
CIT413038 Winter 24/25

Elementary Number Theory

Lecturer: Prof. Dr. Violetta Weger

These lecture notes will be consistently updated before the lectures. If you find any typos,
please send them to me via email.

Overview Number Theory is one of the oldest, most famous and most elegant branches of math-
ematics. It deals with the relationship between particular types of numbers.

Of great interest will be the integers and prime numbers. This particular interest is due to one
of the most fundamental theorems of mathematics: the fundamental theorem of arithmetic, saying
that any positive integer (larger than 1) has a unique prime factorization.

We will meet many famous mathematicians along the lecture, including Euler, Fermat and
Gauss.

This lecture is called elementary number theory, as it is not based on any advanced or abstract
mathematics and to distinguish it from analytical and algebraic number theory. At the end of the
lecture, we will have a quick glance at algebraic number theory, i.e., the study of algebraic number
fields.

You will learn how to deal with congruences, how to test for primality, how to find integer
solutions of equations, how to approximate irrational numbers with rational numbers, and how to
apply this beautiful branch of mathematics to cryptography.

Die Mathematik ist die Königin der Wissenschaften
und die Zahlentheorie ist die Königin der Mathematik.

Carl Friedrich Gauss
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Administrative Information

The lectures will be held

• Tuesdays, 16:15-17:45 in MI 03.06.011

• Fridays, 10:15-11:45 in MI 02.08.011

Exercises: I will upload exercise sheets on Moodle, which are voluntary to solve, but upon 70%
of correct completion, I will provide a grade bonus of +0.3. The tutorials will take place instead
of every third lecture.

More precisely: we mark lectures in black and tutorials in blue.

Tuesday Friday

15.10 18.10
22.10 25.10
29.10
05.11 08.11
12.11 15.11
19.11 22.11
26.11 29.11
03.12 06.12
10.12 13.12
17.12 20.12
07.01 10.01
14.01 17.01
21.01 24.01
28.01 31.01
04.02 07.02

On 29.11, 10.01 there will be guest lectures by Prof. Panny. On 07.01, the tutorial will be skipped.
In the last lecture we have an exam preparation.

Exam: The exam is on 11.2 and will either be in written (60 min) or oral (20 min) form, depending
on the number of students.

Prerequisites:
• MA0004 Linear Algebra 1,

• MA0005 Linear Algebra 2 and Discrete Structures

Material: Most of the content of these lecture notes is based on

• the book Elementary Number Theory by G.A. Jones and J.M. Jones [1] and

• the wonderful book Elementary Number Theory, by K.H. Rosen [2] which is available online
https://tinyurl.com/3dwkn85h

2



Let us have a quick glance at the highlights of this lecture.

Theorem 0.1 (Fundamental Theorem of Arithmetics). Every integer greater than 1 has a unique
prime factorization.

Theorem 0.2. There exist infinitely many primes.

And of course, the famous prime number theorem, proven in 1896 by Hadamard and de la
Vallée-Poussin.

Theorem 0.3. The number of primes behaves asymptotically as

lim
x→∞

|{p prime | p ≤ x}| ln(x)
x

= 1.

Theorem 0.4 (Fermat). Every odd prime is the sum of two squares, i.e., there exists (x, y) ∈ Z2

with p = x2 + y2 if and only if p ≡ 1 mod 4, i.e., p = 4n+ 1 for some positive integer n.

We can then extend this to Pythagorean triples: (a, b, c) ∈ N3 with a2 + b2 = c2. We will see a
method in this lecture on how to find such triples.

However, we cannot extend this result to other powers:

Theorem 0.5 (Fermat’s Last Theorem). an+ bn = cn has no non-trivial positive integer solutions,
for n ≥ 3.

Note that Fermat only provided a proof for n = 4 in 1640 and Euler proved that

Theorem 0.6 (Euler). a3 + b3 = c3 has no non-trivial positive integer solutions.

Fermat’s last Theorem has been an open conjecture for a long time, until it was finally proven
by Wiles in 1994.

Theorem 0.7 (Catalan’s Conjecture). 8 and 9 are the only perfect powers (powers with exponents
larger than 1) which are consecutive.

This conjecture from 1844 was proven only in 2002 by Mihailescu.
One of the most famous conjectures in elementary number theory is the twin prime conjecture.

Open Question 0.8. There exist infinitely many twin primes, i.e., prime number pairs (p, p+ 2).

The generalization of this conjecture has recently (2013) been proven.

Theorem 0.9 (Zhang). There exist infinitely many prime pairs (p, p + k) for at least one 2 ≤ k ≤
70000000.

Another famous conjecture which is still wide open since 1742 is the following:

Open Question 0.10 (Goldbach’s Conjecture). Every even integer greater than 2 is the sum of two
primes.

Although we will not solve these conjectures in the lecture, if such questions are interesting to
you, then you might enjoy this course.
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Notation
Since we cannot include everything, we will assume a certain background. For example, we as-
sume that the integers, rationals, the pigeonhole principle, proof by induction or proof by contra-
diction are known concepts.

Throughout these lecture notes, we will make use of the following notation

• N, to denote the positive integers,

• N0, to denote the non-negative integers,

• Z, to denote the integers,

• Q, to denote the rationals,

• R, to denote the reals,

• For integers a, b we write a | b, to denote a divides b.

• For integers a, b we write [a, b], respectively [a, b), to denote the set of integers x with a ≤
x ≤ b, respectively with a ≤ x < b.

• For a real number a we write |a| to denote the absolute value of a.

• For a real number a we write bac, respectively dae, to denote the largest integer smaller than
a, respectively the smallest integer larger than a.

• For a set S we denote by |S| its cardinality.

This list might get updated as we progress in the course.
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1 Divisibility
This section serves as a gentle start, as all of the covered topics should already be familiar to you
from the lecture ”Discrete Structures”. In order to have self-contained lecture notes, we quickly
cover it anyways.

1.1 Greatest Common Divisor
Definition 1.1. The greatest common divisor between two nonzero integers a, b, denoted by gcd(a, b),
is defined as the largest positive integer c, which divides both a and b, i.e.,

gcd(a, b) = max{c ∈ N | c | a and c | b}.

Definition 1.2. The least common multiple between a, b, denoted by lcm(a, b), is defined as the
smallest positive integer c, which is divisible by both a and b, i.e.,

lcm(a, b) = min{c ∈ N | a | c and b | c}.

If gcd(a, b) = 1, we say that a and b are relatively prime or coprime.

Proposition 1.3. Let a, b be integers with gcd(a, b) = d. Then,

gcd
(
a

d
,
b

d

)
= 1.

Proof. Let a, b be positive integers with gcd(a, b) = d and assume that e is a positive integer with
e | a

d
and e | b

d
. Then, there exist integers k, ℓ with a

d
= ke and b

d
= ℓe. Thus, a = dek and b = deℓ,

which makes de a common divisor of a and b. Since d is the greatest common divisor, this implies
e = 1.

1.2 Euclidean Division Algorithm
One way to compute the greatest common divisor between two integers is given by the Euclidean
division algorithm.

The algorithm is given as input two integers 0 < b ≤ a and outputs gcd(a, b). It works
successively, updating variables ri for the remainder of the division and qi for the largest multiple.
It starts by setting r0 = a, r1 = b and in each step i finds ri+1, qi with 0 ≤ ri+1 < ri, such that

ri−1 = riqi + ri+1.

That is in the first step it finds q1 and 0 ≤ r2 < b such that

a = r0 = q1b+ r2 = q1r1 + r2.
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It proceeds with finding 0 ≤ r3 < r2 and q2 such that

b = r1 = q2r2 + r3.

The algorithm ends, as soon as rn+1 = 0, in which case gcd(a, b) = rn, the last nonzero
remainder.

Thus the penultimate equation is

rn−2 = qn−1rn−1 + rn

and the last equation is
rn−1 = qnrn + 0.

Example 1.4. Let a = 1492, b = 1066, then the Euclidean division algorithm proceeds as

1492 = 1 · 1066 + 426

1066 = 2 · 426 + 214

426 = 1 · 214 + 212

214 = 1 · 212 + 2

212 = 106 · 2 + 0,

hence we have found gcd(1492, 1066) = 2. We will see later (In Section 1.5 Representation of
Integers) that the other remainders, ri, also play an important role.

1.3 Bézout’s Identity
The following result uses the Euclidean division algorithm to give a simple expression of gcd(a, b)
in terms of a and b.

Theorem 1.5 (Bézout’s Identity). Let a, b be nonzero integers, then there exist integers u, v such
that

gcd(a, b) = au+ bv.

Proof. We use the equations which arise during the Euclidean division to compute d = gcd(a, b)
as the last nonzero remainder. The penultimate equation is of the form

rn = d = rn−2 − qn−1rn−1.

We use the previous equation of the form

rn−1 = rn−3 − qn−2rn−2

9



to eliminate rn−1 and express d instead as multiple of rn−3 plus a multiple of rn−2. That is

d = rn−2 − qn−1(rn−3 − qn−24rn−2) = rn−2(1 + qn−1qn−2)− rn−3qn1 .

We gradually work backwards until we have expressed d as multiple of a plus a multiple of b,
that is

au+ bv = d.

We also call this procedure the extended Euclidean algorithm.

Example 1.6. Let us consider again a = 1492, b = 1066. In the penultimate equation we have

2 = 214− 1 · 212.

We insert here the previous equation, which was

212 = 426− 1 · 214,

giving
2 = 214− 1 · (426− 1 · 214) = −1 · 426 + 2 · 214.

We continue in the same way, getting

d = 2

= 214− 1 · 212
= 214− 1 · (426− 1 · 214)
= −1 · 426 + 2 · 214
= −1 · 426 + 2 · (1066− 2 · 426)
= 2 · 1066− 5 · 426
= 2 · 1066− 5 · (1492− 1 · 1066)
= −5 · 1492 + 7 · 1066,

which gives us u = −5, v = 7.

1.4 Diophantine Equations
Consider the following problem: you would like to buy 510 C worth of chocolate. The shop is
only selling chocolate bars for either 20 C or 50 C. How many of each chocolate bar should you
buy?

In other words we are looking for non-negative integer solutions (x, y) to the equation

50x+ 20y = 510.

Whenever we deal with equations that require integer solution, we have a Diophantine equa-
tion.
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Theorem 1.7. Let a, b, c be integers and d = gcd(a, b). The equation ax + by = c has no integer
solutions if d ∤ c. For d | c, we have infinitely many integer solutions.

In particular, if one integer solution is given by (x0, y0), then all solutions are given by(
x0 +

bn

d
, y0 −

an

d

)
,

where n is an integer.

Proof. Assume that x, y are integers with ax + by = c. Since d | a and d | b, we must also have
d | c.

By Bézout’s identity, we know that there exist integers s and t with gcd(a, b) = d = as + bt.
Since d | c, there exists an integer e with c = de = (as+ bt)e = a(se) + b(te). Thus, one solution
for the equation is given by x0 = se, y0 = te.

Let us now consider x = x0 +
bn
d
, y = y0 − an

d
, where n is an integer. We see that (x, y) is a

solution as
ax+ by = ax0 + a

bn

d
+ by0 − b

an

d
= ax0 + by0 = c.

In fact, every solution must be of this form: assume x, y are integers with ax + by = c. Since
ax0 + by0 = c, we can subtract the two equations to get

a(x− x0) + b(y − y0) = 0.

Thus, we can reformulate this to a(x− x0) = b(y0 − y) and dividing both sides with d, we get

a

d
(x− x0) =

b

d
(y0 − y).

By Proposition 1.3, we have that gcd
(
a
d
, b
d

)
= 1, and thus, we must have a

d
| (y0 − y).

Hence, there is an integer n such that na
d
= y0 − y, or equivalently y = y0 − an

d
. We can insert

this value into the equation a(x− x0) = b(y0 − y) to get x = x0 +
bn
d
.

The proof also shows a technique to construct all integer solutions to linear Diophantine equa-
tions of the form

ax+ by = c.

1. Compute d = gcd(a, b) using the Euclidean division algorithm.

2. Check if d | c. If it does not, there are no solutions. If d | c, then write c = de.

3. Using the extended Euclidean algorithm find the integers u, v such that d = au + bv. Set
x0 = ue, y0 = ve.
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4. Every integer solution is of the form x = x0 +
bn
d
, y = y0 − an

d
, for integers n.

Example 1.8. We can now solve our initial question: find (x, y) ∈ N2 such that 50x+20y = 510.
Using the Euclidean algorithm we get

50 = 2 · 20 + 10,

20 = 2 · 10 + 0

and hence gcd(50, 20) = 10 = d. As 10 | 510 we have solutions and find e = 51. Using the
extended Euclidean algorithm, we get

10 = 1 · 50− 2 · 20,

which gives u = 1, v = (−2). We thus set x0 = 51 and y0 = −102. Hence, all solutions are given
by

(51 + 2n,−102− 5n).

To get positive integers, we set n ≤ −21 and find the smallest positive solution given by x = 9, y =
3.

1.5 Representation of Integers
Have you ever wondered why we write integers the way we do? When we write the number 529
we mean

5 · 102 + 2 · 101 + 9 · 100.
This representation is called the decimal system and is most likely due to the fact that (most)
humans have 10 fingers.

If we, however, would have 6 fingers, we would most likely be using the heximal system right
now. That is, instead of 529 we would write 2241, as

2 · 63 + 2 · 62 + 4 · 61 + 1 · 60 = 529.

In order not to confuse the different systems, we rather write (2, 2, 4, 1)6.

There are many different ways to represent integers. In fact, any positive integer b can be
chosen as a basis, and for any positive integer n there exists a unique representation of n in the
base of b. We use the notation (ak, . . . , a0)b to denote

k∑
i=0

aib
i.

Theorem 1.9. Let b be a positive integer. Then, every positive integer n can be written uniquely in
the form

n =
k∑

i=0

aib
i,

with ak 6= 0 and 0 ≤ ai < b for all i ∈ {0, . . . , k}.
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Proof. If b > n, then we easily see that n = b0a0, with 0 ≤ a0 = n < b, i.e., n = (n)b. If b ≤ n,
we can apply the Euclidean division algorithm successively, starting with inputs r0 = n, r1 = b,
thus writing n = bn0 + a0 with 0 ≤ a0 < b and continuing with n0 = bn1 + a1 with 0 ≤ a1 < b.
We repeat this process until we find nk−1 = b · 0 + ak.

Thus, reinserting the equations to the previous ones, we get

n = bn0 + a0 = b(bn1 + a1) + a0 = · · · =
k∑

i=0

aib
i.

In order to show the uniqueness, let us assume that we have two different representations:

n =
k∑

i=0

aib
i =

k∑
i=0

cib
i.

As they are distinct, there must be a smallest j, for which aj 6= cj. We thus get that

bj

(
k∑

i=j

(ai − ci)b
i−j

)
= 0,

and hence
k∑

i=j

(ai − ci)b
i−j = 0.

As we can write

−(aj − cj) = b(
k∑

i=j+1

(ai − ci)b
i−j−1)

we get that b | (aj − cj). However, due to the fact that 0 ≤ aj, cj < b we see that −b < aj − cj < b,
leaving us only with aj − cj = 0, contradicting our assumption.

The proof also tells us how to find the representation in base b: using the Euclidean division
algorithm.

Example 1.10. Let us write 529 in base 7:

529 = 7 · 75 + 4

75 = 7 · 10 + 5

10 = 7 · 1 + 3

1 = 7 · 0 + 1.

The remainders 4, 5, 3, 1 are in fact the sought representation in basis 7. (You can also check this
by reinserting). Hence, we get (5, 2, 9)10 = (1, 3, 5, 4)7.
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2 Diophantine Approximation
A large branch in elementary number theory is dedicated to approximating real numbers with
rational numbers. This branch is called Diophantine approximation.

2.1 Irrational numbers
Any rational number r ∈ Q can be written as r = p/q, for some p, q ∈ Z, q 6= 0. Any number
which is not rational, is called irrational.

Theorem 2.1.
√
2 is irrational.

Proof. Assume by contradiction, that
√
2 = p/q is rational with p, q being the smallest positive

integers to write
√
2 as fraction. Thus, 2 = p2/q2.

Note that 2q2 = p2, forces p2 to be even, and thus also p, i.e., there exists an integer k with
p = 2k. As then q2 = 2k2 is also even, both p and q must be divisible by 2.

This contradicts the assumption that p, q have been chosen as the smallest positive integers to
write

√
2 as fraction.

There exists a more general result to show that a number is irrational.

Theorem 2.2. Let α be a root of the polynomial f(x) =
∑n−1

i=0 cix
i + xn, with ci ∈ Z. Then α is

either an integer or an irrational number.

Proof. Assume that α = a/b is a rational number, with a, b ∈ Z, b 6= 0 and gcd(a, b) = 1. Since α
is a root of f , we have that

∑n−1
i=0 ci

(
a
b

)i
+ an

bn
= 0. Multiplying with bn, we get

n−1∑
i=0

cia
ibn−i + an = 0,

and thus

an = −b
n−1∑
i=0

cia
ibn−i−1.

Hence, b | an.

If b 6= ±1, then b has a prime divisor p with p | an, and thus p | a. This contradicts the
assumption that gcd(a, b) = 1.

Thus, we must have that b = ±1. Consequently, if α is rational, then α = ±a ∈ Z.

Example 2.3. Let a be a positive integer, which is not the mth power of an integer. Then a1/m is
irrational, since it is the root of the polynomial xm − a. For a = m = 2 we have a different proof
for

√
2 being irrational.
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2.2 Dirichlet’s Approximation Theorem
Note that any real number x has distance at most 1/2 from some closest integer. However, one
might ask; can we find a multiple jx within the first n multiples which is closer to the integers?

For this we quickly introduce the notion of fractional part. The fractional part of x ∈ R
denoted by [x], is given by

[x] = x− bxc.

Note that 0 ≤ [x] < 1.

Theorem 2.4 (Dirichlet’s Approximation Theorem). If x ∈ R and n ∈ N, then there exist a, b ∈ Z,
with 1 ≤ a ≤ n, such that

| ax− b |< 1/n.

Proof. Consider the fractional parts of the first n+ 1 multiples of x, i.e.,

[0], [x], [2x], . . . , [nx]

and note that each fractional part lives in one of the disjoint intervals

[0, 1/n), [1/n, 2/n), . . . , [(n− 1)/n, 1).

Since there are n + 1 fractional parts but only n intervals, two fractional parts, say [ix], [jx] with
i < j, must live in the same interval and hence have distance at most 1/n, i.e.,

|[jx]− [ix]| < 1/n.

Let a = j − i and b = bjxc − bixc, then

|ax− b| = |(j − i)x− bjxc+ bixc| = |[jx]− [ix]| < 1/n.

Example 2.5. Observe that
√
2 ∼ 1.414, 2

√
2 ∼ 2.828, 3

√
2 ∼ 4.243, 4

√
2 ∼ 5.657, 5

√
2 ∼ 7.071, 6

√
2 ∼ 8.484.

With this we found the following approximation

|5
√
2− 7| < 1/6.

Later in this lecture we will see a stronger result:

Theorem 2.6. For any irrational number α there exist infinitely many rational numbers p/q such
that

|α− p/q| < 1/q2.
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3 Primes
Clearly, 1 is a divisor of any positive integer and any positive integer different from 1 has at least
two positive divisors: 1 and itself.

Definition 3.1. Positive integers with exactly two positive divisors are called primes. We denote
the set of prime numbers by P . Positive integers greater than 1, which are not prime are called
composite numbers.

One important tool, is Euclid’s Lemma:

Theorem 3.2 (Euclid’s Lemma). Let a, b ∈ Z and p ∈ P . If p | (a · b), then p | a or p | b.

Proof. Assume that gcd(a, p) = 1, then by Bézout’s identity there exist s, t ∈ Z, such that 1 =
ps+ at. Since p | ab, there also exists c ∈ Z such that pc = ab. Hence

b = (ps+ at)b = psb+ atb = psb+ pct = p(sb+ ct),

and thus p | b.

Exercise 3.3. Is Euclid’s Lemma also true for non-primes?

3.1 The Fundamental Theorem of Arithmetic
Theorem 3.4 (The Fundamental Theorem of Arithmetic). Any positive integer greater than 1 has
a unique prime factorization. That is, for any positive integer n there exists a unique representation
(apart from permutation of the factors)

n =
k∏

i=1

peii ,

where pi ∈ P , are distinct primes and ei ∈ N for all i ∈ {1, . . . , k}.

Proof. Let us start with the existence. For this we rely on strong induction. For p = 2 the factor-
ization is clear. Assume that for any m < n there exists a unique factorization of m into prime
powers.

If n is prime, then there exists a unique p1 ∈ P , with n = p1. If n is composite, then there
exist 1 < a ≤ b < n, such that a · b = n. By the induction hypothesis, a and b have unique prime
factorizations, and by substituting these factorizations in n = ab and collecting together powers of
the same primes, we get the prime factorization of n.

For the uniqueness, assume that there exist two distinct factorizations

n =
k∏

i=1

peii =
ℓ∏

i=1

qfii ,
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where pi ∈ P , respectively qj ∈ P , are distinct primes and ei, fj ∈ N for all i ∈ {1, . . . , k}, j ∈
{1, . . . , ℓ}.

Since p1 divides
∏ℓ

i=1 q
fi
i , due to Euclid’s Lemma, p1 divides some qi. Assume w.l.o.g. that

p1 | q1. However, as q1 is prime, we have that p1 = q1.

Thus,

pe1−1
1

k∏
i=2

peii = qfi−1
1

ℓ∏
i=2

qfii .

Clearly, by continuing in this manner, we get that pi = qi for all i.

Knowing the prime factorizations of a and b, we can immediately compute their greatest com-
mon divisor and their least common multiple.

Exercise 3.5. Show that for a, b > 1 two positive integers with prime factorization a =
∏k

i=1 p
ei
i , b =∏k

i=1 p
fi
i , where we allow ei, fi ∈ N0, to have common prime divisors, then,

gcd(a, b) =
k∏

i=1

p
min{ei,fi}
i ,

lcm(a, b) =
k∏

i=1

p
max{ei,fi}
i .

Exercise 3.6. For a, b positive integers, show that lcm(a, b)gcd(a, b) = ab.

Exercise 3.7. Prove Proposition 1.3 differently, using the Exercise 3.5.

Proposition 3.8. Let m,n be positive integers and a an integer. Then, gcd(a,mn) = 1 if and only
if gcd(a, n) = 1 and gcd(a,m) = 1.

Proof. For one direction, we assume that gcd(a,mn) = 1. Thus, if gcd(a,m) = d, then d | a and
as d | m, we also have d | mn. Since 1 as the largest common divisor of a and mn, we must have
d = 1. Same argument holds for d′ = gcd(a, n).

For the other direction, we assume that gcd(a, n) = gcd(a,m) = 1. If gcd(a,mn) = d, then
d | mn. If d 6= 1 there exists some prime p | d, with p | m or p | n. Since p | d, then also p | a, but
as 1 was the largest common divisor between a and n, this gives a contradiction.

3.2 Primality Testing
Theorem 3.9 (Euclid). There are infinitely many primes.

Proof. Assume that we only have finitely many primes p1, . . . , pn. Consider q =
∏n

i=1 pi+1. Due
to the fundamental theorem of arithmetics, we know that q has at least one prime divisor, say pi.
However, as pi then divides both q and q − 1, we get that pi divides their difference, i.e., 1, which
is a contradiction.
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The proof is non-constructive, and so important questions remain: how to construct primes,
and how to detect if an integer is prime?

A simple test would be to go through all smaller integers and check if they divide the number
in question, n. Due to commutativity, for such a division test, we only have to go up to

√
n.

One way to find all primes up to n was provided by Eratosthenes: cancel all multiples of the
primes up to

√
n. However, this sieving method is quite inefficient. Later in this lecture, we will

cover some primality tests like the Miller-Rabin test, used in practice.

The following technique for factorization is due to Fermat.

Lemma 3.10. If n is an odd positive integer, then there is a one-to-one correspondence between
factorizations of n into two positive integers and differences of two squares that equal n.

Proof. Let n be an odd positive integer and let n = ab be a factorization of n into two positive odd
integers. Then n can be written as the difference of two squares, as

n = ab = s2 − r2,

where r = (a − b)/2 and s = (a + b)/2. On the other hand, if n is the difference of two squares
n = s2 − r2, then we can factor n = (s− r)(s+ r).

To carry out Fermat’s factorization, we look for solutions of the equation

n = x2 − y2

by searching squares of the form x2 − n. That is, to find factorizations of n we search among the
sequence

t2 − n, (t+ 1)2 − n, . . . ,

where t = d
√
ne. This procedure is guaranteed to terminate, as n = 1 · n leads to

n =

(
n+ 1

2

)2

−
(
n− 1

2

)2

.

Example 3.11. We can factor 6077 using Fermat’s technique. First, we identify t = 78 and
construct the sequence

782 − 6077 = 7,

792 − 6077 = 164,

802 − 6077 = 323,

812 − 6077 = 222.

Now, that we have found a square, we can stop as

6077 = 812 − 222

and hence
6077 = (81− 22)(81 + 22) = 59 · 103.
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It has been a long standing open question, whether one can in fact check if any integer is
prime in polynomial time. In 2002, (very recent for number theory), the breakthrough was finally
managed, with the paper "PRIMES is in P".

3.3 Special Primes
Several other mathematicians have tried to construct primes, famous examples include Fermat and
Mersenne.

Lemma 3.12. If 2m + 1 is prime, then m = 2n for some non-negative integer n.

Proof. Assume m 6= 2n, then we can write m = 2nq, for some q > 1 odd. Let us consider the
polynomial f(x) = xq + 1. Clearly, −1 is a root, hence (x + 1) | f(x). Thus, we can set x = 22

n

to get
(22

n

+ 1) | f(22n) = 22
nq + 1 = 2m + 1,

which is a contradiction to the assumption that 2m + 1 is prime.

Definition 3.13. A number of the form F (n) = 22
n
+ 1, with n a non-negative integer, is called a

Fermat number. If F (n) is prime, we call it a Fermat prime.

Fermat famously conjectured, that every Fermat number is prime. For n ∈ {0, . . . , 4} this is
indeed the case. However, in 1732 Euler showed that for n = 5 the Fermat number is composite.
The Fermat primes have been extensively studied, but no further Fermat primes have been found.

Lemma 3.14. If m > 1 is a positive integer and am − 1 is prime, then a = 2 and m ∈ P .

Proof. If a = 1, then am − 1 = 0 6∈ P . If a > 1 is odd, then am − 1 is an even number larger than
2, and hence not prime.

If a > 2, then
am − 1 = (a− 1)(am−1 + am−2 + · · ·+ a+ 1),

and hence am − 1 6∈ P .
Thus, we must have a = 2. Assume m is not a prime, then we can write m = bc, for some

integers b, c > 1. Let us consider the polynomial f(x) = xb − 1. Clearly, 1 is a root, hence
(x− 1) | f(x). Thus, we can set x = 2c to get

(2c − 1) | f(2c) = 2bc − 1 = 2m − 1,

which is a contradiction to the assumption that 2m − 1 is prime.

Definition 3.15. Integers of the form M(p) = 2p − 1, for p ∈ P , are called Mersenne numbers. If
M(p) is prime, we call it a Mersenne prime.
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Again, for p ∈ {2, 3, 5, 7} these numbers are indeed prime. However, for p = 11 the Mersenne
number is composite.

In fact,
211 − 1 = 2047 = 23 · 89.

While there exists a simple test, to check whether a integer of this form really is prime, we do
not know how many exist.

For both, Mersenne and Fermat primes it is conjectured that there exist infinitely many.

Using Fermat numbers, we can give a different proof for the fact that there are infinitely many
primes.

Lemma 3.16. Let F (k) = 22
k
+ 1 denote the kth Fermat number, for some non-negative integer

k. Then, for all positive integers n we have

n−1∏
i=0

F (i) = F (n)− 2.

Proof. We prove the lemma using induction. For n = 1 the identity becomes F (0) = 3 =
F (1)− 2 = 5− 2, which is true. Assume the identity holds for n, that is

n−1∏
i=0

F (i) = F (n)− 2.

We now show that the identity also holds for n+ 1. In fact,

n∏
i=0

F (i) =
n−1∏
i=0

F (i)F (n)

= (F (n)− 2)F (n) =
(
22

n − 1
) (

22
n

+ 1
)

=
(
22

n)2 − 1 = 22
n+1 − 1 = F (n+ 1)− 2.

Theorem 3.17. Let n,m be distinct non-negative integers. Then,

gcd(F (n), F (m)) = 1.

Proof. Let us assume that m < n. Assume that d is a common divisor of F (m) and F (n). Then,

d | (F (n)−
n−1∏
i=0

F (i)).

By Lemma 3.16, this implies that d | 2, hence d = 1 or d = 2. Since F (m), F (n) are both odd,
this leaves us with d = 1.
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Theorem 3.18. There are infinitely many primes.

Proof. Any Fermat number F (n) > 1 has a prime divisor pn. Since gcd(F (m), F (n)) = 1, we
must have pm 6= pn for m 6= n. As there are infinitely many Fermat numbers F (m), there are
infinitely many primes.

3.4 Distribution of Primes
Definition 3.19. For a positive integer x, let π(x) denote the number of primes less than or equal
to x, i.e.,

π(x) = |{p ∈ P | p ≤ x}|.

This brings us to another famous result in number theory: the prime number theorem.

Theorem 3.20. The number of primes behaves asymptotically as

lim
x→∞

π(x) ln(x)

x
= 1.

We usually write this as π(x) ∼ x
ln(x)

. Unfortunately, there is no elementary proof, which could
fit in this lecture.

However, we can sketch the lower and upper bounds. For this, let us first prove the following:

Lemma 3.21. Let p ∈ P and n ∈ N0. Then the multiplicity of p in the prime factorization of n! is∑
i≥1

⌊
n

pi

⌋
.

Proof. We prove this result by induction on n. The base case n = 0 is clear. For the inductive step,
we have, for d ∈ N that ⌊n

d

⌋
−
⌊
n− 1

d

⌋
=

{
1 if d | n,
0 else.

(1)

Since n! = n(n− 1)! the multiplicity of p in n! is the sum of the multiplicity in (n− 1)! and in n,
thus applying (1) to powers of p gives the result.

Theorem 3.22. There exist constants 0 < C1 < 1 < C2 such that

C1
x

log(x)
≤ π(x) ≤ C2

x

log(x)
,

for sufficiently large x.
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Proof. Let us start with the easier one: the lower bound.
Let m be a positive integer, p ≤ m a prime. With Lemma 3.21, we get that the largest power e,

such that pe | m! is given by

e =

⌊
m

p

⌋
+

⌊
m

p2

⌋
+ · · ·+

⌊
m

pk

⌋
,

where k is such that pk ≤ m < pk+1.

For the binomial coefficient
(
2n
n

)
, we get that the largest e such that pe |

(
2n
n

)
, is

e =

kp∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)
,

where kp is such that pkp ≤ 2n < pkp+1. Note that b2xc − 2bxc ≤ 1, thus e ≤ kp.
Let us write the prime factorization of

(
2n
n

)
as∏

p≤2n

pep(n).

We get that

2n ≤
(
2n

n

)
=
∏
p≤2n

pep(n) ≤
∏
p≤2n

pkp ≤
∏
p≤2n

2n ≤ (2n)π(2n).

Hence,

π(2n) ≥ n log(2)

log(2n)
,

and setting n =
⌈
x
2

⌉
, we get

π(x) ≥ x

log(x)
log(2)− 2.

Thus, there exists some C1 with C1
x

log(x)
≤ π(x).

For the upper bound, we can use similar tricks. We again write(
2n

n

)
=
∏
p≤2n

pep(n).

Note that for n < p ≤ 2n we get ep(n) ≤ 1. In fact, if p2 ≤ 2n then p > n.
Thus, ∏

n<p≤2n

p ≤
(
2n

n

)
≤

2n∑
k=0

(
2n

k

)
= 4n.
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For n = bx
2
c, we get ∏

x
2
<p≤2⌊x

2
⌋

p ≤ 4⌊
x
2
⌋ ≤ 2x.

Note that there exists at most one prime between 2bx
2
c and x, thus∏

x
2
<p≤x

p ≤ x2x ≤ Cx
2 ,

for some constant C2. Since the number of primes between x
2

and x is π(x)− π
(
x
2

)
, we get

Cx
2 ≥

∏
x
2
<p≤x

p ≥
∏

x
2
<p≤p

x

2
≥
(x
2

)π(x)−π(x
2 )
.

Hence,

π(x) ≤ π
(x
2

)
+
x log(C2)

log
(
x
2

) .

As this also holds for π
(
x
2

)
, we get

π(x) ≤ π
(x
4

)
+
x log(C2)

log
(
x
2

) +
x
2
log(C2)

log
(
x
4

) .

We may continue in this way, until

π(x) ≤ π
( x

2m

)
+ 2x log(C2)

m∑
i=1

2−i

log
(

x
2i

) .
Let m be such that 2m ≤

√
x, hence π

(
x
2m

)
≤ x

2m
≤ 2

√
x. We also note that for all i ≤ m we

have that log
(

x
2i

)
≥ log(

√
x) = 1

2
log(x). Thus,

π(x) ≤ 2
√
x+

2x log(C2)
1
2
log(x)

m∑
i=1

1

2i
= 2

√
x+

2x log(C2)
1
2
log(x)

(
1− 2−m

)
.

This is in O
(

x
log(x)

)
, giving the upper bound.

Corollary 3.23. Let us denote by pn the n-th prime, for n a positive integer. Then pn ∼ n ln(n).

Thus, if we were to sample at random a positive integer, the likeliness of this number being a
prime is going to zero. Note that we avoid words such as "uniform at random" or "probability".
In fact, in the case of integers, we do not have such tools. Instead, number theorists have come up
with natural densities.

For d ∈ N, the natural density of a set T ⊂ Zd is defined by restricting to a d-dimensional cube
of height H , thus we can count how many elements in the cube are in T , and then dividing by the
size of the cube, and finally letting H go to infinity.
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Definition 3.24. Let d ∈ N. The natural density of a set T ⊂ Zd is defined to be

ρ(T ) = lim
H→∞

|T ∩ [−H,H)d|
(2H)d

,

if the limit exists.

If you are interested in natural densities, a student friendly introduction is given here [3].

Theorem 3.25. The natural density of P is

ρ(P) = 0.

Proof. By the prime number theorem, we know that π(x) ∼ x
ln(x)

. Hence, we have that

ρ(P) = lim
H→∞

|P ∩ [−H,H)|
2H

= lim
H→∞

π(H)

2H

= lim
H→∞

H

2H ln(H)
= 0.

3.5 Gaps
We also know about gaps in the distribution of primes. In fact, there are arbitrarily long runs of
integers containing no primes.

A geometric progression is a sequence of the form a, ar, ar2, . . . , where a (the initial term) and
r (the common ratio) are real numbers.

An arithmetic progression is a sequence of the form a, a+ r, a+ 2r, . . . , with a, r ∈ R.

Theorem 3.26. For any positive integer n, there are at least n consecutive composite positive
integers.

Proof. Consider the n consecutive positive integers

(n+ 1)! + 2, (n+ 1)! + 3, . . . , (n+ 1)! + n+ 1.

When 2 ≤ j ≤ n + 1, we know that j | (n + 1)!. Thus, it follows that j | (n + 1)! + j and thus
these n consecutive integers are not prime.

Every odd integer is either of the form 4n + 1 or 4n + 3, but are there infinitely many primes
in both of these forms? What about other arithmetic progressions, such as 3n+ 1, etc. ?

This leads us to Dirichlet.
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Theorem 3.27 (Dirichlet’s Theorem on Primes in Arithmetic Progression). Let a, b be positive
integers, not divisible by the same prime. Then, the arithmetic progression an+b contains infinitely
many primes.

Unfortunately, there is no elementary proof known, and thus, we will skip it. We can prove
though a special version.

Theorem 3.28. There are infinitely many primes of the form 4n+ 3, where n is a positive integer.

Proof. First, we note that if a, b are positive integers of the form 4n+1, then ab is as well. In fact,
we can write

ab = (4r + 1)(4s+ 1) = 16rs+ 4r + 4s+ 1 = 4(4rs+ r + s) + 1,

for some positive integers r, s. Now, let us assume that there are only finitely many prime numbers
of the form 4n+ 3, namely p0 = 3, p1, . . . , pr. Let

q = 4
r∏

i=1

pi + 3.

