The Local-to-Global Principle for Densities

Violetta Weger

University College Dublin

Algebra and Number Theory Seminar
Joint work with Giacomo Micheli and Severin Schraven

15 April 2021
Fix a subset $T \subseteq \mathbb{Z}$. How likely is it for a randomly chosen $x \in \mathbb{Z}$ to be in T?
Fix a subset $T \subseteq \mathbb{Z}$. How likely is it for a randomly chosen $x \in \mathbb{Z}$ to be in T?

No uniform probability distribution over \mathbb{Z}.

$$1 = \mathbb{P}(\mathbb{Z}) = \sum_{x \in \mathbb{Z}} \mathbb{P}\{x\} = \sum_{x \in \mathbb{Z}} p \neq 1$$
Definition (Natural Density over \(\mathbb{Z}^d \))

Let \(d \in \mathbb{N} \) and \(T \subseteq \mathbb{Z}^d \). The density of \(T \) is given by

\[
\rho(T) = \lim_{H \to \infty} \frac{|T \cap [-H, H]^d|}{(2H)^d},
\]

if the limit exists.

We define the upper density \(\bar{\rho} \) and the lower density \(\underline{\rho} \) with the limsup, respectively with the liminf.
1 Introduction
 - Properties
 - First Examples

2 Mertens-Cesàro Theorem

3 Local-to-Global Principle
 - Rectangular Unimodular Matrices
 - Eisenstein Polynomials

4 Mean
 - Strategy

5 Local-to-Global Principle for Mean
 - Eisenstein Polynomials
Properties

Proposition

1. $\rho(\emptyset) = 0$ and $\rho(\mathbb{Z}^d) = 1$,

2. if $A \subseteq B \subseteq \mathbb{Z}^d$, then $\rho(A) \leq \rho(B)$,

3. if $T \subseteq \mathbb{Z}^d$, then $\rho(T) \in [0, 1]$,

4. if $F \subseteq \mathbb{Z}^d$ is finite, then $\rho(F) = 0$,

5. if $A, B \subseteq \mathbb{Z}^d$ with $A \cap B = \emptyset$, then $\rho(A \cup B) = \rho(A) + \rho(B)$,

6. if $B \subseteq A$, then $\rho(A \setminus B) = \rho(A) - \rho(B)$,

assuming that $\rho(A), \rho(B)$ and $\rho(T)$ exist.
Important difference to probability:

$$\rho \left(\bigcup_{i \in I} A_i \right) \not\leq \sum_{i \in I} \rho(A_i)$$

for a countable set I and $A_i \subseteq \mathbb{Z}$.

Counterexample: $I = \mathbb{Z}, A_i = \{i\}$.

$1 = \rho(\mathbb{Z}) = \rho \left(\bigcup_{i \in \mathbb{Z}} \{i\} \right) \not\leq \sum_{i \in \mathbb{Z}} \rho(\{i\}) = 0$.

Violetta Weger The Local-to-Global Principle for Densities
Important difference to probability:

\[\rho \left(\bigcup_{i \in I} A_i \right) \leq \sum_{i \in I} \rho(A_i) \]

for a countable set \(I \) and \(A_i \subseteq \mathbb{Z} \).

Counterexample: \(I = \mathbb{Z}, A_i = \{i\} \).

\[1 = \rho(\mathbb{Z}) = \rho \left(\bigcup_{i \in \mathbb{Z}} \{i\} \right) \leq \sum_{i \in \mathbb{Z}} \rho(\{i\}) = 0. \]
Example (Primes)

The density of primes \mathcal{P} is

$$\rho(\mathcal{P}) = 0.$$
Example (Primes)

The density of primes \mathcal{P} is

$$\rho(\mathcal{P}) = 0.$$

By the prime number theorem we have that

$$\pi(x) = \left| \{ p \in \mathcal{P} \mid p \leq x \} \right| \sim \frac{x}{\ln(x)}.$$

Hence

$$\rho(\mathcal{P}) = \lim_{H \to \infty} \frac{\left| \mathcal{P} \cap [-H, H] \right|}{2H} = \lim_{H \to \infty} \frac{\pi(H)}{2H} = 0.$$
Example (Invertible Matrices)

