Signature Scheme from Restricted Errors

Violetta Weger

CBCrypto 2023
International Workshop on Code-Based Cryptography
April 23, 2023

Marco Baldi, Sebastian Bitzer
Alessio Pavoni, Paolo Santini
Antonia Wachter-Zeh
Motivation

2016 NIST standardization call for post-quantum PKE/KEM and signatures
Motivation

2016 NIST standardization call for post-quantum PKE/KEM and signatures

- PKE/KEM: 1 lattice-based, round 4: 3 code-based
- Signature schemes: 1 hash-based and 2 based on ideal lattices
Motivation

2016 NIST standardization call for post-quantum PKE/KEM and signatures

- PKE/KEM: 1 lattice-based, round 4: 3 code-based
- Signature schemes: 1 hash-based and 2 based on ideal lattices

2022 NIST reopened standardization call for signature schemes
Idea of Signature Schemes

Signer

Key Generation

Secret key S, public key P

Signing

Message m, signature σ

Verifier

P →

$\overrightarrow{m,\sigma}$ →

Verification

Verify σ
Idea of Signature Schemes

Signer

Key Generation

Secret key S, public key P

Signing

Message m, signature σ

Verifier

$P \rightarrow m,\sigma$

Verification

Verify σ

Two approaches to get a code-based signature scheme:

- Hash-and-sign
- Through ZK protocol
Idea of Signature Schemes

Signer

Key Generation

Secret key \(S \), public key \(P \)

Signing

Message \(m \), signature \(\sigma \)

Verifier

\(P \)

\(m, \sigma \)

Verification

Verify \(\sigma \)

Two approaches to get a code-based signature scheme:

- Hash-and-sign
 - large public key sizes
- Through ZK protocol
 - large signature sizes
Idea of Signature Schemes

Signer

Key Generation

Secret key S, public key P

Signing

Message m, signature σ

Verifier

Two approaches to get a code-based signature scheme:

- **Hash-and-sign**
 - large public key sizes
 - Stefan’s talk: FuLeeca

- **Through ZK protocol**
 - large signature sizes
 - this talk: restricted errors
Idea of Signature Schemes

Signer

Key Generation
- Secret key S, public key P

Signing
- Message m, signature σ

Verifier

Two approaches to get a code-based signature scheme:

- **Hash-and-sign**
 - large public key sizes
 - Stefan’s talk: FuLeeca

- **Through ZK protocol**
 - large signature sizes
 - this talk: restricted errors
Idea of ZK Protocol

Prover

- S: secret, P: related public key
- c: commitments to secret
- r_b: response to challenge b

Verifier

- b: challenge
 - Recover c from r_b and P

- Complete: a honest prover gets accepted
- Zero-knowledge: verifier does not gain information on S
- Sound: small probability of an impersonator getting accepted
- α: cheating probability, λ: bit security level
- Rounds: have to repeat ZK protocol N times: $2^\lambda < (1/\alpha)^N$
Idea of ZK Protocol

Prover

- S: secret, \mathcal{P}: related public key
- c: commitments to secret
- r_b: response to challenge b

Verifier

- b: challenge
- Recover c from r_b and \mathcal{P}

- **complete**: a honest prover gets accepted
- **zero-knowledge**: verifier does not gain information on S
- **sound**: small probability of an impersonator getting accepted
Idea of ZK Protocol

Prover

- \mathcal{S}: secret, \mathcal{P}: related public key
- c: commitments to secret
- r_b: response to challenge b

Interaction

- $\mathcal{P}, c \rightarrow b$
- $b \leftarrow r_b$

Verifier

- b: challenge
- Recover c from r_b and \mathcal{P}

- **complete**: a honest prover gets accepted
- **zero-knowledge**: verifier does not gain information on \mathcal{S}
- **sound**: small probability of an impersonator getting accepted

Violetta Weger — Signature Scheme from Restricted Errors

2/11
Idea of ZK Protocol

Prover
- S: secret, P: related public key
- c: commitments to secret
- b: Hash of message, c
- r_b: response to challenge b

Verifier
- Recover c from r_b and P
- Verify $b = \text{Hash}(m, c)$

- **complete**: a honest prover gets accepted
- **zero-knowledge**: verifier does not gain information on S
- **sound**: small probability of an impersonator getting accepted
Idea of ZK Protocol

Prover

- S: secret
- P: related public key
- c: commitments to secret
- b: Hash of message, c
- r_b: response to challenge b

Verifier

- Recover c from r_b and P
- Verify $b = \text{Hash}(m, c)$

- **complete**: a honest prover gets accepted
- **zero-knowledge**: verifier does not gain information on S
- **sound**: small probability of an impersonator getting accepted
- **α cheating probability**, λ bit security level
- **Rounds**: have to repeat ZK protocol N times: $2^\lambda < (1/\alpha)^N$
Code-based ZK Protocols

ZK protocol \(\xrightarrow{\text{Fiat-Shamir}}\) Signature scheme

Syndrome Decoding Problem

Given parity-check matrix \(H\), syndrome \(s\), weight \(t\), find \(e\) s.t.

