

Exercises: Code Equivalence - Day 1 - Solution

Problem 1: Basics of Codes

Let \mathcal{C} be an $[n,k]_q$ linear code with generator matrix $G \in \mathbb{F}_q^{k \times n}$ and parity-check matrix $H \in \mathbb{F}_q^{(n-k) \times n}$.

- 1. Show that $\langle H \rangle = \mathcal{C}^{\perp}$.
- 2. Show that $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$.
- 3. Show that if $GG^{\top} = 0$, then \mathcal{C} is self-orthogonal.
- 4. Show that \mathcal{C} is self-dual if and only if \mathcal{C} is self-orthogonal and n=2k.
- 5. Show that

$$\mathcal{H}(\mathcal{C}) = \ker\left(\begin{pmatrix} G \\ H \end{pmatrix}^{\top}\right).$$

- 6. Let G be in systematic form, i.e., $G = (\operatorname{Id}_k A)$ for $A \in \mathbb{F}_q^{k \times (n-k)}$. Show that if $AA^{\top} + \operatorname{Id}_{n-k}$ is full rank, then $\dim(\mathcal{H}(\mathcal{C})) = 0$.
- 7. Show that if GG^{\top} has full rank, then $\dim(\mathcal{H}(\mathcal{C})) = 0$.

Solution

1. By the definition of parity-check matrix, we have that $H \in \mathbb{F}_q^{(n-k)\times n}$ is of full rank and such that $\ker(H^\top) = \mathcal{C}$. Let us denote the rows of H by h_j for all $j \in \{1, \ldots, n-k\}$. Thus for all $c \in \mathcal{C}$ we have that $\langle c, h_i \rangle = \sum_{j=1}^n c_j h_{i,j} = 0$ for all $j \in \{1, \ldots, n-k\}$ and further, for any $z \in \langle H \rangle$, we find $\lambda_1, \ldots, \lambda_{n-k} \in \mathbb{F}_q$ such that $z = \sum_{j=1}^{n-k} \lambda_j h_j$ and since

$$\langle c, z \rangle = \langle c, \sum_{j=1}^{n-k} \lambda_j h_j \rangle = \sum_{j=1}^{n-k} \lambda_j \langle c, h_j \rangle = 0,$$

we get that $\langle H \rangle \subseteq \mathcal{C}^{\perp}$.

Observe that \mathcal{C}^{\perp} is a linear subspace, as for any $y,y'\in\mathcal{C}^{\perp}$ we have that

$$\langle y + y', c \rangle = \langle y, c \rangle + \langle y', c \rangle = 0$$

for all $c \in \mathcal{C}$.

As $\langle \cdot, \cdot \rangle$ is a non-degenerate bilinear form, we immediately get that $\dim(\mathcal{C}) + \dim(\mathcal{C}^{\perp}) = n$ and hence $\dim(\mathcal{C}^{\perp}) = n - k$.

Since H has rank n-k and $\langle H \rangle \subseteq \mathcal{C}^{\perp}$, both of dimension n-k, we get that $\langle H \rangle = \mathcal{C}^{\perp}$.

2. By 1. we have seen that $\langle H \rangle = \mathcal{C}^{\perp}$. We can also apply this to \mathcal{C}^{\perp} : telling us that the dual of the dual $(\mathcal{C}^{\perp})^{\perp}$ is generated by a parity-check matrix of \mathcal{C}^{\perp} . Hence we are looking for a matrix A which is such that $\ker(A^{\top}) = \mathcal{C}^{\perp}$. Since $GH^{\top} = 0$, we get that G is such a matrix.

Hence G is a parity-check matrix of \mathcal{C}^{\perp} and thus, $\langle G \rangle = (\mathcal{C}^{\perp})^{\perp}$. As we also know $\langle G \rangle = \mathcal{C}$, we get the claim.

- 3. To have self-orthogonality, we want to show that every codeword $c \in \mathcal{C}$ also lives in the dual \mathcal{C}^{\perp} . Let $c \in \mathcal{C}$ be an arbitrary codeword, thus there exists $m \in \mathbb{F}_q^k$ such that c = mG. As we assumed that $GG^{\top} = 0$, we get $cG^{\top} = 0$. By 2. we then know $c \in \mathcal{C}^{\perp}$.
- 4. For the first direction, assume that $C = C^{\perp}$, thus $\dim(C) = k = \dim(C^{\perp}) = n k$ and n = 2k and clearly $C \subseteq C^{\perp}$.

