On the density of rectangular unimodular matrices over the ring of algebraic integers

Violetta Weger

joint work with Giacomo Micheli

University of Zurich

Coding Theory and Cryptography Seminar
June 6, 2018
1 Preliminaries
 - Ring of Algebraic Integers
 - Density
 - Mertens-Cesáro Theorem
 - Rectangular Unimodular Matrices

2 Main Result: Density of Rectangular Unimodular Matrices over the Ring of Algebraic Integers
 - Main Tool: Local to Global Principle
 - Example of the Local to Global Principle: Proof of Mertens-Cesáro Theorem
 - Proof of Main Result
Let K be a number field with degree $[K : \mathbb{Q}] = k$.

- \mathcal{O}_K is the ring of algebraic integers of K.
Let K be a number field with degree $[K : \mathbb{Q}] = k$.

- \mathcal{O}_K is the ring of algebraic integers of K.
- $\mathcal{O}_K \cong \mathbb{Z}^k$ as \mathbb{Z}-modules, hence \mathcal{O}_K has a \mathbb{Z}-basis.
Let K be a number field with degree $[K : \mathbb{Q}] = k$.

- \mathcal{O}_K is the ring of algebraic integers of K.
- $\mathcal{O}_K \cong \mathbb{Z}^k$ as \mathbb{Z}-modules, hence \mathcal{O}_K has a \mathbb{Z}-basis.
- \mathcal{O}_K is a Dedekind domain. We have unique factorization into prime ideals.
Let K be a number field with degree $[K : \mathbb{Q}] = k$.

- \mathcal{O}_K is the ring of algebraic integers of K.
- $\mathcal{O}_K \cong \mathbb{Z}^k$ as \mathbb{Z}-modules, hence \mathcal{O}_K has a \mathbb{Z}-basis.
- \mathcal{O}_K is a Dedekind domain. We have unique factorization into prime ideals.
- Every non-zero prime ideal \mathfrak{p} of \mathcal{O}_K intersects \mathbb{Z} in a prime ideal $p\mathbb{Z}$ for some prime p. In this case we say that \mathfrak{p} is lying above p and denote this by $\mathfrak{p} \mid p$.
Let K be a number field with degree $[K : \mathbb{Q}] = k$.

- \mathcal{O}_K is the ring of algebraic integers of K.
- $\mathcal{O}_K \cong \mathbb{Z}^k$ as \mathbb{Z}-modules, hence \mathcal{O}_K has a \mathbb{Z}-basis.
- \mathcal{O}_K is a Dedekind domain. We have unique factorization into prime ideals.
- Every non-zero prime ideal \mathfrak{p} of \mathcal{O}_K intersects \mathbb{Z} in a prime ideal $p\mathbb{Z}$ for some prime p. In this case we say that \mathfrak{p} is lying above p and denote this by $\mathfrak{p} \mid p$.
- The residue field $\mathcal{O}_K/\mathfrak{p}$ is a finite extension of $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{F}_p$. $\mathcal{O}_K/\mathfrak{p} \cong \mathbb{F}_{p^{\deg(\mathfrak{p})}}$, where $\deg(\mathfrak{p}) = [\mathcal{O}_K/\mathfrak{p} : \mathbb{F}_p]$ denotes the inertia degree, for $\mathfrak{p} \mid p$.
Let K be a number field with degree $[K : \mathbb{Q}] = k$.