1. \(s = eH^\top\)
2. \(\text{wt}_H(e) \leq t\)

Prover

\(S:\) \(e\) of weight \(t\),
\(\mathcal{P}:\) random \(H, s = eH^\top, t\)
\(c_1:\) commitment to syndrome equation 1.
\(c_2:\) commitment to weight 2.
response: \(r_1 = \varphi, r_2 = \varphi(e)\)

Verifier

\(\xrightarrow{\mathcal{P}}\)

\(b \in \{1, 2\}\)

\(\xleftarrow{b}\)

\(r_b\) recover \(c_b\) from \(r_b\) and \(\mathcal{P}\)
Code-based ZK Protocols

- ZK protocol → Fiat-Shamir → Signature scheme

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t.
1. $s = eH^\top$
2. $\text{wt}_H(e) \leq t$

Prover
- S: e of weight t,
- P: random H, $s = eH$
- c_1: commitment to syndrome
- c_2: commitment to weight 2.
- response: $r_1 = \varphi$, $r_2 = \varphi(e)$

Verifier
- Problem: large cheating probability \rightarrow big signature sizes
- r_b recover c_b from r_b and P
Performance of Classical Approach

Example

- $\lambda = 128$ bit security level $\rightarrow N = 135$ \rightarrow public key size: 832 b
- $q = 31, n = 256, k = 204$ \rightarrow signature size: 43 kB
Performance of Classical Approach

Example

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>128 bit security level</td>
<td>$N = 135$</td>
</tr>
<tr>
<td>q</td>
<td>31</td>
<td>$n = 256$</td>
</tr>
<tr>
<td>n</td>
<td>256</td>
<td>$k = 204$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public key size</td>
<td>832 b</td>
<td></td>
</tr>
<tr>
<td>Signature size</td>
<td>43 kB</td>
<td></td>
</tr>
</tbody>
</table>

For a long time not been considered practical.

Performance of Classical Approach

Example

- $\lambda = 128$ bit security level $\rightarrow N = 135$ \rightarrow public key size: 832 b
- $q = 31, n = 256, k = 204$ \rightarrow signature size: 43 kB

for a long time not been considered practical

Recent improvements through in-the-head computations

\rightarrow smaller signature sizes ~ 10 kB

Performance of Classical Approach

Example

- $\lambda = 128$ bit security level $\rightarrow N = 135$ \rightarrow public key size: 832 b
- $q = 31$, $n = 256$, $k = 204$ \rightarrow signature size: 43 kB

for a long time not been considered practical

Recent improvements through in-the-head computations \rightarrow smaller signature sizes ~ 10 kB

Problem of Classical Approach

Classical CVE (1 round)

- public key size: seed of H, s; $\log_2(q)(n - k) < 0.1$ kB
- signature size: $\text{Hash}(m, c)$ and response: transformation φ or $\varphi(e)$
Problem of Classical Approach

Classical CVE (1 round)

- public key size: seed of H, s; $\log_2(q)(n - k) < 0.1$ kB
- signature size: $\text{Hash}(m, c)$ and response: transformation φ or $\varphi(e)$

Which φ are allowed?
Problem of Classical Approach

Classical CVE (1 round)

- public key size: seed of H, s; $\log_2(q)(n-k) < 0.1$ kB
- signature size: Hash(m,c) and response: transformation φ or $\varphi(e)$

Which φ are allowed?

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\text{wt}_H(e) \leq t$.

\[
\begin{array}{cccc}
e & 0 & 0 & 0 & 0 \\
\end{array}
\xrightarrow{\varphi} \begin{array}{cccc}
0 & 0 & 0 & 0 & e'
\end{array}
\]
Problem of Classical Approach

Classical CVE (1 round)

- public key size: seed of H, s; $\log_2(q)(n - k) < 0.1$ kB
- signature size: $\text{Hash}(m, c)$ and response: transformation φ or $\varphi(e)$

Which φ are allowed?

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_{q}^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\text{wt}_H(e) \leq t$.

