horizontal in B−1.

Proof. The result is an immediate consequence of Lemmas 3.9 iii) and 4.1, and Propo-
sition 4.6. �

Proposition 5.2. For 1 ≤ n < N , denote

unk := Ψn(vkRn) ∈ Bn
0 and ank := πh(u

n
k) for k ≥ −1.

If vkRn does not converge to a sink as k →∞, then the following holds.

i) We have

an1 < an2 < an0 = 0 and |ani − an2 | > λε̄Rn for i ∈ {0, 1}.
ii) Define

B̃n0 := V[un1 ,u
n
0 ](λ

ε̄Rn) and B̃n0 := (Ψn)−1(B̃n
0 ).

Then FRn(B̃n0 ) b B̃n0 .

Proof. By Proposition 4.6, we have

|an1 − an−1| > λε̄Rn .

Thus, by Theorem 3.6, we have

|an2 − an0 | > (λε̄Rn)2 − λ(1−ε̄)Rn > λε̄Rn .

Suppose towards a contradiction that

|an1 − an2 | < λε̄Rn .

Proceeding by induction, suppose that

|ani−1 − ani | < λε̄Rn for 1 < i < rn.

Iterating v(i−1)Rn and viRn , and applying Propositions A.4 and A.5, and Theorem 3.6,
we see that

|ani − ani+1| < λ−ε̄Rn|ani−1 − ani |+ λ(1−ε̄)Rn < λε̄Rn .

Consequently,
|an1 − anrn| < rnλ

ε̄Rn < λε̄Rn .

By Propositions 3.2 and 4.6, we have v−Rn ∈ Bn+1
0 . This is a contradiction.

Suppose towards a contradiction that

an2 < an1 − λε̄Rn < an1 . (5.1)

Consider

Jn0 := [an1 − λε̄Rn , an−1 − λεRn ] and J n
0 := (Ψn)−1(Jn0 × {0}).

By Lemma 4.1, we see that J n
Rn

is λ−ε̄Rn-horizontal in Bn0 . Let Fn := pRn(F ) and
fn := Π1D(Fn). It follows that fn maps Jn0 onto its image fn(Jn0 ) as an orienta-
tion preserving diffeomorphism. Observe that by (5.1), fn(Jn0 ) must contain a λε̄Rn-
neighborhood of Jn0 .
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For y ∈ Iv0 , let

J n,y
0 := (Ψn)−1(Jn0 × {y}).

By Lemma 3.9, we conclude that

‖J n,y
Rn
− J n

Rn‖Cr < λ(1−ε̄)Rn .

Let

Dn
0 := Jn0 × Iv0 and Dn0 := (Ψn)−1(Dn

0 ).

Consider the quadrilateral

D̂nRn := DnRn ∩ B
n
0

as horizontally foliated by {J n,y
Rn
} and vertically foliated by the vertical leaves in Bn0 .

Define

K0 := (Ψn)−1({(an1 , t) | t ∈ Iv0})
and

K−i := F−Rn(K−i+1 ∩ D̂nRn) for i ∈ N.
It follows from Lemma 4.2 and Lemma 3.9 iv) that {K−i}∞i=0 is a sequence of vertically
proper and λ(1−ε̄)Rn-vertical curves in Dn0 . Moreover, by Lemma 4.3, we see that any
point p ∈ K−i is iRn-times forward (L̄, ε̄, λ)-regular along the tangent direction to
K−i at p. It follows that K−i converges as i→∞ to a subarc in the stable manifold
of some Rn-periodic saddle q ∈ Dn0 of non-flip type.

Let Bn,r0 and Bn,l0 be the connected components of Bn0 \W ss(q) containing v0 and

vRn respectively. It follows that Bn,r/lRn
⊂ Bn,r/l0 . This is a contradiction.

Property ii) now follows immediately. �

By Proposition 5.2 ii), we may henceforth assume that

Bn
0 := V[vRn ,v0](λ

ε̄Rn) and Bn0 := (Ψn)−1(Bn
0 ) for 1 ≤ n ≤ N.

Proposition 5.3. Let s ∈ {1, 2} and 1 ≤ n ≤ N − s. For 0 ≤ k < Rn+s/Rn, Denote

unk := Ψn(vkRn), wnk := Ψn(vRn+s+kRn), ank := πh(u
n
k) and bnk := πh(w

n
k ).

Define

B̂n,s
kRn

:= V[unk ,w
n
k ](λ

ε̄Rn) ⊂ Bn
0 and B̂n,skRn := (Ψn)−1(B̂n,s

kRn
).

If vkRn does not converge to a sink as k →∞, then the following properties hold.

i) For integers 2 ≤ k < Rn+s/Rn, we have

an1 < bn1 < ank , b
n
k < bn0 < an0 = 0.

ii) For integers 0 ≤ k, l ≤ Rn+s/Rn with k 6= l, we have

|ank − anl | , |bnk − bnl | , |ank − bnl | , |ank − bnk | > λε̄Rn .

iii) For 0 ≤ k < Rn+s/Rn, we have

B̂n,skRn ⊃ B
n+s
kRn

and FRn+s−kRn(B̂n,skRn) b Bn+s
0 .
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Proof. By Propositions 4.6 and 5.2, we have

|an0 − bn0 | > λε̄Rn and FRn+s(B̂n,s0 ) b B̂n,s0

respectively. Applying Lemma 3.8 (Rn+s/Rn − 1)-times starting from un0 and wn0 , we
obtain

|ank − bnk | > λε̄Rn for 0 ≤ k < Rn+s/Rn.

By (3.7) and (3.4), we see that

FRn(B̂n,skRn) b B̂n,s(k+1)Rn
.

Hence, by Proposition 5.2 ii), we also have

FRn+s−kRn(B̂n,skRn) b Bn+s
0 .

It follows that for 0 ≤ k, l < Rn+s/Rn with k 6= l, we have

B̂n,skRn ∩ B̂
n,s
lRn

= ∅.
This implies the result. �

Theorem 5.4. Suppose FN is topologically renormalizable with return time 2 ≤ rN ≤
b, and that not every rN -periodic Jordan domain of FN contains a sink. Then F is
(N + 1)-times (L̄, ε̄, λ)-regular Hénon-like renormalizable.

Proof. Let DN+1
0 b Bn0 be an R̂N+1-periodic Jordan domain with

r̂N := R̂N+1/RN ≤ b.

Define

A0 :=
∞⋂
i=1

DN+1

iR̂N+1
.

By Proposition 4.5, we see that

VNv0
(λε̄RN ) ∩ A 6= ∅, where A :=

r̂N−1⋃
i=0

AiRN .

Without loss of generality, assume that

VNv0
(λε̄RN ) ∩ A0 6= ∅.

By (3.5) and Proposition A.4, it follows that

dist(vR̂N+1
,A0) < λε̄RN .

For m ≥ −1, let
aNm := πh ◦ΨN(vmRN ).

Define
Ǐ0 := (aNr̂N + λε̄RN ,−λε̄RN ) and V̌0 := (ΨN)−1(Ǐ0 × Iv0 ).

We claim that for some rN ≤ r̂N , we have

aN−1 ∈ πh ◦ΨN(V̌(rN−1)RN ).
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Suppose not. For y ∈ Iv0 , let

Ǐy0 := Ǐ0 × {y} and Ǐy0 := (ΨN)−1(Ǐy0 ).

Arguing inductively using Lemmas 3.9 and 4.1, and Propositions 4.6, 5.3 ii), A.4 and
A.5, we see that for l ≥ 1 such that

aN−1 6∈ πh ◦ΨN(Ǐy(m−1)RN
) for 0 ≤ m ≤ l, (5.2)

the arc ÎylRN−1 is λ(1−ε̄)lRN -horizontal in B−1, and

ǏylRN ∩
(
V̌mRN ∪ VNv0

(λε̄RN )
)

= ∅ for 0 ≤ m < l.

If (5.2) holds for all l ∈ N, then it is easy to see that the sequence V̌lRN converges
to a sink. Otherwise, let l > r̂N be the smallest integer such that

aN−1 ∈ πh ◦ΨN(V̌(l−1)RN ).

Denote
ǏiRN := πh ◦ΨN(Ǐ0

iRN
) for 0 ≤ i ≤ l.

Note that for s ∈ ǏiRN and t ∈ ǏjRN with i < j, we have

t < s < −λε̄RN .
For 0 ≤ m ≤ l, let Îm be the convex hull of the union

m−1⋃
i=0

ǏiRN ⊂ IN0 .

Proposition 7.7 implies that f lN |Îl is a unimodal map that maps Îl−1 as an orientation

preserving diffeomorphism to the interval fN(Îl−1) disjoint from Ǐ0, and maps the

turning point cN ∈ Îl \ Îl−1 of fN to fN(cN) that is λ(1−ε̄)RN -close to 0. This is clearly
impossible.

Denote RN+1 := rNRN . Define

IN+1
0 := (aNRN+1

− λε̄RN , λε̄RN ) c Ǐ0,

and let
BN+1

0 := IN+1
0 × Iv0 and BN+1

0 := (ΨN)−1(BN+1
0 ).

We showed that BN+1
RN+1−1 3 v−1, and that for any y ∈ Iv0 , the following holds:

• ǏymRN ∩ V
N
v0

(λε̄RN ) = ∅ for 1 ≤ m < r̂N ;

• Ǐy
R̂N−1

is λ(1−ε̄)R̂N+1-horizontal in B−1; and

• Ǐy
R̂N+1

is vertical quadratic in Bn0 .

Arguing as in Proposition 5.2, we see that FRN+1(BN+1
0 ) b BN+1

0 .
Adjust the left and right boundaries of BN+1

R̂N+1−1
⊂ B−1 so that they map to genuine

vertical leaves under Φ−1. Consider the genuine vertical foliation over Φ−1

(
BN+1

R̂N+1−1

)
.

By Lemma 4.2, we see that the pull back of this foliation under Φ−1 ◦ FRN+1−1 is a
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λ(1−ε̄)RN+1-vertical and vertically proper foliation over BN+1
0 . Let ΨN+1 be the genuine

horizontal chart that rectifies this foliation. We conclude that (FRN+1 ,ΨN+1) is a
Hénon-like return.

It remains to prove that this Hénon-like return is (L̄, ε̄, λ)-regular. The forward
regularity follows immediately from Proposition 4.3.

For s ∈ {0, 1} and p0 ∈ BN+s
RN+s

, let

Ev,N+s
p0

:= DΦ−1
0 (Egh

Φ0(p0)).

Let s = 1. By the regularity of the Nth Hénon-like return, p0 is RN -times backward
(L, ε, λ)-regular along

Ev,N+1
p0

= Ev,N
p0

.

Proceeding by induction, suppose that for some 1 ≤ l < rN+1, the point p0 is lRN -
times backward (L̄, ε̄, λ)-regular along Ev,N+1

p0
.

By Proposition A.8, Ev,N+1
p−lRN

is λ(1−ε̄)RN -vertical in BN0 . By (4.2) and (4.3), we see

that

λε̄RN <
‖DF−i|Ev,N+1

p−lRN
‖

‖DF−i|Ev,Np−lRn
‖
< λ−ε̄RN for 1 ≤ i ≤ RN .

Concatenating with the lRN -times backward (L̄, ε̄, λ)-regularity of p0, we conclude
that p0 is actually (l + 1)RN -times backward (L̄, ε̄, λ)-regular along Ev,N+1

p0
(with L̄

and ε̄ increased some uniform amount from the lth step). �

6. A Priori Bounds

For N ∈ N ∪ {∞}, let F be the N -times regularly Hénon-like diffeomorphism
considered in Section 5.

For 1 ≤ n ≤ N , we define a sequence of maps {Hn
i }∞i=0 as follows. First, let

H0
i := F i. Proceeding inductively, suppose Hn−1

i is defined. Write i = j + kRn with
k ≥ 0 and 0 ≤ j < Rn. Define

Hn
i := Hn−1

j ◦ Pn0 ◦ F kRn .

Observe that Hn
i is well-defined on F−kRn(Bn0 ).

Recall that

In0 := (Ψn)−1(In0 × {0}) = Φ−1
0 (In0 × {0}) = Ih0 ∩ Bn0 3 v0.

Lemma 6.1. Let s ∈ {1, 2} and 1 ≤ n ≤ N − s. Then Hn
i |In+s

1
is a diffemorphism

for 0 ≤ i < Rn+s.

Proof. The statement is clearly true for n = 0. Suppose the statement is true for
n− 1. If i < Rn, then

Hn
i |In+s

1
= Hn−1

i |In+s
1
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is a diffeomorphism. Suppose the same is true for i < (k − 1)Rn with 2 ≤ k <
Rn+s/Rn. Observe that

Hn
kRn = Pn0 ◦ F kRn .

By Lemma 5.1 i), the map Pn0 |In+s
kRn

is a diffeomorphism. For i = j+kRn with j < Rn,

we have

Hn
i := Hn−1

j ◦ Pn0 ◦ F kRn .

