Recent Advances in Code-based Signatures

Violetta Weger

CAST Workshop:
Quantentechnologie und Quantencomputer-resistente Sicherheit

September 7, 2023
Motivation

2016 NIST standardization call for post-quantum PKE/KEM and signatures

Standardized:
- Signatures: Dilithium, FALCON, SPHINCS+
- PKE/KEM: KYBER

4th round:
- PKE/KEM: Classic McEliece, BIKE, HQC based on structured lattices

Hash-based

Code-based

2023 NIST additional call for signature schemes → This talk
Motivation

2016 NIST standardization call for post-quantum PKE/KEM and signatures

Standardized:
- Signatures: Dilithium, FALCON, SPHINCS+
- PKE/KEM: KYBER

4th round:
- PKE/KEM: Classic McEliece, BIKE, HQC
Motivation

2016 NIST standardization call for post-quantum PKE/KEM and signatures

<table>
<thead>
<tr>
<th>Standardized:</th>
<th>Signatures:</th>
<th>PKE/KEM:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dilithium, FALCON, SPHINCS+</td>
<td>KYBER</td>
</tr>
</tbody>
</table>

4th round:

<table>
<thead>
<tr>
<th>PKE/KEM:</th>
<th>Classic McEliece, BIKE, HQC</th>
</tr>
</thead>
</table>

- **based on structured lattices**
- **Hash-based**
- **Code-based**
Motivation

2016 NIST standardization call for post-quantum PKE/KEM and signatures

Standardized:
Signatures: Dilithium, FALCON, SPHINCS+
PKE/KEM: KYBER

4th round:
PKE/KEM: Classic McEliece, BIKE, HQC

2023 NIST additional call for signature schemes → This talk
Outline

1. **Code-based Cryptography**
 - Introduction to Coding Theory
 - Hard Problems from Coding Theory

2. **Code-based Signature Schemes**
 - What is a Signature Scheme
 - Techniques to Construct Signatures
 - Our Scheme: CROSS

3. **Round 1 Submissions**
 - Survivors after 2 months of cryptanalysis
 - Efficiency and Performance
Coding Theory

Set Up

- Code $C \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in C$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $C = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $C = \{c \mid cH^\top = 0\}$
- $s = eH^\top$ syndrome
Set Up

- Code $C \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in C$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $C = \{ xG \mid x \in \mathbb{F}_q^k \}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $C = \{ c \mid cH^\top = 0 \}$
- $s = eH^\top$ syndrome
- Decode: find closest codeword
Set Up

- Code $C \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in C$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $C = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $C = \{c \mid cH^\top = 0\}$
- $s = eH^\top$ syndrome
- Decode: find closest codeword
- Hamming metric: $d_H(x, y) = |\{i \mid x_i \neq y_i\}|$
Coding Theory

Set Up

- Code $C \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in C$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $C = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $C = \{c \mid cH^\top = 0\}$
- $s = eH^\top$ syndrome
- Decode: find closest codeword
- Hamming metric: $d_H(x, y) = |\{i \mid x_i \neq y_i\}|$
- Minimum distance of a code:

$$d(C) = \min\{d_H(x, y) \mid x \neq y \in C\}$$
Coding Theory

Set Up

- Code $C \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in C$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $C = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $C = \{c \mid cH^\top = 0\}$
- $s = eH^\top$ syndrome
- Decode: find closest codeword
- Hamming metric: $d_H(x, y) = |\{i \mid x_i \neq y_i\}|$
- Minimum distance of a code:

$$d(C) = \min\{d_H(x, y) \mid x \neq y \in C\}$$

- Error-correction capacity: $t = \lceil(d(C) - 1)/2\rceil$
Hard Problems from Coding Theory

Algebraic structure
(Reed-Solomon, Goppa, ...)
→ efficient decoders

random code

→ how hard to decode?

Decoding random linear code is NP-hard.