For \(n \) a positive integer, the density of invertible matrices \(GL_n(\mathbb{Z}) \) is

\[
\rho(GL_n(\mathbb{Z})) = 0.
\]
Example (Invertible Matrices)

For n a positive integer, the density of invertible matrices $GL_n(\mathbb{Z})$ is

$$\rho(GL_n(\mathbb{Z})) = 0.$$

Let us fix all entries of $A \in [-H, H]^{n \times n}$ except for $a_{n,n}$. Since

$$\pm 1 = \det(A) = \sum_{j=1}^{n-1} (-1)^{n+j} a_{n,j} \det(A_{n,j}) + a_{n,n} \det(A_{n,n}),$$

we have at most two choices for $a_{n,n}$. Hence

$$\lim_{H \to \infty} \frac{|GL_n(\mathbb{Z}) \cap [-H, H]^{n^2}|}{(2H)^{n^2}} \leq \lim_{H \to \infty} \frac{2(2H)^{n^2}-1}{(2H)^{n^2}} = 0.$$
Example (Divisibility by n)

For n a positive integer, the density of $n\mathbb{Z}$ is

$$\rho(n\mathbb{Z}) = \frac{1}{n}.$$
Example (Divisibility by n)

For n a positive integer, the density of $n\mathbb{Z}$ is

$$\rho(n\mathbb{Z}) = \frac{1}{n}.$$

Since $|n\mathbb{Z} \cap [-H, H]| = \lceil \frac{2H}{n} \rceil$, we have

$$\lim_{H \to \infty} \frac{|n\mathbb{Z} \cap [-H, H]|}{2H} = \lim_{H \to \infty} \frac{\lceil \frac{2H}{n} \rceil}{2H} = \frac{1}{n}.$$
How likely is it that two randomly chosen integers are coprime?
How likely is it that two randomly chosen integers are coprime?

Theorem (F. Mertens, 1874 and E. Cesàro, 1884)

Let the set of coprime pairs be denoted by C. Then

$$\rho(C) = \frac{1}{\zeta(2)} = \frac{6}{\pi^2}.$$

ζ denotes the Riemann-zeta function

$$\zeta(s) = \sum_{s \geq 1} \frac{1}{n^s} = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$

References

- E. Cesàro, “Probabilité de certains faits arithmétiques”, Mathesis, 1884.
Theorem (J. Nymann, 1972)

Let $m \geq 2$ be a positive integer and the set of coprime m-tuples be denoted by C_m. Then

$$\rho(C_m) = \frac{1}{\zeta(m)}.$$
Definition (Rectangular Unimodular Matrix)

Let $n < m \in \mathbb{N}$. $M \in \text{Mat}_{n \times m}(\mathbb{Z})$ is rectangular unimodular, if we can extend it to an $m \times m$ matrix in $GL_m(\mathbb{Z})$.

Violetta Weger
Definition (Rectangular Unimodular Matrix)

Let $n < m \in \mathbb{N}$. $M \in \text{Mat}_{n \times m}(\mathbb{Z})$ is rectangular unimodular, if we can extend it to an $m \times m$ matrix in $GL_m(\mathbb{Z})$.

Let $n < m$ then we define the rectangular unimodular matrices as

$$U_{n,m} = \{ A \in \mathbb{Z}^{n \times m} \mid \forall p \in \mathcal{P} \; \text{rk}(A \mod p) = n \}.$$
p-adic Integers

- **p-adic valuation:**
 \[\text{ord}_p(x) = \max \{ v : p^v \mid x \} \quad x \in \mathbb{Z} \setminus \{0\}, \]
 \[\text{ord}_p(0) = \infty, \]
 \[\text{ord}_p(y) = \text{ord}_p(a) - \text{ord}_p(b) \quad y = a/b \in \mathbb{Q} \setminus \{0\}. \]

- **p-adic norm:**
 \[|x|_p = \begin{cases}
 \frac{1}{p^{\text{ord}_p(x)}} & x \neq 0, \\
 0 & x = 0.
 \end{cases} \]

- The \(p \)-adic number \(\mathbb{Q}_p \) are the completion of \(\mathbb{Q} \) with respect to \(|\cdot|_p \)

- The \(p \)-adic integers \(\mathbb{Z}_p = \{ \alpha \in \mathbb{Q}_p : |\alpha|_p \leq 1 \} \)

