
THE MYSTERIOUS CASE OF CODE EQUIVALENCE: NOTES

VIOLETTA WEGER

Abstract. These notes were prepared for the VT-Swiss Summer School 1-5 July, 2024.
Any comments or corrections can be sent to violetta.weger@tum.de The distribution of the
notes is of course allowed. Most of the Section 1 ”Basics” is copied from the survey [22].

Many thanks to Paolo Santini for helpful explanations and discussions.

Contents

1. Basics 2
1.1. Notation 2
1.2. Basics of Coding Theory 2
1.3. Basics of Cryptography 5
1.4. Basics of Complexity Theory 8
2. Applications in Code-based Cryptography 9
2.1. Idea of LESS 9
2.2. Canonical Forms 10
3. Reductions 10
3.1. Arthur and Merlin or: Code Equivalence is not NP-hard 10
3.2. Reduction from Permutation Equivalence to Graph Isomorphism 11
3.3. Reduction from Linear Equivalence to Permutation Equivalence 13
3.4. Summary 15
3.5. Open Questions 15
4. Solvers 16
4.1. Information Set Decoding 17
4.2. Leon 19
4.3. Beullens 19
4.4. Improved Beullens’ Algorithm 20
4.5. Support Splitting 21
4.6. Other Solvers 21
4.7. Summary 21
4.8. Open Questions 22
5. Related Topics 22
5.1. Martix Code Equivalence 22
5.2. Subcode Equivalence 23
5.3. Other Metrics 25
5.4. Open Questions 26
References 26

1

violetta.weger@tum.de

2 V. WEGER

1. Basics

In this section we cover the main definitions needed for the solvers and the reductions.
Let us start with some notation.

1.1. Notation. We denote by Fq the finite field with q elements, where q is a prime power
and denote by F⋆

q its multiplicative group, i.e., Fq \ {0}.
We denote by bold upper case or lower case letters matrices, respectively vectors, e.g.

x ∈ Fn
q and A ∈ Fk×n

q .
The identity matrix of size k is denoted by Idk. Sets are denoted by upper case letters and

for a set S, we denote by | S | its cardinality. By GLn(Fq) we denote the n × n invertible
matrices over Fq.

Other notation might be standard, forgotten to introduce or introduced right where needed.

1.2. Basics of Coding Theory.

Definition 1 (Linear Code). Let 1 ≤ k ≤ n be integers. Then, an [n, k] linear code C over
Fq is a k-dimensional linear subspace of Fn

q .

We will only deal with linear codes, so for the rest of these notes, we will omit the word
’linear’.

The parameter n is called the length of the code, the elements in the code are called
codewords and R = k/n is called the rate of the code.

Definition 2 (Generator Matrix). Let k ≤ n be positive integers and let C be an [n, k] linear
code over Fq. Then, a matrix G ∈ Fk×n

q is called a generator matrix of C if

C =
{
xG | x ∈ Fk

q

}
,

that is, the rows of G form a basis of C.

We will often write ⟨G⟩ to denote the code generated by G.
We denote by ⟨x ⟨x,y⟩ the standard inner product, i.e.,

⟨x,y⟩ =
n∑

i=1

xiyi.

We can define the dual of an [n, k] linear code C over Fq as the orthogonal space of C.

Definition 3 (Dual Code). Let k ≤ n be positive integers and let C be an [n, k] linear code
over Fq. The dual code C⊥ is an [n, n− k] linear code over Fq, defined as

C⊥ = {x ∈ Fn
q | ⟨x,y⟩ = 0 ∀ y ∈ C}.

Definition 4 (Parity-Check Matrix). Let k ≤ n be positive integers and let C be an [n, k]

linear code over Fq with dual code C⊥. Then, a matrix H ∈ F(n−k)×n
q is called a parity-check

matrix of C, if
C =

{
y ∈ Fn

q | Hy⊤ = 0
}
,

that is H is a generator matrix of C⊥ and

GH⊤ = 0.

For any x ∈ Fn
q , we call xH⊤ a syndrome.

CODE EQUIVALENCE 3

Definition 5 (Hamming Metric). Let n be a positive integer. For x ∈ Fn
q , the Hamming

weight of x is given by the size of its support, i.e.,

wtH(x) =| {i ∈ {1, . . . , n} | xi ̸= 0} | .
For x,y ∈ Fn

q , the Hamming distance between x and y is given by the number of positions
in which they differ, i.e.,

dH(x,y) =| {i ∈ {1, . . . , n} | xi ̸= yi} | .
Definition 6 (Minimum Distance). Let C be a code over Fq. The minimum Hamming
distance of C is denoted by dH(C) and given by

dH(C) = min{dH(x,y) | x,y ∈ C, x ̸= y}.
The main protagonists of code equivalence are the linear isometries.

Definition 7 (Isometry). Let us consider the space V endowed with the distance d. A linear
map φ : Fn

q → Fn
q is called isometry if it keeps the distance invariant. That is, for all x,y ∈ Fn

q

we have d(x,y) = d(φ(x), φ(y)).

Proposition 8. The linear isometries of the Hamming metric consist of monomial transfor-
mations and automorphisms on Fq, that is the maps (F⋆

q)
n ⋊ (Aut(Fq)× Sn).

Definition 9 (Code Equivalence). Let C1, C2 ⊆ Fn
q be linear codes. We say C1 is equivalent

to C2, if there exists φ ∈ (F⋆
q)

n ⋊ (Aut(Fq)× Sn) such that φ(C1) = φ(C2).
For cryptography, we mainly focus on a subset of the Hamming-metric isometries, namely

the monomial transformationsMn,q = (F⋆
q)

n⋊Sn. Any map φ ∈Mn,q can be seen as a matrix
M = PD, where P is a n×n permutation matrix and D = diag(v) for v ∈ (F⋆

q)
n is a diagonal

matrix. When considering any monomial transformation, we get the linear equivalence.

Definition 10 (Linear Equivalence). We say that two codes C1, C2 ⊆ Fn
q are linear equivalent,

if there exists a map φ ∈ (F⋆
q)

n ⋊ S2, such that φ(C1) = C2.
In an even lighter version, we have the permutation equivalence.

Definition 11 (Permutation Equivalence). We say that two codes C1, C2 ⊆ Fn
q are permuta-

tion equivalent, if there exists a permutation of indices, which transforms C1 into C2, that is
there exists σ ∈ Sn, such that σ(C1) = C2.

Clearly, permutation equivalent codes are also linear equivalent codes.

Exercise 12. Consider the code C1 ⊆ F3
3 generated by G1 =

(
1 0 2
0 1 1

)
and the code C2 ⊆ F3

3

generated by G2 =

(
1 0 1
0 1 0

)
. Are the two codes linear equivalent, permutation equivalent

or not equivalent?

Proposition 13. If C1, C2 ⊆ Fn
q are permutation equivalent codes, then for any generator

matrix G1 of C1 and G2 of C2, there exists a S ∈ GLk(q) and an n × n permutation matrix
P such that

SG1P = G2.

If C1, C2 are linear equivalent codes, then for any generator matrix G1 of C1 and G2 of C2,
there exists a a S ∈ GLk(q) and an n×n permutation matrix P and a diagonal matrix diag(v)
for v ∈ (F⋆

q)
n such that

SG1Pdiag(v) = G2.

4 V. WEGER

Exercise 14. Let C1, C2 be linear equivalent codes. Show that C⊥1 is linear equivalent to C⊥2 .
Hint: Use the fact that G1H

⊤
1 = 0 and SG1Pdiag(v) = G2.

Note that linear equivalent codes have the same minimum distance. Even more is true.

Definition 15 (Weight Enumerator). Let C ⊆ Fn
q be a linear code. For any w ∈ {1, . . . , n},

let us denote by Aw(C) = |{c ∈ C | wtH(c) = w}| the weight enumerator of C.

Proposition 16. Let C1, C2 ⊆ Fn
q be linear equivalent codes, then for all w ∈ {1, . . . , n} we

have that
Aw(C1) = Aw(C2).

Note that the other direction is not true: We can have codes with the same weight enu-
merator, which are not equivalent!

Exercise 17. Let φ ∈ Aut(C). Show that φ ∈ Aut(C⊥).

Definition 18 (Hull). Let C ⊆ Fn
q be a linear code. Then the (Euclidean) hull of C is given

by

H(C) = C ∩ C⊥.