Then there is at least one prime in the factorization of q of the form 4n + 3. In fact, otherwise all
of the primes would be of the form 4n + 1 and thus also q would be of the form 4n + 1, which is
a contradiction. However, none of the primes p0, . . . , pr divides q. Indeed, assume 3 | q, then 3 |
(q−3) = 4

∏r
i=1 pi, which is a contradiction. Likewise, if any pi | q, then pi | (q−4

∏r
i=1 pi) = 3,

which is also a contradiction. Thus, there are infinitely many primes of the form 4n+ 3.

Exercise 3.29. Show that there is no odd prime of the form n3 + 1, for n a positive integer.

In fact, in 2004, Green and Tao proved that there are arbitrary long arithmetic progressions of
primes.

Theorem 3.30 (Green-Tao). Let A ⊂ P such that

lim sup
n→∞

|A ∩ [1, n)|
π(n)

> 0,

then for all positive integers k, the set A contains infinitely many arithmetic progressions of length
k.

Again, there is no elementary proof of this.

3.6 Open Questions
The fundamental theorem of arithmetic can be used to prove the following result, which relates the
Riemann-zeta function with prime numbers.
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Definition 3.31. The Riemann-zeta function is given by

ζ(s) =
∑
n≥1

1

ns

for s > 1 a real number.

Theorem 3.32 (Euler Product). If s is a real number greater than 1, then

ζ(s) =
∏
p∈P

(
1− 1

ps

)−1

.

While we will note prove this theorem (needs heavy analysis), a key point is that the term 1
ns

appears exactly once when the product is expanded. This is due to the fact that

1

1− p−s
=
∑
k≥0

1

pks
.

This shows the connection of primes, even to one of the greatest mysteries in mathematics, the
Riemann hypothesis.

Even if this was a short excursion into the realm of prime numbers, studied since the dawn
of mathematics, we do still have many open questions. In fact, there is a tremendous amount of
conjectures on prime numbers, several of which have been proven but many remain wide open.
Although we do not encourage students to try to prove century old conjectures, we provide a small
list here.

Luckily, the next conjecture from 1845 has been proven by Chebyshev in 1852, which is why
it is now called a postulate.

Theorem 3.33 (Bertrand’s Postulate). For every positive integer n > 1, there exists a prime p,
such that n < p < 2n

The most famous one, is probably about twin primes.

Definition 3.34. Let p ≤ q ∈ P . We say that p and q are twin primes, if q − p = 2.

Open Question 3.35. Are there infinitely many twin primes?

Another famous conjecture, is that of Goldbach (written in a letter to Euler in 1742).

Open Question 3.36. Every even integer greater than two is the sum of two primes.

A weaker version of Goldbach’s conjecture is the following:

Open Question 3.37. Every odd integer greater than seven is the sum of three primes.

And lastly, the n2 + 1 conjecture.

Open Question 3.38. There are infinitely many primes of the form n2 + 1, where n is a positive
integer.
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4 Modular Arithmetics
The language of congruences was invented by Gauss and allows us to work with division rela-
tionships like we work with equations. Here we simplify number-theoretic problems by replacing
integers with their remainder when divided by a fixed positive integer. This has the effect of replac-
ing the infinite set Z with the finite set Z/mZ. We will find that we can add, subtract and multiply
in this new rings, but we have to be careful with division. The integer residue ring Z/mZ inherits
many properties of Z, but due to its finiteness is easier to deal with.

We will see how to solve linear congruence equations and state the main result, the Chinese
Remainder Theorem.

4.1 Congruences
Definition 4.1. Let m be a positive integer and a, b be integers. We say that a is congruent to b
mod m if m | (a − b), and write a ≡ b mod m. The positive integer m is called the modulus. If
a and b are not congruent, they are called incongruent and we write a 6≡ b mod m.

Example 4.2. 22 = 4 mod 9 since 9 | (22− 4). However, 13 and 5 are incongruent modulo 9, as
9 ∤ (13− 5).

Congruences arise in our every-day life, for example when telling the time. Saying that the
lecture is at 4, we actually mean at 16:00 o’clock. Thus, for hours of the day we use the modulus
12.

Theorem 4.3. Let m be a positive integer and a, b be integers. Then a ≡ b mod m if and only if
there exists an integer k such that a = b+ km.

Proof. If a ≡ b mod m, then by definition we have m | (a − b), thus there exists an integer k,
such that mk = a− b.

The congruence relation "≡" has similar properties as the equality relation "=".

Theorem 4.4. Let m be a positive integer. The congruence relation is an equivalence relation.

Proof. In order to prove this statement, we need to show that the congruence relation is reflexive,
symmetric and transitive.

• Reflexive property: we have to show that if a is an integer then a ≡ a mod m. This easily
follows from the definition as m | (a− a).

• Symmetric property: if a, b are integers with a ≡ b mod m, then also b ≡ a mod m. This
also easily follows as m | (a− b), implies that there exists an integer k such that mk = a− b
and hence also (−k)m = b− a, which implies m | (b− a).
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• Transitivity property: if a, b, c are integers with a ≡ b mod m and b ≡ c mod m, then
also a ≡ c mod m.

In fact, if m | (a − b) and m | (b − c), then there exist integers k, ℓ with km = a − b and
ℓm = b− c. Thus,

a− c = (a− b) + (b− c) = km+ ℓm = (k + ℓ)m,

and hence m | (a− c).

As the congruence relation "≡" defines an equivalence relation, we can consider the corre-
sponding equivalence classes. The congruence relation divides the integers Z into m distinct sets,
called congruence classes modulo m:

[i]m = {x ∈ Z | x ≡ i mod m} = i+mZ.

Definition 4.5. The integer residue ring Z/mZ, or integers modulo m, is the set of all congruence
classes modulo m, that is

Z/mZ = {[a]m | a ∈ Z} = {[0]m, . . . , [m− 1]m}.

Clearly, each congruence class consists of infinitely many elements, however, we will be mostly
interested in the representative between 0 and m − 1, called least positive residue. This represen-
tative is easily found with the usual division algorithm.

For m a positive integer and an integer a, we know by the division algorithm that we can
write a = qm + r, where 0 ≤ r < m. Since each class [i]m has a unique representative, we thus
often consider the set of least positive residues, {0, 1, . . . ,m− 1}. By abuse of notation, we might
sometimes write Z/mZ = {0, 1, . . . ,m− 1}.

The integers modulo m form indeed a ring. An easy proof of this, is to know that mZ is an

ideal, and noting that Z/mZ is a quotient ring, where we define (a+mZ)+(b+mZ) = (a+b)+mZ
and (a+mZ)(b+mZ) = (ab) +mZ. As we do not assume any algebraic background, we prove
it without such notions.

Theorem 4.6. (Z/mZ,+, ·) is a ring, where the operations are defined as

• [a]m + [b]m = [a+ b]m,

• [a]m · [b]m = [ab]m.

Exercise 4.7. Prove Theorem 4.6.

We can also do arithmetics with congruences.

Theorem 4.8. Let m be a positive integer and a, b, c be integers such that a ≡ b mod m. Then,

28



• a+ c ≡ b+ c mod m,

• a− c ≡ b− c mod m,

• ac ≡ bc mod m.

Proof. • Since m | (a− b) and (a+ c)− (b+ c) = a− b, we also have m | (a+ c)− (b+ c).

• Similarly, we can rewrite a − b = (a − c) − (b − c), from which follows a − c ≡ b − c
mod m.

• Since m | (a− b), we also have that m | (a− b)c = ac− bc.

Example 4.9. Note that 7 ≡ 2 mod 5 and hence

11 = 7 + 4 ≡ 2 + 4 = 6 mod 5,

3 = 7− 4 ≡ 2− 4 = −2 mod 5,

28 = 7 · 4 ≡ 2 · 4 = 8 mod 5.

Exercise 4.10. Is it true that a
c
≡ b

c
mod m if a ≡ b mod m?

Lemma 4.11. Let a, b, c,m be positive integers. If gcd(m, c) = d and ac ≡ bc mod m, then
a ≡ b mod m/d.

Proof. Since ac ≡ bc mod m, we have that m | (ac − bc) and thus m | c(a − b). That is, there
exists an integer k with mk = c(a− b).

As gcd(m, c) = d, we may divide both sides by d to get

k
m

d
=
c

d
(a− b),

and thus m
d
| (a− b).

Corollary 4.12. Let m be a positive integer and a, b, c integers with gcd(m, c) = 1 and ac ≡ bc
mod m, then a ≡ b mod m.

We can generalize this even further.

Theorem 4.13. Let m be a positive integer and a, b, c, d be integers such that a ≡ b mod m and
c ≡ d mod m. Then,

• a+ c ≡ b+ d mod m,

• a− c ≡ b− d mod m,

• ac ≡ bd mod m.
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Proof. • We note that (a+c)−(b+d) = (a−b)+(c−d) andm divides both, thus a+c ≡ b+d
mod m.

• We note that (a− c)− (b− d) = (a− b)− (c− d) and m divides both, thus a− c ≡ b− d
mod m.

• We note that ac− bd = (ad− bd) + (ac− ad) = d(a− b) + a(c− d) and m divides both,
thus ac ≡ bd mod m.

What happens if we have different moduli?

Theorem 4.14. Let m1, . . . ,mk be positive integers and a, b integers such that a ≡ b mod mi for
all i ∈ {1, . . . , k}. Then a ≡ b mod lcm(m1, . . . ,mk).

Proof. Since mi | (a− b) for all i ∈ {1, . . . , k}, we know that lcm(m1, . . . ,mk) | (a− b).

Corollary 4.15. Let m1, . . . ,mk be relatively coprime, positive integers and a, b integers such that
a ≡ b mod mi for all i ∈ {1, . . . , k}. Then a ≡ b mod

∏k
i=1mi.

In fact, also the contrary is true (the proof will be postponed however).

Theorem 4.16. Let m =
∏k

i=1 p
ei
i for distinct primes pi and let a, b be integers. Then a ≡ b

mod m if and only if a ≡ b mod peii for all i ∈ {1, . . . , k}.

4.2 Linear Congruences
Let us consider a positive integer m and integers a, b such that ax ≡ b mod m for an unknown
integer x. Such an equation is called linear congruence. First, note that if x0 is a solution to the
equation, then any x1 ≡ x0 mod m is also a solution. In fact, if m | (ax0 − b) and m | (x1 − x0)
then there exist integers k, ℓ such that km = ax0 − b and ℓm = x1 − x0. With this we can write

ax1 − b = a(x1 − x0) + (ax0 − b) = aℓm+ km,

hence m | (ax1 − b).

Thus, if one element of a congruence class is a solution to a linear congruence, then all ele-
ments are. The question hence becomes, how many of the congruence classes are solutions, or
equivalently how many incongruent solutions are there?

Theorem 4.17. Let m be a positive integer, a, b be integers and d = gcd(a,m). If d ∤ b, then
ax ≡ b mod m has no solution and if d | b, then ax ≡ b mod m has d incongruent solutions.

Proof. Note that ax ≡ b mod m is equivalent to m | (ax− b), hence there exists some integer y
with my = ax− b. Thus, ax ≡ b mod m is equivalent to the linear Diophantine equation

ax−my = b,
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with the unknown integer solutions (x, y).
Using Theorem 1.7, we know that ax ≡ b mod m has no integer solution x if d ∤ b. If d | b,

the linear congruence has infinitely many solutions of the form

(x0 +
m

d
n, y0 +

a

d
n),

where (x0, y0) is a solution to ax ≡ b mod m and n is an integer. Consider two solutions x1 =
x0 +

m
d
n1 and x2 = x0 +

m
d
n2. If they are congruent modulo m, i.e.,

x0 +
m

d
n1 ≡ x0 +

m

d
n2 mod m,

then we can subtract x0 to get m
d
n1 ≡ m

d
n2 mod m. Note that gcd(m,m/d) = m/d and hence by

Lemma 4.11, we get n1 ≡ n2 mod d = m/(m/d). Thus, we get d incongruent solutions.

Corollary 4.18. Let m be a positive integer and a, b integers with gcd(a,m) = 1. Then, ax ≡ b
mod m has a unique (incongruent) solution.

Example 4.19. To find all solutions to 9x ≡ 12 mod 15, we first compute that gcd(9, 15) = 3
and since 3 | 12, we have 3 incongruent solutions. To find a particular solution, we solve the
Diophantine equation

9x− 15y = 12

using the Euclidean division algorithm:

15 = 9 · 1 + 6

9 = 6 · 1 + 3

6 = 3 · 2 + 0.

Thus,
3 = 9− 6 · 1 = 9− (15− 9 · 1) = 9 · 2− 15.

Hence multiplying by 12/3 = 4 we get 9 · 8− 15 · 4 = 12 and the particular solution (8, 4). Hence,
all solutions are of the form

x = 8 +
15

3
n = 8 + 5n

and the incongruent ones are

x ≡ 8 + 5 · 0 ≡ 8 mod 15

x ≡ 8 + 5 · 1 ≡ 13 mod 15

x ≡ 8 + 5 · 2 ≡ 3 mod 15.
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4.3 Units of Integer Residue Rings
If we want to solve the equation ax ≡ 1 mod m, we are actually looking for the multiplicative
inverse of a modulo m, that is [a]−1

m .
Using Theorem 4.17, we get

Corollary 4.20. Let m be a positive integer and a an integer. Then there exists an integer b such
that ab ≡ 1 mod m if and only if gcd(a,m) = 1.

This element b is called the multiplicative inverse of a modulo m and is denoted by a−1.

Example 4.21. We want to find the inverse of 2 modulo 7. For this we write

1

2
≡ 1 + 7

2
≡ 4 mod 7.

Exercise 4.22. What is the inverse of 2 modulo 10 and what is the inverse of 3 modulo 10?

Lemma 4.23. Let p ∈ P and a a positive integer. Show that a ≡ a−1 mod p, if and only if
a ≡ ±1 mod p.

Proof. Since a2 ≡ 1 mod p, we get that p | (a2 − 1) = (a − 1)(a + 1). Thus, we either have
p | (a− 1) or p | (a+ 1), that is a ≡ 1 mod p or a ≡ −1 mod p.

We denote the elements in Z/mZ which have a multiplicative inverse by Z/mZ×, called the
group of units or the multiplicative group.

Exercise 4.24. Show that (Z/mZ×, ·) is a group. Note that it is enough to show that it is closed
under multiplication.

Due to Corollary 4.20, we know that

Z/mZ× = {a ∈ Z/mZ | gcd(a,m) = 1}.

How large is such a group of units?

Example 4.25. Z/6Z× = {1, 5}, while Z/7Z× = Z/7Z \ {0}.

The cardinality of the group of units is thus given by

|Z/mZ×| = |{a ∈ {1, . . . ,m} | gcd(a,m) = 1}|.

Definition 4.26 (Euler Totient Function). Define φ(1) = 1 and for any integer m with m > 1, the
Euler totient function is defined as

φ(m) = |Z/mZ×|.

32



Theorem 4.27. Let m > 1 be an integer with prime factorization m =
∏k

i=1 p
ei
i . Then

φ(m) =
k∏

i=1

pei−1
i (pi − 1).

Exercise 4.28. We may prove this theorem in 3 steps.

• For p ∈ P show that φ(p) = p− 1.

• For p ∈ P show that φ(pe) = pe−1(p− 1).

• Show that if gcd(a, b) = 1, then φ(ab) = φ(a)φ(b). For this use Proposition 3.8.

Note that this formula is equivalent to writing

φ(m) = m
∏

p∈P:p|m

(
1− 1

p

)
.

We will later (in the section on arithmetic functions) see more properties of the Euler totient
function.

Exercise 4.29. For which values of m is φ(m) odd?

Note that the expression φ(m) =
∏

p∈P:p|m

(
1− 1

p

)
has a probabilistic interpretation. If we

choose a randomly, the probability that it is coprime to p is
(
1− 1

p

)
. For distinct primes, these

events are independent and thus for a to be coprime tom, we get the probability
∏

p∈P:p|m

(
1− 1

p

)
.

This must be equal to the proportion of equivalence classes which are units, that is φ(m)/m.

4.4 Chinese Remainder Theorem
What if we are given a system of linear congruences? This question arose in ancient Chinese
puzzles, such as " Find a number that leaves as a remainder 1 when divided by 3, a remainder 2
when divided by 5 and a remainder 3 when divided by 7"

That is, we are given the system of linear congruences

x ≡ 1 mod 3

x ≡ 2 mod 5

x ≡ 3 mod 7.

A general method to solve these kind of puzzles was only discovered in 1247 by Ch’in Chin-
Shao.
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Theorem 4.30 (Chinese Remainder Theorem). Let m1, . . . ,mk be pairwise coprime positive inte-
gers and a1, . . . , ak be integers. Then x ≡ ai mod mi for all i ∈ {1, . . . , k} has a unique solution
modulo M =

∏k
i=1mi.

Note that unique here refers to a unique congruence class of solutions, or only one incongruent
solution.

Proof. We first construct a simultaneous solution. For this consider Mi =
M
mi
, which is such that

gcd(Mi,mi) = 1. Thus, we can find the inverse of Mi modulo mi, denoted by yi. Doing so for all
i ∈ {1, . . . , k}, we define

x =
k∑

i=1

aiMiyi.

As a next step we show that x is a solution to the system of linear congruences. In fact, since
mi |Mj for any i 6= j, we have that Mj ≡ 0 mod mi and thus

x ≡ aiMiyi ≡ ai mod mi.

We continue by showing that any two solutions are congruent modulo M. Consider x0, x1 two
solutions of the system of linear congruences. That is, for any i ∈ {1, . . . , k} we have x0 ≡ x1 ≡ ai
mod mi and hence mi | (x0 − x1), from which follows M | (x0 − x1).

Note that the proof also provides a formula for a particular solution x0 and for all solutions
(which are of the form x = x0 +Mn).

Example 4.31. Let us solve the initial puzzle.

x ≡ 1 mod 3

x ≡ 2 mod 5

x ≡ 3 mod 7.

Thus we compute M = 3 · 5 · 7 = 105,M1 = 35,M2 = 21 and M3 = 15. We now compute the
inverses; y1 is such that 35y1 ≡ 2y1 ≡ 1 mod 3, hence y1 ≡ 1

2
≡ 4

2
≡ 2 mod 3. Similarly, y2 is

such that 21y2 ≡ y2 ≡ 1 mod 5 and y3 is such that 15y3 ≡ y3 ≡ 1 mod 7. Thus we write

x ≡ 1 · 35 · 2 + 2 · 21 · 1 + 3 · 15 · 1 ≡ 52 mod 105.

Theorem 4.16 follows from the Chinese Remainder Theorem, by setting mi = peii and M =∏k
i=1mi.

The Chinese Remainder Theorem has also been extended to the case where the moduli are not
coprime.
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Theorem 4.32. Let m1, . . . ,mk be positive integers and a1, . . . , ak be integers. The system of lin-
ear congruences x ≡ ai mod mi for all i ∈ {1, . . . , k} has a solution if and only if gcd(mi,mj) |
(ai − aj) for all i 6= j.

Proof. If a solution x exists, then mi | (x − ai) for all i ∈ {1, . . . , k}. Let us denote di,j =
gcd(mi,mj) for i 6= j. Since di,j | mi and di,j | mj we also have di,j | (x− ai) and di,j | (x− aj).
Hence di,j | (x− aj)− (x− ai) = ai − aj.

Let x0 be a solution, then x1 is a solution if and only if x1 ≡ x0 mod mi for all i ∈ {1, . . . , k}.
Hence mi | (x1 − x0) and in turn lcm(m1, . . . ,mk) | (x1 − x0).

This implies that all solutions belong to the same congruence class [x0]m.

In the other direction, we assume di,j | (ai − aj) for all i 6= j.
We apply Theorem 4.16 to replace each congruence x ≡ ai mod mi with the equivalent

system x ≡ ai mod pe, for all pe in the prime factorization of mi. The new system has now only
prime powers as moduli, however, they might not be coprime (for example if mi and mj have the
same prime divisor). For a fixed p we choose i such that mi is divisible by the highest power of p,
say pe.

Thus, if pf | mj and f ≤ e, then we note that pf | di,j and hence pf | (ai − aj). Thus if x ≡ ai
mod pe then x ≡ ai mod pf as well. This step allows us to discard all linear congruences x ≡ ai
mod pf for f ≤ e.Doing so for each prime in the prime factorization ofm1, . . . ,mk leaves us with
a system of linear congruences of coprime prime powers, and we can apply the Chinese Remainder
Theorem.

We usually state the Chinese Remainder Theorem more algebraically. Namely,

Theorem 4.33 (Chinese Remainder Theorem). Let m =
∏k

i=1 p
ei
i for distinct primes pi. Then,

there exists a ring isomorphism ψ : Z/mZ → Z/pe11 Z× · · · × Z/pekk Z.

4.5 System of Linear Congruences in Several Variables
What if we have a system in more than one unknown?

Example 4.34. We are looking for the solution (x, y) ∈ Z2, to the system of equation

3x+ 4y ≡ 5 mod 13 (2)
2x+ 5y ≡ 7 mod 13. (3)

We can erase one of the variables e.g., y by considering (2) · 5− (3) · 4, that is

7x ≡ −3 mod 13.

Since 1
7
≡ 14

7
≡ 2 mod 13, we can multiply both sides with 2, to get

x ≡ −6 ≡ 7 mod 13.
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We are left with inserting x into one of the equations, e.g. (2) to get

3 · 7 + 4y ≡ 5 mod 13,

which is equivalent to 4y ≡ −3 mod 13 and since 1
4
≡ 14

4
≡ 7

2
≡ 20

2
≡ 10 ≡ −3, by multiplying

with −3 on both sides, we get
y ≡ 9 mod 13.

Thus a solution to this system is given by (7, 9).

As you can already guess, we need to make use of matrices and matrix inversion over Z/mZ.
This works exactly the same as over Z, with the only difference, that a matrix A ∈ Z/mZk×k is
invertible if det(A) ∈ Z/mZ×.

Theorem 4.35. Let m be a positive integer and ai,j, bi be integers for all i, j ∈ {1, . . . , k}. Let
A ∈ Z/mZk×k denote the matrix with entries ai,j. If det(A) ∈ Z/mZ×, then the system

A

x1...
xk

 =

b1...
bk

 mod m

has a unique solution, given by A−1

b1...
bk

 .

The proof is straightforward and omitted.

Example 4.36. In the previous example, we had

A =

(
3 4
2 5

)
, b =

(
5
7

)
.

Since det(A) ≡ 3 · 5− 2 · 4 ≡ 7 mod 13, A is invertible and

A−1 ≡ 1

7

(
5 9
11 3

)
≡
(
10 5
9 6

)
mod 13.

Thus, the solution is given by (
x
y

)
≡ A−1b ≡

(
7
9

)
mod 13.
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The Special Case of Z/pZ One important case of integer residue rings, is when the modulo is a
prime, i.e., Z/pZ. In this case, we do not only have a ring, but even a field.

In fact, the only difference between our finite rings Z/mZ and a finite field, is the condition

• any non-zero element has a multiplicative inverse.

While this is not satisfied for a composite m, this is true for prime moduli.

Indeed, as we have seen in Section 4.3,

φ(p) = |Z/pZ×| = p− 1.

Do note that these are not the only finite fields. They are called prime fields and can be extended
to any finite field of prime power (these are however not integer residue rings anymore).

This additional field structure will provide many more beautiful results, as we will see in the
next section, Section 5.

37



5 Famous Theorems
In this section, we will see three famous theorems, by Fermat, Euler and Wilson, which have a
large impact and find many applications, for example in primality testing.

Let us start with a different one, called Freshman’s dream. This result is called like this as
Freshman’s (new students) often make the mistake of writing (a+ b)n = an + bn. Over Z/pZ, this
is, however, possible.

Theorem 5.1 (Freshman’s Dream). Let a, b be integers and p a prime. Then,

(a+ b)p ≡ ap + bp mod p.

Proof. Using the binomial theorem, we can write

(a+ b)p =

p∑
i=0

(
p

i

)
aibp−i.

Note that
(
p
i

)
= p!

i!(p−i)!
always has a factor p and is thus zero modulo p, except for i = 0 and i = p.

In these cases we get
(
p
0

)
=
(
p
p

)
= 1. Thus,

(a+ b)p =

p∑
i=0

(
p

i

)
aibp−i ≡ ap + bp mod p.

This result actually holds for any integer residue ring Z/mZ, for the same reason. The result
is also true for any finite field with characteristic p.

5.1 Fermat’s Little Theorem
The following result is called Fermat’s Little Theorem (not to be confused with Fermat’s Last
Theorem). Fermat mentioned this result in a letter in 1640, but it was only proven by Euler in
1736.

Theorem 5.2 (Fermat’s Little Theorem). Let p ∈ P and a be an integer such that a 6≡ 0 mod p.
Then ap−1 ≡ 1 mod p.

Proof. Consider a ∈ {1, . . . , p − 1}. Since gcd(a, p) = 1 we have that xa ≡ ya mod p implies
x ≡ y. Thus, a, 2a, . . . , (p − 1)a are congruent to 1, 2, . . . , p − 1 in some order. The product of
these two sets must thus lie in the same congruence class, that is

p−1∏
i=1

i ≡
p−1∏
i=1

ai mod p.

This is equivalent to (p− 1)! ≡ (p− 1)!ap−1 mod p. Since (p− 1)! is coprime to p, we can divide
by (p− 1)! to get the claim.
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Knowing some group theory, we can give a much quicker proof.
For this we need Lagrange’s Theorem.

Theorem 5.3 (Lagrange’s Theorem). Let G be a finite group and S < G a subgroup. Then

|S| | |G|.

An important implication of this theorem is as follows.

Corollary 5.4. Let G be a finite group of order d. Then any element of g ∈ G has multiplicative
order ord(g) | d.

Exercise 5.5. Proof Corollary 5.4.

Corollary 5.6. Let G be a finite group of order d. Then, for any element g ∈ G, we have gd = e,
where e denotes the neutral element.

Exercise 5.7. Prove Fermat’s Little Theorem using the fact that a ∈ Z/pZ× and using Lagrange’s
Theorem.

This result implies that all congruence classes in Z/pZ, except for [0]p, are roots of the polyno-
mial xp−1 − 1. If we want to find a polynomial which has all congruence classes in Z/pZ as roots,
we can simply multiply by x. Getting

Corollary 5.8. Let p ∈ P . For every integer a, we have ap ≡ a mod p.

Exercise 5.9. Prove the corollary using Freshman’s Dream and induction (instead of using Fer-
mat’s Little Theorem).

5.2 Euler’s Theorem
This result presents a generalization of Fermat’s Little Theorem, which tells us how to deal with
congruences modulo p. What happens if the modulo is not a prime? It is not true that

am−1 ≡ 1 mod m,

as we can easily check for m = 4, a = 3. We can thus ask: which exponent e(m) do we need to
get

ae(m) ≡ 1 mod m

for any a coprime to m?

Theorem 5.10 (Euler’s Theorem). Letm be a positive integer and a an integer with gcd(a,m) = 1.
Then, aφ(m) ≡ 1 mod m.
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Proof. Note that by definition |Z/mZ×| = φ(m). Consider the set of least positive residues of the
units modulo m, say {r1, . . . , rφ(m)}. If gcd(a,m) = 1, then the elements ar1, . . . , arφ(m) must
be congruent to r1, . . . , rφ(m) in some order. Thus, their product is in the same congruence class,
meaning

φ(m)∏
i=1

ri ≡
φ(m)∏
i=1

ari mod m.

Since all ri are units, we can divide by them, which leads to 1 ≡ aφ(m) mod m.

Exercise 5.11. Prove Euler’s Theorem using a ∈ Z/mZ× and Lagrange’s Theorem.

5.3 Wilson’s theorem
Wilson was a student at the time of his discovery, and although a first proof was published only by
Lagrange in 1770, the result is called after him.

Theorem 5.12 (Wilson’s Theorem). An integer n is prime if and only if (n− 1)! ≡ −1 mod n.

Proof. For the first direction, assume that n is a prime p. If p = 2, then (p − 1)! ≡ 1 ≡ −1
mod 2, as required. Thus, we may assume that p is odd. We define the polynomial

f(x) = (1− x)(2− x) · · · (p− 1− x) + 1− xp−1,

which has integer coefficients and degree d < p − 1 (in fact the two terms with exponent p − 1
cancel). For a ∈ {1, . . . , p − 1} then f(a) ≡ 0 mod p, as f has a factor (a − x) and due to
Fermat’s Little Theorem we have 1− ap−1 ≡ 0 mod p.

Thus, f(x) has more than d roots modulo p, meaning that it must be f ≡ 0 mod p, that is
each coefficient of f is divisible by p. In particular, p divides the constant term (p − 1)! + 1, and
hence (p− 1)! ≡ −1 mod p.

For the other direction, assume that (n − 1)! ≡ −1 mod n. Thus, also for any factor m of n
we have that (n − 1)! ≡ −1 mod m. However, if m < n, then m appears as factor of (n − 1)!,
that is (n− 1)! ≡ 0 mod m and this leads to −1 ≡ 0 mod m and this in turn gives m = 1.

We can also give an alternative proof.

Proof. If n ∈ P , then we recall from Lemma 4.23, that the only x with x2 ≡ 1 mod n are
x ≡ ±1 mod n. In (n − 1)! we can see all non-zero elements in Z/nZ and for each a ∈ Z/nZ,
with a 6= 0,±1,, there exists a b ∈ Z/nZ with b 6= 0,±1, a and ab ≡ 1 mod n. Thus,

(n− 1)! ≡ 1 · 2 · · · a · · · b · · · (n− 2) · (n− 1) ≡ 1 · (n− 1) ≡ −1 mod n,

as all other elements cancel with their inverse.

For the other direction, we assume that

1 · 2 · · · (n− 2) · (n− 1) ≡ −1 mod n,
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by multiplying with (−1) we get

1 · 2 · · · (n− 2) ≡ 1 mod n.

Now we can group this product to get

a ·
∏

1≤i≤(n−2),i ̸=a

i ≡ 1 mod n,

implying that any a ∈ Z/nZ \ {0} has a multiplicative inverse. Thus, gcd(a, n) = 1 for all a < n,
and hence n ∈ P .
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6 Primality Tests
In this section, we will see how to apply these theorems to check if integers are prime.

6.1 Pollard’s p− 1 Method
Fermat’s Little Theorem builds the basis for a factorization method invented in 1974 by Pollard.

The method is known as Pollard p − 1 method, as there also exist some generalizations. The
method finds a non-trivial factor of n (that is not 1 or n), if n has a prime factor p, such that all
q ∈ P with q | (p− 1) are small. Such primes p are called smooth.

The opposite of smooth primes, so called strong primes or Sophie Germain primes, are of the
form p = 2q + 1 for some prime q.

For Pollard’s p − 1 method, assume that p ∈ P and p | n. If we can find some integer k such
that (p − 1) | k!, then we can apply Fermat’s Little Theorem. In fact, there exists some integer ℓ
such that (p− 1)ℓ = k! and hence,

2k! = 2(p−1)ℓ =
(
2p−1

)ℓ ≡ 1ℓ ≡ 1 mod p.

Thus, p | (2k! − 1).

Consider M ≡ 2k! − 1 mod n the smallest positive residue, then p | M and p | n. We now
want to detect such prime by computing d = gcd(M,n) using the Euclidean algorithm, as then
p | d.

As we do not know k, we simply go through all k ≥ 1 until

gcd(2k! − 1, n) 6= 1.

How can we quickly compute 2k! mod n?

k = 1, r1 = 21 mod n

k = 2, r2 = 21·2 = r21 mod n

k = 3, r3 = 21·2·3 = r32 mod n

...

That is, at any step i we compute ri = rii−1 mod n.

Example 6.1. Let us factor 713.
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r1 = 2 mod 713 gcd(2− 1, 713) = 1

r2 = r21 = 4 mod 713 gcd(4− 1, 713) = 1

r3 = 232 = 64 mod 713 gcd(64− 1, 713) = 1

r4 = r43 = 326 mod 713 gcd(326− 1, 713) = 1

r5 = r54 = 311 mod 713 gcd(311− 1, 713) = 31

Thus, we have found that
gcd(25! − 1, 713) = 31

and 31 is a prime factor of 713.

Note that Pollard’s p− 1 method does not always work. In fact, if n = pq, with p, q ∈ P , it is
possible that p | (2k!−1) and q | (2k!−1), which leads to n | (2k!−1) and hence gcd(2k!−1, n) = n.

6.2 Pseudoprimes
In theory, Wilson’s Theorem solves the primality testing problem. However, the factorial makes
this test very inefficient.

Fermat’s Theorem provides a better test, that is:

Given n a positive integer, check if there exists an integer a such that an 6≡ a mod n.
If this is the case, then n is composite.

Note that we prefer powers over factorials, as we can compute powers quite efficiently using
consecutive squaring:

To compute ak mod n, we first note that if gcd(a, n) = 1, then due to Euler’s Theorem we
can reduce the exponent to

k′ ≡ k mod φ(n)

the smallest positive residue.
Then we write k′ in its binary representation, i.e., k′ = (kN , . . . , k0)2, so that

ak ≡ ak
′ ≡ a2

NkN · · · a20k0 =
∏

i∈{1,...,N}:ki=1

a2
i

mod n.

We can hence compute all the a2i powers up to i = N and then compute their product

ak ≡
∏

i∈{1,...,N}:ki=1

a2
i

mod n.
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Example 6.2. If we want to compute 323 mod 7, we first reduce 23 ≡ 5 mod 6 and then write
5 = (1, 0, 1)2. We then compute

32
0 ≡ 3 mod 7,

32
1 ≡ 9 ≡ 2 mod 7,

32
2 ≡ 4 mod 7.

Thus,
323 ≡ 35 ≡ 34 · 31 ≡ 4 · 3 ≡ 5 mod 7.

Exercise 6.3. Perform the primality test of Wilson on n = 5.

Exercise 6.4. Perform the primality test of Fermat on n = 63.

With Fermat’s primality test, we can quickly show that a number is composite. However,
Fermat’s primality test does not imply anything on n which passes the test and it would be much
more useful, if we could show that a number is a prime.

Side remark: the Chinese, by mistake of translation, believed that if 2n ≡ 2 mod n, then n is
a prime. Only in 1819 a counterexample to this test was given.

Exercise 6.5. Using consecutive squaring, show that n = 341 = 11 · 31 passes the Chinese test,
i.e., 2n ≡ 2 mod n.

Definition 6.6. Numbers which pass Fermat’s test, i.e., bn ≡ b mod n, but are not prime are
called pseudoprimes to the base b.

While pseudoprimes are rare, there are still infinitely many of them.

Theorem 6.7. There exist infinitely many pseudoprimes to the base 2.

Proof. We start by showing that if ni is a pseudoprime to the base 2, then so is ni+1 = 2ni − 1.
Then, since ni+1 = 2ni − 1 > ni we can iterate this starting at the smallest pseudoprime to the
base 2, which is n0 = 341.

From Lemma 3.14, recall that if ni is composite, then ni+1 = 2ni − 1 is composite as well.

Now we need to prove that 2ni+1 = 22
ni−1 ≡ 2 mod 2ni − 1, that is ni+1 passes the test

2ni+1 ≡ 2 mod ni+1.
Since 2ni ≡ 2 mod ni, there exists an integer k, such that 2ni = 2 + nik. Further,

(2ni)k − 1 = (2ni − 1)
(
2ni(k−1) + · · ·+ 1

)
,

hence (2ni − 1) |
(
2nik − 1

)
. This implies that

2nik ≡ 1 mod 2ni − 1,

and hence
22

ni−1 = 22+nik−1 = 2nik+1 = 2 · 2nik ≡ 2 mod 2ni − 1.
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Lemma 6.8. The Fermat numbers F (k) = 22
k
+ 1, pass Fermat’s test for base 2.

Proof. We want to show that 2F (k) ≡ 2 mod F (k). For this we first note that F (k) ≡ 22
k
+1 ≡ 0

mod F (k), hence 22
k ≡ −1 mod F (k). We may raise both sides to the power 22k−k, getting

22
k(22

k−k) ≡ 22
2k ≡ (−1)2

2k−k ≡ 1 mod F (k).