- \mathcal{O}_K is the ring of algebraic integers of K.
- $\mathcal{O}_K \cong \mathbb{Z}^k$ as \mathbb{Z}-modules, hence \mathcal{O}_K has a \mathbb{Z}-basis.
- \mathcal{O}_K is a Dedekind domain. We have unique factorization into prime ideals.
- Every non-zero prime ideal \mathfrak{p} of \mathcal{O}_K intersects \mathbb{Z} in a prime ideal $p\mathbb{Z}$ for some prime p. In this case we say that \mathfrak{p} is lying above p and denote this by $\mathfrak{p} | p$.
- The residue field $\mathcal{O}_K/\mathfrak{p}$ is a finite extension of $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{F}_p$.
 $\mathcal{O}_K/\mathfrak{p} \cong \mathbb{F}_{p^{\deg(\mathfrak{p})}}$, where $\deg(\mathfrak{p}) = [\mathcal{O}_K/\mathfrak{p} : \mathbb{F}_p]$ denotes the inertia degree, for $\mathfrak{p} | p$.
- If $a \in \mathfrak{p}$, then $N_{K/\mathbb{Q}}(a) \equiv 0 \mod p$ for $\mathfrak{p} | p$.

Violetta Weger Rectangular Unimodular Matrices
The density of a set $S \subset \mathbb{Z}^d$ is defined to be

$$\rho(S) = \lim_{B \to \infty} \frac{|S \cap [-B, B]^d|}{(2B)^d}$$

if the limit exists. Then one defines the upper density $\bar{\rho}$ and the lower density $\underline{\rho}$ equivalently with the lim sup and the lim inf respectively.
The density of the set of coprime pairs of \mathbb{Z} is equal to

$$\frac{1}{\zeta(2)}'$$

where ζ denotes the Riemann zeta function.
This can be generalized to

Theorem (Nymann, 1972)

The density of the set of coprime m-tuples of \mathbb{Z} is equal to

\[
\frac{1}{\zeta(m)'}
\]

where ζ denotes the Riemann zeta function.
This can be generalized to

Theorem (Nymann, 1972)

The density of the set of coprime m-tuples of \(\mathbb{Z} \) is equal to

\[
\frac{1}{\zeta(m)},
\]

where \(\zeta \) denotes the Riemann zeta function.

And this can be further generalized to

Theorem (Ferraguti, Micheli, 2016)

The density of the set of coprime m-tuples of \(\mathcal{O}_K \) is equal to

\[
\frac{1}{\zeta_K(m)},
\]

where \(\zeta_K \) denotes the Dedekind zeta function over \(K \).
Definition

Let \mathcal{R} be a domain and $n < m \in \mathbb{N}$. Let $M \in \text{Mat}_{n \times m}(\mathcal{R})$. M is said to be rectangular unimodular, if there exist $m - n$ rows in \mathcal{R}^m, such that when adjoining these rows to M the resulting $m \times m$ matrix \tilde{M} is invertible, i.e. $\det(\tilde{M})$ is a unit in \mathcal{R}.
Over Dedekind domains, there are the following characterization of rectangular unimodular matrices:

Proposition (Gustafson, Moore, Reiner, 1981)

Let D be a Dedekind domain and $n < m \in \mathbb{N}$. Let $M \in \text{Mat}_{n \times m}(D)$. M is rectangular unimodular, if and only if the ideal generated by all the $n \times n$ minors of M is D.
Over Dedekind domains, there are the following characterization of rectangular unimodular matrices:

Proposition (Gustafson, Moore, Reiner, 1981)

Let \mathcal{D} be a Dedekind domain and $n < m \in \mathbb{N}$. Let $M \in \text{Mat}_{n \times m}(\mathcal{D})$. M is rectangular unimodular, if and only if the ideal generated by all the $n \times n$ minors of M is \mathcal{D}.

Proposition (Gustafson, Moore, Reiner, 1981)

Let \mathcal{D} be a Dedekind domain and $n < m \in \mathbb{N}$. $M \in \text{Mat}_{n \times m}(\mathcal{D})$ is rectangular unimodular, if and only if $M \mod \mathfrak{p}$ has full rank for any \mathfrak{p} non-zero prime ideal of \mathcal{D}.
Theorem (Micheli, W., 2018)