Note that the hull of a random code is with high probability trivial.

Proposition 19. Let C ⊆ Fn
q be chosen uniform at random. Then, w.h.p. H(C) = {0}.

Proof. For any c ∈ H(C), we have that c ∈ C, thus there exists m ∈ Fk
q such that mG = c.

We also have that c ∈ C⊥, hence cG⊤ = 0. Thus, m(GG⊤) = 0 and counting the number of
c ∈ H(C) is equivalent to counting m ∈ Fk

q with m(GG⊤) = 0. Since G ∈ Fk×n
q is a random

matrix, also GG⊤ ∈ Fk×k
q is random and has with probability

k∏
i=1

(1− q−i)

full rank. Due to the rank nullity theorem, we have

dim(ker(GG⊤)) = k − rk(GG⊤) = 0,

w.h.p. □

Another way to prove this, is to note that any c ∈ H(C) must satisfy(
G
H

)
c⊤ = 0.

Note that ⟨
(
G
H

)
⟩ = C + C⊥, which is the smallest code containing C(C).

Again, we are interested in the dimension of the kernel of this matrix, and due to the rank-
nullity theorem in its rank. We can assume that G,H are in systematic form and perform
row operations to get (

G′

H′

)
=

(
Idk A
0 AA⊤ + Idn−k

)
.

Hence its rank is given by k+ rk(AA⊤ + Idn−k). Assuming G was a random matrix, we also
have that A and AA⊤ + Idn−k are random matrices, which have with high probability full
rank.

CODE EQUIVALENCE 5

Definition 20 (Automorphism Group). Let C ⊆ Fn
q be a linear code. The automorphism

group of C is given by the linear isometries that map C to C.

Note that just like the hull, the automorphism group of a random linear code is w.h.p.
trivial [13], i.e., Aut(C) = {id}.

Exercise 21. Give the automorphism group of C = ⟨(1, 0, 0), (0, 1, 1) ⊆ F3
2.

Exercise 22. Let φ ∈ Aut(C). Show that φ ∈ Aut(C ∩ C⊥).

The last notion that we will make use of later, another invariant of isometries, is the support
of a code.

Definition 23 (Support of a Code). Let C ⊂ Fn
q be a linear code. Then we define its support

to be

Supp(C) = {i ∈ {1, . . . , n} | ∃c ∈ C : ci ̸= 0}.

Clearly, for a non-degenerate code, the support will be {1, . . . , n}, however, as soon as we
go to subcodes of C, this will change.

Proposition 24. Let C1, C2 ⊂ Fn
q be linear equivalent. For any subcode D1 < C1 of dimension

r < k and support size s there exists D2 < C2 of dimension r with support size s.

1.3. Basics of Cryptography.

1.3.1. Digital Signature Schemes. Digital Signature schemes aim at giving a guarantee of the
legitimate origin of an object, such as a digital message, exactly as signing a letter to prove
that the sender of this letter is really you.

In this process we speak of authentication, meaning that a receiver of the message can (with
some probability) be sure that the sender is legit, and of integrity, meaning that the message
has not been altered.

A digital signature scheme again consists of three steps:

(1) key generation,
(2) signing,
(3) verification.

In digital signature schemes we consider two parties, one is the prover, that has to prove his
identity to the second party called verifier, that in turn, verifies the identity of the prover.

As a first step, the prover constructs a secret key S, which he keeps private and a public
key P, which is made public. The prover then chooses a message m, and creates a signature
s using his secret key S and the message m, getting a signed message (m, s).

The verifier can easily read the message m, but wants to be sure that the sender really
is the prover. Thus, he uses the public key P and the knowledge of the message m on the
signature s to get authentication.

6 V. WEGER

Table 1. Digital Signature Scheme

PROVER VERIFIER

KEY GENERATION

Construct a secret key S

Construct a connected public key P
P−−→

SIGNING

Choose a message m

Construct a signature s from S and
m

m,s−−→

VERIFICATION

Verify the signature s using P and m

The security of a digital signature scheme introduces a new person, the impersonator. An
impersonator, tries to cheat the verifier and acts as a prover, however without the knowledge
of the secret key S. An impersonator wins if a verifier has verified a forged signature. This
comes with a certain probability, called cheating probability or soundness error. In order to
ensure integrity a digital signature should always involve a secret key as well as the message
itself.

Clearly, the secret key should still be infeasible to recover from the publicly known private
key, thus one still has the usual adversary, called Eve, and a security level, as in a public-key
encryption scheme.

The performance of a digital signature scheme consists of

• the communication cost, that is the total number of bits, that have been exchanged
within the process,
• the signature size,
• the public key size,
• the secret key size,
• the verification time.

1.3.2. Zero-Knowledge Protocols. In a ZK protocol, we have two parties, a prover and a
verifier. The prover wants to convince the verifier of the knowledge of a secret object, without
revealing said object.

A ZK protocol consists of two stages: key generation and verification. The verification
process can consist of several communication steps between the verifier and the prover, in
particular, we are interested in the following 3-pass scheme:

(1) The prover prepare commitment c and sends it to the verifier.
(2) The verifier randomly picks a challenge b ∈ {0, 1}, and sends it to the prover.
(3) The prover provides a response rb that only allows to verify c.
(4) The verifier checks the validity of c, (usually by recovering c using rb and the public

key).

CODE EQUIVALENCE 7

Table 2. ZK Protocol

PROVER VERIFIER

KEY GENERATION

Construct a secret key S

Construct a connected public
key P

P−−→

VERIFICATION

Construct commitment c
c−−→

Choose b ∈ {0, 1}
b←−−

Construct response rb
rb−−→

Verify c using rb

A ZK protocol has three important attributes:

(1) Zero-knowledge: this means that no information about the secret is revealed during
the process.

(2) Completeness: meaning that an honest prover will always get accepted.
(3) Soundness: for this, we want that an impersonator has only a small cheating proba-

bility to get accepted.

Again, for the performance of the protocol, we have

• the communication cost,
• the secret key,
• the public key size,
• the verification time.

In order to achieve an acceptable cheating probability/soundness error, the protocols are
often repeated several times (called rounds) and only if each instance was verified will the
prover be accepted. Thus, if the ZK protocol previously had cheating probability α, after N
such rounds we have a cheating probability of αN .

1.3.3. Fiat-Shamir Transform. The Fiat-Shamir transform allows us to build a signature
scheme from a ZK protocol. To avoid the communication with the verifier that randomly picks
a challenge, the challenge is replaced with the seemingly random hash of the commitment
and message.

The following table follows the general description of the Fiat-Shamir transform from [11].
We assume that we are given a zero-knowledge identification scheme and a public hash func-
tion Hash.

8 V. WEGER

Table 3. Fiat-Shamir Transform

PROVER VERIFIER

KEY GENERATION

Given the public key P and the se-
cret key S of some ZK protocol and
a message m

Choose a commitment c

Compute a = Hash(m, c)

Compute a response r to the chal-
lenge a

The signature is the pair s = (a, r)
m,s−−→

VERIFICATION

Use the response r and the
public key P to construct the

commitment c

Check if Hash(m, c) = a

1.4. Basics of Complexity Theory. Complexity theory tries to arrange problems in terms
of how hard it is to solve them. It usually focuses on decision problems, i.e., a problem with
answer ”yes” or ”no”. We often use the complexity terms also for computational problems,
as clearly, solving the computational problem would also solve the decisional version. Hence,
we will note make a difference between the computational and the decisional version.

Let P denote a problem. In order to estimate how hard it is to solve P we have two main
complexity classes.

Definition 25. P denotes the class of problems that can be solved by a deterministic Turing
machine in polynomial time.

Definition 26. NP denotes the class of problems that can be solved by a non-deterministic
Turing machine in polynomial time.

Note that a problem P is in NP if and only if one can check that a candidate is a solution
to P in polynomial time.

A polynomial-time reduction from R to P follows the following steps:

(1) take any instance I of R,
(2) transform I to an instance I ′ of P in polynomial time,
(3) assume that (using an oracle) you can solve P in the instance I ′ in polynomial time,

getting the solution s′,
(4) transform the solution s′ in polynomial time to get a solution s of the problem R in

the input I.

The existence of a polynomial-time reduction from R to P, informally speaking, means that
if we can solve P, we can also solve R and thus solving P is at least as hard as solving R.

CODE EQUIVALENCE 9

Definition 27. P is NP-hard if for every problem R in NP, there exists a polynomial-time
reduction from R to P.

