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Code Equivalence - The Problem

Given two codes C,C′, find a linear isometry φ such that φ(C) = C.

”Is code equivalence easy to decide?” Petrank, Roth. 2002.

< LESS signature scheme in 2nd round of NIST standardization call

Plan

◦ Basics of Coding Theory ◦ LESS Signature Scheme ◦ Introduction to Complexity Theory

◦ Hardness of Code Equivalence ◦ Solvers ◦ Finite Friends

◦ Connections to other Problems ◦ Some new Results ◦ Summary
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Code Equivalence - Organization

Material:

Lecture Notes Exercises
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Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x
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Code Equivalence - Coding Theory

Definition ◦ The Hamming weight of x ∈ Fn
q is wt(x) = ∣{i ∣ xi ≠ 0}∣

◦ The Hamming distance between x, y ∈ Fn
q is

d(x, y) = wt(x − y) = ∣{i ∣ xi ≠ yi}∣
◦ The minimum Hamming distance of C ⊆ Fn

q is

d(C) = min{wt(c) ∣ c ∈ C, c ≠ 0}

A [n, k, d]q code C can correct t = ⌊ d−1
2 ⌋ errors
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Code Equivalence - Coding Theory

C = ⟨G⟩ = ker(H⊤) ⊆ Fn
q of dimension k

Definition ◦ G is in systematic form if G = (Idk A)
◦ H is in systematic form if H = (B Idn−k)

Properties ◦ For S ∈ GLq(k) also ⟨SG⟩ = C

◦ For some permutation matrix P , SGP is in systematic form
◦ For S ∈ GLq(n − k) also ker((SH)⊤) = C
◦ For some permutation matrix P , SHP is in systematic form
◦ If G = (Idk A) , then H = (−A⊤ Idn−k)
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Code Equivalence - Coding Theory

C = ⟨G⟩ = ker(H⊤) ⊆ Fn
q of dimension k

Definition ◦ The dual code of C is

C⊥
= {x ∈ Fn

q ∣ ⟨x, y⟩ = 0 ∀ c ∈ C}
◦ C⊥

= ⟨H⟩ = ker(G⊤) ⊆ Fn
q of dimension n − k

◦ If C = C⊥ then C is called self-dual
◦ If C ⊂ C⊥ then C is called self-orthogonal
◦ The hull of C is H(C) = C ∩ C⊥

Exercises ◦ Show that ⟨H⟩ = C⊥

◦ Show that (C⊥)⊥ = C.
◦ Show that if GG⊤

= 0, then C is self-orthogonal
◦ Show that C is self-dual if and only if C is self-orthogonal and n = 2k

◦ Show that H(C) = ker((G
H
)
⊤

)
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Code Equivalence - Coding Theory

How large is this hull?

Folklore If C is random, then H(C) = {0} with high probability for large n

Theorem If C is random, then

P(dim(H(C)) = h) = ∏∞
i=1 q

i q
i−1

q2i−1 ∏n
i=1(q

i − 1)−1
∼ (1 − 1/q)q−h(h+1)/2

”On the dimension of the hull” N. Sendrier, 1997

Theorem If C is random, then P(H(C) = {0}) ≥ 1 − 1/q for large n

Exercise ◦ If G = (Idk A) and AA
⊤ + Idn−k has full rank, then H(C) = {0}

◦ If GG⊤ has full rank, then H(C) = {0}
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Code Equivalence - Coding Theory

G = (1 0 2
0 1 1) , G

′
= (1 1 0

1 0 1) .