First code-based cryptosystem based on this problem.
R. J. McEliece. "A public-key cryptosystem based on algebraic coding theory",

Fastest solvers: ISD, exponential time.
A. Becker, A. Joux, A. May, A. Meurer. "Decoding random binary linear codes in $2^{n/20}$: How 1+1=0 improves information set decoding",
Eurocrypt, 2012.
Hard Problems from Coding Theory

Algebraic structure
(Reed-Solomon, Goppa, ...)
→ efficient decoders

random code

→ how hard to decode?

- Decoding random linear code is NP-hard

Hard Problems from Coding Theory

Algebraic structure
(Reed-Solomon, Goppa, ...)
→ efficient decoders

scrambling

Seemingly random code

- Decoding random linear code is NP-hard
- First code-based cryptosystem based on this problem

Hard Problems from Coding Theory

Algebraic structure
(Reed-Solomon, Goppa,...)
→ efficient decoders

scrambling
→ Seemingly random code

• Decoding random linear code is NP-hard
• First code-based cryptosystem based on this problem
• Fastest solvers: ISD, exponential time

A. Becker, A. Joux, A. May, A. Meurer “Decoding random binary linear codes in $2^{n/20}$: How $1+1=0$ improves information set decoding”, Eurocrypt, 2012.
Idea of Signature Schemes

Signer

- **Key Generation:** Public, Private
- **Signing:** Use Private and message m to generate signature σ

Verifier

- **Verification:** Use Public and message m to verify signature σ

Approaches for signatures:
- Hash-and-Sign
- ZK Protocol
- ZK + MPC
Idea of Signature Schemes

Signer

Verifier

Approaches for signatures:
- Hash-and-Sign
- ZK Protocol
- ZK + MPC
Idea of Signature Schemes

Signer

Verifier

Approaches for signatures:
• Hash-and-Sign
• ZK Protocol
• ZK + MPC

Violetta Weger — Recent Advances in Code-based Signatures
Idea of Signature Schemes

Signer

- **Key Generation:**
 \(P \) public, \(S \) secret

- **Signing:** use \(S \) and message \(m \) to generate signature \(\sigma \)

Verifier

- **Verification:** use \(P \) and message \(m \) to verify signature \(\sigma \)

Approaches for signatures:

- Hash-and-Sign
- ZK Protocol
- ZK + MPC
Idea of Signature Schemes

Signer

- **Key Generation:**
 \[\mathcal{P} \text{ public, } \mathcal{S} \text{ secret} \]

- **Signing:** use \[\mathcal{S} \] and message \[m \] to generate signature \[\sigma \]

Verifier

- **Verification:** use \[\mathcal{P} \] and message \[m \] to verify signature \[\sigma \]

Approaches for signatures:

- Hash-and-Sign
- ZK Protocol
- ZK + MPC
Idea of Signature Schemes

Signer

- Key Generation: \(P \) public, \(S \) secret
- Signing: use \(S \) and message \(m \) to generate signature \(\sigma \)

Verifier

- Verification: use \(P \) and message \(m \) to verify signature \(\sigma \)

Approaches for signatures:

- Hash-and-Sign
- ZK Protocol
- ZK + MPC
Hash-and-Sign

First introduced in
Following idea of McEliece

→ start with structured code H
→ publish scrambled code HP

Hash-and-Sign

First introduced in

Following idea of McEliece

→ start with structured code H

→ publish scrambled code HP

→ large public key sizes
Hash-and-Sign

First introduced in
Following idea of McEliece

→ start with structured code H
→ publish scrambled code HP
→ large public key sizes
→ $\text{Hash}(m) = eH^\top$, $\text{wt}_H(e) \leq t$
→ signature $\sigma = eP$

→ start with structured code H
→ publish scrambled code HP
→ large public key sizes
→ $\text{Hash}(m) = eH^T$, $\text{wt}_H(e) \leq t$
→ signature $\sigma = eP$
→ slow signing
Hash-and-Sign

First introduced in

Following idea of McEliece

→ start with structured code H
→ publish scrambled code HP
→ large public key sizes
→ $\text{Hash}(m) = eH^\top$, $\text{wt}_H(e) \leq t$
→ signature $\sigma = eP$
→ slow signing
→ reduce key sizes:
→ use quasi-cyclic codes
→ use low density generators
Hash-and-Sign