Informally speaking this class contains all problems which are at least as hard as the hardest
problems in NP.

Finally, NP-completeness denotes the intersection of NP-hardness and NP.

Definition 28. A problem P is NP-complete, if it is NP-hard and in NP.

2. Applications in Code-based Cryptography

Code equivalence is of great interest for code-based based cryptography, as some of the
NIST proposals for signature schemes are based on the hardness of this problem.

Note that code equivalence is a group action.
In fact, for a group (G, ◦) with neutral element e and a set X we say α : G × X →

X, (g, x) 7→ α(g, x) is a group action, if

(1) α(e, x) = x,
(2) α(g, α(h, x)) = α(gh, x).

Thus, we can consider the group of isometries L, with group operation ◦ composition and
identity element id and the set X = {C′ | ∃φ ∈ L : φ(C) = C′} for a fixed code C and the
group action is given by evaluation α(φ, C′) = φ(C′).

This is important, as we can build Zero-Knowledge (ZK) protocols from group actions.

2.1. Idea of LESS. We can now introduce the main signature scheme based on code equiv-
alence in the Hamming metric: LESS [3]. This is a first round candidate for the additional
call for post-quantum signature schemes by NIST.

A prover publishes G1 ∈ Fk×n
q chosen at random and chooses a secret permutation matrix

P and a v ∈ (F⋆
q)

n at random. The prover computes and publishes G2 = SG1Pdiag(v), for
some S ∈ GLk(q), while the monomial transformation Pdiag(v) is kept secret.

In order to prove knowledge of the monomial transformation, the prover also computes the
commitment G′ = G1P

′diag(v′) for some permutation matrix P′ and v′ ∈ (F⋆
q)

n. The prover
can thus easily provide the monomial transformation from G1 to G′ (being φ1 = P′diag(v′))
or the linear isometry from G2 to G′ (being φ2 = P−1diag(v)−1P′diag(v′)) without revealing
any information on the secret monomial from G1 to G2 (being Pdiag(v)).

In fact, the challenge of the verifier will consist exactly in b ∈ {0, 1}, and the response is
given by φi. The verifier can then check that for the chosen b one has indeed φb(Gb) = G′.

Clearly such ZK protocol comes with a cheating probability of 1/2.
A dishonest prover, i.e., not knowing the secret φ, seeing G1,G2 could simply pick a

random isometry ψ and publish G′ = ψ(G1) as commitment. If the verifier indeed asks for
b = 1, the cheating prover gets accepted.

LESS decreases the cheating probability by using multiple public keys. In more details,
one chooses several monomial transformations Q1, . . . ,QN and publishes G1Q1, . . . ,G1QN .
The verifier now chooses from which G1Qi the monomial transformation to G′ should be
revealed, thus increasing the challenge space to N + 1 and the cheating probability to 1

N+1 .
Since the G1 was chosen at random it is enough to send a seed as public key. A drawback

that comes with LESS is that the commitments and the responses are structured matrices,
thus needing a lot of bits to be sent.

A novel version of LESS reduces the signature sizes drastically, by the use of canonical
forms.

10 V. WEGER

2.2. Canonical Forms. In [8] the authors propose to use canonical forms of matrices, this
corresponds to a short representative of a certain equivalence class. As a first step, the
monomial transformations are split as (P,v,P′,v′) for P a k × k permutation matrix, P′ a
(n− k)× (n− k) permutation matrix and v ∈ (F⋆

q)
k,v′ ∈ (F⋆

q)
n−k, thus getting G and G′ are

monomially equivalent if there exist (P,v,P′,v′) such that

G = SG′

Pdiag(v) z

z P′diag(v′)

 ,

for some S ∈ GLk(Fq).
Since one sends the generator matrices in systematic form, this allows the authors to

restrict the monomial transformation to the redundant k × (n − k) part and only send
P−1diag(v)−1P′diag(v′).

The resulting sizes are much smaller now, however, the main question is: are the new
instances now easier to solve? And of course, are there other canonical forms, i.e., different
representations of G or φ which could be made use of to reduce the sizes (but keep the
hardness of the problem)?

3. Reductions

3.1. Arthur and Merlin or: Code Equivalence is not NP-hard. Another complexity
class is given by AM, respectively MA. In this class live the problems that can be decided
through an Arthur-Merlin protocol. (The only difference between AM and MA is whether
Arthur or Merlin first sends a message).

The protocol is similar to the ZK protocol we have seen before, with the prover Merlin
and the verifier Arthur. The protocol is a 3 pass protocol and does not need to have the
ZK property. The main difference lies in the power of the two parties: while Arthur still has
polynomial computational power, Merlin has infinite computation power (indeed Merlin is a
wizard).

We say that a problem P can be decided by the AM protocol if Merlin is able to convince
Arthur that the answer upon the instance I is ”no”. Merlin might be cheating, i.e., the answer
to I is actually ”yes”, and we allow for a soundness error of ≤ 1/3.

No NP-hard problem can live in AM, else we have AM=PH (the polynomial hierarchy)
and this implies a collapse of polynomial hierarchy.

Theorem 29. Assuming PH ̸= AM , code-equivalence is not NP-hard.

Proof. To show this, we construct the 3-pass Arthur-Merlin protocol. Both parties see the
instance (C1, C2) and Merlin wants to convince Arthur, that the two codes are not equivalent.

Arthur chooses one of the codes, Ci, a random isometry φ and computes a generator matrix
G′ for φ(Ci) and sends G′ to Merlin.

Merlin, with the infinite computational power, can compute which code Ci Arthur has
chosen and reply with i. If Merlin was honest, then only one of the codes C1, C2 will be
equivalent to the sent C′ = ⟨G′⟩.

If Merlin was cheating and C1 is equivalent to C2, then Merlin has two choices and has a
success probability of 1/2.

By repeating this protocol for t rounds, we get a soundness error of 2−t that Arthur accepts
a cheating Merlin. □

CODE EQUIVALENCE 11

3.2. Reduction from Permutation Equivalence to Graph Isomorphism. Due to Babai’s
algorithm [2], we know that Graph Isomorphism (GI) takes at most quasi-polynomial time to
solve. Thus, a reduction from PEP to GI, i.e., showing that if we can solve GI then we can
also solve PEP, implies that PEP is easier than GI. In particular, PEP should not be used
for cryptography.

The reduction has been proposed in [4] and has a small drawback: it only works for codes
with trivial hull. Since random codes have w.h.p. a trivial hull, we call this a ”randomized”
reduction, meaning that it will not work for any instance, but it works w.h.p.

Before we can give the reduction, let us recall some graph theory.
A graph G consists of vertices V and edges E between the vertices, i.e., E ⊂ V × V.
We will focus on undirected graphs, thus whenever {u, v} ∈ E also {v, u} ∈ E and we label

the edges with a weight w(u, v).

We say that two weighted graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, if there
exists a bijective map f : V → V ′ with

(1) {u, v} ∈ E ↔ {f(u), f(v)} ∈ E′,
(2) w(u, v) = w(f(u), f(v)).

Thus, we can focus on V = V ′ = {1, . . . , n} and maps f = σ ∈ Sn.

Problem 30 (Weighted Graph Isomorphism Problem). Given G = (V,E),G′ = (V,E′), find
σ ∈ Sn, such that {u, v} ∈ E ↔ {σ(u), σ(v)} ∈ E′ and w(u, v) = w(σ(u), σ(v)).

Definition 31. The adjacency matrix of a weighted graph G is defined as the n× n matrix
A with entries

Ai,j =

{
w(i, j) if {i, j} ∈ E,
0 else.

Since we are only interested in undirected graphs, the adjacency matrices are symmetric.

Proposition 32. Two graphs G,G′ are isomorphic if and only if there exists a permutation
matrix P such that P⊤AP = A′.

This almost looks like what we need for PEP, except for the fact that in PEP (treating A
as generator matrix) we also accept SAP = A′ for any invertible matrix S, not necessarily
of the form P⊤.

In fact, one can easily make an example of two graphs, where there exists S ∈ GLn(q),P ∈
Sn with SAP = A′ but the two graphs are clearly not isomorphic.

Example 33. Let G = (V,E) with V = {1, 2, 3, 4} and E = {w(1, 2) = 1, w(2, 3) = 1, w(2, 4) =
2} and G′ = (V,E′) with E′ = {w(1, 1) = 3, w(1, 2) = 1, w(1, 3) = 1, w(1, 4) = 2}.