Since

Pn0 (In+s
kRn

) ⊂ In0 ,
the result follows. �

Lemma 6.2. For s ∈ {1, 2} and 1 ≤ n ≤ N − s, let Γ0 be a Cr-curve which is
λ−ε̄Rn-horizontal in Bn+s

0 . Then for 1 ≤ k ≤ Rn+s/Rn, we have

F kRn−1|Γ0 =
(
P1
−1|ΓkRn−1

)−1 ◦Hn
kRn−1|Γ0 .

Proof. If n = k = 1, then the result follows immediately from Lemma 3.10. Suppose
the result is true for some 1 ≤ n < N − s and 1 ≤ k < Rn+s/Rn. By definition, we
have

Hn
(k+1)Rn−1 = Hn

kRn−1 ◦ FRn .

If Γ0 is a Cr-curve which is λ−ε̄Rn-horizontal in Bn+s
0 , then by Lemma 5.1 i), we

see that ΓRn := FRn(Γ0) is a Cr-curve which is λ−ε̄Rn-horizontal in Bn0 . Thus, by
induction, we have

F kRn−1|ΓRn =
(
P1
−1|Γ(k+1)Rn−1

)−1

◦Hn
kRn−1|ΓRn .

Composing on the right by FRn|Γ0 , the result is true in this case.
Finally, suppose that the result is true for some 1 ≤ n < N − s and k = Rn+1/Rn.

Let γ0 := Pn+1
0 (Γ0). By the induction hypothesis, we have:

FRn+1−1|γ0 =
(
P1
−1|γRn+1−1

)−1

◦Hn
Rn+1−1|γ0 .

Applying Lemma 3.10:

FRn+1−1|Γ0 =
(
Pn+1
−1 |ΓRn+1−1

)−1

◦
(
P1
−1|γRn+1−1

)−1

◦Hn
Rn+1−1 ◦ Pn+1

0 |Γ0

=
(
P1
−1|ΓRn+1−1

)−1

◦Hn+1
Rn+1−1|Γ0 .

�

We also define another sequence of maps {Ĥi}RN−1
i=0 as follows (if N = ∞, then

RN =∞). If i < 2R1, let Ĥi := F i. Otherwise, let 1 ≤ n < N be the largest number

such that i ≥ 2Rn, and define Ĥi := Hn
i . Observe that by Lemma 5.1, we have

ĤRn−1|In0 = Hn−1
Rn−1|In0 = P1

−1|InRn−1
◦ FRn−1|In0 . (6.1)
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Theorem 6.3. There exists a uniform constant K = K(‖F‖C2 , R1) > 1 such that
for all 1 ≤ n ≤ N , we have

Dis(Ĥi, In0 ) < K for 0 ≤ i < Rn.

Corollary 6.4. For 1 ≤ n ≤ N , let hn : In0 → hn(In0 ) be the diffeomorphism given in
Theorem 3.6 iv). Then Dis(hn, I

n
0 ) < K, where K > 1 is the uniform constant given

in Theorem 6.3.

Observe that any number 2R1 ≤ i < RN can be uniquely expressed as

i = j + a1R1 + a2R2 + . . .+ anRn

for some 1 ≤ n < N , where

i) 0 ≤ j < R1;
ii) 0 ≤ am < rm for 1 ≤ m < n; and

iii) 2 ≤ an < 2rn.

In this case, we denote

i := j + [a1, a2, . . . , an].

We extend this notation to i < 2R1 by writing

i = j + [a1] for some a1 ∈ {0, 1}
We record the following easy observation.

Lemma 6.5. Let 2R1 ≤ i < RN be given by

i = j + [a1, . . . , an].

Then we have

Ĥi = Hn
i = F j ◦

(
P1

0 ◦ F a1R1
)
◦ . . . ◦

(
Pn0 ◦ F anRn

)
.

For 1 ≤ n ≤ N , we define a collection of arcs {J n
i }Rn−1

i=0 by

J n
i := Ĥi(In0 ) for 0 ≤ i < Rn. (6.2)

Lemma 6.6. Let 1 ≤ n ≤ N and 0 ≤ i < Rn. If

i = [0, . . . , 0, am, am+1, . . . , ak]

for some 1 ≤ m ≤ k < n, then we have J n
i ⊂ Im0 . Moreover, we have

J n
i+l = Hm−1

l (J n
i ) for 0 ≤ l < Rm.

Proof. Observe that

Pk1 ◦ F akRk(Ik+1
1 ) ⊂ Ik1 .

By Lemma 6.5, the result follows from induction. �

Lemma 6.7. For 1 ≤ n ≤ N and 0 ≤ i < Rn, we have J n
i ⊂ I1

i (mod R1).

Proof. The result follows immediately from Lemma 6.6. �
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Let Γ : [0, 1]→ R2 be a parameterized Jordan arc. For

0 ≤ a < b < c < d ≤ 1,

Let

Γ1 := Γ(a, b) and Γ2 := Γ(c, d).

Then we denote Γ1 <Γ Γ2. Let Γ3 be a subarc of Γ. We denote Γ1 ≤Γ Γ3 if either
Γ1 <Γ Γ3 or Γ1 = Γ3.

Henceforth, we consider I1
0 with parameterization given by

I1
0 (t) := (Ψ1)−1(t, 0) for t ∈ I1

0 .

Note that I1
0 ◦ P 1

0 = P1
0 . Moreover,

P 1
0 (vR1) < 0 = P 1

0 (v0).

Lemma 6.8. For s ∈ {1, 2}; 1 ≤ n ≤ N − s and 1 < k < Rn+s/Rn, we have

J n+s
Rn

<I1
0
J n+s
kRn

<I1
0
J n+s

0 .

Proof. Observe that

• For s ∈ {1, 2}:

J n+s
Rn

= Hn−1
Rn

(In+s
0 ) = Pn−1

0 ◦ FRn(In+s
0 ).

• For 1 < k < rn:

J n+1
kRn

= Hn
kRn(In+1

0 ) = Pn0 ◦ F kRn(In+1
0 ).

• For 1 < k < 2rn:

J n+2
kRn

= Hn
kRn(In+2

0 ) = Pn0 ◦ F kRn(In+2
kRn

).

In the case s = 1, and the case s = 2 and 1 < k < 2rn follow immediately from
Proposition 5.3.

Replacing n by n+1 and applying the above conclusion, we see that for 1 < l < rn+1:

J n+2
Rn+1

<I1
0
J n+2
lRn+1

<I1
0
J n+2

0 .

Note that for 2 < k < rn:

J n+2
lRn+1+kRn

= Hn
kRn|In+1

0
(J n+2

lRn+1
).

The result now follows from Lemma 6.1. �

Let Γ0 : [0, |Γ0|] → R2 be a C1-curve parameterized by its arclength, and let
Γ1 = Γ0(a, b) with (a, b) ⊂ [0, |Γ0|] be a subarc of Γ0. If for some 0 < l < |Γ0|/2, we
have a < l and b > |Γ0| − l then we denote

Γ1 = Γ0{−l} and Γ0 = Γ1{+l}.
Let Γ2 := Γ0(l, |Γ0| − l). Then we denote

Γ2 = Γ0[−l] and Γ0 = Γ2[+l].
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If Γ3 and Γ4 are C1-curves in R2 and we have Γ3[−l] ⊂ Γ4 ⊂ Γ3[+l], then we denote

Γ4 = Γ3{∼ l}.
These notations can be extended to intervals in R in the obvious way.

Let 2 ≤ n ≤ N , and consider the collection of arcs {J n
i }Rn−1

i=0 . By Lemma 6.7 and
Lemma 6.8, for 2R1 ≤ i < Rn, there exist unique numbers 0 ≤ ιn−(i), ιn+(i) < Rn such
that

ιn±(i) = i (mod R1),

and the arcs J n
ιn−(i) and J n

ιn+(i) are the two nearest neighbors of J n
i (one on each side)

in I1
i (mod R1). Define Ĵ n

i as the convex hull of J n
ιn−(i) ∪ J n

i ∪ J n
ιn+(i) in I1

i (mod R1).

We also define a subarc J̃ n
i of I1

i (mod R1) containing J n
i as follows. Write

i = j + [a1, a2, . . . , am]

for some 1 ≤ m < n. If m < n− 1, define

J̃ n
i := Ĵ n

i [+λε̄Rm ].

Otherwise, define
J̃ n
i := Ĵ n

i [−λε̄Rn−1 ].

Proposition 6.9. There exists a uniform constant K > 0 such that for 1 ≤ n ≤ N ,
we have

Rn−1∑
i=2R1

|J̃ n
i | < K.

Proof. Observe that
Rn−1∑
i=2R1

|J̃ n
i | <

Rn−1∑
i=2R1

|Ĵ n
i |+

n−1∑
m=1

2Rm+1λ
ε̄Rm .

By Lemma 6.8, the maximum number of overlaps among arcs in {Ĵ n
i }Rn−1

2R1
is three.

Hence, the above sum has a uniform upper bound. �

Lemma 6.10. For 1 ≤ n ≤ N , let Γ0 ⊂ In0 be an arc. Then we have

L̄−1λε̄i <
|Hn

i (Γ0)|
|Γ0|

< L̄λ−ε̄i for 0 ≤ i < Rn.

Proof. For p0 ∈ Γ0, let Ep0 ∈ P2
p0

be the direction tangent to Γ0 at p0. Note that p0

is Rn-times forward (L, ε, λ)-regular along Ev
p0

. Thus, by Theorem A.2 and Proposi-
tion A.5, we have

L̄−1λε̄l < ‖DF l|Ep0‖ < L̄λ−ε̄l for 0 ≤ l < Rn.

By Proposition 5.3 and Lemma 5.1 i), the curve ΓkRm := F kRm(Γ0) for 0 ≤ k < rm
is λ−ε̄Rm horizontal in Bm0 . Hence, by Theorem 3.6, we see that

L̄−1λε̄Rm < ‖DPm0 |EpkRm ‖ < L̄.
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Write

i = j + [a1, . . . , am]

for some 1 ≤ m < n. Then by Lemma 6.5 we have

Hn
i = F j ◦ P1

1 ◦ F a1R1 ◦ . . . ◦ Pm1 ◦ F amRm .

Concatenating the previous estimates, we obtain the desired result. �

Lemma 6.11. For s ∈ {1, 2}; 1 ≤ n ≤ N − s and 2 ≤ k < 2rn, let X−1 ⊂ BnRn−1 be
a set such that

P1
−1(X−1) = J n+s

kRn−1.

Then

Pn0 ◦ F (X−1) = J n+s
kRn
{∼ λ(1−ε̄)Rn}.

Proof. By Lemma 6.2, we have

In+s
kRn−1 =

(
P1
−1|In+s

kRn−1

)−1

(J n+s
kRn−1) =

(
P1
−1|In+s

kRn−1

)−1

◦ P1
−1(X−1).

Since

J n+s
kRn

= Pn0 ◦ F (In+s
kRn−1),

the claim follows from (3.4) and (3.7). �

Proposition 6.12. For 1 ≤ n ≤ N − 2 and 2Rn ≤ i < 2Rn+1, there exists an arc
K0,i containing In+2

0 such that the following properties are satisfied.

i) We have K0,i ⊃ K0,i+1.

ii) The map Ĥi|K0,i
is a diffeomorphism.

iii) We have Ĥi(K0,i) ⊃ J̃ n+1
i .

iv) Denote Ki := F i(K0,i). Then for 2 < k ≤ 2rn, the arc KkRn−1 is λ(1−ε̄)Rn-
horizontal in B−1, and

KkRn ⊂ BnRn \ Vv0(λε̄Rn).

Proof. We first extend I2
2R1−1 to an arc K2R1−1 ⊂ B−1 such that K2R1−1 is λ(1−ε̄)R1-

horizontal in B−1, and the curve K2R1 := F (K2R1−1) maps diffeomorphically onto
I1

0 \ Vv0(λε̄R1) under P1
0 |K2R1

. We define

K0,2R1 := F−2R1(K2R1).

Proceeding by induction, suppose the result holds for i ≤ (k − 1)Rn with 2 < k ≤
2rn. For 0 ≤ l < Rn, define

K0,(k−1)Rn+l := K0,(k−1)Rn .

Observe that

Ĥ(k−1)Rn+l = Hn
l ◦ F (k−1)Rn .

