Пा TU/e

$\star \star$ « Excellence in Science and Technology

The Mysterious Case of Code Equivalence

Violetta Weger

VT-Swiss Summer School
July 1-5, 2024

Basics

- Linear code: $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ linear subspace of dimension k
- Generator matrix: $G \in \mathbb{F}_{q}^{k \times n}$ with $\langle G\rangle=\mathcal{C}$
- Dual code:
$\mathcal{C}^{\perp}=\left\{x \in \mathbb{F}_{q}^{n} \mid\langle x, c\rangle=0 \forall c \in \mathcal{C}\right\}$
- Parity-check matrix: $H \in \mathbb{F}_{q}^{n-k \times n}$ with $\langle H\rangle=\mathcal{C}^{\perp}$
- Hull: $\mathcal{H}(\mathcal{C})=\mathcal{C} \cap \mathcal{C}^{\perp}$

Basics

$$
c G^{\top}=m G G^{\top}=0
$$

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{ker}\left(G G^{\top}\right)\right) & =k-\operatorname{rk}\left(G G^{\top}\right) \\
& =0 \text { w.h.p }
\end{aligned}
$$

- Linear code: $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ linear subspace of dimension k
- Generator matrix: $G \in \mathbb{F}_{q}^{k \times n}$ with $\langle G\rangle=\mathcal{C}$
- Dual code:
$\mathcal{C}^{\perp}=\left\{x \in \mathbb{F}_{q}^{n} \mid\langle x, c\rangle=0 \forall c \in \mathcal{C}\right\}$
- Parity-check matrix: $H \in \mathbb{F}_{q}^{n-k \times n}$ with $\langle H\rangle=\mathcal{C}^{\perp}$
- Hull: $\mathcal{H}(\mathcal{C})=\mathcal{C} \cap \mathcal{C}^{\perp}=\{0\}$ w.h.p.

Basics

- Hamming weight: $\operatorname{wt}(c)=\left|\left\{i \in\{1, \ldots, n\} \mid c_{i} \neq 0\right\}\right|$
- Linear isometry: linear map $\psi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ with $\operatorname{wt}(c)=\operatorname{wt}(\psi(c)) \forall c \in \mathbb{F}_{q}^{n}$
- Hamming isometries $\mathcal{L}=\left(\mathbb{F}_{q}^{\star}\right)^{n} \rtimes\left(\operatorname{Aut}\left(\mathbb{F}_{q}\right) \times \mathcal{S}_{n}\right)$
- Code equivalence \mathcal{C} is equivalent to \mathcal{C}^{\prime} if exists $\psi \in \mathcal{L}: \psi(\mathcal{C})=\mathcal{C}^{\prime}$

Basics

- Hamming weight: $\operatorname{wt}(c)=\left|\left\{i \in\{1, \ldots, n\} \mid c_{i} \neq 0\right\}\right|$
- Linear isometry: linear map $\psi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ with $\operatorname{wt}(c)=\operatorname{wt}(\psi(c)) \forall c \in \mathbb{F}_{q}^{n}$
- Hamming isometries $\mathcal{L}=\left(\mathbb{F}_{q}^{\star}\right)^{n} \rtimes\left(\operatorname{Aut}\left(\mathbb{F}_{q}\right) \times \mathcal{S}_{n}\right)$
- Code equivalence \mathcal{C} is equivalent to \mathcal{C}^{\prime} if exists $\psi \in \mathcal{L}: \psi(\mathcal{C})=\mathcal{C}^{\prime}$

Coding Theory: Distinguish if codes belong to new class or not
馬 E. M. Gabidulin, "New Rank Codes with Efficient Decoding", EnT, 2017.
A. Neri, S. Puchinger, A.-L. Horlemann, "Invariants and Inequivalence of Linear Rank-Metric Codes.", ISIT, 2019.

Motivation

Public-key cryptography

Encryption

Signature

Motivation

Public-key cryptography

Encryption

Signature

- f easy to compute with of
- f^{-1} hard to compute with of
- f^{-1} easy with secret ㅇ

Motivation

Public-key cryptography

Encryption

Signature

computing f^{-1} : hard mathematical problem

Basics

- Code equivalence: \mathcal{C} is equivalent to \mathcal{C}^{\prime} if exists $\psi \in \mathcal{L}: \psi(\mathcal{C})=\mathcal{C}^{\prime}$
- Linear equivalence: \mathcal{C} is linear equivalent to \mathcal{C}^{\prime} if $\exists \varphi \in\left(\mathbb{F}_{q}^{\star}\right)^{n} \rtimes \mathcal{S}_{n}: \varphi(\mathcal{C})=\mathcal{C}^{\prime}$
- Permutation equivalence: \mathcal{C} is permutation equivalent to \mathcal{C}^{\prime} if $\exists \sigma \in \mathcal{S}_{n}: \sigma(\mathcal{C})=\mathcal{C}^{\prime}$