$e \begin{array}{cccc} 0 & 0 & 0 & 0 \end{array} \xrightarrow{\varphi} \begin{array}{cccc} 0 & \color{#e67e22}0 & \color{#e67e22}0 & 0 \end{array} e'$

$\rightarrow \varphi$: linear isometries of Hamming metric:
permutation + scalar multiplication
Problem of Classical Approach

Classical CVE (1 round)

- public key size: seed of H, s; $\log_2(q)(n - k) < 0.1$ kB
- signature size: $\varphi(e) : t \log_2(q - 1) + t \log_2(n)$ or $\varphi : n \log_2(q - 1) + n \log_2(n)$

Which φ are allowed?

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k)\times n}, s \in \mathbb{F}_q^{n-k},$ weight t, find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\text{wt}_H(e) \leq t$.

$\rightarrow \varphi : \text{linear isometries of Hamming metric:}
\text{permutation + scalar multiplication}$
Restricted Errors

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\text{wt}(e) \leq t$.

Can we avoid permutations - but keep the hardness of the problem?
Restricted Errors

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\text{wt}(e) \leq t$.

Can we avoid permutations - but keep the hardness of the problem?

↓

Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^\ast$, find $e \in E^n$ such that $s = eH^\top$.
Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^*$, find $e \in E^n$ such that $s = eH^\top$.
Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k)\times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^*$, find $e \in \mathbb{F}^n$ such that $s = eH^\top$.

Idea

- $g \in \mathbb{F}_q^*$ of order z,
- $E = \{g^i \mid i \in \{1, \ldots, z\}\}$
Restricted Errors

Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^*$, find $e \in \mathbb{E}^n$ such that $s = eH^\top$.

Idea

- $g \in \mathbb{F}_q^*$ of order z,
 $E = \{g^i \mid i \in \{1, \ldots, z\}\}$
- transf. $\varphi : \mathbb{E}^n \rightarrow \mathbb{E}^n$, $e \mapsto e \ast e'$ for $e' \in \mathbb{E}^n$
- size of φ is $n \log_2(z)$
 (instead of $n \log_2((q-1)n)$)
Benefits of Restricted Errors

- Larger cost of solvers than for classical SDP
 → Recall talk of Sebastian
- Size of φ and $\varphi(e)$ is smaller
- Computations are easier (in \mathbb{F}_z instead of \mathbb{F}_q)
 → can choose smaller parameters
 → smaller signature sizes
 → smaller running times

We can replace SDP with Restricted SDP in any code-based ZK protocol

Example GPS for $\lambda = 128$, $q = 128$, $n = 220$, $k = 101$, $t = 90$
→ signature size: 24.6 kB

Example Rest. GPS for $\lambda = 128$, $q = 67$, $n = 147$, $k = 63$, $z = 11$
→ signature size: 14.8 kB

S. Gueron, E. Persichetti, P. Santini. “Designing a practical code-based signature scheme from zero-knowledge proofs with trusted setup”
Benefits of Restricted Errors

- Larger cost of solvers than for classical SDP → Recall talk of Sebastian
- Size of φ and $\varphi(e)$ is smaller → smaller signature sizes
- Computations are easier (in \mathbb{F}_z instead of \mathbb{F}_q) → smaller running times

We can replace SDP with Restricted SDP in any code-based ZK protocol

Example GPS for $\lambda = 128$

$$q = 128, n = 220, k = 101, t = 90$$

→ signature size: 24.6 kB

Example Rest. GPS for $\lambda = 128$

$$q = 67, n = 147, k = 63, z = 11$$

→ signature size: 14.8 kB

S. Gueron, E. Persichetti, P. Santini. “Designing a practical code-based signature scheme from zero-knowledge proofs with trusted setup”
Benefits of Restricted Errors

- Larger cost of solvers than for classical SDP
 → Recall talk of Sebastian
- Size of φ and $\varphi(e)$ is smaller
- Computations are easier (in \mathbb{F}_z instead of \mathbb{F}_q)
 → can choose smaller parameters
 → smaller signature sizes
 → smaller running times

We can replace SDP with Restricted SDP in any code-based ZK protocol

Example GPS for $\lambda = 128$

$q = 128, n = 220, k = 101, t = 90$
→ signature size: 24.6 kB

Example Rest. GPS for $\lambda = 128$

$q = 67, n = 147, k = 63, z = 11$
→ signature size: 14.8 kB

S. Gueron, E. Persichetti, P. Santini. “Designing a practical code-based signature scheme from zero-knowledge proofs with trusted setup”

But we can do even better: Restricted SDP in a subgroup G
Restricted-G SDP

(\mathbb{E}^n, \star) is an abelian group isomorphic to $(\mathbb{F}_z^n, +)$

Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^\star$, find $e \in \mathbb{E}^n$ s.t. $s = eH^\top$.
Restricted-G SDP

