Code Equivalence Violetta Weger Finite Geometry and Friends Summer School $2025\,$ September 2025 ## Code Equivalence Violetta Weger Finite Geometry and Friends Summer School 2025 September 2025 Finite Friends and Geometry, 2023 ${\bf Violetta~Weger-Introduction~to~Code-based~Signatures}$ 3/29 ### Motivation Put differently 2 # In a Nutshell 4 Representation and Canonical Forms 17/32 On the mathematics of post-quantum cryptography, 2025 THANK YOU VERY MUCH FOR THE ATTENTION! On the mathematics of post-quantum cryptography, 2025 → Quantum heroes post-quantum Lattice-based Multivariate Hash-based Isogeny-based Decoding-based Code-Equivalence Violetta Weger 0/64 Given two codes $\mathcal{C}, \mathcal{C}'$, find a linear isometry φ such that $\varphi(\mathcal{C}) = \mathcal{C}$. "Is code equivalence easy to decide?" Petrank, Roth. 2002. Given two codes $\mathcal{C}, \mathcal{C}'$, find a linear isometry φ such that $\varphi(\mathcal{C}) = \mathcal{C}$. "Is code equivalence easy to decide?" Petrank, Roth. 2002. LESS signature scheme in 2nd round of NIST standardization call Violetta Weger 1/64 Given two codes $\mathcal{C}, \mathcal{C}'$, find a linear isometry φ such that $\varphi(\mathcal{C}) = \mathcal{C}$. "Is code equivalence easy to decide?" Petrank, Roth. 2002. LESS signature scheme in 2nd round of NIST standardization call < #### Plan • Basics of Coding Theory - LESS Signature Scheme - Introduction to Complexity Theory - Hardness of Code Equivalence - Solvers Finite Friends - Connections to other Problems - Some new Results Summary Material: Lecture Notes Exercises Violetta Weger 2/64 Code Equivalence - Coding Theory Definition • $[n,k]_q$ linear code \mathcal{C} : \mathbb{F}_q -linear subspace of \mathbb{F}_q^n of dimension k Violetta Weger 3/64 Definition • $[n,k]_q$ linear code \mathcal{C} : \mathbb{F}_q -linear subspace of \mathbb{F}_q^n of dimension k $\circ \qquad \qquad G \in \mathbb{F}_q^{k \times n} \text{ generator matrix: } \mathcal{C} = \{mG \mid m \in \mathbb{F}_q^k\} = \langle G \rangle$ Definition • $[n,k]_q$ linear code \mathcal{C} : \mathbb{F}_q -linear subspace of \mathbb{F}_q^n of dimension k $\circ \qquad \qquad G \in \mathbb{F}_q^{k \times n} \text{ generator matrix: } \mathcal{C} = \{ mG \mid m \in \mathbb{F}_q^k \} = \langle G \rangle$ $c \in C$ is codeword Definition $[n,k]_q \text{ linear code } \mathcal{C} \colon \mathbb{F}_q\text{-linear subspace of } \mathbb{F}_q^n \text{ of dimension } k$ $G \in \mathbb{F}_q^{k \times n} \text{ generator matrix: } \mathcal{C} = \{mG \mid m \in \mathbb{F}_q^k\} = \langle G \rangle$ $c \in \mathcal{C} \text{ is codeword }$ $H \in \mathbb{F}_q^{(n-k) \times n} \text{ parity-check matrix: } \mathcal{C} = \{x \in \mathbb{F}_q^n \mid xH^\top = 0\} = \ker(H^\top)$ ``` Definition [n,k]_q \text{ linear code } \mathcal{C} \colon \mathbb{F}_q\text{-linear subspace of } \mathbb{F}_q^n \text{ of dimension } k G \in \mathbb{F}_q^{k \times n} \text{ generator matrix: } \mathcal{C} = \{mG \mid m \in \mathbb{F}_q^k\} = \langle G \rangle c \in \mathcal{C} \text{ is codeword } H \in \mathbb{F}_q^{(n-k) \times n} \text{ parity-check matrix: } \mathcal{C} = \{x \in \mathbb{F}_q^n \mid xH^\top = 0\} = \ker(H^\top) xH^\top = s \text{ is syndrome of } x ``` Definition $$[n,k]_q \text{ linear code } \mathcal{C} \colon \mathbb{F}_q\text{-linear subspace of } \mathbb{F}_q^n \text{ of dimension } k$$ $$G \in \mathbb{F}_q^{k \times n} \text{ generator matrix: } \mathcal{C} = \{mG \mid m \in \mathbb{F}_q^k\} = \langle G \rangle$$ $$c \in \mathcal{C} \text{ is codeword}$$ $$H \in \mathbb{F}_q^{(n-k) \times n} \text{ parity-check matrix: } \mathcal{C} = \{x \in \mathbb{F}_q^n \mid xH^\top = 0\} = \ker(H^\top)$$ $$xH^\top = s \text{ is syndrome of } x$$ Definition $$[n,k]_q \text{ linear code } \mathcal{C} \colon \mathbb{F}_q\text{-linear subspace of } \mathbb{F}_q^n \text{ of dimension } k$$ $$G \in \mathbb{F}_q^{k \times n} \text{ generator matrix: } \mathcal{C} = \{mG \mid m \in \mathbb{F}_q^k\} = \langle G \rangle$$ $$c \in \mathcal{C} \text{ is codeword}$$ $$H \in \mathbb{F}_q^{(n-k) \times n} \text{ parity-check matrix: } \mathcal{C} = \{x \in \mathbb{F}_q^n \mid xH^\top = 0\} = \ker(H^\top)$$ $$xH^\top = s \text{ is syndrome of } x$$ sender channel receiver $c = mG \longrightarrow \boxed{ \begin{array}{c} f \\ f \end{array} } \longrightarrow \boxed{ \begin{array}{c} f \\ f \end{array} } \longrightarrow \boxed{ \begin{array}{c} f \\ f \end{array} } = c + e$ | Definition | 0 | $[n,k]_q$ linear code \mathcal{C} : \mathbb{F}_q -linear subspace of \mathbb{F}_q^n of dimension k | |------------|---|--| | | 0 | $G \in \mathbb{F}_q^{k \times n}$ generator matrix: $\mathcal{C} = \{ mG \mid m \in \mathbb{F}_q^k \} = \langle G \rangle$ | | | 0 | $c \in \mathcal{C}$ is codeword | | | 0 | $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix: $C = \{x \in \mathbb{F}_q^n \mid xH^\top = 0\} = \ker(H^\top)$ | | | 0 | $xH^{T} = s$ is syndrome of x | | | | | ``` Definition • The Hamming weight of x \in \mathbb{F}_q^n is \operatorname{wt}(x) = |\{i \mid x_i \neq 0\}| • The Hamming distance between x, y \in \mathbb{F}_q^n is d(x,y) = \operatorname{wt}(x-y) = |\{i \mid x_i \neq y_i\}| • The minimum Hamming distance of \mathcal{C} \subseteq \mathbb{F}_q^n is d(\mathcal{C}) = \min\{\operatorname{wt}(c) \mid c \in \mathcal{C}, c \neq 0\} ``` ``` Definition • The Hamming weight of x \in \mathbb{F}_q^n is \operatorname{wt}(x) = |\{i \mid x_i \neq 0\}| ``` • The Hamming distance between $x, y \in \mathbb{F}_q^n$ is $$d(x,y) = \operatorname{wt}(x-y) = |\{i \mid x_i \neq y_i\}|$$ • The minimum Hamming distance of $\mathcal{C} \subseteq \mathbb{F}_q^n$ is $$d(\mathcal{C}) = \min\{ \operatorname{wt}(c) \mid c \in \mathcal{C}, c \neq 0 \}$$ ## Coding Theory Definition $$\circ$$ The Hamming weight of $x \in$ - The Hamming weight of $x \in \mathbb{F}_q^n$ is $\operatorname{wt}(x) = |\{i \mid x_i \neq 0\}|$ - The Hamming distance between $x, y \in \mathbb{F}_q^n$ is 0 $$d(x,y) = \text{wt}(x-y) = |\{i \mid x_i \neq y_i\}|$$ The minimum Hamming distance of $C \subseteq \mathbb{F}_q^n$ is 0 $$d(\mathcal{C}) = \min\{ \operatorname{wt}(c) \mid c \in \mathcal{C}, c \neq 0 \}$$ A $[n, k, d]_a$ code \mathcal{C} can correct $t = \lfloor \frac{d-1}{2} \rfloor$ errors $$\mathcal{C} = \langle G \rangle = \ker(H^\top) \subseteq \mathbb{F}_q^n \text{ of dimension } k$$ Definition $$\circ$$ G is in systematic form if $G = (\operatorname{Id}_k A)$ \circ H is in systematic form if $H = (B \operatorname{Id}_{n-k})$ | Properties | 0 | For $S \in GL_q(k)$ also $\langle SG \rangle = C$ | |------------|---|---| | | 0 | For some permutation matrix P,SGP is in systematic form | | | 0 | For $S \in \mathrm{GL}_q(n-k)$ also $\ker((SH)^\top) = \mathcal{C}$ | | | 0 | For some permutation matrix P,SHP is in systematic form | | | 0 | If $G = (\operatorname{Id}_k A)$, then $H = (-A^{\top} \operatorname{Id}_{n-k})$ | $$\mathcal{C} = \langle G \rangle = \ker(H^\top) \subseteq \mathbb{F}_q^n \text{ of dimension } k$$ | Definition | 0 | The dual code of $\mathcal C$ is | |------------|---|---| | | | $\mathcal{C}^{\perp} = \{ x \in \mathbb{F}_q^n \mid \langle x, y \rangle = 0 \ \forall \ c \in \mathcal{C} \}$ | | | 0 | $\mathcal{C}^{\perp} = \langle H \rangle = \ker(G^{\top}) \subseteq \mathbb{F}_q^n \text{ of dimension } n - k$ | | | 0 | If $C = C^{\perp}$ then C is called self-dual | | | 0 | If $\mathcal{C} \subset \mathcal{C}^{\perp}$ then \mathcal{C} is called self-orthogonal | | | 0 | The hull of \mathcal{C} is $\mathcal{H}(\mathcal{C}) = \mathcal{C} \cap \mathcal{C}^{\perp}$ | $$\mathcal{C} = \langle G \rangle = \ker(H^{\top}) \subseteq \mathbb{F}_q^n \text{ of dimension } k$$ | Definition | 0 | The dual code of \mathcal{C} is | |------------|---|--| | | | $\mathcal{C}^{\perp} = \{ x \in \mathbb{F}_q^n \mid \langle x, y \rangle = 0 \ \forall \ c \in \mathcal{C} \}$ | | | 0 | $C^{\perp} = \langle H \rangle = \ker(G^{\top}) \subseteq \mathbb{F}_q^n \text{ of dimension } n - k$ | | | 0 | If $C = C^{\perp}$ then C is called self-dual | | | 0 | If $\mathcal{C} \subset \mathcal{C}^{\perp}$ then \mathcal{C} is called self-orthogonal | | | 0 | The hull of \mathcal{C} is $\mathcal{H}(\mathcal{C}) = \mathcal{C} \cap \mathcal{C}^{\perp}$ | | Exercises | 0 | Show that $\langle H \rangle = \mathcal{C}^{\perp}$ | |-----------|---|---| | | 0 | Show that $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$. | | | 0 | Show that if $GG^{T} = 0$, then \mathcal{C} is self-orthogonal | | | 0 | Show that $\mathcal C$ is self-dual if and only if $\mathcal C$ is self-orthogonal and $n=2k$ | | | 0 | Show that $\mathcal{H}(\mathcal{C}) = \ker\left(\begin{pmatrix} G \\ H \end{pmatrix}^{\top}\right)$ | Code Equivalence - Coding Theory How large is this hull? Folklore If C is random, then $\mathcal{H}(C) = \{0\}$ with high probability for large n Violetta Weger 7/64 Folklore If C is random, then $\mathcal{H}(C) = \{0\}$ with high probability for large n Theorem If C is random, then $$\mathbb{P}(\dim(\mathcal{H}(\mathcal{C})) = h) = \prod_{i=1}^{\infty} q^{i} \frac{q^{i} - 1}{q^{2i} - 1} \prod_{i=1}^{n} (q^{i} - 1)^{-1} \sim (1 - 1/q)q^{-h(h+1)/2}$$ "On the dimension of the hull" N. Sendrier, 1997 Folklore If C is random, then $\mathcal{H}(C) = \{0\}$ with high probability for large n Theorem If C is random, then $$\mathbb{P}(\dim(\mathcal{H}(\mathcal{C})) = h) =
\prod_{i=1}^{\infty} q^{i} \frac{q^{i} - 1}{q^{2i} - 1} \prod_{i=1}^{n} (q^{i} - 1)^{-1} \sim (1 - 1/q)q^{-h(h+1)/2}$$ "On the dimension of the hull" N. Sendrier, 1997 Theorem If C is random, then $\mathbb{P}(\mathcal{H}(C) = \{0\}) \ge 1 - 1/q$ for large n Folklore If C is random, then $\mathcal{H}(C) = \{0\}$ with high probability for large n Theorem If $$C$$ is random, then $$\mathbb{P}(\dim(\mathcal{H}(C)) = h) = \prod_{i=1}^{\infty} q^{i} \frac{q^{i} - 1}{q^{2i} - 1} \prod_{i=1}^{n} (q^{i} - 1)^{-1} \sim (1 - 1/q)q^{-h(h+1)/2}$$ "On the dimension of the hull" N. Sendrier, 1997 Theorem If C is random, then $\mathbb{P}(\mathcal{H}(C) = \{0\}) \ge 1 - 1/q$ for large n Exercise - If $G = (\operatorname{Id}_k A)$ and $AA^{\top} + \operatorname{Id}_{n-k}$ has full rank, then $\mathcal{H}(\mathcal{C}) = \{0\}$ - If GG^{\top} has full rank, then $\mathcal{H}(\mathcal{C}) = \{0\}$ $$\begin{split} \mathcal{C} &= \{(0,0,0),(1,0,2),(2,0,1),(1,1,0),(2,1,2),(0,1,1),(0,2,2),(1,2,1),(2,2,0)\} \\ \mathcal{C}' &= \{(0,0,0),(0,1,2),(0,2,1),(1,1,0),(1,2,2),(1,0,1),(2,0,2),(2,1,1),(2,2,0)\} \end{split}$$ Definition \circ A linear isometry for a distance function d is a linear map $$\varphi : \mathbb{F}_q^n \to \mathbb{F}_q^n \text{ s.t. } \forall \ x, y \in \mathbb{F}_q^n : d(x, y) = d(\varphi(x), \varphi(y))$$ Definition \circ A linear isometry for a distance function d is a linear map $$\varphi : \mathbb{F}_q^n \to \mathbb{F}_q^n \text{ s.t. } \forall \ x, y \in \mathbb{F}_q^n : \ d(x, y) = d(\varphi(x), \varphi(y))$$ Proposition For the Hamming metric: $\varphi \in (\mathbb{F}_q^{\star})^n \rtimes S_n$ | Definition | 0 | A linear isometry for a distance function d is a linear map | | |------------|---|---|--| | | | $\varphi : \mathbb{F}_q^n \to \mathbb{F}_q^n \text{ s.t. } \forall \ x, y \in \mathbb{F}_q^n : d(x, y) = d(\varphi(x), \varphi(y))$ | | Proposition For the Hamming metric: $\varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ Definition $\varphi = (d, \sigma) \in (\mathbb{F}_q^{\star})^n \rtimes S_n$ called monomial transformation $D = \operatorname{diag}(d), \text{ permutation matrix } P, DP \text{ called monomial matrix}$ $\text{The semi-linear isometries are } (\mathbb{F}_q^{\star})^n \rtimes (\operatorname{Aut}(\mathbb{F}_q) \times S_n)$ Violetta Weger 9/64 | Definition | 0 | \circ A linear isometry for a distance function d is a linear map | | | | |------------|---|---|--|--|--| | | | $\varphi : \mathbb{F}_q^n \to \mathbb{F}_q^n \text{ s.t. } \forall \ x, y \in \mathbb{F}_q^n : d(x, y) = d(\varphi(x), \varphi(y))$ | | | | | Proposition | For the Hamming metric: $\varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ | | |-------------|--|--| | | | | | Definition | 0 | $\varphi = (d, \sigma) \in (\mathbb{F}_q^{\star})^n \rtimes S_n$ called monomial transformation | |------------|---|---| | | 0 | D = diag(d), permutation matrix P , DP called monomial matrix | | | 0 | The semi-linear isometries are $(\mathbb{F}_q^{\star})^n \rtimes (\operatorname{Aut}(\mathbb{F}_q) \times S_n)$ | If $\varphi: \mathcal{C} \to \mathcal{C}'$ linear such that $\operatorname{wt}(c) = \operatorname{wt}(\varphi(c))$ for all $c \in \mathcal{C}$? | Definition | 0 | A linear isometry for a distance function d is a linear map | | |------------|---|---|--| | | | $\varphi : \mathbb{F}_q^n \to \mathbb{F}_q^n \text{ s.t. } \forall \ x, y \in \mathbb{F}_q^n : d(x, y) = d(\varphi(x), \varphi(y))$ | | Proposition For the Hamming metric: $\varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ Definition $$\varphi = (d, \sigma) \in (\mathbb{F}_q^{\star})^n \rtimes S_n \text{ called monomial transformation}$$ $$\circ \qquad D = \operatorname{diag}(d), \text{ permutation matrix } P, DP \text{ called monomial matrix}$$ $$\circ \qquad \text{The semi-linear isometries are } (\mathbb{F}_q^{\star})^n \rtimes (\operatorname{Aut}(\mathbb{F}_q) \times S_n)$$ If $\varphi: \mathcal{C} \to \mathcal{C}'$ linear such that $\operatorname{wt}(c) = \operatorname{wt}(\varphi(c))$ for all $c \in \mathcal{C}$? Theorem If $$\varphi: \mathcal{C} \to \mathcal{C}'$$ linear isometry, then exists $\mu \in (\mathbb{F}_q^*)^n \rtimes S_n$ s.t. $\mu|_{\mathcal{C}} = \varphi$ "Combinatorial problems of elementary abelian groups" F.J. MacWilliams, 1962 Definition • \mathcal{C} is linearly equivalent to \mathcal{C}' if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ • \mathcal{C} is permutation equivalent to \mathcal{C}' if $\exists \varphi \in S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ Violetta Weger 10/64 Definition $$\circ$$ \mathcal{C} is linearly equivalent to \mathcal{C}' if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ \circ \mathcal{C} is permutation equivalent to \mathcal{C}' if $\exists \varphi \in S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ Proposition If $$C = \langle G \rangle$$ is linearly equivalent to $C' = \langle G' \rangle$, then there exist $S \in GL_q(k), D = diag(d)$, permutation matrix P , s.t. $SGDP = G'$ Violetta Weger 10/64 Definition $$\circ$$ \mathcal{C} is linearly equivalent to \mathcal{C}' if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ \circ \mathcal{C} is permutation equivalent to \mathcal{C}' if $\exists \varphi \in S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ Proposition If $$C = \langle G \rangle$$ is linearly equivalent to $C' = \langle G' \rangle$, then there exist $S \in GL_q(k), D = diag(d)$, permutation matrix P , s.t. $SGDP = G'$ Definition • The automorphism group of $$\mathcal{C}$$ is $\operatorname{Aut}(\mathcal{C}) = \{ \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n \mid \varphi(\mathcal{C}) = \mathcal{C} \}$ Violetta Weger Definition $$\circ$$ \mathcal{C} is linearly equivalent to \mathcal{C}' if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ \circ \mathcal{C} is permutation equivalent to \mathcal{C}' if $\exists \varphi \in S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ Proposition If $$C = \langle G \rangle$$ is linearly equivalent to $C' = \langle G' \rangle$, then there exist $S \in GL_q(k), D = diag(d)$, permutation matrix P , s.t. $SGDP = G'$ Definition • The automorphism group of $$\mathcal{C}$$ is $\operatorname{Aut}(\mathcal{C}) = \{ \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n \mid \varphi(\mathcal{C}) = \mathcal{C} \}$ Property $$\circ$$ If C is random, then $Aut(C) = \{id\}$ with high probability for large n "Rigid linear binary codes" H. Lefmann, K. Phelps, V. Rödl, 1993 If $$\varphi \in S_n$$ is s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ then $\varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ If $$\varphi \in S_n$$ is s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ then $\varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ If $$\varphi \in S_n$$ is s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ then $\varphi(\mathcal{H}(\mathcal{C})) = \mathcal{H}(\mathcal{C}')$ Proposition If $$\varphi \in S_n$$ is s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ then $\varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ Proposition If $$\varphi \in S_n$$ is s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ then $\varphi(\mathcal{H}(\mathcal{C})) = \mathcal{H}(\mathcal{C}')$ - Exercises - If $\varphi \in S_n$ is s.t. $\varphi \in Aut(\mathcal{C})$ then $\varphi \in Aut(\mathcal{H}(\mathcal{C}))$ - If $\varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ is s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ then $\exists \varphi' \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi'(\mathcal{C}^\perp) = \mathcal{C}'^\perp$ If $\mathcal C$ is linearly equivalent to $\mathcal C'$, which properties remain the same? Violetta Weger 12/64 If C is linearly equivalent to C', which properties remain the same? The weight enumerator of $\mathcal C$ is $A_w(\mathcal C) = |\{c \in \mathcal C \mid \operatorname{wt}(c) = w\}|$ $$A_w(\mathcal{C}) = A_w(\mathcal{C}')$$ for all $w \in \{1, \dots, n\}$ If $\mathcal C$ is linearly equivalent to $\mathcal C'$, which properties remain the same? The weight enumerator of $\mathcal C$ is $A_w(\mathcal C) = |\{c \in \mathcal C \mid \operatorname{wt}(c) = w\}|$ $$A_w(\mathcal{C}) = A_w(\mathcal{C}')$$ for all $w \in \{1, \dots, n\}$ What about the other direction? If $\mathcal C$ is linearly equivalent to $\mathcal C'$, which properties remain the same? The weight enumerator of $$\mathcal C$$ is $A_w(\mathcal C) = |\{c \in \mathcal C \mid \operatorname{wt}(c) = w\}|$ $$A_w(\mathcal{C}) = A_w(\mathcal{C}')$$ for all $w \in \{1, \dots, n\}$ What about the other direction? $$A_w(\mathcal{C}) = A_w(\tilde{\mathcal{C}}) \not\Rightarrow \mathcal{C}$$ is linearly equivalent to $\tilde{\mathcal{C}}$ If $\mathcal C$ is linearly equivalent to $\mathcal C'$, which properties remain the same? The weight enumerator of $$\mathcal C$$ is $A_w(\mathcal C) = |\{c \in \mathcal C \mid \operatorname{wt}(c) = w\}|$ $$A_w(\mathcal{C}) = A_w(\mathcal{C}')$$ for all $w \in \{1, \dots, n\}$ What about the other direction? $$A_w(\mathcal{C}) = A_w(\tilde{\mathcal{C}}) \not\Rightarrow \mathcal{C}$$ is linearly equivalent to $\tilde{\mathcal{C}}$ $$|\operatorname{Aut}(\mathcal{C})| = |\operatorname{Aut}(\mathcal{C}')|$$ If C is linearly equivalent to C', which properties remain the same? Violetta Weger 13/64 If C is linearly equivalent to C', which properties remain the same?
