Finite Geometry and Friends Summer School 2025

Code Equivalence

Exercises: Code Equivalence - Day 1 - Solution

Problem 1: Basics of Codes

Let C be an [n, k], linear code with generator matrix G € FE*™ and parity-check matrix
Hec F((]n—k)xn.

1.
2.
3.

Show that (H) = C*.
Show that (C+)* =C.

Show that if GG = 0, then C is self-orthogonal.

. Show that C is self-dual if and only if C is self-orthogonal and n = 2k.

Show that -
H(C) = ker (@) > .

Let G be in systematic form, i.e., G = (Idk A) for A € ]Flsx(n_k). Show that if
AAT +1d,,_}, is full rank, then dim(H(C)) = 0.

Show that if GG has full rank, then dim(#/(C)) = 0.

Solution

1.

By the definition of parity-check matrix, we have that H € an_k)xn is of full rank and

such that ker(H ") = C. Let us denote the rows of H by h; for all j € {1,...,n —k}.
Thus for all ¢ € C we have that (c,h;) = >, cjhij = 0 for all j € {1,...,n —k}
and further, for any z € (H), we find A\y,..., \,_ € F, such that z = E?:_f Ajh;
and since

n—k n—k
(e,2) = (e, Y Ajhy) = D> Ajle,hy) =0,
=1 i=1

we get that (H) C C*.

Observe that C* is a linear subspace, as for any y,y’ € C* we have that

y+y,c) = (y,c) + {y,c) =0

for all ce C.



As (-, ) is a non-degenerate bilinear form, we immediately get that dim(C)+dim(C) =
n and hence dim(C+) =n — k.

Since H has rank n—k and (H) C C*, both of dimension n—k, we get that (H) = C*.

. By 1. we have seen that (H) = C*. We can also apply this to C* : telling us that
the dual of the dual (C1)* is generated by a parity-check matrix of C*+. Hence we
are looking for a matrix A which is such that ker(A") = Ct. Since GH" = 0, we get
that G is such a matrix.

Hence G is a parity-check matrix of C* and thus, (G) = (Ct)*. As we also know
(G) = C, we get the claim.

. To have self-orthogonality, we want to show that every codeword ¢ € C also lives in
the dual Ct. Let ¢ € C be an arbitrary codeword, thus there exists m € IF"; such that
¢ = mG. As we assumed that GG = 0, we get ¢G' = 0. By 2. we then know
ceCt.

. For the first direction, assume that C = C*, thus dim(C) = k = dim(C*) = n—k and
n = 2k and clearly C C C*.

For the other direction, assume that n = 2k and C C C*, then since dim(C) = k and
dim(C*+) = n — k = k, we get that C = C*.

. Any x € H(C) is such that = € C, hence ztH " = 0 and = € C*, which implies zGT = 0.

b
Putting both together we get x (H—r GT) = 0 and thus H(C) C ker <<g> ) )

T
For the other direction we do the same: since any z € ker ((g) ) is such that

zGT =0 and zH " = 0 we must have z € CNCL.

. By 5. We are interested in the dimension of the kernel of the matrix

G
H) , and due

to the rank-nullity theorem in its rank. We can assume that G, H are in systematic
form, i.e.,

G=(Id; A4), H=(-AT Id,_)

and perform row operations to get

G\ (14, A !
H) ~ L0 AAT+1d, /) -

Hence its rank is given by k +1k(AA" +1d,,_;). Due to the assumption, that AAT 4
Id,,_ has full rank, we get by rank-nullity

dim(H(C)) = dim (ker ((g) T)) —n—rk ((g) T) R ——

. For any ¢ € C, there exists a m € Ffj such that mG = c¢. If ¢ is also in Ct, we
know that ¢cG'T = 0. This gives: for any ¢ € H(C) there exists a m € IF’; such that



mGG " = 0 and instead of counting ¢ € H(C), we count the number of m € F’; in the
kernel of GGT. Due to the rank-nullity theorem, we get

dim(ker(GG ")) = dim(im(GG ")) — rk(GGT) =k — k = 0.

Problem 2: Equivalence of Codes

Let C,C’ be [n, k], linear codes with generator matrices G, respectively G’.

1.

Show that the linear isometries with respect to some distance function form a group
with respect to the composition.

. Give the automorphism group of C = ((1,0,0), (0,1,1)) C F3.

Let ¢ € Aut(C) be a permutation. Show that ¢ € Aut(C NC™t).

Show that C* is linearly equivalent to C'*.
Hint: Use the fact that G’H'" = 0 and SGDP = G'.

Show that for all w € {1,...,n} we have that

Aw(C) = Au(C).

Show that generalized weights are strictly increasing, that is for r € {1,...,k — 1}
we have d,(C) < dr4+1(C).
Hint: Use the subcode D({i}) = {d € D | d; = 0} and its dual.