Basics

- Code equivalence: \mathcal{C} is equivalent to \mathcal{C}^{\prime} if exists $\psi \in \mathcal{L}: \psi(\mathcal{C})=\mathcal{C}^{\prime}$
- Linear equivalence: \mathcal{C} is linear equivalent to \mathcal{C}^{\prime} if $\exists \varphi \in\left(\mathbb{F}_{q}^{\star}\right)^{n} \rtimes \mathcal{S}_{n}: \varphi(\mathcal{C})=\mathcal{C}^{\prime}$
- Permutation equivalence: \mathcal{C} is permutation equivalent to \mathcal{C}^{\prime} if $\exists \sigma \in \mathcal{S}_{n}: \sigma(\mathcal{C})=\mathcal{C}^{\prime}$

Linear Equivalence Problem (LEP):
Given $\mathcal{C}, \mathcal{C}^{\prime}$ find $\varphi \in\left(\mathbb{F}_{q}^{\star}\right)^{n} \rtimes \mathcal{S}_{n}: \varphi(\mathcal{C})=\mathcal{C}^{\prime}$

Permutation Equivalence Problem (PEP):
Given $\mathcal{C}, \mathcal{C}^{\prime}$ find $\sigma \in \mathcal{S}_{n}: \sigma(\mathcal{C})=\mathcal{C}^{\prime}$

Basics

- Code equivalence: \mathcal{C} is equivalent to \mathcal{C}^{\prime} if exists $\psi \in \mathcal{L}: \psi(\mathcal{C})=\mathcal{C}^{\prime}$
- Linear equivalence: \mathcal{C} is linear equivalent to \mathcal{C}^{\prime} if $\exists \varphi \in\left(\mathbb{F}_{q}^{\star}\right)^{n} \rtimes \mathcal{S}_{n}: \varphi(\mathcal{C})=\mathcal{C}^{\prime}$
- Permutation equivalence: \mathcal{C} is permutation equivalent to \mathcal{C}^{\prime} if $\exists \sigma \in \mathcal{S}_{n}: \sigma(\mathcal{C})=\mathcal{C}^{\prime}$

Linear Equivalence Problem (LEP):
Given G, G^{\prime} find $S \in \mathrm{GL}_{k}(q), P \in S_{n}, D=\operatorname{diag}(v): S G P D=G^{\prime}$

Permutation Equivalence Problem (PEP):
Given G, G^{\prime} find $S \in \operatorname{GL}_{k}(q), P \in S_{n}: S G P=G^{\prime}$

Motivation

Can build Zero-Knowledge (ZK) protocol from group action
Prover
Verifier
O public
F secret
\checkmark

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Prover	Verifier
O secret	challenge $\stackrel{\text { response }}{\text { commitment }}$
	O public

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Prover	Verifier
O secret	challenge $\stackrel{\text { response }}{\text { commitment }}$
	O public

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

Can build Zero-Knowledge (ZK) protocol from group action

Motivation

ongoing NIST standardization process for post-quantum signature schemes

- LESS linear equivalence
- MEDS matrix code equivalence
- PERK subcode equivalence

Main question: How hard is code equivalence?

- complexity class
- solvers

Motivation

ongoing NIST standardization process for post-quantum signature schemes

- LESS linear equivalence
- MEDS matrix code equivalence
- PERK subcode equivalence

Main question: How hard is code equivalence?

- complexity class
- solvers

Motivation

ongoing NIST standardization process for post-quantum signature schemes

- LESS linear equivalence
- MEDS matrix code equivalence
- PERK subcode equivalence

Main question: How hard is code equivalence?

- complexity class
- can reduce PEP to GI
- solvers
- can reduce LEP to PEP if $q<5$

Is Code Equivalence NP-hard?

Is Code Equivalence NP-hard?

...no

Is Code Equivalence NP-hard?