By multiplying with 2 on both sides, we get

22
2k+1 ≡ 2F (k) ≡ 2 mod F (k).

Exercise 6.9. Show that the Mersenne numbers M(p) = 2p − 1, for a prime p, pass Fermat’s test
for the base 2.

6.3 Carmichael Numbers
Note that there exist composite integers, which pass the primality test by Fermat for any base b.

Definition 6.10. A Carmichael number is a composite integer n, such that an ≡ a mod n for all
a ∈ Z.

The smallest example of a Carmichael number is n = 561 = 3 · 11 · 17.

Theorem 6.11. n = 561 is a Carmichael number.

Proof. In order to show that a561 ≡ a mod 561, we can equivalently (due to the Chinese Remain-
der Theorem), show that

a561 ≡ a mod 3,

a561 ≡ a mod 11,

a561 ≡ a mod 17.

These equations can be reduced using Fermat’s Little Theorem to

a561 mod 2 ≡ a mod 3,

a561 mod 10 ≡ a mod 11,

a561 mod 16 ≡ a mod 17,

which are obviously true as 561 ≡ 1 modulo 2, 10 or 16.

Exercise 6.12. Show that n = 1729 is a Carmichael number.
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In 1912 Carmichael conjectured that there exist infinitely many Carmichael numbers. A first
proof was given in 1992 by Alford, Granville and Pomerance.

Theorem 6.13. If n = p1 · · · pk with pi ∈ P distinct and k > 2 such that (pi − 1) | (n− 1) for all
i ∈ {1, . . . , k}, then n is a Carmichael number.

Proof. Let b be a positive integer with gcd(b, n) = 1. Then, gcd(b, pi) = 1 for all i ∈ {1, . . . , k}
and due to Fermat’s Little Theorem, we have

bpi−1 ≡ 1 mod pi.

Since (pi − 1) | (n− 1), there exists an integer ki with

ki(pi − 1) = n− 1

for all i ∈ {1, . . . , k} and hence

bn−1 ≡ bki(pi−1) ≡
(
bpi−1

)ki ≡ 1ki ≡ 1 mod pi,

and as this holds for all pi, with the Chinese Remainder Theorem, we also have bn−1 ≡ 1 mod n.

Actually, the other direction is also true, this is called the Korselt’s criterion.
We will later see some more properties on Carmichael numbers and their use in RSA.

6.4 Miller’s Test
If bn−1 ≡ 1 mod n is verified, another approach to check for primality is to consider b(n−1)/2

mod n.

For x = b(n−1)/2, we know that x2 = bn−1 ≡ 1 mod n. Due to Exercise 4.23, if n was prime,
then x ≡ ±1 mod n.

Thus, if b(n−1)/2 6≡ ±1 mod n, then n must be a composite number.

Exercise 6.14. Let n = 561 (the smallest Carmichael number). Check for b = 5 if b(n−1)/2 ≡ ±1
mod n.

Definition 6.15. Let n > 2 be a positive integer, n− 1 = 2st, for a non-negative integer s and an
odd positive integer t. We say that n passes Miller’s test for the base b, if

either bt ≡ 1 mod n or b2
jt ≡ −1 mod n,

for some j ∈ {0, . . . , s− 1}.
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Example 6.16. Let n = 2047 = 23 · 89. Then,

22046 =
(
211
)186

= (2048)186 ≡ 1 mod 2047.

Hence, 2047 is a pseudoprime for the base 2. Since

22046/2 = 21023 =
(
211
)93

= (2048)93 ≡ 1 mod 2047,

n also passes Miller’s test for the base 2.

Theorem 6.17. If p ∈ P and b a positive integer with p ∤ b, then p passes Miller’s test for the base
b.

Proof. Let p − 1 = 2st, for a non-negative s and an odd positive integer t. Let xk = b(p−1)/2k =
b2

s−kt for k ∈ {0, . . . , s}. Fermat’s Little Theorem then states that x0 = bp−1 ≡ 1 mod p and
x21 = x0 ≡ 1 mod p, implies that x1 ≡ ±1 mod p.

If x1 ≡ 1 mod p, then we can continue in the same way, that is x22 = x1 ≡ 1 mod p implies
that x2 ≡ ±1 mod p. Thus, we either end up with x0 ≡ · · · ≡ xs ≡ 1 mod p, and the first
condition of Miller’s test is satisfied, or for some k ∈ {1, . . . , s} we have that xk ≡ −1 mod p,
and thus the second condition of Miller’s test is satisfied.

Definition 6.18. If n is composite and passes Miller’s test to the base b, n is called strong pseudo-
prime to the base b.

Example 6.19. 2047 is a strong pseudoprime to the base 2.

Theorem 6.20. There exist infinitely many strong pseudoprimes to the base 2.

Proof. We show that if n is a pseudoprime to the base 2, then N = 2n − 1 is a strong pseudoprime
to the base 2. The result then follows from Theorem 6.7.

Hence, we assume that n is an odd composite number and 2n−1 ≡ 1 mod n. Then, there exists
an odd integer k such that kn = 2n−1 − 1.

We have the following factorization of N − 1:

N − 1 = 2n − 2 = 2
(
2n−1 − 1

)
= 2nk.

Since 2n = N + 1 ≡ 1 mod N, we get

2(N−1)/2 = 2nk = (2n)k ≡ 1k ≡ 1 mod N

and hence N passes Miller’s test.

From Exercise 3.14, we know that if n is composite (as we assumed), then also N = 2n − 1 is
composite. Thus, N is a strong pseudoprime to the base 2.
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A natural question is: does there exist an analogue to the Carmichael numbers for Miller’s test?
That is a number which is composite and passes Miller’s test for any base?

The answer to this question is no, due to the following theorem.

Theorem 6.21. If n is an odd composite positive integer, then n passes Miller’s test for at most
(n− 1)/4 bases b ∈ {1, . . . , n− 1}.

Thus, if n passes Miller’s test for more than (n − 1)/4 bases b < n, then n must be a prime.
While checking all bases is again inefficient, it gives us a quick way to check if a number is
"probably prime".

In fact, take any positive integer b < n, if n is composite, the probability that n passes Miller’s
test to the base b is less than 1/4. Thus, if we were to take k different bases and perform the test on
each of them, we reduce the probability to 1/4k.

Theorem 6.22 (Rabin’s Probabilistic Primality Test). Let n be a positive integer. Pick k different
positive integers less than n and perform Miller’s test on n for each of the k bases. If n is composite,
the probability for n to pass each test is less than 1/4k.
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7 Arithmetic Functions
An arithmetic function is simply a function that is defined over the set of the positive integers N.

Definition 7.1. An arithmetic function f is called multiplicative, if f(1) = 1 and f(ab) = f(a)f(b)
for gcd(a, b) = 1.

Additionally, we say that f is completely multiplicative, if we can drop the coprime condition.

This means, that a multiplicative function evaluated at an integer n, gives the the product of the
evaluations of each prime power in the prime factorization of n.

Theorem 7.2. If f is a multiplicative function and n =
∏k

i=1 p
ei
i is the prime factorization of a

positive integer n, then

f(n) =
k∏

i=1

f(peii ).

Proof. We prove this theorem using induction on k. For k = 1, we consider n = pe and the result
trivially follows.

Assume the theorem is true for any n with k distinct prime divisors. Now we may consider m
with k + 1 distinct prime divisors, say m =

∏k+1
i=1 p

ei
i . Since f is multiplicative, we get that

f(m) = f(m/p
ek+1

k+1 )f(p
ek+1

k+1 ).

As the theorem is true for n = m/p
ek+1

k+1 , which has k different prime divisors, we get the claim as

f(m) =
k∏

i=1

f(peii )f(p
ek+1

k+1 ).

We will use this fact, to obtain a closed formula for the evaluation of these functions based on
the prime factorizations.

Definition 7.3. Let f be an arithmetic function. The summatory function of f is given by

F : N → Z,

n 7→
∑

d∈N:d|n

f(d).

The summatory function is again an arithmetic function and can provide information on the
function itself.

Lemma 7.4. If f is a multiplicative function, then F is a multiplicative function.
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Proof. Let us consider the prime factorizations m =
∏ℓ

i=1 p
ei
i , n =

∏r
i=1 q

fi
i . We first show that

φ : {d | mn | gcd(m,n) = 1} → {(a, b) | gcd(a, b) = 1, a | m, b | n}
d 7→ (gcd(d,m), gcd(d, n)}

is a bijection. In fact, for d, d′ | mn, if φ(d) = φ(d′) then gcd(m, d) = gcd(m, d′) =
∏

i∈S p
e′i
i

for some set S ⊆ {1, . . . , ℓ} and gcd(n, d) = gcd(n, d′) =
∏

i∈T q
f ′
i

i , for some set T ⊆ {1, . . . , r}
with e′i, f

′
i > 0, then d =

∏
i∈S p

e′i
i

∏
i∈T q

f ′
i

i = d′. And for any (a, b) with a | m, i.e., a =
∏

i∈S p
e′i
i

and b | n, thus b =
∏

i∈T p
f ′
i

i with gcd(a, b) = 1 we have d = ab such that φ(d) = (a, b). Thus, we
can change the summation over {d | mn} with {a | m} and {b | n} :

F (mn) =
∑

d∈N:d|mn

f(d) =
∑

a∈N:a|m

∑
b∈N:b|n

f(ab).

Since f is multiplicative and gcd(a, b) = 1, we get

F (mn) =
∑

a∈N:a|m

f(a)
∑

b∈N:b|n

f(b) = F (m)F (n).

We have already seen a multiplicative function, namely the Euler totient function.

7.1 Euler Totient Function
Definition 7.5. The Euler totient function is defined as φ(1) = 1 and for n > 1:

φ : N → Z,
n 7→ |Z/nZ×|.

Theorem 7.6. The Euler totient function is a multiplicative function.

Proof. The proof basically follows from the Chinese Remainder Theorem, as

Z/(ab)Z× ∼= Z/aZ× × ZbZ×.

Equivalently, the proof follows from Proposition 3.8.

Theorem 7.7 (Gauss Theorem). Let n be a positive integer, then∑
d∈N:d|n

φ(d) = n.
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Proof. Let S = {1, . . . , n} and for every d | n we denote by Sd = {a ∈ S | gcd(a, n) = n/d}.
The sets Sd partition S into disjoint subsets. Thus,

|
⋃

d∈N:d|n

Sd| =
∑

d∈N:d|n

|Sd| = |S| = n.

We are left with showing that |Sd| = φ(d).
Again, we show that

φ : {a ∈ {1, . . . , n} | gcd(a, n) = 1} → {x ∈ {1, . . . , d} | gcd(x, d) = 1}

a 7→ a
d

n

is a bijection. Indeed, gcd(a d
n
, d) = 1 due to Proposition 1.3. If φ(a) = φ(a′) then a d

n
= a′ d

n
,

and hence a = a′. And for each x ∈ {1, . . . , d} with gcd(x, d) = 1 there exists a = xn
d

with
gcd(xn

d
, n) = gcd(xn

d
, dn

d
) = 1 as gcd(x, d) = 1.

Thus,

|Sd| = |{a ∈ {1, . . . , n} | gcd(a, n) =
n

d
}| = |{x ∈ {1, . . . , d} | gcd(x, d) = 1}| = φ(d).

Note that in terms of summatory function, we have just proven that the summatory function of
the Euler totient function, i.e., F (n) =

∑
d∈N:d|n φ(d) = n, is an identity function N(n) = n.

7.2 More Multiplicative Functions
Let us consider two trivial multiplicative functions:

u(n) = 1,

N(n) = n,

for all n ∈ N.

Although these functions seem trivial, they help us to define many more multiplicative func-
tions.

Definition 7.8. The number of divisors function is defined as

τ : N → Z,
n 7→ |{d ∈ N | d | n}|.

Theorem 7.9. The number of divisors function τ is multiplicative.

Proof. We have that τ(n) =
∑

d∈N:d|n 1 =
∑

d∈N:d|n u(d). Since u is a multiplicative function, we
can apply Lemma 7.4.
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Definition 7.10. The sum of the divisors function is defined as

σ : N → Z,

n 7→
∑

d∈N:d|n

d.

Theorem 7.11. The sum of the divisors function is multiplicative.

Proof. We have that σ(n) =
∑

d∈N:d|n d =
∑

d∈N:d|nN(d). Since N is a multiplicative function,
we can apply Lemma 7.4.

The functions τ and σ are called divisor functions, and are special cases of the function

σk(n) =
∑

d∈N:d|n

dk.

In fact, σ0 = τ and σ1 = σ.

Exercise 7.12. Show that σk is multiplicative for any positive integer k.

Theorem 7.13. Let n be a positive integer with prime factorization n =
∏k

i=1 p
ei
i . Then,

τ(n) =
k∏

i=1

(ei + 1),

σ(n) =
k∏

i=1

pei+1
i − 1

pi − 1
.

Proof. Since both τ and σ are multiplicative function, with Theorem 7.2 it is enough to compute
τ(pe), respectively σ(pe) for some p ∈ P and positive integer e.

We note that the only divisors of pe are of the form pj for some j ≤ e, that is

τ(pe) = |{d ∈ {1, . . . , pe} | d | pe}| = {pj | j ∈ {0, . . . , e}| = e+ 1.

Hence, if n =
∏k

i=1 p
ei
i , Theorem 7.2 implies

τ(n) =
k∏

i=1

(ei + 1).

Similarly, for σ(pe) :

σ(pe) =
∑

d∈N:d|pe
d =

e∑
j=0

pj =
pe+1 − 1

p− 1
.

Hence, if n =
∏k

i=1 p
ei
i , Theorem 7.2 implies

σ(n) =
k∏

i=1

pei+1
i − 1

pi − 1
.

Exercise 7.14. For which n is τ(n) odd?
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7.3 Perfect Numbers
Definition 7.15. A positive integer n is called perfect, if n is the sum of its proper divisors (i.e.,
not n), that is n =

∑
d∈N:d|n,d ̸=n d.

Since σ(n) is the sum of all divisors, we can write this condition as n = σ(n) − n, or equiva-
lently, σ(n) = 2n.

Example 7.16. 6 and 28 are the first two perfect numbers as

6 = 1 + 2 + 3,

28 = 1 + 2 + 4 + 7 + 14.

Even perfect numbers have a one-to-one correspondence with Mersenne primes.

Theorem 7.17. Let n be an even positive integer. Then n is perfect if and only if n = (2p−1)2p−1,
for p ∈ P ,M(p) = 2p − 1 ∈ P .

Proof. Let us start with the first direction: if n = (2p − 1)2p−1 with p ∈ P and 2p − 1 ∈ P . Note
that σ(q) =

∑
d∈N:d|q = 1 + q for q ∈ P . We also note that 2p−1 only has divisors of the form 2j ,

while 2p − 1 is odd, thus the two factors are coprime. As σ is multiplicative, we get

σ(n) = σ(2p − 1)σ(2p−1).

Due to Theorem 7.13, we know that σ(2p−1) = 2p − 1 and σ(2p − 1) = 2p, since 2p − 1 ∈ P .
Thus,

σ(n) = 2p(2p − 1) = 2(2p−1(2p − 1)) = 2n.

For the other direction, since n is even, there exists some positive integer p ≥ 2 and odd integer q,
such that n = 2p−1q. Again, we have that gcd(2p−1, q) = 1 and can use that σ is multiplicative, to
get

σ(n) = σ(2p−1)σ(q) = (2p − 1)σ(q).

Since n is perfect, we have σ(n) = 2n = 2pq and hence

(2p − 1)σ(q) = 2pq.

Since gcd(2p − 1, 2p) = 1, we must have 2p | σ(q). Thus, there exists an integer r, such that

2pr = σ(q).

Hence σ(n) = 2n becomes

(2p − 1)σ(q) = (2p − 1)2pr = 2pq,

and hence (2p − 1)r = q. This means that r | q and r 6= q, as p ≥ 2.
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Let us add r on both sides to get

(2p − 1)r + r = 2pr = σ(q) = q + r.

Since σ(q) is the sum of all divisors and q, r are divisors, we must have that they are the only
divisors. Thus, q is prime and r = 1. Since q = 2p − 1 is prime, it follows from Lemma 3.14, that
p ∈ P .

Hence even perfect numbers are generated by Mersenne primes.

What about odd perfect numbers though? In fact, it is not known whether odd perfect numbers
exist. But we do know how they should behave or look like:

Exercise 7.18. Show that if n is an odd perfect number, then n = pam2, where p is an odd prime,
p ≡ a ≡ 1 mod 4 and m is an integer.

Exercise 7.19. Show that if n is an odd perfect number, then n ≡ 1 mod 4.

Exercise 7.20. Show that if n is an odd perfect number, then n has at least three different prime
divisors.

7.4 Möbius Inversion Formula
The multiplicative property is very useful to provide identities between such functions.

Lemma 7.21. Let f, g be multiplicative functions with f(pe) = g(pe) for all p ∈ P and non-
negative integers e. Then f = g.

Proof. Let n be a positive integer with prime factorization n =
∏k

i=1 p
ei
i , then

f(n) =
k∏
i=

f(peii ) =
k∏

i=1

g(peii ) = g(n).

Exercise 7.22. Give another proof of Theorem 7.7, showing that the summatory function F =∑
d∈N:d|n φ(n) and N agree on all prime powers.

We have already seen some summatory identities, i.e., of the form F (n) =
∑

d∈N:d|n f(d). For
example

• in Theorem 7.7 F = N , f = φ,

• in Theorem 7.11 F = σ, f = N ,

• in Theorem 7.9 F = τ, f = u.
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We will later generalize this notion to the Dirichlet product and revisit these identities.

In this situation it is often useful if we are able to invert the roles of f and F . This is done by
the Möbius Inversion Formula.

In order to introduce the Möbius Inversion Formula, we need the following function.

Definition 7.23. The identity function is given by ε(1) = 1, ε(n) = 0 for all n 6= 1.

ε is clearly multiplicative. In fact, for any a, b we have

ε(ab) =

{
1 if ab = 1,

0 else
=

{
1 if a = b = 1,

0 else
= ε(a)ε(b).

A useful alternative formulation of the identity is

ε(n) =

⌊
1

n

⌋
.

We first define the Möbius function via the formula∑
d∈N:d|n

µ(d) = ε(n),

i.e., as the function having ε as summatory function.

While this gives a recursive definition, we will later see an explicit definition as well. In fact,
if n = 1, then

ε(1) =
∑

d∈N:d|1

µ(d) = µ(1) = 1

and for n > 1 we have ∑
d∈N:d|n

µ(d) = 0 = ε(n),

thus
µ(n) = −

∑
d∈N:d|n,d<n

µ(d).

Proposition 7.24. Let p, q ∈ P be distinct, then

• µ(p) = −1,

• µ(pq) = 1,

• µ(pe) = 0, for any e ≥ 2.

Proof. • If p ∈ P , then µ(p) = −
∑

d∈N:d<p,d|p µ(d) = −µ(1) = −1.
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• If p 6= q, we get µ(pq) = −
∑

d∈N:d<pq,d|pq µ(d) = −(µ(1)+µ(p)+µ(q)) = −(1−1−1) = 1.

• We may proceed by induction. For e = 2, we get µ(p2) = −
∑

d∈N:d<p2,d|p2 µ(d) = −(µ(1)+

µ(p))) = −(1− 1) = 0. Assume the claim holds for all e′ < e. For any e ≥ 2, we have

µ(pe) = −
∑

d∈N:d<pe,d|pe
µ(d) = −(µ(1)+µ(p)+µ(p2)+ · · ·+µ(pe−1)) = −(1−1+0) = 0,

by the induction hypothesis.

The Möbius function derives its importance from the following major result, called Möbius
Inversion Formula.

Theorem 7.25. Let f be an arithmetic function and consider the summatory function F (n) =∑
d∈N:d|n f(d) for all n ∈ N, then

f(n) =
∑

d∈N:d|n

F (d)µ
(n
d

)
=
∑

d∈N:d|n

µ(d)F
(n
d

)
,

for all n ∈ N.

Proof. Let e = n/d, then due to the commutativity of ed = de = n, we get∑
d∈N:d|n

F (d)µ
(n
d

)
=

∑
d,e∈N:de=n

F (d)µ(e) =
∑

e,d∈N:ed=n

µ(d)F (e) =
∑

d∈N:d|n

µ(d)F
(n
d

)
.

Thus, we are left with showing that these expressions are equal to f(n).

Since F (n) =
∑

d∈N:d|n f(d), we can also evaluate at n/d :

F
(n
d

)
=
∑

t∈N:t|n
d

f(t).

Thus, we can insert this formula in
∑

d∈N:d|n µ(d)F
(
n
d

)
, to get

∑
d∈N:d|n

µ(d)F
(n
d

)
=
∑

d∈N:d|n

µ(d) ∑
t∈N:t|n

d

f(t)

 =
∑

d∈N:d|n

 ∑
t∈N:t|n

d

µ(d)f(t)

 .

We note that {(d, t) | d | n, t | n
d
} is the same as {(t, d) | t | n, d | n

t
}. In fact, if (d, t) is such

that t | n
d
, there exists a ℓ ∈ N such that tℓ = n

d
, thus t(ℓd) = n and t | n and dℓ = n

t
, hence d | n

t
.

The other direction follows in the same way. Thus, we can exchange the sums, instead of
running over (d, t) with d | n and t | n

d
to run over (t, d) with t | n and d | n

t
.
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Hence,

∑
d∈N:d|n

 ∑
t∈N:t|n

d

µ(d)f(t)

 =
∑

t∈N:t|n

 ∑
d∈N:d|n

t

f(t)µ(d)

 =
∑

t∈N:t|n

f(t) ∑
d∈N:d|n

t

µ(d)

 .

Recall by the definition of µ we have

∑
d∈N:d|n

t

µ(d) =

{
1 if n

t
= 1,

0 if n
t
> 1.

Hence, the only non-zero coefficients of f(t) is when n = t, that is

∑
t∈N:t|n

f(t) ∑
d∈N:d|n

t

µ(d)

 = f(n) · 1 = f(n).

This shows that if F is the summatory function of f , then we can also write f in a similar way.

Corollary 7.26. Let n be a positive integer. Then,

φ(n) =
∑

d∈N:d|n

dµ
(n
d

)
=
∑

d∈N:d|n

µ(d)
n

d
.

Exercise 7.27. Prove Corollary 7.26 using Theorem 7.25 with F = N and f = φ.

We can now give a more explicit definition of the Möbius function.

Theorem 7.28. Let n be a positive integer with prime factorization n =
∏k

i=1 p
ei
i . Then,

µ(n) =

{
0 if some ei > 1,

(−1)k else,

and µ(1) = 1.

Proof. Let us consider the function defined in the statement µ′, that is µ′(1) = 1 and if n is a
product of k distinct primes, then µ′(n) = (−1)k and µ′(n) = 0 else.

We prove that µ′ = µ from the recursive definition by induction on n.

Clearly µ(1) = µ′(1) = 1. Thus, let us assume that for all d < n we have µ(d) = µ′(d).

Let n > 1 with prime factorization n =
∏k

i=1 p
ei
i . We first show that

∑
d∈N:d|n µ

′(d) =∑
d∈N:d|n µ(d) = ε(n) = 0.
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Note that the non-zero terms in
∑

d∈N:d|n µ
′(d) are such that d is a product of 0 ≤ r ≤ k distinct

primes, that is d = pi1 · · · pir , in which case µ′(d) = (−1)r.

For each r, we have
(
k
r

)
possibilities to form such product, which are divisors d of n. Summing

over all r, we get ∑
d∈N:d|n

µ′(d) =
k∑

r=0

(
k

r

)
(−1)r = (1 + (−1))k = 0,

by the Binomial Theorem.
Since

∑
d∈N:d|n µ

′(d) = 0, we can write

µ′(n) = −
∑

d∈N:d|n,d<n

µ′(d),

and by induction hypothesis µ′(d) = µ(d) for all d < n we get

µ′(n) = −
∑

d∈N:d|n,d<n

µ(d) = µ(n).

Exercise 7.29. Find a simple formula for ∑
d∈N:d|n

|µ(d)|.

Definition 7.30. We say that a positive integer n is square-free, if there exists not p ∈ P with
p2 | n.

All square-free integers are of the form n =
∏k

i=1 pi.
Note that from Theorem 7.28, it follows that µ(n) 6= 0 if and only if n is square-free.

Exercise 7.31. Use Theorem 7.28 to show

φ(n) = n
∏

p∈P:p|n

(
1− 1

p

)
.

Corollary 7.32. The Möbius function µ is multiplicative.

Exercise 7.33. Prove Corollary 7.32, distinguishing between square-free a, b and a, b being a
product of k, respectively r, distinct primes.
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7.5 Convolution
Let us recall the summatory function of f , i.e.,

F (n) =
∑

d∈N:d|n

f(d)

and the identities we have seen

• Theorem 7.9:
F (n) = τ(n) =

∑
d∈N:d|n

1 =
∑

d∈N:d|n

u(d),

• Theorem 7.7:
F (n) = N(n) =

∑
d∈N:d|n

φ(d),

• Theorem 7.11:
F (n) = σ(n) =

∑
d∈N:d|n

d =
∑

d∈N:d|n

N(d),

• by definition
F (n) = ε(n) =

∑
d∈N:d|n

µ(d).

And we have seen the Möbius Inversion Formula, stating that if F is the summatory function
of f, then we can write

f(n) =
∑

d∈N:d|n

µ(d)F (n/d).

We will now use this expression to give an operation between arithmetic functions, and then
rewrite the identities.

Definition 7.34. Let f, g be arithmetic functions. The Dirichlet product or convolution ⋆ is defined
as

f ⋆ g(n) =
∑

d∈N:d|n

f(d)g
(n
d

)
.

Proposition 7.35. The Dirichlet product of two multiplicative functions is again multiplicative.

Proof. As we have seen in the proof of Lemma 7.4 Let a, b be two positive coprime integers. Then

φ : {d ∈ N | d | ab, gcd(a, b) = 1} → {(c, e) | gcd(c, d) = 1, c | a, e | b},
d 7→ (gcd(a, d), gcd(b, d)),

is a bijection between the positive integers dividing ab and the positive integers dividing a and b.
We also note that c = gcd(a, d), e = gcd(b, d) are coprime and d = ce.
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Thus,

f ⋆ g(ab) =
∑

d∈N:d|ab

f(d)g

(
ab

d

)
=
∑

c∈N:c|a

∑
e∈N:e|b

f(ce)g

(
a

c

b

e

)

=
∑

c∈N:c|a

∑
e∈N:e|b

f(c)f(e)g
(a
c

)
g

(
b

e

)
=
∑

c∈N:c|a

f(c)g
(a
c

) ∑
e∈N:e|b

f(e)g

(
b

e

)
= (f ⋆ g(a))(f ⋆ g(b)).

Using this new notation, we can write the summatory function as

F = u ⋆ f.

Thus, the Möbius Inversion Formula states: if F = u ⋆ f, then f = µ ⋆ F.

With this we can rewrite our previous summatory identities, and their Möbius inversion.

• Theorem 7.9: τ = u ⋆ u and its inversion: u = τ ⋆ µ,

• Theorem 7.7: N = u ⋆ φ and its inversion φ = N ⋆ µ,

• Theorem 7.11: σ = u ⋆ N and its inversion N = σ ⋆ µ,

• by definition ε = u ⋆ µ and its inversion µ = ε ⋆ µ.

The Dirichlet product also has a lot of algebraic properties.

Lemma 7.36. The Dirichlet product is commutative, associative and ε is the neutral element.

Proof. Let f, g, h be arithmetic functions.

• For the commutativity, we see that

(f ⋆ g)(n) =
∑

e,d∈N:ed=n

f(d)g(e) =
∑

e,d∈N:ed=n

g(d)f(e) = (g ⋆ f)(n).

• For the associativity, we check that

((f ⋆ g) ⋆ h)(n) =
∑

c,d∈N:cd=n

(f ⋆ g)(d)h(c)

=
∑

c,d∈N:cd=n

( ∑
a,b∈N:ab=d

f(a)g(b)

)
h(c) =

∑
a,b,c∈N:abc=n

f(a)g(b)h(c)

and similarly

(f ⋆ (g ⋆ h))(n) =
∑

a,e∈N:ae=n

f(a)(g ⋆ h)(e)

=
∑

a,e∈N:ae=n

f(a)
∑

b,c∈N:bc=e

g(b)h(c) =
∑

a,b,c∈N:abc=n

f(a)g(b)h(c).
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• For the neutral element, we observe that

(f ⋆ ε)(n) =
∑

e,d∈N:ed=n

f(d)ε(e) = f(n),

since ε(e) = 1 only for e = 1.

Having a neutral element for the Dirichlet product, we may ask: which arithmetic functions
have inverse functions?

Lemma 7.37. If f is an arithmetic function with f(1) 6= 0, then there exists an arithmetic function
g such that f ⋆ g = ε, and is given by g(1) = f(1)−1 and

g(n) = −f(1)−1
∑

d∈N:d|n,d<n

g(d)f
(n
d

)
,

for all n > 1.

Proof. For n = 1, the claim trivially follows:

f ⋆ g(1) = f(1)g(1) = f(1)f(1)−1 = 1 = ε(1).

For n > 1, we have

(g ⋆ f)(n) = g(n)f(1) +
∑

d∈N:d|n,d<n

g(d)f
(n
d

)
= −

∑
d∈N:d|n,d<n

g(d)f
(n
d

)
+

∑
d∈N:d|n,d<n

g(d)f
(n
d

)
= 0.

Thus, for multiplicative functions, we get

Corollary 7.38. Let f be a multiplicative function, then there exists a multiplicative function g
with f ⋆ g = ε, given by

g(n) = −
∑

d∈⋉:d|n,d<n

g(d)f
(n
d

)
,

for all n ≥ 1.

Let us now show a stronger version of the Möbius Inversion Formula:

Theorem 7.39. Let f be an arithmetic function. Then, F = u ⋆ f if and only if f = µ ⋆ F.
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Proof. We can easily recover the Möbius Inversion Formula as follows: if F = u ⋆ f , then

F ⋆ µ = (f ⋆ u) ⋆ µ = f ⋆ (u ⋆ µ) = f ⋆ ε = f.

We also have the other direction: if f = F ⋆ µ, then

F = F ⋆ ε = F ⋆ (µ ⋆ u) = (F ⋆ µ) ⋆ u = f ⋆ u.

Exercise 7.40. Prove Proposition 7.35 using a similar argument as in Lemma 7.4 with the equation

f(mn) =
∑

d∈N:d|mn

g(d)h
(mn
d

)
.
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8 Applications in Cryptography
We will now see one of the main applications of elementary number theory: cryptography.

Thank God that number theory is unsullied by any application.
Leonard Dickson

Let us start with explaining the objective of cryptography.

Cryptography is the art of secure communication. That is, there are the two parties, called
Alice and Bob, who want to communicate in a secure way, that means, such that an eavesdropper
(usually called Eve) is not able to read the messages.

In cryptography we differ between two main branches, called symmetric cryptography and
asymmetric cryptography.

In symmetric cryptography, Alice and Bob have exchanged some key prior to communication,
that will enable them a secure communication. Such secret key exchange might be performed using
protocols such as the Diffie-Hellman key exchange, which itself lies in the realm of asymmetric
cryptography.

More mathematically involved is the branch of asymmetric cryptography or public-key cryp-
tography, where the two parties do not share the same key.

The main public-key cryptosystems are: Public-Key Encryption (PKE) schemes, Key Encap-
sulation Mechanisms (KEM) and signature schemes.

8.1 PKE
A PKE consists of three steps:

1. key generation,

2. encryption,

3. decryption.

The main idea is that one party, Alice, constructs a secret key S and a connected public key P . The
public key, as the name suggests, is made publicly known, while the secret key is kept private.

This allows an other party, Bob, to use the public key to encrypt a message m by applying the
public key, gaining the so called ciphertext c.

The ciphertext is now sent through the insecure channel to Alice, who can use her secret key S
to decrypt the ciphertext and recover the message m.

An adversary, Eve, can only see the ciphertext c and the public key P. In order for a public-key
encryption scheme to be considered secure, it should be infeasible for Eve to recover from c and
P the message m. This also implies that the public key should not reveal the secret key.
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What exactly does infeasible mean, however? This is the topic of security. For a cryptographic
scheme, we define its security level to be the average number of binary operations needed for an
adversary to break the cryptosystem, that means either to recover the message (called message
recovery) or the secret key (called key recovery).

Usual security levels are 280, 2128, 2256 or even 2512, meaning for example that an adversary is
expected to need at least 280 binary operations in order to reveal the message. These are referred
to as 80 bit, 128 bit, 256 bit, or 512 bit security levels.

Apart from the security of a PKE, one is also interested in the performance, including how fast
the PKE can be executed and how much storage the keys require. Important parameters of a PKE
are

• the public key size,

• the secret key size,

• the ciphertext size,

• the decryption time.

With ’size’ we intend the bits that have to be sent or stored for this key, respectively for the
ciphertext. Clearly, one prefers small sizes and a fast decryption.

8.2 RSA
One of the most used PKE schemes is called RSA. This stands for its inventors Rivest, Shamir and
Adleman. Although RSA was published by the three in 1977, the system was already invented
before by the British secret agent Ellis, who, unfortunately, was not allowed to publish his idea.

RSA is widely used for internet communication protocols, email encryption, EC payments,
online banking and many more applications.

The tools we require to understand RSA are: Euclidean’s algorithm, the Chinese Remainder
Theorem, the Euler totient function and Euler’s theorem.

Let us quickly give the three steps, and then explain why it works and how secure it is.

1. Key Generation: Alice chooses two distinct primes p, q and computes n = pq and φ(n) =
(p − 1)(q − 1). She chooses a positive integer e < φ(n), which is coprime to φ(n). The
public key is P = (n, e) and the secret key is S = (p, q).

2. Encryption: Bob chooses a message m and encrypts it by computing

c = me mod n.
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3. Decryption: Alice can decrypt the ciphertext by first computing d and b such that

de+ bφ(n) = 1.

She can then recover the message as cd ≡ m mod n.

Why does this scheme work? Or equivalently, why is Alice able to recover the message cor-
rectly?

Proposition 8.1. RSA is correct, i.e., Alice can recover the message.

Proof. If gcd(m,n) = 1, then this follows by Euler’s Theorem:

cd ≡ (me)d ≡ m1−bφ(n) ≡ m
(
mφ(n)

)−b ≡ m1−b ≡ m mod n.

If t = gcd(m,n) 6= 1, we note that t ∈ {p, q, n}. We assume that t 6= n as else Bob sent c = 0.
Assume t = p and hence m = kp for some integer k. Now, we argue using the Chinese Remainder
Theorem and Fermat’s Little Theorem.

In order to solve x ≡ cd mod n we can equivalently solve

x ≡ cd mod p,

x ≡ cd mod q.

Since m = kp, c ≡ me mod n is also a multiple of p and thus the first equation is simply x ≡ 0
mod p. Recall that d was chosen such that

ed+ b(p− 1)(q − 1) = 1.

Thus, for b′ = b(p− 1), we have

ed+ b′φ(q) = 1.

Hence,
cd ≡ m1−b′(q−1)) ≡ m

(
mq−1

)−b′ ≡ m ≡ m′ mod q.

Now we can recover m using

x ≡ 0 mod p,

x ≡ m′ mod q

and the Chinese Remainder Theorem, getting x ≡ m mod n.

How secure is the scheme? Eve is able to see n, e and the ciphertext c. In order for Eve to
recover m, she needs to compute d ≡ e−1 mod φ(n). However, Eve does not know φ(n).

Thus, RSA is based on the hardness of integer factorization.

65



Proposition 8.2. Let p, q be distinct primes and n = pq. Then, knowing p, q is equivalent to
knowing n, φ(n).

Proof. The first direction is easy, as p, q reveals n = pq and φ(n) = (p− 1)(q − 1).

On the other hand, knowing n and φ(n), one can use the two equations

p+ q = n− φ(n) + 1,

|p− q| =
√
(p+ q)2 − 4n

to recover p, q.