Let n and m be positive integers such that $n < m$ and K be an algebraic number field. The density of the set of $n \times m$ rectangular unimodular matrices over \mathcal{O}_K is

$$\prod_{i=0}^{n-1} \frac{1}{\zeta_K(m - i)},$$

where ζ_K denotes the Dedekind zeta function of K.
If S is a set, then we denote by 2^S its powerset.
Let $M_{\mathbb{Q}} = \{\infty\} \cup \{p \mid p \text{ prime}\}$ be the set of all places of \mathbb{Q}.
We denote by \mathbb{Z}_p the p-adic integers.
Let μ_∞ denote the Lebesgue measure on \mathbb{R}^d and μ_p the normalized Haar measure on \mathbb{Z}_p^d.
For T a subset of a metric space, let us denote by ∂T its boundary.
Theorem (Poonen, Stoll, 1999)

Let $U_{\infty} \subset \mathbb{R}^d$, such that $\mathbb{R}_{\geq 0} \cdot U_{\infty} = U_{\infty}$ and $\mu_{\infty}(\partial(U_{\infty})) = 0$. Let $s_{\infty} = \frac{1}{2d} \mu_{\infty}(U_{\infty} \cap [-1, 1]^d)$.

For each prime p, let $U_p \subset \mathbb{Z}_p^d$, such that $\mu_p(\partial(U_p)) = 0$ and define $s_p = \mu_p(U_p)$. Define

$$P : \mathbb{Z}^d \rightarrow 2^{M_{\mathbb{Q}}}$$

$$a \mapsto \{ \nu \in M_{\mathbb{Q}} \mid a \in U_{\nu} \} .$$

If the following is satisfied:

$$\lim_{M \rightarrow \infty} \bar{\rho} \left(\left\{ a \in \mathbb{Z}^d \mid a \in U_p \text{ for some prime } p > M \right\} \right) = 0, \quad (1)$$
Then:

i) \(\sum_{\nu \in M_\mathbb{Q}} s_\nu \) converges.

ii) For \(S \subset 2^M_\mathbb{Q} \), \(\rho(P^{-1}(S)) \) exists, and defines a measure on \(2^M_\mathbb{Q} \).

iii) For each finite set \(S \subset 2^M_\mathbb{Q} \), we have that

\[
\rho(P^{-1}(\{S\})) = \prod_{\nu \in S} s_\nu \prod_{\nu \notin S} (1 - s_\nu),
\]

and if \(S \) consists of infinite subsets of \(2^M_\mathbb{Q} \), then \(\rho(P^{-1}(S)) = 0 \).
Lemma (Poonen, Stoll, 1999)

Let $f, g \in \mathbb{Z}[x_1, \ldots, x_d]$ be relatively prime. Define

$$S_M(f, g) = \left\{ a \in \mathbb{Z}^d \mid p \mid f(a), p \mid g(a) \text{ for some prime } p > M \right\},$$

then

$$\lim_{M \to \infty} \bar{\rho}(S_M(f, g)) = 0.$$
Proof of Mertens-Cesáro

Choose $U_\infty = \emptyset$, then clearly $s_\infty = 0$.
We want to choose U_p, such that

$$P^{-1}(\{\emptyset\}) = \{(a_1, a_2) \in \mathbb{Z}^2 \mid \gcd(a_1, a_2) = 1\}.$$
Choose $U_\infty = \emptyset$, then clearly $s_\infty = 0$.

We want to choose U_p, such that

$$P^{-1}(\{\emptyset\}) = \{(a_1, a_2) \in \mathbb{Z}^2 \mid \gcd(a_1, a_2) = 1\}.$$

Choose $U_p = (p\mathbb{Z}_p)^2$. Hence $s_p = \mu_p(U_p) = \frac{1}{p^2}$. We want to show that

$$\lim_{M \to \infty} \bar{\rho} \left(\{(a_1, a_2) \in \mathbb{Z}^2 \mid (a_1, a_2) \in U_p \text{ for some prime } p > M \} \right) = 0.$$
Choose $U_\infty = \emptyset$, then clearly $s_\infty = 0$.