Show that for all » € {1,...,k} we have that

1 0 2

Consider the code C; C F3 generated by G; = <0 11

> and the code Cy C IF%

1 0 1
010
equivalent or not equivalent?

generated by Go = < ) Are the two codes linear equivalent, permutation

Solution

1.

Let us consider the set S of all linear isometries ¢ : Fy' — Fy.
Clearly, the identity function, id, is a linear isometry.

As ¢ is an isometry for a distance function, it has to map 0 to 0, and no other
element can be mapped to zero. In fact, if p(x) = 0 and = # 0, we would get that

d(p(2),0) = 0 # d(x,0).
Hence, ker(p) = {0} and as ¢ also has to be surjective, we get that ¢ is a F,
isomorphism.

Thus, for all ¢ € S there also exists !

(™ (@), ¢ (eW))) = d(z,y) = d(p(z), 0(y)).

, which is clearly also an isometry:



Hence the inverse of any isometry is also an isometry.

Finally, if ¢, ¢ € S, then p o € S as

d(e((x)), (¥ (y))) = d(¥(x), ¥(y)) = d(z,y).

. We first note that the only linear isometries over F3 are permutations o € S3. We
clearly have id € Aut(C) and we can also swap the second and third position, i.e.,
(2,3) € Aut(C).

. Let ¢ € Aut(C) be a permutation. By Proposition 1.34, we know that ¢ € Aut(Ct)
and hence ¢ € Aut(CNCt).

. We can follow the same proof as in the lecture:

Let H, H' be the parity-check matrices for C, respectively C’. Since G’H'T = 0, we
also have GDPH'" = G(H'P" D)" = 0. This implies that H'PT D is a parity-check
matrix for C and hence there exists some S € GLy(n — k) such that H = SH'PTD.

This is enough to show that there exists a monomial transform from C*+ = (H) to
C* = (H').

We can also go further and write H' = S’HD~!P, for some S’ € GLy(n — k). Thus,
the monomial transformation between the duals is D~!'P, which is not necessarily
the original DP.

. Since C; is linearly equivalent to Co, there exists some isometry ¢ : C; — Co. Thus, if
we consider the set
Su(C1) ={ce€ | wth(c) =w}

then

©(Sw(C1)) = {plc) | c € C1, wta(c) = w}
= {CI € Cy ’ WtH(CI) = w} = Sw(C’)

and hence they have the same size.

. The fact that d,_1(C) < d,(C) follows directly from the definition as d,(C) is the
smallest weight of a subcode of dimension r, which also contains subcodes of dimen-
sion r — 1.

Let D C C be a subcode of dimension r and weight d,(C). Let us denote by S =
suppy (D). For i € S we consider the subcode

D({i}) = {deD|d; =0}.

Clearly,

wtir(D({i})) < do(C) - 1.

Next, we show that D({:}) has dimension dim(D) — 1 =r — 1.



For this we consider its dual

D{i})" ={c€F} | (c,d) =0V d e D({i})}.

We note that dim(D({i})) has to be strictly smaller than dim(D) = r as i €
suppy (D). Thus r — 1 is the largest dimension it can be. Similarly, for the dual
we have that dim(D+) =n —r and dim(D({i})*) > n — r and thus n — r + 1 is the
smallest it can be.

Clearly, any ¢ € D+ also lives in D({i})*, as any ¢ € D~ is also such that {(c,d) =0
for all d € D({i}). We also note that e;, the ith standard vector is in D({i})* and
thus

DU (e;) CD({i})*.

We note that e; ¢ D+, as i € suppy (D), there exists some ¢ € D with ¢; # 0, hence
(e5,¢) = ¢; # 0. Thus, we get that

dim(D* U (e;)) =n —r+ 1,

and hence
D+ U {e;) = D({i}) ™,
which in turn gives that dim(D({i})) =r — 1.

Thus,
dr—l(c) < WtH(D({Z})) < dr(c) -1< dr(c)

. Let ¢ € (F;)" xSy, be such that ¢(C1) = C2 and let D be any subcode of Cy, then
(D) is a subcode of Ca.

As wtg (D) = wtg(e(D)), we immediately get
d,(C1) = min{wty (D) | D C Cy,dim(D) = r}
= min{wty (p(D)) | ¢(D) C ¢(C1), dim(p(D)) = r}
= dr(9(C1)) = dr(Ca2).

. For this we use 4. that is we check whether their duals are equivalent. We compute
Hi=(1 2 1), and Hy=(2 0 1).

As these codes Ci- and C5- have a different minimum distance: d(Ci-) = 3 and d(C5-) =
2, they are not equivalent.



Finite Geometry and Friends Summer School 2025
Code Equivalence

Exercises: Code Equivalence - Day 2 - Solution

Problem 1: Hermitian Dual

Let C be an [n, k], linear code with generator matrix G € FE*™ and parity-check matrix
Hec F((]n—k)xn.