While we do not know any algorithm that solves integer factorization in polynomial time, there
is still the threat coming from capable quantum computers: Shor’s algorithm is able to factor
integers in polynomial time using a quantum algorithm.

While the scheme still works for messages m which are not coprime to the public n, such
choices should be avoided. In fact, if gcd(m,n) = p, then gcd(c, n) = p as well and an attacker
can compute this quickly using the Euclidean algorithm.

Example 8.3. Alice chooses p = 7, q = 13 and compute n = 91 and φ(n) = 72.
She then chooses e < 72, which is coprime to 72, for example e = 5. Alice then publishes

P = (91, 5) and keeps S = (7, 13) a secret.

Bob has a message, say m = 3, and computes the ciphertext as me ≡ 35 mod 91. Bob can do
so efficiently using consecutive squaring:

c = 35 = (32)2 · 3 ≡ 61 mod 91.

Alice can now apply the Euclidean algorithm to find integers d, b such that

de+ bφ(n) = d · 5 + b · 91 = 1.

Doing so, Alice finds that

72 = 14 · 5 + 2,

5 = 2 · 2 + 1.

And by inserting these equations backwards, she gets that

1 = 5− 2 · 2 = 5− 2(72− 14 · 5) = (−2) · 72 + 29 · 5.

Alice, thus, found the decryption exponent d = 29 and she can compute (again using consecutive
squaring)

cd ≡ 6129 ≡ m ≡ 3 mod 91.

Exercise 8.4. Use p = 7, q = 13 to encrypt the message m = 21.

Exercise 8.5. What happens if we choose q = p?
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8.3 Digital Signature Schemes
Digital signature schemes aim at giving a guarantee of the legitimate origin of an object, such as a
digital message, exactly as signing a letter to prove that the sender of this letter is really you.

In this process we speak of authentication, meaning that a receiver of the message can (with
some probability) be sure that the sender is legit, and of integrity, meaning that the message has
not been altered.

A digital signature scheme again consists of three steps:

1. key generation,

2. signing,

3. verification.

In digital signature schemes we consider two parties: the signer, who has to prove their identity to
the second party, called verifier, who in turn, verifies the identity of the signer.

As a first step, the signer constructs a secret key S, which is kept private and a public key P ,
which is made public. The signer then chooses a message m, and creates a signature s using his
secret key S and the message m, getting a signed message (m, s).

The verifier can easily read the message m, but wants to be sure that the sender is legit. Thus,
the verifier uses the public key P and the knowledge of the message m on the signature s to get
authentication.

The security of a digital signature scheme introduces a new adversary, the impersonator. An
impersonator, tries to cheat the verifier and acts as a signer, however without the knowledge of the
secret key S.

An impersonator wins if a verifier has verified a forged signature. This comes with a certain
probability, called cheating probability or soundness error. In order to ensure integrity a digital
signature should always involve a secret key as well as the message itself.

Clearly, the secret key should still be infeasible to recover from the publicly known key, thus
one still has the usual adversary, called Eve, and a security level, as in a public-key encryption
scheme.

The performance of a digital signature scheme consists of

• the signature size,

• the public key size,

• the secret key size,

• the verification time.
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8.4 RSA Signature Scheme
We can turn the RSA public-key encryption protocol into a signature scheme.

1. Key Generation: the signer chooses two distinct primes p, q and computes n = pq and
φ(n) = (p− 1)(q− 1). The signer chooses a natural number e < φ(n), which is coprime to
φ(n) and computes d and b such that

de+ bφ(n) = 1.

The public key is P = (n, e) and the secret key is S = (p, q, d).

2. Signing: the signer chooses a message m and signs it by computing

s = md mod n.

The signer then sends m, s to the verifier.

3. Verification: the verifier can verify the signature s by checking if

se = m mod n.

Proposition 8.6. The signature scheme RSA is correct, i.e., the verifier will accept a honest signer.

Proof. The proof is similar to Proposition 8.1. If gcd(m,n) = 1 we can apply Euler’s Theorem to
get

se ≡ mde ≡ m1−bφ(n) ≡ m
(
mφ(n)

)−b ≡ m mod n.

If gcd(m,n) = t 6= 1, we can only have t ∈ {p, q, n}. We can exclude t = n, as else m ≡ 0
mod n, and so is c. Thus, let us assume that t = p. Instead of solving se mod n we equivalently
compute se mod p and se mod q.

Again, as m is a multiple of p, so is s and thus se ≡ 0 mod p. We can rewrite ed+ bφ(n) = 1
as ed+ b′(q − 1) = 1 for b′ = b(p− 1) and thus

se ≡ mde ≡ m
(
mq−1

)−b′ ≡ m ≡ m′ mod q.

Using the Chinese Remainder Theorem for se ≡ 0 mod p and se ≡ m′ mod q we recover
se ≡ m mod n.

Example 8.7. The signer chooses p = 7, q = 13 and compute n = 91 and φ(n) = 72.
The signer then chooses e < 72, which is coprime to 72, for example e = 5.
The signer computes

1 = 5− 2 · 2 = 5− 2(72− 14 · 5) = (−2) · 72 + 29 · 5.

Thus, d = 29. The public key is given by P = (91, 5) and the secret key by S = (7, 13, 29) a secret.

In order to sign a message, say m = 3, the signer computes s = md ≡ 329 ≡ 61 mod 91. The
signer then sends (m, s) = (3, 61) to the verifier. The verifier can check the signature as

se ≡ 615 ≡ m ≡ 3 mod 91.
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The signature scheme (in the presented form) is unfortunately not secure.
In fact, after seeing two message and signature pairs (m1, s1) and (m2, s2) an impersonator can

construct another valid pair:

(m ≡ m1m2 mod n, s ≡ s1s2 mod n),

since
se ≡ (s1s2)

e ≡ se1s
e
2 ≡ m1m2 ≡ m mod n.

We call this a homomorphic property.

Exercise 8.8. How would an impersonator forge a signature provided that the impersonator does
not care about the content of the message m?

In order to prevent such attacks, we first compute the hash of the message and then sign this.
A hash function is a function that compresses the input value to a fixed length. In addition,

we want that it is computationally hard to reverse a hash function and also to find a different input
giving the same hash value. We denote the publicly known hash function by Hash.

Thus, we can update the RSA signature scheme with

1. Key Generation: the signer chooses two distinct primes p, q and computes n = pq and
φ(n) = (p− 1)(q− 1). The signer chooses a natural number e < φ(n), which is coprime to
φ(n) and computes d and b such that

de+ bφ(n) = 1.

The public key is P = (n, e) and the secret key is S = (p, q, d).

2. Signing: the signer chooses a message m and computes Hash(m). The signer computes

s = Hash(m)d mod n

and sends m, s to the verifier.

3. Verification: the verifier can verify the signature s by checking if

se = Hash(m) mod n.

8.5 Discrete Logarithm
Another public-key encryption scheme is based on the hardness of the discrete logarithm problem
in Z/pZ, for p ∈ P .

Definition 8.9. Let p ∈ P and α ∈ Z/pZ of order p − 1. Let A = αi ∈ Z/pZ×, for some
i ∈ {0, . . . , p− 2}. Then i is called the discrete logarithm of A in the base α modulo p.

Similar to factoring integers, we do not know any algorithm that finds discrete logarithms in
polynomial time. However, Shor’s algorithm is able to do so on a capable quantum computer.

We start this section with the famous Diffie-Hellmann key exchange protocol, as it revolution-
ized cryptography, opening the door to public-key cryptosystems.
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8.5.1 Diffie-Hellmann Key Exchange

This protocol is a key encapsulation mechanism, also called key agreement or key exchange proto-
col. In fact, its purpose is to securely exchange a key in order to enable symmetric cryptosystems.

1. Alice and Bob agree on a public key P = (p, α), where p ∈ P and α ∈ Z/pZ of order p−1.

2. Alice chooses a ∈ {2, . . . , p− 2} and computes A = αa mod p and sends A to Bob.

3. Bob chooses b ∈ {2, . . . , p− 2} and computes B = αb mod p and sends B to Alice.

4. Both can now compute the shared secret key αab ≡ Ab ≡ Ba mod p.

Clearly, the values 1, p − 1 are avoided for the secret a, b as sending α1 = α reveals k = 1 and
αp− 1 ≡ 1 mod p reveals k = p− 1.

Example 8.10. Alice and Bob agree on p = 11 and α = 2.
Alice then chooses a = 4 and computes A ≡ 24 ≡ 5 mod 11. She sends A = 5 to Bob.
Bob chooses b = 8 and computes B ≡ 28 ≡ 3 mod 11 and sends this to Alice.
Both can now compute

2ab = 24·8 mod p−1 ≡ 22 ≡ 4 mod p.

8.5.2 ElGamal cryptosystem

This idea also gives raise to the ElGamal public-key encryption scheme.

1. Key generation: Alice chooses p ∈ P and α ∈ Z/pZ of order p − 1, a ∈ {2, . . . , p − 2}
and computes A ≡ αa mod p. The secret key is given by S = a and the public key is
P = (p, α,A).

2. Encryption: Bob chooses b ∈ {2, . . . , p− 2} and computes B ≡ αb mod p. For a message
m, Bob computes c ≡ Abm mod p and sends the ciphertext (c, B).

3. Decryption: Alice can compute

Bp−1−ac ≡ m mod p.

Why does this work?

Proposition 8.11. The ElGamal cryptosystem is correct, i.e., Alice can recover the message.

Proof. Note that

Bp−1−ac ≡ αb(p−1−a)Abm ≡ αb(p−1−a)αabm ≡ αab−abm ≡ m mod p.

70



Let us consider the same example again.

Example 8.12. Alice chooses p = 11, α = 2 and a = 4, and computes A ≡ 24 ≡ 5 mod 11. The
public key is P = (11, 2, 5) and the secret key is S = 4.

Bob chooses b = 8 and computes B ≡ 28 ≡ 3 mod 11. For a message m = 6, Bob computes
c ≡ Abm ≡ 58 · 6 ≡ 4 · 6 ≡ 2 mod 11 and sends (2, 3) to Alice.

Alice can decrypt as

Bp−1−ac ≡ 36 · 2 ≡ 3 · 2 ≡ 6 ≡ m mod 11.

Unfortunately, there are several problems with the ElGamal cryptosystem:

• Given two ciphertexts, one can construct a new ciphertext: let (c, B) be the ciphertext for m
and (c′, B′) be the ciphertext of m′. Then (cc′, BB′) = (Ab+b′ , Ab+b′mm′) is a ciphertext for
mm′.

• Given a ciphertext of a message m, one can construct several ciphertexts for the same mes-
sage m: Let (c, B) be the ciphertext of m and choose b′. Then, (cAb′ = Ab+b′m,Bαb′ =
αb+b′) is again a ciphertext of m.

• In fact, the secret b is ephemeral, meaning that for each encryption of a new message we
have to choose a new b. Else, Eve would see c = Abm, c′ = Abm′ and can recover m/m′.

ElGamal Signature Scheme Finally, we can also turn the idea to a signature scheme (which is
was later adapted to the DSA signature scheme).

1. Key generation: the signer chooses p ∈ P , α ∈ Z/pZ of order p− 1 and computes A ≡ αa

mod p. The secret key is given by S = a and the public key is P = (p, α,A).

2. Signing: given a messagem, the signer can compute b ∈ {2, . . . , p−2} with gcd(b, p−1) =
1 and computes B ≡ αb mod p and s = (m− aB)b−1 mod p− 1. The signature is given
by (B, s).

3. Verification: the verifier can check that

αm ≡ ABBs mod p.

Why does this work?

Proposition 8.13. The ElGamal signature scheme is correct, that is a verifier accepts an honest
signer.

Proof. We note that m ≡ aB + sb mod p− 1, thus

αm ≡ αaB+sb ≡ (αa)B
(
αb
)s ≡ ABBs mod p.
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Example 8.14. The signer chooses p = 11, α = 2 and a = 4, and computesA ≡ 24 ≡ 5 mod 11.
The public key is P = (11, 2, 5) and the secret key is S = 4. The signer chooses b = 3 and
computes B ≡ 23 ≡ 8 mod 11. For a message m = 6, the signer computes s ≡ (m− aB)b−1 ≡
(6− 4 · 8)3−1 ≡ 8 mod 10 and sends m = 6 and the signature (8, 8) to the verifier.

The verifier can check that

αm ≡ 26 ≡ 9 ≡ ABBs ≡ 5888 ≡ 4 · 5 ≡ 9 mod 11.

Actually, the version of RSA we have presented here is the original proposal, but is not the one
that is used. For this we first need to introduce the Carmichael totient function and need to make a
quick excursion to the group of units in Z/nZ.

8.6 Excursion to Group of Units
Recall that we wanted to find an exponent e(n) such that

ae(n) ≡ 1 mod n.

We have seen that φ(n) is a simple solution, however, it is not necessarily the smallest one.
For this, we need to ask: how does the group of units Z/nZ× look like?
Clearly, it is an abelian group, but is it cyclic, i.e., generated by a single element?

Example 8.15. Z/5Z× = {1, 2, 3, 4} is cyclic as 20 ≡ 1, 21 ≡ 2, 22 ≡ 4, 23 ≡ 3 mod 5.

As it often happens, the prime factor 2 | n will play a special role. In fact, while Z/peZ× is
cyclic for odd p, any Z/2eZ× with e ≥ 3 is not.

Definition 8.16. If Z/nZ× is cyclic, then any generator g is called a primitive root modulo n.

In particular, a primitive root modulo n has order φ(n), thus, for n with cyclic Z/nZ×, the
exponent φ(n) is the smallest one.

The question now becomes: when is Z/nZ× cyclic?

Theorem 8.17. Let p ∈ P and d | (p− 1). Then, there exist φ(d) elements in Z/pZ of order d.

Proof. For each d | (p − 1), define Sd = {a ∈ Z/pZ× | ord(a) = d} of size s(d). We want to
prove s(d) = φ(d).

First, we show that s(d) ≤ φ(d): This is trivial if s(d) = 0. Otherwise, there exists some
a ∈ Sd. Then, by definition of the order of a, the elements a1, a2, ..., ad are all distinct and satisfy
(ai)d = (ad)i = 1i = 1. Hence, they are all distinct roots of f(x) = xd − 1 over Z/pZ. Since d is
also the degree of f , there cannot be any other roots. Thus, we have shown Sd ⊆ {a1, a2, ..., ad}.

Still fixing some a ∈ Sd, we now show that any element b ∈ Sd is of the form ai for some
i ∈ {1, ..., d} with gcd(i, d) = 1. Since Sd ⊆ {a1, a2, ..., ad}, only gcd(i, d) remains to be shown.
Let j = gcd(i, d); then

bd/j = aid/j =
(
ad
)i/j

= 1 ∈ Z/pZ.
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Since ord(b) = d, we get that d = ord(b) | (d/j), hence j = 1.
In summary, this proves s(d) ≤ φ(d).

Now, by Lagrange’s Theorem, we know that ord(a) | (p − 1) for all a ∈ Z/pZ×, thus the
sets Sd partition Z/pZ× and ∑

d∈N: d|(p−1)

s(d) = p− 1.

On the other hand, from the Gauss Theorem (Theorem 7.7), we get∑
d∈N: d|(p−1)

φ(d) = p− 1,

hence ∑
d∈N: d|(p−1)

(φ(d)− s(d)) = 0.

Thus, since we’ve shown that every summand is nonnegative, if s(d) < φ(d) for any d | (p−1),
then this sum would have to be strictly positive. Therefore s(d) = φ(d) for all summands.

We can immediately deduce (setting d = p− 1) that Z/pZ× is cyclic.

Corollary 8.18. If p ∈ P , then Z/pZ× is cyclic.

Theorem 8.19. Let p ∈ P be odd and let e be a positive integer. Then, Z/peZ× is cyclic.

Proof. We already know this for e=1 from Corollary 8.18. The proof for e ≥ 2 uses induction.
Base case (e=2): Since Z/pZ is cyclic, there exists an integer g ∈ Z, not divisible by p, such that
g has order φ(p) = p − 1 modulo p. By Lagrange’s Theorem, the order ord(g) of g modulo p2 is
a divisor of φ(p2) = p(p − 1). On the other hand, since gk ≡ 1 mod p2 implies gk ≡ 1 mod p,
we have p − 1 = φ(p) | ord(g), hence there are only the two possibilities ord(g) = p − 1 and
ord(g) = p(p − 1). In the latter case, g is a primitive root modulo p2, so we are done; hence,
assume ord(g) = p − 1. Let h := g + p. Since h ≡ g mod p, the order ord(h) of h modulo p2

again satisfies (p− 1) | ord(h) | p(p− 1). With the Binomial Theorem we get

hp−1 = (g + p)p−1

=

p−1∑
i=0

(
p− 1

i

)
gp−1−ipi

≡
(
p− 1

0

)
gp−1−0 +

(
p− 1

1

)
gp−1−1p mod p2

= gp−1 + (p− 1)gp−2p

= gp−1 + gp−2p2 − gp−2p

≡ 1− gp−2p mod p2 .
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Since p ∤ g, we have gp−2p 6≡ 0 mod p2 and thus ord(h) 6= p − 1, which means that only
ord(h) = p(p− 1) is possible. But then h is a primitive root modulo p2.

Induction step ((e−1, e) → e+1): Suppose Z/peZ is cyclic. Hence, there exists an integer g ∈
Z such that gcd(g, pe) = 1, so that g is a unit in Z/peZ, and such that the order of g modulo pe+1 is
equal to n := φ(pe) = pe−1(p− 1). From gcd(g, pe) = 1 it directly follows that gcd(g, pe+1) = 1,
hence g is also a unit in Z/pe+1Z.

Using Lagrange’s Theorem as before, the order ord(g) of g modulo pe+1 must be a divisor of
φ(pe+1) = np. On the other hand, since gk ≡ 1 mod pe+1 implies gk ≡ 1 mod pe and the order
of g modulo pe is φ(pe) = n, we have n | ord(g). So the only two possibilities are ord(g) = n and
ord(g) = np. In the latter case, g is a primitive root modulo pe+1, so we are done. Thus, suppose
now that ord(g) = n.

Since g has order n modulo pe, we have gn/p 6≡ 1 mod pe. However, since n/p = φ(pe−1),
Euler’s Theorem implies gn/p ≡ 1 mod pe−1. Combining these two, there exists some integer k,
not divisible by p, such that gn/p = 1 + kpe−1.

Using the Binomial Theorem we get

gn = (1 + kpe−1)p =

p∑
i=0

(
p

i

)
(kpe−1)i.

Since e ≥ 2 and thus pi(e−1) ≡ 0 mod pe+1 unless i ∈ {0, 1, 2}, we are left with

gn ≡ 1 + p · kpe−1 + p(p−1)
2

· k2p2e−2 mod pe+1.

Since e ≥ 2 and p is odd, we have p(p−1)
2

· p2e−2 ≡ 0 mod pe+1. Hence,

gn ≡ 1 + kpe 6≡ 1 mod pe+1,

since p does not divide k.

Note that we really required p to be odd, else p(p−1)
2

· p2e−1 ≡ 22e−2 6≡ 0 mod 2e+1, for e = 2.
Thus, we need to pay special attention to the case p = 2:

Theorem 8.20. Let e be a positive integer. Then, Z/2eZ is cyclic if and only if e ≤ 2.

Proof. One can easily check that Z/2Z× and Z/4Z× are cyclic.

We show that for e≥ 3 the group Z/2eZ× has no elements of order φ(2e) = 2e−1 by proving

a2
e−2 ≡ 1 mod 2e

for all integers a with 2 ∤ a. We again use induction on e.
Base case (e = 3): We prove that a2 ≡ 1 mod 8 for all odd a: Writing a = 2b+ 1, we get

a2 = 4b2 + 4b+ 1 = 4b(b+ 1) + 1 ≡ 1 mod 8.
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Induction step (e→ e+1): Let us assume

a2
e−2 ≡ 1 mod 2e,

for all odd a. Thus, there exists an integer k such that a2e−2
= 1 + 2ek. But then

a2
(e+1)−2

= (1 + 2ek)2 = 1 + 2e+1k + 22ek2 = 1 + 2e+1(k + 2e−1k2) ≡ 1 mod 2e+1.

Within this proof we have also showed that

Corollary 8.21. Let a be an odd integer and e ≥ 3. Then,

aφ(2
e)/2 ≡ 1 mod 2e.

Lemma 8.22. Let r, s be two positive coprime integers r, s ≥ 3. Then, Z/rsZ× is not cyclic.

Proof. Since gcd(r, s) = 1, we get from Corollary 7.26 that φ(rs) = φ(r)φ(s) and that φ(r), φ(s)
are both even (see Exercise 4.29).

Thus, 4 | φ(rs). Let k = φ(rs)/2, which is a multiple of both φ(r) and φ(s).

Let a ∈ Z be coprime to rs. Then gcd(a, r) = 1 and gcd(a, s) = 1, hence Euler’s Theorem
implies aφ(r) ≡ 1 mod r and aφ(s) ≡ 1 mod s.

Now, since φ(r), φ(s) both divide k, we also have ak ≡ 1 mod r and ak ≡ 1 mod s and
therefore ak ≡ 1 mod rs via the Chinese Remainder Theorem.

Thus, every element of Z/rsZ× has order dividing k <φ(rs) and there is no primitive root.

Putting all these results together, we get the following theorem:

Theorem 8.23. Let n be a positive integer. The group Z/nZ× is cyclic if and only if n is of the
form 1, 2, 4, pe, or 2pe, where p is an odd prime and e is a positive integer.

Proof. “⇐”: The cases n = 1, 2, 4 are easily checked and Theorem 8.19 deals with n = pe. For
n = 2pe, Corollary 7.26 gives φ(n) = φ(2)φ(pe) = φ(pe). By Theorem 8.19, there exists a
primitive root g modulo pe. Then g+ pe is also a primitive root modulo pe. Since either g or g+ pe

is odd, one of these integers must be a primitive root h modulo pe:

• Since h is coprime to 2 and pe, it is a unit modulo 2pe.

• If hk ≡ 1 mod 2pe, then hk ≡ 1 mod pe and thus φ(pe) | k. But note φ(2pe) = φ(pe).
Moreover, from Lagrange’s theorem the order of h modulo 2pe satisfies ord(h) | φ(2pe);
hence, ord(h) = φ(2pe) and it is thus a primitive root.
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“⇒”: For the “only if” part, we note that every n 6∈ {1, 2, 4, pe, 2pe} falls into (at least) one of
the following cases:

• n = 2e with e ≥ 3. Here we know Z/nZ× is not cyclic by Theorem 8.20.

• n = 2epf with e ≥ 2, f ≥ 1 and p an odd prime. This we can exclude using Lemma 8.22
and r = 2e, s = pf .

• n = peqfms with p, q distinct odd primes and p, q ∤ m. This we can exclude using Lemma
8.22 with pe dividing n and s = qfm.

Recall that the Chinese Remainder Theorem gives a ring isomorphism

Z/nZ ∼= Z/pe11 × · · · × Z/pekk ,

for n with prime factorization n =
∏k

i=1 p
ei
i . This ring isomorphism yields the group isomorphism

Z/nZ× ∼= Z/pe11 Z× × · · · × Z/pekk Z×.

Thus, we get a complete description of the group of units of any Z/nZ.

8.7 Carmichael Totient Function
In the previous section, we have seen that φ(n) is not always the smallest exponent e(n) for which

ae(n) ≡ 1 mod n (4)

holds for all a coprime to n.

Thus, with the structure of Z/nZ× in mind, we ask again: what is the smallest exponent e(n)?

Definition 8.24. Let n be a positive integer. The Carmichael totient function λ(n) is defined as the
smallest positive integer m such that

am ≡ 1 mod n

holds for any a coprime to n.

How is this different from the Euler totient function? Let us consider an example.
Example. Let n = 15 = 3 · 5. The Euler totient function is then φ(15) = (3 − 1)(5 − 1) = 8.
However, we can show that for any integer a with gcd(a, 15) = 1, we have

a4 ≡ 1 mod 15.

Lemma 8.25. Let e ≥ 3 be an integer. Then every a ∈ Z/2eZ× can be written in a unique way as
(−1)i · 5j with i ∈ {0, 1} and j ∈ {0, ..., 2e−2 − 1}.
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Proof. We first show that 5 has order 2e−2: This is done by induction. The base cases e=3
and e=4 can be verified by inspection. For the induction step (e−1, e) → e+1, suppose 5 has
order 2e−2 modulo 2e and order 2e−3 modulo 2e−1. Thus 52e−3

= 1 + 2e−1k for some odd k ∈ Z.
Hence

52
e−2

= (1 + 2e−1k)2 = 1 + 2ek + 22e−2k2 ≡ 1 + 2ek (mod 2e+1) .

Therefore 5 has order 2e−1 modulo 2e+1, as claimed.
Finally, note that powers of 5 only cover the two residue classes 5 and 52 = 25 ≡ 1 modulo 8.

Negation defines a bijection to the residue classes −5 ≡ 3 and −1 ≡ 7 modulo 8.

Theorem 8.26. Let n be a positive integer with prime factorization n =
∏k

i=1 p
ei
i . Then

λ(n) =


φ(n) if n = 1, 2, 4, pe for p ∈ P odd,
φ(n)/2 if n = 2e, e ≥ 3,

lcm(λ(pe11 ), . . . , λ(pekk )) else.

Proof. The proof follows from the excursion to the group of units: If n = 1, 2, 4 or an odd prime
power, then Theorem 8.19 tells us that Z/nZ× is cyclic and has a primitive root g, i.e., an element
of order φ(n). Thus, φ(n) is the smallest exponent of Equation (4).

For the special case n = 2e and e ≥ 3, Theorem 8.20 tells us that there actually exists a smaller
exponent φ(n)/2. Indeed, by Lemma 8.25, we know that this is the smallest possible choice.

Finally, the Chinese Remainder Theorem tells us how to deal with a product of different primes:
If λi = λ(peii ) is the smallest exponent to get

aλi ≡ 1 mod peii ,

then also akλi ≡ 1 mod peii for any positive integer k. Since we want an exponent that works
modulo all prime powers peii , we are looking for the least common multiple of all the λi.

Exercise 8.27. Let n be a positive integer. Then, λ(n) | φ(n).

Exercise 8.28. Let a, b be two positive integers with a | b. Show that λ(a) | λ(b).

8.8 Revisiting RSA
Instead of using the Euler totient function for RSA, in practice one uses the Carmichael totient
function.

1. Key Generation: Alice chooses two distinct primes p, q and computes n = pq and λ(n) =
lcm(p − 1, q − 1). She chooses a positive integer e < λ(n), which is coprime to λ(n). The
public key is P = (n, e) and the secret key is S = (p, q).

2. Encryption: Bob chooses a message m and encrypts it by computing

c = me mod n.
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3. Decryption: Alice can decrypt the ciphertext by first computing d and b such that

de+ bλ(n) = 1.

She can then recover the message as cd ≡ m mod n.

Note that any d which satisfied

d · e ≡ 1 mod φ(n)

also satisfies
d · e ≡ 1 mod λ(n).

Hence, the new decryption exponent d satisfies a weaker but sufficient condition.
However, λ(n) = lcm(p− 1, q − 1) is much smaller than φ(n) = (p− 1)(q − 1) and will thus

lead to smaller decryption exponents, making the scheme ultimately more efficient.

Exercise 8.29. Give an example of how RSA works using λ and p = 3, q = 5.
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9 Quatdratic Residues
In this chapter we consider the general question, whether an integer a has a square root modulo
n and if so, how many and how to find them. We will later see applications of such squares in
primality tests.

How many elements in Z/nZ are squares? We could simply go through all x ∈ {0, . . . , n− 1}
and collect all x2. Clearly, we can do better, as x2 ≡ (n − x2) mod n, i.e., we only need to
go through all x ∈ {0, . . . , dn−1

2
e}, but even in this case we can still have two distinct x, y with

x2 ≡ y2 mod n.

Example 9.1. In Z/2Z all elements are squares, as 02 ≡ 0 mod 2 and 12 ≡ 1 mod 2.
The case Z/3Z is already more interesting, as 2 is not a square.

Clearly, 0 is always a square. Even more, we are mostly interested in the squares of the group
of units Z/nZ×.

Definition 9.2. Let a ∈ Z/nZ×. We say that a is a quadratic residue modulo n if the congruence
x2 ≡ a mod n has solutions, i.e., there exists a s ∈ Z/nZ× such that s2 ≡ a mod n. If the
congruence has no solutions, we call a a quadratic non-residue modulo n.

The set of all quadratic residues is denoted by Qn, i.e.,

Qn = {s2 ∈ Z/nZ× | s ∈ Z/nZ×}.

Example 9.3. Q7 = {1, 2, 4}, while Q6 = {1} and Q8 = {1}.

How many s are there to write a ≡ s2 mod n?

Lemma 9.4. Let n be a positive integer with prime factorization n =
∏k

i=1 p
ei
i . Then, a ∈ Qn has

N =


2k+1 if n ≡ 0 mod 8,

2k−1 if n ≡ 2 mod 4,

2k else

many square roots.

Proof. If a ∈ Qn, then there exists s ∈ Z/nZ× with s2 ≡ a mod n. Any element t ∈ Z/nZ× has
the form t = sx (indeed take x = ts−1), for some unique x ∈ Z/nZ×.

We thus have t2 ≡ s2x2 ≡ a mod n if and only if x2 ≡ 1 mod n. Thus, N is the number of
solutions of x2 ≡ 1 mod n for x ∈ Z/nZ×.

We count these by first considering different solutions modulo pe, where p ∈ P and e is a
positive integer.

If p is an odd prime, then x2 ≡ 1 mod pe implies pe | (x2 − 1) = (x − 1)(x + 1). Thus,
pe | (x− 1) or pe | (x+ 1) and we only have two solutions x ≡ ±1 mod pe.

If pe = 2 we only have one solution x ≡ 1 mod n and if pe = 4, then we have the two
solutions x ≡ ±1 mod 4.
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For pe = 2e, with e ≥ 3, a similar argument shows that there are four solutions: x ≡ ±1
mod 2e and x ≡ 2e−1 ± 1 mod 2e, which are distinct from ±1 mod 2e.

In fact, for any solution x, we get 2e | (x−1)(x+1) and either x−1 ≡ 2 mod 4 and x+1 ≡ 0
mod 2e−1 or vice versa.

For n =
∏k

i=1 p
ei
i we can apply the Chinese Remainder Theorem and for each pi odd, we get

two solutions, while for pi = 2, we either get 1, 2 or 4 solutions depending on ei.

There are several properties that we can state for general Qn. For this we will first introduce
the index.

Definition 9.5. Let n be a positive integer, such that there exists a primitive root αmodulo n, that is
ord(α) = φ(n). Then any b ∈ Z/nZ× can be written as b = αk for a unique k ∈ {0, . . . , φ(n)−1}.
We say k is the index of b to the base α modulo n, (or also discrete logarithm) and write indα(b) =
k.

Recall from Theorem 8.23, that this implies n ∈ {2, 4, pe, 2pe}.

Example 9.6. Let us consider p = 7, α = 3. Then,

ind3(1) = 0, ind3(2) = 2, ind3(3) = 1, ind3(4) = 4, ind3(5) = 5, ind3(6) = 3.

We note that indα introduces a function similar to the logarithm, where

indα : Z/nZ× → Z/φ(n)Z,
αi 7→ i.

We also have similar properties to the logarithm function:

Proposition 9.7. Let n be a positive integer, such that there exists a primitive root α modulo n. If
a, b ∈ Z/nZ×, then

• indα(1) ≡ 0 mod φ(n),

• indα(ab) ≡ indα(a) + indα(b) mod φ(n),

• indα(a
k) ≡ k · indα(a) mod φ(n).

Proof. • From Euler’s Theorem, we know that αφ(n) ≡ 1 mod n. Since α is a primitive root
modulo n, there is no smaller positive integer r such that αr ≡ 1 mod n. Thus, indα(1) ≡
φ(n) ≡ 0 mod φ(n).

• We note that by the definition of index, ab ≡ αindα(a)αindα(b) ≡ αindα(a)+indα(b) mod n.
Thus, αindα(ab) ≡ αindα(a)+indα(b) mod n and since α has order φ(n), we get indα(ab) ≡
indα(a)+ indα(b) mod φ(n). In fact, for any positive integers ℓ ≤ k with αℓ ≡ αk mod n,
we also get αk−ℓ ≡ 1 mod n, thus φ(n) | (k − ℓ).
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• By definition, we have that

αindα(ak) ≡ ak ≡
(
αindα(a)

)k ≡ αkindα(a) mod n,

and we can again follow that indα(a
k) ≡ kindα(a) mod φ(n).

Example 9.8. Let p = 7, α = 3 then 52 ≡ 4 mod 7 and

ind3(5
2) ≡ ind3(4) ≡ 4 ≡ 2 · ind3(5) ≡ 2 · 5 mod 6.

9.1 Group of Quadratic Residues
Lemma 9.9. Let n > 2 be a positive integer, such that there exists a primitive root α modulo n
and a ∈ Z/nZ×. Then a is a quadratic residue modulo n if and only if indα(a) is even.

Proof. For the first direction, we assume that indα(a) = 2k, for some positive integer k. That
means α2k ≡ a mod n and hence

(
αk
)2 ≡ a mod n, i.e., αk is a square root of a modulo n.

For the other direction, suppose that a is a quadratic residue modulo n, thus there exists some
b ∈ Z/nZ× with b2 ≡ a mod n, thus indα(b

2) ≡ indα(a) mod φ(n) and due to Proposition 9.7,
we also have indα(b

2) ≡ 2indα(b) ≡ indα(a) mod φ(n).

Thus

|Qn| = |{a ∈ Z/nZ× | indα(a) is even }| = |{α2k | k ∈ {1, . . . , φ(n)/2}}| = φ(n)

2
.

Theorem 9.10. Let n > 2 be a positive integer such that there exists a primitive root α modulo n.
Then, Qn is a cyclic subgroup of Z/nZ× of order φ(n)/2, generated by α2.

Proof. In Lemma 9.9, we have seen that Qn = {α2k | k ∈ {1, . . . , φ(n)/2}}, thus we only have
to show that Qn contains the neutral element, is closed under the product and inverses. Clearly
1 ∈ Qn since 12 ≡ 1 mod n. If a, b ∈ Qn, then there exist s, t ∈ Z/nZ× with a ≡ s2 mod n and
b ≡ t2 mod n. Thus ab ≡ (st)2 mod n is also inQn as st ∈ Z/nZ×. Similarly, for a−1 ≡ (s−1)

2

mod n, and since s−1 ∈ Z/nZ×, also a−1 ∈ Qn.

Example 9.11. Let p = 7, α = 3, then Q7 = {1, 2, 4} = {30, 32, 34}.

Next, we want to determine whether a given a is a quadratic residue or not.
For this, we will mostly focus on prime moduli, as we can always reduce quadratic residues in

Z/peZ to the case Z/pZ.

Theorem 9.12. Let p ∈ P be odd and e ≥ 1 be a positive integer. Then, a ∈ Qpe if and only if
a ∈ Qp.
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Proof. Let us start with the first direction: if a ∈ Qpe , then there exists s ∈ Z/peZ× (that is
gcd(p, s) = 1) such that s2 ≡ a mod pe. Thus, s2 = a + kpe, for some k ∈ Z and hence s2 ≡ a
mod p. Since s is coprime to p, s ∈ Z/pZ× and thus a ∈ Qp.

For the other direction, we assume that a ∈ Qp. That is: there exists s ∈ Z/pZ×, with s2 ≡ a
mod p.

We will lift this equation step by step to Z/peZ.
In each step we do the following: let s ∈ Z/pk−1Z× (thus gcd(p, s) = 1) with s2 ≡ a

mod pk−1. We can hence write s2 = a + ℓpk−1, for some ℓ ∈ Z. Since p is odd, we now it is
coprime to 2, and thus also 2s ∈ Z/pk−1Z×. Let us define t = s− ℓ(2s)−1pk−1, then

t2 ≡ s2 − 2sℓ(2s)−1pk−1 + ℓ2(2s)−2p2k−2 ≡ s2 − ℓpk−1 ≡ a+ ℓpk−1 − ℓpk−1 ≡ a mod pk.