First introduced in
Following idea of McEliece

→ start with structured code H
→ publish scrambled code HP
→ large public key sizes
→ Hash(m) = eH^T, wt$_H$(e) ≤ t
→ signature $\sigma = eP$
→ slow signing
→ reduce key sizes:
→ use quasi-cyclic codes
→ use low density generators
→ statistical attacks
Idea of ZK Protocol

Prover

- S: secret
- \mathcal{P}: related public key
- c: commitments to secret
- r_b: response to challenge b

Verifier

- \mathcal{P}, c → b←
- r_b →

b: challenge

Recover c from r_b and \mathcal{P}

Idea of ZK Protocol

Prover

- S: secret
- P: related public key
- c: commitments to secret
- r_b: response to challenge b

Interaction

$\xrightarrow{\mathcal{P}, c}$

$\leftarrow b$

$\xrightarrow{r_b}$

Verifier

- b: challenge
- Recover c from r_b and \mathcal{P}

Idea of ZK Protocol

\[S: \text{secret} \]
\[P: \text{related public key} \]
\[c: \text{commitments to secret} \]
\[b: \text{Hash of message, } c \]
\[r_b: \text{response to challenge } b \]

Prover

Verifier

Recover \(c \) from \(r_b \) and \(P \)

Verify \(b = \text{Hash}(m, c) \)

Idea of ZK Protocol

\[N \rightarrow \]

Prover

- \(S \): secret
- \(P \): related public key
- \(c \): commitments to secret
- \(b \): Hash of message, \(c \)
- \(r_b \): response to challenge \(b \)

Verifier

- Recover \(c \) from \(r_b \) and \(P \)
- Verify \(b = \text{Hash}(m, c) \)

- \(\alpha \) cheating probability, \(\lambda \) bit security level
- **Rounds**: have to repeat ZK protocol \(N \) times: \(2^{\lambda} < (1/\alpha)^N \)
- Signature size: communication within all \(N \) rounds

Code-based ZK Protocols

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t.

1. $s = eH^\top$
2. $\text{wt}_H(e) \leq t$

Prover

S: e of weight t,

P: random H, $s = eH^\top$, t

c$_1$: commitment to syndrome equation 1.

c$_2$: commitment to weight 2.

response: transformation, e.g. permutation

$r_1 = \varphi$, or transformed secret $r_2 = \varphi(e)$

Verifier

$P, c_1, c_2 \rightarrow$

$b \in \{1, 2\}$

$b \rightarrow$

$rb \rightarrow$

recover c_b from rb and P
Code-based ZK Protocols

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t.

1. $s = eH^\top$
2. $\text{wt}_H(e) \leq t$

Prover

S: e of weight t, P: random H, $s = eH^\top$

c_1: commitment to syndrome equation 1.
c_2: commitment to weight 2.

response: transformation, e.g. permutation $r_1 = \varphi$, or transformed secret $r_2 = \varphi(e)$

Verifier

1. Problem: large cheating probability \rightarrow big signature sizes

CVE $\lambda = 128$ bit security \rightarrow signature size: 43 kB

recover c_b from r_b and P
1. Solution: Multiparty Computation (MPC) in-the-head

Prover

- Split secret S into N shares s_i
- Commitments c_i to s_i
- Compute $\varphi(s_i) = \alpha_i$
- Response: all shares but ℓ

Verifier

- Challenge $\ell \in \{1, \ldots, N\}$
- Check α_i, c_i from s_i

→ New cheating probability: $1/N$
1. Solution: Multiparty Computation (MPC) in-the-head

Problem: complex implementation

Verification and signing is slow

- Compute $\varphi(s_i) = \alpha_i$
- Response: all shares but ℓ
- New cheating probability: $1/N$
Code-Based ZK Protocols

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\text{wt}_H(e) \leq t$ and $s = eH^\top$.

\[e \begin{array}{cccc} 0 & 0 & 0 & 0 \end{array} \xrightarrow{\varphi} \begin{array}{cccc} 0 & _ & _ & 0 \end{array} e' \]
Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\text{wt}_H(e) \leq t$ and $s = eH^\top$.