...no

Arthur-Merlin Protocol

Merlin has a "no" instance: $\mathcal{C}_{1}, \mathcal{C}_{2}$, wants to convince Arthur $\ddagger \varphi$

- Arthur chooses G_{i} and ψ
- Arthur sends $G^{\prime}=\psi\left(G_{i}\right)$
- Merlin replies with i
- t rounds $\rightarrow 2^{-t}$
- not NP-hard, else AM $=\mathrm{PH} \rightarrow$ complexity hierarchy collapses

Sneak Peek

Reduction from PEP to GI
$\mathcal{G}=(V, E)$ weighted graph

$$
\text { weight on edge }\{u, v\} \text { is } w(u, v) \quad V=[1, n]
$$

Graph Isomorphism (GI)
Given $\mathcal{G}=(V, E), \mathcal{G}^{\prime}=\left(V, E^{\prime}\right)$, find $\sigma \in \mathcal{S}_{n}$, s.t.

1. $\{u, v\} \in E \leftrightarrow\{\sigma(u), \sigma(v)\} \in E^{\prime} \quad$ 2. $w(u, v)=w(\sigma(u), \sigma(v))$

Sneak Peek

Reduction from PEP to GI
$\mathcal{G}=(V, E)$ weighted graph weight on edge $\{u, v\}$ is $w(u, v) \quad V=[1, n]$

Graph Isomorphism (GI)
Given $\mathcal{G}=(V, E), \mathcal{G}^{\prime}=\left(V, E^{\prime}\right)$, find $\sigma \in \mathcal{S}_{n}$, s.t.

1. $\{u, v\} \in E \leftrightarrow\{\sigma(u), \sigma(v)\} \in E^{\prime}$
2. $w(u, v)=w(\sigma(u), \sigma(v))$

Sneak Peek

Reduction from PEP to GI
$\mathcal{G}=(V, E)$ weighted graph weight on edge $\{u, v\}$ is $w(u, v) \quad V=[1, n]$

Graph Isomorphism (GI)
Given $\mathcal{G}=(V, E), \mathcal{G}^{\prime}=\left(V, E^{\prime}\right)$, find $\sigma \in \mathcal{S}_{n}$, s.t.

1. $\{u, v\} \in E \leftrightarrow\{\sigma(u), \sigma(v)\} \in E^{\prime}$
2. $w(u, v)=w(\sigma(u), \sigma(v))$

目 L. Babai. "Graph isomorphism in quasipolynomial time", ACM, 2016.

Sneak Peek

Adjacency matrix $A: A_{i, j}=w(i, j)$ if $\{i, j\} \in E$ and 0 else. \rightarrow symmetric

Sneak Peek

Adjacency matrix $A: A_{i, j}=w(i, j)$ if $\{i, j\} \in E$ and 0 else. $\quad \rightarrow$ symmetric

$$
A=\left(\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 0 & 2 & 1 \\
3 & 2 & 0 & 3 \\
0 & 1 & 3 & 0
\end{array}\right) \quad A^{\prime}=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 3 \\
2 & 3 & 3 & 0
\end{array}\right)
$$

Sneak Peek

Adjacency matrix $A: A_{i, j}=w(i, j)$ if $\{i, j\} \in E$ and 0 else. $\quad \rightarrow$ symmetric

$$
A=\left(\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 0 & 2 & 1 \\
3 & 2 & 0 & 3 \\
0 & 1 & 3 & 0
\end{array}\right)
$$

$$
A^{\prime}=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 3 \\
2 & 3 & 3 & 0
\end{array}\right)
$$

GI: $\quad \sigma(\mathcal{G})=\mathcal{G}^{\prime} \leftrightarrow P^{\top} A P=A^{\prime}$

Sneak Peek

Adjacency matrix $A: A_{i, j}=w(i, j)$ if $\{i, j\} \in E$ and 0 else. $\quad \rightarrow$ symmetric

$$
A=\left(\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 0 & 2 & 1 \\
3 & 2 & 0 & 3 \\
0 & 1 & 3 & 0
\end{array}\right) \quad A^{\prime}=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 3 \\
2 & 3 & 3 & 0
\end{array}\right)
$$

GI: $\quad \sigma(\mathcal{G})=\mathcal{G}^{\prime} \leftrightarrow P^{\top} A P=A^{\prime} \quad$ PEP: $\quad S A P=A^{\prime}$

Sneak Peek

Adjacency matrix $A: A_{i, j}=w(i, j)$ if $\{i, j\} \in E$ and 0 else. $\quad \rightarrow$ symmetric

$$
A=\left(\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 0 & 2 & 1 \\
3 & 2 & 0 & 3 \\
0 & 1 & 3 & 0
\end{array}\right)
$$

$$
A^{\prime}=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 3 \\
2 & 3 & 3 & 0
\end{array}\right)
$$

GI: $\quad \sigma(\mathcal{G})=\mathcal{G}^{\prime} \leftrightarrow P^{\top} A P=A^{\prime} \quad$ PEP: $\quad S A P=A^{\prime}$