We want to choose U_p, such that

$$P^{-1}(\{\emptyset\}) = \{(a_1, a_2) \in \mathbb{Z}^2 \mid \gcd(a_1, a_2) = 1\}.$$

Choose $U_p = (p\mathbb{Z}_p)^2$. Hence $s_p = \mu_p(U_p) = \frac{1}{p^2}$. We want to show that

$$\lim_{M \to \infty} \tilde{\rho} \left(\{(a_1, a_2) \in \mathbb{Z}^2 \mid (a_1, a_2) \in U_p \text{ for some prime } p > M\} \right) = 0.$$

We want to choose $f, g \in \mathbb{Z}[x_1, x_2]$, such that

$$\{ (a_1, a_2) \in \mathbb{Z}^2 \mid p \mid f(a_1, a_2), p \mid g(a_1, a_2) \text{ for some prime } p > M \}$$

$$= \{ (a_1, a_2) \in \mathbb{Z}^2 \mid (a_1, a_2) \in (p\mathbb{Z}_p)^2 \text{ for some prime } p > M \}.$$
Choose \(U_\infty = \emptyset \), then clearly \(s_\infty = 0 \).

We want to choose \(U_p \), such that

\[
P^{-1}(\{\emptyset\}) = \{(a_1, a_2) \in \mathbb{Z}^2 \mid \gcd(a_1, a_2) = 1\}.
\]

Choose \(U_p = (p\mathbb{Z}_p)^2 \). Hence \(s_p = \mu_p(U_p) = \frac{1}{p^2} \). We want to show that

\[
\lim_{M \to \infty} \tilde{\rho} \left(\{(a_1, a_2) \in \mathbb{Z}^2 \mid (a_1, a_2) \in U_p \text{ for some prime } p > M\} \right) = 0.
\]

We want to choose \(f, g \in \mathbb{Z}[x_1, x_2] \), such that

\[
\left\{(a_1, a_2) \in \mathbb{Z}^2 \mid p \mid f(a_1, a_2), p \mid g(a_1, a_2) \text{ for some prime } p > M \right\}
= \left\{(a_1, a_2) \in \mathbb{Z}^2 \mid (a_1, a_2) \in (p\mathbb{Z}_p)^2 \text{ for some prime } p > M \right\}.
\]

We choose \(f(x_1, x_2) = x_1 \) and \(g(x_1, x_2) = x_2 \), which are coprime.
We choose $S = \{\emptyset\}$, and get with the local to global principle

$$\rho \left(\left\{ (a_1, a_2) \in \mathbb{Z}^2 \mid \gcd(a_1, a_2) = 1 \right\} \right) = \rho(P^{-1}(\{\emptyset\}))$$

$$= \prod_{\nu \in \emptyset} s_{\nu} \prod_{\nu \notin \emptyset} (1 - s_{\nu})$$

$$= (1 - s_{\infty}) \prod_{p \text{ primes}} (1 - s_p)$$

$$= \prod_{p \text{ primes}} \left(1 - \frac{1}{p^2}\right) = \frac{1}{\zeta(2)} = \frac{6}{\pi^2}.$$
Proof of Main Result

Let

\[\pi_p : \mathbb{Z}_p \to \mathbb{F}_p, \]

be the reduction modulo a rational prime \(p \) and

\[E_p : \mathbb{F}_p^k \to \mathcal{O}_K / (p). \]

and the natural projection

\[\psi_p : \mathcal{O}_K / (p) \to \prod_{p|p} (\mathcal{O}_K / \mathfrak{p}). \]
Proof of Main Result

Let

\[\pi_p : \mathbb{Z}_p \rightarrow \mathbb{F}_p, \]

be the reduction modulo a rational prime \(p \) and

\[\mathbb{F}_p : \mathbb{F}_p^k \rightarrow \mathcal{O}_K/(p). \]

and the natural projection

\[\psi_p : \mathcal{O}_K/(p) \rightarrow \prod_{p|p} (\mathcal{O}_K/p). \]