0
1

2 0

1

2

0

1

2

c1

c2

c 3

C

0
1

2 0

1

2

0

1

2

c1

c2

c 3

C′

C = {(0, 0, 0), (1, 0, 2), (2, 0, 1), (1, 1, 0), (2, 1, 2), (0, 1, 1), (0, 2, 2), (1, 2, 1), (2, 2, 0)}
C′

= {(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 1, 0), (1, 2, 2), (1, 0, 1), (2, 0, 2), (2, 1, 1), (2, 2, 0)}
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Code Equivalence - Coding Theory

Definition ◦ A linear isometry for a distance function d is a linear map

φ ∶ Fn
q → Fn

q s.t. ∀ x, y ∈ Fn
q : d(x, y) = d(φ(x), φ(y))

Proposition For the Hamming metric: φ ∈ (F⋆
q)n ⋊ Sn

Definition ◦ φ = (d, σ) ∈ (F⋆
q)n ⋊ Sn called monomial transformation

◦ D = diag(d), permutation matrix P , DP called monomial matrix
◦ The semi-linear isometries are (F⋆

q)n ⋊ (Aut(Fq) × Sn)

If φ ∶ C → C′ linear such that wt(c) = wt(φ(c)) for all c ∈ C?

Theorem If φ ∶ C → C′ linear isometry, then exists µ ∈ (F⋆
q)n ⋊ Sn s.t. µ∣C = φ

”Combinatorial problems of elementary abelian groups” F.J. MacWilliams, 1962
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Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Definition ◦ C is linearly equivalent to C′ if ∃φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

◦ C is permutation equivalent to C′ if ∃φ ∈ Sn s.t. φ(C) = C′

Proposition If C = ⟨G⟩ is linearly equivalent to C′
= ⟨G′⟩, then there exist

S ∈ GLq(k),D = diag(d), permutation matrix P , s.t. SGDP = G
′

Definition ◦ The automorphism group of C is Aut(C) = {φ ∈ (F⋆
q)n ⋊ Sn ∣ φ(C) = C}

Property ◦ If C is random, then Aut(C) = {id} with high probability for large n

”Rigid linear binary codes” H. Lefmann, K. Phelps, V. Rödl, 1993
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= ⟨G′⟩, then there exist

S ∈ GLq(k),D = diag(d), permutation matrix P , s.t. SGDP = G
′

Definition ◦ The automorphism group of C is Aut(C) = {φ ∈ (F⋆
q)n ⋊ Sn ∣ φ(C) = C}

Property ◦ If C is random, then Aut(C) = {id} with high probability for large n

”Rigid linear binary codes” H. Lefmann, K. Phelps, V. Rödl, 1993

Violetta Weger 10/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Proposition If φ ∈ Sn is s.t. φ(C) = C′ then φ(C⊥) = C′⊥

Proposition If φ ∈ Sn is s.t. φ(C) = C′ then φ(H(C)) = H(C′)

Exercises ◦ If φ ∈ Sn is s.t. φ ∈ Aut(C) then φ ∈ Aut(H(C))
◦ If φ ∈ (F⋆

q)n ⋊ Sn is s.t. φ(C) = C′ then ∃φ′
∈ (F⋆

q)n ⋊ Sn ∶ φ′(C⊥) = C′⊥
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Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition The weight enumerator of C is Aw(C) = ∣{c ∈ C ∣ wt(c) = w}∣

Exercise Aw(C) = Aw(C′) for all w ∈ {1, . . . , n}

What about the other direction?

Proposition Aw(C) = Aw(C̃) /⇒ C is linearly equivalent to C̃

Proposition ∣Aut(C)∣ = ∣Aut(C′)∣
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Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition ◦ The support of C is supp(C) = {i ∣ ∃c ∈ C ∶ ci ≠ 0}
◦ The weight of C is wt(C) = ∣supp(C)∣
◦ Let r ∈ {1, . . . , k}, the rth generalized weight of C is

dr(C) = min{wt(D) ∣ D ⊆ C,dim(D) = r}

Exercises ◦ Show that dr(C) = dr(C′)
◦ For r ∈ {1, . . . , k − 1} show that dr(C) < dr+1(C)
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Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called

length
◦ k is called

dimension

◦ d is called

minimum distance

◦ G is called

generator matrix

◦ H is called

parity-check matrix

◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull
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Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if

∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if

∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→

φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)
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Code Equivalence - Cryptography

Goal: secure communication

Symmetric cryptography: both have same key

How to exchange the keys?

