
Finite Geometry and Friends Summer School 2025
Code Equivalence

Exercises: Code Equivalence - Day 1 - Solution

Problem 1: Basics of Codes

Let C be an [n, k]q linear code with generator matrix G ∈ Fk×n
q and parity-check matrix

H ∈ F(n−k)×n
q .

1. Show that ⟨H⟩ = C⊥.

2. Show that (C⊥)⊥ = C.

3. Show that if GG⊤ = 0, then C is self-orthogonal.

4. Show that C is self-dual if and only if C is self-orthogonal and n = 2k.

5. Show that

H(C) = ker

((
G
H

)⊤
)
.

6. Let G be in systematic form, i.e., G =
(
Idk A

)
for A ∈ Fk×(n−k)

q . Show that if
AA⊤ + Idn−k is full rank, then dim(H(C)) = 0.

7. Show that if GG⊤ has full rank, then dim(H(C)) = 0.

Solution

1. By the definition of parity-check matrix, we have thatH ∈ F(n−k)×n
q is of full rank and

such that ker(H⊤) = C. Let us denote the rows of H by hj for all j ∈ {1, . . . , n− k}.
Thus for all c ∈ C we have that ⟨c, hi⟩ =

∑n
j=1 cjhi,j = 0 for all j ∈ {1, . . . , n − k}

and further, for any z ∈ ⟨H⟩, we find λ1, . . . , λn−k ∈ Fq such that z =
∑n−k

j=1 λjhj
and since

⟨c, z⟩ = ⟨c,
n−k∑
j=1

λjhj⟩ =
n−k∑
j=1

λj⟨c, hj⟩ = 0,

we get that ⟨H⟩ ⊆ C⊥.

Observe that C⊥ is a linear subspace, as for any y, y′ ∈ C⊥ we have that

⟨y + y′, c⟩ = ⟨y, c⟩+ ⟨y′, c⟩ = 0

for all c ∈ C.
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As ⟨·, ·⟩ is a non-degenerate bilinear form, we immediately get that dim(C)+dim(C⊥) =
n and hence dim(C⊥) = n− k.

Since H has rank n−k and ⟨H⟩ ⊆ C⊥, both of dimension n−k, we get that ⟨H⟩ = C⊥.

2. By 1. we have seen that ⟨H⟩ = C⊥. We can also apply this to C⊥ : telling us that
the dual of the dual (C⊥)⊥ is generated by a parity-check matrix of C⊥. Hence we
are looking for a matrix A which is such that ker(A⊤) = C⊥. Since GH⊤ = 0, we get
that G is such a matrix.

Hence G is a parity-check matrix of C⊥ and thus, ⟨G⟩ = (C⊥)⊥. As we also know
⟨G⟩ = C, we get the claim.

3. To have self-orthogonality, we want to show that every codeword c ∈ C also lives in
the dual C⊥. Let c ∈ C be an arbitrary codeword, thus there exists m ∈ Fk

q such that

c = mG. As we assumed that GG⊤ = 0, we get cG⊤ = 0. By 2. we then know
c ∈ C⊥.

4. For the first direction, assume that C = C⊥, thus dim(C) = k = dim(C⊥) = n−k and
n = 2k and clearly C ⊆ C⊥.

For the other direction, assume that n = 2k and C ⊆ C⊥, then since dim(C) = k and
dim(C⊥) = n− k = k, we get that C = C⊥.

5. Any x ∈ H(C) is such that x ∈ C, hence xH⊤ = 0 and x ∈ C⊥, which implies xG⊤ = 0.

Putting both together we get x
(
H⊤ G⊤) = 0 and thus H(C) ⊆ ker

((
G
H

)⊤
)
.

For the other direction we do the same: since any x ∈ ker

((
G
H

)⊤
)

is such that

xG⊤ = 0 and xH⊤ = 0 we must have x ∈ C ∩ C⊥.

6. By 5. We are interested in the dimension of the kernel of the matrix

(
G
H

)
, and due

to the rank-nullity theorem in its rank. We can assume that G,H are in systematic
form, i.e.,

G =
(
Idk A

)
, H =

(
−A⊤ Idn−k

)
and perform row operations to get(

G′

H ′

)⊤
=

(
Idk A
0 AA⊤ + Idn−k

)⊤
.