Since

(s−ℓ(2s)−1pk−1)·(s−1+ℓ(2s3)−1pk−1) ≡ s·s−1+sℓ(2s3)−1pk−1−s−1ℓ(2s)−1pk−1 ≡ 1 mod pk,

we also get that t ∈ Z/pkZ×, thus a ∈ Qpk .

As a next step we cover the case p = 2.

Exercise 9.13. For all positive integers n, show that 2n+2 | (52n − 1), and 2n+3 ∤ (52n − 1).

Theorem 9.14. Let a be an odd integer. Then,

• a ∈ Q2,

• a ∈ Q4 if and only if a ≡ 1 mod 4,

• for e ≥ 3, a ∈ Q2e if and only if a ≡ 1 mod 8.

Proof. • Clearly, Q2 = {1} = Z/2Z× and

• Q4 = {1}.

• For this we first show that

Z/2eZ× = {±5i | i ∈ {0, . . . , 2e−2 − 1}}.

By Euler’s Theorem, we have that ord(5) | φ(2e) = 2e−1, thus ord(5) = 2k for some
k ∈ {0, . . . , e − 1}. Theorem 8.20 implies that there are no elements of order φ(2e), thus
k ∈ {0, . . . , e− 2}.

From Exercise 9.13 using n = e− 3 we get that 2e−1 | (52e−3 − 1) but 2e ∤ (52e−3 − 1), thus
52

e−3 6≡ 1 mod 2e and hence k > e− 3. This leaves us with k = e− 2, i.e., ord(5) = 2e−2.
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Thus, 5i for i ∈ {0, . . . , 2e−2 − 1} are all distinct and in Z/2eZ×. Since 5 ≡ 1 mod 4, all
5i ≡ 1 mod 4. Note that Z/2eZ×, has half the elements being congruent to 1 modulo 4 and
the other half being congruent to 3 modulo 4. Thus,

Z/2eZ× = {±5i | i ∈ {0, . . . , 2e−2 − 1}}.

Now, squaring our elements ±5i ∈ Z/2eZ×, we get that

Q2e = {52i | i ∈ {0, . . . , 2e−3 − 1}}

and all elements a in Q2e are such that a ≡ 52i ≡ 1 mod 8.

Note that a quarter of the elements in Z/2eZ× are congruent to 1 modulo 8. Since Q2e ⊂
Z/2eZ× is also a quarter of Z/2eZ×, these sets must be equal.

The following result allows us to combine our characterizations of Qpe .

Theorem 9.15. Let n be a positive integer with prime factorization n =
∏k

i=1 p
ei
i . Then a ∈ Qn if

and only if a ∈ Qp
ei
i

for all i ∈ {1, . . . , k}.

Proof. If a ∈ Qn, then there exists a s ∈ Z/nZ× with s2 ≡ a mod n. Thus, a ≡ s2 mod peii for
all i ∈ {1, . . . , k} and hence a ∈ Qp

ei
i
.

Conversely, if a ∈ Qp
ei
i

for all i ∈ {1, . . . , k}, then there exist elements si ∈ Z/peii Z× with
s2i ≡ a mod peii .

By the Chinese Remainder Theorem, there also exists s ∈ Z/nZ× with s ≡ si mod peii for
all i ∈ {1, . . . , k} and hence

s2 ≡ s2i ≡ a mod peii

for all i ∈ {1, . . . , k} and hence s2 ≡ a mod n.

This result can be expressed more algebraically, as

Qn
∼= Qp

e1
1
× · · · ×Qp

ek
k
.

We can now answer whether a ∈ Qn :

Theorem 9.16. Let n be a positive integer and a ∈ Z/nZ×. Then, a ∈ Qn if and only if

• a ∈ Qp for all odd prime p | n and

• a ≡ 1 mod 4, if 4 | n but 8 ∤ n

• a ≡ 1 mod 8, if 8 | n.

Proof. By Theorem 9.15, we have that a ∈ Qn if and only if a ∈ Qpe for all pe in the factorization
of n. For odd primes p, this is equivalent to a ∈ Qp, by Theorem 9.12. For p = 2 we get the
conditions from Theorem 9.14.
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9.2 Quadratic Residues for Prime Moduli
We have covered the cases n = 2e and seen that a ∈ Qpe if and only if a ∈ Qp. Thus, we now
consider Qp, for p ∈ P odd.

This first lemma is a special case of Lemma 9.4.

Lemma 9.17. Let p ∈ P be odd and a be a positive integer, not divisible by p. Then a has either
two square roots in Z/pZ× or none.

Here two or no solutions refers to incongruent solutions of x2 ≡ a mod p.

Proof. If x is a square root of amodulo p, then p−x is also a square root modulo p as x2 ≡ (p−x)2
mod p. Additionally, the two square roots are distinct, as x ≡ p− x mod p would imply 2x ≡ 0
mod p and as p is odd, this would imply p | x, which is not possible as x2 ≡ a mod p but p ∤ a.

On the other hand, if x, y are both square roots of amodulo p, then x2−y2 ≡ (x−y)(x+y) ≡ 0
mod p, and hence p | (x+ y) or p | (x− y). This only leaves the two choices x ≡ −y mod p or
x ≡ y mod p.

Example 9.18. In Z/7Z, for a = 4, we have the solutions 2 and 5, while for a = 3, there are no
solutions.

For odd primes, we have the same amount of quadratic residues as quadratic non-residues.

Theorem 9.19. Let p ∈ P be odd. Then, there exist (p − 1)/2 quadratic residues modulo p and
(p− 1)/2 quadratic non-residues modulo p.

Proof. By Lemma 9.17, we know that the function

f : Z/pZ× → Qp, x 7→ x2

is a 2-to-1 function, thus |Qp| = p−1
2

.

We can give an alternative proof due to Theorem 9.19, as

|Qp| = |{a ∈ Z/pZ× | indα(a) is even }| = |{α2k | k ∈ {1, . . . , (p− 1)/2}}| = p− 1

2
.

We have seen how many quadratic residues there are, but how can we determine whether a is
a quadratic residue?
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9.3 Legendre Symbol
The following notation will be of great help to determine whether a given element is a quadratic
residue.

Definition 9.20. Let p ∈ P be odd and a ∈ Z/pZ×. The Legendre symbol is defined as(
a

p

)
=

{
1 a ∈ Qp

−1 else.

Example 9.21. Let p = 11 and
(

3
11

)
= 1, while

(
2
11

)
= −1.

Exercise 9.22. Let p ∈ P be odd and α a primitive root modulo p. Then(
αi

p

)
= (−1)i.

While Exercise 9.22 is a method to decide whether a ≡ αi mod p is a quadratic residue, it is
not easy to find i such that a ≡ αi mod p, indeed this is the discrete logarithm problem over finite
fields. A better criterion is the following.

Theorem 9.23 (Euler’s Criterion). Let p ∈ P be odd. Then,(
a

p

)
≡ a(p−1)/2 mod p.

Proof. Let us first assume that
(

a
p

)
= 1, that is x2 ≡ a mod p has a solution, say s. Using

Fermat’s Little Theorem, we have that

a(p−1)/2 ≡
(
s2
)(p−1)/2 ≡ sp−1 ≡ 1 mod p.

Hence if
(

a
p

)
= 1, then

(
a
p

)
≡ a(p−1)/2 mod p.

If
(

a
p

)
= −1, then x2 ≡ a mod p has no solution. For every integer k with gcd(k, p) = 1,

there exists an integer ℓ such that kℓ ≡ a mod p (indeed take ℓ = ak−1). Since x2 ≡ a mod p
has no solution, we also know that ℓ 6≡ k mod p. Thus, we can group the integers 1, . . . , p − 1
into (p− 1)/2 pairs, each with product a.

By multiplying all the pairs together, we get

(p− 1)! ≡ a(p−1)/2 mod p.

Due to Wilson’s Theorem, we know that (p− 1)! ≡ −1 mod p, thus a(p−1)/2 ≡ −1 mod p.

Example 9.24. In order to determine whether 2 is a quadratic residue modulo 11, we compute
2(11−1)/2 ≡ 25 ≡ −1 mod 11. Thus, 2 6∈ Q11. On the other hand 35 ≡ 1 mod 11 and 3 ∈ Q11.
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Theorem 9.25. Let p ∈ P be odd. Then, for all a, b positive integers,

• If a ≡ b mod p then
(

a
p

)
=
(

b
p

)
•
(

ab
p

)
=
(

a
p

)(
b
p

)
.

•
(

a2

p

)
= 1.

In particular, we have that the Legendre symbol is a completely multiplicative function.

Proof. • If a ≡ b mod p, then x2 ≡ a mod p has a solution if and only if x2 ≡ b mod p
has a solution.

• By Euler’s criterion, we have that(
a

p

)
≡ a(p−1)/2 mod p

and (
b

p

)
≡ b(p−1)/2 mod p.

Hence (
a

p

)(
b

p

)
≡ a(p−1)/2b(p−1)/2 ≡ (ab)(p−1)/2 ≡

(
ab

p

)
mod p.

While this holds modulo p, we want them to be equal also over Z. This follows, as
(

a
p

)
can

only have the values ±1.

• Since
(

a
p

)
= ±1, using (

ab

p

)
=

(
a

p

)(
b

p

)
,

we get that (
a2

p

)
=

(
a

p

)(
a

p

)
= 1.

An interesting property follows from this theorem:

• The product of a quadratic residue with a quadratic residue is a quadratic residue.

• The product of a quadratic non-residue with a quadratic non-residue is a quadratic residue.

• The product of a quadratic residue with a quadratic non-residue is a quadratic non-residue.
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Theorem 9.26. Let p ∈ P be odd. Then, −1 ∈ Qp if and only if p ≡ 1 mod 4.

Equivalently, (
−1

p

)
=

{
1 p ≡ 1 mod 4,

−1 p ≡ 3 mod 4.

Proof. By Euler’s criterion, we know that(
−1

p

)
≡ (−1)(p−1)/2 mod p.

If p ≡ 1 mod 4, that is p = 4k + 1, for some integer k, then

(−1)(p−1)/2 = (−1)2k = 1

and
(

−1
p

)
= 1.

If p ≡ 3 mod 4, then p = 4k + 3, for some integer k, then

(−1)(p−1)/2 = (−1)2k+1 = −1,

so that
(

−1
p

)
= −1.

Example 9.27. For p = 5, 13 we have that −1 ∈ Q5, Q13, however, −1 6∈ Q7 or in Q3.

A first application of quadratic residues is the proof that there are infinitely many primes p ≡ 1
mod 4. Recall that in Theorem 3.28, we already showed that there are infinitely many primes p ≡ 3
mod 4.

Corollary 9.28. There are infinitely many primes p ≡ 1 mod 4.

Proof. Let us assume there are finitely many primes p1, . . . , pk which are 1 modulo 4. Then,
we define q = 4

∏k
i=1 p

2
i + 1. Since q is odd, it must be divisible by some odd prime p. Thus,

4
∏k

i=1 p
2
i ≡ −1 mod p, which means (2

∏k
i=1 pi)

2 ≡ −1 mod p and thus −1 ∈ Qp.

Due to Theorem 9.26, this means p ≡ 1 mod 4. Since we assumed there are only p1, . . . , pk,
p = pi for some i ∈ {1, . . . , k}. Thus, p | (q − 4

∏k
i=1 p

2
i ) = 1, which is impossible.

Theorem 9.29 (Gauss Lemma). Let p ∈ P be odd and consider the two sets P = {1, . . . , (p −
1)/2} and N = {−1, . . . ,−(p− 1)/2}. Then,(

a

p

)
= (−1)|aP∩N |.

Before we prove this theorem, let us give an example of N,P.
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Example 9.30. The sets N,P split Z/pZ× into two halves, those closer to 0, and those closer to
p.

Let p = 19, so that P = {1, . . . , 9} and N = {−1, . . . ,−9}. We denote by

aP = {ax | x ∈ P} = {a, 2a, . . . , ap− 1

2
}.

For example N = (−1)P. For any a ∈ Z/pZ, the set aP may consist of elements from P or N.
For example

11P = {11, 3, 14, 6, 17, 9, 1, 12, 4} = {−8, 3,−5, 6,−2, 9, 1,−7, 4}

contains four elements of N and 5 elements of P. Thus, the quantity |aP ∩ N | = 4 and
(
11
19

)
=

(−1)4 = 1, that is 11 ∈ Q19.

Proof. If x, y ∈ P are distinct, then ax 6≡ ±ay mod p. In fact, if ax ≡ ±ay mod p, then
p | a(x± y). As p ∤ a, this implies p | (x± y), which is a contradiction to x, y ∈ P distinct.

Thus, all elements of aP live in distinct sets

{±1}, {±2}, . . . , {±p− 1

2
}.

There are p−1
2

many such sets and p−1
2

many elements in aP . Thus, each set contains exactly one
element of aP :

aP = {σ(x)x | x ∈ {1, . . . , p− 1

2
}},

where σ(x) ∈ {±1}, is such that σ(x) = 1 if x ∈ aP, and σ(x) = −1, if x 6∈ aP (but −x ∈ aP ).
Thus, we have |aP ∩N | many x with σ(x) = −1.

Thus, when multiplying over all elements in aP = {ax | x ∈ P} we get
∏(p−1)/2

i=1 ai ≡
a(p−1)/2

(
p−1
2

)
! mod p, and as aP = {σ(x)x | x ∈ P} this must be the same as

(p−1)/2∏
i=1

σ(i)i ≡ (−1)|aP∩N |
(
p− 1

2

)
! mod p.

Thus,

a(p−1)/2

(
p− 1

2

)
! ≡ (−1)|aP∩N |

(
p− 1

2

)
! mod p,

and as
(
p−1
2

)
! ∈ Z/pZ×, we can divide by it and get:

a(p−1)/2 ≡ (−1)|aP∩N | mod p.

Due to Euler’s criterion, we get(
a

p

)
≡ (−1)|aP∩N | mod p,
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and as both values can only attain ±1, we finally get(
a

p

)
= (−1)|aP∩N |.

When is 2 a quadratic residue of p?

Example 9.31. We can check that 32 ≡ 2 mod 7, 62 ≡ 2 mod 17, but x2 ≡ 2 mod p has no
solution for p = 3, 5, 11.

Theorem 9.32. Let p ∈ P be odd. Then, 2 ∈ Qp if and only if p ≡ ±1 mod 8.

Equivalently,
(

2
p

)
= (−1)(p

2−1)/8.

Proof. We can apply Gauss’ Lemma for a = 2, getting

2P = {2, 4, . . . , p− 1}.

If p ≡ 1 mod 4, that is there is some k ∈ N with p = 4k + 1, then (p − 1)/2 = 2k is even and
thus in 2P . Similarly, (p + 3)/2 = 2k + 2 ∈ 2P. This is the exact point, where the elements in
2P become closer to p than to 0, as (p − 1)/2 < p − (p − 1)/2 = (p + 1)/2 and (p + 3)/2 >
p− (p+ 3)/2 = (p− 3)/2. Thus,

2P = {2, 4, . . . , p− 1

2︸ ︷︷ ︸
∈P

,
p+ 3

2
, . . . , p− 1︸ ︷︷ ︸
∈N

},

and we have |2P ∩ N | = p−1
4
, as 2P contains (p − 1)/2 elements, and we discard {2x | x ∈

{1, . . . , (p− 1)/4}.

Gauss’ Lemma then gives(
2

p

)
= (−1)(p−1)/4 =

(
(−1)(p−1)/4

)(p+1)/2
= (−1)(p

2−1)/8,

where we have used the fact that (p+ 1)/2 = 2k + 1 is odd and (−1)2k+1 = (−1).

Now suppose that p ≡ 3 mod 4, that is there exists some k ∈ N with p = 4k + 3. Thus,
(p−3)/2 = 2k is even and thus in 2P . Similarly, (p+1)/2 = 2k+2 ∈ 2P. This is the exact point,
where the elements in 2P become closer to p than to 0, as (p− 3)/2 < p− (p− 3)/2 = (p+ 3)/2
and (p+ 1)/2 > p− (p+ 1)/2 = (p− 1)/2. Thus,

2P = {2, 4, . . . , p− 3

2︸ ︷︷ ︸
∈P

,
p+ 1

2
, . . . , p− 1︸ ︷︷ ︸
∈N

},
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and we have |2P ∩ N | = p+1
4
, as 2P contains (p − 1)/2 elements, and we discard {2x | x ∈

{1, . . . , (p− 3)/4}.
Gauss’ Lemma then gives(

2

p

)
= (−1)(p+1)/4 =

(
(−1)(p+1)/4

)(p−1)/2
= (−1)(p

2−1)/8,

where we have used that (p− 1)/2 = 2k + 1 is odd and thus (−1)2k+1 = −1.

Thus, 2 is a quadratic residue whenever p ≡ ±1 mod 8, and a quadratic non-residue whenever
p ≡ ±3 mod 8.

Exercise 9.33. For which p is −2 ∈ Qp?

Exercise 9.34. Let p ∈ P be odd. Show

p−2∑
i=1

(
i(i+ 1)

p

)
= −1

Exercise 9.35. Let p ∈ P be odd and b a positive integer with p ∤ b. Show that

p−1∑
i=1

(
ib

p

)
= 0.

9.4 Law of Quadratic Reciprocity
The law of quadratic reciprocity is one of the most celebrated results, relating the quadratic residues
of different moduli.

The law of quadratic reciprocity was conjectured by Euler in 1783. Legendre tried several
times, until finally in 1795, the 18-years old Gauss provided the first correct proof.

With this we can check whether x2 ≡ q mod p has a solution knowing the solution to x2 ≡ p
mod q.

Theorem 9.36 (Law of Quadratic Reciprocity). Let p, q ∈ P be odd and distinct. Then(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 .

An equivalent formulation is: (
q

p

)
=

(
p

q

)
,

except when p ≡ q ≡ 3 mod 4, where (
q

p

)
= −

(
p

q

)
.
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Or equivalently, (
p

q

)(
q

p

)
=

{
1 p ≡ 1 mod 4 or q ≡ 1 mod 4

−1 p ≡ q ≡ 3 mod 4.

There exist many different proofs, the one presented here is the most elementary, but thus a bit
longer.

Proof. We consider again P = {1, . . . , p−1
2
} and N = (−1)P, similarly, we denote by Q =

{1, . . . , q−1
2
}.

If we set a = q in Gauss’ Lemma, we get(
q

p

)
= (−1)|qP∩N |,

where we note that |qP ∩N | are all the x ∈ P such that qx ≡ n mod p, for some n ∈ N. This is
equivalent to qx− py ∈ N for some integer y, that is

−p
2
< qx− py < 0.

We now look for the possible values of y.

Given x ∈ P , the values qx− yp differ by multiples of p, thus −p
2
< qx− yp < 0 for at most

one integer y. If such integer y exists, then

0 <
qx

p
< y <

qx

p
+

1

2
.

Since x ∈ P, we have x ≤ p−1
2
, so

y <
qx

p
+

1

2
≤ q(p− 1)

2p
+

1

2
=
q − q/p+ 1

2
<
q + 1

2
.

Thus, 0 < y < q+1
2

and hence y ∈ Q.
Thus,

w = |qP ∩N | = |{(x, y) ∈ P ×Q | −p
2
< qx− py < 0}|.

We can now also consider Gauss’ Lemma for q, setting a = p, that is(
p

q

)
= (−1)v,

where

v = |{(y, x) ∈ Q× P | −q
2
< py − qx < 0}| = {(x, y) ∈ P ×Q | 0 < qx− py <

q

2
}|.
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Putting both together, we get(
q

p

)(
p

q

)
= (−1)w(−1)v = (−1)v+w,

where

w + v = |{(x, y) ∈ P ×Q | −p
2
< qx− py < 0 or 0 < qx− py <

q

2
}|

= |{(x, y) ∈ P ×Q | −p
2
< qx− py <

q

2
}|,

as there are no x, y with qx− py = 0.

Note that the number of pairs (x, y) ∈ P ×Q is

|P ||Q| = p− 1

2

q − 1

2
,

thus we may write

w + v =
p− 1

2

q − 1

2
− (α + β),

where α = |A| = |{(x, y) ∈ P × Q | −p
2
≥ qx − py}| and β = |B| = |{(x, y) ∈ P × Q |

qx− py ≥ q
2
}|.

If we can show that α = β, then(
q

p

)(
p

q

)
= (−1)v+w = (−1)

p−1
2

q−1
2

−2α = (−1)
p−1
2

q−1
2 .

In order to show that α = β, we define the bijective function ρ(x, y) =
(
p+1
2

− x, q+1
2

− y
)
.

Since −p
2
≥ qx − py if and only if q

(
p+1
2

− x
)
− p

(
q+1
2

− y
)
≥ q

2
, we have that ρ(A) = B

and ρ(B) = A and hence α = β.

Example 9.37. The previous theorems provide very powerful tools to check whether a ∈ Qp. For
example p = 103, a = 83 two distinct odd primes. Then
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(
83

103

)
= −

(
103

83

)
Law of Quadratic Reciprocity

= −
(
20

83

)
103 ≡ 20 mod 83

= −
(

2

83

)2(
5

83

)
multiplicative

= −
(

5

83

)
(±1)2 = 1

= −
(
83

5

)
Law of Quadratic Reciprocity

= −
(
3

5

)
83 ≡ 3 mod 5

= −
(
5

3

)
Law of Quadratic Reciprocity

= −
(
2

3

)
5 ≡ 2 mod 3

= 1 2 6∈ Q3

and thus 83 ∈ Q103.

One application of the Law of Quadratic Reciprocity is a test by Pepin, to check whether a
Fermat number is prime. Let us start with the following implication.

Corollary 9.38. Let p ∈ P odd, then 3 ∈ Qp if and only if p ≡ ±1 mod 12.

Proof. If p ≡ 1 mod 4, then by the Law of Quadratic Reciprocity, we have that(
3

p

)
=
(p
3

)
=

{
1 if p ≡ 1 mod 3,

−1 if p ≡ 2 mod 3,

which together with p ≡ 1 mod 4 gives(
3

p

)
=

{
1 if p ≡ 1 mod 12,

−1 if p ≡ 5 mod 12.

If p ≡ 3 mod 4, then(
3

p

)
= −

(p
3

)
=

{
−1 if p ≡ 1 mod 3,

1 if p ≡ 2 mod 3,
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which together with p ≡ 3 mod 4 gives,(
3

p

)
=

{
−1 if p ≡ 7 mod 12,

1 if p ≡ 11 mod 12.

Theorem 9.39. Let n be a positive integer. The Fermat number F (n) = 22
n
+ 1 is prime if and

only if
3(F (n)−1)/2 ≡ −1 mod F (n).

Proof. For the first direction, we assume that F (n) ∈ P .
We first note that F (n) = 22

n
+ 1 ≡ 5 mod 12, since 22

n
+ 1 ≡ 22

n mod 2 + 1 ≡ 2 mod 3
and 22

n
+ 1 ≡ 1 mod 4.

Thus, 3 6∈ QF (n) and by Euler’s criterion, we get that

3(F (n)−1)/2 ≡ −1 mod F (n).

For the converse, assume that 3(F (n)−1)/2 ≡ −1 mod F (n). Squaring this congruence we get
3F (n)−1 ≡ 1 mod F (n) and hence 3F (n)−1 ≡ 1 mod p for any prime p | F (n).

Thus, 3 ∈ Z/pZ× and ord(3) | (F (n)− 1) = 22
n
. Thus, ord(3) = 2i for some i ≤ 2n.

However, since
3(F (n)−1)/2 ≡ 32

2n−1 ≡ −1 6≡ 1 mod p

we must have i = 2n, that is ord(3) = 22
n
= F (n)− 1.

As we also require ord(3) ≤ p − 1, we get that F (n) ≤ p. Since we assumed p | F (n), this
implies p = F (n), that is F (n) is a prime.

The proof further shows that 3 is a primitive root for any Fermat prime.

Example 9.40. Let n = 2, so that F (n) = 17. Then,

3(F (n)−1)/2 ≡ 38 ≡ −1 mod 17,

confirming that 17 is a prime.

Let n = 5, then F (n) = 4294967297. Now it is harder to tell whether F (n) is prime. Using
Pepin’s test we get that

3(F (n)−1)/2 6≡ −1,

and thus F (5) is not prime.

Exercise 9.41. Use Pepin’s test to show that F (3) = 257 is prime.

Exercise 9.42. Let p ∈ P be odd. Show that(
−3

p

)
=

{
1 if p ≡ 1 mod 6,

−1 if p ≡ −1 mod 6.
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9.5 Jacobi Symbol
While we have seen characterizations of Qn for arbitrary n, we also want to ask whether there
exists a generalization of the Legendre symbol.

Definition 9.43. Let n be an odd positive integer with prime factorization n =
∏k

i=1 p
ei
i and let a

be a positive integer such that gcd(a, n) = 1. The Jacobi symbol is defined as

(a
n

)
=

k∏
i=1

(
a

pi

)ei

.

While this generalized the Legendre symbol, in fact for n ∈ P they are the same, the Jacobi
symbol does not tell us, whether a congruence x2 ≡ a mod n has solutions.

We do know that if x2 ≡ a mod n has solutions, then
(
a
n

)
= 1.

To see this, let p | n be a prime. If x2 ≡ a mod n has solutions then x2 ≡ a mod p has
solutions, i.e.,

(
a
p

)
= 1.

Consequently, for n =
∏k

i=1 p
ei
i , we get that

(a
n

)
=

k∏
i=1

(
a

pi

)ei

= 1.

However, we could have
(
a
n

)
= 1, but a 6∈ Qn.

Example 9.44. Let n = 15 and a = 2. Then(
2

15

)
=

(
2

3

)(
2

5

)
= (−1)(−1) = 1.

However, as there are no solutions of x2 ≡ 2 mod 3 and mod 5, there is also no solution
mod 15.

On the positive side, the Jacobi symbol enjoys the same algebraic properties as the Legendre
symbol.

Theorem 9.45. Let n be an odd positive integer and a, b be positive integers with gcd(a, n) =
gcd(b, n) = 1. Then,

• if a ≡ b mod n then
(
a
n

)
=
(
b
n

)
.

•
(
ab
n

)
=
(
a
n

) (
b
n

)
.

•
(−1

n

)
= (−1)(n−1)/2

•
(
2
n

)
= (−1)(n

2−1)/8
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Proof. Let us consider the prime factorization n =
∏k

i=1 p
ei
i . Since n is odd, pi is odd for all

i ∈ {1, . . . , k}.

• For all pi we have that a ≡ b mod n implies a ≡ b mod pi, thus we can apply Theorem
9.25 and get (

a

pi

)
=

(
b

pi

)
,

thus (a
n

)
=

k∏
i=1

(
a

pi

)ei

=
k∏

i=1

(
b

pi

)ei

=

(
b

n

)
.

• From Theorem 9.25, we know that(
ab

pi

)
=

(
a

pi

)(
b

pi

)
.

Hence, (
ab

n

)
=

k∏
i=1

(
ab

pi

)ei

=
k∏

i=1

(
a

pi

)ei ( b

pi

)ei

=
(a
n

)( b
n

)
.

• From Theorem 9.26 we know that(
−1

pi

)
= (−1)(pi−1)/2.

Thus, (
−1

n

)
=

k∏
i=1

(
−1

pi

)ei

=
k∏

i=1

(−1)ei(pi−1)/2 = (−1)
∑k

i=1 ei
pi−1

2 .

Since

n =
k∏

i=1

(1 + (pi − 1))ei

and pi − 1 is even, we have that (1 + (pi − 1))ei ≡ 1 + ei(pi − 1) mod 4. Since

(1 + ei(pi − 1))(1 + ej(pj − 1)) ≡ 1 + ei(pi − 1) + ej(pj − 1) mod 4

we get that

n ≡ 1 +
k∑

i=1

ei(pi − 1) mod 4.

96



This further implies that
n− 1

2
≡

k∑
i=1

ei
pi − 1

2
mod 2.

Thus, we can insert this and get

(−1)
∑k

i=1 ei
pi−1

2 = (−1)
n−1
2 .

• From Theorem 9.32 we know that(
2

pi

)
= (−1)(p

2
i−1)/8.

Hence, (
2

n

)
=

k∏
i=1

(
2

pi

)ei

=
k∏

i=1

(−1)(p
2
i−1)/8 = (−1)

∑k
i=1

p2i−1

8 .

As before, we note that

n2 =
k∏

i=1

(1 + (p2i − 1))ei .

We now show that p2i −1 ≡ 0 mod 8. In fact, (p2i −1) = (pi+1)(pi−1) and since pi is odd,
we have pi−1 = 2ℓ, pi+1 = 2ℓ+2, for some ℓ ∈ N. Thus, (pi+1)(pi−1) = 2ℓ(2ℓ+2) =
4ℓ(ℓ+ 1) and since either 2 | ℓ or 2 | (ℓ+ 1), we get 8 | (pi + 1)(pi − 1) = (p2i − 1).

Now,
(1 + (p2i − 1))ei ≡ 1 + ei(p

2
i − 1) mod 64.

Additionally,

(1 + ei(p
2
i − 1))(1 + ej(p

2
j − 1)) ≡ 1 + ei(p

2
i − 1) + ej(p

2
j − 1) mod 64.

Hence,

n2 = 1 +
k∑

i=1

ei(p
2
i − 1) mod 64.

Which implies that

(n2 − 1)/8 ≡
k∑

i=1

ei
p2i − 1

8
mod 8.

Thus, inserting this we get

(−1)
∑k

i=1 ei(p
2
i−1)/8 = (−1)(n

2−1)/8.
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Additionally, we also have a reciprocity law.

Theorem 9.46 (Reciprocity Law). Let n,m be two odd coprime positive integers. Then,( n
m

)(m
n

)
= (−1)

m−1
2

n−1
2 .

Proof. Let us consider the prime factorizations of m and n, to be

m =
ℓ∏

i=1

qfii ,

n =
k∏

i=1

peii .

Then, (m
n

)
=

k∏
i=1

(
m

pi

)ei

=
k∏

i=1

ℓ∏
j=1

(
qj
pi

)eifj

,

where we have used that the Legendre symbol is multiplicative. Similarly,( n
m

)
=

ℓ∏
j=1

(
n

qj

)fj

=
ℓ∏

j=1

k∏
i=1

(
pi
qj

)eifj

,

and hence (m
n

)( n
m

)
=

k∏
i=1

ℓ∏
j=1

((
pi
qj

)(
qj
pi

))eifj

.

We can apply the Law of Quadratic Reciprocity, i.e.,(
pi
qj

)(
qj
pi

)
= (−1)

pi−1

2

qj−1

2

to get (m
n

)( n
m

)
=

k∏
i=1

ℓ∏
j=1

(−1)ei
pi−1

2
fj

qj−1

2 = (−1)
∑k

i=1

∑ℓ
j=1 ei

pi−1

2
fj

qj−1

2 .

We note that

k∑
i=1

ℓ∑
j=1

ei
pi − 1

2
fj
qj − 1

2
=

k∑
i=1

ei
pi − 1

2

ℓ∑
j=1

fj
qj − 1

2
.

Similar to before, we get that

k∑
i=1

ei
pi − 1

2
≡ n− 1

2
mod 2
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and
ℓ∑

j=1

fj
qj − 1

2
≡ m− 1

2
mod 2.

Thus,
k∑

i=1

ei
pi − 1

2

ℓ∑
j=1

fj
qj − 1

2
≡ n− 1

2

m− 1

2
mod 2.

Thus, we get that (m
n

)( n
m

)
= (−1)

n−1
2

m−1
2 .

9.6 More Applications
We have already seen two applications of quadratic residues: that there are infinitely many primes
p ≡ 1 mod 4 and Pepin’s primality test for Fermat’s numbers.

In this section we give some more applications, namely the Euler-Jacobi Pseudoprimes, a Zero-
Knowledge (ZK) protocol, a Private Information Retrieval (PIR) based on quadratic residues and
the Lucas-Lehmer test for Mersenne numbers.

9.6.1 Euler-Jacobi pseudoprimes

Let p be an odd prime and b a positive integer not divisible by p. By Euler’s criterion, we have that

b(p−1)/2 ≡
(
b

p

)
mod p.

Hence if we want to test whether a positive integer n is prime, we may take any integer b with
gcd(b, n) = 1 and check is

b(n−1)/2 ≡
(
b

n

)
mod n,

using the Jacobi symbol. If the test fails, then n is composite.

Example 9.47. Let n = 341 and b = 2. We compute

2(341−1)/2 ≡ 2170 ≡ 1 mod 341.

However, (
2

341

)
= −1,

as 341 ≡ 5 mod 8. Thus, 341 is not prime.
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Definition 9.48. Let b be a positive integer and n be an odd positive and composite integer, with

b(n−1)/2 ≡
(
b

n

)
mod n.

Then n is called a Euler-Jacobi pseudoprime to the base b.

Theorem 9.49. If n is an Euler-Jacobi pseudoprime to the base b, then n is also a pseudoprime to
the base b.

Proof. If n is an Euler-Jacobi pseudoprime to the base b, then

b(n−1)/2 ≡
(
b

n

)
mod n.

By squaring this congruence, we get

bn−1 ≡
(
b

n

)2

≡ 1 mod n.

Since bn−1 ≡ 1 mod n it is a pseudoprime to the base b.

However, the opposite direction is not true. For example 341 is not an Euler-Jacobi pseudo-
prime to the base 2, but it is a pseudoprime to the base 2.

Theorem 9.50. If n is a strong pseudoprime to the base b, then n is a Euler-Jacobi pseudoprime
to the base b.

Proof. Let n =
∏k

i=1 p
ei
i be the prime factorization.

Let n be a strong pseudoprime to the base b. That is, if n− 1 = 2st, where t is odd, then either
bt ≡ 1 mod n, or b2jt ≡ −1 mod n for some j ∈ {0, . . . , s− 1}.

We first consider the case bt ≡ 1 mod n. Since bt ≡ 1 mod pi, we have that ord(b) | t
modulo pi. Since t is odd, ord(b) must also be odd.

From Fermat’s Little Theorem we also know that ord(b) | (pi − 1) and since it is odd also that
ord(b) | (pi − 1)/2. Thus,

b(pi−1)/2 ≡ 1 mod pi.

Consequently, by Euler’s criterion we have
(

b
pi

)
= 1.

For the Jacobi symbol, recall (
b

n

)
=

k∏
i=1

(
b

pi

)ei

and as
(

b
pi

)
= 1 for all i ∈ {1, . . . , k} we get

(
b
n

)
= 1.
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Since bt ≡ 1 mod n, we get that b(n−1)/2 ≡ (bt)2
s−1 ≡ 1 mod n and hence it is a Euler-

Jacobi pseudoprime as

b(n−1)/2 ≡
(
b

n

)
≡ 1 mod n.

Now we consider the case
b2

jt ≡ −1 mod n,

for some j ∈ {0, . . . , s− 1}. Thus also b2jt ≡ −1 mod pi and squaring the congruence we get

b2
j+1t ≡ 1 mod pi.

Thus, ord(b) | 2j+1t, but ord(b) ∤ 2jt. Thus, ord(b) = 2j+1c, for some odd c.

From Fermat’s Little Theorem we also have that ord(b) | (pi − 1), thus 2j+1 | (pi − 1). We can
write pi = 2j+1di + 1, for some integer di and c | di.

Since b2jt ≡ −1 mod pi, we have(
b

pi

)
≡ b(pi−1)/2 ≡ b

2j+1c
2

· pi−1

2j+1c ≡ (−1)
pi−1

2j+1c ≡ (−1)
2j+1di
2j+1c ≡ (−1)

di
c mod pi.

Since c is odd, we have that di/c has the same parity as d, thus(
b

pi

)
≡ (−1)di mod pi.

Since the Legendre symbol is only taking values is {±1}, we get(
b

pi

)
= (−1)di .

Hence, (
b

n

)
=

k∏
i=1

(
b

pi

)ei

=
k∏

i=1

((−1)di)ei =
k∏

i=1

(−1)eidi = (−1)
∑k

i=1 eidi .

We can now write again

n ≡
k∏

i=1

peii ≡
k∏

i=1

(2j+1di + 1)ei ≡
k∏

i=1

(1 + 2j+1diei) ≡ 1 + 2j+1

k∑
i=1

eidi mod 22(j+1).