Then the composition of their extension is \(F_p = \overline{\psi}_p \circ \overline{E}_p \circ \overline{\pi}_p : \)

\[\mathbb{Z}^{knm} \xrightarrow{\overline{\pi}_p} \mathbb{F}_p^{knm} \xrightarrow{\overline{E}_p} (\mathcal{O}_K/(p))^{n \times m} \xrightarrow{\overline{\psi}_p} \prod_{p|p} (\mathcal{O}_K/p)^{n \times m} = T_p. \]
Define

\[\mathcal{L}_p = \left\{ \left(a_{p_1}, \ldots, a_{p_{\ell_p}} \right) \in T_p \mid a_{p_i} \in \mathbb{F}_{p^\deg(p_i)}^{n \times m} \text{ has full rank} \right\} . \]
Define

\[\mathcal{L}_p = \left\{ \left(a_{p_1}, \ldots, a_{p_{\ell_p}} \right) \in T_p \mid a_{p_i} \in \mathbb{F}_{p^{\deg(p_i)}}^{n \times m} \text{ has full rank} \right\}. \]

Consider now the following set

\[A_p = \left\{ A \in \mathbb{Z}_{p}^{knm} \mid F_p(A) \in \mathcal{L}_p \right\}. \]
Proof of Main Result

\[\mu_p(A_p) = \mu_p \left(\bigsqcup_{f \in \mathcal{L}_p} F_p^{-1}(f) \right) \]
\[
\mu_p(A_p) = \mu_p \left(\bigsqcup_{f \in \mathcal{L}_p} F_p^{-1}(f) \right) = \sum_{f \in \mathcal{L}_p} \mu_p(F_p^{-1}(f))
\]
\[
\mu_p(A_p) = \mu_p \left(\bigsqcup_{f \in \mathcal{L}_p} F_p^{-1}(f) \right) \\
= \sum_{f \in \mathcal{L}_p} \mu_p(F_p^{-1}(f)) \\
= \sum_{f \in \mathcal{L}_p} \mu_p(\pi_p^{-1} E_p^{-1} \psi_p^{-1}(f))
\]
Proof of Main Result

\[\mu_p(A_p) = \mu_p \left(\bigsqcup_{f \in \mathcal{L}_p} F_p^{-1}(f) \right) \]

\[= \sum_{f \in \mathcal{L}_p} \mu_p(F_p^{-1}(f)) \]

\[= \sum_{f \in \mathcal{L}_p} \mu_p(\pi_p^{-1} \overline{E}_p^{-1} \psi_p^{-1}(f)) \]

\[= \sum_{f \in \mathcal{L}_p} \mu_p(\pi_p^{-1} (\overline{E}_p^{-1} (f + \text{Ker}(\psi_p)))) \]
Proof of Main Result

\[
\mu_p(A_p) = \mu_p \left(\bigsqcup_{f \in \mathcal{L}_p} F_p^{-1}(f) \right)
\]

\[
= \sum_{f \in \mathcal{L}_p} \mu_p(F_p^{-1}(f))
\]

\[
= \sum_{f \in \mathcal{L}_p} \mu_p(\pi_{p}^{-1}\mathcal{E}_{p}^{-1}\psi_{p}^{-1}(f))
\]

\[
= \sum_{f \in \mathcal{L}_p} \mu_p(\pi_{p}^{-1}(\mathcal{E}_{p}^{-1}(\bar{f} + \text{Ker}(\psi_p))))
\]