Hence its rank is given by k+rk(AA⊤+Idn−k). Due to the assumption, that AA⊤+
Idn−k has full rank, we get by rank-nullity

dim(H(C)) = dim

(
ker

((
G
H

)⊤
))

= n− rk

((
G
H

)⊤
)

= n− n = 0.

7. For any c ∈ C, there exists a m ∈ Fk
q such that mG = c. If c is also in C⊥, we

know that cG⊤ = 0. This gives: for any c ∈ H(C) there exists a m ∈ Fk
q such that
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mGG⊤ = 0 and instead of counting c ∈ H(C), we count the number of m ∈ Fk
q in the

kernel of GG⊤. Due to the rank-nullity theorem, we get

dim(ker(GG⊤)) = dim(im(GG⊤))− rk(GG⊤) = k − k = 0.

Problem 2: Equivalence of Codes

Let C, C′ be [n, k]q linear codes with generator matrices G, respectively G′.

1. Show that the linear isometries with respect to some distance function form a group
with respect to the composition.

2. Give the automorphism group of C = ⟨(1, 0, 0), (0, 1, 1)⟩ ⊆ F3
2.

3. Let φ ∈ Aut(C) be a permutation. Show that φ ∈ Aut(C ∩ C⊥).

4. Show that C⊥ is linearly equivalent to C′⊥.
Hint: Use the fact that G′H ′⊤ = 0 and SGDP = G′.

5. Show that for all w ∈ {1, . . . , n} we have that

Aw(C) = Aw(C′).

6. Show that generalized weights are strictly increasing, that is for r ∈ {1, . . . , k − 1}
we have dr(C) < dr+1(C).
Hint : Use the subcode D({i}) = {d ∈ D | di = 0} and its dual.

7. Show that for all r ∈ {1, . . . , k} we have that

dr(C) = dr(C′).

8. Consider the code C1 ⊆ F3
3 generated by G1 =

(
1 0 2
0 1 1

)
and the code C2 ⊆ F3

3

generated by G2 =

(
1 0 1
0 1 0

)
. Are the two codes linear equivalent, permutation

equivalent or not equivalent?

Solution

1. Let us consider the set S of all linear isometries φ : Fn
q → Fn

q .

Clearly, the identity function, id, is a linear isometry.

As φ is an isometry for a distance function, it has to map 0 to 0, and no other
element can be mapped to zero. In fact, if φ(x) = 0 and x ̸= 0, we would get that
d(φ(x), 0) = 0 ̸= d(x, 0).

Hence, ker(φ) = {0} and as φ also has to be surjective, we get that φ is a Fq

isomorphism.

Thus, for all φ ∈ S there also exists φ−1, which is clearly also an isometry:

d(φ−1(φ(x)), φ−1(φ(y))) = d(x, y) = d(φ(x), φ(y)).
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Hence the inverse of any isometry is also an isometry.

Finally, if φ,ψ ∈ S, then φ ◦ ψ ∈ S as

d(φ(ψ(x)), φ(ψ(y))) = d(ψ(x), ψ(y)) = d(x, y).

2. We first note that the only linear isometries over F3
2 are permutations σ ∈ S3. We

clearly have id ∈ Aut(C) and we can also swap the second and third position, i.e.,
(2, 3) ∈ Aut(C).

3. Let φ ∈ Aut(C) be a permutation. By Proposition 1.34, we know that φ ∈ Aut(C⊥)
and hence φ ∈ Aut(C ∩ C⊥).

4. We can follow the same proof as in the lecture:

Let H,H ′ be the parity-check matrices for C, respectively C′. Since G′H ′⊤ = 0, we
also have GDPH ′⊤ = G(H ′P⊤D)⊤ = 0. This implies that H ′P⊤D is a parity-check
matrix for C and hence there exists some S ∈ GLq(n− k) such that H = SH ′P⊤D.

This is enough to show that there exists a monomial transform from C⊥ = ⟨H⟩ to
C′⊥ = ⟨H ′⟩.