For the other direction, assume that n=2k and $\mathcal{C}\subseteq\mathcal{C}^{\perp}$, then since $\dim(\mathcal{C})=k$ and $\dim(\mathcal{C}^{\perp})=n-k=k$, we get that $\mathcal{C}=\mathcal{C}^{\perp}$.

5. Any $x \in \mathcal{H}(\mathcal{C})$ is such that $x \in \mathcal{C}$, hence $xH^{\top} = 0$ and $x \in \mathcal{C}^{\perp}$, which implies $xG^{\top} = 0$. Putting both together we get $x(H^{\top} G^{\top}) = 0$ and thus $\mathcal{H}(\mathcal{C}) \subseteq \ker \begin{pmatrix} G \\ H \end{pmatrix}^{\top}$.

For the other direction we do the same: since any $x \in \ker \left(\begin{pmatrix} G \\ H \end{pmatrix}^{\top} \right)$ is such that $xG^{\top} = 0$ and $xH^{\top} = 0$ we must have $x \in \mathcal{C} \cap \mathcal{C}^{\perp}$.

6. By 5. We are interested in the dimension of the kernel of the matrix $\begin{pmatrix} G \\ H \end{pmatrix}$, and due to the rank-nullity theorem in its rank. We can assume that G, H are in systematic form, i.e.,

$$G = (\operatorname{Id}_k A), \quad H = (-A^{\top} \operatorname{Id}_{n-k})$$

and perform row operations to get

$$\begin{pmatrix} G' \\ H' \end{pmatrix}^{\top} = \begin{pmatrix} \operatorname{Id}_k & A \\ 0 & AA^{\top} + \operatorname{Id}_{n-k} \end{pmatrix}^{\top}.$$

Hence its rank is given by $k + \operatorname{rk}(AA^{\top} + \operatorname{Id}_{n-k})$. Due to the assumption, that $AA^{\top} + \operatorname{Id}_{n-k}$ has full rank, we get by rank-nullity

$$\dim(\mathcal{H}(\mathcal{C})) = \dim\left(\ker\left(\begin{pmatrix}G\\H\end{pmatrix}^{\top}\right)\right) = n - \operatorname{rk}\left(\begin{pmatrix}G\\H\end{pmatrix}^{\top}\right) = n - n = 0.$$

7. For any $c \in \mathcal{C}$, there exists a $m \in \mathbb{F}_q^k$ such that mG = c. If c is also in \mathcal{C}^{\perp} , we know that $cG^{\top} = 0$. This gives: for any $c \in \mathcal{H}(\mathcal{C})$ there exists a $m \in \mathbb{F}_q^k$ such that

 $mGG^{\top} = 0$ and instead of counting $c \in \mathcal{H}(\mathcal{C})$, we count the number of $m \in \mathbb{F}_q^k$ in the kernel of GG^{\top} . Due to the rank-nullity theorem, we get

$$\dim(\ker(GG^{\top})) = \dim(\operatorname{im}(GG^{\top})) - \operatorname{rk}(GG^{\top}) = k - k = 0.$$

Problem 2: Equivalence of Codes

Let $\mathcal{C}, \mathcal{C}'$ be $[n, k]_q$ linear codes with generator matrices G, respectively G'.

- 1. Show that the linear isometries with respect to some distance function form a group with respect to the composition.
- 2. Give the automorphism group of $\mathcal{C} = \langle (1,0,0), (0,1,1) \rangle \subseteq \mathbb{F}_2^3$.
- 3. Let $\varphi \in \operatorname{Aut}(\mathcal{C})$ be a permutation. Show that $\varphi \in \operatorname{Aut}(\mathcal{C} \cap \mathcal{C}^{\perp})$.
- 4. Show that C^{\perp} is linearly equivalent to C'^{\perp} . Hint: Use the fact that $G'H'^{\top} = 0$ and SGDP = G'.
- 5. Show that for all $w \in \{1, ..., n\}$ we have that

$$A_w(\mathcal{C}) = A_w(\mathcal{C}').$$

- 6. Show that generalized weights are strictly increasing, that is for $r \in \{1, ..., k-1\}$ we have $d_r(\mathcal{C}) < d_{r+1}(\mathcal{C})$.

 Hint: Use the subcode $D(\{i\}) = \{d \in \mathcal{D} \mid d_i = 0\}$ and its dual.
- 7. Show that for all $r \in \{1, ..., k\}$ we have that

$$d_r(\mathcal{C}) = d_r(\mathcal{C}')$$

8. Consider the code $C_1 \subseteq \mathbb{F}_3^3$ generated by $G_1 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ and the code $C_2 \subseteq \mathbb{F}_3^3$ generated by $G_2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Are the two codes linear equivalent, permutation equivalent or not equivalent?