Sneak Peek

Adjacency matrix $A: A_{i, j}=w(i, j)$ if $\{i, j\} \in E$ and 0 else. $\quad \rightarrow$ symmetric

$$
A=\left(\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 0 & 2 & 1 \\
3 & 2 & 0 & 3 \\
0 & 1 & 3 & 0
\end{array}\right) \quad A^{\prime}=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 3 \\
2 & 3 & 3 & 0
\end{array}\right)
$$

GI: $\quad \sigma(\mathcal{G})=\mathcal{G}^{\prime} \leftrightarrow P^{\top} A P=A^{\prime} \quad$ PEP: $\quad S A P=A^{\prime}$

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right) \quad A^{\prime}=\left(\begin{array}{llll}
3 & 1 & 1 & 2 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right)
$$

Sneak Peek

Adjacency matrix $A: A_{i, j}=w(i, j)$ if $\{i, j\} \in E$ and 0 else. \rightarrow symmetric

$$
A=\left(\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 0 & 2 & 1 \\
3 & 2 & 0 & 3 \\
0 & 1 & 3 & 0
\end{array}\right)
$$

$$
A^{\prime}=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 3 \\
2 & 3 & 3 & 0
\end{array}\right)
$$

$$
\text { GI: } \quad \sigma(\mathcal{G})=\mathcal{G}^{\prime} \leftrightarrow P^{\top} A P=A^{\prime} \quad \text { PEP: } \quad S A P=A^{\prime}
$$

Reduction PEP \rightarrow GI:
instance $\mathcal{C}, \mathcal{C}^{\prime} \quad \rightarrow \quad$ solve instance $\mathcal{G}, \mathcal{G}^{\prime} \quad \rightarrow \quad$ solution for PEP
\rightarrow PEP easier than GI (quasi-polynomial)

Sneak Peek

Adjacency matrix $A: A_{i, j}=w(i, j)$ if $\{i, j\} \in E$ and 0 else. $\quad \rightarrow$ symmetric

$$
A=\left(\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 0 & 2 & 1 \\
3 & 2 & 0 & 3 \\
0 & 1 & 3 & 0
\end{array}\right) \quad A^{\prime}=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 3 \\
2 & 3 & 3 & 0
\end{array}\right)
$$

$$
\text { GI: } \quad \sigma(\mathcal{G})=\mathcal{G}^{\prime} \leftrightarrow P^{\top} A P=A^{\prime} \quad \text { PEP: } \quad S A P=A^{\prime}
$$

Reduction PEP \rightarrow GI:
instance $\mathcal{C}, \mathcal{C}^{\prime} \quad \rightarrow \quad$ solve instance $\mathcal{G}, \mathcal{G}^{\prime} \quad \rightarrow \quad$ solution for PEP
\rightarrow PEP easier than GI (quasi-polynomial)

How to choose A for code \mathcal{C} to form graph \mathcal{G} ?

Sneak Peek

F M. Bardet, A. Otmani, and M. Saeed-Taha. "Permutation code equivalence is not harder than graph isomorphism when hulls are trivial", ISIT, 2019.

For $\mathcal{C}=\langle G\rangle$ with trivial hull:

$$
A=G^{\top}\left(G G^{\top}\right)^{-1} G \in \mathbb{F}_{q}^{n \times n}
$$

Sneak Peek

F M. Bardet, A. Otmani, and M. Saeed-Taha. "Permutation code equivalence is not harder than graph isomorphism when hulls are trivial", ISIT, 2019.

For $\mathcal{C}=\langle G\rangle$ with trivial hull:

$$
A=G^{\top}\left(G G^{\top}\right)^{-1} G \in \mathbb{F}_{q}^{n \times n}
$$

Sneak Peek

F M. Bardet, A. Otmani, and M. Saeed-Taha. "Permutation code equivalence is not harder than graph isomorphism when hulls are trivial", ISIT, 2019.

For $\mathcal{C}=\langle G\rangle$ with trivial hull:

$$
A=G^{\top}\left(G G^{\top}\right)^{-1} G \in \mathbb{F}_{q}^{n \times n}
$$

$$
\langle A\rangle=\mathcal{C} \quad A \text { independent of } G \quad A \text { symmetric }
$$

Sneak Peek

F M. Bardet, A. Otmani, and M. Saeed-Taha. "Permutation code equivalence is not harder than graph isomorphism when hulls are trivial", ISIT, 2019.