12 V. WEGER

These graphs can clearly not be isomorphic. However, their adjacency matrices

A =


0 1 0 0

1 0 1 2

0 1 0 0

0 2 0 0

 and A′ =


3 1 1 2

1 0 0 0

1 0 0 0

2 0 0 0


generate the codes C = ⟨G⟩ withG =

1 0 1 2

0 1 0 0

 and C′ = ⟨G′⟩ withG′ =

1 0 0 0

0 1 1 2

,

which are clearly permutation equivalent through the permutation σ = (2134). And there ex-
ists S ∈ GL4(5),P ∈ S4 (the permutation matrix of σ) such that SAP = A′, namely

S =


0 1 0 0

1 0 0 0

3 0 0 2

0 0 3 0

 .

Luckily, in order to reduce PEP to GI, we do not have to start with an instance of GI
and transform it to an instance of PEP. Instead, we start from codes and transform them to
graphs.

Hence, the main question is: given G ∈ Fk×n
q , how to define a symmetric matrix in Fn×n

q ,
which can act as adjacency matrix?

For this [4] introduced the following: For C with trivial hull, we define

A = G⊤(GG⊤)−1G.

Clearly, this matrix can only exist if GG⊤ is invertible, i.e., if the hull of C is trivial. The
matrix A ∈ Fn×n

q is symmetric, ⟨A⟩ = C and, moreover, independent of the choice of G.
In fact, taking any other generator matrix, SG, we get

(SG)⊤(SG(SG)⊤)−1SG = G⊤(GG⊤)G.

Theorem 34. PEP is easier than weighted GI, for codes with trivial hull.

Proof. Assume that the codes in the instance of PEP (C, C′) have trivial hulls. For arbitrary
generator matrices G, respectively G′ take

A = G⊤(GG⊤)−1G,

A′ = G′⊤(G′G′⊤)−1G′.

And define G, respectively G′, to have adjacency matrices A,A′.
We now show that the answer to the constructed weighted GI instance is also the answer

to the PEP instance. In fact, σ(G) = G′ if and only if σ(C) = C′.
For the first direction, note that for any choice of generator matrices, there exist S ∈ GLk(q)

with SGP = G′. However, since A is independent of the choice of basis, we can ignore the
S and get

A′ = (GP)⊤(GP(GP)⊤)−1GP = P⊤AP.

CODE EQUIVALENCE 13

Thus, the two graphs are isomorphic.
The other direction is straightforward, as the P⊤AP = A′ implies that the two codes are

equivalent. □

3.3. Reduction from Linear Equivalence to Permutation Equivalence. To reduce the
LEP to PEP, one can use the closure of the code, introduced in [19].

Definition 35 (Closure of Code). Let C ⊂ Fn
q . The closure of C is

C̃ = {(αci)(i,α)∈[1,n]×F⋆
q
| (ci)i∈[1,n] ∈ C} ⊂ Fn(q−1)

q .

Thus, if C = ⟨G⟩, with

G =


| |

g⊤
1 · · · g⊤

n

| |


then the generator matrix of the closure is given by

G̃ =


| | | | | |

g⊤
1 αg⊤

1 · · · αq−2g⊤
1 · · · g⊤

n αg⊤
n · · · αq−2g⊤

n

| | | | | |


for some primitive element α ∈ Fq. The closure C̃ has still dimension k, but now length
n(q − 1).

Proposition 36. If there exists φ ∈ Mn,q with φ(C) = C′, then there exists σ ∈ Sn with

σ(C̃) = C̃′.

Hence if G,G′ are such that there exists P ∈ Sn and v ∈ (F⋆
q)

n with SGPdiag(v) = G′,

for some S ∈ GLk(q), then S̃G̃P̃ = G̃′, where

P̃ =


P1

. . .

Pn

Q,

with Pi ∈ Sq−1, capture the permutation of Fq, i.e., vi and Q is a block permutation matrix,
which keeps the blocks of (q − 1) columns together and captures P.

This reduction can always be done, however, depending on q it might have different out-
comes.

For this, let us consider the hull of the closure. Recall, that for most solvers and for the
reduction to GI, we want a small or trivial hull.

In fact, we can show that for q ≥ 4 the closure is weakly self dual, meaning C̃ ⊂ C̃⊥. Thus,
the hull has the largest possible dimension k as H(C̃) = C̃.

This makes the reduction only interesting for q < 4.

Proposition 37. If q < 4, then C̃ has w.h.p. a trivial hull. If q ≥ 4, then C̃ is weakly self
dual.

14 V. WEGER

Proof. To understand the hull of the closure, we have to compute

X = G̃G̃⊤ =


| | |

g⊤
1 αg⊤

1 · · · αq−2g⊤
n

| | |



− g1 −

− αg1 −
...

− αq−2gn −

 .

One can easily check that

Xi,j =

n∑
ℓ=1

gℓ,igℓ,j
∑
β∈F⋆

q

β2.

Now the question becomes, how does the sum of squares behave in Fq? If there exists a
α ∈ F⋆

q with α2 ̸= 1, then β 7→ αβ permutes F⋆
q , hence∑

β∈F⋆
q

β2 =
∑
β∈F⋆

q

(αβ)2 = α2
∑
β∈F⋆

q

β2,

which implies that
∑

β∈F⋆
q
β2 = 0.

To find such α, with α2 ̸= 1, we need q ≥ 4. Thus, for q ≥ 4 we have X = 0 and

dim(H(C̃)) = k − rk(G̃G̃⊤) = k.

Hence, for q ≥ 4, C̃ ⊂ C̃⊥, i.e., the closure is weakly self dual. □

In fact, we can also handle q = 4, however, not with the classical dual defined through the
standard inner product.

Definition 38 (Hermitian Inner Product). For x,y ∈ Fn
q let us denote by ⟨x,y⟩H the Her-

mitian inner product, i.e.,

⟨x,y⟩H =
n∑

i=1

xiy
p
i ,

where p = char(Fq)

Note that the Hermitian inner product is not symmetric!

Thus, to define the Hermitian dual, we have to fix on which side we place the codewords.

Definition 39 (Hermitian Dual Code). Let k ≤ n be positive integers and let C be an [n, k]
linear code over Fq. The Hermitian dual code C⋆ is an [n, n− k] linear code over Fq, defined
as

C⋆ = {x ∈ Fn
q | ⟨x,y⟩H = 0 ∀ y ∈ C}.

Definition 40 (Hermitian Parity-Check Matrix). Let k ≤ n be positive integers and let C
be an [n, k] linear code over Fq with Hermitian dual code C⋆. Then, a matrix H⋆ ∈ F(n−k)×n

q

is called a Hermitian parity-check matrix of C, if H⋆ is a generator matrix of C⋆ and

G((H⋆)p)⊤ = 0.

Note that if H is the common parity-check matrix of C, then H1/p is a Hermitian parity-
check matrix. The Hermitian hull is then defined as H⋆(C) = C ∩ C⋆.

The Hermitian dual and Hermitian hull are still invariants of isometries.

CODE EQUIVALENCE 15

Exercise 41. Let C ⊂ Fn
q be equivalent to C′. Then C⋆ is equivalent to (C′)⋆ (and thus the

hulls are as well). Hint: Use again that G((H⋆)p)⊤ = 0 and GP = G′.

Having this new definition of hull, we can define

A⋆ = (Gp)⊤(G(Gp)⊤)G,

again A⋆ is independent of the choice of generator matrix, symmetric and exists if C has
trivial Hermitian hull.

Similar to before, for random codes we assume that G is chosen uniform at random and
thus G(Gp)⊤ has full rank. Thus, random codes have w.h.p. trivial Hermitian hull.

The only thing left to check is that the closure of a code in F4 has w.h.p. trivial Hermitian
hull. For this let α be a primitive element in F4 and consider

X = G̃(G̃2)⊤ =


| | | | | |

g⊤
1 αg⊤

1 α2g⊤
1 · · · g⊤

n αg⊤
n α2g⊤

n

| | | | | |





− g2
1 −

− α2g2
1 −

− αg2
1 −

...

− g2
n −

− α2g2
n −

− αg2
n −


.

One can easily check that

Xi,j =

n∑
ℓ=1

gℓ,ig
2
ℓ,j(1 + α · α2 + α · α2) =

n∑
ℓ=1

gℓ,ig
2
ℓ,j .