- Haar measure \(\mu_p \) on \(\mathbb{Z}_p \):
 \[\mu_p(a + p^k \mathbb{Z}_p) = \frac{1}{p^k} \]
\textbf{\textit{p}-adic Integers}

- \textit{p}-adic valuation:
 \[\text{ord}_p(x) = \max\{v : p^v \mid x\} \quad x \in \mathbb{Z} \setminus \{0\}, \]
 \[\text{ord}_p(0) = \infty, \]
 \[\text{ord}_p(y) = \text{ord}_p(a) - \text{ord}_p(b) \quad y = \frac{a}{b} \in \mathbb{Q} \setminus \{0\}. \]

- \textit{p}-adic norm:
 \[|x|_p = \begin{cases}
 \frac{1}{p^\text{ord}_p(x)} & x \neq 0, \\
 0 & x = 0.
\end{cases} \]

The \textit{p}-adic number \(\mathbb{Q}_p \) are the completion of \(\mathbb{Q} \) with respect to \(|\cdot|_p \)
\[\alpha \in \mathbb{Q}_p : \alpha = \sum_{i=k}^{\infty} a_i p^i \]

- The \textit{p}-adic integers \(\mathbb{Z}_p = \{\alpha \in \mathbb{Q}_p : |\alpha|_p \leq 1\} \)
 \[\beta \in \mathbb{Z}_p : \beta = \sum_{i=0}^{\infty} a_i p^i \]

- Haar measure \(\mu_p \) on \(\mathbb{Z}_p \):
 \[\mu_p(a + p^k \mathbb{Z}_p) = \frac{1}{p^k} \]
Local-to-Global Principle

Idea

\[
T = \bigcap_{p \in \mathcal{P}} (U_p^C \cap \mathbb{Z})
\]

\[
T_M = \bigcap_{p < M} (U_p^C \cap \mathbb{Z})
\]

\[
T_M \setminus T \subseteq \bigcup_{p > M} (U_p \cap \mathbb{Z})
\]

\[
\rho(T) = \rho(T_M) - \rho(T_M \setminus T)
\]
Theorem (B. Poonen and M. Stoll, 1999)

Let $U_\infty \subset \mathbb{R}^d$, such that $\mathbb{R}_{\geq 0} \cdot U_\infty = U_\infty$ and $\mu_\infty(\partial(U_\infty)) = 0$. Let $s_\infty = \frac{1}{2^d} \mu_\infty(U_\infty \cap [-1, 1]^d)$.

For each $p \in \mathcal{P}$, let $U_p \subset \mathbb{Z}_p^d$, such that $\mu_p(\partial(U_p)) = 0$ and define $s_p = \mu_p(U_p)$. Define

$$P : \mathbb{Z}^d \rightarrow 2^{M_\mathbb{Q}},$$
$$a \mapsto \{ \nu \in M_\mathbb{Q} \mid a \in U_\nu \}.$$

If

$$\lim_{M \to \infty} \bar{\rho} \left(\left\{ a \in \mathbb{Z}^d \mid a \in U_p \text{ for some prime } p > M \right\} \right) = 0,$$ (1)
Theorem (B. Poonen and M. Stoll, 1999)

then:

i) \(\sum_{\nu \in M_\mathbb{Q}} s_\nu \) converges.

ii) For \(S \subset 2^{M_\mathbb{Q}} \), \(\rho(P^{-1}(S)) \) exists, and defines a measure on \(2^{M_\mathbb{Q}} \).

iii) For each finite set \(S \in 2^{M_\mathbb{Q}} \), we have that

\[
\rho(P^{-1}(\{S\})) = \prod_{\nu \in S} s_\nu \prod_{\nu \not\in S} (1 - s_\nu),
\]

and if \(S \) consists of infinite subsets of \(2^{M_\mathbb{Q}} \), then \(\rho(P^{-1}(S)) = 0 \).

Local-to-Global Principle

Strategy

\[T = \{ a \in \mathbb{Z}^d \mid \forall p \in \mathcal{P} \text{ } a \mod p \text{ satisfies } C_p \} \]

1. Choose system \((U_\nu)\):
 - Choose \(S = \emptyset\).
 - Choose \(U_\infty = \emptyset\).
 - Choose \(U_p\) such that \(P^{-1}(\{\emptyset\}) = T\), that is
 \[U_p = \{ a \in \mathbb{Z}_p^d \mid a \mod p \text{ does not satisfy } C_p \} \].