We can also go further and write H ′ = S′HD−1P , for some S′ ∈ GLq(n− k). Thus,
the monomial transformation between the duals is D−1P, which is not necessarily
the original DP.

5. Since C1 is linearly equivalent to C2, there exists some isometry φ : C1 → C2. Thus, if
we consider the set

Sw(C1) = {c ∈ C1 | wtH(c) = w}

then

φ(Sw(C1)) = {φ(c) | c ∈ C1,wtH(c) = w}
= {c′ ∈ C2 | wtH(c′) = w} = Sw(C′)

and hence they have the same size.

6. The fact that dr−1(C) ≤ dr(C) follows directly from the definition as dr(C) is the
smallest weight of a subcode of dimension r, which also contains subcodes of dimen-
sion r − 1.

Let D ⊂ C be a subcode of dimension r and weight dr(C). Let us denote by S =
suppH(D). For i ∈ S we consider the subcode

D({i}) = {d ∈ D | di = 0}.

Clearly,

wtH(D({i})) ≤ dr(C)− 1.

Next, we show that D({i}) has dimension dim(D)− 1 = r − 1.
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For this we consider its dual

D({i})⊥ = {c ∈ Fn
q | ⟨c, d⟩ = 0 ∀ d ∈ D({i})}.

We note that dim(D({i})) has to be strictly smaller than dim(D) = r as i ∈
suppH(D). Thus r − 1 is the largest dimension it can be. Similarly, for the dual
we have that dim(D⊥) = n− r and dim(D({i})⊥) > n− r and thus n− r + 1 is the
smallest it can be.

Clearly, any c ∈ D⊥ also lives in D({i})⊥, as any c ∈ D⊥ is also such that ⟨c, d⟩ = 0
for all d ∈ D({i}). We also note that ei, the ith standard vector is in D({i})⊥ and
thus

D⊥ ∪ ⟨ei⟩ ⊆ D({i})⊥.

We note that ei /∈ D⊥, as i ∈ suppH(D), there exists some c ∈ D with ci ̸= 0, hence
⟨ei, c⟩ = ci ̸= 0. Thus, we get that

dim(D⊥ ∪ ⟨ei⟩) = n− r + 1,

and hence
D⊥ ∪ ⟨ei⟩ = D({i})⊥,

which in turn gives that dim(D({i})) = r − 1.

Thus,
dr−1(C) ≤ wtH(D({i})) ≤ dr(C)− 1 < dr(C).

7. Let φ ∈ (F×
q )

n ⋊ Sn be such that φ(C1) = C2 and let D be any subcode of C1, then
φ(D) is a subcode of C2.
As wtH(D) = wtH(φ(D)), we immediately get

dr(C1) = min{wtH(D) | D ⊂ C1, dim(D) = r}
= min{wtH(φ(D)) | φ(D) ⊂ φ(C1),dim(φ(D)) = r}
= dr(φ(C1)) = dr(C2).

8. For this we use 4. that is we check whether their duals are equivalent. We compute

H1 =
(
1 2 1

)
, and H2 =

(
2 0 1

)
.

As these codes C⊥
1 and C⊥

2 have a different minimum distance: d(C⊥
1 ) = 3 and d(C⊥

2 ) =
2, they are not equivalent.
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Finite Geometry and Friends Summer School 2025
Code Equivalence

Exercises: Code Equivalence - Day 2 - Solution

Problem 1: Hermitian Dual

Let C be an [n, k]q linear code with generator matrix G ∈ Fk×n
q and parity-check matrix

H ∈ F(n−k)×n
q .

1. Let H⋆ ∈ F(n−k)×n
q be a Hermitian parity-check matrix of C. Show that

H⋆(Gpm)⊤ = 0.

That is C⋆ = ker((Gpm)⊤).

2. Use

⟨x, y⟩H =
n∑

i=1

xiy
pm

i = (
n∑

i=1

xp
m

i yi)
pm

to show that H⋆ = Hpm is a Hermitian parity-check matrix.

3. Show that (C⋆)⋆ = C.

4. Show that

H⋆(C) = ker

((
Gpm

H

)⊤
)
.

5. Let C ⊂ Fn
q be linearly equivalent to C′. Show that C⋆ is linearly equivalent to (C′)⋆.

Hint: Use again that G((H⋆)p
m
)⊤ = 0 and GDP = G′.

