Generalization of the Ball-Collision Algorithm

Violetta Weger

joint work with Carmelo Interlando, Karan Khathuria, Nicole Rohrer and Joachim Rosenthal

University of Zurich

7th Code-Based Cryptography Workshop

19 May 2019
1 Motivation
2 Introduction
3 Prange’s Algorithm
4 Improvements overview
5 Ball-collision Algorithm
6 New directions
7 Comparison of Complexities
8 Open questions
Proposing a code-based cryptosystem

- Structural Attacks
- Nonstructural Attacks

Have to consider Information Set Decoding (ISD)
Proposing a code-based cryptosystem

- Structural Attacks
- Nonstructural Attacks

Have to consider Information Set Decoding (ISD)
Berlekamp, McEliece and van Tilborg: Decoding a random linear code is NP-complete

Problem (Syndrome decoding problem)

Given a parity check matrix H of a (binary) code of length n and dimension k and a syndrome s:

$$s = Hx^\top \in \mathbb{F}_2^{n-k}$$

and the error correction capacity t, we want to find $e \in \mathbb{F}_2^n$ of weight t such that

$$s = He^\top.$$
• Syndrome decoding problem is equivalent to the decoding problem and

Problem (Decoding problem)

Given a generator matrix G of a (binary) code of length n and dimension k and a corrupted codeword c:

$$c = mG + e \in \mathbb{F}_2^n$$

and the error correction capacity t, we want to find $e \in \mathbb{F}_2^n$ of weight t.

• equivalent to finding a minimum weight codeword, since in $\mathcal{C} + \{0, c\}$ the error vector e is now the minimum weight codeword.
Informationset

Notation

Let $c \in \mathbb{F}_q^n$ and $A \in \mathbb{F}_q^{k \times n}$, let $S \subset \{1, \ldots, n\}$, then we denote by c_S the restriction of c to the entries indexed by S and by A_S the columns of A indexed by S. For a code $C \subset \mathbb{F}_q^n$, we denote by

$$C_S = \{c_S \mid c \in C\}.$$

Definition (Informationset)

Let $C \subset \mathbb{F}_q^n$ be a code of dimension k. If $I \subset \{1, \ldots, n\}$ of size k is such that

$$|C| = |C_I|,$$

then we call I an information set of C.

Violetta Weger

Ball-Collision Algorithm
Notation

Let $c \in \mathbb{F}_q^n$ and $A \in \mathbb{F}_q^{k \times n}$, let $S \subset \{1, \ldots, n\}$, then we denote by c_S the restriction of c to the entries indexed by S and by A_S the columns of A indexed by S. For a code $C \subset \mathbb{F}_q^n$, we denote by

$$C_S = \{c_S | c \in C\}.$$

Definition (Informationset)

Let $C \subset \mathbb{F}_q^n$ be a code of dimension k. If $I \subset \{1, \ldots, n\}$ of size k is such that

$$|C| = |C_I|,$$

then we call I an information set of C.
Definition (Informationset)

Let G be the $k \times n$ generator matrix of C. If $I \subset \{1, \ldots, n\}$ of size k is such that G_I is invertible, then I is an informationset of C.

Definition (Informationset)

Let H be the $n - k \times n$ parity check matrix of C. If $I \subset \{1, \ldots, n\}$ of size k is such that H_I^c is invertible, then I is an informationset of C.
Definition (Informationset)

Let G be the $k \times n$ generator matrix of C. If $I \subset \{1, \ldots, n\}$ of size k is such that G_I is invertible, then I is an informationset of C.

Definition (Informationset)

Let H be the $n-k \times n$ parity check matrix of C. If $I \subset \{1, \ldots, n\}$ of size k is such that H_{I^C} is invertible, then I is an informationset of C.
1962 Prange proposes the first ISD algorithm.
Assumption: All t errors occur outside of the information set.

Input: $H \in \mathbb{F}_2^{n-k \times n}, s \in \mathbb{F}_2^{n-k}, t \in \mathbb{N}$
Output: $e \in \mathbb{F}_2^n, wt(e) = t$ and $He^\top = s$.