Thus, assuming G is random, the matrix X is random as well and has w.h.p. full rank.

3.4. Summary. We have seen the following reductions:

(1) We can always reduce LEP to PEP.
(2) If q ≤ 4 a random LEP instance becomes a random PEP instance, i.e., w.h.p. we

have trivial hull.
(3) For q ≥ 5 a random LEP instance becomes a weakly self dual PEP instance, i.e., full

hull.
(4) We can reduce PEP to weighted GI if the hull of the code is trivial.
(5) Code equivalence is not NP-hard (unless the complexity hierarchy collapses).

Thus, neither PEP nor LEP is NP-hard. However, regarding the reduction to the known
quasi-polynomial time GI, this is only possible for random PEP instances, and for LEP in-
stances with q ≤ 4. These are thus the easiest instances of code equivalence and cryptographic
systems should use random LEP instances with q ≥ 5 or weakly self dual PEP instances.

3.5. Open Questions. We have seen that the Hermitian hull behaves different to the Eu-
clidean hull and thus an obvious first question is

(1) could we consider different inner products to find more easy instances of code equiv-
alence?

(2) Is there a different reduction of LEP/PEP to GI, which does not require trivial hulls?

16 V. WEGER

4. Solvers

Historically, the first solver for code equivalence was given by Leon [14]. This solver has
been improved later by Beullens in [6] and also by Santini et al. in [5]. The idea of these
solvers is to find subsets S ⊂ C and S′ ⊂ C′ which are also invariant under the isometry φ,
i.e., φ(S) = S′. For the smaller sets S, S′ it will become easier to find an isometry between
them.

Since the weight (and the weight enumerator) is invariant under an isometry, the chosen
subset is a set of codewords of (relatively) small weight. To find and list all these codewords
one applies Information Set Decoders (ISD).

Note that this is, however, solving a much harder problem: the problem of finding low
weight codewords (equivalent to the decoding problem), which is known to be NP-hard.

For this section, we need some more definitions/notation: The q-binomial coefficient is
defined as [

n

k

]
q

=

k−1∏
i=0

qn − qi

qk − qi
=

∏n
i=1(1− qi)∏k

i=1(1− qi)
∏n−k

i=1 (1− qi)
.

To talk about complexities, we write

(1) f ∈ O(g) if lim supx→∞
∣∣f(x)
g(x)

∣∣ <∞,
(2) f ∈ Ω(g) if lim infx→∞

∣∣f(x)
g(x)

∣∣ > 0,

(3) f ∈ Θ(g) if 0 < lim infx→∞
∣∣f(x)
g(x)

∣∣ ≤ lim supx→∞
∣∣f(x)
g(x)

∣∣ <∞.
Definition 42. Let C be an [n, k] linear code over Fq and let S ⊆ {1, . . . , n} be a set of size
s. Then, we define the punctured code CS in S as follows

CS = {(ci)i ̸∈S | c ∈ C}.

Definition 43 (Information Set). Let k ≤ n be positive integers and let C be an [n, k] linear
code over Fq. Then, a set I ⊂ {1, . . . , n} of size k is called an information set of C if

| C |=| CI | .

Definition 44 (Systematic Form). Let k ≤ n be positive integers and C be an [n, k] linear
code over Fq. Then, there exist some permutation matrix P and some invertible matrix U
that bring G in systematic form, i.e.,

UGP =
(
Idk A

)
,

where A ∈ Fk×(n−k)
q . Similarly, there exist some permutation matrix P′ and some invertible

matrix U′, that bring H into systematic form as

U′HP′ =
(
B Idn−k

)
,

where B ∈ F(n−k)×k
q .

CODE EQUIVALENCE 17

4.1. Information Set Decoding. For this section we need some additional notation: let
S ⊆ {1, . . . , n} be a set of size s, then for a vector x ∈ Fn

q we denote by xS the vector of

length s consisting of the entries of x indexed by S. Whereas, for a matrix A ∈ Fk×n
q , we

denote by AS the matrix consisting of the columns of A indexed by S. For a set S we denote
by SC its complement. For S ⊆ {1, . . . , n} of size s we denote by Fn

q (S) the vectors in Fn
q

having support in S. The projection of x ∈ Fn
q (S) to Fs

q is then canonical and denoted by
πS(x). On the other hand, we denote by σS(x) the canonical embedding of a vector x ∈ Fs

q

to Fn
q (S).

An ISD algorithm is given a parity-check matrix H ∈ F(n−k)×n
q of a code C, a positive

integer t and a syndrome s ∈ Fn−k
q , such that there exists a vector e ∈ Fn

q of Hamming weight

less than or equal to t with syndrome s, i.e., eH⊤ = s. The aim of the algorithm is to find
such a vector e.

To adapt such algorithm to find low weight codewords, one simply sets s = 0 and is thus
searching for a codeword c of weight t.

We can focus (for now) only on Stern’s algorithm [21].

(1) Choose a set J ⊂ {1, . . . , n} of size k + ℓ. Note that the set J contains with high
probability an information set.

(2) Bring H only partially into systematic form, that is up to permutation of columns we

have UH =

In−k−ℓ H̃

0 H′

 , for some 0 ≤ ℓ ≤ n − k and H̃ ∈ F(n−k−ℓ)×(k+ℓ)
q ,H′ ∈

Fℓ×(k+ℓ)
q and some invertible matrix U ∈ F(n−k)×(n−k)

q . Thus, the codeword c = (c̃, c′)
with cJC = c̃ ∈ Fn−k−ℓ

q and cJ = c′ ∈ Fk+ℓ
q , has to satisfy two equations:

c̃+ c′H̃⊤ = 0

c′H′⊤ = 0.(4.1)

Assuming that c′ has weight v, for some 0 ≤ v ≤ t and c̃ has the remaining weight
t− v, we can see that (4.1) forms a smaller instance of a SDP.

(3) Solve the smaller SDP instance given by H′ and target weight v, getting a list L
containing candidates for c′.

(4) For all c′ ∈ L, compute c̃ = −c′H̃⊤.
(5) If wt(c̃) = t − v return the solution c = (c̃, c′). Else, return to step 1 and choose a

different set J.

Note that the cost of an ISD algorithm is given by the number of iterations one needs on
average (this is given by the reciprocal of the success probability P of one iteration) times
the cost of one iteration (C).

Stern solves the subinstance 4.1 via a collision search. We are given H′ ∈ Fℓ×(k+ℓ)
q and

v. For simplicity, let us assume that k + ℓ and v are even. Stern’s algorithm splits the

sought-after vector c′ = (c1, c2), were c1, c2 ∈ F(k+ℓ)/2
q are both assumed to have weight

v/2. Analogously, we split H′ =
(
H1 H2

)
, for H1,H2 ∈ Fℓ×(k+ℓ)/2

q . Thus, the syndrome

equation of the subinstance becomes

c1H
⊤
1 + c2H

⊤
2 = 0.

18 V. WEGER

(1) Build a list of candidates c1,

L1 = {(c1, c1H⊤
1) | c1 ∈ F(k+ℓ)/2

q ,wt(c1) = v/2}

and similarly a list for c2 :

L2 = {(c2,−c2H⊤
2) | c2 ∈ F(k+ℓ)/2

q ,wt(c2) = v/2}.

(2) Go through all elements in L1 × L2 and search for a collision, i.e., ((c1,a), (c2,a)) ∈
L1 × L2. For each collision add the candidate c′ = (c1, c2) to the list L.

The cost of one iteration is now dominated by computing the lists L1, respectively L2 and
the collision search. The average number of collisions, and thus the average size of L is given
by

|L1||L2|
qℓ

=

(
(k + ℓ)/2

v/2

)2

(q − 1)vq−ℓ.

The success probability of Stern is given by(
n− k − ℓ
t− v

)(
(k + ℓ)/2

v/2

)2(n
t

)−1

.

Thus, the cost of Stern is in O
(
CP−1

)
, where

P =

(
n

t

)−1(n− k − ℓ
t− v

)(
(k + ℓ)/2

v/2

)2

,

C =

((
(k + ℓ)/2

v/2

)
(q − 1)v/2 +

(
(k + ℓ)/2

v/2

)2

(q − 1)vq−ℓ

)
.

To measure costs, we also introduce the asymptotic cost. For this we assume a fixed q and
want to write the cost as qnf(R,q,w/n), that is we are only interested in f , which depends on
R = k/n,w/n and q.