(\mathbb{E}^n, \star) is an abelian group isomorphic to $(\mathbb{F}_z^n, +)$ \rightarrow Subgroup $(G, \star) \leq (\mathbb{E}^n, \star)$

\[G = \langle x_1, \ldots, x_m \rangle = \left\{ \prod_{i=1}^{m} x_i^{u_i} \mid u_i \in \{1, \ldots, z\} \right\} \]

Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k)\times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^*$, find $e \in \mathbb{E}^n$ s.t. $s = eH^\top$.
Restricted-G SDP

(\mathbb{E}^n, \star) is an abelian group isomorphic to $(\mathbb{F}_z^n, +) \rightarrow \text{Subgroup (} G, \star \leq (\mathbb{E}^n, \star) \text{)}$

$$G = \langle x_1, \ldots, x_m \rangle = \left\{ \prod_{i=1}^{m} x_i^{u_i} \mid u_i \in \{1, \ldots, z\} \right\}$$

Restricted-G Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^*$, $G = \langle x_1, \ldots, x_m \rangle \leq \mathbb{E}^n$ find $e \in G$ s.t. $s = eH^\top$.
Restricted-\(G\) SDP

\((\mathbb{E}^n, \star)\) is an abelian group isomorphic to \((\mathbb{F}_z^n, +)\) \(\rightarrow\) Subgroup \((G, \star) \leq (\mathbb{E}^n, \star)\)

\[
G = \langle x_1, \ldots, x_m \rangle = \left\{ \prod_{i=1}^{m} x_i^{u_i} \mid u_i \in \{1, \ldots, z\} \right\}
\]

Restricted-\(G\) Syndrome Decoding Problem

Given \(H \in \mathbb{F}_q^{(n-k) \times n}\), \(s \in \mathbb{F}_q^{n-k}\), \(E \subseteq \mathbb{F}_q^*\), \(G = \langle x_1, \ldots, x_m \rangle \leq \mathbb{E}^n\) find \(e \in G\) s.t. \(s = eH^\top\).

<table>
<thead>
<tr>
<th>Classical</th>
<th>Rest.</th>
<th>Rest.-(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \log_2((q - 1)n))</td>
<td>(n \log_2(z))</td>
<td>(m \log_2(z))</td>
</tr>
</tbody>
</table>
Example

- \(q = 13, n = 4, g = 3 \), \(\rightarrow \) multiplicative order \(z = 3 \);
 \[\mathbb{E} = \{g^0 = 1, g^1 = 3, g^2 = 9\} \]

- E.g. \(e = (1, 9, 3, 3) \in \mathbb{E}^n \)

- \(m = 3 \), generators
 \[x_1 = (g^2, g^0, g^2, g^0), \quad x_2 = (g^2, g^2, g^0, g^2, g^2), \quad x_3 = (g^0, g^2, g^2, g^1). \]

- \(G = \langle x_1, x_2, x_3 \rangle \)

- E.g. \(x_1^2 \star x_2^1 \star x_3^0 = (g^0, g^2, g^1, g^2) = (1, 9, 3, 9) \in G \), but \(e = (1, 9, 3, 3) \notin G \)

- \(|G| = z^m = 9 \), easy check:
 \[M_G = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 2 & 2 & 0 & 2 \\ 0 & 2 & 2 & 1 \end{pmatrix} \in \mathbb{F}_z^{m \times n} \]
Performance of Restricted SDP in G Signatures

Example GPS for $\lambda = 128$

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameters</th>
<th>Signature Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical GPS</td>
<td>$q = 128, n = 220, k = 101, t = 90$</td>
<td>\rightarrow signature size: 24.6 kB</td>
</tr>
<tr>
<td>Restricted GPS</td>
<td>$q = 67, n = 147, k = 63, z = 11$</td>
<td>\rightarrow signature size: 14.8 kB</td>
</tr>
<tr>
<td>Restricted-G GPS</td>
<td>$q = 53, n = 82, k = 47, z = 13, m = 54$</td>
<td>\rightarrow signature size: 12.7 kB</td>
</tr>
</tbody>
</table>
Performance of Restricted SDP in G Signatures

Example BG for $\lambda = 128$

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameters</th>
<th>Signature Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical BG:</td>
<td>$q = 997, n = 61, k = 33, t = 31$</td>
<td>8.9 kB</td>
</tr>
<tr>
<td>Restricted BG:</td>
<td>$q = 991, n = 77, k = 38, z = 33$</td>
<td>9.5 kB</td>
</tr>
<tr>
<td>Restricted-G BG:</td>
<td>$q = 1019, n = 40, k = 16, z = 509, m = 18$</td>
<td>7.2 kB</td>
</tr>
</tbody>
</table>