For $\mathcal{C}=\langle G\rangle$ with trivial hull:

$$
A=G^{\top}\left(G G^{\top}\right)^{-1} G \in \mathbb{F}_{q}^{n \times n}
$$

$$
\begin{array}{ccc}
\langle A\rangle=\mathcal{C} & A \text { independent of } G & A \text { symmetric } \\
(S G)^{\top}\left(S G(S G)^{\top}\right)^{-1} S G=G^{\top}\left(G G^{\top}\right)^{-1} G
\end{array}
$$

Sneak Peek

M. Bardet, A. Otmani, and M. Saeed-Taha. "Permutation code equivalence is not harder than graph isomorphism when hulls are trivial", ISIT, 2019.

For $\mathcal{C}=\langle G\rangle$ with trivial hull:

$$
A=G^{\top}\left(G G^{\top}\right)^{-1} G \in \mathbb{F}_{q}^{n \times n}
$$

$$
\langle A\rangle=\mathcal{C} \quad A \text { independent of } G \quad A \text { symmetric }
$$

take $\mathcal{G}, \mathcal{G}^{\prime}$ having adjacency matrices A, A^{\prime}

$$
\sigma(\mathcal{C})=\mathcal{C}^{\prime} \leftrightarrow \sigma(\mathcal{G})=\mathcal{G}^{\prime}
$$

Sneak Peek

M. Bardet, A. Otmani, and M. Saeed-Taha. "Permutation code equivalence is not harder than graph isomorphism when hulls are trivial", ISIT, 2019.

For $\mathcal{C}=\langle G\rangle$ with trivial hull:

$$
A=G^{\top}\left(G G^{\top}\right)^{-1} G \in \mathbb{F}_{q}^{n \times n}
$$

$$
\langle A\rangle=\mathcal{C}
$$

A independent of G
A symmetric
take $\mathcal{G}, \mathcal{G}^{\prime}$ having adjacency matrices A, A^{\prime}

$$
\sigma(\mathcal{C})=\mathcal{C}^{\prime} \leftrightarrow \sigma(\mathcal{G})=\mathcal{G}^{\prime}
$$

$\leftarrow:$ If $\sigma(\mathcal{G})=\mathcal{G}^{\prime}$ then $P^{\top} A P=A^{\prime} \quad \rightarrow \sigma(\mathcal{C})=\mathcal{C}^{\prime}$

Sneak Peek

M. Bardet, A. Otmani, and M. Saeed-Taha. "Permutation code equivalence is not harder than graph isomorphism when hulls are trivial", ISIT, 2019.

For $\mathcal{C}=\langle G\rangle$ with trivial hull:
only works for instance $\left(\mathcal{C}, \mathcal{C}^{\prime}\right)$ w.h.p.

$$
A=G^{\top}\left(G G^{\top}\right)^{-1} G \in \mathbb{F}_{q}^{n \times n}
$$

$$
\langle A\rangle=\mathcal{C} \quad A \text { independent of } G \quad A \text { symmetric }
$$

take $\mathcal{G}, \mathcal{G}^{\prime}$ having adjacency matrices A, A^{\prime}

$$
\sigma(\mathcal{C})=\mathcal{C}^{\prime} \leftrightarrow \sigma(\mathcal{G})=\mathcal{G}^{\prime}
$$

$\rightarrow:$ If $\sigma(\mathcal{C})=\mathcal{C}^{\prime}$ then for any gen. matrices G, G^{\prime} ex. $S: S G P=G^{\prime}$

$$
A^{\prime}=(G P)^{\top}\left(G P(G P)^{\top}\right)^{-1} G P=P^{\top} G^{\top}\left(G G^{\top}\right)^{-1} G P=P^{\top} A P
$$

Sneak Peek

Reduction from LEP to PEP and why only for $q<5$
Closure of code: For $\mathcal{C} \subset \mathbb{F}_{q}^{n}$ its closure is

$$
\widetilde{\mathcal{C}}=\left\{\left(\alpha c_{i}\right)_{(i, \alpha) \in[1, n] \times \mathbb{F}_{q}^{*}} \mid\left(c_{i}\right)_{i \in[1, n]} \in \mathcal{C}\right\} \subset \mathbb{F}_{q}^{n(q-1)}
$$