Which φ are allowed?
Code-Based ZK Protocols

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\text{wt}_H(e) \leq t$ and $s = eH^\top$.

Which φ are allowed?

$\rightarrow \varphi$: linear isometries of Hamming metric:
- permutation + scalar multiplication
Code-Based ZK Protocols

Syndrome Decoding Problem

Given $H \in \mathbb{F}_{q}^{(n-k) \times n}$, $s \in \mathbb{F}_{q}^{n-k}$, weight t, find $e \in \mathbb{F}_{q}^{n}$ such that $\text{wt}_{H}(e) \leq t$ and $s = eH^\top$.

Which ϕ are allowed?

$\rightarrow \phi$: linear isometries of Hamming metric:
permutation + scalar multiplication

2. Problem: permutations are costly $\rightarrow \phi : n \log_{2}(q - 1) + n \log_{2}(n)$
Code-Based ZK Protocols

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\text{wt}_H(e) \leq t$ and $s = eH^\top$.

Can we avoid permutations - but keep the hardness of the problem?
Code-Based ZK Protocols

Syndrome Decoding Problem

Given \(H \in \mathbb{F}_q^{(n-k) \times n} \), \(s \in \mathbb{F}_q^{n-k} \), weight \(t \), find \(e \in \mathbb{F}_q^n \) such that \(\text{wt}_H(e) \leq t \) and \(s = eH^\top \).

Can we avoid permutations - but keep the hardness of the problem?

Restricted Syndrome Decoding Problem

Given \(H \in \mathbb{F}_q^{(n-k) \times n} \), syndrome \(s \in \mathbb{F}_q^{n-k} \), \(E \subseteq \mathbb{F}_q^* \), find \(e \in E^n \) such that \(s = eH^\top \).
2. Solution: Restricted Errors

\[(E, \cdot) < (\mathbb{F}_q^*, \cdot) \rightarrow g \in \mathbb{F}_q^* \text{ of prime order } z \rightarrow E = \{g^i | i \in \{1, \ldots, z\}\}\]

\[q = 13 \quad \rightarrow \quad g = 3 \text{ order } z = 3 \quad \rightarrow \quad E = \{1, 3, 9\}\]
Restricted Errors

2. Solution: Restricted Errors

\[(\mathbb{E}, \cdot) < (\mathbb{F}_q^*, \cdot) \rightarrow g \in \mathbb{F}_q^* \text{ of prime order } z \rightarrow \mathbb{E} = \{g^i \mid i \in \{1, \ldots, z\}\}\]

\[q = 13 \quad \rightarrow \quad g = 3 \text{ order } z = 3 \quad \rightarrow \quad \mathbb{E} = \{1, 3, 9\}\]

\[(\mathbb{E}^n, \ast) \quad \xrightarrow{\ell} \quad (\mathbb{F}_z^n, +) \]

- \[e = (1, 9, 3, 3) \in \{1, 3, 9\}^4 \]

- \[\ell(e) = (0, 2, 1, 1) \in \mathbb{F}_3^4 \]
2. Solution: Restricted Errors

\[(E, \cdot) < (F_q^*, \cdot) \rightarrow g \in F_q^* \text{ of prime order } z \rightarrow E = \{g^i \mid i \in \{1, \ldots, z\}\}\]

\[q = 13 \rightarrow g = 3 \text{ order } z = 3 \rightarrow E = \{1, 3, 9\}\]

\((E^n, \star) \quad \xrightarrow{\ell} \quad (F_z^n, +)\)

- \(e = (1, 9, 3, 3) \in \{1, 3, 9\}^4\)
- trans.: \(\varphi : E^n \rightarrow E^n, e \mapsto e \star e'\)
- \(\varphi : e' = (3, 9, 1, 3) \in E^n\)

- \(\ell(e) = (0, 2, 1, 1) \in F_3^4\)
- \(\ell(\varphi) \in F_z^n\)
- \(\ell(\varphi) : \ell(e') = (1, 2, 0, 1) \in F_3^4\)
Restricted Errors