Asymmetric/ public-key cryptography

Signature scheme
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Code Equivalence - Cryptography

Signer Signature Scheme Verifier

secret key public key

message m

, m→ signature s

,m, s,→◦

◦

authentication
integrity

attacker: recover

from and many (m, s)

integrity

probability of getting accepted:

cheating probability α
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Code Equivalence - Cryptography

Prover Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t
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Code Equivalence - Cryptography

Signer

Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}

b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb

m, s = (c0, c1, rb)

check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t
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Code Equivalence - Cryptography

Main motivation: LESS

◦ code-based signature scheme ◦ 2nd round candidate in NIST call

◦ 14 surviving schemes ◦ 6 code-based schemes

Urgent: ◦ until 2030 all critical use cases should update
◦ until 2035 all use cases should update

Problem: ◦ Standardizations take time
◦ All based on novel problems: secure?
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Code Equivalence - Cryptography

Prover LESS ZK-Protocol Verifier

φ = D,P G,G
′ s.t. SGDP = G

′

commitment G̃ = φ̃(G)

challenge b ∈ {0, 1}

response r0 = φ̃, r1 = φ̃ ◦ φ−1 check φ̃(G) = G̃ or φ̃ ◦ φ−1(G′) = G̃

C
φ

C′

C̃
φ̃ φ̃ ◦ φ−1 soundness error 1

2
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Code Equivalence - Complexity

Set up P a decisional problem, I an instance, s a solution

Example Syndrome Decoding Problem:

Instance =(H, s, t)

Aim complexity theory: How hard are such problems?

Is SDP harder than sorting / determining minimum distance/ code equivalence?
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Code Equivalence - Complexity

Complexity Classes

P

◦ P ∈ P if can solve P in poly. time

by a deterministic Turing machine

NP

◦

◦ P ⊂ NP

◦ polynomial time: O(nc) for some constant c

◦ quasi- polynomial time: O(2log(n)c

) for some constant c
◦ exponential time: O(2nc) for some constant c
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Code Equivalence - Complexity

How to compare hardness of problems?

Polynomial-time reduction form R to P

1. take any instance I of R → 2. transform to a instance I ′ of P
↓

3. oracle gives solution s
′ to I ′←4. transform to a solution s of I

→ hardness(P) ≥ hardness(R)

P

NP

NP -hard
◦ P ∈ NP -hard if ∃ poly. time reduction

from every R ∈ NP to P

◦ NP -complete = NP ∩NP -hard
◦ if R ∈ NP -hard and R → P then P ∈ NP -hard

Violetta Weger 23/64



Code Equivalence - Complexity

How to compare hardness of problems?

Polynomial-time reduction form R to P

1. take any instance I of R → 2. transform to a instance I ′ of P
↓

3. oracle gives solution s
′ to I ′←4. transform to a solution s of I

→ hardness(P) ≥ hardness(R)

P

NP

NP -hard
◦ P ∈ NP -hard if ∃ poly. time reduction

from every R ∈ NP to P

◦ NP -complete = NP ∩NP -hard
◦ if R ∈ NP -hard and R → P then P ∈ NP -hard

Violetta Weger 23/64



Code Equivalence - Complexity

How to compare hardness of problems?

Polynomial-time reduction form R to P

1. take any instance I of R → 2. transform to a instance I ′ of P
↓

3. oracle gives solution s
′ to I ′←4. transform to a solution s of I

→ hardness(P) ≥ hardness(R)

P

NP

NP -hard
◦ P ∈ NP -hard if ∃ poly. time reduction

from every R ∈ NP to P

◦ NP -complete = NP ∩NP -hard
◦ if R ∈ NP -hard and R → P then P ∈ NP -hard

Violetta Weger 23/64



Code Equivalence - Coffee break
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Code Equivalence - Exercises
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Code Equivalence - Exercises

C = ⟨G⟩ = ker(H⊤) a [n, k]q linear code

1. Show that ⟨H⟩ = C⊥
.

2. Show that (C⊥)⊥ = C.
3. Show that if GG⊤

= 0, then C is self-orthogonal.
4. Show that C is self-dual iff C is self-orthogonal and n = 2k.