Sneak Peek

Reduction from LEP to PEP and why only for $q<5$
Closure of code: For $\mathcal{C} \subset \mathbb{F}_{q}^{n}$ its closure is

$$
\begin{aligned}
& \tilde{\mathcal{C}}=\left\{\left(\alpha c_{i}\right)_{(i, \alpha) \in[1, n] \times \mathbb{F}_{q}^{*}} \mid\left(c_{i}\right)_{i \in[1, n]} \in \mathcal{C}\right\} \subset \mathbb{F}_{q}^{n(q-1)} \\
& G=\left(\begin{array}{ccc}
\mid & & \mid \\
g_{1} & \cdots & g_{n} \\
\mid & & \mid
\end{array}\right) \rightarrow \widetilde{G}=\left(\begin{array}{cccccccc}
\mid & \mid & & \mid & & \mid & \mid & \\
g_{1} & \alpha g_{1} & \cdots & \alpha^{q-2} g_{1} & \cdots & g_{n} & \alpha g_{n} & \cdots \\
\mid & \mid & & \mid & & \alpha^{q-2} g_{n} \\
\mid & \mid & & \mid
\end{array}\right)
\end{aligned}
$$

Sneak Peek

Reduction from LEP to PEP and why only for $q<5$
Closure of code: For $\mathcal{C} \subset \mathbb{F}_{q}^{n}$ its closure is

$$
\begin{aligned}
& \widetilde{\mathcal{C}}=\left\{\left(\alpha c_{i}\right)_{(i, \alpha) \in[1, n] \times \mathbb{F}_{q}^{*}} \mid\left(c_{i}\right)_{i \in[1, n]} \in \mathcal{C}\right\} \subset \mathbb{F}_{q}^{n(q-1)} \\
& G=\left(\begin{array}{ccc}
\mid & & \mid \\
g_{1} & \cdots & g_{n} \\
\mid & & \mid
\end{array}\right) \rightarrow \widetilde{G}=\left(\begin{array}{cccccccc}
\mid & \mid & & \mid & & \mid & \mid & \\
g_{1} & \alpha g_{1} & \cdots & \alpha^{q-2} & g_{1} & \cdots & g_{n} & \alpha g_{n} \\
\mid & \mid & & \mid & & \mid & \mid & \\
\alpha^{q-2} g_{n} \\
\mid
\end{array}\right) \\
& \exists \varphi \in\left(\mathbb{F}_{q}^{\star}\right)^{n} \rtimes \mathcal{S}_{n}: \varphi(\mathcal{C})=\mathcal{C}^{\prime} \quad \leftrightarrow \quad \exists \sigma \in \mathcal{S}_{n}: \sigma(\widetilde{\mathcal{C}})=\widetilde{\mathcal{C}^{\prime}}
\end{aligned}
$$

Sneak Peek

Reduction from LEP to PEP and why only for $q<5$
Closure of code: For $\mathcal{C} \subset \mathbb{F}_{q}^{n}$ its closure is

$$
\begin{aligned}
& \widetilde{\mathcal{C}}=\left\{\left(\alpha c_{i}\right)_{(i, \alpha) \in[1, n] \times \mathbb{F}_{q}^{\star}} \mid\left(c_{i}\right)_{i \in[1, n]} \in \mathcal{C}\right\} \subset \mathbb{F}_{q}^{n(q-1)} \\
& G=\left(\begin{array}{ccc}
\mid & & \mid \\
g_{1} & \cdots & g_{n} \\
\mid & & \mid
\end{array}\right) \rightarrow \widetilde{G}=\left(\begin{array}{cccccccc}
\mid & \mid & & \mid & & \mid & \mid & \\
g_{1} & \alpha g_{1} & \cdots & \alpha^{q-2} g_{1} & \cdots & g_{n} & \alpha g_{n} & \cdots \\
\mid & \mid & & \mid & & \mid & \mid & \\
\alpha^{q-2} g_{n} \\
\mid
\end{array}\right) \\
& \exists \varphi \in\left(\mathbb{F}_{q}^{\star}\right)^{n} \rtimes \mathcal{S}_{n}: \varphi(\mathcal{C})=\mathcal{C}^{\prime} \quad \leftrightarrow \quad \exists \sigma \in \mathcal{S}_{n}: \sigma(\widetilde{\mathcal{C}})=\widetilde{\mathcal{C}^{\prime}} \\
& G P \operatorname{diag}(v)=G^{\prime} \quad \leftrightarrow \quad \widetilde{G} \widetilde{P}=\widetilde{G}^{\prime} \\
& \widetilde{P}=\left(\begin{array}{ccc}
P_{1} & & \\
& \ddots & \\
& & P_{n}
\end{array}\right) Q, P_{i} \in S_{q-1}, Q \text { block permutation }
\end{aligned}
$$

Sneak Peek

.. and why only for $q<5$?