\[
= \sum_{f \in \mathcal{L}_p} \mu_p \left(|\text{Ker}(\psi_p)| \bigsqcup_{i=1}^{\left|\text{Ker}(\psi_p)\right|} (f_i + p\mathbb{Z}_p^{kmn}) \right)
\]
\[\mu_p(A_p) = \mu_p \left(\bigsqcup_{f \in \mathcal{L}_p} F_p^{-1}(f) \right) \]
\[= \sum_{f \in \mathcal{L}_p} \mu_p(F_p^{-1}(f)) \]
\[= \sum_{f \in \mathcal{L}_p} \mu_p(\bar{\pi}_p^{-1} \overline{E}_p^{-1} \psi_p^{-1}(f)) \]
\[= \sum_{f \in \mathcal{L}_p} \mu_p(\bar{\pi}_p^{-1}(\overline{E}_p^{-1}(\bar{f} + \text{Ker}(\psi_p)))) \]
\[= \sum_{f \in \mathcal{L}_p} \mu_p \left(\left\lfloor \text{Ker}(\psi_p) \right\rfloor \bigsqcup_{i=1}^{\left| \text{Ker}(\psi_p) \right|} \left(f_i + p\mathbb{Z}_p^{knm} \right) \right) \]
\[= \left| \mathcal{L}_p \right| \cdot \left| \text{Ker}(\psi_p) \right| p^{-knm}. \]
For

\[\psi_p : \mathcal{O}_K/(p) \to \prod_{p|p} (\mathcal{O}_K/p) \]
Proof of Main Result

For

$$\psi_p : \mathcal{O}_K/(p) \to \prod_{p|p} (\mathcal{O}_K/p)$$

we have

$$\dim_{\mathbb{F}_p}(\text{Ker}(\psi_p)) = \dim_{\mathbb{F}_p}(\mathcal{O}_K/(p))$$

$$- \dim_{\mathbb{F}_p}\left(\prod_{p|p} \mathcal{O}_K/p\right)$$
Proof of Main Result

For

$$\psi_p : \mathcal{O}_K / (p) \to \prod_{p | p} (\mathcal{O}_K / \mathfrak{p})$$

we have

$$\dim_{\mathbb{F}_p} (\text{Ker}(\psi_p)) = \dim_{\mathbb{F}_p} (\mathcal{O}_K / (p))$$

$$- \dim_{\mathbb{F}_p} \left(\prod_{p | p} \mathcal{O}_K / \mathfrak{p} \right)$$

$$= k - \sum_{p | p} \deg(p).$$
Proof of Main Result

For

\[\bar{\psi}_p : (\mathcal{O}_K/(p))^{n \times m} \to \prod_{p|p} (\mathcal{O}_K/p)^{n \times m} \]

we have

\[
\dim_{\mathbb{F}_p}(\text{Ker}(\bar{\psi}_p)) = \dim_{\mathbb{F}_p}((\mathcal{O}_K/(p))^{n \times m})
\]

\[- \dim_{\mathbb{F}_p}\left(\prod_{p|p} (\mathcal{O}_K/p)^{n \times m}\right) \]

\[= knm - \sum_{p|p}\deg(p)nm. \]
Proof of Main Result

For

\[
\overline{\psi}_p : (\mathcal{O}_K / (p))^{n \times m} \to \prod_{p \mid p} (\mathcal{O}_K / p)^{n \times m}
\]

we have

\[
\dim_{\mathbb{F}_p} (\ker(\overline{\psi}_p)) = \dim_{\mathbb{F}_p}((\mathcal{O}_K / (p))^{n \times m}) - \dim_{\mathbb{F}_p}\left(\prod_{p \mid p} (\mathcal{O}_K / p)^{n \times m}\right)
\]

\[
= kmn - \sum_{p \mid p} \deg(p)nm.
\]

Therefore

\[
\left| \ker(\overline{\psi}_p) \right| = p^{kmn - \sum_{p \mid p} \deg(p)nm}.
\]
Since for a prime power q the number of full rank matrices over $\mathbb{F}_q^{n \times m}$ is

$$
\prod_{i=0}^{n-1} (q^m - q^i),
$$

we have that

$$
| \mathcal{L}_p | = \prod_{p \mid p} \prod_{i=0}^{n-1} \left(p^{\deg(p)m} - p^{\deg(p)i} \right).
$$
\[\mu_p(A_p) = p^{-knm} | \ker(\overline{\psi}_p) \cdot | \mathcal{L}_p | \]