2. Compute \(s_p = \mu_p(U_p)\).

3. Show that Condition (1) is satisfied.

4. Compute density.
Lemma

Let d and M be positive integers. Let $f, g \in \mathbb{Z}[x_1, \ldots, x_d]$ be relatively prime. Define $S_M(f, g)$ as

$$\left\{ a \in \mathbb{Z}^d \mid f(a) \equiv g(a) \equiv 0 \mod p \text{ for some prime } p > M \right\},$$

then

$$\lim_{M \to \infty} \bar{\rho}(S_M(f, g)) = 0.$$

Strategy

Choose coprime f, g such that

$$\left\{ a \in \mathbb{Z}^d \mid a \in U_p \text{ for some prime } p > M \right\} \subset S_M(f, g).$$
Theorem (G. Micheli and V. W., 2019)

Let $n < m$ be a positive integers and the set of rectangular unimodular $n \times m$ matrices be denoted by $U_{n,m}$. Then

$$
\rho(U_{n,m}) = \prod_{i=0}^{n-1} \frac{1}{\zeta(m-i)}.
$$

Proof

1. Choose system \((U_\nu)\):
 - \(T = U_{n,m} = \{ A \in \mathbb{Z}^{n \times m} \mid \forall p \in \mathcal{P} \ \text{rk}(A \mod p) = n \}\)
 thus \(C_p\) is \(A \mod p\) has full rank.
 - Define \(\pi_p : \mathbb{Z}_p^{n \times m} \to \mathbb{F}_p^{n \times m}\) as \(A \mapsto A \mod p\).
 - \(\mathcal{L}_p = \{ A \in \mathbb{F}_p^{n \times m} \mid \text{rk}(A) = n \}\).
 - \(|\mathcal{L}_p| = \prod_{i=0}^{n-1} (p^m - p^i)\).
 - If \(X \in \mathbb{Z}_p^{n \times m}\) is such that \(\pi_p(X) \in \mathcal{L}_p\), then also \(X + p\mathbb{Z}_p^{nm}\).
 - Define \(A_p = \{ X \in \mathbb{Z}_p^{n \times m} \mid \pi_p(X) \in \mathcal{L}_p \} + p\mathbb{Z}_p^{nm}\).
 - \(U_p\) should be the elements that do not satisfy \(C_p\):
 Choose \(U_p = A_p^C\).
Proof

2. Compute $s_p = \mu_p(U_p)$:
 - $A_p = \bigcup_{A \in \mathcal{L}_p} (\pi_p^{-1}(A) + p\mathbb{Z}_p^{nm})$.
 - Compute the Haar measure of A_p as

\[
\mu_p(A_p) = \sum_{A \in \mathcal{L}_p} \mu_p(\pi_p^{-1}(A) + p\mathbb{Z}_p^{nm}) \\
= \mu_p(p\mathbb{Z}_p^{nm}) \mid \mathcal{L}_p \mid \\
= \frac{1}{p^{nm}} \prod_{i=0}^{n-1} (p^m - p^i) \\
= \prod_{i=0}^{n-1} \left(1 - \frac{1}{p^{m-i}}\right).
\]

 - $s_p = \mu_p(U_p) = 1 - \mu_p(A_p)$.

Violetta Weger

The Local-to-Global Principle for Densities
Rectangular Unimodular Matrices

Proof

3. Show that Condition (1) is satisfied:
Use the helpful lemma with f giving the first basic minor and g the second.

$$S_M(f, g) = \{A \in \mathbb{Z}^{nm} \mid f(A) \equiv g(A) \equiv 0 \mod p$$
for some $p > M$$$
\supset \{A \in \mathbb{Z}^{nm} \mid A \in U_p \text{ for some } p > M\}.$$

4. Compute density:

$$\rho(P^{-1}(\emptyset)) = \prod_{\nu \in \emptyset} s_{\nu} \prod_{\nu \notin \emptyset} (1 - s_{\nu}) = \prod_{p \in \mathcal{P}} (1 - s_p)$$

$$= \prod_{p \in \mathcal{P}} \prod_{i=0}^{n-1} \left(1 - \frac{1}{p^{m-i}}\right) = \prod_{i=0}^{n-1} \frac{1}{\zeta(m-i)}.$$
Let \(f \in \mathbb{Z}[x] \) be a polynomial of degree \(d \), i.e.,

\[
f = \sum_{i=0}^{d} a_i x^i,
\]

then we identify \(f \) by \((a_0, \ldots, a_d) \in \mathbb{Z}^{d+1}\).