Solution

1. Let us consider the set S of all linear isometries $\varphi: \mathbb{F}_q^n \to \mathbb{F}_q^n$.

Clearly, the identity function, id, is a linear isometry.

As φ is an isometry for a distance function, it has to map 0 to 0, and no other element can be mapped to zero. In fact, if $\varphi(x) = 0$ and $x \neq 0$, we would get that $d(\varphi(x), 0) = 0 \neq d(x, 0)$.

Hence, $\ker(\varphi)=\{0\}$ and as φ also has to be surjective, we get that φ is a \mathbb{F}_q isomorphism.

Thus, for all $\varphi \in S$ there also exists φ^{-1} , which is clearly also an isometry:

$$d(\varphi^{-1}(\varphi(x)),\varphi^{-1}(\varphi(y)))=d(x,y)=d(\varphi(x),\varphi(y)).$$

Hence the inverse of any isometry is also an isometry.

Finally, if $\varphi, \psi \in S$, then $\varphi \circ \psi \in S$ as

$$d(\varphi(\psi(x)), \varphi(\psi(y))) = d(\psi(x), \psi(y)) = d(x, y).$$

- 2. We first note that the only linear isometries over \mathbb{F}_2^3 are permutations $\sigma \in S_3$. We clearly have id $\in \operatorname{Aut}(\mathcal{C})$ and we can also swap the second and third position, i.e., $(2,3) \in \operatorname{Aut}(\mathcal{C})$.
- 3. Let $\varphi \in \operatorname{Aut}(\mathcal{C})$ be a permutation. By Proposition 1.34, we know that $\varphi \in \operatorname{Aut}(\mathcal{C}^{\perp})$ and hence $\varphi \in \operatorname{Aut}(\mathcal{C} \cap \mathcal{C}^{\perp})$.
- 4. We can follow the same proof as in the lecture:

Let H, H' be the parity-check matrices for C, respectively C'. Since $G'H'^{\top} = 0$, we also have $GDPH'^{\top} = G(H'P^{\top}D)^{\top} = 0$. This implies that $H'P^{\top}D$ is a parity-check matrix for C and hence there exists some $S \in GL_q(n-k)$ such that $H = SH'P^{\top}D$.

This is enough to show that there exists a monomial transform from $\mathcal{C}^{\perp} = \langle H \rangle$ to $\mathcal{C}'^{\perp} = \langle H' \rangle$.

We can also go further and write $H' = S'HD^{-1}P$, for some $S' \in GL_q(n-k)$. Thus, the monomial transformation between the duals is $D^{-1}P$, which is not necessarily the original DP.

5. Since C_1 is linearly equivalent to C_2 , there exists some isometry $\varphi: C_1 \to C_2$. Thus, if we consider the set

$$S_w(\mathcal{C}_1) = \{ c \in \mathcal{C}_1 \mid \operatorname{wt}_H(c) = w \}$$

then

$$\varphi(S_w(\mathcal{C}_1)) = \{ \varphi(c) \mid c \in \mathcal{C}_1, \operatorname{wt}_H(c) = w \}$$
$$= \{ c' \in \mathcal{C}_2 \mid \operatorname{wt}_H(c') = w \} = S_w(\mathcal{C}')$$

and hence they have the same size.

6. The fact that $d_{r-1}(\mathcal{C}) \leq d_r(\mathcal{C})$ follows directly from the definition as $d_r(\mathcal{C})$ is the smallest weight of a subcode of dimension r, which also contains subcodes of dimension r-1.

Let $\mathcal{D} \subset \mathcal{C}$ be a subcode of dimension r and weight $d_r(\mathcal{C})$. Let us denote by $S = \sup_{H}(\mathcal{D})$. For $i \in S$ we consider the subcode

$$D(\{i\}) = \{ d \in \mathcal{D} \mid d_i = 0 \}.$$

Clearly,

$$\operatorname{wt}_{H}(\mathcal{D}(\{i\})) < d_{r}(\mathcal{C}) - 1.$$

Next, we show that $\mathcal{D}(\{i\})$ has dimension $\dim(\mathcal{D}) - 1 = r - 1$.