Thus, property ii) follows from Lemma 6.1; property iii) follows from Lemmas 6.6
and 6.10; and property iv) for KkRn−1 follows from Lemma 5.1 ii).
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If k < 2rn, then define KkRn to be the component of F (KkRn−1) \ Vv0(λε̄Rn) con-
taining In+2

kRn
. By Lemma 5.1 i), KkRn maps injectively under Pn0 . Lastly, property

iii) follows from Lemma 6.11.
If k = 2rn, then define K2Rn+1 to be the component of

F (K2Rn+1−1) ∩
(
Bn+1

0 \ Vv0(λε̄Rn+1)
)

containing In+3
2Rn+1

. Properties ii) and iii) for K2Rn+1 can be checked similarly as
above. �

By Lemma 6.8, for 1 ≤ n ≤ N − 2, there exists a unique number 2 ≤ κn < rn such
that

J n+1
kRn

<I1
0
J n+1
κnRn

≤I1
0
J n+1

0 for all 1 ≤ k < rn.

After relabelling ιn± if necessary, the following results hold.

Lemma 6.13. Let 1 ≤ n ≤ N − 2. Then

ιn+1
+ (i) = i+ κnRn for 2R1 ≤ i < Rn.

Proof. The claim follows immediately from Lemmas 6.1 and 6.6. �

Lemma 6.14. Let 3 ≤ n ≤ N . For 1 ≤ m ≤ n− 2 and 2 ≤ k < 2rm, we have

ιn−(kRm) = ιm+2
− (kRm) = iRm for some 1 ≤ i < 2rm.

Proof. By Lemmas 6.8, 6.1 and 6.6, we see that the extremal intervals in Jm+1
lRm

for
0 ≤ l < rm are J n

lRm
and J n

lRm+Rm+1
. Moreover, by Lemma 6.13, we have

J n
ιn+(lRm+jRm+1) ⊂ Jm+1

lRm
for j ∈ {0, 1}.

The claim follows. �

Proposition 6.15. For 3 ≤ n ≤ N and 2R1 ≤ i < Rn, there exists an arc Ĩn0,i such
that the following conditions hold for all 2R1 ≤ j ≤ i.

i) We have In0 ⊂ Ĩn0,i ⊂ K0,i.
ii) Denote

J̃ n
j,i−j := Ĥj(Ĩn0,i).

Then we have
J̃ n
j,i−j ⊂ J̃ n

j and J̃ n
i,0 ⊃ J̃ n

i .

Proof. First consider the case when i < 2Rn−1. Proceeding by induction, suppose
that the result is true for j ≤ kRm with 1 ≤ m ≤ n− 2 and 2 ≤ k < 2rm. Then the
result holds for kRm < j < (k + 1)Rm by Lemmas 6.1 and 6.6.

Note that we have,

Pm0 (KkRm) ⊃ J̃m+2
kRm

⊃ Jm+2

ιm+2
− (kRm)

∪ Jm+2
kRm
∪ Jm+2

ιm+2
+ (kRm)

,

where by Lemmas 6.13 and 6.14, we have

Jm+2

ιm+2
− (kRm)

= Jm+2
ιn−(kRm) ⊃ J

n
ιn−(kRm) and Jm+2

kRm
⊃ J n

kRm ∪ J
n
ιn+(kRm).
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Hence, there exists an arc I ′kRm ⊂ KkRm such that

Pm0 (I ′kRm) = J̃m+2
kRm

.

By Lemmas 6.10 and 6.2, we have

P1
−1 ◦ FRm−1(I ′kRm) = Ĵm+2

(k+1)Rm−1[+λε̄Rm ].

Thus, by Lemmas 6.11 and 6.13, we see that

Pm0 ◦ FRm(I ′kRm) ⊃ Ĵm+2
(k+1)Rm

,

and hence, the result holds for j = (k + 1)Rm.
Next, consider the case when i ≥ 2Rn−1. For j < 2Rn−1, the result follows by

the same argument as in the previous case. Proceeding by induction, suppose that
the result is true for j ≤ kRn−1 with 2 ≤ k < rn−1. Then the result holds for
kRn−1 < j < (k + 1)Rn−1 by Lemmas 6.1, 6.6 and Lemma 6.10.

Similar to the previous case, there exists an arc I ′kRn−1
⊂ KkRn−1 such that

Pn−1
0 (I ′kRn−1

) ⊃ J̃ n
kRn−1

and
P1
−1 ◦ FRn−1−1(I ′kRn−1

) = Ĵm+2
(k+1)Rn−1−1[−λε̄Rn ].

Let I ′′(k+1)Rn−1
be the connected component of

F (I ′(k+1)Rn−1
) \ Vv0(λε̄Rn)

containing In(k+1)Rn−1
. By Lemma 6.11, we have

Pn−1
0 (I ′′(k+1)Rn−1

) ⊃ Ĵ n
(k+1)Rn−1

[−λε̄Rn ].

Thus, the result holds for j = (k + 1)Rn−1. �

Let i ≥ 2R1 be a number given by

i = [0, . . . , 0, am, am+1, . . . , ak]

for some 1 ≤ m ≤ k so that am > 0. Denote

m̂(i) := m, k̂(i) := k and â(i) := am.

We extend this notation to the case when i = a1R1 with a1 ∈ {0, 1} by letting

m̂(i) := 1, k̂(i) := 1 and â(i) := a1.

Proposition 6.16. Let 1 ≤ n ≤ N and i = j + sR1 with 0 ≤ j < R1 and 0 ≤ s <
Rn/R1. For 0 ≤ l ≤ s, denote

m̂l := m̂(lR1), k̂l := k̂(lR1) and âl := â(lR1).

If m̂l = k̂l, let
Ǐnl := F lR1−1(Ĩn0,i).

Otherwise, let
Ǐnl := Im̂l+1

âlRm̂l−1.
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Then Ǐnl is λ(1−ε̄)Rm̂l -horizontal. Moreover, define

Ȟl := Pm̂l0 ◦ F ◦
(
P1
−1|Ǐnl

)−1

◦ FR1−1|I1
0
.

Then we have

Ĥi|Ĩn0,i = F j|I1
0
◦ Ȟs ◦ . . . ◦ Ȟ4 ◦ Ȟ3 ◦ P1

0 ◦ F 2R1|Ĩn0,i .

Proof. We proceed by induction. Clearly, the result is true for i < 2R1. Suppose that
the result is true for all i′ < i.

First, suppose i = 2Rk+1 for some 1 ≤ k + 1 < n. Denote

Γd := F d(Ĩn0,i) for 0 ≤ d ≤ i.

By Lemma 6.5:

Ĥ2Rk+1
|Γ0 = Pk+1

0 ◦ F 2Rk+1 = Pk+1
0 ◦ F ◦ FRk−1 ◦ F (2rk−1)Rk |Γ0 . (6.3)

By Proposition 6.12 iv), Γ(2rk−1)Rk is λ−ε̄Rk-horizontal in Bk0 . So it follows from
Lemma 3.10 that

FRk−1|Γ(2rk−1)Rk
=
(
P1
−1|Γ2Rk+1−1

)−1

◦ FRk−1 ◦ Pk0 |Γ(2rk−1)Rk
.

Note that
Ĥ(2rk−1)Rk = Hk

(2rk−1)Rk
= Pk0 ◦ F (2rk−1)Rk .

Substituting into (6.3), we obtain

Ĥ2Rk+1
|Γ0 = Pk+1

0 ◦ F ◦
(
P1
−1|Γ2Rk+1−1

)−1

◦ FRk−1 ◦ Ĥ(2rk−1)Rk |Γ0 .

By Lemma 6.2, we have

FRk−1|Ik0 =
(
P1
−1|IkRk−1

)−1

◦Hk
Rk−1|Ik0 .

Thus, we conclude:

Ĥ2Rk+1
|Γ0 = Pk+1

0 ◦ F ◦
(
P1
−1|Γ2Rk+1−1

)−1

◦Hk
Rk−1|Ik0 ◦ Ĥ(2rk−1)Rk |Γ0 .

We can apply the induction hypothesis to decompose Ĥ(2rk−1)Rk into factors of the

form Ȟl. Observe that for

e0 := (2rk − 1)Rk < e < 2Rk+1,

we have
m̂(e) = m̂(e− e0) < k̂(e) ≤ k and â(e) = â(e− e0).

Hence, we can also apply the induction hypothesis to Hk
Rk−1|Ik1 to decompose them

into factors of the form Ȟl. The claim follows.
Next, suppose that i = akRk for some 1 ≤ k < n and ak ≥ 3. Proceeding in the

same way as in the previous case, we obtain (in place of (6.3)):

Ĥi|Γ0 = Pk0 ◦ F akRk = Pk0 ◦ F ◦ FRk−1 ◦ F (ak−1)Rk |Γ0 .
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The rest of the argument is identical mutatis mutandis.
Lastly, suppose that

i = j + [a1, . . . , ak]

for some 1 < k < n such that

m̂(i) < k = k̂(i) < n.

Then

Ĥi = Hk−1
i−akRk ◦ P

k
0 ◦ F akRk = Hk−1

i−akRk |Ik0 ◦ ĤakRk .

Applying the induction hypothesis to ĤakRk and Hk−1
i−akRk |Ik0 and arguing as above, we

obtain the desired result. �

Let G : U → G(U) be a C1-diffeomorphism defined on a domain U ⊂ R2. For
a C1-curve Γ ⊂ U , we define the cross-ratio distortion CrD(G,Γ) of G on Γ as the
cross-ratio distortion of

GΓ := φ−1
G(Γ) ◦G ◦ φΓ,

where φΓ and φG(Γ) are parameterizations of Γ and G(Γ) by their respective arclengths
(see Section B).

Proposition 6.17. Let 1 ≤ n ≤ N and 1 ≤ i < Rn. Then there exists a uniform
constant ν > 0 such that the maps Ĥi and ĤRn−1 ◦ Ĥ−1

i have ν-bounded cross-ratio

distortion on Ĩn0,i and Ĥi(Ĩn0,Rn−1) respectively.

Proof. Consider the decomposition of Ĥi given in Proposition 6.16:

Ĥi|Ĩn0,i = F j|I1
0
◦ Ȟs ◦ . . . ◦ Ȟ3 ◦ P1

0 ◦ F 2R1|Ĩn0,i .

Denote

J := P1
0 ◦ F 2R1(Ĩn0,i) and Ȟ := Ȟs ◦ . . . ◦ Ȟ3.

To prove the cross-ratio distortion bound for Ĥi, it suffices to prove it for Ȟ on J .
The maps

φ0 := (P 1
0 |I1

0
)−1 : I1

0 → I1
0 and φ−1 := (P−1|I1

R1−1
)−1 : I1

R1−1 → I1
R1−1

give parameterizations of I1
0 and I1

R1−1 by their respective arclengths. Denote

J2 := φ−1
0 (J ) and h1 := φ−1

−1 ◦ FR1−1|I1
0
◦ φ0.

For 3 ≤ l ≤ s, let

Hl := φ−1
0 ◦ Ȟl ◦ . . . ◦ Ȟ3 ◦ φ0;

and

J ′l := h1(Jl−1) and Jl := Hl(J2).

By Propositions 6.16 and 3.11, there exist a diffeomorphism ψl : J ′l → ψl(J
′
l ) and a

constant al ∈ R such that

Hl(x) = al − (ψl ◦ h1 ◦Hl−1(x))2.
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By (B.2) and Lemma B.2, we see that

CrD(Ȟ,J ) := CrD(Hs, J2) >

(
s−1∏
l=2

CrD(h1, Jl)

)
·

(
s∏
l=3

CrD(ψl, J
′
l )

)
.

Note that the diffeomorphisms h1 and {ψl}sl=3 have uniformly bounded second deriva-
tives. Moreover, Propositions 6.9 and 6.15 implies that the total length of {Jl, J ′l}sl=3

is uniformly bounded. The bound on the cross ratio distortion of Ĥi now follows from
Lemma B.3.

Now, consider the decomposition of ĤRn−1 on Ĩn0,Rn−1:

ĤRn−1|Ĩn0,Rn−1
= FR1−1|I1

0
◦ ȞS ◦ . . . ◦ Ȟ3 ◦ P1

0 ◦ F 2R1 |Ĩn0,Rn−1
,

where S := Rn/R1 − 1. The same argument as above implies the bound on the cross
ratio distortion of

ĤRn−1 ◦ Ĥ−1
i |I = FR1−1|I1

0
◦ ȞS ◦ . . . ◦ ȞS−s ◦ FR1−1−j|I

on I := Ĥi(Ĩn0,Rn−1). �

Proof of Theorem 6.3. Consider the arcs {J n
i }Rn−1

i=0 . There exists 2R1 ≤ i1 < Rn such
that

|J n
ιn+(i1)| , |J n

ιn−(i1)| > k|J n
i1
|

for some uniform constant k > 0. By Proposition 6.15, there exists an arc Ĩn0,i1 ⊃ I
n
0

which is mapped diffeomorphically onto J̃ n
i1

by Ĥi1 .

Recall that the nearest neighbor of In0 in I1
0 is given by J n

κn−1Rn−1
. Let În0 be the

convex hull of In0 ∪ J n
κn−1Rn−1

. Then

(Ĩn0,i1 ∩ I
1
0 ) \ In0 ⊂ În0 \ In0 .