L. Bidoux, P. Gaborit. “Shorter Signatures from Proofs of Knowledge for the SD, MQ, PKP and RSD Problems”
Performance of Restricted SDP in G Signatures

Example BG for $\lambda = 128$

- Classical BG: $q = 997, n = 61, k = 33, t = 31$ → signature size: 8.9 kB
- Restricted BG: $q = 991, n = 77, k = 38, z = 33$ → signature size: 9.5 kB
- Restricted-G BG: $q = 1019, n = 40, k = 16, z = 509, m = 18$ → signature size: 7.2 kB

L. Bidoux, P. Gaborit. “Shorter Signatures from Proofs of Knowledge for the SD, MQ, PKP and RSD Problems”

Conclusion/Open Questions

- Can replace classical SDP with Restricted SDP/ Restricted-G SDP in any code-based ZK protocol.
- Achieve smaller signature sizes, smaller running times
- Can we exploit the commutativity of the restricted transformations?
Questions?

CROSS

Codes & Restricted Objects Signature Scheme
http://cross-crypto.com/

Thank you!
Running times

Running time given in kCycles, CROSS has only PoC, no optimization, parallelization

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Key gen.</th>
<th>Signature gen.</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHINCS</td>
<td>1794</td>
<td>5802</td>
<td>6506</td>
</tr>
<tr>
<td>Dilithium</td>
<td>49</td>
<td>140</td>
<td>61</td>
</tr>
<tr>
<td>CROSS</td>
<td>19</td>
<td>187</td>
<td>184</td>
</tr>
</tbody>
</table>
Solving Restricted SDP in subgroup G

- Recall Sebastian’s talk: we want q, z such that \mathbb{E} has no additive structure.
- Publicly known: x_1, \ldots, x_m generators of multiplicative group G.
- $x_\ell = (g_{i_1, \ell}, \ldots, g_{i_n, \ell})$.
- Define $M_G \in \mathbb{F}_z^{m \times n}$ having rows $(i_1, \ell, \ldots, i_n, \ell)$.

$$M_G = \begin{bmatrix} i_{1, \ell} & \cdots & i_{n, \ell} \end{bmatrix}$$

$m' \geq \min \left\{ |J|, \frac{\lambda}{\log_2(z)} \right\} \rightarrow$ no improvement over enumerating all possible errors in these positions.
Comparison

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Public Key size</th>
<th>Signature size</th>
<th>Total size</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHINCS+</td>
<td><0.1</td>
<td>16.7</td>
<td>16.7</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td><0.1</td>
<td>7.7</td>
<td>7.7</td>
<td>Short</td>
</tr>
<tr>
<td>Falcon</td>
<td>0.9</td>
<td>0.6</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>Dilithium</td>
<td>1.3</td>
<td>2.4</td>
<td>3.7</td>
<td>-</td>
</tr>
<tr>
<td>CROSS</td>
<td>0.1</td>
<td>7.7</td>
<td>7.8</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>7.2</td>
<td>7.3</td>
<td>Short</td>
</tr>
<tr>
<td>GPS</td>
<td>0.1</td>
<td>24.0</td>
<td>24.1</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>19.8</td>
<td>19.9</td>
<td>Short</td>
</tr>
<tr>
<td>FJR</td>
<td>0.1</td>
<td>22.6</td>
<td>22.7</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>16.0</td>
<td>16.1</td>
<td>Short</td>
</tr>
<tr>
<td>SDItH</td>
<td>0.1</td>
<td>11.5</td>
<td>11.6</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>8.3</td>
<td>8.4</td>
<td>Short</td>
</tr>
<tr>
<td>Ret. of SDItH</td>
<td>0.1</td>
<td>12.1</td>
<td>12.1</td>
<td>Fast, V3</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>5.7</td>
<td>5.8</td>
<td>Shortest, V3</td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Public Key size</th>
<th>Signature size</th>
<th>Total size</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAVE</td>
<td>3200</td>
<td>2.1</td>
<td>3202</td>
<td>-</td>
</tr>
<tr>
<td>Durandal</td>
<td>15.2</td>
<td>4.1</td>
<td>19.3</td>
<td>-</td>
</tr>
<tr>
<td>Ideal Rank BG</td>
<td>0.5</td>
<td>8.4</td>
<td>8.9</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>6.1</td>
<td>6.6</td>
<td>Short</td>
</tr>
<tr>
<td>MinRank Fen</td>
<td>18.2</td>
<td>9.3</td>
<td>27.5</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>18.2</td>
<td>7.1</td>
<td>25.3</td>
<td>Short</td>
</tr>
<tr>
<td>Rank SDP Fen</td>
<td>0.9</td>
<td>7.4</td>
<td>8.3</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>5.9</td>
<td>6.8</td>
<td>Short</td>
</tr>
<tr>
<td>Beu</td>
<td>0.1</td>
<td>18.4</td>
<td>18.5</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>12.1</td>
<td>12.2</td>
<td>Short</td>
</tr>
<tr>
<td>PKP BG</td>
<td>0.1</td>
<td>9.8</td>
<td>9.9</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>8.8</td>
<td>8.9</td>
<td>Short</td>
</tr>
<tr>
<td>FuLeeca</td>
<td>0.4</td>
<td>0.3</td>
<td>0.7</td>
<td>-</td>
</tr>
</tbody>
</table>
Hash-and-Sign: CFS