For this we consider its dual

$$\mathcal{D}(\{i\})^{\perp} = \{c \in \mathbb{F}_q^n \mid \langle c, d \rangle = 0 \ \forall \ d \in \mathcal{D}(\{i\})\}.$$

We note that $\dim(\mathcal{D}(\{i\}))$ has to be strictly smaller than $\dim(\mathcal{D}) = r$ as $i \in \operatorname{supp}_H(\mathcal{D})$. Thus r-1 is the largest dimension it can be. Similarly, for the dual we have that $\dim(\mathcal{D}^{\perp}) = n-r$ and $\dim(\mathcal{D}(\{i\})^{\perp}) > n-r$ and thus n-r+1 is the smallest it can be.

Clearly, any $c \in \mathcal{D}^{\perp}$ also lives in $\mathcal{D}(\{i\})^{\perp}$, as any $c \in \mathcal{D}^{\perp}$ is also such that $\langle c, d \rangle = 0$ for all $d \in \mathcal{D}(\{i\})$. We also note that e_i , the *i*th standard vector is in $\mathcal{D}(\{i\})^{\perp}$ and thus

$$\mathcal{D}^{\perp} \cup \langle e_i \rangle \subseteq \mathcal{D}(\{i\})^{\perp}$$
.

We note that $e_i \notin \mathcal{D}^{\perp}$, as $i \in \operatorname{supp}_H(\mathcal{D})$, there exists some $c \in \mathcal{D}$ with $c_i \neq 0$, hence $\langle e_i, c \rangle = c_i \neq 0$. Thus, we get that

$$\dim(\mathcal{D}^{\perp} \cup \langle e_i \rangle) = n - r + 1,$$

and hence

$$\mathcal{D}^{\perp} \cup \langle e_i \rangle = \mathcal{D}(\{i\})^{\perp},$$

which in turn gives that $\dim(\mathcal{D}(\{i\})) = r - 1$.

Thus,

$$d_{r-1}(\mathcal{C}) \leq \operatorname{wt}_H(\mathcal{D}(\{i\})) \leq d_r(\mathcal{C}) - 1 < d_r(\mathcal{C}).$$

7. Let $\varphi \in (\mathbb{F}_q^{\times})^n \rtimes S_n$ be such that $\varphi(\mathcal{C}_1) = \mathcal{C}_2$ and let \mathcal{D} be any subcode of \mathcal{C}_1 , then $\varphi(\mathcal{D})$ is a subcode of \mathcal{C}_2 .

As $\operatorname{wt}_H(\mathcal{D}) = \operatorname{wt}_H(\varphi(\mathcal{D}))$, we immediately get

$$d_r(\mathcal{C}_1) = \min \{ \operatorname{wt}_H(\mathcal{D}) \mid \mathcal{D} \subset \mathcal{C}_1, \dim(\mathcal{D}) = r \}$$

= \text{min}\{ \text{wt}_H(\varphi(\mathcal{D})) \cap \varphi(\mathcal{D}) \cap \varphi(\mathcal{C}_1), \dim(\varphi(\mathcal{D})) = r \}
= d_r(\varphi(\mathcal{C}_1)) = d_r(\mathcal{C}_2).

8. For this we use 4. that is we check whether their duals are equivalent. We compute

$$H_1 = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$$
, and $H_2 = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.

As these codes C_1^{\perp} and C_2^{\perp} have a different minimum distance: $d(C_1^{\perp}) = 3$ and $d(C_2^{\perp}) = 2$, they are not equivalent.

Exercises: Code Equivalence - Day 2 - Solution

Problem 1: Hermitian Dual

Let C be an $[n,k]_q$ linear code with generator matrix $G \in \mathbb{F}_q^{k \times n}$ and parity-check matrix $H \in \mathbb{F}_q^{(n-k) \times n}$.

1. Let $H^* \in \mathbb{F}_q^{(n-k)\times n}$ be a Hermitian parity-check matrix of \mathcal{C} . Show that

$$H^{\star}(G^{p^m})^{\top} = 0.$$

That is $C^* = \ker((G^{p^m})^\top)$.

2. Use

$$\langle x, y \rangle_H = \sum_{i=1}^n x_i y_i^{p^m} = (\sum_{i=1}^n x_i^{p^m} y_i)^{p^m}$$

to show that $H^* = H^{p^m}$ is a Hermitian parity-check matrix.