Thus,

t2s−1−j ≡ n− 1

2j+1
≡

k∑
i=1

eidi mod 2j+1.
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Hence,

b(n−1)/2 ≡ (b2
jt)2

s−1−j ≡ (−1)2
s−1−j ≡ (−1)2

s−1−jt ≡ (−1)
∑k

i=1 eidi mod n.

Thus, we get that

b(n−1)/2 ≡
(
b

n

)
mod n.

The opposite direction is again not true.

Example 9.51. Let n = 1105 and b = 2. Then 2552 ≡ 1 mod 1105 and
(

2
1105

)
= 1, since

1105 ≡ 1 mod 8. Thus 1105 is an Euler-Jacobi pseudoprime to the base 2. However,

2(1105−1)/22 ≡ 2276 ≡ 781 6≡ ±1 mod 1105,

it is not a strong pseudoprime to the base 2.

With additional conditions, we can make the other direction work as well:

Theorem 9.52. If n is an Euler-Jacobi pseudoprime to the base b and either

• n ≡ 3 mod 4 or

•
(
b
n

)
= −1,

then n is a strong pseudoprime to the base b.

Proof. • If n ≡ 3 mod 4, then n = 3+4k, for some integer k and hence n−1 = 2(1+2k) =
2t, where t = 1 + 2k = (n− 1)/2 is odd. Since

bt ≡ b(n−1)/2 ≡
(
b

n

)
≡ ±1 mod n,

n is also a strong pseudoprime to the base b.

• We write n− 1 = 2st, where t is odd and s is a positive integer. Since

b2
s−1t ≡ b(n−1)/2 ≡

(
b

n

)
≡ −1 mod n,

we also have that n is a strong pseudoprime to the base b.

Note that the Euler’s test is also basis for more primality tests, such as the Solovay-Strassen
test.

Theorem 9.53. Solovay Strassen Let n be an odd positive integer and choose b1, . . . , bk coprime
to n. If

(
bi
n

)
≡ b

(n−1)/2
i mod n for all i ∈ {1, . . . , k}, then the probability that n is composite is

≤ 2−k.
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9.6.2 Zero-Knowledge

The process and notation for ZK protocols are similar to that of signature schemes. We have two
parties, a prover (instead of a signer) and a verifier.

A ZK protocol consists of two stages: key generation and verification.
A ZK protocol has three important attributes:

1. Zero-knowledge: this means that no information about the secret is revealed during the pro-
cess.

2. Completeness: meaning that an honest prover will always get accepted.

3. Soundness: for this, we want that an impersonator has only a small cheating probability to
get accepted.

In order to achieve an acceptable cheating probability, the protocols are often repeated several
times (called rounds) and only if each round was accepted, will the prover be accepted.

One prominent ZK protocol from Feige, Fiat and Shamir is based on quadratic residues.

1. Key generation: The prover chooses two distinct primes p, q and computes n = pq and some
positive integer k. The prover chooses s1, . . . , sk coprime to n. The prover now computes

vi ≡ s−2
i mod n.

The public key is given by P = (n, v1, . . . , vk). The secret key is given by S = (p, q, s1, . . . , sk).

2. Verification: The prover chooses a random integer c and a random sign σ ∈ {−1, 1} and
computes

x ≡ σc2 mod n

and sends this to the verifier. The verifier chooses the challenge b = (b1, . . . , bk) ∈ {0, 1}k
and sends b to the prover. The prover then computes the response

r ≡ c
∏

j:bj=1

sj mod n

and sends r to the verifier. The verifier can now check whether

x ≡ ±r2
∏

j:bj=1

vj mod n.

Why does this work?

x ≡ ±r2
∏

j:bj=1

vj ≡ ±c2
∏

j:bj=1

s2jvj ≡ ±c2 ≡ x mod n

since s2j ≡ v−1
j mod n.
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Eve, the impersonator, can see the public vi but she does not know the si. She can pick a
random r and b = (b1, . . . , bk) ∈ {0, 1}k. She then computes

x ≡ r2
∏

j:bj=1

vj mod n

and sends x to the verifier. The verifier will then challenge her with his b′, but Eve simply returns
her r. If Eve has correctly chosen b = b′, she will be verified. Thus, the cheating probability is
2−k.

The hardness of this protocol relies on integer factorization. Since Eve could easily compute
si if she knew p, q.

Example 9.54. • Key generation: The prover chooses p = 7, q = 13 and computes n = 91.
The prover further chooses s1 = 4, s2 = 5 coprime to 91. The prover then computes

v1 ≡ 4−2 mod 91, v2 ≡ 5−1 mod 91,

which is equivalent to computing 4−1 ≡ 2 mod 7, 4−1 ≡ 10 mod 13, thus

v1 = 232 ≡ 74 mod 91,

and 5−1 ≡ 3 mod 7, 5−1 ≡ 8 mod 13, thus v2 ≡ 732 ≡ 51 mod 91.

Hence P = (91, 74, 51) and S = (7, 13, 4, 5).

• Verification: The prover chooses c = 11, σ = 1 and computes x ≡ 112 ≡ 30 mod 91 and
sends 30 to the verifier.

The verifier chooses b = (1, 0) and sends this to the prover.

The prover computes the response

r ≡ c · s1 ≡ 44 mod 91

and sends it to the verifier.

The verifier now checks

30 ≡ ±442 · 74 ≡ 25 · 74 ≡ 30 mod 91.

9.6.3 Lucas-Lehmer Test

Recall that M(p) = 2p − 1, for p ∈ P is a Mersenne number. The next theorem is able to test
whether M(p) ∈ P . For this we need to define the Lucas sequence.

Definition 9.55. The Lucas sequence is defined as: s(0) = 4 and for all positive integers n, we
define

s(n) = s(n− 1)2 − 2.
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Example 9.56. Note that M(5) = 25 − 1 = 31. We compute s(1) = 14, s(2) = 194 ≡ 8 mod 31
and s(3) ≡ 62 ≡ 0 mod 31. Thus M(5) = 31 ∈ P as it is a divisor of s(3).

Theorem 9.57. Let p be an odd prime, then M(p) is prime if and only if M(p) | s(p− 2).

Proof. First, we define ω = 2+
√
3, ω̄ = 2−

√
3. Note that ωω̄ = (2+

√
3)(2−

√
3) = 4−3 = 1.

Thus, (ω + ω̄)2 = ω2 + 2ωω̄ + ω̄2 = ω2 + ω̄2 + 2.
One can then show by induction that s(n) = ω2n + ω̄2n , by observing that ω + ω̄ = 4, and

ω2n+1
+ ω̄2n+1

= ω2n+1
+ ω̄2n+1

+ 2ω2nω̄2n − 2 =
(
ω2n + ω̄2n

)2 − 2.

For the first direction, let us assume that M(p) = 2p − 1 ∈ P . By Freshman’s dream we know
that

(1 +
√
3)M(p) ≡ 1 +

√
3
M(p)

mod M(p).

Since
√
3 = 31/2, we can also write

(1 +
√
3)M(p) ≡ 1 +

√
33(M(p)−1)/2 mod M(p).

Euler’s criterion tell us that

3(M(p)−1)/2 ≡
(

3

M(p)

)
mod M(p).

Since we assumed that M(p) is an odd prime, we can apply the Law of Quadratic Reciprocity:(
3

M(p)

)(
M(p)

3

)
=

{
1 if M(p) ≡ 1 mod 4,

−1 if M(p) ≡ 3 mod 4.

We can easily check that M(p) ≡ 3 mod 4 and hence
(

3
M(p)

)(
M(p)
3

)
= −1, which is only

possible if M(p) ∈ Q3 but 3 6∈ QM(p) or vice versa: M(p) 6∈ Q3 and 3 ∈ QM(p).
Since M(p) = 2p − 1 ≡ (−1)p − 1 ≡ −2 ≡ 1 mod 3, we get M(p) ∈ Q3, thus 3 6∈ QM(p).

We again apply Euler’s criterion, which tells us that

3(M(p)−1)/2 ≡ −1 mod M(p).

Thus, we can insert this in

(1 +
√
3)M(p) ≡ 1 +

√
33(M(p)−1)/2 ≡ 1−

√
3 mod M(p).

We can multiply both sides with (1 +
√
3) to get

(1 +
√
3)M(p)+1 ≡ (1−

√
3)(1 +

√
3) ≡ 1− 3 ≡ −2 mod M(p).

Note that (1 +
√
3)2 = 1 + 2

√
3 + 3 = 2ω, thus we can write(

(1 +
√
3)2
)(M(p)+1)/2

≡ (2ω)(M(p)+1)/2 ≡ −2 mod M(p).
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Hence,

2(M(p)+1)/2ω(M(p)+1)/2 ≡ 2 · 2(M(p)−1)/2ω(M(p)+1)/2 ≡ −2 mod M(p).

Thus, we are interested in the value of 2(M(p)−1)/2, which by Euler’s criterion is(
2

M(p)

)
.

Recall from Theorem 9.32, that 2 is a quadratic residue for any prime congruent to ±1 modulo 8.
M(p) = 2p − 1 ≡ 2p−3 · 8 − 1 ≡ −1 mod 8, since p > 2. Thus, we get 2(M(p)−1)/2 ≡ 1

mod M(p) and hence

2ω(M(p)+1)/2 ≡ −2 mod M(p),

or equivalently
ω(M(p)+1)/2 ≡ −1 mod M(p),

since 2 ∤M(p). We may write this as

ω2p−1 ≡ ω2p−2

ω2p−2 ≡ −1 mod M(p).

We can now multiply both sides with ω̄2p−2 to get

ω2p−2

ω2p−2

ω̄2p−2 ≡ ω2p−2 ≡ −ω̄2p−2

mod M(p),

since ωω̄ = 1.
Hence,

ω2p−2

+ ω̄2p−2 ≡ 0 mod M(p),

but since
s(p− 2) = ω2p−2

+ ω̄2p−2

,

we get that M(p) | s(p− 2).

For the other direction, we assume that (2p − 1) | s(p− 2), for some p ∈ P .
Assume by contradiction that 2p − 1 6∈ P , thus there exists some q ∈ P with q | (2p − 1) with

q2 ≤ 2p − 1 and thus in turn q | s(p− 2).
Using s(p− 2) = ω2p−2

+ ω̄2p−2
, we get that there exists an integer k such that

qk = ω2p−2

+ ω̄2p−2

.

We can multiply both sides with ω2p−2 and use that ωω̄ = 1, to get

qkω2p−2

= ω2p−1

+ 1

or equivalently
ω2p−1

= qkω2p−2 − 1.
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We can square both sides to get

ω2p =
(
qkω2p−2 − 1

)2
.

We now want to consider this modulo q, however, we are unsure whether 3 ∈ Qq, which would
allow us to consider

√
3 ∈ Z/qZ.

Instead, we will consider S = {a + b
√
3 | a, b ∈ Z/qZ}. In this new ring, we define addition

and multiplication as

(a+ b
√
3) + (c+ d

√
3) = (a+ c mod q) + (b+ d mod q)

√
3,

(a+ b
√
3) · (c+ d

√
3) = (ac+ 3bd mod q) + (ad+ bc mod q)

√
3.

With number of units |S∗| = q2 − 1.

Now, from ω2p =
(
qkω2p−2 − 1

)2
we get that

ω2p ≡ (−1)2 ≡ 1 mod q,

hence in S we have ord(ω) | 2p, but since we also have

ω2p−1 ≡ −1 mod q,

we get that ord(ω) = 2p.
Note that ord(ω) = 2p ≤ q2−1,which we assumed is such that q2−1 ≤ 2p−2, a contradiction.

This provides us with an efficient method (just involving computing two sequences defined via
powers and integer division) to check whether a Mersenne number is prime.

9.6.4 PIR

Finally, we finish this section of applications with a Private Information Retrieval (PIR).
For this consider the scenario, where we have a database, containing files, managed by an

untrusted server. We thus have two parties: a user and a server.
In order to get a file, the user sends a query to the server, the server will send back a response

and from this the user should be able to retrieve the file we wanted. At the same time, we want that
the query does not reveal any information on which file was requested.

Such a PIR protocol considers three steps:

• query generation,

• reply generation,

• file reconstruction.

In the easiest framework, we consider the files to be in {0, 1} and assume the database has N
many files f1, . . . , fN .
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• Query generation: the user chooses p, q large distinct primes and computes n = pq. Assume
the user wants to retrieve file fb. For each i ∈ {1, . . . , N} \ {b} the user chooses qi ∈ Qn

and qb 6∈ Qn. The user sends (q1, . . . , qN) as a query and n as public key.

• The server now computes
r ≡

∏
i:fi=1

qi mod n

and sends this as a response back to the user.

• File reconstruction: The user can now check if r ∈ Qn or not. If r ∈ Qn then all qi in the
product (i.e., all i with fi 6= 0) must have been quadratic residues, thus fb = 0. On the other
hand, if r 6∈ Qn then fb 6∈ Qn must have been in the product, i.e., fb = 1.

We do not reveal any information to the server as we send N queries, one for each file. In order
for the server to know which file we requested, the server needs to compute Qn, which is only
feasible when knowing p, q.

Example 9.58. • Query generation: The user chooses p = 7, q = 13 and computes n = 91.
The user then chooses q1 = 79 ≡ 252 ∈ Qn, q2 = 53 ≡ 122 ∈ Qn and q3 = 5 6∈ Qn. The
user then sends the query (79, 53, 5) and the public key 91.

• The server is storing the files f1 = 0, f2 = 1, f3 = 1 and computes the response

r ≡ q2 · q3 ≡ 83 mod 91.

• The user can now check whether 83 ∈ Q7 and 83 ∈ Q13. Note that as soon as one fails,
83 6∈ Qn.

(
83
7

)
=
(−1

7

)
= −1, thus the user recovers f3 = 1.
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10 Continued Fractions

10.1 Representation of Reals
We recall that every integer a ∈ Z has a unique representation for any base b > 1 an integer, as

a =
N∑
i=0

aib
i,

denoted by a = (aN , . . . , ao)b.
We now show that this also holds for any real number α ∈ R.
For this recall that we denote the fractional part of α by

[α] = α− bαc,

where 0 ≤ [α] < 1. As bαc ∈ Z, it is enough to show that [α] has a unique representation to the
base b.

Definition 10.1. Let γ ∈ R with 0 ≤ γ < 1 and b > 1 be an integer. The representation of γ to
the base b is given by γ =

∑∞
i=1 cib

−i, where 0 ≤ ci ≤ b − 1 and for every N ∈ N, there exists
n ≥ N such that cn 6= b− 1. We denote this by

γ = (.c1c2 . . .)b.

We further distinguish between representations which are finite and those which are periodic.

Definition 10.2. The representation of γ to the base b given by (.c1c2...)b is called finite if there
exists an n such that cn+1 = cn+2 = . . . = 0 and denote this by γ = (.c1 . . . cn)b.

Definition 10.3. The representation of γ to the base b given by (.c1c2...)b is called periodic if there
exists N, k such that cn = cn+k for all n > N and denote this by γ = (.c1 . . . cNcN+1 . . . cN+k)b.
We call (.c1 . . . cN)b the pre-period of length N , and (cN+1 . . . cN+k)b the period of length k.

Example 10.4. For example 1/3 = (.3)10.

Why did we require the condition that for all positive integer N there exists n ≥ N such that
cn 6= b− 1?

Consider (.9)10. This is the same as 1, as

(.9)10 =
∑
i≥1

9 · 10−i = 9
∑
i≥1

10−i

= 9 · 10−1

1− 10−1
= (10− 1)

10−1

1− 10−1

= 10(1− 10−1)
10−1

1− 10−1
= 1.

This also works for any base b and the representation

(.c1 . . . cn)b = (.c1 . . . cn(b− 1))b

would not be unique.
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Theorem 10.5. Let b > 1 be a positive integer and γ ∈ R be such that 0 ≤ γ < 1. Then γ has a
unique representation to the base b.

Proof. Let us denote by c1 = bbγc which is such that 0 ≤ c1 < b− 1 (since 0 ≤ bγ < b).
We can then define γ1 = bγ − c1 the fractional part of bγ which is such that 0 ≤ γ1 < 1 and

γ =
c1
b
+
γ1
b
.

We can recursively define ck and γk for all k ≥ 2 as

ck = bbγk−1c, γk = bγk−1 − ck,

which are such that 0 ≤ ck ≤ b− 1 and 0 ≤ γk < 1.
Then, it follows that

γ =
n∑

i=1

cib
−i + γnb

−n. (5)

Since 0 ≤ γn < 1, we get that 0 ≤ γnb
−n < b−n and hence lim

n→∞
γnb

−n = 0.

Thus

γ = lim
n→∞

n∑
i=1

cib
−i =

∞∑
i=1

cib
−i.

In order to show uniqueness, we assume that there exist two distinct representations

γ =
∞∑
i=1

cib
−i =

∞∑
i=1

dib
−i,

with 0 ≤ ci, di ≤ b − 1 and for every positive integer N there exist n,m such that cn 6= b − 1
and dm 6= b − 1. Let k be the smallest index such that ck 6= dk. We may assume without loss of
generality that ck > dk.

Then

0 =
∞∑
i=1

(ci − di)b
−i = (ck − dk)b

−k +
∞∑

i=k+1

(ci − di)b
−i.

Hence

(ck − dk)b
−k =

∞∑
i=k+1

(di − ci)b
−i

and as ck > dk we have (ck − dk)b
−k ≥ b−k, whereas

∞∑
i=k+1

(di − ci)b
−i ≤

∞∑
i=k+1

(b− 1)b−i = (b− 1)
b−k−1

1− b−1
= b−k.

Thus

b−k ≤ (ck − dk)b
−k ≤

∞∑
i=k+1

(di − ci)b
−i ≤ b−k,
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where we only have an equality for the last inequality, if di − ci = b − 1 for all i ≥ k + 1. Since
0 ≤ ci, di ≤ b − 1, this is only possible if ci = 0, di = b − 1 for all i ≥ k + 1, contradicting that
dm 6= b− 1.

The proof of the theorem also gives us an algorithm how to compute the representation to the
base b, namely

ck = bbγk−1c, γk = bγk−1 − bbγk−1c,

and γ0 = γ.

Example 10.6. We want to write 1/6 in the base 8.

c1 = b8 · 1/6c = 1, γ1 = 8 · 1/6− 1 = 1/3,

c2 = b8 · 1/3c = 2, γ2 = 8 · 1/3− 2 = 2/3,

c3 = b8 · 2/3c = 5, γ3 = 8 · 2/3− 5 = 1/3

thus it starts repeating, that is c4 = c2 and γ4 = γ2 and so on. We get that

1/6 = (.12525 . . .)8 = (.125)8.

In fact, we can show that any rational number has a periodic or finite representation and vice
versa.

Theorem 10.7. Let b > 1 be a positive integer and γ ∈ R with 0 < γ < 1. Then γ is a rational
number if and only if it has either a finite representation or a periodic representation to the base b.

Further, if γ = r
s

with gcd(r, s) = 1 and s = ut with gcd(b, u) = 1 and for every prime p | t
we also have p | b, then γ has a period of length ord(b) modulo u and a pre-period of length N,
where N is the smallest positive integer such that t | bN .

Proof. We first assume that γ has a periodic representation, i.e.,

γ = (.c1 . . . cNcN+1 . . . cN+k)b

=
N∑
i=1

cib
−i +

(
∞∑
j=0

b−jk

)(
N+k∑

i=N+1

cib
−i

)

=
N∑
i=1

cib
−i +

(
bk

bk − 1

)( N+k∑
i=N+1

cib
−i

)
.

Hence γ is the sum of rational numbers and thus rational. Note that this also covers the case of
finite representations by setting k = 0.

For the other direction, we can assume that 0 < γ < 1 is such that γ = r
s
, where gcd(r, s) = 1

and s = ut with gcd(b, u) = 1 and for every prime p | t, we also have p | b. Let us denote by N
the smallest positive integer such that t | bN .
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Since t | bN , we have that a = bN/t is a positive integer. Hence,

bNγ = bN
r

ut
=
ar

u
.

We can write
ar

u
= v +

c

u
,

using the Euclidean Algorithm to write ar = vu + c with 0 ≤ c < u and 0 ≤ v < bN , since
0 < bNγ < bN and hence 0 < bNγ = v + c

u
< v + 1 and bN > bNγ = v + c

u
> v. If u = 0, then

vut = bNr and since gcd(u, b) = 1 we get u | r. This would imply that r
s
= r

ut
is not in reduced

form, a contradiction. Thus, 0 < c < u.
We now want to show that gcd(u, c) = 1. For this let d = gcd(u, c), hence d | ut = s and

d | (vu+ c) = ar. Since gcd(r, s) = 1 this implies that d | a, so that there exists an integer ℓ with
dℓt = bN and thus d | b. As d | u and gcd(u, b) = 1 we also get gcd(d, b) = 1 and together with
d | b we conclude that d = 1.

Let us write v = (vn . . . v0)b and c
u
= (.c1 . . .)b with γ0 = c

u
and

ck = bbγk−1c, γk = bγk−1 − bbγk−1c.

If u = 1, then γ has a finite representation to the base b as γ = v+c
bN

and v, c ∈ Z.
If u > 1, then we can consider the order of b modulo u, denoted by d. Thus, bd = uℓ + 1 for

some integer ℓ.
Then

bd
c

u
=

(uℓ+ 1)c

u
= ℓc+

c

u
.

However, we also have that

bd
c

u
= bd

(
d∑

i=1

cib
−i + γdb

−d

)
,

using Equation 5, so that

bd
c

u
=

d∑
i=1

cib
d−i + γd.

Putting these two together, we get

bd
c

u
=

d∑
i=1

cib
d−i + γd = ℓc+

c

u
.

Thus, their fractional parts 0 < γd < 1 and 0 < c
u
< 1 are equal γd = c

u
and thus γ0 = γd = c

u
,

leading to the period length d and ck+d = ck for all k ≥ 1.
Thus, c

u
has a periodic representation,

c

u
= (.c1 . . . cd)b.
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Thus,

bNγ = v +
c

u
= (vn . . . v0.c1 . . . cd)b

and dividing by bN shifts the representation by N to

γ = (.0 . . . 0vn . . . v0c1 . . . cd)b.

Hence the pre-period of γ is of length N (beginning with N − (n+ 1) zeroes), and the period
is of length d.

We are left with showing that there does not exist a regrouping of the representation with
shorter period or pre-period length.

Assume by contradiction that γ has a shorter pre-period M and period length k, i.e.,

γ = (.c1 . . . cMcM+1 . . . cM+k)b

=
M∑
i=1

cib
−i +

(
bk

bk − 1

)( M+k∑
i=M+1

cib
−i

)

=
(bk − 1)

∑M
i=1 cib

M−i +
∑k

i=1 cM+ib
k−i

bM(bk − 1)
.

Since γ = r
s

with coprime r, s we get that s | bM(bk − 1). As s = ut with gcd(u, b) = 1, we get
t | bM and u | (bk − 1). By definition N is the smallest integer such that t | bN , hence M ≥ N .
Similarly, from u | (bk − 1), we know there exists an integer ℓ such that uℓ = bk − 1, which is
equivalent to bk ≡ 1 mod u. As the order of b modulo u is d, we get that d | k and thus d ≤ k.

Hence the pre-period length can not be shorter than N, and the period length can not be shorter
than d.

This proof also allows us to determine quickly the period and pre-period length.
Additionally, if γ has a representation which does not end and is not periodic, γ must be

irrational.

10.2 Finite Continued Fractions
Using the Euclidean algorithm, we can represent rational numbers using continued fractions.

Example 10.8. Let us consider 62
23
. Then using the Euclidean algorithm we can write

62 = 2 · 23 + 16,

23 = 1 · 16 + 7,

16 = 2 · 7 + 2,

7 = 3 · 2 + 1.
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By dividing each side with the respective divisor, we get

62

23
= 2 +

16

23
= 2 +

1

23/16
,

23

16
= 1 +

7

16
= 1 +

1

16/7
,

16

7
= 2 +

2

7
= 2 +

1

7/2
,

7

2
= 3 + 1/2.

Combining these we get

62

23
= 2 +

1

23/16

= 2 +
1

1 + 1
16/7

= 2 +
1

1 + 1
2+ 1

7/2

= 2 +
1

1 + 1
2+ 1

3+1
2

.

Definition 10.9. A finite continued fraction is of the form

a0 +
1

a1 +
1

a2+
1

...
an−1+

1
an

,

where ai are positive real numbers for i > 0 and a0 ≥ 0 and we write it as [a0; a1 . . . , an].

If the ai are integers, we call the continued fraction simple.

Example 10.10. In the example before, we wrote 62
23

= [2; 1, 2, 3, 2].

In fact, every finite simple continued fraction is a rational number and vice versa.

Theorem 10.11. Every finite simple continued fraction is a rational number and every rational
number can be expressed by a finite simple continued fraction.

Proof. We first prove that every finite simple continued fraction is a rational number by induction.
For n = 1, we have

[a0; a1] = a0 +
1

a1
=
a0a1 + 1

a1
,
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which is rational.
Now we assume that for any continued fraction of the form [a0; a1, . . . , ak] with ai integers is

a rational number. Then

[a0; a1, . . . , ak, ak+1] = a0 +
1

[a1; a2, . . . , ak+1]
.

By the induction hypothesis [a1; a2, . . . , ak+1] =
r
s

is a rational number. Thus

[a0; a1, . . . , ak, ak+1] = a0 +
1

r/s
=
a0r + s

r

is also a rational number.

For the other direction we let x = a
b
, where a, b are integers and b > 0.

Let r0 = a, r1 = b, then using the Euclidean algorithm, we can write

r0 = r1a1 + r2,

r1 = r2a2 + r3,

...
rn−3 = rn−2an−2 + rn−1,

rn−2 = rn−1an−1 + rn,

rn−1 = rnan,

with 0 < ri+1 < ri for all i ∈ {1, . . . , n− 1} and ai are positive integers.
We can rewrite the equations as

a

b
=
r0
r1

= a1 +
r2
r1

= a1 +
1

r1/r2
,

r1
r2

= a2 +
r3
r2

= a2 +
1

r2/r3
,

...
rn−3

rn−2

= an−2 +
rn−1

rn−2

= an−2 +
1

rn−2/rn−1

,

rn−2

rn−1

= an−1 +
rn
rn−1

= an−1 +
1

rn−1/rn
,

rn−1

rn
= an.

We can substitute the value of r1/r2 in the first equation using the term in the second equation and
get

a

b
= a1 +

1

a2 +
1

r2/r3

.
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Similarly, we can substitute the value of r2/r3 and continuing like this, we obtain

a

b
= a1 +

1

a2 +
1

a3+
1

...
an−1+

1
an

.

Thus, a
b
= [a1; a2, . . . , an].

Note that this representation is not unique.
From the identity an = (an − 1) + 1

1
we get that

[a0; a1, . . . , an] = [a0; a1, . . . , an−1, an − 1, 1],

whenever an > 1.

Example 10.12. We have that

7

11
= [0; 1, 1, 1, 3] = [0; 1, 1, 1, 2, 1].

In fact, one can show that every rational number allows for exactly two representations as finite
simple continued fractions, one having an odd number of terms, the other with an even number of
terms.

Definition 10.13. Let [a0; a1 . . . , an] be a finite continued fraction and let k ∈ {0, . . . , n}.
The kth convergent is a given by the partial continued fraction ck = [a0; a1 . . . , ak].

We give an algorithm to compute ck = pk
qk

.

Theorem 10.14. Let a0, . . . , an be real numbers and aj > 0 for j > 0. We define the sequence
p0, . . . , pn and q0, . . . , qn recursively by

p0 = a0, q0 = 1,

p1 = a0a1 + 1, q1 = a1,

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2,

for k ∈ {2, . . . , n}.
Then, ck = pk

qk
.

Proof. We prove this theorem with induction. For k = 0, we have

c0 = [a0] =
p0
q0
.

For k = 1, we get

c1 = [a0; a1] = a0 +
1

a1
=
a0a1 + 1

a1
=
p1
q1
.
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Assume the statement holds for k, where 2 ≤ k < n.
That is

ck = [a0; a1, . . . , ak] =
pk
qk

=
akpk−1 + pk−2

akqk−1 + qk−2

.

We note that by definition of convergents we have that

ck = [a0; a1, . . . , ak] = a0 +
1

a1 +
1
...
ak

,

while

ck+1 = [a0; a1, . . . , ak, ak+1] = a0 +
1

a1 +
1
...

ak+ 1
ak+1

= [a0; a1, . . . , ak−1, ak +
1

ak+1

].

Thus,

ck+1 = [a0; a1, . . . , ak, ak+1] = [a0; a1, . . . , ak−1, ak +
1

ak+1

]

=

(
ak +

1
ak+1

)
pk−1 + pk−2(

ak +
1

ak+1

)
qk−1 + qk−2

=
ak+1(akpk−1 + pk−2) + pk−1

ak+1(akqk−1 + qk−2) + qk−1

=
ak+1pk + pk−1

ak+1qk + qk−1

=
pk+1

qk+1

.

Example 10.15. Let us consider 173
55

= [3; 6, 1, 7]. We can compute the sequences pi, qi as

p0 = 3, q0 = 1,

p1 = 3 · 6 + 1 = 19, q1 = 6,

p2 = 1 · 19 + 3 = 22, q2 = 1 · 6 + 1 = 7,

p3 = 7 · 22 + 19 = 173, q3 = 7 · 7 + 6 = 55.
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Hence the convergents are given by

c0 =
p0
q0

=
3

1
= 3,

c1 =
p1
q1

=
19

6
,

c2 =
p2
q2

=
22

7
,

c3 =
p3
q3

=
173

55
.

Theorem 10.16. Let ck = pk
qk

be the kth convergent of the finite continued fraction [a0; a1, . . . , an],
where k ∈ {1, . . . , n}. Then

pkqk−1 − pk−1qk = (−1)k−1.

Proof. We again use induction.
For k = 1, we have

p1q0 − p0q1 = (a0a1 + 1) · 1− a0a1 = 1 = (−1)1−1.

Assume that the claim is true for an integer k ∈ {1, . . . , n− 1}, that is

pkqk−1 − pk−1qk = (−1)k−1.

Then

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= pk−1qk − pkqk−1 = −(−1)k−1 = (−1)k.

Example 10.17. Let us consider the same example from before: 173
55

= [3; 6, 1, 7]. Then

p0q1 − p1q0 = 3 · 6− 19 · 1 = −1,

p1q2 − p2q1 = 19 · 7− 22 · 6 = 1,

p2q3 − p3q2 = 22 · 55− 173 · 7 = −1.

As another consequence, we see that the convergents of a finite simple continued fraction are
in lowest terms, i.e., ck = pk

qk
with gcd(pk, qk) = 1.

Corollary 10.18. Let ck = pk
qk

be the kth convergent of the finite simple continued fraction [a0; a1, . . . , an].

Then gcd(pk, qk) = 1.

Proof. Let d = gcd(pk, qk). Since

pkqk−1 − qkpk−1 = (−1)k−1,

we must have d | (−1)k−1 and thus d = 1.
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Corollary 10.19. Let ck = pk
qk

be the kth convergent of the finite simple continued fraction [a0; a1, . . . , an].
Then

ck − ck−1 =
(−1)k−1

qkqk−1

for all k ∈ {1, . . . , n}. Further,

ck − ck−2 =
ak(−1)k

qkqk−2

for all k ∈ {2, . . . , n}.

Proof. We write

ck − ck−1 =
pk
qk

− pk−1

qk−1

=
pkqk−1 − pk−1qk

qkqk−1

=
(−1)k−1

qkqk−1

.

Similarly,

ck − ck−2 =
pk
qk

− pk−2

qk−2

=
pkqk−2 − pk−2qk

qkqk−2

.

Since pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2, we get that

pkqk−2 − pk−2qk = (akpk−1 + pk−2)qk−2 − pk−2(akqk−1 + qk−2)

= ak(pk−1qk−2 − pk−2qk−1) = ak(−1)k−2 = ak(−1)k.

The convergents are nesting the continued fraction:

Theorem 10.20. Let ck be the kth convergent of the finite simple continued fraction [a0; a1, . . . , an].
Then,

c0 < c2 < c4 < · · · < c5 < c3 < c1.

Proof. From Corollary 10.19, we get that

ck − ck−2 =
ak(−1)k

qkqk−2

.

Thus, when k is odd, we have ck − ck−2 = − ak
qkqk−2

and thus ck < ck−2 and when k is even, we get
ck > ck−2. Thus, c1 > c3 > c5 > . . . and c0 < c2 < c4 < . . . .

It remains to show that c2i+1 > c2i for all i ≥ 0.
Again, using Corollary 10.19, we have

c2i − c2i−1 =
(−1)2i−1

q2iq2i−1

< 0,

which implies c2i−1 > c2i. We can compare any c2j with c2ℓ−1 as

c2ℓ−1 > c2ℓ+2j−1 > c2ℓ+2j > c2ℓ.
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Example 10.21. Let us consider again 173
55

= [3; 5, 1, 7]. then

c0 = 3 < c2 =
22

7
∼ 3.1428 < c3 =

173

55
∼ 3.1454 < c1 =

19

6
∼ 3.166.

Thus, convergents provide good approximations of the value of the continued fraction.

Exercise 10.22. Show that for all positive integers k we have that qk ≥ k.

10.3 Infinite Continued Fractions
What happens if we let a continued fraction go on forever?

We start with a sequence of real numbers a0, a1 . . . ,with ai > 0 for i > 0 and define recursively

[a0] = a0, [a0; a1, . . . , an] = a0 +
1

[a1; . . . , an]
.

Definition 10.23. A continued fraction is of the form

a0 +
1

a1 +
1

a2+···

and we write it as [a0; a1, a2 . . .].

Theorem 10.24. Let ai be integers and aj > 0 for j > 0 and let ck = [a0; a1, . . . , ak] be the kth
convergent. Then, there exists some real number α such that

lim
k→∞

ck = α.

Proof. We will show that the infinite sequence of even numbered a0, a2, . . . , is increasing and has
an upper bound, i.e., a0 < a2 < . . . < a and the odd numbered a1, a3, . . . , is decreasing and has a
lower bound, i.e., a1 > a3 > . . . > a.

Let m be an even positive integer, then due to Theorem 10.20, we get that

c1 > c3 > . . . > cm−1, cm > . . . > c2 > c0

and c2i < c2j+1 if 2i ≤ m and 2j + 1 < m. By considering all possible values for m, we get
that

c1 > c3 > . . . > c2n−1 > c2n+1 > . . . , . . . > c2n > c2n−1 > . . . > c2 > c0

and c2i > c2j+1 for all i, j.
Thus, lim

i→∞
c2i+1 = α1 and lim

i→∞
c2i = α2. We now want to show that α1 = α2 = α.

Using Corollary 10.19, we have that

c2n+1 − c2n =
(−1)(2n+1)−1

q2n+1q2n
=

1

q2n+1q2n
.
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Due to Exercise 10.22, we have that qk ≥ k, and we get

1

q2n+1q2n
<

1

(2n+ 1)2n

and thus c2n+1 − c2n tends to 0. Hence

lim
n→∞

(c2n+1 − c2n) = lim
n→∞

c2n+1 − lim
n→∞

c2n = 0.

While finite simple continued fractions are rationals, we now show that infinite simple contin-
ued fractions are irrational.

Theorem 10.25. Let ai be integers and aj > 0 for j > 0. Then [a0; a1, . . .] is irrational.

Proof. Let α = [a0; a1, . . .] and let ck = pk
qk

= [a0; a1, . . . , ak] be the kth convergent. For a positive
integer n, we have due to Theorem 10.24 that c2n < α < c2n+1 and hence

0 < α− c2n < c2n+1 − c2n.

Due to Corollary 10.19, however, we have

c2n+1 − c2n =
1

q2n+1q2n

implying that

0 < α− c2n = α− p2n
q2n

<
1

q2n+1q2n

and thus
0 < αq2n − p2n <

1

q2n+1

.

If α = a
b

for a, b integers and b 6= 0, then

0 <
aq2n
b

− p2n <
1

q2n+1

and in turn
0 < aq2n − bp2n <

b

q2n+1

,

where aq2n − bp2n is an integer.
However, as q2n+1 ≥ 2n+ 1 (due to Exercise 10.22), for each integer n there exists an integer

N such that q2N+1 > b, so b
q2N+1

< 1. This leads to a contradiction as there is no integer aq2n−bp2n
with

0 < aq2n − bp2n < 1.