Hence, Proposition 6.17 and Theorem B.4 imply∣∣∣În0 \ In0 ∣∣∣ > k |In0 | .

By Lemma 6.11, we conclude that the two components of J̃ n
Rn−1 \J n

Rn−1 have lengths

greater than k
∣∣J n

Rn−1

∣∣. By Proposition 6.15, ĤRn−1 maps Ĩn0,Rn−1 ⊃ In0 diffeomorphi-

cally onto J̃ n
Rn−1. The result now follows from Proposition 6.17 and Theorem B.4. �

7. Uniform C1-Bounds

7.1. For unimodal maps. Define

sign(x) :=

{
+1 : if x ≥ 0
−1 : otherwise.
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Lemma 7.1. Let f : I → I be a Cr-unimodal map with the critical point at c ∈ I.
Then there exists a unique orientation-preserving Cr-diffeomorphism hf : I → hf (I)
such that hf (c) = 0 and

f(x) = f(c) + sign(f ′′(c))(hf (x))2.

Consider a C2-unimodal map f : I → I, and let h := hf be the diffeomorphism
given in Lemma 7.1. Suppose that for some K ≥ 1, we have

sup
x,y∈I

h′(x)

h′(y)
≤ K. (7.1)

Proposition 7.2. There exists a constant C ≥ 1 independent of f such that ‖f‖C1 <
CK.

Proof. Let f̂ : Î → Î be the normalization of fn, so that |Î| � 1. Let ĥ := hf̂ given in

Lemma 7.1. Note that ĥ is h composed with some affine transformation, which does
not affect its distortion. Hence:

sup
x,y∈Î

ĥ′(x)

ĥ′(y)
< K.

Since |ĥ(Î)| = O(1), it follows that there exists a uniform constant C̃ ≥ 1 independent

of f such that ‖ĥ‖C1 < C̃K. Since ‖f̂ ′‖ = ‖f ′‖, the result follows. �

Proposition 7.3. Suppose that the critical orbit of f does not converge to a sink.
Then for any N ∈ N, there exists a uniform constant τ = τ(K,N) > 0 such that

|fn(c)− c| > τ |I| for n ≤ N.

Proof. By conjugating with an affine map, we may assume that c = 0 and f(c) = 1.
Since f(I) b I, we see that there exists a uniform constant C = C(K) > 0 such that
|I| < C.

There exists a uniform constant C ′ = C ′(K,N) > 1 such that for any interval
J ⊂ I, we have |fn(J)| < C ′|J |. Let J := (−t, t) for some t � 1/C ′. Observe that
|fn(J)| < C ′t2 � t. Hence, if fn(0) ∈ (−t/2, t/2), then the orbit of 0 converges to
sink. �

Proposition 7.4. Suppose that |I| = O(1). Then there exists a uniform constant
c > 0 independent of f such that

inf
x∈I
|h′f (x)| > cK−1.

Proof. Observe that |hf (I)|2 � |I|. It follows that |hf (I)| > C|I| for some uniform
constant C > 0 independent of f . Thus, there exists x ∈ I such that h′f (x) is
uniformly bounded below. The result follows. �
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Proposition 7.5. Suppose that f is valuably renormalizable: there exist I1 ⊂ I and
R ≥ 2 such that v ∈ fR(I1) ⊂ I1. If the critical orbit of f does not converge to a
sink, then

|f i(I1)| > ρ|I| for 0 ≤ i ≤ R,

where ρ = ρ(K,R) ∈ (0, 1) is a uniform constant.

Proof. The result is an immediate consequence of Proposition 7.3. �

Proposition 7.6. Suppose that f is twice valuably renormalizable: there exist I2 ⊂
I1 ⊂ I and R2 > R1 ≥ 2 such that v ∈ fRn(In) ⊂ In for n ∈ {1, 2}. Let J be a
connected component of

I \
R1−1⋃
i=0

f i(I1).

If the critical orbit of f does not converge to a sink, then we have |J | > ρ|I|, where
ρ = ρ(K,R2) ∈ (0, 1) is a uniform constant.

Proof. Denote I1
i := f i(I1) for 0 ≤ i < R1. By Lemma 13.1, we may choose I1

i :=
[f i(v), f i+R1(v)].

For t > 0, suppose that the gap J0 between I1
k and I1

l with 0 ≤ k < l < R1 is
smaller than t. If Jm := fm(J0) with m = O(R2) maps onto an interval I1

i for some
0 ≤ i < R1, then by Proposition 7.2, we have t � |I1

i |.
By this previous observation, we may assume, after replacing J0 with JR1 if neces-

sary, that ∂J0 3 fk+R1(v). Under fR2−k+R1 , the point fk+R1(v) maps to the endpoint
fR2(v) of I2. Since

I1
l+R2−k+R1

∩ I1
0 = ∅,

the image JR2−k+R1 of the gap must contain I1
0 \ I2

0 . Again, by Proposition 7.2, we
have t � |I2

0 |. The result now follows from Proposition 7.5. �

7.2. For Hénon-like maps. For N ∈ N ∪ {∞}, let F be the N -times regularly
Hénon-like diffeomorphism considered in Section 5. For 1 ≤ n ≤ N , recall that the
nth pre-renormalization of F is given by

Fn := pRn(F ) := Ψn ◦ FRn ◦ (Ψn)−1,

and its 1D profile is given by

fn := Π1D ◦ pRn(F ).

Additionally, let hn := hfn be the diffeomorphism given by Lemma 7.1.

Proposition 7.7. Let K be the constant given in Theorem 6.3. Then there exists a
uniform constant C ≥ 1 independent of F such that for all 1 ≤ n ≤ N , we have

‖fn‖C1 , ‖Fn‖C1 < CK and inf
x∈In0
|h′n(x)| > (CK)−1.
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Proof. The estimate on ‖fn‖C1 is an immediate consequence of Theorem 6.3 and
Proposition 7.2. The estimate on ‖Fn‖C1 then follows from the fact that Fn is a
λ(1−ε̄)Rn-thin Hénon-like map. Lastly, the estimate on |h′n| is implied by Theorem 6.3
and Proposition 7.4. �

8. Compositions of Nearby Maps

We first record the following general estimate.

Lemma 8.1. Let d ∈ N. Consider Cr−1-maps H0, H̃0 : U → U ′ and Cr-maps
H1, H̃1 : V → V ′ defined on domains U, V ⊂ Rd with H0(U) b V . Suppose

‖H̃i −Hi‖Cr−1 < δ for i ∈ {0, 1}.

Then we have

‖H1 ◦H0 − H̃1 ◦ H̃0‖Cr−1 < δP (‖H1‖Cr , ‖H̃0‖Cr−1),

where P is a two-variable polynomial of degree r independent of the maps Hi, H̃i for
i ∈ {0, 1}.

Proof. Let di := Hi − H̃i. A straightforward computation shows that

H1 ◦H0 = H1 ◦ (H̃0 − d0)

= H1 ◦ H̃0 +O(‖DH1 ◦ H̃0‖‖d0‖)
= H̃1 ◦ H̃0 + d1 ◦ H̃0 +O(‖DH1 ◦ H̃0‖‖d0‖).

The result follows. �

For N ∈ N ∪ {∞}, let F be the N -times regularly Hénon-like diffeomorphism
considered in Section 5. Denote

Fn := Ψn ◦ FRn ◦ (Ψn)−1 and fn := Π1D(Fn).

Define

Πh(x, y) := (x, 0) and Πv(x, y) := (0, y).

Proposition 8.2. Let 1 ≤ n ≤ N . Then for 1 ≤ k < rn, we have

‖fkn − Π1D ◦ F k
n‖Cr−1 < ‖F k

n − F k
n ◦ Πh‖Cr−1 < Kλ(1−ε̄)Rn ,

where K ≥ 1 is a constant depending only on ‖fn‖Cr and b.

Proof. By Theorem 3.6 and Proposition 7.7, ‖πh ◦ Ψn‖Cr and ‖Fn‖C1 are uniformly
bounded. Moreover, by Theorem 3.6 iv), we have

‖Fn − Fn ◦ Πh‖Cr < λ(1−ε̄)Rn ,

where Πh(x, y) := (x, 0). The result now follows from Lemma 8.1. �
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9. Robustness of Regularity

For N ∈ N ∪ {∞}, let F be the N -times regularly Hénon-like diffeomorphism
considered in Section 5.

Proposition 9.1. There exists a uniform constant K ≥ 1 depending only on ‖F‖C2,
R1 and b such that the following condition holds. For 1 ≤ n < N and 0 ≤ k < rn, let

p0 ∈ Bn+1
kRn
⊂ Bn0 and z0 = (x0, y0) := Ψn(p0)

Then

1

K
< ‖D(πh ◦ F i

n)|Eghz0 ‖ ≤ ‖DF
i
n|Eghz0 ‖ < K for 0 ≤ i < rn − k.

Proof. The upper bound is given in Proposition 7.7. For the lower bound, by Propo-
sition 8.2, it suffices to show that

|f ′n(x0)| > 1/K for x0 = πh ◦Ψn(p0) with p0 ∈ Bn+1
kRn

.

Denote the critical point and the critical value of fn by cn and vn respectively. Nor-
malize fn : In0 → In0 to f̂n : În0 → În0 by conjugating it with an affine map S : In0 → În0
so that the critical point and the critical value of f̂n are 0 and 1 respectively. Let
ĥn := hf̂n be the diffeomorphism given in Proposition 7.1. By Corollary 6.4, we have

inf
x∈În0
|ĥ′n(x)| > 1/K.

By Proposition 5.3 and Proposition 7.7, we see that x̂0 := S(x0) is contained in

a λε̄Rn-neighborhood of the interval (f̂kn(1), f̂k+rn
n (1)). Then Proposition 7.3 implies

that |x̂0| > τ , where τ only depends on K and b. The result follows. �

Proposition 9.2. There exists a constant L ≥ 1 depending only on ‖Φ0‖C1 such
that the following holds. Let K ≥ 1 be the constant given in Proposition 9.1. For
1 ≤ n ≤ N , let p0 ∈ Bn0 . Then

(LKn)−1λ(1+ε)i < Jacp0 F
i < LKnλ(1−ε)i for 0 ≤ i < Rn.

Proof. Let z0 := Ψn(p0), and define

Ev/h,n
p0

:= (DΨn)−1(Egv/gh
z0

).

By Theorem 3.6, we have

‖(Ψn)−1 ◦ Φ0 − Id ‖Cr < λ(1−ε̄)Rn .

Consequently,

L−1 <
Jacp0 F

i

‖DF i|Eh,np0 ‖‖DF
i|Ev,np0 ‖

< L.

Plugging in the above inequality and the estimates in Proposition 9.1 into the forward
regularity condition for p0 along Ev,n

p0
, the result follows. �
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Theorem 9.3. Fix δ ∈ (ε̄, 1) such that bδ̄ < 1. Suppose that

LKNλδRN < 1, (9.1)

where K and L are constants given in Propositions 9.1 and 9.2 respectively. Let

C := LKN .

Then the following holds.
For m ∈ N ∪ {∞}, suppose that FN is (m + 1)-times topologically renormalizable

with return times of b-bounded type. Then F has N + m nested (C, δ, λ)-regular
Hénon-like returns.

Proof. Proceeding by induction, suppose that for N ≤ M < N + m, the map F has
M nested (C, δ, λ)-regular Hénon-like returns

{(FRn ,Ψn : Bn0 → Bn
0 )}Mn=1.

By Theorem 5.4, F has a (C, δ̄, λ)-regular Hénon-like return

(FRM+1 ,ΨM+1 : BM+1
0 → BM+1

0 ).

Let p0 ∈ BM+1
0 and

Ev/h
p0

:= (DΨM+1)−1(E
gv/gh

ΨM+1(p0)
).

By Propositions 9.1 and 9.2, p0 is RM+1-times forward (LKN , ε̄, λ)-regular horizon-
tally along Eh

p0
, and pRM+1

is RM+1-times backward (LKN , ε̄, λ)-regular horizontally

along Eh
pRM+1

. By Propositions A.13 and A.14, it follows that p0 is RM+1-times

forward (C, δ, λ)-regular (vertically) along Ev
p0

, and pRM+1
is RM+1-times backward

(C, δ, λ)-regular (vertically) along Ev
pRM+1

. �

10. Uniform Cr-Bounds

Let F be the diffeomorphism considered in Section 5. Suppose that N = ∞, so
that F is infinitely regular Hénon-like renormalizable. For n ∈ N, denote the nth
pre-renormalization F and its 1D profile by

Fn = pRn(F ) := Ψn ◦ FRn ◦ (Ψn)−1 and fn := Π1D(Fn)

respectively.
Consider the arcs

In0 := (Ψn)−1(In0 × {0}) = Ih0 ∩ Bn0 3 v0

and Ini := F i(In0 ) for i ∈ N. Let {J n
i }Rn−1

i=0 be the collection of arcs given in (6.2).
Recall that for 1 ≤ m ≤ n; 0 ≤ k < Rn/Rm and 0 ≤ i < Rm, we have

J n
0 := In0 , J n

kRm ⊂ J
m
0 and J n

i+kRm = Ĥi(J n
kRm). (10.1)

Moreover, {J n
i }Rn−1

i=0 is pairwise disjoint by Lemma 6.8.
The map

φ0 := P0|Ih0 : Ih0 → Ih0
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gives a parameterization of Ih0 by its arclength. For n ∈ N and 0 ≤ l < Rn/R1, let

JnlR1
:= φ0(J n

lR1
).