- 3. Show that $(\mathcal{C}^*)^* = \mathcal{C}$.
- 4. Show that

$$\mathcal{H}^{\star}(\mathcal{C}) = \ker \left(\begin{pmatrix} G^{p^m} \\ H \end{pmatrix}^{\top} \right).$$

- 5. Let $\mathcal{C} \subset \mathbb{F}_q^n$ be linearly equivalent to \mathcal{C}' . Show that \mathcal{C}^* is linearly equivalent to $(\mathcal{C}')^*$. Hint: Use again that $G((H^*)^{p^m})^{\top} = 0$ and GDP = G'.
- 6. Let $\mathcal{C} \subset \mathbb{F}_q^n$ be permutation equivalent to \mathcal{C}' . Show that $\mathcal{H}^*(\mathcal{C})$ is permutation equivalent to $\mathcal{H}^*(\mathcal{C}')$.
- 7. Show that A^* is independent on the choice of G.
- 8. Show that if $G(G^{p^m})^{\top}$ has full rank, then $\dim(\mathcal{H}^{\star}(\mathcal{C})) = 0$.

Solution

1. If H^* is a Hermitian parity-check matrix, then any $x \in \mathcal{C}^*$ can be written as $x = mH^*$ for some $m \in \mathbb{F}_q^{n-k}$. Similarly, for any $y \in \mathcal{C}$, there exists some $m' \in \mathbb{F}_q^k$ such that y = m'G. Since any $x \in \mathcal{C}^*$ is such that $x(y^{p^m})^\top = 0$ for all $y \in \mathcal{C}$, we get that $mH^*((m'G)^{p^m})^\top = 0$ or equivalently, $H^*(G^{p^m})^\top = 0$

2. From

$$\sum_{i=1}^{n} x_i y_i^{p^m} = (\sum_{i=1}^{n} x_i^{p^m} y_i)^{p^m}$$

we get (similarly to 1.) that $((H^*)^{p^m}G^\top)^{p^m}=0$, which implies that $(H^*)^{p^m}G^\top=0$ and thus, $(H^*)^{p^m}$ is a parity-check matrix of \mathcal{C} . Hence, given a parity-check matrix H, we can construct $H^*=H^{p^m}$, as then $(H^*)^{p^m}=(H^{p^m})^{p^m}=H^{p^{2m}}=H$.

- 3. Recall from 2. that if $\mathcal{C} = \ker(H^{\top})$ then a Hermitian parity-check matrix is given by H^{p^m} . Thus, if we apply this to $\mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$, we get that a Hermitian parity-check matrix of \mathcal{C}^{\star} is given by $G^{p^{2m}} = G$, that is $\langle G \rangle = (\mathcal{C}^{\star})^{\star}$. As $\langle G \rangle = \mathcal{C}$, we get the claim.
- 4. In order for $x \in \mathbb{F}_q^n$ to be in $\mathcal{H}^{\star}(\mathcal{C}) = \mathcal{C} \cap \mathcal{C}^{\star}$, we need that $x \in \mathcal{C} = \ker(H^{\top})$, that is $xH^{\top} = 0$. As we also need $x \in \mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$, from which we get the condition $x(G^{p^m})^{\top} = 0$. Thus, any $x \in \mathcal{H}^{\star}(\mathcal{C})$ must be in the kernel of $\begin{pmatrix} G^{p^m} \\ H \end{pmatrix}^{\top}$.
- 5. Let $C = \langle G \rangle$ with Hermitian parity-check matrix H^* and $C' = \langle G' \rangle$, with Hermitian parity-check matrix H'^* , such that there exists a $n \times n$ permutation matrix P and a diagonal matrix D = diag(d) with $d \in (\mathbb{F}_a^*)^n$, with GDP = G'.

From 2. we recall that $G'((H'^*)^{p^m})^{\top} = 0$, hence

$$GDP((H'^{\star})^{p^m})^{\top} = G((H'^{\star})^{p^m}P^{\top}D)^{\top} = G((H'^{\star}P^{\top}D^{p^m})^{p^m})^{\top} = 0,$$

which implies that $H'^{\star}P^{\top}D^{p^m}$ is a Hermitian parity-check matrix of \mathcal{C} and hence there exists some invertible $S \in \mathrm{GL}_q(n-k)$ with $SH^{\star} = H'^{\star}P^{\top}D^{p^m}$, or equivalently, $SH^{\star}(D^{p^m})^{-1}P = H'^{\star}$ and hence \mathcal{C}' is linearly equivalent to \mathcal{C}'^{\star} .