1. Choose an information set $I \subset \{1, \ldots, n\}$ of size k.
2. Find an invertible matrix $U \in \mathbb{F}_2^{n-k \times n-k}$ such that $(UH)_I = A$ and $(UH)_{I^c} = \text{Id}_{n-k}$.
3. If $wt(Us) = t$, then $e_I = 0$ and $e_{I^c} = Us$.
4. Else start over.
1 Choose an information set $I \subset \{1, \ldots, n\}$ of size k.

Let us assume for simplicity that $I = \{1, \ldots, k\}$.
Prange’s algorithm

1. Choose an information set $I \subset \{1, \ldots, n\}$ of size k.
2. Find an invertible matrix $U \in \mathbb{F}_2^{n-k \times n-k}$ such that
 $$(UH)_I = A \quad \text{and} \quad (UH)_{I^c} = \text{Id}_{n-k}. $$

Let us assume for simplicity that $I = \{1, \ldots, k\}$.

$$ UH = \begin{pmatrix} A & \text{Id}_{n-k} \end{pmatrix}, $$

hence

$$ UHe^\top = \begin{pmatrix} A & \text{Id}_{n-k} \end{pmatrix} \begin{pmatrix} 0 \\ e_{I^c} \end{pmatrix} = Us. $$
Prange’s algorithm

1. Choose an information set $I \subset \{1, \ldots, n\}$ of size k.
2. Find an invertible matrix $U \in \mathbb{F}_2^{n-k \times n-k}$ such that $(UH)_I = A$ and $(UH)_{I^c} = \text{Id}_{n-k}$.
3. If $wt(Us) = t$, then $e_I = 0$ and $e_{I^c} = Us$.

Let us assume for simplicity that $I = \{1, \ldots, k\}$.

$$UH = \begin{pmatrix} A & \text{Id}_{n-k} \end{pmatrix},$$

hence

$$UHe^\top = \begin{pmatrix} A & \text{Id}_{n-k} \end{pmatrix} \begin{pmatrix} 0 \\ e_{I^c} \end{pmatrix} = Us.$$

From which we get the condition $e_{I^c} = Us$.

Violetta Weger Ball-Collision Algorithm
The cost of an ISD algorithm is given by the product of

- the cost of one iteration,
- inverted success probability = average number of iterations needed.

The success probability is given by the weight distribution of the error vector.

Example (Success probability of Prange’s algorithm)

\[
\binom{n-k}{t} \left(\binom{n}{t} \right)^{-1}.
\]
The cost of an ISD algorithm is given by the product of
- the cost of one iteration,
- inverted success probability $= \text{average number of iterations needed}$.

The success probability is given by the weight distribution of the error vector.

Example (Success probability of Prange’s algorithm)

\[
\binom{n-k}{t} \binom{n}{t}^{-1}.
\]
Prange’s algorithm

The cost of an ISD algorithm is given by the product of
- the cost of one iteration,
- inverted success probability = average number of iterations needed.

The success probability is given by the weight distribution of the error vector.

Example (Success probability of Prange’s algorithm)

\[
\binom{n-k}{t} \binom{n}{t}^{-1}.
\]
Improvements Overview

<table>
<thead>
<tr>
<th>Year</th>
<th>Algorithm</th>
<th>Parameters</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Prange</td>
<td>k</td>
<td>$n - k$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>t</td>
</tr>
<tr>
<td>1988</td>
<td>Lee-Brickell</td>
<td>v</td>
<td>$t - v$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k</td>
<td>l</td>
</tr>
<tr>
<td>1988</td>
<td>Leon</td>
<td>v</td>
<td>0</td>
</tr>
<tr>
<td>1989</td>
<td>Stern</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>2011</td>
<td>Ball-Collision</td>
<td>v</td>
<td>v</td>
</tr>
</tbody>
</table>
Algorithm 1 Ball-collision over \mathbb{F}_q

Input: The $(n - k) \times n$ parity check matrix H, the syndrome $s \in \mathbb{F}_q^{n-k}$ and the positive integers $p_1, p_2, q_1, q_2, k_1, k_2, \ell_1, \ell_2 \in \mathbb{Z}$, such that $k = k_1 + k_2$, $p_i \leq k_i$, $q_i \leq \ell_i$ and $t - p_1 - p_2 - q_1 - q_2 \leq n - k - \ell_1 - \ell_2$.