121



We now want to show also the other direction, i.e., every irrational number can be expressed
as infinite simple continued fraction.

We can do the same as for rational numbers, with the simple tweak to compute always b·c.
Let us consider α ∈ R. Then

x0 = α = bx0c+ r1 = bx0c+
1
1
r1

for 0 ≤ r1 < 1. We can continue by setting x1 = 1
r1
> 1 and

x1 = bx1c+ r2 = bx1c+
1
1
r2

and so on. That is for k a positive integer we define

ak = bxkc, xk+1 =
1

xk − ak
.

Theorem 10.26. Let α be an irrational number and consider ak = bxkc where xk+1 = 1
xk−ak

for
k ≥ 0, where x0 = α. Then α = [a0; a1, . . .].

Proof. From the definition of ak we see that it is an integer for every k.
We now show that xk is irrational for every k and thus xk+1 =

1
xk−ak

exists as xk 6= ak = bxkc.
In fact, for k = 0 we have x0 = α is irrational and thus a0 = bx0c 6= x0 and hence x1 = 1

x0−a0
exists.

Assume that xk is irrational. Then,

xk+1 =
1

xk − ak

implies that xk = ak +
1

xk+1
and hence xk+1 is again irrational and hence ak+1 = bxk+1c 6= xk+1.

By the recursive definition we get that

α = x0 = a0 +
1

x1
= [a0; x1]

= a0 +
1

a1 +
1
x2

= [a0; a1, x2]

...
= [a0; a1, . . . , ak, xk+1].

We are left with showing that [a0; a1, . . . , ak, xk+1] tends to α.
By Theorem 10.14, we get that

α = [a0; a1, . . . , ak, xk+1] =
xk+1pk + pk−1

xk+1qk + qk−1

,
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where ck = pk
qk

= [a0; a1, . . . , ak] is the kth convergent. Hence

α− ck =
xk+1pk + pk−1

xk+1qk + qk−1

− pk
qk

=
pk−1qk − pkqk−1

(xk+1qk + qk−1)qk

=
(−1)k

(xk+1qk + qk−1)qk
.

Since xk+1qk + qk−1 > ak+1qk + qk−1 = qk+1, we get that

|α− ck| <
1

qkqk+1

.

Using again Exercise 10.22, we get that 1
qkqk+1

tends to zero. Thus, ck tends to α, i.e.,

lim
k→∞

ck = lim
k→∞

[a0; a1, . . . , ak] = [a0; a1, . . .] = α.

The representation of an irrational number as infinite simple continued fraction is also unique.

Theorem 10.27. Let α be an irrational number. If α = [a0; a1, . . .] = [b0; b1, . . .] then ak = bk for
all k ≥ 0.

Proof. Since c0 = a0, c1 = a0 +
a
a1

we get by Theorem 10.20

a0 < α < a0 +
1

a1
.

We can write

α = [a0; a1, . . .] = lim
k→∞

[a0; a1, . . . , ak]

= lim
k→∞

(
a0 +

1

[a1; a2, . . . , ak]

)
= a0 +

1

lim
k→∞

[a1; a2, . . . , ak]

= a0 +
1

[a1; a2, . . .]
.

Let [a0; a1, . . .] = [b0; b1, . . .]. We show by induction that ak = bk for all k ≥ 0. Note that for k = 0
we have a0 = bαc = b0 and thus

a0 +
1

[a1; a2, . . .]
= b0 +

1

[b1; b2, . . .]
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which implies [a1; a2, . . .] = [b1; b2, . . .]. We can then repeat the argument for [a1; a2, . . .] =
[b1; b2, . . .], getting a1 = b1.

Assume that ak = bk for some k and [ak+1; ak+2, . . .] = [bk+1; bk+2, . . .]. Using the same
argument, we get that ak+1 = bk+1 and [ak+2; ak+3, . . .] = [bk+2; bk+3, . . .].

Example 10.28. Let α = x0 =
√
3, then

a0 = bx0c = 1, r1 =
√
3− 1 and x1 =

√
3 + 1

2
,

a1 = bx1c = 1, r2 =

√
3 + 1

2
− 1 and x2 =

√
3 + 1,

a2 = bx2c = 2, r3 =
√
3− 1 and x3 =

√
3 + 1

2
,

since x3 = x1 we get a periodicity. Thus,
√
3 = [1; 1, 2]. Since [1, 2] =

√
3− 1 we can write

√
3 = 1 +

1

1 + 1
2+(

√
3−1)

.

The convergents are a good approximation for α.

Theorem 10.29 (Dirichlet’s Theorem on Diophantine Approximation). If α is an irrational num-
ber, then there exist infinitely many rational numbers p

q
such that

|α− p

q
| < 1

q2
.

Proof. Let ck = pk
qk

be the kth convergent of α. Then, by the proof of Theorem 10.26, we get that
the infinitely many convergents are such rational approximations, as

|α− pk
qk
| < 1

qkqk+1

.

Since qk < qk+1, we immediately get the claim.

There also exists the converse result:

Theorem 10.30 (Criteria of Legendre). Let α ∈ R, p
q
∈ Q. If

|α− p

q
| < 1

2q2
,

then p
q

is a convergent of α.

In order to prove this, we first need to show the following.
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Proposition 10.31. Let α ∈ R and let ck = pk
qk

be the kth convergent. If r, s are integers with s > 0
and k is a positive integer with

|sα− r| < |qkα− pk|,

then s ≥ qk+1.

Proof. Let us assume that |sα− r| < |qkα− pk|, but 1 ≤ s < qk+1. We can write

pkx+ pk+1y = r,

qkx+ qk+1y = s.

The existence of (x, y) follows from the fact that
(
pk pk+1

qk qk+1

)
has determinant pkqk+1 − pk+1qk =

(−1)k−1 which means the matrix is invertible in Z. Thus,

rqk − spk = y(pk+1qk − pkqk+1),

spk+1 − rqk+1 = x(pk+1qk − pkqk+1).

By Theorem 10.16, we have

pk+1qk − pkqk+1 = (−1)k,

so that
y = (−1)k(rqk − spk).

Similarly, we get
x = (−1)k(spk+1 − rqk+1).

If x = 0, then spk+1 = rqk+1, which implies qk+1 | s (as gcd(pk+1, qk+1) = 1), which
contradicts our assumption s < qk+1.

If y = 0, then r = pkx, s = qkx so that

|sα− r| = |x||qkα− pk| ≥ |qkα− pk|,

which is also a contradiction.
Now we show that x, y have opposite signs. If y < 0, then x > 0 since qkx = s − qk+1y > 0

and qk > 0. If y > 0, then x < 0 since qk+1y ≥ qk+1 > s and thus qkx = s− qk+1y < 0.
By Theorem 10.20, we know that either pk

qk
< α < pk+1

qk+1
or pk+1

qk+1
< α < pk

qk
. In either case,

qkα− pk and qk+1α− pk+1 have opposite signs.
We can write

|sα− r| = |(qkx+ qk+1y)α− (pkx+ pk+1y)|
= |x(qkα− pk) + y(qk+1α− pk+1)|.
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Together with the fact that x, y have opposite signs and qkα − pk and qk+1α − pk+1 have opposite
signs, we get that x(qkα− pk) and y(qk+1α− pk+1) have the same sign. Thus,

|sα− r| = |x||qkα− pk|+ |y||qk+1α− pk+1|
≥ |x||qkα− pk| ≥ |qkα− pk|,

which is a contradiction.

Corollary 10.32. Let α be an irrational number and ck = pk
qk

be the kth convergent. If r, s are
integers with s > 0 and k is a positive integer such that

|α− r

s
| < |α− pk

qk
|,

then s > qk.

Proof. Assume by contradiction that |α− r
s
| < |α− pk

qk
|, but s ≤ qk. Thus,

s|α− r

s
| < qk|α− pk

qk
|

and hence
|sα− r| < |qkα− pk|,

which contradicts Proposition 10.31.

We are now ready to prove Legendre’s criteria.

Proof. Assume by contradiction that p
q

is not a convergent. Then there exist successive convergents
pk
qk
, pk+1

qk+1
such that qk ≤ q < qk+1. Due to Proposition 10.31, we get

|qkα− pk| ≤ |qα− p| = q|α− p

q
| < 1

2q
.

We can divide by qk to get

|α− pk
qk
| < 1

2qqk
.

Since |qpk − pqk| ≥ 1 (since else p
q
= pk

qk
), we get that

1

qqk
≤ |qpk − pqk|

qqk
= |pk

qk
− p

q
| =

∣∣∣∣−(α− pk
qk

)
+

(
α− p

q

)∣∣∣∣
≤ |α− pk

qk
|+ |α− p

q
| < 1

2qqk
+

1

2q2
.

Thus, 1
2qqk

< 1
2q2

and in turn 2qqk > 2q2, contradicting that q ≥ qk.
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10.4 Attack on RSA
Apart from approximating real numbers with rationals, continued fractions also find applications
in cryptography.

We can use a version of Legendre’s criteria for rational numbers, saying that: if

|a
b
− p

q
| ≤ 1

2q2
,

then p
q

is a convergent of a
b
.

This result has been used by Wiener to attack the RSA cryptosystem whenever the decryption
exponent d is small.

Theorem 10.33 (Wiener’s Theorem). Let p, q ∈ P with q < p < 2q and n = pq. Let e < φ(n) be
coprime to φ(n) and d ≡ e−1 mod φ(n). If d < n1/4

3
, then given n, e one can efficiently recover

p, q.

Efficiently in this theorem refers to O(log(n)3).

Proof. Since ed ≡ 1 mod φ(n), there exists some b ∈ Z such that ed− bφ(n) = 1.
Dividing both sides with dφ(n), we get

e

φ(n)
− b

d
=

1

dφ(n)
.

Since q < p we also get that q < n1/2 and since p < 2q

p+ q − 1 ≤ 2q + q − 1 = 3q − 1 < 3
√
n.

Note that φ(n) = (p− 1)(q − 1) = n− p− q + 1, thus

n− φ(n) = p+ q − 1 < 3
√
n.

This means, b
d

is a good approximation of e
n

as

| e
n
− b

d
| = |ed− bn

nd
|

= |(ed− bφ(n))− (bn− bφ(n))

nd
|

= |1− b(n− φ(n))

nd
| ≤ 3b

√
n

nd
=

3b

d
√
n
.

As e < φ(n) we get that be < bφ(n) = ed− 1 < ed. Hence, b < d < n1/4

3
. It follows that

| e
n
− b

d
| ≤ 3b

√
n

nd
≤

3n1/4

3

√
n

nd
=
n3/4

nd
=

1

dn1/4
<

1

2d2
,
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where the last inequality used 2d < n1/4.
Hence, we can apply Legendre’s criteria and get that b

d
is a convergent of e

n
. Since both e, n are

public, we now only have to compute the convergents of e
n

in order to find candidates for b
d
.We use

a candidate for b
d

to compute a candidate for φ(n) = ed−1
b

. We then use the trick from Proposition
8.2 to factor n.

Recall the revised version of RSA, using the Carmichael function λ(n) = lcm(p − 1, q − 1)
instead of φ(n) = (p− 1)(q − 1).

Exercise 10.34. Prove Wiener’s theorem using λ(n) instead of φ(n).

Example 10.35. Let n = 6667 and e = 4331. We can compute the convergents pi
qi

of e
n

and test if
eqi−1
pi

is φ(n).
We start with computing the continued fraction using the Euclidean algorithm

4331

6667
= [0; 1, 1, 1, 5, 1, 5, 1, 2, 5, 3].

Then the sequences pi, qi as
p0 = a0 = 0, q0 = 1.

Since q0 = 1 it cannot be d, since e 6= 1. Thus, we continue computing

p1 = a1p0 + 1 = 1, q1 = a1 = 1.

Again, q1 = 1 cannot be d, since e 6= 1.
Then

p2 = a2 · p1 + p0 = 1, q2 = a2 · q1 + q0 = 2.

Also this case we can exclude as d = 2 is not a unit modulo φ(n) (which is even).
Thus we compute

p3 = a3 · p2 + p1 = 2, q3 = a3 · q2 + q1 = 3.

Now we can check if
eq3 − 1

p3
= 6496

is φ(n) by solving

n− φ(n) + 1 = p+ q = 6667− 6469 + 1 = 172,√
(p+ q)2 − 4n = p− q =

√
1722 − 4 · 6667 = 54,

thus (p+ q) + (p− q) = 172 + 54 = 226 = 2p and thus p = 113 and q = 113− 54 = 59.

Exercise 10.36. Perform the same attack as in Example 10.35 but using λ(n).

An easy countermeasure against Wiener’s attack is to choose e small enough (which also speeds
up the encryption process) such that d >> n1/4

3
.
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10.5 Periodic Continued Fractions
Definition 10.37. A simple infinite continued fractions is called periodic, if there exist positive in-
tegers k,N such that for all n ≥ N we have an = an+k.We then write [a0; a1, . . . , aN−1, aN , . . . , aN+k−1].

We have seen before that a representation to the base b which is periodic gives a rational
number. For continued fractions, we get special irrational numbers.

Definition 10.38. We say that a real number α is quadratic irrational, if α is irrational and a root
of a quadratic polynomial with integer coefficients, that is

aα2 + bα + c = 0,

where a, b, c ∈ Z and a 6= 0.

Example 10.39. Let α = 2+
√
3. Since α2 − 4α+ 1 = (7 + 4

√
3)− 4(2 +

√
3) + 1 = 0. Thus, α

is quadratic irrational.

We now show that an infinite simple continued fraction of α is periodic if and only if α is
quadratic irrational.

Clearly, there are several roots of quadratic polynomials that are rationals and we can exclude.

Lemma 10.40. Let α be a real number. Then α is quadratic irrational if and only if there exist
integers a, b, c with b > 0 and c 6= 0 and b not a perfect square, such that

α =
a+

√
b

c
.

Proof. If α is quadratic irrational, then there exist integers A,B,C such that

Aα2 +Bα + C = 0.

From the quadratic formula we know that

α =
−B ±

√
B2 − 4AC

2A
.

Since α is a real number, we have that B2 − 4AC > 0 and since α is irrational, we want that
B2 − 4AC is not a square and thus A 6= 0. Define a = −B, b = B2 − 4AC and c = 2A we get the
required form

α =
a+

√
b

c
.

Conversely, if α = a+
√
b

c
, where a, b, c ∈ Z and b > 0 is not a square and c 6= 0, we get by

Theorem 2.2, that α is irrational. Since further

c2α2 − 2acα + (a2 − b) = 0,

α is quadratic irrational.
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Lemma 10.41. If α is a quadratic irrational number and r, s, t, u ∈ Z then rα+s
tα+u

is either rational
or quadratic irrational.

Proof. From Lemma 10.40, there exist integers a, b, c such that b > 0 is not a square and c 6= 0
and

α =
a+

√
b

c
.

Thus,

rα + s

tα + u
=

r(a+
√
b)

c
+ s

t(a+
√
b)

c
+ u

=
(ar + cs) + r

√
b

(at+ cu) + t
√
b

=
((ar + cs) + r

√
b)((at+ cu)− t

√
b)

((at+ cu) + t
√
b)((at+ cu)− t

√
b)

=
((ar + cs)(at+ cu)− rtb) + (r(at+ cu)− t(ar + cs))

√
b

(at+ cu)2 − t2b
.

Thus, by Lemma 10.40, rα+s
tα+u

is quadratic irrational, unless r(at + cu) − t(ar + cs) = 0, in
which case the number is rational.

Example 10.42. Let us consider the constant sequence ai = 1 for all i. That is

α = 1 +
1

1 + 1
1+···

.

Since α = 1 + 1
α

we can solve for α, getting α = 1+
√
5

2
, the golden ratio. The convergents are

defined through the Fibonacci sequence, as pi = Fi+2, qi = Fi+1, where the Fibonacci sequence is
defined as F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2.

We are now ready to prove our main result.

Theorem 10.43 (Lagrange’s Theorem or the Continued Fractions Theorem). The infinite simple
continued fraction of an irrational number is periodic if and only if the number is quadratic irra-
tional.

Proof. We start by proving that a periodic simple continued fraction is quadratic irrational.
Let α = [a0; a1, . . . , aN−1, aN , . . . , aN+k]. Define

β = [aN ; aN+1, . . . , aN+k] = [aN ; aN+1, . . . , aN+k, β].

Let ck be the convergent of [aN ; aN+1, . . . , aN+k], then by Theorem 10.14, we get that

β =
βpk + pk−1

βqk + qk−1

.
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Since the continued fraction of β is infinite, β is irrational and

qkβ
2 + (qk−1 − pk)β − pk−1 = 0,

thus β is quadratic irrational. Let c′k now be the convergents of the continued fraction [a0; a1, . . . , aN−1]
Since α = [a0; a1, . . . , aN−1, β], we get from Theorem 10.14 that

α =
βp′N−1 + p′N−2

βq′N−1 + q′N−2

.

Thus, since β is quadratic irrational we can apply Lemma 10.41 and get that α is quadratic irra-
tional.

In order to show the other direction, that is: any quadratic irrational number is a simple periodic
continued fraction, we require two additional results. Thus the proof is continued afterwards.

Example 10.44. Let α = [3; 1, 2]. Define β = [1; 2], so that α = [3; β]. Clearly, we have that
β = [1; 2, β], that is

β = 1 +
1

2 + 1
β

=
3β + 1

2β + 1
.

Thus, we get 2β2 − 2β − 1 = 0 and can solve this as

β =
1 +

√
3

2
.

Since α = 3 + 1
β

we get that

α = 3 +
2

1 +
√
3
= 2 +

√
3.

Lemma 10.45. If α is a quadratic irrational, then α can be written as

P +
√
d

Q
,

where P,Q, d ∈ Z and Q 6= 0, d > 0 is not a square and Q | (d− P 2).

Proof. This is almost the same statement as in Lemma 10.40, except for the part Q | (d − P 2).
Hence, Lemma 10.40 implies that

α =
a+

√
b

c
,

where a, b, c ∈ Z and c 6= 0, b > 0 is not a square. We multiply the numerator and the denominator
with |c| to get

α =
a|c|+

√
bc2

c|c|
.

Let P = a|c|, Q = c|c| and d = bc2. Then P,Q, d ∈ Z and Q 6= 0, d > 0 is not a square and finally
Q | (d− P 2) since

d− P 2 = bc2 − a2c2 = c2(b− a2) = ±Q(b− a2).
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Definition 10.46. Let α = a+
√
b

c
be a quadratic irrational. The conjugate of α is α′ = a−

√
b

c
.

Lemma 10.47. If the quadratic irrational α is the root of the polynomial Ax2+Bx+C = 0, then
α′ is the second root.

Proof. From the quadratic formula, we have that Ax2 +Bx+ C = 0 has the two roots

−B ±
√
B2 − 4AC

2A
.

If α is a root, then α = a+
√
b

c
, where a = −B, b = B2 − 4AC and c = 2A. Thus, α′ = a−

√
b

c
is the

second root.

Lemma 10.48. If α1 =
a1+b1

√
d

c1
, α2 =

a2+b2
√
d

c2
, are quadratic irrationals or rationals, then

1. (α1 + α2)
′ = α′

1 + α′
2.

2. (α1 − α2)
′ = α′

1 − α′
2.

3. (α1α2)
′ = α′

1α
′
2.

4.
(

α1

α2

)′
=

α′
1

α′
2
.

Exercise 10.49. Prove Lemma 10.48.

We now give an algorithm for finding the periodic continued fraction.

Theorem 10.50. Let α be a quadratic irrational number, and write α = P0+
√
d

Q0
, where Q0 6= 0,

d > 0 is not a square and Q0 | (d− P 2
0 ). Define recursively

αk =
Pk +

√
d

Qk

,

ak = bαkc,
Pk+1 = akQk − Pk,

Qk+1 =
d− P 2

k+1

Qk

,

for k ≥ 0. Then α = [a0; a1, . . .].

Proof. We use induction to show that Pk, Qk ∈ Z and Qk 6= 0, Qk | (d− P 2
k ).

For k = 0, Lemma 10.45 implies P0, Q0 ∈ Z and Q0 6= 0, Q0 | (d− P 2
0 ).

Assume that for k the statement is true, i.e., Pk, Qk ∈ Z and Qk 6= 0, Qk | (d− P 2
k ).

Then
Pk+1 = akQk − Pk ∈ Z.
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Further,

Qk+1 =
d− P 2

k+1

Qk

=
d− (akQk − Pk)

2

Qk

=
d− P 2

k

Qk

+ 2akPk − a2kQk.

Since Qk | (d − P 2
k ) we get that Qk+1 ∈ Z. Since d is not a square, we see that d 6= P 2

k+1 and

Qk+1 =
d−P 2

k+1

Qk
6= 0. From the definition of Qk+1 we also get the condition that Qk+1 | (d−P 2

k+1).

Finally, we want to show that α = [a0; a1, . . .]. Using Theorem 10.26, we equivalently want to
show that αk+1 =

1
αk−ak

.
We can write

αk − ak =
Pk +

√
d

Qk

− ak

=
Pk +

√
d− akQk

Qk

=

√
d− Pk+1

Qk

=
(
√
d− Pk+1)(

√
d+ Pk+1)

Qk(
√
d+ Pk+1)

=
d− P 2

k+1

Qk(
√
d+ Pk+1)

= Qk+1
1√

d+ Pk+1

=
1

αk+1

.

Example 10.51. Let α = 3+
√
7

2
. Then we can write

α =
6 +

√
28

4
,

and thus set P0 = 6, Q0 = 4, d = 28.
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Hence we can compute a0 = bαc = 2 and

P1 = 2 · 4− 6 = 2, α1 =
2 +

√
28

6
,

Q1 =
28− 22

4
= 6, a1 = bα1c = 1,

P2 = 1 · 6− 2 = 4, α2 =
4 +

√
28

2
,

Q2 =
28− 42

6
= 2, a2 = bα2c = 4,

P3 = 4 · 2− 4 = 4, α3 =
4 +

√
28

6
,

Q3 =
28− 42

2
= 6, a3 = bα3c = 1,

P4 = 1 · 6− 4 = 2, α4 =
2 +

√
28

4
,

Q4 =
28− 22

6
= 4, a4 = bα4c = 1,

P5 = 1 · 4− 2 = 2, α5 =
2 +

√
28

6
,

Q5 =
28− 22

4
= 6, a5 = bα5c = 1,

since P5 = P1, Q5 = Q1 we get a periodicity, i.e.,

3 +
√
7

2
= [2; 1, 4, 1, 1].

We are now ready to finish Lagrange’s theorem.

Proof. Let α be a quadratic irrational, so that we can write

α =
P0 +

√
d

Q0

.

By Theorem 10.50, we get that α = [a0; a1, . . .] where

αk =
Pk +

√
d

Qk

,

ak = bαkc,
Pk+1 = akQk − Pk,

Qk+1 =
d− P 2

k+1

Qk

,
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for k ≥ 0.
We can write α = [a0; a1, . . . , ak−1, αk]. Let ck be the convergent. Due to Theorem 10.14, we

get that

α =
αkpk−1 + pk−2

αkqk−1 + qk−2

.

Taking conjugates on both sides, we can use Lemma 10.48 to get

α′ =
pk−1α

′
k + pk−2

qk−1α′
k + qk−2

.

Solving for α′
k, we find that

α′
k = −qk−2

qk−1

(
α′ − pk−2

qk−2

α′ − pk−1

qk−1

)
.

Recall that the convergents pk−2

qk−2
, pk−1

qk−1
tend to α, thus

α′ − pk−2

qk−2

α′ − pk−1

qk−1

tends to 1.
Hence, there exists an integer N , such that α′

k < 0 for k ≥ N. Since αk > 0, we get

αk − α′
k =

Pk +
√
d

Qk

− Pk −
√
d

Qk

=
2
√
d

Qk

> 0.

Hence Qk > 0 for k ≥ N.

Since Qk+1 =
d−P 2

k+1

Qk
, we get

Qk ≤ QkQk+1 = d− P 2
k+1 ≤ d

and in turn
P 2
k+1 ≤ d = P 2

k+1 −QkQk+1

hence
−
√
d < Pk+1 <

√
d.

From the inequalities (0 ≤ Qk ≤ d,−
√
d < Pk+1 <

√
d for k ≥ N ) we see that only a finite

number of values are possible for Pk, Qk. However, as there are infinitely many integer k > N,
there must exist two integers i 6= j such that Pi = Pj and Qi = Qj which implies αi = αj.

Consequently, we get a periodicity as ai = aj and thus a periodic continued fraction

α = [a0; a1, . . . , ai−1, ai, . . . , aj−1].
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Exercise 10.52. Show that if a
b

is a convergent of
√
n then b

a
is a convergent of 1√

n
.

Finally, we can consider continued fractions, which are purely periodic.

Definition 10.53. A simple continued fraction [a0; a1, . . .] is called purely periodic, if there exists
an integer n such that ak = an+k for all positive integers k, i.e.,

[a0; a1, . . .] = [a0; a1 . . . , ak−1].

These continued fractions belong to special quadratic irrationals.

Definition 10.54. A quadratic irrational α is called reduced, if α > 1 and −1 < α′ < 0.

Theorem 10.55. The simple continued fraction of a quadratic irrational α is purely periodic, if
and only if α is reduced.

Proof. For the first direction, assume that α is a reduced quadratic irrational.
Recall from Theorem 10.50 that the continued fraction is found via α0 = α, ak = bαkc, αk+1 =

1
αk−ak

.

Hence 1
αk+1

= αk − ak and its conjugate is 1
α′
k+1

= α′
k − ak.

We now show by induction that −1 < α′
k < 0, so that all αk are reduced.

For k = 0, we get that α0 = α, which we assumed is reduced and hence −1 < α′
0 < 0.

Assume the claim is true for k, i.e., −1 < α′
k < 0.

Then, since α > 1 we also have ak ≥ 1 for all k and thus

1

α′
k+1

= α′
k − ak < −1,

so that
−1 < α′

k+1 < 0

for all k.
Thus,

−1 < α′
k = ak +

1

α′
k+1

< 0,

which implies that

−1− 1

α′
k+1

< ak < − 1

α′
k+1

.

Thus we get that

ak = b− 1

α′
k+1

c.

As in Lagrange’s Theorem for continued fractions, we again get that there exist i < j with αi = αj

and hence
ai−1 = b− 1

α′
i−1

c = b− 1

α′
j−1

c.
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Since then also
αi−1 = ai−1 +

1

αi

= aj−1 +
1

αj

= aj−1

we get αi−1 = αj−1. We can continue in this way, until we get

α0 = αj−i

and hence
α = [a0; a1, . . . , aj−i−1].

For the other direction, we assume that α is quadratic irrational and has a purely periodic
continued fraction

α = [a0; a1, . . . , ak] = [a0; a1, . . . , ak, α].

Hence
α =

αpk + pk−1

αqk + qk−1

where pk
qk
, pk−1

qk−1
are the kth and (k − 1)th convergent of α. We can rewrite this to get

α2qk + α(qk−1 − pk)− pk−1 = 0

and hence α is a root of the quadratic polynomial x2qk + x(qk−1 − pk)− pk−1.
Let us consider the quadratic irrational

β = [ak; ak−1, . . . , a0] = [ak; ak−1, . . . , a0, β].

Again, we get that

β =
βp′k + p′k−1

βq′k + q′k−1

,

where p′k
q′k
,
p′k−1

q′k−1
are the kth and (k − 1)th convergent of β.

From Exercise Sheet 6, Problem 2.3 we have that

pk
pk−1

= [ak; ak−1, . . . , a0] =
p′k
q′k
,

qk
qk−1

= [ak; ak−1, . . . , a1] =
p′k−1

q′k−1

.

Since convergents are in lowest terms, we get that

pk = p′k, pk−1 = q′k, qk = p′k−1, qk−1 = q′k−1.

We can insert these values to get

β =
βpk + qk

βpk−1 + qk−1
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and hence
β2pk−1 + β(qk−1 − pk)− qk = 0.

We multiply this by − 1
β2 to get

−pk−1 −
1

β
(qk−1 − pk) +

(
− 1

β

)2

qk = 0.

Thus, − 1
β

is the second root of x2qk + x(qk−1 − pk)− pk−1.

Thus, α and − 1
β

are conjugates, i.e., α′ = − 1
β
.

Since β = [ak; ak−1, . . . , a0] we get that β > 1 and hence

−1 < − 1

β
= α′ < 0,

which shows that α is reduced.

Let us consider
√
d, for d a positive integer, which is not a square. Clearly,

√
d is not purely

periodic, but almost. That is, if we consider α = b
√
dc+

√
d > 1, we get

−1 < α′ = b
√
dc −

√
d < 0

and hence α is reduced. Thus, √
d = [a0; a1, . . . , an]

is almost purely periodic.

10.6 Factoring using Continued Fractions
Recall Fermat’s factorization algorithm, where we search for t, s such that n = t2 − s2, as then
n = (t− s)(t+ s).

We can generalize this method, as it is enough to find positive integers x, y which satisfy the
weaker condition

x2 ≡ y2 mod n,

and 0 < y < x < n and x+ y 6= n.
In this case, n | (x2 − y2) and n ∤ (x− y), n ∤ (x+ y). Thus, gcd(n, x− y) and gcd(n, x+ y)

are non-trivial divisors of n.
We can use the continued fraction of

√
n to find solutions to the congruence

x2 ≡ y2 mod n.

We first need the following result.

Lemma 10.56. Let r, s, t, u be rational numbers and n be a positive integer, which is not a square.
If r + s

√
n = t+ u

√
n, then r = t, s = u.
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Proof. If r + s
√
n = t+ u

√
n but s 6= u, then

√
n =

r − t

u− s
,

which is a contradiction to
√
n being irrational. Thus, u = s and hence also r = t.

Theorem 10.57. Let n be a positive integer, which is not a square. Define

αk =
Pk +

√
n

Qk

,

ak = bαkc,
Pk+1 = akQk − Pk,

Qk+1 =
n− P 2

k+1

Qk

for k ≥ 0 and α0 =
√
n.

Let pk
qk

be the kth convergent of the continued fraction of
√
n.

Then,
p2k − nq2k = (−1)k−1Qk+1.

Proof. Since
√
n = [a0; a1, . . . , ak, αk+1], by Theorem 10.14, we get that

√
n =

αk+1pk + pk−1

αk+1qk + qk−1

.

We can insert that αk+1 =
Pk+1+

√
n

Qk+1
to get

√
n =

(Pk+1 +
√
n)pk +Qk+1pk−1

(Pk+1 +
√
n)qk +Qk+1qk−1

.

Thus, rewriting this we get

nqk + (Pk+1qk +Qk+1qk−1)
√
n = (Pk+1pk +Qk+1pk−1) + pk

√
n.

By Lemma 10.56, we get that

nqk = Pk+1pk +Qk+1pk−1,

pk = Pk+1qk +Qk+1qk−1.

Thus, by multiplying with qk, respectively with pk we get

nq2k = Pk+1pkqk +Qk+1pk−1qk,

p2k = Pk+1qkpk +Qk+1qk−1pk.

Hence
p2k − nq2k = Qk+1(qk−1pk − pk−1qk) = (−1)k−1Qk+1.
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The continued fraction factorization algorithm, thus considers the continued fraction of
√
n

and due to Theorem 10.57, we have

p2k ≡ (−1)k−1Qk+1 mod n.

If k is odd and Qk+1 = s2 for some integer s, then we can use p2k ≡ s2 mod n to factor n.

Example 10.58. Let n = 1037 and α =
√
1037 = 0+

√
1037
1

, i.e., we set P0 = 0, Q0 = 1.
We then generate the terms Pk, Qk, αk, ak and search for square Qk. In fact, Q1 = 13 is not a

square but Q2 = 49 = 72. We get that p21 ≡ Q2 ≡ 72 mod 1037 and by computing the sequence
pi we get p1 = 129.

Thus,
1292 − 72 ≡ (129− 7)(129 + 7) ≡ 0 mod 1037.

We can compute gcd(122, 1037) = 61 and gcd(136, 1037) = 17.
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11 Non-Linear Diophantine Equations
Any equation where we are only interested in integer solutions is called Diophantine equation.
In Chapter 1.4 we have studied linear Diophantine equations and have seen how all solutions
(if any exists) can be found. What happens if we consider non-linear Diophantine equations?
Unfortunately, there is no general method for solving all non-linear Diophantine equations.

However, if we focus on special types of equations, e.g. x2 + y2 = z2, we can provide all
solutions.

A related equation is the Pell equation, of the form x2 − dy2 = n. These equations can be
solved using continued fractions from Chapter 10.

This will lead us to consider the more general equation xn + yn = zn for n > 2 and clearly
we will not be interested in the trivial solution (0, 0, 0). Fermat’s last theorem then tells us that
no non-trivial solution to this equation exists. This result is probably the most famous one within
elementary number theory. This statement of Fermat has puzzled mathematicians for 350 years,
until finally, in 1995, Andrew Wiles was able to prove it.

While the proof for a general n lies beyond the scope of this lecture, we will prove it for the
case n = 4.

11.1 Pythagorean Triples
Recall the famous theorem of Pythagoras, which states that in a right-angled triangle with sides
x, y, z (where z denotes the hypothenuse), we have that

x2 + y2 = z2.

Thus to find all possible right-angled triangles with sides of integer length, we want to find all
integer solutions to the non-linear Diophantine equation x2 + y2 = z2.

Definition 11.1. A Pythagorean triple is a solution (x, y, z) ∈ Z3 with

x2 + y2 = z2.

Example 11.2. For example, x = 3, y = 4, z = 5 is a Pythagorean triple.

Unlike most non-linear Diophantine equations, we can describe all Pythagorean triples. Before
proving this, we will require some more results.

Definition 11.3. A Pythagorean triple (x, y, z) is called primitive if gcd(x, y, z) = 1.

Example 11.4. The Pythagorean triple (3, 4, 5) is primitive, while (6, 8, 10) is not.

Let (x, y, z) be a Pythagorean triple with gcd(x, y, z) = d. Then, there exist integers x1, y1, z1
with x = dx1, y = dy1, z = dz1 and gcd(x1, y1, z1) = 1. In addition, as

x2 + y2 = z2,
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we also get that

x21 + y21 = (x/d)2 + (y/d)2 = (z/d)2 = z21 .

Thus, from a non-primitive Pythagorean triple we can form a primitive Pythagorean triple.
On the other hand, any multiple of a Pythagorean triple will again be a Pythagorean triple. That

is: if (x, y, z) is a Pythagorean triple, i.e., x2 + y2 = z2, then (dx, dy, dz) is also a Pythagorean
triple as

(dx)2 + (dy)2 = d2(x2 + y2) = d2z2 = (dz)2.

Consequently, all Pythagorean triples can be found forming multiples of primitive Pythagorean
triples. Thus, we will only be interested in finding primitive solutions.

The first lemma tells us that any two integers in a primitive Pythagorean triple are coprime.

Lemma 11.5. Let (x, y, z) be a primitive Pythagorean triple. Then

gcd(x, y) = gcd(x, z) = gcd(y, z) = 1.

Proof. Let d = gcd(x, y), and assume by contradiction that d > 1, so that there exists some prime
p with p | d. Thus, we also have p | x and p | y, which in turn gives that p | (x2 + y2) = z2. As
then p | gcd(x, y, z) = 1, we get the desired contradiction. The other two cases are analogous.

The next lemma tells us about the parity of the integers in a Pythagorean triple.

Lemma 11.6. If (x, y, z) is a primitive Pythagorean triple, then either x is even and y is odd or x
is odd and y is even.

Proof. By Lemma 11.5, we know that gcd(x, y) = 1, thus x and y cannot both be even. On the
other hand, if x, y are both odd, then

x2 ≡ y2 ≡ 1 mod 4,

and hence
z2 ≡ x2 + y2 ≡ 2 mod 4.

As 2 is not a quadratic residue modulo 4, we get a contradiction.

The final lemma tells us that two coprime integers whose product is a square, must already be
squares themselves.

Lemma 11.7. Let r, s, t be positive integers such that gcd(r, s) = 1 and rs = t2. Then, there exist
integers m,n such that r = m2, s = n2.

Exercise 11.8. Prove Lemma 11.7 using the Fundamental Theorem of Arithmetic.