Observe that {JnlR1
}Rn/R1−1
l=0 is a pairwise disjoint set of intervals contained in R.

Moreover,
Jn+1
kRn

= Π1D ◦ F k
n (Jn+1

0 ) for 0 ≤ k < rn. (10.2)

Let γ ⊂ Γ be C1-curves in R2. We say that γ is commensurable with Γ if |γ| � |Γ|.

Proposition 10.1. Let n ∈ N and 0 ≤ i < Rn. Then any arc J n+1
i+kRn

for some
0 ≤ k < rn, or any component of

J n
i \

rn−1⋃
k=0

J n+1
i+kRn

is commensurable with J n
i . Consequently, there exists a uniform constant ρ ∈ (0, 1)

such that
Rn−1∑
i=0

|J n
i | < O(ρn).

Proof. By Lemma 7.7 and Proposition 8.2, it follows that

‖fkn − Π1D(F k
n )‖C0 = O(λ(1−ε̄)Rn). (10.3)

Denote the critical value of fn by vn. Then by Corollary 6.4 and Proposition 7.3, we
see that each component of

Jn0 \
2rn−1⋃
k=0

fkn(vn)

is commensurate with Jn0 . Thus, by (10.2) and (10.3), this implies the result in the
case i = 0. The case 0 < i < Rn then follows immediately from Theorem 6.3 and
(10.1). �

The map
φ−1 := P−1|I1

R1−1
: I1

R1−1 → I1
R1−1

gives a parameterization of I1
R1−1 by its arclength. Denote

JnlR1−1 := φ−1(J n
lR1−1) for 1 ≤ l ≤ Rn/R1.

Observe that {JnlR1−1}
Rn/R1

l=1 is a pairwise disjoint set of intervals contained in R. Define

γn−1 :=

Rn/R1−1⋃
l=3

JnlR1−1 ⊂ Ih−1 and γn0 :=

Rn/R1−1⋃
l=3

JnlR1
⊂ Ih0 . (10.4)

Proposition 6.16 gives the following decomposition of ĤRn−1:

ĤRn−1|In0 = FR1−1|I1
0
◦ ȞRn

R1
−1 ◦ . . . ◦ Ȟ3 ◦ P1

0 ◦ F 2R1|In0 .
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where for 3 ≤ l < Rn/R1, we have

Ȟl := Pm̂l0 ◦ F ◦
(
P1
−1|Ǐnl

)−1

◦ FR1−1|I1
0
.

Define

Γn−1 :=

Rn/R1−1⋃
l=3

Ǐnl ⊂ U−1 ⊂ R2.

Lemma 10.2. For n ∈ N and 3 ≤ l < Rn/R1, the map P−1 restricts to a diffeomor-
phism from Ǐnl to JnlR1−1 (and hence, also from Γn−1 to γn−1). Define

gn−1 := πv ◦ Φ−1 ◦ (P−1|Γn−1
)−1.

Then

‖gn−1|(−t,t)‖Cr = O(t1/ε).

Proof. The first claim follows immediately from Proposition 6.16.
Observe that m̂l is the largest integer such that

{0} ∪ JnlR1−1 ⊂ Jm̂lRm̂l−1.

Moreover,

JnlR1−1 ⊂ Jm̂l+1
âlR1−1 and 0 /∈ Jm̂l+1

âlR1−1.

By Proposition 6.16, Ǐnl is λ(1−ε̄)Rm̂l -horizontal. Additionally, by Proposition 10.1,
we have

dist(0, Ǐnl ) � ρm̂l

for some uniform constant ρ ∈ (0, 1). The estimate on Gn
−1 follows. �

Let G : I → J be a C1-diffeomorphism between two C1-curves I,J ⊂ R2. Define
the zoom-in operator Z by

Z(G)(t) := |J |−1 · φ−1
J ◦G ◦ φI(|I|t),

where φI : [0, |I|]→ I is the parameterization of I by its arclength (and φJ similarly
defined). Note that Z(G) : [0, 1]→ [0, 1].

This rest of this section is devoted to proving the following theorem.

Theorem 10.3. There exists a universal constant K > 0 such that for all n ∈ N
sufficiently large and 1 ≤ i < Rn, we have

‖Z(Ĥi|In0 )‖Cr < K.

Define

q(x) := sign(x)x2.

Denote Ǐh0 := q−1(Ih0 ). For n ∈ N and 0 ≤ l < Rn/R1, let J̌nlR1
:= q−1(JnlR1

). The
proof of Theorem 10.3 relies on the following key result.
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Proposition 10.4. Let n ∈ N. There exists a Cr-diffeomorphism ȟn : Ih0 → Ǐh0 with

‖(ȟn)±1‖Cr = O(1)

such that for 1 ≤ l ≤ Rn/R1, we have

φ0 ◦ ĤlR1 ◦ φ−1
0 |In0 = (qnl ◦ ȟnl ) ◦ . . . ◦ (qn2 ◦ ȟn2 ) ◦ (qn1 ◦ ȟn1 ),

where ȟnl : Jn(l−1)R1
→ J̌nlR1

and qnl : J̌nlR1
→ JnlR1

are diffeomorphisms given by

ȟnl := ȟn|Jn
(l−1)R1

and qnl := q|J̌nlR1

. (10.5)

Lemma 10.5. For n ∈ N and 3 ≤ l < Rn/R1, we have

P m̂l
0 ◦ F ◦ (P1

−1|Ǐnl )−1 ◦ FR1−1 ◦ φ−1
0 |Jn(l−1)R1

= qnl ◦ ȟnl (x),

where ȟnl and qnl are as defined in (10.5).

Proof. Define γ̌n0 := q−1(γn0 ), where γn0 is given in (10.4). By Lemmas 3.11 and 10.2,
there exists a Cr-diffeomorphism ψn−1,0 : γn−1 → γ̌n0 with

‖(ψn−1,0)±1‖Cr = O(1)

such that
P m̂l

0 ◦ F ◦ Φ−1
−1 ◦Gn

−1|Ǐnl = q ◦ ψn−1,0|Ǐnl ,
where Gn

−1(x) := (x, gn−1(x)). Precomposing with P−1 ◦ FR1−1 ◦ φ−1
0 |Jn(l−1)R1

gives the

desired result. �

Lemma 10.6. Let φ : U → φ(U) be a Cr-diffeomorphism defined on a domain
U ⊂ R. Then there exists a uniform constant

K = K(‖φ‖Cr , ‖φ′′/φ′‖C0) ≥ 1

such that for any interval I ⊂ U , we have

‖Z(φ|I)− Id ‖Cr ≤ K|I|.

Lemma 10.7. For 1 ≤ i ≤ n, let φi : [0, 1]→ [0, 1] be a Cr-diffeomorphism such that
n∑
i=1

‖φi − Id ‖Cr = O(1).

Then
‖φn ◦ . . . ◦ φ1‖Cr = O(1).

Proof of Theorem 10.3. For 1 ≤ l < Rn/R1, let 1 ≤ m̂l ≤ n be the largest integer
such that

{0} ∪ J̌nlR1
⊂ J̌m̂lRm̂l

.

Denote Lnm := {1 ≤ l < Rn/R1 | m̂l = m}. Then l ∈ Lnm if and only if

J̌nlR1
⊂ J̌mRm and J̌nlR1−1 ∩ J̌m+1

Rm+1
= ∅.
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Note that
n⋃

m=1

Lnm = {1 ≤ l < Rn/R1}.

Let Um
Rm

be the component of J̌mRm \ J̌
m+1
Rm+1

contained in R−. Applying Proposi-

tion 10.1 and Lemma 10.6 to Z
(
q|UmRm

)
, we see that∑

l∈Lnm

‖Z(qnl )− Id ‖Cr = O(ρm)

for some uniform constant ρ ∈ (0, 1). The result now follows from Proposition 10.1,
Proposition 10.4, and Lemmas 10.6 and 10.7. �

Theorem 10.8. For all n ∈ N sufficiently large, we have

‖Rn(F )‖Cr = O(1).

Proof. By Theorem 10.3 and (6.1), we see that

‖Π1D ◦ Rn(F )‖Cr = O(1).

Since Rn(F ) is a λ(1−ε̄)Rn-thin Hénon-like map, the result follows. �

11. Exponentially Small Pieces

Let F be the infinitely regular Hénon-like renormalizable diffeomorphism considered
in Section 10.

Recall that for a ≥ 0, we have

Hn
aRn = Pn0 ◦ F aRn ,

where Pn0 : Bn0 → In0 is the projection map onto In0 . Any integer i ≥ 2R1 can be
uniquely expressed as

i = a1Rn1 + . . .+ alRnl , (11.1)

where 1 ≤ ak < Rnk for 1 ≤ k < l, and 2 ≤ al < 2rnl . Define

Ĥi := F a1Rn1 ◦Hn2
a2Rn2

◦ . . . ◦Hnl
alRnl

◦ Pnl0 .

Denote m̂(i) := n1 and k̂(i) := nl. Then

Pm̂(i)
0 ◦ Ĥi = Ĥi ◦ P k̂(i)

0 . (11.2)

For convenience, we let Ĥ0 := Id.

Lemma 11.1. Let 2R1 ≤ i < Rn. Then

‖Ĥi ◦ Pn0 − F i|Bn0 ‖C0 < Knλ(1−ε̄)Rm̂(i)

for some uniform constant K ≥ 1.
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Proof. By Theorem 3.6 and Proposition 7.7, ‖(Ψm)±1‖Cr and ‖Fm‖C1 are uniformly
bounded. Moreover, by Theorem 3.6 iv), we have

‖Fm − Fm ◦ Πh‖Cr < λ(1−ε̄)Rm , (11.3)

where Πh(x, y) := (x, 0).
Let i be given by (11.1) with nl < n. Note that

FRnl = (Ψnl)−1 ◦ Fnl ◦Ψnl

and

ĤRnl
◦ Pn0 = FRnl ◦ Pn0 = (Ψnl)−1 ◦ (Fnl ◦ Πh) ◦Ψn.

Moreover,

ĤalRnl
=
(
(Ψnl)−1 ◦ F al−1

nl
◦Ψnl

)
◦ ĤRnl

and

F alRnl =
(
(Ψnl)−1 ◦ F al−1

nl
◦Ψnl

)
◦ FRnl

By Theorem 3.6, (11.3) and Lemma 8.1, we obtain

‖ĤalRnl
◦ Pn0 − F alRnl |Bn0 ‖C0 < Kλ(1−ε̄)Rnl

for some uniform constant K ≥ 1.
Proceeding by induction, suppose that

‖Ĥij+1
◦ Pn0 − F ij+1|Bn0 ‖C0 < K l−jλ(1−ε̄)Rnj+1 .

where 1 ≤ j < l and

ij+1 := anj+1
Rnj+1

+ . . .+ anlRnl .

Write

Ĥij = (Ψnj)−1 ◦ F
anj−1
nj ◦

(
Fnj ◦ Πh

)
◦Ψnj ◦ Ĥij+1

and

F ij |Bn0 = (Ψnj)−1 ◦ F
anj−1
nj ◦ Fnj ◦Ψnj ◦ F ij+1|Bn0 .

Applying Lemma 8.1, the result follows. �

Lemma 11.2. There exists a uniform constant ρ ∈ (0, 1) such that

Rn−1∑
i=0

diam(Ĥi(In0 )) = O(ρn).

Proof. For 3 ≤ l ≤ Rn/R1, consider the curve Ǐnl ⊂ U−1 given in Proposition 6.16.
By (11.2), we have

ĤlR1(In0 ) = F (Ǐnl ) = F ◦
(
P1
−1|Ǐnl

)−1

◦ FR1−1(J n
(l−1)R1

).

Thus, {ĤlR1(In0 )}Rn/R1

l=3 is the image of {J n
lR1
}Rn/R1−1
l=2 under

Gn := F ◦
(
P1
−1|Γn−1

)−1

◦ FR1−1,
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where

Γn−1 :=

Rn/R1−1⋃
l=3

Ǐnl .

Since Γn−1 is uniformly horizontal, ‖Gn‖Cr = O(1). The result now follows from
Proposition 10.1. �

Theorem 11.3. There exists a uniform constant ρ̃ ∈ (0, 1) such that for n ∈ N, we
have

Rn−1∑
i=0

diam(F i(BnRn)) = O(ρ̃n).