\[= \frac{1}{p^{knm}} \left(p^{knm - \sum_{p | p} \deg(p)nm} \right) \prod_{p | p} \prod_{i=0}^{n-1} \left(p^{\deg(p)m} - p^{\deg(p)i} \right) \]

\[= p^{-\sum_{p | p} \deg(p)nm} \prod_{p | p} \prod_{i=0}^{n-1} \left(p^{\deg(p)m} - p^{\deg(p)i} \right) \]

\[= \prod_{p | p} \prod_{i=0}^{n-1} p^{-\deg(p)m} \left(p^{\deg(p)m} - p^{\deg(p)i} \right) \]

\[= \prod_{p | p} \prod_{i=0}^{n-1} \left(1 - p^{\deg(p)(i-m)} \right) . \]
Let U be the set of rectangular unimodular $n \times m$ matrices over \mathcal{O}_K, hence we can write

$$U = \{ M \in \text{Mat}_{n \times m}(\mathcal{O}_K) \mid M \mod \mathfrak{p} \text{ has full rank for any prime ideal } \mathfrak{p} \subset \mathcal{O}_K \} .$$

We choose $U_\infty = \emptyset$, then clearly $s_\infty = 0$. We want to choose U_p such that $P^{-1}(\{\emptyset\}) = U$.

Let U be the set of rectangular unimodular $n \times m$ matrices over \mathcal{O}_K, hence we can write

$$U = \{ M \in \text{Mat}_{n \times m}(\mathcal{O}_K) \mid M \mod \mathfrak{p} \text{ has full rank for any prime ideal } \mathfrak{p} \subset \mathcal{O}_K \}.$$

We choose $U_\infty = \emptyset$, then clearly $s_\infty = 0$. We want to choose U_p such that $P^{-1}(\{\emptyset\}) = U$. We choose $U_p = \mathbb{Z}_p^{k_{nm}} \setminus A_p$. Hence

$$s_p = \mu_p(U_p) = 1 - \mu_p(A_p) = 1 - \prod_{\mathfrak{p} \mid p} \prod_{i=0}^{n-1} \left(1 - p^{\deg(p)(i-m)} \right).$$
Proof of Main Result

To show:

\[\lim_{M \to \infty} \bar{\rho} \left(\left\{ A \in \mathbb{Z}^{k \times m} \mid A \in U_p \text{ for some prime } p > M \right\} \right) = 0. \]
Proof of Main Result

To show:

$$\lim_{M \to \infty} \tilde{\rho} \left(\left\{ A \in \mathbb{Z}^{knm} \mid A \in U_p \text{ for some prime } p > M \right\} \right) = 0.$$

Let $\overline{E} : \mathbb{Z}^{knm} \to \mathcal{O}_K^{n \times m}$.
For $A \in \mathbb{Z}^{knm}$, let us denote the $n \times n$ minors of $\overline{E}(A)$ by A_i for
$i \in \{1, \ldots, (m \choose n)\}$.
Hence $A \in U_p$ is equivalent to $\langle A_1, \ldots, A_{(m \choose n)} \rangle \subseteq p$ for some $p \mid p$.
Thus for all $i \in \{1, \ldots, (m \choose n)\}$ we have that $\langle A_i \rangle \subseteq p$ and hence
that $N_{K/\mathbb{Q}}(A_i) \equiv 0 \mod p$. Hence it is a subset of

$$B_M = \left\{ A \in \mathbb{Z}^{knm} \mid p \mid N_{K/\mathbb{Q}}(A_1), p \mid N_{K/\mathbb{Q}}(A_2) \right. \left. \text{ for some prime } p > M \right\}.$$
Remark

Let \(\mathcal{R} \) be an integral domain and \(n \in \mathbb{N} \). Recall that, if \(X \) is an \(n \times n \) polynomial matrix over \(\mathcal{R}[x_{1,1}, \ldots, x_{n,n}] \) having as \((i, j)\) entry the variable \(x_{i,j} \), then \(\det(X) \in \mathcal{R}[x_{1,1}, \ldots, x_{n,n}] \) is irreducible.
Proof of Main Result

Remark

Let \mathcal{R} be an integral domain and $n \in \mathbb{N}$. Recall that, if X is an $n \times n$ polynomial matrix over $\mathcal{R}[x_{1,1}, \ldots, x_{n,n}]$ having as (i,j) entry the variable $x_{i,j}$, then $\det(X) \in \mathcal{R}[x_{1,1}, \ldots, x_{n,n}]$ is irreducible.