5. Show that H(C) = ker((G
H
)
⊤

) .

6. Let G be in systematic form, i.e., G = (Idk A) for A ∈ Fk×(n−k)
q .

Show that if AA⊤ + Idn−k is full rank, then dim(H(C)) = 0.
7. Show that if GG⊤ has full rank, then dim(H(C)) = 0.
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Code Equivalence - Exercises

C = ⟨G⟩ and C′
= ⟨G′⟩

1. Show that the linear isometries form a group with respect to the composition.

2. Give the automorphism group of C = ⟨(1, 0, 0), (0, 1, 1)⟩ ⊆ F3
2.

3. Let φ ∈ Aut(C) be a permutation. Show that φ ∈ Aut(C ∩ C⊥).
4. Show that C⊥ is linearly equivalent to C′⊥

.

5. Show that for all w ∈ {1, . . . , n} we have that Aw(C) = Aw(C′).
6. Show that for r ∈ {1, . . . , k − 1} we have dr(C) < dr+1(C).
7. Show that for all r ∈ {1, . . . , k} we have that dr(C) = dr(C′).
8. Consider the code C1 ⊆ F3

3 generated by

G1 = (1 0 2
0 1 1) and the code C2 ⊆ F3

3 generated by G2 = (1 0 1
0 1 0).

Are the two codes linear equivalent, permutation equivalent or not equivalent?
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Code Equivalence - The Problem

How hard is code equivalence?

Linear Equivalence Problem (LEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Permutation Equivalence Problem (PEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ Sn s.t. φ(C) = C′

hardness(LEP) ≥ hardness(PEP)

Are they NP-hard?
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Code Equivalence - The Problem

No: any isomorphism problem is not NP-hard

Merlin Arthur

◦

◦ if PH ≠ AM: P ∈ co-AM is not NP-hard

I = (C1,C2) choose b ∈ {1, 2} and φ

compute C = φ(Cb)
C

find Cb equivalent to C
b

soundness error: 1/2 t rounds → 1/2t
→ LEP ∈ co-AM
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Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ k(n − k) equations
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Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP (NP-hard)∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP ∈ O(2nc)
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Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025
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Code Equivalence - Solvers

Summary ◦ LEP, PEP not NP-hard

◦ solvers for LEP have exponential cost
◦ solvers for PEP have cost in O(qdim(H(C)))
◦ PEP easy for random codes
◦ PEP hardest instance: self-orthogonal codes H(C) = C
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Code Equivalence - Different View Point

Finite Geometry

Definition Finite projective geometry of dimension k and order q

PG(k, q) = (Fk+1
q \ {0})/ ∼

where u ∼ v iff u = λv for some λ ∈ F⋆
q

Definition M is a projective [n, k, d]q system if M is a finite set

of n points of PG(k − 1, q) not all on a hyperplane and

d = n − max{∣H ∩M∣ ∣ H ⊆ PG(k − 1, q),dim(H) = k − 2}
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Code Equivalence - Different View Point

Connection

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

C a [n, k, d]q linear non-degenerate code

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

M a projective [n, k, d]q system

Violetta Weger 35/64



Code Equivalence - Different View Point

Connection

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

C a [n, k, d]q linear non-degenerate code

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

M a projective [n, k, d]q system

Violetta Weger 35/64



Code Equivalence - Different View Point

Connection

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

C a [n, k, d]q linear non-degenerate code

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

M a projective [n, k, d]q system

Violetta Weger 35/64



Code Equivalence - Different View Point

Matroids

Definition A matroid M is a pair (E, I) where E is a finite set and
I is a collection of subsets of E, called independent sets, s.t.