142



We can now describe all Pythagorean triples. By Lemma 11.6, we may assume that y is even
and x, z are odd.

Theorem 11.9. The positive integers (x, y, z) form a primitive Pythagorean triple with y even if
and only if there exist coprime integers 0 < n < m such that either m is odd and n is even, or m
is even and n is odd and

x = m2 − n2, y = 2mn, z = m2 + n2.

Proof. For the first direction, let (x, y, z) be a primitive Pythagorean triple with even y. Due to
Lemma 11.6, we then have that x, z are odd.

Thus, z + x and z − x are both even, i.e., there exist positive integers r, s with

r = (z + x)/2, s = (z − x)/2.

Note that gcd(r, s) = 1. In fact, if gcd(r, s) = d then d | (r + s) = z and d | (r − s) = x.
Hence d | gcd(x, z) = 1.

As x2 + y2 = z2, we get

y2 = z2 − x2 = (z + x)(z − x)

and hence (y
2

)2
=

(
z + x

2

)(
z − x

2

)
= rs.

Using Lemma 11.7 there exist positive integers m,n such that r = m2 and s = n2. We can
hence write x, y, z in terms of m,n as

x = r − s = m2 − n2,

y =
√
4rs =

√
4m2n2 = 2mn,

z = r + s = m2 + n2.

We note that gcd(m,n) = 1.
In fact, if gcd(m,n) = d, then d | (m2−n2) = x, and d | 2mn = y and finally d | (m2+n2) =

z. Thus, d | gcd(x, y, z) = 1. Since m,n cannot both be odd (if both are odd then x = m2 − n2

is even, which we excluded) we get that either m is even and n is odd or m is odd and n is even.
This shows that every primitive Pythagorean triple has the desired form.

For the other direction, we want to show that every triple

x = m2 − n2,

y = 2mn,

z = m2 + n2

with m > n positive coprime integers of different parity forms a primitive Pythagorean triple.
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First note that x = m2 − n2, y = 2mn, z = m2 + n2 forms a Pythagorean triple as

x2 + y2 = (m2 − n2)2 + (2mn)2 = (m4 − 2m2n2 + n4) + 4m2n2

= m4 + 2m2n2 + n4 = (m2 + n2)2 = z2.

To show that the triple is primitive, assume that gcd(x, y, z) = d > 1, then there exists a prime
p, such that p | d.

As x is odd, we have that p 6= 2 in fact x = m2 − n2 and m,n have opposite parity. As p | x, z
we also get p | (x+ z) = 2m2 and p | (z − x) = 2n2.

Thus, p | m,n which contradicts gcd(m,n) = 1.

Example 11.10. Let m = 5, n = 2. Then Theorem 11.9 tells us that

x = m2 − n2 = 21,

y = 2mn = 20,

z = m2 + n2 = 29

is a primitive Pythagorean triple.

11.2 Pell’s Equation
We now want to study Diophantine equations of the form

x2 − dy2 = n,

where d, n are given integers. Note that if d < 0, n < 0 then there are no solutions. If d < 0 and
n > 0, then |x| ≤

√
n, |y| ≤

√
n/|d|, hence there are only finitely many solutions.

If d is a square, say d = D2, then

x2 − dy2 = x2 −D2y = (x+Dy)(x−Dy) = n.

Hence any solution of x2 − dy2 = n corresponds to a solution of

x+Dy = a,

x−Dy = b,

ab = n.

In this case, there are again only finitely many solutions (in fact, for any factorization a, b there
exists at most one solution (x, y) in the integers).

Thus, we will assume that d, n are positive integers and d is not a square. As before, if (x, y) is
a solution to the Pell’s Equation, then (±x,±y) is as well. We thus only consider positive solutions
x, y > 0.
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We can use continued fractions to study a Diophantine equation, called generalized Pell’s equa-
tion:

x2 − dy2 = n,

where d is a given positive integer, not a square and we are interested in positive integer solutions
(x, y).

Theorem 11.11. Let d, n be nonzero integers. If d > 0 is not a square and |n| <
√
d, then for any

solution (x, y) ∈ Z2 with y 6= 0 to the generalized Pell equation

x2 − dy2 = n,

we have that x
y

is a convergent of
√
d.

Proof. Let us rewrite the generalized Pell’s equation as x2 − dy2 = (x+ y
√
d)(x− y

√
d) = n. If

n > 0, then x− y
√
d > 0, and hence x

y
−

√
d > 0.

Since 0 < n <
√
d, we get that

x

y
−

√
d =

x−
√
dy

y
=

x2 − dy2

y(x+ y
√
d)
<

n

y(2y
√
d)
<

√
d

2y2
√
d
=

1

2y2
.

Since
0 <

x

y
−

√
d <

1

2y2
,

we can apply the Legendre Criteria, which tells us that x
y

must be a convergent of
√
d.

If n < 0, we divide the generalized Pell’s equation by −d to get

y2 − 1

d
x2 = −n

d
.

We can argue in the same manner as before, as −n
d
> 0 to get that y

x
is a convergent of of 1√

d
.

Thus, using Exercise 10.52 we get that x
y

is a convergent of
√
d.

This theorem tells us that the solutions of the generalized Pell’s equation are given by the
convergents of

√
d. Thus, we want to make use of Theorem 10.57, i.e., we define α0 =

√
d,

αk =
Pk+

√
d

Qk
, ak = bαkc and Pk+1 = akQk − Pk, Qk+1 =

d−P 2
k+1

Qk
, for k a non-negative integer. Let

pk
qk

denote the kth convergent of the continued fraction of
√
d. Then

p2k − dq2k = (−1)k−1Qk+1.

With this we can see how the odd convergents p2k−1

q2k−1
corresponds to a solution of the Pell’s

equation
x2 − dy2 = 1.
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Theorem 11.12. Let d be a positive integer which is not a square. Let pk
qk

denote the kth convergent
of

√
d. Let n denote the period length of the continued fraction of

√
d. If n is even, the positive

solutions to
x2 − dy2 = 1

are x = pjn−1, y = qjn−1, for j a positive integer. If n is odd, the positive solutions to x2−dy2 = 1
are x = p2jn−1, y = q2jn−1 for j a positive integer.

Proof. By Theorem 11.11, we get that a solution x, y of x2−dy2 = 1 is such that x
y

is a convergent
of

√
d, i.e., x = pk, y = qk.

Recall that the continued fraction of
√
d is found via α0 =

√
d = P0+

√
d

Q0
, with P0 = 0, Q0 = 1

and
√
d = [a0; a1, . . . , an].

From Theorem 10.57, we get that

p2k − dq2k = (−1)k−1Qk+1.

As
√
d has period length n, we get that Qjn = Q0 = 1 for all positive integers j. In fact, since

αn+1 = αn we also have Pn+1 = P1, Qn+1 = Q1. By definition

Qn+1 =
d− P 2

n+1

Qn

=
d− P 2

1

Q0

= Q1

and since Pn+1 = P1 we also get Qn = Q0.
Hence

p2jn−1 − dq2jn−1 = (−1)jnQjn = (−1)jn.

If n is even, then x = pjn−1, y = qjn−1 is a solution to x2 − dy2 = 1 and if n is odd, we can
consider 2jn− 1 instead.

We now want to show that the equation x2 − dy2 = 1 has no other solutions. For this we show
that Qk+1 = 1 implies that n | (k + 1), so that Qk+1 = Qjn and that Qj 6= −1 for any positive
integer j.

If Qk+1 = 1, then αk+1 = Pk+1+
√
d. Since αk+1 = [ak+1; ak+2, . . .], the continued fraction of

αk+1 is purely periodic. Thus, we can use Theorem 10.55 to get that −1 < α′
k+1 = Pk+1−

√
d < 0.

Since Pk+1 is an integer, we can only have Pk+1 = b
√
dc = P1. Hence we can compare αk+2 and

α1 :

P0 = 0, Q0 = 1, α0 =
√
d, a0 = b

√
dc,

P1 = a0Q0 − P0 = b
√
dc, Q1 =

d− P 2
1

Q0

= d− b
√
dc2, α1 =

b
√
dc+

√
d

d− b
√
dc2

,

Pk+1 = b
√
dc, Qk+1 = 1, αk+1 = b

√
dc+

√
d, ak+1 = 2b

√
dc,

Pk+2 = ak+1Qk+1 − Pk+1 = 2b
√
dc − b

√
dc = b

√
dc = P1, Qk+2 = d− b

√
dc2 = Q1,

which implies αk+2 = α1 and hence n | (k + 1).
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For the second point, we note thatQj = −1 implies that αj = −Pj−
√
d and since αj is purely

periodic, we get −1 < α′
j = −Pj +

√
d < 0 and αj = −Pj −

√
d > 1.

We can rewrite this as Pj >
√
d and Pj < −1−

√
d, which are contradictions.

Theorem 11.13. Let d be a positive integer which is not a square. Let pk
qk

denote the kth convergent
of

√
d. Let n denote the period length of the continued fraction of

√
d. If n is even, the equation

x2 − dy2 = −1

has no non-trivial integer solutions. If n is odd, the positive integer and the solutions of x2−dy2 =
−1 are x = p(2j−1)n−1, y = q(2j−1)n−1 for j a positive integer.

Exercise 11.14. Prove Theorem 11.13.

Example 11.15. Since
√
14 = [3, 1, 2, 1, 6], we get that the positive solutions of x2 − 14y2 = 1

are given by p4j−1, q4j−1, for j a positive integer. The smallest positive solution is given by p3 =
15, q3 = 4.

Theorem 11.16. Let d be a positive non-square integer. Let x1, y1 be the smallest positive solution
to the Pell equation x2 − dy2 = 1. Then, all positive solutions are given by

xk + yk
√
d = (x1 + y1

√
d)k,

for k a positive integer.

Proof. We start by showing that xk, yk is a solution.
Note that by taking conjugates, we get

xk − yk
√
d = (x1 − y1

√
d)k

as the conjugate of a power is the power of the conjugate.
Thus,

x2k − dy2k = (xk + yk
√
d)(xk − yk

√
d) = (x1 + y1

√
d)k(x1 − y1

√
d)k

= (x21 − dy21)
k = 1.

Thus, xk, yk is a solution for any positive integer k.
Next, we want to show that all solutions are of this form.
For this, we assume that x′, y′ is a positive solution, which is not of the form xk, yk. Then, there

exists an integer n such that

(x1 + y1
√
d)n < x′ + y′

√
d < (x1 + y1

√
d)n+1.

We multiply this with (x1 + y1
√
d)−n to get

1 < (x1 − y1
√
d)n(x′ + y′

√
d) < x1 + y1

√
d,
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where we have used that x1 − y1
√
d = (x1 + y1

√
d)−1.

Now, we define s, t to be the integers with

s+ t
√
d = (x1 − y1

√
d)n(x′ + y′

√
d).

We then get that

s2 − dt2 = (s− t
√
d)(s+ t

√
d)

= (x1 + y1
√
d)n(x′ − y′

√
d)(x1 − y1

√
d)n(x′ + y′

√
d)

= (x21 − dy21)
n(x′2 − dy′2) = 1.

Hence, s, t is a solution of x2 − dy2 = 1 and

1 < s+ t
√
d < x1 + y1

√
d.

As we also have s+ t
√
d > 1 we get that

0 < (s+ t
√
d)−1 < 1

and thus

s =
1

2

(
(s+ t

√
d) + (s− t

√
d)
)
> 0

t =
1

2
√
d

(
(s+ t

√
d− (s− t

√
d)
)
> 0.

Hence, s, t is a positive solution and s ≥ x1, t ≥ y1 as we have chosen x1, y1 to be the smallest
positive solution. Together with s + t

√
d < x1 + y1

√
d we get a contradiction. Thus, x′, y′ must

be of the form xk, yk.

Example 11.17. The smallest positive solution of the equation x2 − 13y2 = 1 is x1 = 649, y1 =
180. Hence all positive solutions are given by

xk + yk
√
13 = (649 + 180

√
13)k.

For example x2 = 842401, y2 = 233640.

11.3 Fermat’s Last Theorem
We have seen that the non-linear Diophantine equation x2+ y2 = z2 has infinitely many solutions.
What happens if we take larger powers?

Theorem 11.18 (Fermat’s Last Theorem). The equation

xn + yn = zn

has no integer solutions if n ≥ 3.
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This famous statement of Fermat has challenged mathematicians for centuries. As Fermat only
provided the proof for the case n = 4, claiming that the general case works similarly. It is unlikely
that he did know the proof of the statement, as the only proof available today, due to Andrew Wiles,
uses different tools (such as a novel connection to algebraic geometry) than the proof he gave for
n = 4. However, trying to prove the statement, many novel and interesting results have been found
along the way, such as

Theorem 11.19 (Euler). The non-linear Diophantine equation x3 + y3 = z3 has no non-trivial
integer solutions.

and

Theorem 11.20 (Germain). Let p, 2p + 1 ∈ P , then xp + yp = zp has no integer solution with
xyz 6= 0 when p ∤ xyz.

The proof for n = 4 uses infinite descent, which shows that a Diophantine equation has no
solution by showing that for each solution one would find a smaller one, contradicting the well-
ordering property.

We will show a slightly stronger statement, that is x4 + y4 = z2 has no non-trivial integer
solution, as any solution to x4 + y4 = z4 = (z2)2 gives raise to a solution of x4 + y4 = z2.

Theorem 11.21. The non-linear Diophantine equation

x4 + y4 = z2

has no non-trivial integer solution.

Proof. Assume by contradiction that the equation has a non-trivial integer solution (x, y, z). As
then also (±x,±y,±z) is a solution, we can assume that x, y, z are all positive integers.

We can also assume that gcd(x, y) = 1. In fact, if gcd(x, y) = d > 1, then there exist positive
integers x1, y1 with x = dx1, y = dy1. Since

x4 + y4 = (dx1)
4 + (dy1)

4 = d4(x41 + y41) = z2,

implying that d4 | z2 and thus d2 | z. Hence there exists a positive integer z1 such that z = d2z1
and hence

x4 + y4 = (dx1)
4 + (dy1)

4 = d4(x41 + y41) = z2 = d4z21 ,

implying that x41+y
4
1 = z21 is another, smaller, solution with gcd(x1, y1) = 1. Thus, we can always

assume that gcd(x, y) = 1.
Thus, let us suppose that (x, y, z) is a positive integer solution with gcd(x, y) = 1 and derive

another positive integer solution (x1, y1, z1) with gcd(x1, y1) = 1 but with z1 < z.
As x4+y4 = z2 we also get that (x2)2+(y2)2 = z2 and thus (x2, y2, z) is a Pythagorean triple.

Let d = gcd(x2, y2), if d > 1, then there exists a prime p with p | x2, y2 and thus p | gcd(x, y) = 1.
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As the Pythagorean triple (x2, y2, z) is primitive, we can apply Theorem 11.9 and get that there
exist positive coprime integers m > n with opposite parity and

x2 = m2 − n2,

y2 = 2mn,

z = m2 + n2.

Hence

x2 + n2 = m2

and as gcd(m,n) = 1 we get that (x, n,m) is a primitive Pythagorean triple. If m is odd and n is
even, we can again apply Theorem 11.9 to get that there exist r, s coprime positive integers with
opposite parity, such that

x = r2 − s2,

n = 2rs,

m = r2 + s2.

Since m is odd and gcd(m,n) = 1 we also get that gcd(m, 2n) = 1. As y2 = 2n ·m, Lemma 11.7
tells us that there exist positive integers z′ and w with

m = z′2, 2n = w2.

As w is even, there exists some positive integer v such that w = 2v and hence

v2 = n/2 = rs.

We can again apply Lemma 11.7 and get that there are positive integers x′, y′ such that

r = x′2, s = y′2.

Again, as gcd(r, s) = 1 we get gcd(x′, y′) = 1 and hence

x′4 + y′4 = r2 + s2 = m = z′2,

where x′, y′, z′ are positive integers with gcd(x′, y′) = 1. Additionally, from

z′ ≤ z′4 = m2 < m2 + n2 = z

it follows that z′ < z.
Hence we have found another solution (x′, y′, z′) to x4 + y4 = z2 with a smaller z′.
To complete the proof, we assume that x4 + y4 = z2 has at least one integer solution. By

the well-ordering property, we know that among the solutions in N3 there exists a solution with
smallest value for z. However, as we have shown that one integer solution leads to a second one
with a smaller z, this leads to a contradiction.
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There are still several unsolved conjectures which have emerged from Fermat’s Last Theorem,
for example

Conjecture 11.22 (Beal’s Conjecture). Let a, b, c ≥ 3 be positive integers. The non-linear Dio-
phantine equation xa + yb = zc has no non-trivial integer solution with gcd(x, y) = gcd(x, z) =
gcd(y, z) = 1.

If you prove this conjecture or find a counterexample, Andrew Beal has offered a prize of $
100’000. In 1844 Catalan conjectured that the only consecutive positive integers that are both
powers of integers are 8 = 23 and 9 = 32.

Theorem 11.23 (Catalan’s Conjecture). Let m,n ≥ 2 be positive integers. The non-linear Dio-
phantine equation xm − yn = 1 has no solutions in N2, except for x = 3, y = 2,m = 2, n = 3.

This conjecture (as you can see we call it a Theorem) was proven in 2002 by Mihailescu.
Finally, as an attempt to unify the Catalan conjecture and Fermat’s Last Theorem, we get the

last conjecture:

Conjecture 11.24 (Fermat-Catalan Conjecture). The non-linear Diophantine equation xa + yb =
zc has at most finitely many solutions with gcd(x, y) = gcd(x, z) = gcd(y, z) = 1 and 1

a
+ 1

b
+ 1

c
<

1.

While the conjecture is still open, we do have several examples which satisfy the hypothesis,
e.g.

1 + 23 = 32,

25 + 72 = 34,

73 + 132 = 29.
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12 Sums of Squares
In this section we want to answer two questions: which integers are the sum of two squares and
what is the least integer n such that every positive integer is the sum of n squares.

We start with the first question, considering the sum of two squares. Clearly not every integer
is the sum of two squares.

Example 12.1. 3 and 15 are not the sum of two squares while 5 = 12 + 22 and 4 = 22 + 02.

Since a2 ≡ 0, 1 mod 4, we must also have that x2 + y2 ≡ 0, 1, 2 mod 4. Hence we can
already exclude all integers which are 3 modulo 4.

This distinction is however not enough, as also 15 is not a sum of two squares. In fact, we have
to consider their prime factorizations.

Proposition 12.2. Let m,n be positive integers, which are both sums of two squares, then mn is
also the sum of two squares.

Proof. Let m = a2 + b2, n = c2 + d2, for integers a, b, c, d. Then

mn = (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2.

Example 12.3. As 5, 4 are the sum of two squares, 20 = 22 + 42 is as well.

Hence we will focus first on the primes. Clearly 2 is the sum of two squares as

2 = 12 + 12.

Since we can exclude all p ≡ 3 mod 4, it is enough to consider primes p ≡ 1 mod 4.

Lemma 12.4. Let p ∈ P such that p ≡ 1 mod 4. Then, there exist integers x, y such that x2+y2 =
kp for some positive integer k < p.

Proof. Recall from Theorem 9.26, that −1 is a quadratic residue modulo p. Thus, there exists an
integer a < p such that a2 ≡ −1 mod p, which is equivalent to a2 + 1 = kp for some integer k.
Hence x2 + y2 = kp for x = a and y = 1. Finally, since

kp = x2 + y2 ≤ (p− 1)2 + 1 < p2

we get that k < p.

In fact, all primes which are congruent to 1 modulo 4 are sums of two squares.

Theorem 12.5. Let p ∈ P such that p ≡ 1 mod 4. Then, there exist integers x, y with x2+y2 = p.
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Proof. Let m < p be the smallest positive integer such that x2 + y2 = mp from Lemma 12.4.
Assume by contradiction that m > 1 and let a, b be such that

a ≡ x mod m, b ≡ y mod m

and
−m/2 < a ≤ m/2, −m/2 < b ≤ m/2.

It follows that
a2 + b2 ≡ x2 + y2 ≡ mp ≡ 0 mod m.

Thus, there exists an integer k such that

a2 + b2 = km.

We can rewrite this as

(a2 + b2)(x2 + y2) = (km)(mp) = km2p.

By Proposition 12.2, we get that

(a2 + b2)(x2 + y2) = (ax+ by)2 + (ay − bx)2.

Since a ≡ x, b ≡ y mod m we get

ax+ by ≡ x2 + y2 ≡ 0 mod m, ay − bx ≡ xy − yx ≡ 0 mod m.

Thus, (
ax+ by

m

)2

+

(
ay − bx

m

)2

=
km2p

m2
= kp

is the sum of two squares.
If we can show that 0 < k < m, we get a contradiction to m being the smallest integer such

that mp is the sum of two squares.
Due to the choice of a, b we get that

a2 ≤ m2/4, b2 ≤ m2/4

and hence

0 ≤ km = a2 + b2 ≤ 2(m2/4) = m2/2

which implies k ≤ m/2. Now we only need to show that k 6= 0.
If k = 0, then a2+ b2 = 0 implies that a = b = 0 and hence x ≡ y ≡ 0 mod m. Equivalently,

m | x and m | y, thus m2 | (x2 + y2) = mp. This would imply that m | p and as m < p, we get
m = 1.

We can now put everything together, to get
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Theorem 12.6. Let n be a positive integer. Then, n is a sum of two squares if and only if each
prime factor of n which is congruent to 3 modulo 4 occurs with an even power.

Proof. Assume that there are no primes congruent to 3 modulo 4, which appear in the prime
factorization of n with an odd power. We write n = t2u and u =

∏k
i=1 pi is the product of primes.

Thus, no primes congruent to 3 modulo 4 appear in u.
By Proposition 12.2 each prime in u can be written as the sum of two squares.
That is, there exist integers x, y such that x2 + y2 = u.
We then get that n is also the sum of two squares as

n = (tx)2 + (ty)2.

For the other direction, assume that n is the sum of two squares, i.e., there exist two integers
x, y such that x2 + y2 = n and that there exists a prime p ≡ 3 mod 4 which appears in the prime
factorization of n with odd power 2j + 1.

Let gcd(x, y) = d and define a = x/d, b = y/d, and m = n/d2. Then gcd(a, b) = 1 and

a2 + b2 = m.

Let pk be the largest power of p which divides d. Thenm is divisible by p2j−2k+1 and 2j−2k+
1 ≥ 1, thus p | m.

If p | a, then p | (m − a2) = b2 which contradicts that gcd(a, b) = 1. Hence, p ∤ a and there
exists an integer z such that az ≡ b mod p.

Thus,
a2 + b2 ≡ a2 + (az)2 ≡ a2(1 + z2) mod p.

Since a2 + b2 = m and p | m, we get that

a2(1 + z2) ≡ 0 mod p.

This implies that 1 + z2 ≡ 0 mod p and hence z2 ≡ −1 mod p. This gives a contradiction
to Theorem 9.26.

We now turn to the second question: how many squares would we need to sum to get any
integer? Three are not enough, e.g. 7 is not the sum of three squares.

Several mathematicians have claimed and tried to prove that 4 squares are enough. The first
proof was published by Lagrange in 1770.

To prove this result, we first need the following

Lemma 12.7. Let m,n be positive integers which are the sum of four squares, then mn is also the
sum of four squares.

Exercise 12.8. Prove Lemma 12.7.

Lemma 12.9. Let p ∈ P be odd. Then, there exists a positive integer k < p such that

kp = x2 + y2 + z2 + w2

has a integer solution.
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Proof. We start by showing that there are integers 0 ≤ x, y < p such that

x2 + y2 + 1 ≡ 0 mod p.

For this we consider the quadratic residues modulo p together with 0, S = {02, 12, . . . ,
(
p−1
2

)2}
and

T = {−1− s | s ∈ S}.
Observe that S and T are disjoint. In fact, if there exist s, s′ ∈ S such that s = −1 − s′ then

s+ s′ = −1 ≡ 3 mod 4, but the sum of two squares cannot be 3 modulo 4. Thus, S ∪ T contains
p+ 1 distinct integers.

By the pigeonhole principle, there are two integers which are congruent modulo p, i.e., there
exist 0 ≤ x, y ≤ p−1

2
, such that

x2 ≡ −1− y2 mod p.

Hence, x2 + y2 + 12 + 02 = kp for some positive integer k. In fact, k = 0 is excluded as
x2 + y2 + 1 = 0 implies that −1 is a sum of two squares.

Finally, from x2 + y2 + 1 ≤ 2
(
p−1
2

)2
+ 1 < p2 it follows that k < p.

Theorem 12.10. Let p ∈ P . Then, the equation x2 + y2 + z2 + w2 = p has an integer solution.

Proof. If p = 2, then we have 2 = 12 + 12 + 02 + 02.
Thus, we can assume that p is odd. From Lemma 12.9, we know that there exists a smallest

positive integer m such that
x2 + y2 + z2 + w2 = mp

has a integer solution.
We hence want to show that m = 1.

Assume by contradiction that m > 1. If m is even, then either x, y, z, w are all odd, all even,
or two are odd and two are even. In all these cases, we can rearrange the integers such that

x ≡ y mod 2, z ≡ w mod 2.

Thus, x−y
2
, x+y

2
, z−w

2
, z+w

2
are integers and(

x− y

2

)2

+

(
x+ y

2

)2

+

(
z − w

2

)2

+

(
z + w

2

)2

=
mp

2
.

Hence we have found n = m/2 < m which is also such that np is the sum of four squares, a
contradiction to the minimality of m.

If m is odd, we consider the integers −m/2 < a, b, c, d < m/2 with

a ≡ x, b ≡ y, c ≡ z, d ≡ w mod m.

Clearly,
x2 + y2 + z2 + w2 ≡ a2 + b2 + c2 + d2 mod m
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and hence there exists some integer k such that a2 + b2 + c2 + d2 = km and due to the choice of
a, b, c, d we get that

0 ≤ a2 + b2 + c2 + d2 < 4
(m
2

)2
= m2,

hence 0 ≤ k < m.
If k = 0, we have a = b = c = d = 0 and hence m | x, y, z, w and m2 | (x2 + y2 + z2 +w2) =

mp implies that m | p, which is impossible as 1 < m < p.

Hence we have k > 0 and(
x2 + y2 + z2 + w2

) (
a2 + b2 + c2 + d2

)
= m2kp.

By Lemma 12.7, we have

(ax+ by + cz + dw)2 + (bx− ay + dz − cw)2

+(cx− dy − az + bw)2 + (dx+ cy − bz − aw)2 = m2kp.

Each of the four terms is divisible by m as

ax+ by + cz + dw ≡ x2 + y2 + z2 + w2 ≡ 0 mod m,

bx− ay + dz − cw ≡ yx− xy + wz − wz ≡ 0 mod m,

cx− dy − az + bw ≡ zx− wy − xz + yw ≡ 0 mod m,

dx+ cy − bz − aw ≡ wx+ zy − yz − xw ≡ 0 mod m.

Hence we can consider the integers x′, y′, z′, w′ defined as

x′ =
ax+ by + cz + dw

m
,

y′ =
bx− ay + dz − cw

m
,

z′ =
cx− dy − az + bw

m
,

w′ =
dx+ cy − bz − aw

m
.

For which we have that

x′2 + y′2 + z′2 + w′2 =
m2kp

m2
= kp,

which contradicts the minimality of m such that mp can be written as sum of four squares, as
k < m. Thus, m = 1.

We are now ready to state the main result.

Theorem 12.11. Every positive integer is the sum of four squares.

Proof. Let n be a positive integer. By Theorem 12.10, each prime factor of n can be written as
sum of four squares. Applying Lemma 12.7, also n is the sum of four squares.
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13 Finite Fields and more Applications

14 Glance at Algebraic Number Theory
In Elementary Number Theory, we were considering basic properties of the integers Z ⊂ Q,
such as divisibility, primality and factorization. Algebraic number theory is interested in the same
properties, but over extension fields of Q and their respective integers.

Definition 14.1. A number field is a finite field extension K of Q, i.e., a field which is a Q-vector
space of finite dimension. This dimension is called degree and denoted by k = [K : Q].

Example 14.2. Q(
√
2) = {x+ y

√
2 | x, y ∈ Q} is a number field of degree 2.

Definition 14.3. We say that α ∈ K is an algebraic integer if α is a root of a monic polynomial
with coefficients in Z. The set of algebraic integers is denoted by OK .

Example 14.4. Since x2 − 2 = 0,
√
2 ∈ Q(

√
2) is an algebraic integer.

Note that this is inline with the definition of integers over Q :

Proposition 14.5. Z are the algebraic integers of Q.

Proof. Let f(x) = xn + an−1x
n−1 + · · · + a0 be a polynomial with coefficients ai ∈ Z. Assume

p
q
∈ Q is such that q 6= 1,−1 and is in lowest terms. If p

q
is a root of f(x), then

qnf(
p

q
) = pn + an−1qp

n−1 + · · ·+ a0q
n = 0.

Hence modulo q, we have that

pn + an−1qp
n−1 + · · ·+ a0q

n ≡ pn ≡ 0 mod q,

and this contradicts gcd(p, q) = 1.

Definition 14.6. The quadratic number field Q(i) = {a+ bi | a, b ∈ Q}, where i =
√
−1 is called

the Gaussian rationals.

We will focus in the rest of this chapter on Q(i), however most of the introduced concepts
extend to any number field K.

Proposition 14.7. The algebraic integers of Q(i) are given by

Z[i] = {a+ bi | a, b ∈ Z}

and called Gaussian integers.
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Proof. Let γ = a+ bi with a, b ∈ Z, then γ is the root of the monic polynomial

x2 − 2ax+ (a2 + b2).

Exercise 14.8. Finish the proof, by showing: if α = r + si, with r, s ∈ Q, and α is the root of a
monic polynomial with integer coefficients, then r, s ∈ Z.

Algebraic integers are closed under addition, multiplication and subtraction (in fact they form
a ring).

Exercise 14.9. Let α = r + is, β = t+ iu with r, s, t, u ∈ Z. Show that α + β, α− β, αβ ∈ Z[i].

Definition 14.10. Let α, β ∈ Z[i]. We say that α divides β, denoted by α | β, if there exists
γ ∈ Z[i] such that β = αγ.

Example 14.11. (2− i) | (13 + i) since

(2− i)(5 + 3i) = 13 + i.

On the other hand (3 + 2i) ∤ (6 + 5i) as

6 + 5i

3 + 2i
=

28

13
+

3

13
i 6∈ Z[i].

Having divisibility established, we can ask for units in Z[i].

Definition 14.12. A Gaussian integer ε is called unit, if ε | 1. For ε a unit, we call εα the associate
of α.

Theorem 14.13. A Gaussian integer ε = a+bi is a unit if and only if it has normN(ε) = a2+b2 =
1.

Proof. If ε is a unit, then there exists a ν ∈ Z[i] such that εν = 1. Hence

1 = N(εν) = (ac− bd)2 + (ad+ cb)2 = (a2 + b2)(c′2 + d2) = N(ε)N(ν).

Since N(ε), N(ν) ∈ N, we get that N(ν) = N(ε) = 1.
Conversely, assume that N(ε) = 1 and consider its conjugate ε′ = a− bi. Then

εε′ = (a+ bi)(a− bi) = a2 + b1 = N(ε) = 1

and hence ε | 1.

Theorem 14.14. The units in the Gaussian integers are 1,−1, i,−i.
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Proof. From Theorem 14.13, we know that ε = a+ bi is a unit if and only if N(ε) = a2 + b2 = 1.
Since a, b ∈ Z, we can only have

(a, b) ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)}.

We can then also define primes.

Definition 14.15. A Gaussian integer π is a Gaussian prime, if π is not a unit and is divisible only
by units and its associates.

It follows that any Gaussian prime has 8 divisors:

1,−1,−i,−i, π,−π, iπ,−iπ.

Theorem 14.16. If π is a Gaussian integer with N(π) = p, then π, π′ are Gaussian primes, and p
is not.

Proof. Assume that π = αβ for α, β ∈ Z[i]. Then

p = N(π) = N(αβ) = N(α)N(β).

Since N(α), N(β) ∈ N, we must have N(α) = 1 or N(β) = 1 and hence either α or β is a unit
and thus π a Gaussian prime.

Since N(π) = ππ′ = p it follows that p is not a Gaussian prime and since N(π′) = p also π′ is
a Gaussian prime.

Example 14.17. 2− i is a Gaussian prime since

N(2− i) = 22 + 12 = 5.

Primes also do what they are supposed to do:

Lemma 14.18. If π is a Gaussian prime and α, β ∈ Z[i] such that π | αβ, then π | α or π | β.

Proof. Assume π ∤ α, then επ ∤ α for ε a unit. Since the only divisors of π are

1,−1, i,−i, π,−π, iπ,−iπ

we get that gcd(α, π) = 1. Hence (by the generalization of Bézout’s theorem) there exist µ, ν ∈
Z[i] such that

1 = µπ + να,

and multiplying both sides with β we get

β = π(µβ) + ν(αβ)

and as π | αβ we get that π | β.
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We can further define an version of the Euclidean Algorithm for Gaussian integers and define
the greatest common divisor as usual:

Definition 14.19. Let α, β ∈ Z[i]. Then we define the greatest common divisor as gcd(α, β) = γ
with

1. γ | α, γ | β,

2. if δ | α and δ | β then δ | γ.

We say that α and β are coprime if gcd(α, β) = 1.

This all brings us to one fundamental question (pun intended).

Does the Fundamental Theorem of Arithmetic still hold over algebraic integers?

For Z[i], the answer is yes, and this will be the final Theorem of this lecture. However, this is
not true for any number field.

Example 14.20. Let us consider Q(
√
−5) with the algebraic integer Z[

√
−5]. Then

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Fortunately, we do have a similar result: Every ideal can be uniquely decomposed into prime
ideals. The proof is clearly omitted, but you can see the parallels between Z and any OK .

Theorem 14.21 (Unique Factorization for Gaussian Integers). Let γ ∈ Z[i] \ {0} not be a unit,
then γ can be written uniquely as a product of Gaussian primes.

Uniquely, as usual refers to unique up to reordering.

Proof. We proceed by induction on N(γ).
Since γ 6= 0 is not a unit we have that N(γ) 6= 1 and hence N(γ) ≥ 2.
IfN(γ) = 2, then γ is a Gaussian prime and can thus be written as product of Gaussian primes.
If N(γ) > 2, we assume that every Gaussian integer δ with N(δ) < N(γ) can be written as

product of Gaussian primes.
Note that if γ is a Gaussian prime, then clearly it can be written as product of Gaussian primes.

Thus assume that γ = αβ for α, β ∈ Z[i] not units. Thus, N(α), N(β) > 1.
Since

2 ≤ N(γ) = N(α)N(β),

we get that 2 ≤ N(α), N(β) < N(γ). By the hypothesis, α and β can be written as product of
Gaussian primes, thus γ = αβ can too.

To show uniqueness, we again proceed via induction.
Since γ 6= 0 is not a unit, we have N(γ) ≥ 2. Note that if N(γ) = 2, then γ is already

a Gaussian prime, which by definition cannot be divisible by any Gaussian integer except units.
Thus, γ can be written uniquely as product of Gaussian primes (itself).
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We assume that for any δ ∈ Z[i] with N(δ) < N(γ), the statement is true, that is δ can be
written uniquely as product of Gaussian primes.

Now assume γ can be written in two ways

γ = π1 · · · πs = ρ1 · · · ρt,

for Gaussian primes πi, ρi.
Since π1 | π1 · · · πs we get that π1 | ρ1 · · · ρt. By Lemma 14.18, we get that π1 | ρi for some

i. We can assume that π1 | ρ1. Since ρ1 is a Gaussian prime, it is only divisible by units and its
associates. Thus, we get that

ρ1 = επ1,

for some unit ε.
Thus,

π1π2 · · · πs = επ1ρ2 · · · ρt.

Dividing both sides by π1 we get
π2 · · · πs = ερ2 · · · ρt.

Since N(π1) ≥ 2 we get that

1 ≤ N(π2 · · · πs) < N(π1 · · · πs) = N(γ)

and we can apply the induction hypothesis, getting that

π2 · · · πs = ερ2 · · · ρt

has a unique factorization into Gaussian primes. That is s = t and πi = ρi.
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