Proof. Choose 1 ≤ m < n to be determined later. By Lemma 11.1, we see that for
1 ≤ l < Rn/Rm, we have

diam(F lRm(BnRn)) < diam(ĤlRm(In0 )) +Knλ(1−ε̄)Rm̂(i) .

Thus, by Lemma 11.2, we have

Rn/Rm−1∑
l=0

diam(F lRm(BnRn)) = O(ρn) +
Rn

Rm

Knλ(1−ε̄)Rm .

For m sufficiently large, the expression on the right is bounded by O(ρn1 ) for some
uniform constant ρ1 ∈ (ρ, 1).

Let i = a0 + a1R1 + . . . + am−1Rm−1 + lRm with 0 ≤ aj < rj for 0 ≤ j < m and
1 ≤ l < Rn/Rm. We can write

F i−lRm = F a0 ◦ (Ψ1)−1 ◦ F a1
1 ◦Ψ1 ◦ . . . ◦ (Ψm−1)−1 ◦ F am−1

m−1 ◦Ψm−1.

By Theorem 3.6 and Proposition 7.7, we see that

‖F i−lRm‖C1 < Km

for some uniform constant K ≥ 1. Hence,

Rn−1∑
i=0

diam(F i(BnRn)) = RmK
m

Rn/Rm−1∑
l=0

diam(F lRm(BnRn)) = O(RmK
mρn1 ).

For n/m sufficiently large, the expression on the right is bounded by O(ρ̃n) for some
uniform constant ρ̃ ∈ (ρ1, 1). �

12. Regular Unicriticality

Let F be the infinitely regular Hénon-like renormalizable diffeomorphism considered
in Section 10. Recall that the renormalization limit set of F is given by

ΛF :=
∞⋂
n=1

Rn−1⋃
i=0

BnRn+i.
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By Theorem B, ΛF supports a unique invariant probability measure µ given by the
counting measure:

µ(Bni ) = 1/Rn for n, i ∈ N.

Proposition 12.1. With respect to µ, the Lyapunov exponents of F on ΛF are 0 and
log λµ < 0 for some λµ ∈ (0, 1).

Proposition 12.2. For any η > 0, there exist uniform constants Nη ∈ N and Cη ≥ 1
such that for p ∈ Bnk and Ep ∈ P2

p with n ≥ Nη and k ≥ 0, we have for all i ∈ N:

C−1
η λ(1+η)i

µ < ‖DF i|Ep‖ < Cηλ
−ηi
µ (12.1)

and

C−1
η λ(1+η)i

µ < Jacp(F
i) < Cηλ

(1−η)i
µ . (12.2)

For p ∈ Bn0 , define

Ev,n
p := D(Ψn)−1(Egv

Ψn(p))

and

Eh
p := D(Ψn)−1(Egh

Ψn(p)) = D(Φ0)−1(Egh
Φ0(p)).

Theorem 12.3. For any ε > 0, there exists Lε ≥ 1 such that for all n ∈ N, the nth
Hénon-like return (FRn ,Ψn) is (Lε, ε, λµ)-regular.

Proof. Choose η ∈ (0, ε). It suffices to show the result for n ≥ Nη given Proposi-
tion 12.2. Let p0 ∈ Bn0 . By Proposition 9.1 and (12.2), we see that p0 is Rn-times
forward (O(1), η̄, λµ)-regular horizontally along Eh

p0
; and pRn is Rn-times backward

(O(1), η̄, λµ)-regular horizontally along Eh
pRn

. The result now follows from Proposi-
tions A.13 and A.14. �

Recall that by Theorem 4.7, we have
∞⋂
n=1

BnRn = {v0}.

Theorem 12.4. The orbit {vm}m∈Z is a regular quadratic critical orbit.

Proof. By Theorem 12.3, v0 is infinitely forward and backward (Lε, ε, λµ)-regular
along E∗v0

= Ess
v0

= Ec
v0

for all ε > 0. Thus, {vm}m∈Z is a regular critical orbit. The
quadratic tangency of W ss(v0) and W c(v0) at v0 is given in Proposition 3.4 iii). �

12.1. Critical cover. Let δ = ε̄ for some ε ∈ (0, 1). Choose η ∈ (0, ε). Proposi-
tion 12.2 and Theorem 12.3 imply that by replacing F on Ω with FRn1 on Bn1

0 for
some n1 ∈ N sufficiently large, we may henceforth assume the following.

• The map F is η-homogeneous: for all p ∈ Ω and Ep ∈ P2
p, we have

λ1+η
µ < ‖DF |Ep‖ < λ−ηµ and λ1+η

µ < Jacp F < λ1−η
µ .

• For n ∈ N, the nth Hénon-like return (FRn ,Ψn) is (1, η, λµ)-regular.
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Denote ε′ := (1 + ε̄)ε > ε. For z = (a, b) ∈ Bn
0 and t ≥ 0, let

Vz(t) := [a− t, a+ t]× Iv0 .

If VΨn(p)(t) ⊂ Bn
0 for some p ∈ Bn0 ; t ≥ 0 and 1 ≤ n ≤ N , then we denote

Vnp (t) := (Ψn)−1(VΨn(p)(t)).

We now show that F is (δ, ε)-regularly unicritical on ΛF . First, we need to define a
suitable cover of the iterated preimages of critical value v0. For n ≥ 0 and 1 ≤ i < rn,
let Cn be the connected component of

BnRn ∩ V
n
v−Rn

(λε
′Rn
µ )

containing v−Rn . Define

Cni := F i(Cn) for 0 ≤ j < Rn,

and

CN :=
N⋃
n=0

Rn+1−1⋃
i=0

Cn+1
i .

Note that {v−i}RN+1

i=1 ⊂ CN .

Proposition 12.5. We have

diam(Cni ) < λεRnµ .

Consequently,

CN ⊂
RN+1⋃
i=1

Dv−i(λ
εi
µ ).

Proof. By Theorem 3.6 iv), BnRn is a λ
(1−ε̄)Rn
µ -thick strip around the curve FRn(In0 ),

which is vertical quadratic in Bn0 with the vertical tangency λ
(1−η̄)Rn
µ -close to v0. By

Proposition 4.6, we have

Vv−Rn (λη̄Rnµ ) ∩ Vv0(λη̄Rnµ ) = ∅.

By Lemma 4.1, the connected component Γn of the curve

InRn ∩ Vv−Rn (λη̄Rnµ )

is λη̄Rn-horizontal in Bn0 . Consequently,

diam(Cn) � |Γn| < λ−η̄Rnλε
′Rn .

Then by η-homogeneity of F , we have

diam(Cni ) < λ−η̄i diam(Cn)

for 0 ≤ i < Rn. The result follows. �
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12.2. Forward regularity away from the critical cover. For all p ∈ ΛF \ {v0},
there exists a unique number dp ≥ 0 such that p ∈ Bdp0 \B

dp+1
0 . Define depth(p) := dp.

If p = v0, define depth(p) = ∞. Let p0 ∈ ΛF . For N ∈ N, let 0 ≤ S ≤ N be the
largest number satisfying

d = depth(pS) ≥ depth(pi) for 0 ≤ i ≤ N.

Define the valuable moment and the valuable depth of the N-times forward orbit of
p0 as

vm(p0, N) := S and vd(p0, N) := d

respectively.

Lemma 12.6. Let p0 ∈ ΛF and N ∈ N. Denote S := vm(p0, N) and d := vd(p0, N).
Write

S = s0 + s1R1 + . . .+ sdRd,

where 0 ≤ si < ri for 0 ≤ i ≤ d. If p0 \Cd, then for 0 ≤ n ≤ d and 0 ≤ s ≤ sn, we
have

pSn−1+sRn /∈ Vnv0
(λε̄Rnµ ) where Sn−1 := s0 + s1R1 + . . .+ sn−1Rn−1.

Proof. If q0 ∈ ΛF ∩Vnv0
(λε̄Rn), then it follows from Theorem 3.6 iv) and η-homogeneity

that q−Rn+1 ∈ Cn+1. Thus, if pS′ ∈ Vnv0
(λε̄Rnµ ), where S ′ := Sn−1 + sRn, then

p−Rn+1+S′ ∈ Cn+1. Therefore,

p0 ∈ Cn+1
Rn+1−S′ ⊂ Cn ⊂ Cd.

This is a contradiction. �

Lemma 12.7. Denote
εi = (1 + ε̄)iε̄ for i ≥ 0.

Let q0 ∈ Bn0 and Eq0 ∈ P2
q0

. If

](Eq0 , E
v,n
q0

) > λε1Rnµ ,

then
‖DFRn|Eq0‖ > λε2Rnµ .

Moreover, if qRn /∈ Vnv0
(λε0Rnµ ), then

](EqRn , E
v,n
qRn

) > λε1Rnµ .

Proof. The estimate on ‖DFRn|Eq0‖ follows immediately from the (1, η, λµ)-regularity

of the Hénon-like return (FRn ,Ψn). The estimate on ](EqRn , E
v,n
qRn

) follows immedi-
ately from Lemma 4.1. �

Lemma 12.8. For n, k ∈ N, let q0 ∈ Bn+k
0 and Eq0 ∈ P2

q0
. If

Rn ≥ ε̄Rn+k and ](Eq0 , E
v,n+k
q0

) > λε̄Rn+k
µ ,

then
‖DFRn|Eq0‖ > λε̄Rnµ and ](EqRn , E

v,n
qRn

) > λη̄Rnµ .
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Proof. Observe that

η̄Rn > η̄ε̄Rn+k = ε̄Rn+k.

So

λη̄Rnµ < λε̄Rn+k
µ .

By Theorem 3.6 iii), we have

](Ev,n+k
q0

, Ev,n
q0

) < λ(1−η̄)Rn
µ .

Hence,

](Eq0 , E
v,n
q0

) > λε̄Rn+k
µ − λ(1−η̄)Rn

µ > λη̄Rnµ − λ(1−η̄)Rn
µ = λη̄Rnµ .

Since depth(qRn) < n, we have qRn /∈ Vnv0
(λη̄Rnµ ) by Proposition 4.6. The result then

follows from Lemma 4.1. �

Theorem 12.9. Let p0 ∈ ΛF and N ∈ N. Define

Êpi := D(F i ◦ Φ−1
0 )(Egh

p0
) for i ≥ 0.

If p0 6∈ Cd with d := vd(p0, N), then

‖DFN |Êp0‖ > λε̄Nµ .

Proof. Write

S := vm(p0, N) = s0R0 + . . .+ sdin
Rdin

with 0 ≤ sn < rn for 0 ≤ n ≤ din ≤ d. Using Lemmas 12.6 and 12.7, and arguing
inductively, we see that

‖DF S|Êp0‖ > λε̄Sµ , pS /∈ Vdin
v0

(λ
η̄Rdin
µ ) and ](ÊpS , E

v,din
pS

)) > λ
η̄Rdin
µ .

Let

T := N − S = t0R0 + . . .+ tdoutRdout

with 0 ≤ tn < rn for 0 ≤ n ≤ dout < d. If dout ≥ din, then

pS /∈ Vdout
v0

(λ
η̄Rdout
µ ) ⊂ Vdin

v0
(λ

εRdin
µ ) and ](ÊpS , E

v,dout
pS

)) > λ
η̄Rdout
µ .

Thus, by Lemma 12.6, we have

‖DF tdout
Rdout |ÊpS ‖ > λ

ε̄tdout
Rdout

µ .

Denote

Tn := t0R0 + . . .+ tnRn and 0 ≤ n ≤ dout.

Note that Tn < Rn+1 ≤ bRn.
If dout < din, let ď := dout, and denote tdin

:= sdin
. Otherwise, let ď < dout be the

largest integer such that tď > 0. Proceeding by induction, suppose for some n ≤ ď
with tn > 0, we have

‖DFN−Tn|Êp0‖ > λε̄(N−Tn)
µ and ](ÊpN−Tn , E

v,n+k
pN−Tn

)) > λη̄Rn+k
µ ,

where k > 0 is the smallest number such that tn+k > 0.
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If Rn ≥ ε̄Rn+k, then Lemma 12.8 implies that

‖DF tnRn|ÊpN−Tn ‖ > λε̄tnRnµ and ](ÊpN−Tn−1
, Ev,n

pN−Tn−1
)) > λη̄Rnµ .

If Rn < ε̄Rn+k, then by η-homogeneity, we have

‖DFN |Êp0‖ > λ(1+η)Tn
µ ‖DFN−Tn+k |Êp0‖ > λε̄Rn+k

µ λε̄(N−Tn+k)
µ > λε̄Nµ .