We introduce the notation A = limn→∞ a(n)/n,B = limn→∞ b(n)/n and Fq(A,B) =
A logq(A) − B logq(B) − (A − B) logq(A − B). Note that with Stirling’s formula we have
that

lim
n→∞

1

n
logq

((
a(n)

b(n)

))
= Fq(A,B).

In the case of Stern, the asymptotic cost is given by

Fq(1, T)− Fq(1−R− L, T − V)− Fq(R+ L, V)+

max{Fq(
R+ L

2
,
V

2
) +

V

2
logq(q − 1), Fq(R+ L, V) + V logq(q − 1)− L},

where T = limn→∞ t(n)/n,R = limn→∞ k(n)/n, L = limn→∞ ℓ(n)/n, V = limn→∞ v(n)/n.
This does not look a priori easier, as we would first need to optimize for ℓ, v and usually t

is given either by (d− 1)/2 or d, where we assume d from the Gilbert-Varshamov bound.

CODE EQUIVALENCE 19

4.2. Leon. The main observation of Leon [14], is that the sought isometry has to map all
codewords of weight w in C1 to all codewords of weight w in C2. Thus, Leon first constructs
the sets Si = {c ∈ Ci | wtH(c) = w} and then searches for φ ∈Mn,q such that φ(S1) = S2.

The cost of finding such a map φ is polynomial in the size of Si.

Note that for a random code C ⊂ Fn
q of dimension k, we expect the number of codewords

having weight w to be (
n

w

)
(q − 1)wqk−n.

The probability that a found φ mapping S1 to S2 does not extend to the codes, i.e.,
φ(C1) = C2 is then negligible.

Thus, the main factor in the cost, is constructing Si using ISD and there is a clear trade-
off: the larger we choose w, the easier ISD becomes, however, at the same time, the larger Si
becomes and thus the larger the cost of finding φ.

The main steps of Leon are thus

(1) Construct S1, S2 for a chosen weight w.
(2) Find an isometry φ between S1, S2.
(3) Check if φ(C1) = C2.

Let us compute Nw = |Si|. Clearly, there is no need to store the scalar multiples of c as
well, thus for a random code we compute

Nw =

(
n

w

)
(q − 1)w−1 q

k − 1

qn − 1
.

Let us denote by CISD(q, n, k, w) the cost of an ISD algorithm with these . Then, the cost
of Leon’s algorithm is given by

O(ln(Nw)CISD(q, n, k, w)).

Note that the cost of ISD algorithms changes depending on the number of solutions. If
we are only interested in finding one, assuming there are N many (ignoring scalars), we can
divide its cost by said N and in order to find all the total N is

CISD

N
+
CISD

N − 1
+ · · · = ln(N)CISD.

If instead we only want L out of the total N , the cost is

CISDL/N.

4.3. Beullens. Fairly recent, Beullens introduced in [6] a refinement of Leons algorithm.
The algorithm can be split into two versions. Let us start with version 1, tackling permu-

tation equivalence.

The main observation of Beullens, is that a permutation σ does not only fix the weight of
a vector, but also the multiset of its entries. Thus, instead of seeing the elements in Si as
vectors ci, Beullens’ algorithm treats them as multisets (now denoted by S(ci)) and searches
for a collision in S1 × S2, i.e., c1 ∈ S1 has the same multiset as c2 ∈ S2. This allows us to
store less elements (now multisets) in Si.

Each found collision is then used to piece-wise reconstruct the permutation: if c1, c2 have
the same multisets and (c1)i ̸= (c2)j , then we guess σ(i) ̸= j. When the number of collisions

20 V. WEGER

is sufficiently high, one has enough information to fully recover σ. In fact, if |Si| = L, it is

enough to compute only Θ(
√
L log(n)) elements of S1, S2 to have on average Θ(log(n)) many

pairs (c1, σ(c1)) which is enough to recover the permutation σ.

Note that this algorithm is probabilistic: either a bad collision is found, i.e., codewords c1
and c2 that have the same multisets but c2 ̸= σ(c1) or the number of collisions is too low.

By setting L =
√
2Nwn ln(n), the cost of Beullens algorithm can be approximated as

O

√n ln(n)

Nw
CISD(q, n, k, w)

 .

In the second variant, Beullens provides an algorithm to solve LEP. In the case of linear
equivalence, the multiset of the entries are clearly not preserved. However, for any subcode
D1 < C1 there exists a φ(D1) = D2 < C2 with the same dimension and support size. In par-
ticular, Beullens proposes to use subcodes of dimension 2 and the lists now contain generator
matrices in F2×n

q .

Given the two lists Si = {Gi ∈ F2×n
q | ⟨Gi⟩ < Ci, | Supp(⟨Gi⟩)| = s} one searches now for

collisions, i.e., an isometry φ(⟨G1⟩) = ⟨G2⟩. In order to find such isometry, one can either use
Leon’s algorithm or first Beullens’ algorithm to find the permutation and then reconstruct
the scalar factors.

In fact, by first defining G1P = G′
1 and then finding D = diag(v) such that G′

1DH⊤
2 = 0.

This system has n unknowns v and k(n− k) equations.
Note that the number of 2-dimensional subcodes of support size s is given by

N (2)
s =

(
n
s

)
(q2 − 1)s − (q − 1)s+1

[
k
2

]
q

(q2 − 1)(q2 − q)
[
n
2

]
q

.

Setting L =
√
N

(2)
w ⌈ n(n−1)

2w(n−w)⌉, the cost of Beullens’ algorithm is given by

Ω

(
L

N
(2)
s

CISD(q, n, k, s)

)
.

4.4. Improved Beullens’ Algorithm. In [5] Santini et al. improved the second algorithm
of Beullen, using the following idea to construct less 2-dimensional subcodes, faster and with
a higher probability of collision:

(1) use an ISD algorithm to find the set L of size L containing all codewords of weight w,

(2) form all
(
L
2

)
2-dimensional subcodes ⟨Gi⟩ generated by these codewords,

(3) check if ⟨Gi⟩ has support size s.

In fact, in Beullens’ algorithm the two-dimensional subcodes behave like random length s
codes, while the improvement forces a collision of columns in G1 and G2 of at least 2w − s.
This intersection is captured by the quantity

ζ(w, s) =


0 if s < w,

0 if s > min{n, 2w},(
w

2w−s

)(
n−w
s−w

)(
n
w

)−1
else.

CODE EQUIVALENCE 21

Setting L = |Si| =
(
2N

(2)
w n ln(n)ζ(w, s)−1

)1/4
, the cost of the improved Beullens’ algo-

rithm is then given by

O
(

ln(1− L/Nw)

Nw ln(1− 1/Nw)
CISD(q, n, k, w)

)
.

4.5. Support Splitting. This algorithm was introduced by Sendrier in [18] and defines a
signature function, i.e., a property for each position of the code which is invariant under
the permutation. More precisely, for a given code C, position i ∈ {1, . . . , n} one wants
S(C, i) = S(σ(C, σ(i)).

Sendrier chooses this signature function (or rather the invariant of the code) to be the
weight enumerator of the hull (of a punctured code), i.e.,

S(C, i) =W (H(Ci)),
where W (C) = (A0(C), . . . , An(C)) are all the weight enumerators, Ci is the code C punctured
in the position i.

Having defined such a signature function, one can now compare S(C, i) with S(C′, i) for all
i ∈ {1, . . . , n} and if a match is found, recover the permutation between the original codes.

Clearly, the hull is invariant under an isometry:

H(σ(C)) = σ(C) ∩ σ(C⊥) = σ(C ∩ C⊥) = H(σ(C)),
the weight enumerator of a code is also invariant:

Aw(C) = Aw(σ(C)),
but the weight enumerator either involves ISD (having exponential cost) or assumes that
the code has a small dimension. Since we compute the weight enumerator of the hull of a
punctured code, we get that the cost of the support splitting algorithm is in

O(qdim(H(C)).

Thus, if the dimension of the hull is large, e.g. for weakly self dual codes, this becomes an
exponential time solver, if the dimension is a small constant, we have a polynomial time solver
and it simply fails if the hull is trivial (which we have seen happens for random codes w.h.p.).

4.6. Other Solvers. One could apply algebraic solvers, that is express σ(C) = C′ as system
of equations and try to solve this with Gröbner bases, however, similar to the support splitting
algorithm, these approaches have a cost exponential in the dimension of the hull.