<table>
<thead>
<tr>
<th>PROVER</th>
<th>VERIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY GENERATION</td>
<td></td>
</tr>
<tr>
<td>$S = H$ parity-check matrix</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{P} = (t, HP)$ permuted H</td>
<td></td>
</tr>
<tr>
<td>SIGNING</td>
<td></td>
</tr>
<tr>
<td>Choose message m</td>
<td></td>
</tr>
<tr>
<td>$s = \text{Hash}(m)$</td>
<td></td>
</tr>
<tr>
<td>Find e: $s = eH^\top = eP(HP)^\top$, and $\text{wt}(e) \leq t$</td>
<td></td>
</tr>
<tr>
<td>m,eP</td>
<td></td>
</tr>
<tr>
<td>VERIFICATION</td>
<td></td>
</tr>
<tr>
<td>Check if $\text{wt}(eP) \leq t$ and $eP(HP)^\top = \text{Hash}(m)$</td>
<td></td>
</tr>
</tbody>
</table>
Hash-and-Sign: CFS

<table>
<thead>
<tr>
<th>PROVER</th>
<th>VERIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY GENERATION</td>
<td></td>
</tr>
<tr>
<td>$S = H$ parity-check matrix</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{P} = (t, HP)$ permuted H</td>
<td></td>
</tr>
<tr>
<td>SIGNING</td>
<td></td>
</tr>
<tr>
<td>Choose message m</td>
<td></td>
</tr>
<tr>
<td>$s = \text{Hash}(m)$</td>
<td></td>
</tr>
<tr>
<td>Find e: $s = eH^\top = eP(HP)^\top$, and $\text{wt}(e) \leq t$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m,eP</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VERIFICATION</td>
</tr>
<tr>
<td></td>
<td>Check if $\text{wt}(eP) \leq t$</td>
</tr>
<tr>
<td></td>
<td>and $eP(HP)^\top = \text{Hash}(m)$</td>
</tr>
</tbody>
</table>

Problem: Distinguishability
Hash-and-Sign: CFS

<table>
<thead>
<tr>
<th>PROVER</th>
<th>VERIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY GENERATION</td>
<td></td>
</tr>
<tr>
<td>$S = H$ parity-check matrix</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{P} = (t, HP)$ permuted H</td>
<td></td>
</tr>
<tr>
<td>SIGNING</td>
<td></td>
</tr>
<tr>
<td>Choose message m</td>
<td></td>
</tr>
<tr>
<td>$s = \text{Hash}(m)$</td>
<td></td>
</tr>
<tr>
<td>Find e: $s = eH^\top = eP(HP)^\top$, and $\text{wt}(e) \leq t$</td>
<td></td>
</tr>
<tr>
<td>m, eP</td>
<td></td>
</tr>
<tr>
<td>VERIFICATION</td>
<td></td>
</tr>
<tr>
<td>Check if $\text{wt}(eP) \leq t$ and $eP(HP)^\top = \text{Hash}(m)$</td>
<td></td>
</tr>
</tbody>
</table>

Not any s is syndrome of low weight e
ZKID

PROVER

<table>
<thead>
<tr>
<th>commitments c_0, c_1</th>
<th>c_0, c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>response r_b</td>
<td>b</td>
</tr>
</tbody>
</table>