Output: $e \in \mathbb{F}_q^n$ with $He^\top = s$ and $w(e) = t$.

1. Choose an information set $I \subseteq \{1, ..., n\}$ of H of size k.
2. Partition I into two disjoint subsets X_1 and X_2 of size k_1 and $k_2 = k - k_1$ respectively.
3. Partition $Y = \{1, ..., n\} \setminus I$ into disjoint subsets Y_1 of size ℓ_1, Y_2 of size ℓ_2 and Y_3 of size $\ell_3 = n - k - \ell_1 - \ell_2$.
4. Find an invertible matrix $U \in \mathbb{F}_q^{(n-k)\times(n-k)}$, such that $(UH)_{Y} = \text{Id}_{n-k}$ and $(UH)_I = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, where $A_1 \in \mathbb{F}_q^{(\ell_1+\ell_2)\times k}$ and $A_2 \in \mathbb{F}_q^{\ell_3\times k}$.
5. Compute $Us = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$, where $s_1 \in \mathbb{F}_q^{\ell_1+\ell_2}$ and $s_2 \in \mathbb{F}_q^{\ell_3}$.
6. Compute $S = \{(A_1(\pi_I(x_1)) + \pi_{Y_1\cup Y_2}(y_1), x_1, y_1) \mid x_1 \in \mathbb{F}_q^n(X_1), wt(x_1) = v_1, y_1 \in \mathbb{F}_q^n(Y_1), wt(y_1) = w_1\}$.
7. Compute $T = \{(-A_1(\pi_I(x_2)) + s_1 - \pi_{Y_1\cup Y_2}(y_2), x_2, y_2) \mid x_2 \in \mathbb{F}_q^n(X_2), wt(x_2) = v_2, y_2 \in \mathbb{F}_q^n(Y_2), wt(y_2) = w_2\}$.
8. for $(v, x_1, y_1) \in S$ do
9. \hspace{1em} for $(v, x_2, y_2) \in T$ do
10. \hspace{2em} if $w(-A_2(\pi_I(x_1 + x_2)) + s_2) = t - p_1 - p_2 - q_1 - q_2$ then
11. \hspace{3em} Output: $e = x_1 + x_2 + y_1 + y_2 + \sigma_{Y_3}(-A_2(\pi_I(x_1 + x_2)) + s_2)$
12. \hspace{1em} else go to Step 1 and choose new information set I.

Violetta Weger

Ball-Collision Algorithm
1 Choose an information set I.

Let us assume for simplicity that $I = \{1, \ldots, k\}$.

\[\begin{array}{c}
\text{k} \\
\text{I} \\
\text{n-k} \\
\text{Y}
\end{array} \]
1 Choose an information set I.
2 Partition I into X_1 and X_2.

Let us assume for simplicity that $I = \{1, \ldots, k\}$.

\[X_1 \quad X_2 \quad Y \]
Choose an information set I.

Partition I into X_1 and X_2.

Partition Y into Y_1, Y_2, Y_3.

Let us assume for simplicity that $I = \{1, \ldots, k\}$.

\[\begin{array}{c c}
\hline
X_1 & \quad & X_2 & \quad & Y_1 & \quad & Y_2 & \quad & Y_3 \\
\hline
\end{array} \]
1 Choose an information set I.
2 Partition I into X_1 and X_2.
3 Partition Y into Y_1, Y_2, Y_3.
4 Bring H in systematic form.

$$UH e^\top = \begin{pmatrix} A_1 & \text{Id}_{\ell_1+\ell_2} & 0 \\ A_2 & 0 & \text{Id}_{\ell_3} \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = Us.$$

We get the conditions

$$A_1 e_1 + e_2 = s_1,$$
$$A_2 e_1 + e_3 = s_2.$$
Choose an information set I.

Partition I into X_1 and X_2.

Partition Y into Y_1, Y_2, Y_3.