2. Solution: Restricted Errors

\[(\mathbb{E}, \cdot) \subset (\mathbb{F}_q^*, \cdot) \rightarrow g \in \mathbb{F}_q^* \text{ of prime order } z \rightarrow \mathbb{E} = \{g^i \mid i \in \{1, \ldots, z\}\}\]

\[
q = 13 \rightarrow g = 3 \text{ order } z = 3 \rightarrow \mathbb{E} = \{1, 3, 9\}
\]

\[
\mathbb{E}^n = \{ (1, 9, 3, 3), (3, 9, 1, 3) \}^4
\]

\[
\text{trans.: } \varphi : \mathbb{E}^n \rightarrow \mathbb{E}^n, e \mapsto e \ast e'
\]

\[
\varphi : e' = (3, 9, 1, 3) \in \mathbb{E}^n
\]

\[
\varphi(e) = e \ast e' \in (\mathbb{E}^n, \ast)
\]

\[
\varphi(e) = (1, 9, 3, 3) \ast (3, 9, 1, 3)
\]

\[
\ell(e) = (0, 2, 1, 1) \in \mathbb{F}_3^4
\]

\[
\ell(e) + \ell(e') \in (\mathbb{F}_3^n, +)
\]

\[
(0, 2, 1, 1) + (1, 2, 0, 1)
\]
Restricted Errors

2. Solution: Restricted Errors

\[(E, \cdot) < (F_q^*, \cdot) \rightarrow g \in F_q^* \text{ of prime order } z \rightarrow E = \{g^i \mid i \in \{1, \ldots, z\}\}\]

\[q = 13 \rightarrow g = 3 \text{ order } z = 3 \rightarrow E = \{1, 3, 9\}\]

\[(E^n, \star) \xrightarrow{\ell} (F_z^n, +)\]

\[\rightarrow \text{Smaller sizes: } n \log_2(z) \text{ instead of } n \log_2((q - 1)n)\]

\[\rightarrow \text{Faster arithmetic: ops. in } (F_z^n, +) \text{ instead of } (F_q^n, \cdot)\]
<table>
<thead>
<tr>
<th>Basis</th>
<th>Optimizations</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Restricted SDP</td>
<td>• Merkle trees</td>
<td>• no trapdoor needed</td>
</tr>
<tr>
<td>• ZK + Fiat-Shamir</td>
<td>• unbalanced challenges</td>
<td>• EUF-CMA security</td>
</tr>
<tr>
<td>→ compact</td>
<td>→ efficient</td>
<td>→ secure</td>
</tr>
</tbody>
</table>
CROSS

Basis
- Restricted SDP
- ZK + Fiat-Shamir
→ compact

Optimizations
- Merkle trees
- unbalanced challenges
→ efficient

Security
- no trapdoor needed
- EUF-CMA security
→ secure

Sizes in bytes, times in MCycles

<table>
<thead>
<tr>
<th>Level</th>
<th>pk</th>
<th>sign</th>
<th>t_{sign}</th>
<th>t_{verify}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast</td>
<td>38</td>
<td>8’,665</td>
<td>3.08</td>
<td>2.11</td>
</tr>
<tr>
<td>short</td>
<td>38</td>
<td>7’,625</td>
<td>11.04</td>
<td>7.81</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast</td>
<td>56</td>
<td>21’,697</td>
<td>4.91</td>
<td>3.23</td>
</tr>
<tr>
<td>short</td>
<td>56</td>
<td>17’,429</td>
<td>18.06</td>
<td>12.24</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast</td>
<td>77</td>
<td>37’,924</td>
<td>11.05</td>
<td>7.49</td>
</tr>
<tr>
<td>short</td>
<td>77</td>
<td>31’,696</td>
<td>29.08</td>
<td>19.44</td>
</tr>
</tbody>
</table>

No optimized implementation
Codes & Restricted Objects Signature Scheme
http://cross-crypto.com/
Round 1 Submissions