$\leftarrow b \in \{0, 1\}$

$\rightarrow r_b$

\rightarrow Verify c_b using r_b, \mathcal{P}

VERIFIER

SIGNING

Choose message m

Construct signature s from \mathcal{S}, m

$\rightarrow m, s$

\rightarrow Verify signature s using \mathcal{P}, m

Signature Scheme
PROVER

commitments c_0, c_1

response r_b

VERIFIER

$\overset{c_0, c_1}{\leftarrow} b$

$b \in \{0, 1\}$

$\overset{r_b}{\rightarrow}$

Verify c_b using r_b, \mathcal{P}

SIGNING

Choose message m

Construct signature s from \mathcal{S}, m

$\overset{m, s}{\rightarrow}$

VERIFICATION

Verify signature s using \mathcal{P}, m

Fiat-Shamir

Signature Scheme
Fiat-Shamir

<table>
<thead>
<tr>
<th>PROVER</th>
<th>VERIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY GENERATION</td>
<td></td>
</tr>
<tr>
<td>Given \mathcal{P}, \mathcal{S} of some ZKID and message m</td>
<td></td>
</tr>
<tr>
<td>SIGNING</td>
<td></td>
</tr>
<tr>
<td>Choose commitment c</td>
<td></td>
</tr>
<tr>
<td>$b = \text{Hash}(m, c)$</td>
<td></td>
</tr>
<tr>
<td>Compute response r_b</td>
<td></td>
</tr>
<tr>
<td>Signature $s = (b, r_b)$</td>
<td>m, s</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td></td>
</tr>
<tr>
<td>Using r_b, \mathcal{P} construct c</td>
<td></td>
</tr>
<tr>
<td>check if $b = \text{Hash}(m, c)$</td>
<td></td>
</tr>
</tbody>
</table>
CVE

<table>
<thead>
<tr>
<th>PROVER</th>
<th>VERIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY GENERATION</td>
<td></td>
</tr>
<tr>
<td>Choose e with $\text{wt}(e) \leq t$</td>
<td>$\mathcal{P}=(H,s,t)$</td>
</tr>
<tr>
<td>H parity-check matrix</td>
<td></td>
</tr>
<tr>
<td>Compute $s = eH^\top$</td>
<td></td>
</tr>
</tbody>
</table>

VERIFICATION	
Choose $u \in \mathbb{F}_q^n$, $\sigma \in S_n$	
Set $c_1 = \text{Hash}(\sigma, uH^\top)$	
Set $c_2 = \text{Hash}(\sigma(u), \sigma(e))$	c_1,c_2
Choose $z \in \mathbb{F}_q^\times$	z
$y = \sigma(u + ze)$	y
$r_1 = \sigma$	b
$r_2 = \sigma(e)$	r_b
$b = 1$: $c_1 = \text{Hash}(\sigma, \sigma^{-1}(y)H^\top - zs)$	
$b = 2$: $\text{wt}(\sigma(e)) = t$	
and $c_2 = \text{Hash}(y - z\sigma(e), \sigma(e))$	
CVE

<table>
<thead>
<tr>
<th>PROVER</th>
<th>VERIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY GENERATION</td>
<td>Recall SDP: (1) (s = eH^\top) (2) (\text{wt}(e) \leq t)</td>
</tr>
<tr>
<td>Choose (e) with (\text{wt}(e) \leq t) (H) parity-check matrix</td>
<td>(P=(H,s,t))</td>
</tr>
<tr>
<td>Compute (s = eH^\top)</td>
<td>VERIFICATION</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose (u \in \mathbb{F}_q^n, \sigma \in S_n)</td>
<td></td>
</tr>
<tr>
<td>Set (c_1 = \text{Hash}(\sigma, uH^\top))</td>
<td></td>
</tr>
<tr>
<td>Set (c_2 = \text{Hash}(\sigma(u), \sigma(e)))</td>
<td>(c_1, c_2)</td>
</tr>
<tr>
<td>(z)</td>
<td>Choose (z \in \mathbb{F}_q^\times)</td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>Set (y = \sigma(u + ze))</td>
<td></td>
</tr>
<tr>
<td>(r_1 = \sigma)</td>
<td>(b)</td>
</tr>
<tr>
<td>(r_2 = \sigma(e))</td>
<td>(r_b)</td>
</tr>
<tr>
<td>(b = 1: c_1 = \text{Hash}(\sigma, \sigma^{-1}(y)H^\top - zs))</td>
<td></td>
</tr>
<tr>
<td>(b = 2: \text{wt}(\sigma(e)) = t)</td>
<td></td>
</tr>
<tr>
<td>and (c_2 = \text{Hash}(y - z\sigma(e), \sigma(e)))</td>
<td></td>
</tr>
<tr>
<td>PROVER</td>
<td>VERIFIER</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>KEY GENERATION</td>
<td></td>
</tr>
<tr>
<td>Choose (e) with (\text{wt}(e) \leq t)</td>
<td>(H) parity-check matrix</td>
</tr>
<tr>
<td>Compute (s = eH^\top)</td>
<td>(P = (H,s,t))</td>
</tr>
<tr>
<td>(e) with (\text{wt}(e) \leq t)</td>
<td>(H) parity-check matrix</td>
</tr>
<tr>
<td>Compute (s = eH^\top)</td>
<td>(P = (H,s,t))</td>
</tr>
</tbody>
</table>