6. Recall that $A^* = (G^{p^m})^\top (G(G^{p^m})^\top)^{-1} G$. Hence for a different choice SG, we get

$$\begin{split} ((SG)^{p^m})^\top (SG((SG)^{p^m})^\top)^{-1}SG &= (S^{p^m}G^{p^m})^\top (SG(S^{p^m}G^{p^m})^\top)^{-1}SG \\ &= (G^{p^m})^\top (S^{p^m})^\top (SG(G^{p^m})^\top (S^{p^m})^\top)^{-1}SG \\ &= (G^{p^m})^\top (S^{p^m})^\top ((S^{p^m})^\top)^{-1} (G(G^{p^m})^\top)^{-1}S^{-1}SG \\ &= (G^{p^m})^\top (G(G^{p^m})^\top)^{-1}G = A^\star. \end{split}$$

7. For any $c \in \mathcal{C}$, there exists a $m \in \mathbb{F}_q^k$ such that mG = c. If c is also in \mathcal{C}^* , we know that $c(G^{p^m})^{\top} = 0$. This gives: for any $c \in \mathcal{H}^*(\mathcal{C})$ there exists a $m \in \mathbb{F}_q^k$ such that $mG(G^{p^m})^{\top} = 0$ and instead of counting $c \in \mathcal{H}^*(\mathcal{C})$, we count the number of $m \in \mathbb{F}_q^k$ in the kernel of $G(G^{p^m})^{\top}$. Due to the rank-nullity theorem, we get

$$\dim(\ker(G(G^{p^m})^\top)) = \dim(\operatorname{im}(G(G^{p^m})^\top)) - \operatorname{rk}(G(G^{p^m})^\top) = k - k = 0.$$

Problem 2: Sums in finite fields

Let q be a prime power and ℓ be a positive integer, then

$$\sum_{\alpha \in \mathbb{F}_q^*} \alpha^{\ell} = \begin{cases} 0 & \text{if } (q-1) \nmid \ell, \\ -1 & \text{if } (q-1) \mid \ell. \end{cases}$$

Solution

If $(q-1) \mid \ell$, then there exists a positive integer m such that $m(q-1) = \ell$ and

$$\sum_{\alpha \in \mathbb{F}_q^{\star}} \alpha^{\ell} = \sum_{\alpha \in \mathbb{F}_q^{\star}} \alpha^{m(q-1)} = \sum_{\alpha \in \mathbb{F}_q^{\star}} (\alpha^{q-1})^m = \sum_{\alpha \in \mathbb{F}_q^{\star}} 1 = q - 1.$$

On the other hand, if $(q-1) \nmid \ell$, then for any primitive element $a \in \mathbb{F}_q^*$, we have that $a^{\ell} \neq 1$. Multiplying by a introduces a bijection $\varphi_a : \mathbb{F}_q^* \to \mathbb{F}_q^*, \alpha \mapsto a\alpha$. Thus,

$$\sum_{\alpha \in \mathbb{F}_q^\star} \alpha^\ell = \sum_{\alpha \in \mathbb{F}_q^\star} (a\alpha)^\ell = a^\ell \sum_{\alpha \in \mathbb{F}_q^\star} \alpha^\ell.$$

Since $a^{\ell} \neq 1$, we must have $\sum_{\alpha \in \mathbb{F}_{a}^{\star}} \alpha^{\ell} = 0$.

Problem 3: Square Codes

Let \mathcal{C} be an $[n, k]_q$ linear code with generator matrix $G \in \mathbb{F}_q^{k \times n}$ and parity-check matrix $H \in \mathbb{F}_q^{(n-k) \times n}$.

1. Let \mathcal{C} be generated by $G = \begin{pmatrix} g_1 \\ \vdots \\ g_k \end{pmatrix} \in \mathbb{F}_q^{k \times n}$. Then $\mathcal{C}^{(2)}$ is generated by

$$G^{(2)} = \begin{pmatrix} g_1 * g_1 \\ \vdots \\ g_1 * g_k \\ \vdots \\ g_k * g_k \end{pmatrix} \in \mathbb{F}_q^{\binom{k+1}{2} \times n}.$$

2. Let $\mathcal{C}, \mathcal{C}'$ be two $[n,k]_q$ linear codes and $\varphi = (D,P) \in (\mathbb{F}_q^*)^n \rtimes S_n$ be such that $\varphi(\mathcal{C}) = \mathcal{C}'$. Then $\varphi' = (D^2,P) \in (\mathbb{F}_q^*)^n \rtimes S_n$ is such that

$$\varphi'(\mathcal{C}^{(2)}) = \mathcal{C}'^{(2)}.$$

3. Let \mathcal{C} be a $[n,k]_q$ linear code. Show that $\mathcal{H}(\mathcal{C})^{(2)} \neq \mathcal{H}(\mathcal{C}^{(2)})$.