�

13. Renormalization Convergence

13.1. For unimodal maps. Let r ≥ 2 be an integer. Consider a Cr-unimodal
map f : I → I with the critical value v ∈ I. For an integer 0 ≤ s ≤ r and a
number t > 0, the t-neighborhood of f with respect to the Cs-topology is denoted
Ns(f, t). For K ≥ 1, we say that f has K-bounded non-linearity if (7.1) holds for the
diffeomorphism h := hf given by Lemma 7.1. Let Ur be the space of all normalized
Cr-unimodal maps, and let Ur(K) the set of maps in Ur withK-bounded non-linearity.

Suppose f is valuably renormalizable: there exists an R-periodic interval I1 ⊂ I for
some integer R ≥ 2 such that fR(I1) 3 v. Then the corresponding renormalization
type τ(f) is given by the order of points in {f i(v)}Rn−1

i=0 ⊂ I. Note that there is
only one renormalization type for the period-doubling case R = 2. If f is N -times
renormalizable, then its N-renormalization type is given by

τN(f) := [τ(f), . . . , τ(RN−1
1D (f))].

Lemma 13.1. Let f : I → I be a C2-unimodal map with the critical value v. If
f is topologically renormalizable with return time R ≥ 2, and not every R-periodic
subinterval I1 ⊂ I of f contains a sink, then f is valuably renormalizable. In this
case, the minimal R-periodic interval containing v is given by I1 = [fR(v), v].

Lemma 13.2. For an integer b ≥ 2 and a constant K ≥ 1, there exists a uniform
constant t0 = t0(b, K) > 0 such that the following holds. Let f ∈ Ur(K) be twice
valuably renormalizable with return times of b-bounded type, and suppose the critical
orbit of f does not converge to sink. If f̃ ∈ Ns(f, t)∩U2 with 0 ≤ s < r and t ∈ [0, t0],

then f̃ is valuably renormalizable with τ(f̃) = τ(f). Moreover,

‖R1D(f)−R1D(f̃)‖Cs < Ct,

where C ≥ 1 is a uniform constant depending only on b and ‖f‖Cs+1.

Proof. Let Ri for i ∈ {1, 2} be the return times of the renormalizations of f . By
Lemma 13.1, we have

f(1) < fR1+1(1) < fR1(1) < fR2+R1(1) ≤ f 2R1(1) ≤ fR2(1) < 1.

Moreover, by Propositions 7.3, 7.5 and 7.6, there exists a uniform constant η =
η(b, K) ∈ (0, 1) such that the components of

I \
2R1⋃
i=−1

f i(1)
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have length greater than η. The renormalizability of f̃ now follows immediately from
Lemma 13.1. Then Proposition 7.6 implies the claim τ(f̃) = τ(f).

By Lemma 8.1, we see that

‖fR − f̃R‖Cs < Ct.

Proposition 7.5 implies that R1D(f) is a rescaling of fR by a uniform factor ρ =
ρ(b, K) ∈ (0, 1). The result now follows. �

Consider the full renormalization attractor A contained in the space Uω of analytic
unimodal maps. For an integer b ≥ 2, the compact invariant subset of A consisting
of all infinitely renormalizable unimodal maps with return times of b-bounded type
is denoted Ab.

The following is a consequence of the fact that Ab is a hyperbolic attractor for the
renormalization operator R1D acting on U3.

Lemma 13.3. Let r ≥ 3 and N ∈ N be integers, and let K ≥ 1 be a number.
Suppose f ∈ Ur(K) is N-times valuably renormalizable. Then for any f ∗ ∈ Ab with
τN(f) = τN(f ∗), we have:

‖Rn
1D(f)−Rn

1D(f ∗)‖Cr = Cρn‖f − f ∗‖Cr for 1 ≤ n < N/2,

where ρ = ρ(b) ∈ (0, 1) is a universal constant and C ≥ 1 is a uniform constant
depending only on b, K and ‖f‖Cr .

13.2. For Hénon-like maps. Consider a Cr-Hénon-like map F : B → B. For
K ≥ 1, we say that F has K-bounded non-linearity if Π1D(F ) ∈ Ur(K). For β ∈ (0, 1],
let HLrβ be the space of normalized β-thin Cr-Hénon maps, and let HLrβ(K) be the
set of all maps in HLrβ with K-bounded non-linearity.

Proposition 13.4. For an integer b ≥ 2, let ε ∈ (0, 1) be a sufficiently small
constant such that bε̄ < 1. Then for K ≥ 1, there exists a uniform constant
β0 = β0(ε,K, ‖F‖Cr) ∈ (0, 1) such that the following holds. Let F ∈ HLrβ(K) with
β ≤ β0, and let f := Π1D(F ). If F is twice Hénon-like renormalizable with return
times of b-bounded type, and the orbit of the critical value of F does not converge to a
sink, then f is valuably renormalizable. Conversely, if f is twice valuably renormaliz-
able with return times of b-bounded type, and the critical orbit of f does not converge
to a sink, then F is (1, ε, β)-regular Hénon-like renormalizable. In either case, we
have

‖Π1D ◦ R(F )−R1D(f)‖Cr−1 < β1−ε.

Proof. Choose β0 sufficiently small such that we have Cβε0 < ρ, where C ≥ 1 (depend-
ing only on K and ‖F‖Cr) and ρ ∈ (0, 1) (independent of F ) are suitable uniform
constants. By Lemma 8.1, we have

‖fk − Π1D(F k)‖Cr−1 ≤ ‖F k − F k ◦ Πh‖Cr−1 < β1−ε for 0 ≤ k < b2, (13.1)

where Πh(x, y) := (x, 0).
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Suppose that F is twice Hénon-like renormalizable. Let

{(FRn ,Ψn : Bn0 → Bn
0 )}2

n=1

be the Hénon-like returns of F . Then by Theorem 5.4, we see that {(FRn ,Ψn)}2
n=1 is

(1, ε, β)-regular. Note that the critical value of f is given by 1. Let v0 ∈ B2
0 be the

critical value of {(FRn ,Ψn)}2
n=1 as defined in Section 3. Then by Theorem 3.6 iv), we

see that

|πh(v0)− 1| < β1−ε.

We conclude from Proposition 5.2 and (13.1) that f is valuably renormalizable.
Conversely, suppose that f is twice valuably renormalizable: for i ∈ {1, 2}, there

exist Ri-periodic subinterval I i 3 1 of f . Arguing as in the proof of Lemma 13.2, we
have f 2R1(1) ∈ I1 and the components of

I1 \
2R1⋃
i=−1

f i(1)

have lengths bounded below by some uniform constant η = η(b, K) ∈ (0, 1).
For 0 ≤ i < R1, let Ĩ1

i be an interval that compactly contains f i(I1), and the
components of Ĩ1

i \ f i(I1) have lengths commensurate to β ε̄. Define

Vi := Ĩ1
i × πv(B).

By (13.1) and the previous observation, it follows that we have F (Vi) b Vi+1, and
F (VR1−1) b V0.

For p0 ∈ V0, let

Ev,1
p0

:= DF−R1(Egh
pR1

).

By Lemma 4.2, we see that DF i(Ev,1
p0

) is β1−ε-vertical for 0 ≤ i < R1. It follows

that there is a genuine chart Ψ : V0 → Ψ(V0) that rectifies Ev,1
p for p ∈ V0 to genuine

vertical directions such that

‖Ψ±1 − Id ‖Cr < β1−ε.

It follows immediately that (FR1 ,Ψ) is a (1, ε, β)-regular Hénon-like return.
Finally, by Proposition 7.3, R1D(f) is a rescaling of fR1 by a uniform constant

ρ ∈ (0, 1) depending only on b andK. The last inequality now follows from (13.1). �

Let F be the infinitely regular Hénon-like renormalizable diffeomorphism considered
in Section 10. For n ∈ N, denote

F̂n := Rn(F ) and f̂n := Π1D(F̂n).

By Theorem 3.6 iv) and Corollary 6.4, there exists a uniform constant K ≥ 1 such

that F̂n ∈ HLrβn(K) with βn = λ(1−ε̄)Rn . By replacing F with FRn0 |Bn0
0

for some
sufficiently large n0 ∈ N, we may assume that βn is less than the value β0 given in



56 SYLVAIN CROVISIER, MIKHAIL LYUBICH, ENRIQUE PUJALS, JONGUK YANG

Proposition 13.4. Then f̂n is valuably renormalizable for n ≥ 0. For k ∈ N ∪ {∞},
define the k-renormalization type of F̂n as

τk(F̂n) := [τ(f̂n), τ(f̂n+1), . . . , τ(f̂n+k−1)].

Proposition 13.5 (Shadowing Lemma). For N ∈ N, there exists n1 = n1(N) ∈ N
such that for all n ≥ n1, the map f̂n is N-times valuably renormalizable with τN(f̂n) =

τN(F̂n). Moreover, we have

‖fn+k −Rk
1D(fn)‖Cr−1 < Ckλ(1−ε̄)Rn for 1 ≤ k ≤ N

for some uniform constant C ≥ 1.

Proof. The caseN = 1 follows from Proposition 13.4. Proceeding inductively, suppose
that the result is true for all 1 ≤ k < N . In particular, we have

‖fn+N−1 −RN−1
1D (fn)‖Cr−1 < CN−1λ(1−ε̄)Rn .

Choosing n1 ≤ n sufficiently large, it follows from Lemma 13.2 and Proposition 13.4
that fn+N−1 and RN−1

1D (fn) are both valuably renormalizable, and

τ(fn+N−1) = τ(RN−1
1D (fn)).

Hence, fn is N -times valuably renormalizable, and

τN(fn) = τN(F̂n).

For m ∈ N, Proposition 13.4 implies that

‖fn+m −R1D(fn+m−1)‖Cr−1 < λ(1−ε̄)Rn+m .

Applying Lemma 13.2 0 ≤ k < N times, we obtain

‖Rk
1D(fn+m)−Rk+1

1D (fn+m−1)‖Cr−1 < Ckλ(1−ε̄)Rn+m .

Thus,

‖fn+N −RN
1D(fn)‖Cr−1 ≤

N−1∑
k=0

‖Rk
1D(fn+N−k)−Rk+1

1D (fn+N−(k+1))‖Cr−1

<

N−1∑
k=0

Ckλ(1−ε̄)Rn+N−k

< O(CNλ(1−ε̄)Rn).

�

Proof of Theorem D. Statements i) and ii) are given by Theorem 3.6. Statement iii)
is given by Theorem 10.8.

Suppose r ≥ 4. Let f ∗ ∈ Ab so that

T∞(f ∗) = τ∞(F ) := [τ(f̂0), τ(f̂1), . . .].

Denote f ∗n := Rn
1D(f ∗) for n ≥ 0.
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Consider the constants C ≥ 1 and ρ ∈ (0, 1) given in Lemma 13.3. Choose N ∈ N
sufficiently large so that CρN < ρ̃ < 1. Let n1 = n1(2N) ∈ N be the number given in
Proposition 13.5. Then for all n ≥ n1, we have

‖fn+N − f ∗n+N‖Cr−1 ≤ ‖fn+N −RN
1D(fn)‖Cr−1 + ‖RN

1D(fn)−RN
1D(f ∗n)‖Cr−1

≤ O(λ(1−ε̄)Rn) + ρ̃‖fn − f ∗n‖Cr−1

< ρ̃′‖fn − f ∗n‖Cr−1 ,

for some uniform constant ρ̃′ ∈ (0, 1). �

Appendix A. Quantitative Pesin Theory

Consider an orientation preserving Cr-diffeomorphism F : Ω→ F (Ω) b Ω satisfy-
ing ‖F‖Cr = O(1). Let λ, ε ∈ (0, 1). Assume ε̄ < 1.

Let p0 ∈ Ω and Ev
p0
∈ P2

p0
. For m ∈ Z, decompose the tangent space at pm as

P2
pm = (Ev

pm)⊥ ⊕ Ev
pm .

In this decomposition, we have

DpmF =:

[
αm 0
ζm βm

]
,

where αm, βm > 0 and ζm ∈ R.
For some M,N ∈ N ∪ {0,∞} and L ≥ 1, suppose for s ∈ {r − 1,−r}, we have

Lλ(1+ε)n ≤ (α0 . . . αn−1)sβ0 . . . βn−1 ≤ Lλ(1−ε)n for 1 ≤ n ≤ N,

and
Lλ(1+ε)n ≤ (α−n . . . α−1)sβ−n . . . β−1 ≤ Lλ(1−ε)n for 1 ≤ n ≤M.

Then we say that p0 is (M,N)-times (L, ε, λ)-regular along Ev
p0

.

Proposition A.1. For −M ≤ m ≤ N , let Lpm ≥ 1 be the minimum value such that
pm is (M +m,N −m)-times (Lpm , ε, λ)-regular along Ev

pm. Then

Lpm < L̄λ−ε̄|m|.