VERIFICATION

Choose \(u \in \mathbb{F}_q^n \), \(\sigma \in S_n \)
Set \(c_1 = \text{Hash}(\sigma, uH^\top) \)
Set \(c_2 = \text{Hash}(\sigma(u), \sigma(e)) \)
Choose \(z \in \mathbb{F}_q^\times \)
Choose \(z \in \mathbb{F}_q^\times \)
Choose \(b \in \{1, 2\} \)

\[r_1 = \sigma \]
\[r_2 = \sigma(e) \]

Problem: big signature sizes

\[y = \sigma(u + ze) \]
\[r_1 = \sigma \]
\[r_2 = \sigma(e) \]
Cheating Probability

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^λ want cheating probability $2^{-\lambda}$
- If cheating probability δ, with N rounds \rightarrow cheating probability δ^N
Cheating Probability

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^λ want cheating probability $2^{-\lambda}$
- If cheating probability δ, with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost
Cheating Probability

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^λ want cheating probability $2^{-\lambda}$
- If cheating probability δ, with N rounds → cheating probability δ^N
- might need many rounds: large communication cost
- solution: compression technique
- do not send c_0^i, c_1^i in each round i
- before 1. round send $c = \text{Hash}(c_0^1, c_1^1, \ldots, c_0^N, c_1^N)$
- ith round: receiving challenge b prover sends $r_b^i, c_1^i - b$
- end: verifier checks $c = \text{Hash}(c_0^1, c_1^1, \ldots, c_0^N, c_1^N)$

Cheating Probability

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^λ want cheating probability $2^{-\lambda}$
- If cheating probability δ, with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost
- other solution: MPC in the head
- third party: trusted helper sends commitments $\rightarrow \delta = 0$
- instead prover sends seeds of commitment: not ZK \rightarrow cut and choose
- $x < N$ times send response, $N - x$ times send the seed of commitment
- to compress: use Merkle root or seed tree

Comparison

<table>
<thead>
<tr>
<th></th>
<th>ZKID</th>
<th>Hash-and-Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduction to NP-hard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>low public key size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>low signature size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast verification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>ZKID</th>
<th>Hash-and-Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction to NP-hard</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Low public key size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low signature size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast verification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Violetta Weger — Signature Scheme from Restricted Errors
Comparison

<table>
<thead>
<tr>
<th></th>
<th>ZKID</th>
<th>Hash-and-Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduction to NP-hard</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>low public key size</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>low signature size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast verification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th></th>
<th>ZKID</th>
<th>Hash-and-Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduction to NP-hard</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>low public key size</td>
<td>CVE: 70 B</td>
<td>WAVE: 3 MB</td>
</tr>
<tr>
<td>low signature size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast verification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>ZKID</th>
<th>Hash-and-Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduction to NP-hard</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>low public key size</td>
<td>CVE: 70 B</td>
<td>WAVE: 3 MB</td>
</tr>
<tr>
<td>low signature size</td>
<td>∼</td>
<td>✓</td>
</tr>
<tr>
<td>fast verification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Violetta Weger — Signature Scheme from Restricted Errors
Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>ZKID</th>
<th>Hash-and-Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduction to NP-hard</td>
<td>✓ ✓</td>
<td>× ×</td>
</tr>
<tr>
<td>low public key size</td>
<td>CVE: 70 B</td>
<td>WAVE: 3 MB</td>
</tr>
<tr>
<td>low signature size</td>
<td>CVE: 43 KB</td>
<td>WAVE: 1 KB</td>
</tr>
<tr>
<td>fast verification</td>
<td></td>
<td>NIST: 2 KB</td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>ZKID</th>
<th>Hash-and-Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduction to NP-hard</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>low public key size</td>
<td>CVE: 70 B</td>
<td>WAVE: 3 MB</td>
</tr>
<tr>
<td>low signature size</td>
<td>CVE: 43 KB</td>
<td>WAVE: 1 KB</td>
</tr>
<tr>
<td>fast verification</td>
<td>∼</td>
<td>✓</td>
</tr>
</tbody>
</table>