4. Reduce the following LEP instance to GI using the square code:

$$G = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 0 \end{pmatrix} \in \mathbb{F}_5^{2 \times 4}$$

and

$$G' = \begin{pmatrix} 4 & 1 & 0 & 2 \\ 0 & 4 & 2 & 0 \end{pmatrix}.$$

5. Let α be a primitive element in \mathbb{F}_q . Define $\lambda = (1, \alpha, \dots, \alpha^{q-2})$. Show that

$$(\lambda \otimes \mathcal{C})^{(2)} \neq \lambda \otimes \mathcal{C}^{(2)}.$$

6. Show that

$$(\lambda \otimes G)^{(\ell)} = \lambda^{\ell} \otimes G^{(\ell)}.$$

Solution

1. Let $c \in \mathcal{C}^{(2)}$, then there exist $c_1, c_2 \in \mathcal{C}$ such that $c = c_1 * c_2$. Hence we have $m_1, m_2 \in \mathbb{F}_q^k$ such that $c_1 = m_1 G = \sum_{i=1}^k m_{1,i} g_i$ and $c_2 = m_2 G = \sum_{i=1}^k m_{2,i} g_i$. Thus,

$$c = m_1 G * m_2 G = \left(\sum_{i=1}^k m_{1,i} g_{i,1} \cdot \sum_{i=1}^k m_{2,i} g_{i,1}, \dots, \sum_{i=1}^k m_{1,i} g_{i,n} \cdot \sum_{i=1}^k m_{2,i} g_{i,n}\right)$$

$$= \left(\sum_{i,j=1}^k (g_{i,1} g_{j_1})(m_{1,i} m_{2,j}), \dots, \sum_{i,j=1}^k (g_{i,n} g_{j_n})(m_{1,i} m_{2,j})\right)$$

$$= MG^{(2)},$$

where $M = (m_{1,1}m_{2,1}, m_{1,1}m_{2,2}, \dots, m_{1,k}m_{2,k}).$

2. Recall that any codeword in $\mathcal{C}^{(2)}$ is of the form $c=c_1*c_2$ for $c_1,c_2\in\mathcal{C}$. Since $c_1DP,c_2DP\in\mathcal{C}'$ we get that $(c_1DP)*(c_2DP)\in\mathcal{C}'^{(2)}$. Now we observe that

$$(c_1DP)*(c_2DP) = (c_1D*c_2D)P = (c_1*c_2)D^2P \in \mathcal{C}'^{(2)}.$$

3. Let us consider $C \subseteq \mathbb{F}_3^3$ generated by $G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$. We compute the parity-check matrix as

$$H = \begin{pmatrix} 2 & 1 & 1 \end{pmatrix}.$$

Hence the hull of C is given by the kernel of

$$\begin{pmatrix} G \\ H \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix}.$$

By elementary row operations, we find the systematic form to be

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

that is $\mathcal{C}^{\perp} \subseteq \mathcal{C}$ and hence $\mathcal{C}^{\perp} = \mathcal{H}(\mathcal{C})$. If we compute the square code of this hull, we get a code generated by

$$H^{(2)} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}.$$

On the other hand, if we compute the square code $C^{(2)}$, generated by

$$G^{(2)} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix},$$

we see that $\mathcal{C}^{(2)} = \mathbb{F}_3^3$ and hence $(\mathcal{C}^{(2)})^{\perp} = \{0\}$. Thus,

$$\mathcal{H}(\mathcal{C}^{(2)}) = \{0\} \neq \mathcal{H}(\mathcal{C})^{(2)} = \langle (1, 1, 1) \rangle.$$

4. We first compute

$$G^{(2)} = \begin{pmatrix} 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 4 & 0 \end{pmatrix}, \quad G'^{(2)} = \begin{pmatrix} 1 & 1 & 0 & 4 \\ 0 & 4 & 0 & 0 \\ 0 & 1 & 4 & 0 \end{pmatrix}.$$

Then we compute

$$B = G^{(2)}(G^{(2)})^{\top} = \begin{pmatrix} 3 & 4 & 1 \\ 4 & 1 & 4 \\ 1 & 4 & 2 \end{pmatrix} = G'^{(2)}(G'^{(2)})^{\top}.$$

Next, we compute its inverse

$$B^{-1} = \begin{pmatrix} 3 & 3 & 0 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Now we can compute

$$A = (G^{(2)})^{\top} B^{-1} G^{(2)} = \begin{pmatrix} 3 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 3 \end{pmatrix}$$
$$A' = (G'^{(2)})^{\top} B^{-1} G'^{(2)} = \begin{pmatrix} 3 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 3 \end{pmatrix}.$$

Hence, we can find $P^{\top}D^2AD^2P = A'$ for several D, P in particular for $D^2 = \text{diag}(1,4,4,4)$, and $P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Checking again with G, G' we get D = diag(4,2,3,2) and $\sigma = (2,3)$.