Sneak Peek

.. and why only for $q<5$?
For $q \geq 5 \quad \widetilde{\mathcal{C}} \subset \widetilde{\mathcal{C}}^{\perp}$ weakly self dual and $\mathcal{H}(\widetilde{\mathcal{C}})=\widetilde{\mathcal{C}}$ 台

Sneak Peek

.. and why only for $q<5$?
For $q \geq 5 \quad \widetilde{\mathcal{C}} \subset \widetilde{\mathcal{C}}^{\perp}$ weakly self dual and $\mathcal{H}(\widetilde{\mathcal{C}})=\widetilde{\mathcal{C}}$ 名

$$
\begin{gathered}
X=\widetilde{G} \widetilde{G}^{\top}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
g_{1} & \alpha g_{1} & \cdots & \alpha^{q-2} g_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{ccc}
- & g_{1} & - \\
- & \alpha g_{1} & - \\
& \vdots & \\
- & \alpha^{q-2} g_{n} & -
\end{array}\right) \\
X_{i, j}=\sum_{\ell=1}^{n} g_{\ell, i} g_{\ell, j} \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}
\end{gathered}
$$

Sneak Peek

.. and why only for $q<5$?
For $q \geq 5 \quad \widetilde{\mathcal{C}} \subset \widetilde{\mathcal{C}}^{\perp}$ weakly self dual and $\mathcal{H}(\widetilde{\mathcal{C}})=\widetilde{\mathcal{C}}$ 名

$$
\begin{gathered}
X=\widetilde{G} \widetilde{G}^{\top}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
g_{1} & \alpha g_{1} & \cdots & \alpha^{q-2} g_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{ccc}
- & g_{1} & - \\
- & \alpha g_{1} & - \\
& \vdots & \\
- & \alpha^{q-2} g_{n} & -
\end{array}\right) \\
X_{i, j}=\sum_{\ell=1}^{n} g_{\ell, i} g_{\ell, j} \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}
\end{gathered}
$$

Sneak Peek

.. and why only for $q<5$?
For $q \geq 5 \quad \widetilde{\mathcal{C}} \subset \widetilde{\mathcal{C}}^{\perp}$ weakly self dual and $\mathcal{H}(\widetilde{\mathcal{C}})=\widetilde{\mathcal{C}}$ 名

$$
\begin{gathered}
X=\widetilde{G} \widetilde{G}^{\top}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
g_{1} & \alpha g_{1} & \cdots & \alpha^{q-2} g_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{ccc}
- & g_{1} & - \\
- & \alpha g_{1} & - \\
& \vdots & \\
- & \alpha^{q-2} g_{n} & -
\end{array}\right) \\
X_{i, j}=\sum_{\ell=1}^{n} g_{\ell, i} g_{\ell, j} \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2} \\
\sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}=\sum_{\beta \in \mathbb{F}_{q}^{\star}}(\alpha \beta)^{2}=\alpha^{2} \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2} \rightarrow \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}=0
\end{gathered}
$$

$\alpha^{2} \neq 1$

Sneak Peek

.. and why only for $q<5$?
For $q \geq 5 \quad \widetilde{\mathcal{C}} \subset \widetilde{\mathcal{C}}^{\perp}$ weakly self dual and $\mathcal{H}(\widetilde{\mathcal{C}})=\widetilde{\mathcal{C}}$ 名

$$
\begin{gathered}
X=\widetilde{G} \widetilde{G}^{\top}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
g_{1} & \alpha g_{1} & \cdots & \alpha^{q-2} g_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{ccc}
- & g_{1} & - \\
- & \alpha g_{1} & - \\
& \vdots & \\
- & \alpha^{q-2} g_{n} & -
\end{array}\right) \\
X_{i, j}=\sum_{\ell=1}^{n} g_{\ell, i} g_{\ell, j} \sum_{\beta \in \mathbb{F}_{q}^{*}} \beta^{2}=0 \\
\sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}=\sum_{\beta \in \mathbb{F}_{q}^{\star}}(\alpha \beta)^{2}=\alpha^{2} \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2} \rightarrow \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}=0
\end{gathered}
$$

$\alpha^{2} \neq 1$

Sneak Peek

.. and why only for $q<5$?
For $q \geq 5 \quad \widetilde{\mathcal{C}} \subset \widetilde{\mathcal{C}}^{\perp}$ weakly self dual and $\mathcal{H}(\widetilde{\mathcal{C}})=\widetilde{\mathcal{C}}$ 台

$$
\begin{gathered}
X=\widetilde{G} \widetilde{G}^{\top}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
g_{1} & \alpha g_{1} & \cdots & \alpha^{q-2} g_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{ccc}
- & g_{1} & - \\
- & \alpha g_{1} & - \\
& \vdots & \\
- & \alpha^{q-2} g_{n} & -
\end{array}\right) \\
X_{i, j}=\sum_{\ell=1}^{n} g_{\ell, i} g_{\ell, j} \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}
\end{gathered}
$$