Bring H in systematic form.

$$UH e^\top = \begin{pmatrix} A_1 & \text{Id}_{\ell_1+\ell_2} & 0 \\ A_2 & 0 & \text{Id}_{\ell_3} \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = Us.$$

We get the conditions

$$A_1 e_1 + e_2 = s_1,$$

$$A_2 e_1 + e_3 = s_2.$$
Ball-collision Algorithm

Conditions:
\[A_1 e_1 + e_2 = s_1, \]
\[A_2 e_1 + e_3 = s_2. \]

Assumptions:

a. \(e_1 \) has support in \(I = X_1 \cup X_2 \) and weight \(2v \)

b. \(e_2 \) has support in \(Y_1 \cup Y_2 \) and weight \(2w \)

c. \(e_3 \) has support in \(Y_3 \) and weight \(t - 2v - 2w \)
a. e_1 has support in $I = X_1 \cup X_2$ and weight $2v$
a. e_1 has support in $I = X_1 \cup X_2$ and weight $2v$

b. e_2 has support in $Y_1 \cup Y_2$ and weight $2w$
\[A_1 e_1 + e_2 = s_1, \quad (1) \]
\[A_2 e_1 + e_3 = s_2. \quad (2) \]

For condition (1):
go through all choices of \(e_1 \) and \(e_2 \) and check with collision if (1) is satisfied.

For condition (2):
define \(e_3 = s_2 - A_2 e_1 \) and check if \(e_3 \) has weight \(t - 2v - 2w \).
Success probability:

\[
\left(\binom{\lceil k/2 \rceil}{v} \right) \left(\binom{\lceil k/2 \rceil}{v} \right) \left(\binom{\lceil \ell/2 \rceil}{w} \right) \left(\binom{\lceil \ell/2 \rceil}{w} \right) \left(\binom{n-k-\ell}{n-2v-2w} \right) \left(\binom{n}{t} \right)^{-1}.
\]
New directions

Idea of overlapping sets:

2009 Finiasz and Sendrier: X_1 and X_2 can overlap
2012 Becker, Joux, May and Meurer: can add redundant errors in the overlap
New directions

New parameters:

\[\alpha \text{ overlap-ratio} \]
\[\delta \text{ amount of redundant errors} \]

2009 Finiasz and Sendrier: \(\alpha = 1/2, \delta = 0 \)

2012 BJMM: \(\alpha = 1/2, \delta > 0 \)
Let \(F(q, R) \) be the exponent of the optimized asymptotic complexity. The asymptotic complexity of half-distance decoding at rate \(R \) over \(\mathbb{F}_q \) is then given by \(q^{F(q, R) n + o(n)} \).

<table>
<thead>
<tr>
<th>(q)</th>
<th>(q\text{-Stern})</th>
<th>(q\text{-Stern-MO})</th>
<th>(q\text{-Ball-collision})</th>
<th>(q\text{-BJMM-MO})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.05563</td>
<td>0.05498</td>
<td>0.055573</td>
<td>0.04730</td>
</tr>
<tr>
<td>3</td>
<td>0.05217</td>
<td>0.05242</td>
<td>0.052145</td>
<td>0.04427</td>
</tr>
<tr>
<td>4</td>
<td>0.04987</td>
<td>0.05032</td>
<td>0.049846</td>
<td>0.04294</td>
</tr>
<tr>
<td>5</td>
<td>0.04815</td>
<td>0.04864</td>
<td>0.048140</td>
<td>0.03955</td>
</tr>
<tr>
<td>7</td>
<td>0.04571</td>
<td>0.04614</td>
<td>0.045697</td>
<td>0.03706</td>
</tr>
<tr>
<td>8</td>
<td>0.04478</td>
<td>0.04519</td>
<td>0.044770</td>
<td>0.03593</td>
</tr>
<tr>
<td>11</td>
<td>0.04266</td>
<td>0.04299</td>
<td>0.042656</td>
<td>0.03335</td>
</tr>
</tbody>
</table>
• Is partitioning into more sets giving us better asymptotic complexities?
• With new code-based cryptographic schemes, e.g. using rank-metric codes, can we adapt these ideas to these metrics?
• Can we use some structure, e.g. of cyclic codes, to improve the ISD algorithms in these cases?
Thank you!