5. As a small counterexample we can consider \mathbb{F}_3 with the generator matrix

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Then for $\lambda = (1,2)$ we get

$$\lambda \otimes G = \begin{pmatrix} 1 & 2 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 2 & 1 \end{pmatrix}$$

and

$$(\lambda \otimes G)^{(2)} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

On the other hand,

$$G^{(2)} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

and

$$\lambda \otimes (G^{(2)}) = \begin{pmatrix} 1 & 2 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 2 \end{pmatrix}$$

which do not give the same code.

6. Let $\lambda = (1, \alpha, \dots, \alpha^{q-2})$ and let

$$G = \begin{pmatrix} g_{1,1} & g_{1,2} & \cdots & g_{1,n} \\ g_{2,1} & g_{2,2} & \cdots & g_{2,n} \\ \vdots & \vdots & & \vdots \\ g_{k,1} & g_{k,2} & \cdots & g_{k,n} \end{pmatrix}.$$

We note that $\mathcal{C}^{(\ell)} = \mathcal{C} * \mathcal{C}^{(\ell-1)}$ and hence proceed by induction. For $\ell = 2$, we get The closure $\lambda \otimes \mathcal{C}$ is then generated by

$$\lambda \otimes G = \begin{pmatrix} g_{1,1} & \alpha g_{1,1} & \cdots & \alpha^{q-2} g_{1,1} & \cdots & g_{1,n} & \alpha g_{1,n} & \cdots & \alpha^{q-2} g_{1,n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ g_{k,1} & \alpha g_{k,1} & \cdots & \alpha^{q-2} g_{k,1} & \cdots & g_{k,n} & \alpha g_{k,n} & \cdots & \alpha^{q-2} g_{k,n} \end{pmatrix}.$$

Hence the square of the closure is generated by $(\lambda \otimes G)^{(2)}$ being

$$\begin{pmatrix} g_{1,1}^2 & \alpha^2 g_{1,1}^2 & \cdots & \alpha^{2(q-2)} g_{1,1}^2 & \cdots & g_{1,n}^2 & \alpha^2 g_{1,n}^2 & \cdots & \alpha^{2(q-2)} g_{1,n}^2 \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ g_{k,1}^2 & \alpha^2 g_{k,1}^2 & \cdots & \alpha^{2(q-2)} g_{k,1}^2 & \cdots & g_{k,n}^2 & \alpha^2 g_{k,n}^2 & \cdots & \alpha^{2(q-2)} g_{k,n}^2 \end{pmatrix}.$$

On the other hand, the square code of \mathcal{C} is generated by

$$G^{(2)} = \begin{pmatrix} g_{1,1}^2 & g_{1,2}^2 & \cdots & g_{1,n}^2 \\ g_{1,1}g_{2,1} & g_{1,2}g_{2,2} & \cdots & g_{1,n}g_{2,n} \\ \vdots & \vdots & & \vdots \\ g_{k,1}^2 & g_{k,2}^2 & \cdots & g_{k,n}^2 \end{pmatrix}.$$

Thus, $\lambda^2 \otimes G$ is

$$\begin{pmatrix} g_{1,1}^2 & \alpha^2 g_{1,1}^2 & \cdots & \alpha^{2(q-2)} g_{1,1}^2 & \cdots & g_{1,n}^2 & \alpha^2 g_{1,n}^2 & \cdots & \alpha^{2(q-2)} g_{1,n}^2 \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ g_{k,1}^2 & \alpha^2 g_{k,1}^2 & \cdots & \alpha^{2(q-2)} g_{k,1}^2 & \cdots & g_{k,n}^2 & \alpha^2 g_{k,n}^2 & \cdots & \alpha^{2(q-2)} g_{k,n}^2 \end{pmatrix}.$$

Now for ℓ we get that

$$\langle (\lambda \otimes G)^{(\ell)} \rangle = (\lambda \otimes \mathcal{C})^{(\ell)} = (\lambda \otimes \mathcal{C}) * (\lambda \otimes \mathcal{C}^{(\ell-1)}),$$

by the induction hypothesis, we have that

$$(\lambda \otimes \mathcal{C}^{(\ell-1)}) = \langle \lambda^{\ell-1} \otimes G^{(\ell-1)} \rangle$$

and hence

$$(\lambda^{\ell-1} \otimes G^{(\ell-1)}) * (\lambda \otimes G) = \lambda^{\ell} \otimes G^{(\ell)}.$$