1. ∅ ∈ I

2. if A ∈ I,B ⊆ A then B ∈ I

3. if A,B ∈ I, ∣A∣ < ∣B∣, then ∃b ∈ B \A s.t. A ∪ {b} ∈ I

Connection

G ∈ Fk×n
q generator matrix → representable matroid M(G) = (E, I) where

E = {1, . . . , n} and I = {S ⊂ E ∣ GS has full rank }
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Code Equivalence - Different View Point

Designs

Definition A t − (v, k, λ) design is a pair (X,B), where X = set of v points
B = collection of k-elements subsets of X (blocks), s.t.

every t-element subset of X is contained in exactly λ blocks

Connection
C a [n, k, d]q linear code → X = {1, . . . , n} and

B = {supp(c1), . . . , supp(cN ) ∣ ci ∈ C,wt(ci) = d}
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Code Equivalence - Different View Point

Designs

Assmus-Mattson Theorem
C a [n, k, d]q linear code with weight enumerators Ai

C⊥ a [n,n − k, d′]q linear code with weight enumerators A′
i

For t < d, s the number of i < n − t s.t. A′
i ≠ 0

If s ≤ d − t, then the supports of all codewords in C of weight u

with d ≤ u ≤ n form a t-design

”New 5-designs” E.F. Assmus, H.F. Mattson, 1969
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Code Equivalence - Connections

Reductions

◦ PEP → LEP ✓ Reduction R → P

if can solve P → can solve R

hardness(P) ≥ hardness(R)

◦ LEP → PEP

◦ PEP → GI

◦ GI → PEP

favorite finite friend: graphs

Violetta Weger 40/64



Code Equivalence - Connections

Reductions

◦ PEP → LEP ✓ Reduction R → P

if can solve P → can solve R

hardness(P) ≥ hardness(R)◦ LEP → PEP

◦ PEP → GI

◦ GI → PEP

favorite finite friend: graphs

Violetta Weger 40/64



Code Equivalence - Connections

Reductions

◦ PEP → LEP ✓ Reduction R → P

if can solve P → can solve R

hardness(P) ≥ hardness(R)◦ LEP → PEP

◦ PEP → GI

◦ GI → PEP

favorite finite friend: graphs

Violetta Weger 40/64



Code Equivalence - Connections

Reductions

◦ PEP → LEP ✓ Reduction R → P

if can solve P → can solve R

hardness(P) ≥ hardness(R)◦ LEP → PEP

◦ PEP → GI

◦ GI → PEP

favorite finite friend: graphs

Violetta Weger 40/64



Code Equivalence - Connections

Reduction from LEP to PEP

Definition C a [n, k]q linear code, α ∈ Fq be a primitive element and

λ = (1, α, . . . , αq−2) ∈ Fq−1
q . The closure of C is λ⊗ C

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Proposition C,C′ [n, k]q linear codes, φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Then exists σ ∈ Sn(q−1) s.t. σ(λ⊗ C) = λ⊗ C′
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Code Equivalence - Connections

Reduction from PEP to GI
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, E
′) are isomorphic if

∃f ∶ V → V
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Code Equivalence - Connections

Reduction from PEP to GI

Definition A undirected, weighted graph G = (V,E) is s.t.

with {u, v} ∈ E iff {v, u} ∈ E and edges have weight w(u, v)

Definition Two graphs G = (V,E) and G ′
= (V ′

, E
′) are isomorphic if

∃f ∶ V → V
′ with {u, v} ∈ E ↔ {f(u), f(v)} ∈ E ′
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Code Equivalence - Connections