Another idea is to use the reduction from PEP to weighted Graph Isomorphism (WGI),
which allows us to use any solver of WGI to solve PEP. In fact, Babai’s algorithm [2] solves
WGI in quasi-polynomial time. The drawback of this approach lies again in the hull: the
reduction only works if the code has a trivial hull.

4.7. Summary. To summarize, we can say that each solver tries to find a subset/subcode
of Si ⊂ Ci and computes invariant W (Si) of the isometry for this subset and tries to match
W (S1) with W (S2).

So far, the subsets proposed were sets of small weight codewords Aw(C) or of punctured
hulls H(Ci).While the proposed invariants were the weight enumerators and the support sizes.

Let us compare the different solvers and when they can be applied:

22 V. WEGER

• To solve PEP for codes with trivial hull, we can use Babai’s algorithm [2]: quasi-
polynomial time.
• To solve PEP for codes with hull of constant dimension, we can use the support
splitting algorithm [18]: polynomial time solver.
• To solve PEP for codes with large hull, the best solver is by [6] and has exponential
cost.
• To solve LEP, the best solver is by [5] and has exponential cost.

4.8. Open Questions. The open questions that remain, are:

• Are there other invariants that are easier to compute?
• Are there other subcodes / subsets of the codes that lead to an easier instance?
• Are there other easy instances? (Apart from random codes for PEP).

5. Related Topics

5.1. Martix Code Equivalence. In the following we introduce rank-metric codes, for which
we follow the notation of [12].

Let us denote by Fn×m
q the n×m matrices over Fq.

Instead of considering subspaces in Fn
q , we can also consider subspaces in Fm×n

q , referred
to as matrix codes.

Definition 45 (Matrix Codes). An Fq-linear subspace of Fn×m
q is called a matrix code.

Thus, instead of a k×n generator matrix G ∈ Fk×n
q , we generate the code with k generating

matrices G1, . . . ,Gk ∈ Fm×n
q , then every codeword is of the form

C = λ1G1 + · · ·+ λkGk,

for some λi ∈ Fq. Since these codes are only linear over Fq, they are also called Fq-linear
codes.

One could define the Hamming metric on such matrices, by either considering the number
of non-zero columns or the number of non-zero entries. However, we will be interested in the
rank metric.

The dual code of a matrix code, requires a new inner product, which extends the previous
standard inner product. For this, recall that the trace of a matrix is the sum of the entries
on its diagonal.

Definition 46. Let A,B ∈ Fm×n
q , then we define their trace product as

Tr(AB⊤).

Definition 47. Let C ⊆ Fm×n
q be a linear matrix code, then its dual code is given by

C⊥ = {A ∈ Fm×n
q | Tr(AB⊤) = z for all B ∈ C}.

This product is compatible with the standard inner product on Fn
qm .

The new inner product is in fact also compatible with the vectorization:

Proposition 48. Let A,B ∈ Fm×n
q , then

Tr(A⊤B) = ⟨vec(A), vec(B)⟩.

CODE EQUIVALENCE 23

Definition 49 (Rank Metric). Let X,Y ∈ Fm×n
q . The rank weight of X is given by its rank

wtR(X) = rk(X)

and the rank distance between X and Y is given by

dR(X,Y) = wtR(X−Y).

Let C ⊆ Fm×n
q be a linear code, then its minimum rank distance is given by

dR(C) = min{wtR(C) | C ̸= 0,C ∈ C}.
Definition 50 (Matrix Code Equivalence). Let C1, C2 ⊆ Fm×n

q . We say that C1 is equivalent
to C2 if there exists φ ∈ GLm(q)⋊GLn(q) such that φ(C1) = C2.
Proposition 51. The linear isometries of the rank metric in Fm×n

q for m ≤ n, are given by
GLm(q)⋊GLn(q) and automorphisms of Fq.

For applications in cryptography, we again only focus on φ ∈ GLm(q)⋊GLn(q).

Problem 52 (Matrix Code Equivalence (MCE) Problem). Given G1, . . . ,Gk ∈ Fm×n
q and

G′
1, . . . ,G

′
k ∈ Fm×n

q . Find A ∈ GLm(Fq),B ∈ GLn(Fq), such that for all C ∈ ⟨G1, . . . ,Gk⟩
we have ACB = C′ for some C′ ∈ ⟨G′

1, . . . ,G
′
k⟩.

There exists a polynomial time reduction from the Hamming code equivalence problem in
[10]. A nice summary on MCE can be found in [16].

The MEDS signature scheme [7] is based on the same principle as LESS but using the
matrix code equivalence instead of linear equivalence.

5.2. Subcode Equivalence. One can also generalize LEP/PEP to the following problem.

Problem 53 (Permuted Kernel Problem (PKP)). Given G ∈ Fk×n
q ,H′ ∈ F(n−k′)×n

q find a

permutation matrix P such that H′(GP)⊤ = z.

This problem has first been introduced by Shamir in [20] and was formulated through
parity-check matrices, thus the name permuted kernel. In [17] it has been observed, that the
formulation of [20] is indeed equivalent to the subcode-equivalence problem.

Problem 54 (Subcode Equivalence Problem (SEP)). Given G ∈ Fk×n
q ,G′ ∈ Fk′×n

q , find per-
mutation matrix P such that ⟨G′⟩ ⊂ ⟨GP⟩.
Exercise 55. Show that PKP is equivalent to SEP.

In the following, we will thus only use the subcode equivalence formulation, also for PKP.

There also exists a relaxed version on PKP, which only asks to find a subcode of dimension
1.

Problem 56 (Relaxed PKP). Given G ∈ Fk×n
q , G′ ∈ Fk′×n

q , find x ∈ Fk
q and a permutation

matrix P such that xGP ∈ ⟨G′⟩.
Since PKP only asks for permutation equivalence it contains PEP and clearly, PKP contains

the Relaxed PKP.
Just like PEP is related to graph isomorphism, PKP is related to sub-graph isomorphism,

which is known to be NP-hard [9].
In fact, a simple reduction shows that one can reduce sub-graph isomorphism to PKP,

making it also an NP-hard problem.
Let us recall the reduction here.

24 V. WEGER

We say that G = (V,E) with |V | = v, |E| = e has incidence matrix A ∈ Fe×v
2 , if A has

entries ai,j with

ai,j =

{
1 if i = (ℓ, j) ∈ E,
0 else.

That is the rows correspond to the edges and the columns to the vertices. Considering the
edge (a, b), we set a 1 in the position a and in the position b.

Since we consider undirected graphs, the condition e = (ℓ, j) ∈ E should be read as
unordered tuple, i.e., also e = (j, ℓ) ∈ E.

Example 57. The graph G with vertex set V = {1, 2, 3, 4} and edge set E = {(1, 2), (2, 3), (3, 4)}
has incidence matrix

A =


1 1 0 0

0 1 1 0

0 0 1 1

 .

Clearly, there are different incidence matrices, depending on the ordering of the edges.

Theorem 58. There exists a reduction from GI to PEP.

We follow the proof of [15].

Proof. Let G = (V,E) and G′ = (V,E′) be an instance of GI. Let D and D′ be two incidence
matrices for G, respectively G′. We can transform this instance to an instance of PEP, by

defining the two generator matrices in Fe×(3e+v)
q

G =
(
Ide Ide Ide D

)
,

G′ =
(
Ide Ide Ide D′

)
.

Let us consider two cases. In the first case, the answer to GI is ”yes“, as there exists a
f : V → V , such that {f(u), f(v)} ∈ E′ for all {u, v} ∈ E. Thus, there exists a permutation
of V which maps one graph to the other and the two incidence matrices D and D′ are such
that

QDP = D′

for some e × e permutation matrix Q and v × v permutation matrix P. Clearly, the codes
generated by G and G′ are then also permutation equivalent.

In the second case, we assume that the two graphs are not isomorphic, hence there exists
no permutation on V , which maps G to G′. Thus, no v×v permutation matrix P and no e×e
permutation matrix Q exists for which QDP = D′.

The two codes generated by G1 and G2 are only permutation equivalent, if we can find
S ∈ GLn(F2) and (3e+ v)× (3e+ v) permutation matrix P such that

SGP =
(
S S S SD

)
P = G′.