1. Let H* € anik)xn be a Hermitian parity-check matrix of C. Show that
H*(GP"™)T =o.
That is C* = ker((GP™)T).

2. Use

n

n
(@ =Yzl = 2l y)P
i=1 i=1
to show that H* = HP" is a Hermitian parity-check matrix.

3. Show that (C*)* =C.

4. Show that
. ™\ T
H*(C) = ker ( I > :

5. Let C C [y be linearly equivalent to C’. Show that C* is linearly equivalent to (C’)*.
Hint: Use again that G((H*)?")" =0 and GDP = G'.

6. Let C C Fy be permutation equivalent to C’. Show that H*(C) is permutation equiv-
alent to H*(C').

7. Show that A* is independent on the choice of G.

8. Show that if G(GP™)T has full rank, then dim(#H*(C)) = 0.

Solution

1. If H* is a Hermitian parity-check matrix, then any x € C* can be written as x = mH*
for some m € F;‘_k. Similarly, for any y € C, there exists some m' € IF’; such that
y = m/G. Since any x € C* is such that x(y?" )" = 0 for all y € C, we get that
mH*((m'G)?™)T = 0 or equivalently, H*(GP™)" =0



2. From
n n
dowil =l i)’
i=1 i=1

we get (similarly to 1.) that ((H*)P"GT)P" = 0, which implies that (H*)*"GT =0
and thus, (H*)P" is a parity-check matrix of C. Hence, given a parity-check matrix

7n 7rL 2m

H, we can construct H* = HP" | as then (H*)P" = (HP")P" = HP"™" = H.

3. Recall from 2. that if C = ker(H ") then a Hermitian parity-check matrix is given by
HP™". Thus, if we apply this to C* = ker((GP™)T), we get that a Hermitian parity-
check matrix of C* is given by GF*" = G, that is (G) = (C*)*. As (G) = C, we get
the claim.

4. In order for z € Fy to be in H*(C) = C NC*, we need that z € C = ker(H '), that is
zH" = 0. As we also need z € C* = ker((G?™)T), from which we get the condition

PN T
z(GP")T = 0. Thus, any = € H*(C) must be in the kernel of <GH ) i

5. Let C = (G) with Hermitian parity-check matrix H* and C' = (G’), with Hermitian
parity-check matrix H’*, such that there exists a n x n permutation matrix P and a
diagonal matrix D = diag(d) with d € (F;)", with GDP = G".

From 2. we recall that G'((H"*)P")T = 0, hence
GDP((H™"P")T = GH"P" PTD)T = G(H"PT D™ ™)T =,

which implies that H*PTDP™ is a Hermitian parity-check matrix of C and hence
there exists some invertible S € GL,(n — k) with SH* = H'*PT D" or equivalently,
SH*(DP")~'P = H'* and hence C' is linearly equivalent to C’*.

6. Recall that A* = (GP™)T(G(GP™)")~1G. Hence for a different choice SG, we get
(say™)f(sa(sayr)h)tsa

m

(SP Gpm)T(SG(SpmGpm)T)*lsG

= (G"")T(sP)H(SG(@EP) TSP TsG

= (G"")T(SP) (PTG T TS sG
= (@) @@ la = A

m

7. For any ¢ € C, there exists a m € FZ such that mG = c. If ¢ is also in C*, we know
that ¢(GP™)T = 0. This gives: for any ¢ € H*(C) there exists a m € FX such that
mG(GP")T = 0 and instead of counting ¢ € H*(C), we count the number of m € IF’;
in the kernel of G(GP™)T. Due to the rank-nullity theorem, we get

dim(ker(G(GP™) ")) = dim(im(G(GP") ")) = tk(G(G"P" V) =k —k = 0.

Problem 2: Sums in finite fields

Let q be a prime power and £ be a positive integer, then



Solution

If (¢ — 1) | £, then there exists a positive integer m such that m(q — 1) = ¢ and

Z of = Z ™) — Z(oﬂ_l)m = Z 1l=¢-1.

aG]F; ocEIFg aG]Fg aclfs

On the other hand, if (¢ — 1) { £, then for any primitive element a € Fy, we have that
a’ # 1. Multiplying by a introduces a bijection ¢, : IF; — Fy, @ — aa. Thus,

> af= Y () =at Y o
aE]Fg ae]Fg an]FQ

Since a # 1, we must have ZaeFé af =0.