Reduction from PEP to GI

Graph Isomorphism (GI) Problem

Given G = (V,E),G ′
= (V,E ′) with V = {1, . . . , n}

find φ ∈ Sn s.t. {u, v} ∈ E ↔ {φ(u), φ(v)} ∈ E ′

Babai’s algorithm: GI is quasi-polynomial time! cost in O(2log(n)c

)
”Graph isomorphism in quasipolynomial time” L. Babai, 2016

Violetta Weger 43/64



Code Equivalence - Connections

Reduction from PEP to GI

Graph Isomorphism (GI) Problem

Given G = (V,E),G ′
= (V,E ′) with V = {1, . . . , n}

find φ ∈ Sn s.t. {u, v} ∈ E ↔ {φ(u), φ(v)} ∈ E ′

Babai’s algorithm: GI is quasi-polynomial time! cost in O(2log(n)c

)
”Graph isomorphism in quasipolynomial time” L. Babai, 2016

Violetta Weger 43/64



Code Equivalence - Connections

Reduction from PEP to GI

Graph Isomorphism (GI) Problem

Given G = (V,E),G ′
= (V,E ′) with V = {1, . . . , n}

find φ ∈ Sn s.t. {u, v} ∈ E ↔ {φ(u), φ(v)} ∈ E ′

Babai’s algorithm: GI is quasi-polynomial time! cost in O(2log(n)c

)
”Graph isomorphism in quasipolynomial time” L. Babai, 2016

Violetta Weger 43/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition The adjacency matrix A of a weighted graph G is

Ai,j = {w(i, j) if {i, j} ∈ E
0 else

Proposition Two graphs G,G ′ are isomorphic iff

∃P permutation matrix s.t. P⊤
AP = A

′

Theorem If H(C) = {0} then PEP can be reduced to GI

”Permutation code equivalence is not harder than GI” M. Bardet, A. Otmani, M. Saeed-Taha, 2019

→ PEP is easier than GI
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Code Equivalence - Connections

Reduction from GI to PEP

Definition The incidence matrix B of a graph G with ∣V ∣ = v, ∣E∣ = e is

Bi,j = {1 if i = {ℓ, j} ∈ E
0 else

B ∈ Fe×v
2

Proposition Two graphs G,G ′ are isomorphic iff

∃Q ∈ Se, P ∈ Sv , such that QBP = B
′

Theorem We can reduce GI to PEP

”Is code equivalence easy to decide?” E. Petrank, M. Roth, 2002
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Code Equivalence - Connections

If LEP → PEP and PEP → GI then LEP → GI

NO

Under the rug

We can only reduce PEP to GI if H(C) = {0} is H(λ⊗ C) = {0}?

Exercise Show that ∑
α∈F⋆q

α
ℓ
= {0 if (q − 1) ∤ ℓ

−1 if (q − 1) ∣ ℓ

Proposition If q ≥ 4, then λ⊗ C is self-orthogonal
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Code Equivalence - Connections