Note that the first 3e columns of SG consist of all unit vectors of length e, each appearing
exactly three times. Hence, the first 3e columns of G2 are obtained by permuting the first 3e
columns of SG and thus, we also have the permutation matrix P = diag(S−1,S−1,S−1,T),
where T is a v × v permutation matrix. Hence, if such S,P exist, we must have D′ = SDT,
which is against the assumption that G and G′ are not isomorphic.

□

CODE EQUIVALENCE 25

Due to this result, we know that PEP (and thus also LEP) are at least as hard as GI.
Since PKP is a subcode-equivalence problem it is equivalent to the subgraph isomorphism

problem and hence NP-complete [9]. However, the hardness of the relaxed version is not
known.

The signature scheme PERK [1] uses the relaxed PKP in a ZK protocol, together with
Multi-Party-Computation techniques. Also PERK is a round 1 candidate for the additional
standardization process of NIST.

5.3. Other Metrics. There exist also many other metrics one could consider. For example
the Lee metric .

Let us consider Fp, for p > 3 a prime. Then we can define a different metric, called Lee
metric.

Definition 59 (Lee Metric). Let x ∈ Fp, and represent x ∈ {0, . . . , p − 1}. The Lee weight
of x is given by

wtL(x) = min{x, |p− x|}.
The largest possible Lee weight is thus M = (p − 1)/2. Let x ∈ Fn

p . The Lee weight is then
extended additively on the entries, that is

wtL(x) =

n∑
i=1

wtL(xi).

Let x,y ∈ Fn
p . Their Lee distance is induced by the Lee weight, that is

dL(x,y) = wt(x− y).

Let C ⊆ Fn
p be a linear code. The minimum Lee distance of C is given by

dL(C) = min{wtL(c) | c ∈ C, c ̸= 0}.

Note that the Lee metric can be defined over any integer residue ring Z/mZ, for any integer
m. However, for the cryptographic purposes it is enough to consider prime fields. Since the
Lee metric coincides with the Hamming metric in F2 and F3, we only focus on primes p > 3.

Note that, wtH(v) ≤ wtL(v) ≤MwtH(v) and the average Lee weight of the vectors in Fn
p

is given by (M/2)n. We, thus, also get that linear code C ⊆ Fn
p can correct more errors in the

Lee metric as in the Hamming metric, i.e.,

dH(C) ≤ dL(C).

Proposition 60. The linear isometries for the Lee metric are given by {±1}n ⋊ Sn.

Since this is a subset of the linear isometries of the Hamming metric, we also get a problem
in between PEP and LEP.

Problem 61 (Lee-metric Code Equivalence (LCE)). Given C1, C2 ∈ Fn
p , find a linear isometry

φ ∈ {±1}n ⋊ Sn, such that φ(C1) = C2.

Clearly, if one can solve LEP, one can also solve LCE, and if one can solve LCE one can
also solve PEP.

The proof that code equivalence is not NP-hard using the Arthur-Merlin protocol still
applies, and hence also LCE is not NP-hard.

Note that the linear isometries of the Lee metric also do not act transitively on the Lee
sphere. This makes a construction of a protocol with the ZK property difficult, as any isometry
φ would leak information on the secret.

26 V. WEGER

5.4. Open Questions. With different metrics a lot of new questions arises, such as

• How hard is relaxed PKP?
• Are there metrics for which code equivalence is NP-hard?

References

[1] Najwa Aaraj, Slim Bettaieb, Löıc Bidoux, Alessandro Budroni, Victor Dyseryn, Andre
Esser, Philippe Gaborit, Mukul Kulkarni, Victor Mateu, Marco Palumbi, Lucas Perin,
and Jean-Pierre Tillich. PERK. In First Round Submission to the additional NIST
Postquantum Cryptography Call, 2023.

[2] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing, pages 684–697, 2016.

[3] Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-François Biasse, Andre Esser,
Kris Gaj, Kamyar Mohajerani, Gerardo Pelosi, Edoardo Persichetti, Markku-Juhani O.
Saarinen, Paolo Santini, and Robert Wallace. LESS. In First Round Submission to the
additional NIST Postquantum Cryptography Call, 2023.

[4] Magali Bardet, Ayoub Otmani, and Mohamed Saeed-Taha. Permutation code equivalence
is not harder than graph isomorphism when hulls are trivial. In 2019 IEEE International
Symposium on Information Theory (ISIT), pages 2464–2468. IEEE, 2019.

[5] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. On
the computational hardness of the code equivalence problem in cryptography. Cryptology
ePrint Archive, 2022.

[6] Ward Beullens. Not enough LESS: an improved algorithm for solving code equivalence
problems over Fq. In International Conference on Selected Areas in Cryptography, pages
387–403. Springer, 2020.

[7] Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovohery Haja-
tiana Randrianarisoa, Krijn Reijnders, Simona Samardjiska, and Monika Trimoska.
MEDS. In First Round Submission to the additional NIST Postquantum Cryptography
Call, 2023.

[8] Tung Chou, Edoardo Persichetti, and Paolo Santini. On linear equivalence, canonical
forms, and digital signatures. Cryptology ePrint Archive, 2023.

[9] Stephen A Cook. The complexity of theorem-proving procedures. In Logic, Automata,
and Computational Complexity: The Works of Stephen A. Cook, pages 143–152. 2023.

[10] Alain Couvreur, Thomas Debris-Alazard, and Philippe Gaborit. On the hardness of code
equivalence problems in rank metric. arXiv preprint arXiv:2011.04611, 2020.

[11] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Conference on the theory and application of cryptographic
techniques, pages 186–194. Springer, 1986.

[12] Elisa Gorla. Rank-metric codes. In Concise Encyclopedia of Coding Theory, pages 227–
250. Chapman and Hall/CRC, 2021.

[13] Hanno Lefmann, Kevin T Phelps, and Vojtěch Rödl. Rigid linear binary codes. Journal
of Combinatorial Theory, Series A, 63(1):110–128, 1993.

[14] Jeffrey Leon. Computing automorphism groups of error-correcting codes. IEEE Trans-
actions on Information Theory, 28(3):496–511, 1982.

[15] Erez Petrank and Ron M Roth. Is code equivalence easy to decide? IEEE Transactions
on Information Theory, 43(5):1602–1604, 1997.

[16] Krijn Reijnders, Simona Samardjiska, and Monika Trimoska. Hardness estimates of the
code equivalence problem in the rank metric. Cryptology ePrint Archive, 2022.

CODE EQUIVALENCE 27

[17] Paolo Santini, Marco Baldi, and Franco Chiaraluce. Computational hardness of the
permuted kernel and subcode equivalence problems. IEEE Transactions on Information
Theory, 2023.

[18] Nicolas Sendrier. Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE Transactions on Information Theory, 46(4):1193–1203, 2000.

[19] Nicolas Sendrier and Dimitrios E Simos. How easy is code equivalence over Fq? In
International Workshop on Coding and Cryptography-WCC 2013, 2013.

[20] Adi Shamir. An efficient identification scheme based on permuted kernels. Springer,
1990.

[21] Jacques Stern. A method for finding codewords of small weight. In International Collo-
quium on Coding Theory and Applications, pages 106–113. Springer, 1988.

[22] Violetta Weger, Niklas Gassner, and Joachim Rosenthal. A survey on code-based cryp-
tography. arXiv preprint arXiv:2201.07119, 2022.

Department of Electrical and Computer Engineering, Technical University of Munich, Ger-
many

Email address: violetta.weger@tum.de

	1. Basics
	1.1. Notation
	1.2. Basics of Coding Theory
	1.3. Basics of Cryptography
	1.4. Basics of Complexity Theory

	2. Applications in Code-based Cryptography
	2.1. Idea of LESS
	2.2. Canonical Forms

	3. Reductions
	3.1. Arthur and Merlin or: Code Equivalence is not NP-hard
	3.2. Reduction from Permutation Equivalence to Graph Isomorphism
	3.3. Reduction from Linear Equivalence to Permutation Equivalence
	3.4. Summary
	3.5. Open Questions

	4. Solvers
	4.1. Information Set Decoding
	4.2. Leon
	4.3. Beullens
	4.4. Improved Beullens' Algorithm
	4.5. Support Splitting
	4.6. Other Solvers
	4.7. Summary
	4.8. Open Questions

	5. Related Topics
	5.1. Martix Code Equivalence
	5.2. Subcode Equivalence
	5.3. Other Metrics
	5.4. Open Questions

	References