Problem 3: Square Codes

Let C be an [n, k], linear code with generator matrix G € FE*™ and parity-check matrix
Hec F((]nfk)xn’

91
1. Let C be generated by G = | : | € IE"q“X”. Then C? is generated by

9k
g1 * g1
: k+1
G2 — gxgp | € F(g 2 )><n'
9k * gk

2. Let C,C’ be two [n, k], linear codes and ¢ = (D, P) € (F;)" x S, be such that
©(C) =C'. Then ¢’ = (D? P) € (IF;)” x S, is such that

@'(C@)) — ('),
3. Let C be a [n, k], linear code. Show that H(C)?) # H(C?).

4. Reduce the following LEP instance to GI using the square code:

_1021 2x4
G_(o 13 O)EF5

, (410 2
G = (0 4 2 0/)°
5. Let o be a primitive element in F,. Define A = (1, q,...,a?"2). Show that

A2C)® £axec®.

and

6. Show that
MA@ =XecW.



Solution

1. Let ¢ € C(2), then there exist c1,co € C such that ¢ = ¢; * co. Hence we have
mi,mg € F’q“ such that ¢ = mG = Zle m1,g; and ca = meG = Ele mo,igi-

Thus,
k k k k
c=m1G *xmaG = (Z mi,igi1 - Z m2;i9i1y--- 7Zm1,i9i,n : Z mQ,igi,n)
i=1 i=1 i=1 i=1
k k
= (D (giags)(muimay), -, Y (ging,)(maima;))
i,j=1 i,j=1
= MG,
where M = (m171m271, mlylmgyg, ceey mLkaJC).

2. Recall that any codeword in C®?) is of the form ¢ = ¢ x ¢y for c1,co € C. Since
c1DP,c;DP € C'we get that (¢;DP) * (coDP) € C'®. Now we observe that

(c1DP) % (caDP) = (¢1D % caD)P = (¢1 % c) D*P € C'?.

1 01

3. Let us consider C C F3 generated by G = ( 0 1 2

). We compute the parity-check

matrix as
H=(2 1 1).

Hence the hull of C is given by the kernel of

1 0 1
©)-o 13
2 11
By elementary row operations, we find the systematic form to be
1 01
01 2
0 00

that is C C C and hence C*+ = H(C). If we compute the square code of this hull, we
get a code generated by
H? =(1 1 1).

On the other hand, if we compute the square code C, generated by
1 01
G2 =100 2|,
0 1 1
we see that C(2) = F3 and hence (C?)+ = {0}. Thus,

H(CP) = {0} # H ()P = (1. 1,1)).



4. We first compute

= O O
O O =

Now we can compute

30 0 3
— (@\T p=14(2) _ 01 0O
A= (G¥)' B™'G 00 1 0
3 0 0 3
3 00 2
F_ (ONT =102 _ [0 1 0 0
A=(G") BTG 0010
2 0 0 3
Hence, we can find P'D?AD?P = A’ for several D, P in particular for D?> =
1 0 00
. 0 010 . . . .
diag(1,4,4,4), and P = 010 ol Checking again with G,G" we get D =
0 0 0 1

diag(4,2,3,2) and o = (2,3).

5. As a small counterexample we can consider Fs with the generator matrix

101
G‘(o 1 2)'

Then for A = (1,2) we get

120012
A®G_<001221>
and
110011
AGP=10000 2 2
001111



On the other hand,

101
G =10 0 2
01 1

and
1 20 0 1 2
Ao GP)y=10 000 2 1
0 01 2 1 2
which do not give the same code.
. Let A= (1,a,...,a972) and let
911 912 - Gin
G |
9k1 Gk2 - Gkn

We note that C) = C x C*~Y and hence proceed by induction. For ¢ = 2, we get
The closure A ® C is then generated by

g1 oagian o a%7giq o gin agin o a%7%g1,
A®G: . . . .

) 2
gkl agr1 o alTigr1 o Grn QGkn v 04 Cgrn

Hence the square of the closure is generated by (A ® G)?) being

2 2 2 2(g—2) 2 2 2 2 2(g—2) 2
ng o ng l6 (q )ng gl’n o gLn l6 (q )gl’n
2 2 2 2(g—2) 2 2 2 2 2(g—2) 2
gk),l 0% gk),l PPN 6% (q )gk,‘,l PPN gk7n l6 gk’n PPN o (q )gk,‘,n
On the other hand, the square code of C is generated by
2 2 2
91,1 91,2 e 91n
a® — 91,1'92,1 91,2‘92,2 gl,n'gln
2 2 2
91 Ie2 7 Ykn
Thus, A2 ® G is
g%l QQQ%I N a2(q_2)g%1 e g%’n a2g%n e a2(q_2)gin
2 2,2 2(g—2) 2 2 2 .2 2(g—2) 2
ng 6% gk71 e l6% (q )gk,l “e. gk7n o gk,n e le (q )gk"n

Now for ¢ we get that
(M) =0e0)® =0aC)xAectY),



by the induction hypothesis, we have that
Aec D)=\ "eoat)

and hence
M1 N« A0 G) =N oa?,