Definition (Eisenstein Polynomials)

Let \(f \in \mathbb{Z}[x] \) be of degree \(d \) and having associated tuple \((a_0, \ldots, a_d)\). Then we call \(f \) an Eisenstein polynomial, if \(p^2 \nmid a_0, p \nmid a_d \) and for all \(i < d \) we have \(p \mid a_i \), for some \(p \in \mathcal{P} \).

In addition, we say that \(f \) is \(p \)-Eisenstein if \(f \) satisfies the criterion of Eisenstein for this prime \(p \).
Theorem (R. Heymann and I. Shparlinski, 2013)

Let the set of Eisenstein polynomials be denoted by E_d. Then

$$\rho(E_d) = 1 - \prod_{p \in \mathcal{P}} \left(1 - \frac{(p - 1)^2}{p^{d+2}}\right).$$
Theorem (R. Heymann and I. Shparlinski, 2013)

Let the set of Eisenstein polynomials be denoted by E_d. Then

$$\rho(E_d) = 1 - \prod_{p \in \mathcal{P}} \left(1 - \frac{(p - 1)^2}{p^{d+2}}\right).$$

Using the Local-to-Global Principle we can set

$$U_p = (p\mathbb{Z}_p \setminus p^2\mathbb{Z}_p) \times (p\mathbb{Z}_p)^{d-1} \times (\mathbb{Z}_p \setminus p\mathbb{Z}_p),$$

with $s_p = \frac{(p-1)^2}{p^{d+2}}$.
How many primes on average are such that an Eisenstein polynomial satisfies the criterion of Eisenstein?

Notation:

- Target set $T = \{a \in \mathbb{Z}^d \mid \exists p \in \mathcal{P} \ a \text{ satisfies } C_p\}$.
- Counting function ψ:

$$\psi : \mathbb{Z}^d \to \mathbb{N},$$

$$a \mapsto |\{p \in \mathcal{P} \mid a \text{ satisfies } C_p\}|.$$

- For $H \in \mathbb{N}$, define $T(H) = T \cap [-H, H]^d$.

Definition (Mean)

Let $T \subset \mathbb{Z}^d$, such that $\rho(T) \neq 0$ exists. Then we define the mean of ψ as

$$\mu = \lim_{H \to \infty} \frac{\sum_{a \in T(H)} \psi(a)}{|T(H)|},$$

if it exists.
Strategy

For $s \geq 2$ a positive integer, let

$$\mathcal{H}(s, H) = \{a \in \mathbb{Z}^d \cap [-H, H^d] \mid a \text{ satisfies } C_s\}.$$

1. Compute the size of $\mathcal{H}(s, H)$.
2. Compute
 $$\sum_{a \in T(H)} \psi(a) = \sum_{p \in \mathcal{P}, p < H} |\mathcal{H}(p, H)|.$$
3. Compute $|T(H)|$ as
 $$|T(H)| = -\sum_{s=2}^{H} \mu(s) |\mathcal{H}(s, H)|.$$
4. Compute μ as
 $$\mu = \lim_{H \to \infty} \frac{\sum_{a \in T(H)} \psi(a)}{|T(H)|}.$$
How many primes on average are such that an Eisenstein polynomial satisfies the criterion of Eisenstein?

Theorem (M. Shillin, K. McGown, D. Rhodes and M. Wanner, 2018)

Let $\psi(a)$ be the number of $p \in \mathcal{P}$ such that f associated to a is p-Eisenstein. The mean of $\psi(a)$, is given by

$$
\mu(E_d) = \lim_{H \to \infty} \frac{\sum_{a \in E_d(H)} \psi(a)}{|E_d(H)|} = \frac{\alpha}{\rho(E_d)},
$$

where

$$
\alpha = \sum_{p \in \mathcal{P}} \frac{(p - 1)^2}{p^{d+2}}.
$$

Local-to-Global Principle for Mean Pattern

\[\mu = \lim_{H \to \infty} \frac{\sum_{a \in T(H)} \psi(a)}{|T(H)|} = \frac{\alpha}{\rho(T)}, \]

where

\[\alpha = \sum_{\nu \in M_\mathbb{Q}} s_\nu. \]
Definition (Mean of a System)

Let H and d be positive integers, then we define the expected value of the system $(U_\nu)_{\nu \in M_\mathbb{Q}}$ to be

$$\mu = \lim_{H \to \infty} \frac{\sum_{A \in [-H,H]^d} | \{ \nu \in M_\mathbb{Q} | A \in U_\nu \} |}{(2H)^d},$$

if it exists.