A bit of hope q = p
2m

Definition ◦ Let x, y ∈ Fn
q . The Hermitian inner product is

⟨x, y⟩H = ∑n
i=1 xiy

p
m

i

◦ Let C be a [n, k]q linear code. The Hermitian dual is

C⋆
= {x ∈ Fn

q ∣ ⟨x, y⟩H = 0 ∀ y ∈ C}
◦ A Hermitian parity-check matrix H⋆ is s.t. ⟨H⋆⟩ = C⋆

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Violetta Weger 47/64



Code Equivalence - Connections

A bit of hope q = p
2m

Definition ◦ Let x, y ∈ Fn
q . The Hermitian inner product is

⟨x, y⟩H = ∑n
i=1 xiy

p
m

i

◦ Let C be a [n, k]q linear code. The Hermitian dual is

C⋆
= {x ∈ Fn

q ∣ ⟨x, y⟩H = 0 ∀ y ∈ C}
◦ A Hermitian parity-check matrix H⋆ is s.t. ⟨H⋆⟩ = C⋆

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Violetta Weger 47/64



Code Equivalence - Connections

A bit of hope q = p
2m

Definition ◦ Let x, y ∈ Fn
q . The Hermitian inner product is

⟨x, y⟩H = ∑n
i=1 xiy

p
m

i

◦ Let C be a [n, k]q linear code. The Hermitian dual is

C⋆
= {x ∈ Fn

q ∣ ⟨x, y⟩H = 0 ∀ y ∈ C}

◦ A Hermitian parity-check matrix H⋆ is s.t. ⟨H⋆⟩ = C⋆

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Violetta Weger 47/64



Code Equivalence - Connections

A bit of hope q = p
2m

Definition ◦ Let x, y ∈ Fn
q . The Hermitian inner product is

⟨x, y⟩H = ∑n
i=1 xiy

p
m

i

◦ Let C be a [n, k]q linear code. The Hermitian dual is

C⋆
= {x ∈ Fn

q ∣ ⟨x, y⟩H = 0 ∀ y ∈ C}
◦ A Hermitian parity-check matrix H⋆ is s.t. ⟨H⋆⟩ = C⋆

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Violetta Weger 47/64



Code Equivalence - Connections

A bit of hope q = p
2m Let C = ⟨G⟩ = ker(H⊤)

Exercises ◦ Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤)
◦ Show that H⋆

= H
p

m

is a Hermitian parity-check matrix
◦ Show that (C⋆)⋆ = C

◦ Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠

◦ Let C ⊂ Fn
q be linearly equivalent to C′

.

Show that C⋆ is linearly equivalent to (C′)⋆

◦ Let C ⊂ Fn
q be permutation equivalent to C′

.

Show that H⋆(C) is permutation equivalent to H⋆(C′)
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Code Equivalence - New Directions

Two New results

How many pairs (c, φ(c)) needed to recover φ?

Rouché-Capelli Test Let A ∈ Fk×n
q of rank r and b ∈ Fk

q

The system Ax
⊤
= b

⊤ has a solution iff rk([A ∣ b]) = r

→ only 2! (with some heuristics)
”Two Is All It Takes” A. Budroni, A. Esser, E. Franch, A. Natale, 2025

How many pairs (C, φ(C)) needed to recover φ?
→ only 2!

”Don’t use it twice!” A. Budroni, J. Chi-Domı́nguez, D. D’Alconzo, A. Di Scala, M. Kulkarni, 2024
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Rouché-Capelli Test Let A ∈ Fk×n
q of rank r and b ∈ Fk

q

The system Ax
⊤
= b

⊤ has a solution iff rk([A ∣ b]) = r

→ only 2! (with some heuristics)
”Two Is All It Takes” A. Budroni, A. Esser, E. Franch, A. Natale, 2025

How many pairs (C, φ(C)) needed to recover φ?
→ only 2!

”Don’t use it twice!” A. Budroni, J. Chi-Domı́nguez, D. D’Alconzo, A. Di Scala, M. Kulkarni, 2024

Violetta Weger 49/64



Code Equivalence - New Directions

Two New results

How many pairs (c, φ(c)) needed to recover φ?
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Code Equivalence - New Directions

Definition ◦ Let x, y ∈ Fn
q . The Schur product is x ∗ y = (x1y1, . . . , xnyn)

◦ Let Ci be [n, ki]q linear codes. The Schur product is

C1 ∗ C2 = ⟨{c1 ∗ c2 ∣ c1 ∈ C1, c2 ∈ C2}⟩
◦ Let C be an [n, k]q linear code. The square code is C(2)

= C ∗ C

Exercise ⟨G⟩ = C. Show that ⟨G(2)⟩ = C(2)

where G(2)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

g1 ∗ g1
⋮

g1 ∗ gk

⋮
gk ∗ gk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ F
(k+1

2 )×n
q
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Code Equivalence - New Directions

Theorem Let C be a [n, k]q linear code. Then dim(C(2)) = min {n, (k+1
2 )}

Exercises ◦ Let C,C′ be [n, k]q linear codes and φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn

s.t. φ(C) = C′
. Then φ

′
= (D2

, P ) ∈ (F⋆
q)n ⋊ Sn is s.t. φ′(C(2)) = C′(2)

◦ Show that H(C(2)) ≠ H(C)(2)

Violetta Weger 51/64
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Code Equivalence - New Directions

Recall SSA

C C′

φ

CIC C′
JC

H(CIC ) H(C′
JC )

φ
′

H(CIC )(2) H(C′
JC )(2)