$\alpha^{2} \neq 1 \quad$ needs $q \geq 4$

$$
\sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}=\sum_{\beta \in \mathbb{F}_{q}^{*}}(\alpha \beta)^{2}=\alpha^{2} \sum_{\beta \in \mathbb{F}_{q}^{*}} \beta^{2} \quad \rightarrow \quad \sum_{\beta \in \mathbb{F}_{q}^{\star}} \beta^{2}=0
$$

What is known/Spoilers

Complexity Class

- Code equivalence is not NP-hard
- Easy instance of PEP:

Random codes!

- rand. reduction from PEP to GI
- reduction from LEP to PEP if $q \geq 5$: weakly self dual

What is known/Spoilers

Complexity Class

- Code equivalence is not NP-hard
- Easy instance of PEP:

Random codes!

- rand. reduction from PEP to GI
- reduction from LEP to PEP if $q \geq 5$: weakly self dual

Solvers

What is known/Spoilers

Complexity Class

- Code equivalence is not NP-hard
- Easy instance of PEP:

Random codes!

- rand. reduction from PEP to GI
- reduction from LEP to PEP if $q \geq 5$: weakly self dual

Solvers

What is known/Spoilers

Complexity Class

- Code equivalence is not NP-hard
- Easy instance of PEP:

Random codes!

- rand. reduction from PEP to GI
- reduction from LEP to PEP if $q \geq 5$: weakly self dual

Solvers

What is known/Spoilers

Complexity Class

- Code equivalence is not NP-hard
- Easy instance of PEP:

Random codes!

- rand. reduction from PEP to GI
- reduction from LEP to PEP if $q \geq 5$: weakly self dual

Solvers

What is known/Spoilers

Complexity Class

- Code equivalence is not NP-hard
- Easy instance of PEP:

Random codes!

Solvers

- all solvers have exponential cost
- use Information Set Decoding (ISD)
- rand. reduction from PEP to GI
- reduction from LEP to PEP if $q \geq 5$: weakly self dual

Methods/Buzzwords

Tools we use/ what to expect in the project

- behavior of different hulls
- automorphism groups
- weight enumerators
- supports of subcodes
- code-based crypto
- algorithmics
- complexity theory
- ISD

Questions

- Other reductions (not randomized)?
- Other easy instances?
- Other solvers: other invariants/subcodes?

- Other metrics?

Questions

- Other reductions (not randomized)?
- Other easy instances?
- Other solvers: other invariants/subcodes?
- Other metrics?

-

Thank you!

Notes on Code Equivalence

References

M．Bardet，A．Otmani，and M．Saeed－Taha．＂Permutation code equivalence is not harder than graph isomorphism when hulls are trivial＂，ISIT， 2019.
目 N．Sendrier，D．E．Simos．＂How easy is code equivalence over Fq？＂，WCC， 2013.
国 E．Petrank，R．M．Roth．＂Is code equivalence easy to decide？＂，IEEE TIT， 1997.
国 N．Sendrier．＂On the dimension of the hull．＂，SIAM Discr．Math．， 1997.N．Sendrier．＂Finding the permutation between equivalent linear codes：The support splitting algorithm．＂，IEEE TIT， 2000.
自 I．Bouyukliev．＂About the code equivalence．＂，Adv．in Coding and Crypto．， 2007.
L．Babai，P．Codenotti，J．Grochow，Y．Qiao．＂Code equivalence and group isomorphism．＂，SIAM Discr．Math．， 2011.
A．Barenghi，J．F．Biasse，E．Persichetti，P．Santini．＂On the computational hardness of the code equivalence problem in cryptography．＂，AMC， 2023.

自

W．Beullens＂Not enough LESS：an improved algorithm for solving code equivalence problems over F q．＂，Crypto， 2020.
N．Sendrier，D．E．Simos．＂The hardness of code equivalence over and its application to code－ based cryptography．＂，PQCrypto， 2013.
J．Leon．＂Computing automorphism groups of error－correcting codes．＂，IEEE TIT， 1982.
A．Barenghi，J．F．Biasse，E．Persichetti，P．Santini．＂LESS－FM：fine－tuning signatures from the code equivalence problem．＂，PQCrypto， 2021.