6. Let C ⊂ Fn
q be permutation equivalent to C′. Show that H⋆(C) is permutation equiv-

alent to H⋆(C′).

7. Show that A⋆ is independent on the choice of G.

8. Show that if G(Gpm)⊤ has full rank, then dim(H⋆(C)) = 0.

Solution

1. If H⋆ is a Hermitian parity-check matrix, then any x ∈ C⋆ can be written as x = mH⋆

for some m ∈ Fn−k
q . Similarly, for any y ∈ C, there exists some m′ ∈ Fk

q such that

y = m′G. Since any x ∈ C⋆ is such that x(yp
m
)⊤ = 0 for all y ∈ C, we get that

mH⋆((m′G)p
m
)⊤ = 0 or equivalently, H⋆(Gpm)⊤ = 0
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2. From
n∑

i=1

xiy
pm

i = (
n∑

i=1

xp
m

i yi)
pm

we get (similarly to 1.) that ((H⋆)p
m
G⊤)p

m
= 0, which implies that (H⋆)p

m
G⊤ = 0

and thus, (H⋆)p
m

is a parity-check matrix of C. Hence, given a parity-check matrix
H, we can construct H⋆ = Hpm , as then (H⋆)p

m
= (Hpm)p

m
= Hp2m = H.

3. Recall from 2. that if C = ker(H⊤) then a Hermitian parity-check matrix is given by
Hpm . Thus, if we apply this to C⋆ = ker((Gpm)⊤), we get that a Hermitian parity-
check matrix of C⋆ is given by Gp2m = G, that is ⟨G⟩ = (C⋆)⋆. As ⟨G⟩ = C, we get
the claim.

4. In order for x ∈ Fn
q to be in H⋆(C) = C ∩ C⋆, we need that x ∈ C = ker(H⊤), that is

xH⊤ = 0. As we also need x ∈ C⋆ = ker((Gpm)⊤), from which we get the condition

x(Gpm)⊤ = 0. Thus, any x ∈ H⋆(C) must be in the kernel of

(
Gpm

H

)⊤
.

5. Let C = ⟨G⟩ with Hermitian parity-check matrix H⋆ and C′ = ⟨G′⟩, with Hermitian
parity-check matrix H ′⋆, such that there exists a n× n permutation matrix P and a
diagonal matrix D = diag(d) with d ∈ (F⋆

q)
n, with GDP = G′.

From 2. we recall that G′((H ′⋆)p
m
)⊤ = 0, hence

GDP ((H ′⋆)p
m
)⊤ = G((H ′⋆)p

m
P⊤D)⊤ = G((H ′⋆P⊤Dpm)p

m
)⊤ = 0,

which implies that H ′⋆P⊤Dpm is a Hermitian parity-check matrix of C and hence
there exists some invertible S ∈ GLq(n−k) with SH⋆ = H ′⋆P⊤Dpm , or equivalently,
SH⋆(Dpm)−1P = H ′⋆ and hence C′ is linearly equivalent to C′⋆.

6. Recall that A⋆ = (Gpm)⊤(G(Gpm)⊤)−1G. Hence for a different choice SG, we get

((SG)p
m
)⊤(SG((SG)p

m
)⊤)−1SG = (SpmGpm)⊤(SG(SpmGpm)⊤)−1SG

= (Gpm)⊤(Spm)⊤(SG(Gpm)⊤(Spm)⊤)−1SG

= (Gpm)⊤(Spm)⊤((Spm)⊤)−1(G(Gpm)⊤)−1S−1SG

= (Gpm)⊤(G(Gpm)⊤)−1G = A⋆.

7. For any c ∈ C, there exists a m ∈ Fk
q such that mG = c. If c is also in C⋆, we know

that c(Gpm)⊤ = 0. This gives: for any c ∈ H⋆(C) there exists a m ∈ Fk
q such that

mG(Gpm)⊤ = 0 and instead of counting c ∈ H⋆(C), we count the number of m ∈ Fk
q

in the kernel of G(Gpm)⊤. Due to the rank-nullity theorem, we get

dim(ker(G(Gpm)⊤)) = dim(im(G(Gpm)⊤))− rk(G(Gpm)⊤) = k − k = 0.