φ
′

”Using the Schur Product to Solve

the Code Equivalence Problem”

M. Battagliola, R. Mora, Rocco, P. Santini, 2025

recent attack on

”Hollow LWE” M. Albrecht, B. Benčina, R. Lai, 2025
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Code Equivalence - New Directions

Definition Let C be an [n, k]q linear code. The ℓ power code is
C(ℓ)

= C ⋆⋯⋆ CÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
ℓ

Theorem Let C be an [n, k]q linear code. If ℓ < q, then

dim(C(ℓ)) = min {(k+ℓ−1
ℓ

), n}

Exercises ◦ Show that (λ⊗ C)(2) ≠ λ⊗ C(2)

◦ Show that (λ⊗G)(ℓ) = λℓ ⊗G
(ℓ)
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Code Equivalence - More Philosophy

Why A(G,G⊤) = G⊤(GG⊤)−1
G?

If φ ∈ Sn C C′

φ

C⊥ C⊥

φ

C = ⟨G⟩

C⊥
= ker(G⊤)

If φ ∈ (F⋆
q)n ⋊ Sn C C′

φ

F (C) F (C)

φ
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Code Equivalence - Summary

Summary

◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}
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Code Equivalence - Bonus Round

Other metrics?

Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020
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Code Equivalence - Bonus Round

Other metrics?

Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming
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Code Equivalence - Bonus Round

Every code is linearly equivalent to a code with trivial hull
”Linear codes over Fq are equivalent to LCD codes for q > 3”

C. Carlet, S. Mesnager, C. Tang,Y. Qi, R. Pellikaan, 2018

C C′

φ

λ⊗ C λ⊗ C′

σ

ψ(λ⊗ C) ψ(λ⊗ C′)

µ
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Code Equivalence - Bonus Round

Computational → decisional
”A search-to-decision reduction for the permutation code equivalence

problem” J.-F. Biasse, G. Micheli, 2023
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Code Equivalence - Coffee break

Workshop on the Mathematics of Post-Quantum Cryptography
Munich, September 7–11, 2026

https://mathpqc26.cry.cit.tum.de/

Violetta Weger 60/64

https://mathpqc26.cry.cit.tum.de/


Code Equivalence - Exercises
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Code Equivalence - Exercises

C = ⟨G⟩ = ker(H⊤) a [n, k]q linear code

1. Let H⋆
∈ F(n−k)×n

q be a Hermitian parity-check matrix of C.

Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤).
2. Show that H⋆

= H
p

m

is a Hermitian parity-check matrix.
3. Show that (C⋆)⋆ = C.

4. Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠
.

5. Let C be linearly equivalent to C′
. Show that C⋆ is linearly equivalent to (C′)⋆.

6. Show that if φ ∈ Sn is such that φ(C) = C′,

then H⋆(C) is permutation equivalent to H⋆(C′).
7. Show that A⋆ is independent on the choice of G.

Show that if G(Gp
m

)⊤ has full rank, then dim(H⋆(C)) = 0.
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Code Equivalence - Exercises

C = ⟨G⟩ = ker(H⊤) a [n, k]q linear code

1. Show that ∑α∈F⋆q α
ℓ
= {0 if (q − 1) ∤ ℓ,

−1 if (q − 1) ∣ ℓ.

2. Show that C(2) is generated by G(2)
.

3. Show that if φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn is such that φ(C) = C′

,

then φ
′
= (D2

, P ) ∈ (F⋆
q)n ⋊ Sn is such that φ′(C(2)) = C′(2)

.

4. Show that H(C)(2) ≠ H(C(2)).
5. Reduce the following LEP instance to GI using the square code:

G = (1 0 2 1
0 1 3 0) ∈ F2×4

5 and G
′
= (4 1 0 2

0 4 2 0) .

6. Show that (λ⊗ C)(2) ≠ λ⊗ C(2)
.

7. Show that (λ⊗G)(ℓ) = λℓ ⊗G
(ℓ)
.
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Code Equivalence - Solutions

Solutions Slides
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