Theorem A.2. For −M ≤ m ≤ N , let

lpm := L̄−1λε̄|m| > 0 and Upm := [−lpm , lpm ]× [−lpm , lpm ] ⊂ R2

Then there exists a chart

Φpm : (Upm , pm)→ (Upm , 0)

such that
‖Φ±1

pm‖Cr = O(L̄λ−ε̄|m|), DΦpm(Ev
pm) = Egv

0 ,

and Φpn+1 ◦ F |Upm ◦ Φ−1
pm extends to a globally defined Cr-diffeomorphism

Fpm : (R2, 0)→ (R2, 0)

satisfying the following properties.
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i) We have ‖F±1
pm ‖Cr = O(1).

ii) The map Fpm is uniformly C1-close to

D0Fpm = Am =

[
am 0
0 bm

]
,

with
bm < λ1−ε̄ and am > λε̄.

iii) We have

Fpm(x, y) = (fpm(x), epm(x, y)) for (x, y) ∈ R2,

where fpm : (R, 0) → (R, 0) is a Cr-diffeomorphism, and epm : R2 → R is a
Cr-map with epm(·, 0) ≡ 0.

The construction in Theorem A.2 is referred to as a linearization of F along the
(M,N)-orbit of p0 with vertical direction Ev

p0
. For 0 ≤ n ≤ N , we refer to Upm ,

Φpm and Fpm as a regular neighborhood, a regular chart and a linearized map at pm
respectively.

Proposition A.3. For −M ≤ m ≤ N , we have

diam(Upm) � L̄−1λε̄|m|.

Lemma A.4. Consider the coefficients {am, bm}Nm=−M given in Theorem A.2 ii).
Then for all 0 ≤ n ≤ N :

b0 · . . . · bn−1 > L̄−1λ(1+ε̄)n and a0 · . . . · an−1 < L̄λ−ε̄n

and for all 0 ≤ m ≤M :

b−m · . . . · b−1 > L̄−1λ(1+ε̄)n and a−m · . . . · a−1 < L̄λ−ε̄n.

For 1 ≤ n ≤ N −m, we denote

F n
pm := Fpm+n−1 ◦ . . . ◦ Fpm+1 ◦ Fpm .

The following result states that restricted to the regular neighborhoods, iterates of F
are nearly linear.

Proposition A.5. For any constant k > 0, the values {lpm}Nm=−M in Theorem A.2
can be chosen sufficiently small so that the following holds. Let −M ≤ m ≤ N and
−M − m ≤ l ≤ N − m. Suppose that qm+i ∈ Upm+i

for i ∈ [m,m + l] ∩ Z. Write
zm := Φpm(qm) ∈ Upm . Then for all v ∈ R2, we have

‖DzmF
l
pm(v)−D0F

l
pm(v)‖ < k‖D0F

l
pm(v)‖

and
‖DqmF

l(v)−DpmF
l(v)‖ < k‖DpmF

l(v)‖.
Moreover,

1− k <
Jaczm F

l
pm

Jac0 F l
pm

,
Jacqm F

l

Jacpm F
l
< 1 + k.
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Let −M ≤ m ≤ N . For q ∈ Upm , write z := Φpm(q). Denote

Ev/h
q := DΦ−1

pm(Egv/gh
z ).

By the construction of regular charts in Theorem A.2, vertical directions are invariant
under F :

i.e. DF (Ev
q ) = Ev

F (q) for q ∈ Upm .
Note that the same is not true for horizontal directions. However, the following result
states that they are still nearly invariant under F .

Proposition A.6. Let −M ≤ m ≤ N and −M −m ≤ l ≤ N −m. Suppose that

qm+i ∈ Upm+i
for i ∈ [m,m+ l] ∩ Z.

Let

Ẽh
qm+l

:= DF l(Eh
qm).

Write

zm = (xm, ym) := Φpm(qm) and Ẽh
zm+l

:= DF l
pm(Egh

zm) = DΦpm+l
(Ẽh

qm+l
).

Then we have

](Ẽh
zm+l

, Egh
zm+l

), ](Ẽh
qm+l

, Eh
qm+l

) < K|ym+l|1−ε̄

for some uniform constant K > 1.

For n ∈ N, denote

U ε̄n
p0

:= [−λε̄nlp0 , λ
ε̄nlp0 ]× [−lp0 , lp0 ] .

The n-times truncated regular neighborhood of p0 is defined as

U ε̄np0
:= Φ−1

p0

(
U ε̄n
p0

)
⊂ Up0 . (A.1)

Lemma A.7. For 1 ≤ m ≤M , we have

F i(Up−m) ⊂ Up−m+i
for 0 ≤ i ≤ m.

Moreover, for 1 ≤ n ≤ N , we have

F i(U ε̄np0
) ⊂ Upi for 0 ≤ i ≤ n.

Proposition A.8. Let q0 ∈ Up0 and Ẽv
q0
∈ P2

q0
. Suppose for some 0 < n ≤ N , we

have qi ∈ Upi for 0 ≤ i ≤ n. If

ν := ‖DF n|Ẽvq0‖ < L̄−1λε̄n,

then

](Ẽv
q0
, Ev

q0
) < L̄λ−ε̄nν + L̄λ(1−ε̄)n.
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Proposition A.9. Let q0 ∈ Up0 and Ẽh
q0
∈ P2

q0
. Suppose for some 0 < m ≤ M , we

have q−i ∈ Up−i for 0 ≤ i ≤ m. If

µ := ‖DF−m|Ẽhq0‖ < L̄−1λ−(1−ε̄)m,

then
](Ẽh

q0
, Eh

q0
) < L̄λ(1−ε̄)m(1 + µ).

Let
E : D → T 1D

be a unit vector field on D ⊂ Ω. Define

DF∗(E)(p) :=
DF (E(p))

‖DF (E(p))‖
∈ T 1

F (p)F (D) for p ∈ D.

Let
Ψ : B → B

be a chart with D ⊂ B. For t ≥ 0, we say that E is t-vertical in B if

](DΨ(E(p)), Egv
Ψ(p))

](DΨ(E(p)), Egh
Ψ(p))

≤ t for p ∈ D.

For −N ≤ m ≤ N , define Evpm : Upm → T 1(Upm) to be a Cr−1-unit vector field given
by

Evpm(q) ∈ Ev
q for q ∈ Upm .

Proposition A.10. Let D0 ⊂ Up0 and 0 ≤ n ≤ N . Suppose

Di := F i(D0) ⊂ Upi for 0 ≤ i ≤ n.

Let E : Dn → T 1(Dn) be a Cr−1-unit vector field. If E is t-vertical in Upn for some
t ≥ 0, then we have

‖DF−n∗ (E)− Evp0
|D0‖Cr−1 ≤ (1 + t2)‖E‖Cr−1L̄λ(1−ε̄)n.

Proposition A.11. There exists a uniform constant δ0 > 0 depending only on ‖F‖Cr
such that the following holds. Let F̃ : Ω̃→ F̃ (Ω̃) be a Cr-diffeomorphism such that

‖F̃ − F‖Cr = δ ≤ δ0.

Moreover, suppose that p0 is also N-times forward (L, ε, λ)-regular along Ev
p0

under F̃ .

Let E : Dn → T 1(Dn) be a t-vertical unit vector field considered in Proposition A.10
with t ≤ L̄λ−ε̄n. Then we have

‖DF−n∗ (E)−DF̃−n∗ (E)‖Cr−1 ≤ ‖E‖Cr−1L̄λ(1−ε̄)δ.

If N = ∞, then Proposition A.8 implies that Ev
p0

is the unique direction along
which p0 is infinitely forward (L, ε, λ)-regular. In this case, we denote Ess

p0
:= Ev

p0
,

and refer to this direction as the strong stable direction at p0. Moreover, we define
the local strong stable manifold at p0 as

W ss
loc(p0) := Φ−1

p0
({(0, y) ∈ Up0}),
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and the strong stable manifold at p0 as

W ss(p0) := {q ∈ Ω | F n(q) ∈ W ss
loc(pm) for some n ≥ 0}.

If M =∞, we denote Ec
p0

:= Eh
p0
, and refer to this direction as the center direction

at p0. Moreover, we define the (local) center manifold at p0 as

W c(p0) := Φ−1
p0

({(x, 0) ∈ Up0}).

Unlike stable manifolds, the center manifold at an infinitely backward regular point
is not unique. However, the following result states that it still has a canonical jet.

Proposition A.12. Suppose M =∞. Let

Γ0 : (−l, l)→ Up0

be a Cr-curve parameterized by its arclength such that Γ0(0) = p0, and for all n ∈ N,
we have

‖DF−n|Γ′0(t)‖ < λ−(1−ε̄)n for |t| < λεn.

Then Γ0 has a degree r tangency with W c(p0) at p0.

We say that p is N-times forward horizontally (L, ε)-regular along Eh,+
p ∈ P2

p if for
s ∈ {−r + 1, r}, we have

L−1λ(1+ε)n ≤ Jacp F
n

‖DpF n|Eh,+p
‖s+1

≤ Lλ(1−ε)n for 1 ≤ n ≤ N. (A.2)

Similarly, we say that p is M-times backward horizontally (L, ε)-regular along Eh,−
p ∈

P2
p if for s ∈ {−r + 1, r}, we have

L−1λ−(1−ε)n ≤ Jacp F
−n

‖DpF−n|Eh,−p ‖
s+1
≤ Lλ−(1+ε)n for 1 ≤ n ≤M. (A.3)

If both (A.2) and (A.3) hold with Eh
p := Eh,+

p = Eh,−
p , then p is (M,N)-times

horizontally (L, ε)-regular along Eh
p .

Proposition A.13 (Vertical forward regularity = horizontal forward regularity). If
p is N-times forward horizontally (L, ε)-regular along Eh

p ∈ P2
p, then there exists

Ev
p ∈ P2

p such that p is N-times forward (L̄, ε̄)-regular along Ev
p .

Proposition A.14 (Horizontal backward regularity = vertical backward regularity).
Suppose p is M-times backward horizontally (L, ε)-regular along Eh

p ∈ P2
p. Let Ev

p ∈
P2
p \ {Eh

p }. If ](Eh
p , E

v
p) > θ, then the point p is M-times backward (L̄/θ2, ε)-regular

along Ev
p .
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Appendix B. Distortion Theorems for 1D Maps

Let f : I → f(I) be a C1-diffeomorphism on an interval I ⊂ R. For J ⊂ I, the
distortion of f on J is defined as

Dis(f, J) := sup
x,y∈J

|f ′(x)|
|f ′(y)|

.

We denote Dis(f) := Dis(f, I). For K ≥ 1, we say that f has K-bounded distortion
on J if

Dis(f, J) ≤ K.

Clearly, if g : I ′ → g(I ′) is another C1-diffeomorphism on an interval I ′ ⊃ f(J), then
we have

Dis(g ◦ f, J) ≤ Dis(g, f(J)) ·Dis(f, J). (B.1)

Theorem B.1 (Denjoy Lemma). Let f : I → I be a Cr-map on an interval I ⊂ R.
Then there exists a uniform constant K > 0 such that if fn|J is a diffeomorphism on
a subinterval J ⊂ I for some n ∈ N, then

log(Dis(fn, J)) ≤ K
n−1∑
i=0

|f(J)|.

B.1. Cross Ratios. Let J b I ⊂ R be bounded open intervals. The complement
I \ J consists of two intervals L and R. The cross-ratio of J in I is given by

Cr(I, J) :=
|I||J |
|L||R|

.

For τ > 0, we say that I contains a τ -scaled neighborhood of J if

|L|, |R| > τ |J |.
Let f : I → f(I) be a homeomorphism. The cross-ratio distortion under f of J in

I is given by

CrD(f, I, J) :=
Cr(f(I), f(J))

Cr(I, J)
.

Clearly, if g : f(I)→ g ◦ f(I) is another homeomorphism, then

CrD(g ◦ f, I, J) = CrD(g, f(I), f(J)) · CrD(f, I, J). (B.2)

For ν > 0, we say that f has ν-bounded cross-ratio distortion on I if

CrD(f, I ′, J) > ν

for all bounded open intervals J b I ′ ⊂ I.

Lemma B.2. For α > 1, let Pα : R+ → R+ be an α-power map such that

Pα(x) = xα for x ∈ R+.

Then Pα|R+ has negative Schwarzian derivative. Consequently, Pα|R+ has 1-bounded
cross-ratio distortion on R+.
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Lemma B.3. Let I ⊂ R be a bounded open interval, and let f : I → f(I) be a C1-
diffeomorphism with K-bounded distortion on I for some K > 0. Then there exists a
uniform constant ν = ν(K) > 0 such that f has ν-bounded cross-ratio distortion on
I.

Theorem B.4 (Koebe distortion theorem). Let J b I ⊂ R be bounded open intervals,
and let f : I → f(I) be a C1-diffeomorphism with ν-bounded cross-ratio distortion
on I for some ν > 0. If f(I) contains a τ -scaled neighborhood of f(J), then there
exists a uniform constant K = K(ν, τ) > 0 depending only on ν and τ such that f
has K-bounded distortion on J .
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