Let $\ell, k \in \mathbb{N}$, $f \in \mathbb{C}[x_1, \ldots, x_\ell]$ and $e = (e_1, \ldots, e_k) \in (\mathbb{C} \setminus \{0\})^k$. In the new polynomial ring $\mathbb{C}[x_1^{(1)}, x_1^{(2)}, \ldots, x_\ell^{(k)}]$ let us denote by f_e

$$f \left(\sum_{u=1}^{k} x_1^{(u)} e_u, \ldots, \sum_{u=1}^{k} x_\ell^{(u)} e_u \right).$$

Lemma

Let ℓ, k, f and e be as above. If $f \in \mathbb{C}[x_1, \ldots, x_\ell]$ is irreducible, then f_e is irreducible in $\mathbb{C}[x_1^{(1)}, x_1^{(2)}, \ldots, x_\ell^{(k)}]$.
Proof of Main Result

Lemma

Let N be the norm map for the extension field $K(x_1, \ldots x_M)/\mathbb{Q}(x_1, \ldots x_M)$. Let $F, G \in \mathcal{O}_K[x_1, \ldots, x_M]$ be irreducible and such that there are variables appearing in F but not in G, then $N(F)$ and $N(G)$ are coprime.
Hence we can apply the local to global principle and get

\[\rho(U) = \rho(P^{-1}(\emptyset)) = \prod_{\nu \in \emptyset} s_{\nu} \prod_{\nu \notin \emptyset} (1 - s_{\nu}) \]
Hence we can apply the local to global principle and get

\[\rho(U) = \rho(P^{-1}(\{\emptyset\})) = \prod_{\nu \in \emptyset} s_{\nu} \prod_{\nu \not\in \emptyset} (1 - s_{\nu}) = (1 - s_{\infty}) \prod_{\nu \text{ prime}} (1 - s_{\nu}) \]
Hence we can apply the local to global principle and get

\[\rho(U) = \rho(P^{-1}({\emptyset})) = \prod_{\nu \in \emptyset} s_{\nu} \prod_{\nu \notin \emptyset} (1 - s_{\nu}) \]

\[= (1 - s_{\infty}) \prod_{p \text{ prime}} (1 - s_{p}) \]

\[= \prod_{p \text{ prime}} \prod_{p|p \quad i=0}^{n-1} \left(1 - p^{\deg(p)(i-m)}\right) \]

\[= \prod_{i=0}^{n-1} \prod_{p \text{ prime}} \prod_{p|p} \left(1 - \frac{1}{p^{\deg(p)(m-i)}}\right) \]
Hence we can apply the local to global principle and get

\[\rho(U) = \rho(P^{-1}(\emptyset)) = \prod_{\nu \in \emptyset} s_{\nu} \prod_{\nu \not\in \emptyset} (1 - s_{\nu}) \]

\[= (1 - s_{\infty}) \prod_{p \text{ prime}} (1 - s_p) \]

\[= \prod_{p \text{ prime}} \prod_{p \mid p} \prod_{i=0}^{n-1} \left(1 - p^{\deg(p)(i-m)}\right) \]

\[= \prod_{i=0}^{n-1} \prod_{p \text{ prime}} \prod_{p \mid p} \left(1 - \frac{1}{p^{\deg(p)(m-i)}}\right) \]

\[= \prod_{i=0}^{n-1} \frac{1}{\zeta_K(m - i)}. \]
Thank you