Submitted: 50 \rightarrow Complete & Proper: 40

- Multivariate: 12
- Code-based: 11
- Lattice-based: 7
- Symmetric: 4
- Other: 5
- Isogeny-based: 1

[Link to all schemes and their performances: https://pqshield.github.io/nist-sigs-zoo/]

Violetta Weger — Recent Advances in Code-based Signatures
Round 1 Submissions

<table>
<thead>
<tr>
<th>Submitted: 50</th>
<th>→</th>
<th>Complete & Proper: 40</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cryptanalysis</th>
<th>→</th>
<th>Survivors: 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Multivariate: 12</td>
<td>→ 9</td>
<td></td>
</tr>
<tr>
<td>- Code-based: 11</td>
<td>→ 9</td>
<td></td>
</tr>
<tr>
<td>- Lattice-based: 7</td>
<td>→ 5</td>
<td></td>
</tr>
<tr>
<td>- Symmetric: 4</td>
<td>→ 4</td>
<td></td>
</tr>
<tr>
<td>- Other: 5</td>
<td>→ 1</td>
<td></td>
</tr>
<tr>
<td>- Isogeny-based: 1</td>
<td>→ 1</td>
<td></td>
</tr>
</tbody>
</table>
Round 1 Submissions

<table>
<thead>
<tr>
<th>Submitted: 50</th>
<th>(\rightarrow)</th>
<th>Complete & Proper: 40</th>
</tr>
</thead>
</table>

Cryptanalysis

<table>
<thead>
<tr>
<th>(\rightarrow)</th>
<th>Survivors: 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multivariate: 12</td>
<td>9</td>
</tr>
<tr>
<td>Code-based: 11</td>
<td>9</td>
</tr>
<tr>
<td>Lattice-based: 7</td>
<td>5</td>
</tr>
<tr>
<td>Symmetric: 4</td>
<td>4</td>
</tr>
<tr>
<td>Other: 5</td>
<td>1</td>
</tr>
<tr>
<td>Isogeny-based: 1</td>
<td>1</td>
</tr>
</tbody>
</table>

→ all of the schemes and their performances:

https://pqshield.github.io/nist-sigs-zoo/
Round 1 Submissions

Submitted: 50 \rightarrow Complete & Proper: 40

Cryptanalysis \rightarrow Survivors: 29

- Multivariate: 12 \rightarrow 9
- Code-based: 11 \rightarrow 9
- Lattice-based: 7 \rightarrow 5
- Symmetric: 4 \rightarrow 4
- Other: 5 \rightarrow 1
- Isogeny-based: 1 \rightarrow 1

\rightarrow all of the schemes and their performances:
https://pqshield.github.io/nist-sigs-zoo/
Code-Based Round 1 Submissions

MPC in-the-head
- SDitH: SDP
- RYDE: Rank SDP
- MIRA/MiRitH: matrix rank SDP
- PERK: permuted kernel

ZK Protocol
- LESS: code equivalence
- CROSS: restricted SDP
- MEDS: matrix rank CE

Hash & Sign
- FuLeeca: Lee SDP
- WAVE: \((U, U + V)\)
- Enh. pqsigRM: Reed-Muller large weight SDP
Code-Based Round 1 Submissions

MPC in-the-head

- SDitH: SDP
- RYDE: Rank SDP
- MIRA/MiRitH: matrix rank SDP
- PERK: permuted kernel

→ slow signing and verification

ZK Protocol

- LESS: code equivalence
- CROSS: restricted SDP
- MEDS: matrix rank CE

→ large signatures

Hash & Sign

- FuLeeca: Lee SDP
- WAVE: $(U, U + V),$ large weight SDP
- Enh. pqsigRM: Reed-Muller

→ attacked

→ large public keys

Violetta Weger — Recent Advances in Code-based Signatures
Performance

NIST Category I, all sizes in bytes

sign vs. pk
Performance

NIST Category I, all sizes in bytes

- SPHINCS+
- Dilithium
- Falcon
- FuLeeca
- LESS
- MIRACL
- MiRiTH
- E.pqsigRM
- PERK
- RYDE
- SDitH
- SPHINCS+
- WAVE