Violetta Weger
The Local-to-Global Principle for Densities
We define the expected value of the system \((U_\nu)_{\nu \in M_Q}\) restricted to \(T\) to be

\[
\mu_T = \lim_{H \to \infty} \frac{\sum_{A \in [-H, H]^d \cap T} | \{ \nu \in M_Q \mid A \in U_\nu \} |}{| [-H, H]^d \cap T |},
\]

if it exists.

Lemma

If the density of \(T\) exists and is nonzero and \(T\) is such that \(T^C \subseteq P^{-1}(\{\emptyset\})\), then \(\mu_T\) exists and is given by

\[
\mu_T = \frac{\mu}{\rho(T)}.
\]
Theorem (G. Micheli, S. Schraven and V. W., 2020)

Let $H, d \in \mathbb{N}$. Let $U_\infty \subset \mathbb{R}^d$, such that $\mathbb{R}_{\geq 0} \cdot U_\infty = U_\infty$ and $\mu_\infty(\partial(U_\infty)) = 0$. Let $s_\infty = \frac{1}{2d} \mu_\infty(U_\infty \cap [-1,1]^d)$. For each prime p, let $U_p \subset \mathbb{Z}_p^d$, such that $\mu_p(\partial(U_p)) = 0$ and define $s_p = \mu_p(U_p)$. Define the following map

$$P : \mathbb{Z}^d \rightarrow 2^{M_\mathbb{Q}},$$

$$a \mapsto \{ \nu \in M_\mathbb{Q} \mid a \in U_\nu \}.$$

If

1. $\lim_{M \rightarrow \infty} \bar{\rho} \left(\left\{ a \in \mathbb{Z}^d \mid a \in U_p \text{ for some prime } p > M \right\} \right) = 0,$
Local-to-Global Principle for Mean

Theorem (G. Micheli, S. Schraven and V. W., 2020)

2. there exists an absolute constant $c \in \mathbb{Z}$, and some $m \in \mathbb{N}$ such that for all $H \geq 1$ and for all $A \in \mathbb{Z}^d$

$$\ell_{A,H} = | \{p \in \mathcal{P} \mid p > H, A \in U_p \cap [-H, H]^d \} | < c$$

3. there exists a sequence $(v_p)_{p \in \mathcal{P}}$, such that for all $p < H$

$$| U_p \cap [-H, H]^d | \leq v_p (2H)^d \quad \text{and} \quad \sum_{p \in \mathcal{P}} v_p \text{ converges.}$$

Then the mean of the system $(U_\nu)_{\nu \in M_0}$ exists and is given by

$$\mu = \sum_{\nu \in M_0} s_\nu.$$
Mean of Eisenstein Polynomials

Choose

\[U_p = (p\mathbb{Z}_p \setminus p^2\mathbb{Z}_p) \times (p\mathbb{Z}_p)^{d-1} \times (\mathbb{Z}_p \setminus p\mathbb{Z}_p). \]

1. Choose \(f(x_1, \ldots, x_{d+1}) = x_1, g(x_1, \ldots, x_{d+1}) = x_2. \)
2. Clear:

\[| \{ p \in \mathcal{P} \mid p > H, A \in U_p \cap [-H, H^d] \} | = 0. \]

3. Clear:

\[| U_p \cap [-H, H^{d+1}]| \leq \lceil (2H)/p \rceil^d H \]

and

\[\sum_{p \in \mathcal{P}} \frac{1}{p^d} \text{ converges}. \]

Then

\[\mu(E_d) = \frac{\sum_{p \in \mathcal{P}} \frac{(p-1)^2}{p^{d+2}}}{\rho(E_d)}. \]
Thank you!