Problem 2: Sums in finite fields

Let q be a prime power and ℓ be a positive integer, then∑
α∈F⋆

q

αℓ =

{
0 if (q − 1) ∤ ℓ,
−1 if (q − 1) | ℓ.
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Solution

If (q − 1) | ℓ, then there exists a positive integer m such that m(q − 1) = ℓ and∑
α∈F⋆

q

αℓ =
∑
α∈F⋆

q

αm(q−1) =
∑
α∈F⋆

q

(αq−1)m =
∑
α∈F⋆

q

1 = q − 1.

On the other hand, if (q − 1) ∤ ℓ, then for any primitive element a ∈ F⋆
q , we have that

aℓ ̸= 1. Multiplying by a introduces a bijection φa : F⋆
q → F⋆

q , α 7→ aα. Thus,∑
α∈F⋆

q

αℓ =
∑
α∈F⋆

q

(aα)ℓ = aℓ
∑
α∈F⋆

q

αℓ.

Since aℓ ̸= 1, we must have
∑

α∈F⋆
q
αℓ = 0.

Problem 3: Square Codes

Let C be an [n, k]q linear code with generator matrix G ∈ Fk×n
q and parity-check matrix

H ∈ F(n−k)×n
q .

1. Let C be generated by G =

g1
...
gk

 ∈ Fk×n
q . Then C(2) is generated by

G(2) =


g1 ∗ g1

...
g1 ∗ gk

...
gk ∗ gk

 ∈ F(
k+1
2 )×n

q .

2. Let C, C′ be two [n, k]q linear codes and φ = (D,P ) ∈ (F⋆
q)

n ⋊ Sn be such that
φ(C) = C′. Then φ′ = (D2, P ) ∈ (F⋆

q)
n ⋊ Sn is such that

φ′(C(2)) = C′(2).

3. Let C be a [n, k]q linear code. Show that H(C)(2) ̸= H(C(2)).

4. Reduce the following LEP instance to GI using the square code:

G =

(
1 0 2 1
0 1 3 0

)
∈ F2×4

5

and

G′ =

(
4 1 0 2
0 4 2 0

)
.

5. Let α be a primitive element in Fq. Define λ = (1, α, . . . , αq−2). Show that

(λ⊗ C)(2) ̸= λ⊗ C(2).

6. Show that
(λ⊗G)(ℓ) = λℓ ⊗G(ℓ).
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Solution

1. Let c ∈ C(2), then there exist c1, c2 ∈ C such that c = c1 ∗ c2. Hence we have
m1,m2 ∈ Fk

q such that c1 = m1G =
∑k

i=1m1,igi and c2 = m2G =
∑k

i=1m2,igi.

Thus,

c = m1G ∗m2G = (

k∑
i=1

m1,igi,1 ·
k∑

i=1

m2,igi,1, . . . ,

k∑
i=1

m1,igi,n ·
k∑

i=1

m2,igi,n)

= (
k∑

i,j=1

(gi,1gj1)(m1,im2,j), . . . ,
k∑

i,j=1

(gi,ngjn)(m1,im2,j))

= MG(2),

where M = (m1,1m2,1,m1,1m2,2, . . . ,m1,km2,k).

2. Recall that any codeword in C(2) is of the form c = c1 ∗ c2 for c1, c2 ∈ C. Since
c1DP, c2DP ∈ C′we get that (c1DP ) ∗ (c2DP ) ∈ C′(2). Now we observe that

(c1DP ) ∗ (c2DP ) = (c1D ∗ c2D)P = (c1 ∗ c2)D2P ∈ C′(2).

3. Let us consider C ⊆ F3
3 generated by G =

(
1 0 1
0 1 2

)
. We compute the parity-check

matrix as
H =

(
2 1 1

)
.

Hence the hull of C is given by the kernel of

(
G
H

)
=

1 0 1
0 1 2
2 1 1

 .

By elementary row operations, we find the systematic form to be1 0 1
0 1 2
0 0 0


that is C⊥ ⊆ C and hence C⊥ = H(C). If we compute the square code of this hull, we
get a code generated by

H(2) =
(
1 1 1

)
.