Violetta Weger — Recent Advances in Code-based Signatures
Performance

NIST Category I, all sizes in bytes
Performance

NIST Category I, all sizes in bytes

- CROSS
- Dilithium
- E.pqsigRM
- Falcon
- FuLeeca
- LESS
- MEDS
- MIRA
- MiRitH
- PERK
- RYDE
- SDitH
- SPHINCS+
- WAVE
Performance

NIST Category I, all sizes in bytes

sign

10^3

10^4

10^2 10^3 10^4 10^6 pk

CROSS MIRA
Dilithium MiRitH
E.pqsigRM PERK
Falcon RYDE
FuLeeca SDitH
LESS SPHINCS+
MEDS WAVE
Performance

NIST Category I, all sizes in bytes

- CROSS
- Dilithium
- E.pqsigRM
- Falcon
- FuLeeca
- LESS
- MEDS
- MIRA
- MiRitH
- PERK
- RYDE
- SDitH
- SPHINCS+
- WAVE
Performance

NIST Category I, all sizes in MCycles

- CROSS
- MIRA
- Dilithium
- MiRitH
- E.pqsigRM
- PERK
- Falcon
- RYDE
- FuLeea
- SDitH
- LESS
- SPHINCS+
- MEDS
- WAVE

Log-log plot showing the verification and signing times for different code-based signature schemes.
Performance

NIST Category I, all sizes in MCycles

signing

verification

10^{-1}

10^0

10^1

10^2

10^3

CROSS
Dilithium
E.pqsigRM
Falcon
FuLeeca
LESS
MIRA
MiRitH
PERK
RYDE
SDiTH
SPHINCS+
MEDS
WAVE

Dilithium
SPHINCS+
Falcon
Performance

NIST Category I, all sizes in MCycles

Verification vs. Signing

- CROSS
- MIRA
- Dilithium
- MiRtH
- E.pqsigRM
- PERK
- Falcon
- RYDE
- FuLeeca
- SDitH
- LESS
- SPHINCS
- MEDS
- WAVE

WAVE
FuLeeca
Performance

NIST Category I, all sizes in MCycles
Performance

NIST Category I, all sizes in MCycles
Performance

NIST Category I, all sizes in MCycles

- CROSS
- MIRA
- Dilithium
- MiRitH
- E.pqsigRM
- PERK
- Falcon
- RYDE
- FuLeeca
- SDitH
- LESS
- SPHINCS
- MEDS
- WAVE
Questions?

What’s next?

- Cryptanalysis continues
- Improvements?
- How many rounds?

Thank you!

Slides
Code-Based Submissions

All sizes in bytes, times in MCycles.

| Scheme | Based on | Technique | | Pk | | Sig | | Sign | | Verify |
|------------|----------------------|-----------|-----|----|-----|-----|------|------|-------|
| CROSS | Restricted SDP | ZK | 32 | 7’625 | 11 | 7.4 |
| Enh. pqsigRM | Reed-Muller | Hash & Sign | 2’000’000 | 1’032 | 1.3 | 0.2 |
| FuLeeca | Lee SDP | Hash & Sign | 1’318 | 1’100 | 1’846 | 1.3 |
| LESS | Code equiv. | ZK | 13’700 | 8’400 | 206 | 213 |
| MEDS | Matrix rank equiv. | ZK | 9’923 | 9’896 | 518 | 515 |
| MIRA | Matrix rank SDP | MPC | 84 | 5’640 | 46’8 | 43’9 |
| MiRitH | Matrix rank SDP | MPC | 129 | 4’536 | 6’108 | 6’195 |
| PERK | Permuted Kernel | MPC | 150 | 6’560 | 39 | 27 |
| RYDE | Rank SDP | MPC | 86 | 5’956 | 23.4 | 20.1 |
| SDitH | SDP | MPC | 120 | 8’241 | 13.4 | 12.5 |
| WAVE | Large wt \((U, U + V)\) | Hash & Sign | 3’677’390 | 822 | 1’160 | 1.23 |

⚠️ Not all schemes have optimized implementations → Numbers may change