On the other hand, if we compute the square code C(2), generated by

G(2) =

1 0 1
0 0 2
0 1 1

 ,

we see that C(2) = F3
3 and hence (C(2))⊥ = {0}. Thus,

H(C(2)) = {0} ≠ H(C)(2) = ⟨(1, 1, 1)⟩.
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4. We first compute

G(2) =

1 0 4 1
0 0 1 0
0 1 4 0

 , G′(2) =

1 1 0 4
0 4 0 0
0 1 4 0

 .

Then we compute

B = G(2)(G(2))⊤ =

3 4 1
4 1 4
1 4 2

 = G′(2)(G′(2))⊤.

Next, we compute its inverse

B−1 =

3 3 0
3 0 1
0 1 1

 .

Now we can compute

A = (G(2))⊤B−1G(2) =


3 0 0 3
0 1 0 0
0 0 1 0
3 0 0 3



A′ = (G′(2))⊤B−1G′(2) =


3 0 0 2
0 1 0 0
0 0 1 0
2 0 0 3

 .

Hence, we can find P⊤D2AD2P = A′ for several D,P in particular for D2 =

diag(1, 4, 4, 4), and P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . Checking again with G,G′ we get D =

diag(4, 2, 3, 2) and σ = (2, 3).

5. As a small counterexample we can consider F3 with the generator matrix

G =

(
1 0 1
0 1 2

)
.

Then for λ = (1, 2) we get

λ⊗G =

(
1 2 0 0 1 2
0 0 1 2 2 1

)
and

(λ⊗G)(2) =

1 1 0 0 1 1
0 0 0 0 2 2
0 0 1 1 1 1

 .
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On the other hand,

G(2) =

1 0 1
0 0 2
0 1 1


and

λ⊗ (G(2)) =

1 2 0 0 1 2
0 0 0 0 2 1
0 0 1 2 1 2


which do not give the same code.

6. Let λ = (1, α, . . . , αq−2) and let

G =


g1,1 g1,2 · · · g1,n
g2,1 g2,2 · · · g2,n
...

...
...

gk,1 gk,2 · · · gk,n

 .

We note that C(ℓ) = C ∗ C(ℓ−1) and hence proceed by induction. For ℓ = 2, we get

The closure λ⊗ C is then generated by

λ⊗G =

g1,1 αg1,1 · · · αq−2g1,1 · · · g1,n αg1,n · · · αq−2g1,n
...

...
...

...
...

...
gk,1 αgk,1 · · · αq−2gk,1 · · · gk,n αgk,n · · · αq−2gk,n

 .

Hence the square of the closure is generated by (λ⊗G)(2) being

g21,1 α2g21,1 · · · α2(q−2)g21,1 · · · g21,n α2g21,n · · · α2(q−2)g21,n
...

...
...

...
...

...

g2k,1 α2g2k,1 · · · α2(q−2)g2k,1 · · · g2k,n α2g2k,n · · · α2(q−2)g2k,n

 .

On the other hand, the square code of C is generated by

G(2) =


g21,1 g21,2 · · · g21,n

g1,1g2,1 g1,2g2,2 · · · g1,ng2,n
...

...
...

g2k,1 g2k,2 · · · g2k,n

 .

Thus, λ2 ⊗G isg21,1 α2g21,1 · · · α2(q−2)g21,1 · · · g21,n α2g21,n · · · α2(q−2)g21,n
...

...
...

...
...

...

g2k,1 α2g2k,1 · · · α2(q−2)g2k,1 · · · g2k,n α2g2k,n · · · α2(q−2)g2k,n

 .

Now for ℓ we get that

⟨(λ⊗G)(ℓ)⟩ = (λ⊗ C)(ℓ) = (λ⊗ C) ∗ (λ⊗ C(ℓ−1)),
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by the induction hypothesis, we have that

(λ⊗ C(ℓ−1)) = ⟨λℓ−1 ⊗G(ℓ−1)⟩

and hence
(λℓ−1 ⊗G(ℓ−1)) ∗ (λ⊗G) = λℓ ⊗G(ℓ).
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