Definition - The support of C is supp $(C) = \{i \mid \exists c \in C : c_i \neq 0\}$ - The weight of C is wt(C) = |supp(C)| If $\mathcal C$ is linearly equivalent to $\mathcal C'$, which properties remain the same? Definition - The support of C is supp $(C) = \{i \mid \exists c \in C : c_i \neq 0\}$ - The weight of C is wt(C) = |supp(C)| - Let $r \in \{1, ..., k\}$, the rth generalized weight of C is $$d_r(\mathcal{C}) = \min\{\text{wt}(\mathcal{D}) \mid \mathcal{D} \subseteq \mathcal{C}, \dim(\mathcal{D}) = r\}$$ If $\mathcal C$ is linearly equivalent to $\mathcal C'$, which properties remain the same? Exercises Show that $$d_r(\mathcal{C}) = d_r(\mathcal{C}')$$ For $r \in \{1, \dots, k-1\}$ show that $d_r(\mathcal{C}) < d_{r+1}(\mathcal{C})$ Violetta Weger 13/64 Summary \circ n is called Summary \circ n is called length Let C be an $[n, k, d]_q$ linear code. $\langle G \rangle = C = \ker(H^\top)$ Summary - n is called length - \circ k is called Violetta Weger 14/64 Summary - n is called length - \circ k is called dimension Violetta Weger 14/64 Summary - n is called length - \circ k is called dimension - \circ d is called Violetta Weger 14/64 Let C be an $[n, k, d]_q$ linear code. $\langle G \rangle = C = \ker(H^\top)$ Summary - n is called length - \circ k is called dimension - \circ d is called minimum distance Violetta Weger - n is called length - \circ k is called dimension - \circ d is called minimum distance - \circ G is called - n is called length - \circ k is called dimension - \circ d is called minimum distance - \circ G is called generator matrix - \circ H is called - n is called length - \circ k is called dimension - \circ d is called minimum distance - \circ G is called generator matrix - \circ H is called parity-check matrix - $c \in C$ is called Let C be an $[n, k, d]_q$ linear code. $\langle G \rangle = C = \ker(H^\top)$ - n is called length - \circ k is called dimension - \circ d is called minimum distance - \circ G is called generator matrix - \circ H is called parity-check matrix - \circ $c \in \mathcal{C}$ is called codeword - \circ n is called length - \circ k is called dimension - \circ d is called minimum distance - \circ G is called generator matrix - \circ H is called parity-check matrix - \circ $c \in \mathcal{C}$ is called codeword - $s = xH^{\top}$ is called Let C be an $[n, k, d]_q$ linear code. $\langle G \rangle = C = \ker(H^\top)$ - n is called length - \circ k is called dimension - \circ d is called minimum distance - \circ G is called generator matrix - \circ H is called parity-check matrix - \circ $c \in \mathcal{C}$ is called codeword - \circ $s = xH^{\top}$ is called syndrome Let C be an $[n, k, d]_q$ linear code. $\langle G \rangle = C = \ker(H^\top)$ - \circ n is called length - \circ k is called dimension - \circ d is called minimum distance - \circ G is called generator matrix - \circ H is called parity-check matrix - \circ $c \in \mathcal{C}$ is called codeword - \circ $s = xH^{\top}$ is called syndrome - \circ \mathcal{C}^{\perp} is called - \circ n is called length - \circ k is called dimension - \circ d is called minimum distance - \circ G is called generator matrix - \circ H is called parity-check matrix - $c \in C$ is called codeword - $s = xH^{\top}$ is called syndrome - $^{\circ}$ \mathcal{C}^{\perp} is called dual code | Sum | mary | 0 | n is called length | |-----|------|---|---| | | | 0 | k is called dimension | | | | 0 | d is called minimum distance | | | | 0 | G is called generator matrix | | | | 0 | ${\cal H}$ is called parity-check matrix | | | | 0 | $c \in \mathcal{C}$ is called codeword | | | | 0 | $s = xH^{\top}$ is called syndrome | | | | 0 | \mathcal{C}^{\perp} is called dual code | | | | 0 | $\mathcal{H}(\mathcal{C})$ is called | | | | | | | Summary | 0 | n is called length | |---------|---|---| | | 0 | k is called dimension | | | 0 | d is called minimum distance | | | 0 | G is called generator matrix | | | 0 | ${\cal H}$ is called parity-check matrix | | | 0 | $c \in \mathcal{C}$ is called codeword | | | 0 | $s = xH^{\top}$ is called syndrome | | | 0 | \mathcal{C}^{\perp} is called dual code | | | 0 | $\mathcal{H}(\mathcal{C})$ is called hull | | | | | Two $\mathcal{C}, \mathcal{C}'$ $[n, k]_q$ linear codes are said to be Summary • linearly equivalent if Violetta Weger 15/64 Summary . $\circ \qquad \qquad \text{linearly equivalent if } \exists \varphi \in (\mathbb{F}_q^{\star})^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ Summary • linear - linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^{\star})^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - o permutation equivalent if 0 linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ Summary permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ Two C, C' $[n, k]_q$ linear codes are said to be Summary o linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ o permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ o $\exists S \in \operatorname{GL}_q(k), D = \operatorname{diag}(d), P \text{ perm. matrix, s.t. } SGDP = G'$ Two C, C' $[n, k]_q$ linear codes are said to be Summary • linearly equivalent if $$\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$$ - permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - $\circ \qquad \exists S \in \operatorname{GL}_q(k), D = \operatorname{diag}(d), P \text{ perm. matrix, s.t. } SGDP = G'$ If $$\exists \varphi \in S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to$$ Summary • linearly equivalent if $$\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$$ - permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - $\exists S \in GL_q(k), D = diag(d), P \text{ perm. matrix, s.t. } SGDP = G'$ If $$\exists \varphi \in S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$$ Summary $$\circ$$ linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ • permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ $\circ \qquad \exists S \in \operatorname{GL}_q(k), D = \operatorname{diag}(d), P \text{ perm. matrix, s.t. } SGDP = G'$ If $$\exists \varphi \in S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$$ If $\exists \varphi = (D, P) \in (\mathbb{F}_q^{\star})^n \rtimes S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to$ Two C, C' $[n, k]_q$ linear codes are said to be - linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - $\circ \qquad \exists S \in \operatorname{GL}_q(k), D = \operatorname{diag}(d), P \text{ perm. matrix, s.t. } SGDP = G'$ If $$\exists \varphi \in S_n$$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}' \to \varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ If $\exists \varphi = (D, P) \in (\mathbb{F}_q^{\star})^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}' \to \exists \varphi' = (D^{-1}, P)$ s.t. $\varphi'(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ Summary - linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - ∘ $\exists S \in GL_q(k), D = diag(d), P \text{ perm. matrix, s.t. } SGDP = G'$ If $$\exists \varphi \in S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$$ If $\exists \varphi = (D, P) \in (\mathbb{F}_q^{\star})^n \rtimes S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \exists \varphi' = (D^{-1}, P) \text{ s.t. } \varphi'(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ Invariants Summary - linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - ∘ $\exists S \in GL_q(k), D = diag(d), P \text{ perm. matrix, s.t. } SGDP = G'$ If $$\exists \varphi \in S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$$ If $\exists \varphi = (D, P) \in (\mathbb{F}_q^{\star})^n \rtimes S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \exists \varphi' = (D^{-1}, P) \text{ s.t. } \varphi'(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ Invariants Automorphism group $\operatorname{Aut}(\mathcal{C})$ Two C, C' $[n, k]_q$ linear codes are said to be - linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - permutation equivalent if $\exists \varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - ∘ $\exists S \in GL_q(k), D = diag(d), P \text{ perm. matrix, s.t. } SGDP = G'$ If $$\exists \varphi \in S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$$ If $\exists \varphi = (D, P) \in (\mathbb{F}_q^{\star})^n \rtimes S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \exists \varphi' = (D^{-1}, P) \text{ s.t. } \varphi'(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ #### Invariants - \circ Automorphism group Aut(C) - Weight enumerator $A_w(\mathcal{C})$ - linearly equivalent if $\exists \varphi \in (\mathbb{F}_q^*)^n \rtimes S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - permutation equivalent if $\exists
\varphi \in S_n : \varphi(\mathcal{C}) = \mathcal{C}'$ - ∘ $\exists S \in GL_q(k), D = diag(d), P \text{ perm. matrix, s.t. } SGDP = G'$ If $$\exists \varphi \in S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \varphi(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$$ If $\exists \varphi = (D, P) \in (\mathbb{F}_q^{\star})^n \rtimes S_n \text{ s.t. } \varphi(\mathcal{C}) = \mathcal{C}' \to \exists \varphi' = (D^{-1}, P) \text{ s.t. } \varphi'(\mathcal{C}^{\perp}) = \mathcal{C}'^{\perp}$ #### Invariants - Automorphism group Aut(C) - Weight enumerator $A_w(\mathcal{C})$ - rth generalized weight $d_r(\mathcal{C})$ Goal: secure communication Goal: secure communication Symmetric cryptography: both have same key How to exchange the keys? How to exchange the keys? Asymmetric/ public-key cryptography How to exchange the keys? Asymmetric/ public-key cryptography Key encapsulation mechanism (KEM) How to exchange the keys? Asymmetric/ public-key cryptography Key encapsulation mechanism (KEM) Signature scheme , $m \to \text{signature } s$ # Cryptography Signer Signature Scheme Verifier secret key public key message m \bigcirc , $m \to \text{signature } s$ $$\bigcirc$$, m, s, \rightarrow # Cryptography Signer Verifier secret key message m \bigcirc , $m \to \text{signature } s$ - authentication 0 - integrity 0 # Cryptography secret key message m $$\circlearrowleft$$, m, s, \rightarrow Signature Scheme # Cryptography Verifier public key message m ???, $m \rightarrow \text{signature } s$ authentication 0 integrity 0 attacker: recover \mathcal{P} from \mathcal{P} and many (m,s) probability of getting accepted: cheating probability α response r_b Violetta Weger 18/64 check $\bigcirc, r_b \rightarrow c_b$ Zero-Knowledge Protocol ———→ public key Verifier - c_0, c_1 commitments - **©** - PE challenge $b \in \{0, 1\}$ check $\bigcirc, r_b \rightarrow c_b$ • zero-knowledge response r_b - complete - \circ soundness error α complete soundness error $\alpha \rightarrow \alpha^t$ 0 0 _ # Cryptography Signer Fiat-Shamir Transform Verifier ZK Protocol \rightarrow Signature Scheme secret key c_0, c_1 commitments $$b = \mathsf{Hash}(m, c_0, c_1)$$ response $$r_b$$ $$m, s = (c_0, c_1, r_b)$$ $$b = \mathsf{Hash}(m, c_0, c_1)$$ check $$\bigcirc, r_b \rightarrow c_b$$ Code Equivalence - Cryptography Main motivation: LESS Code Equivalence - Cryptography Main motivation: LESS code-based signature scheme 2nd round candidate in NIST call #### Main motivation: LESS o code-based signature scheme o 2nd round candidate in NIST call Cryptography #### Main motivation: LESS code-based signature scheme 2nd round candidate in NIST call _ Cryptography ### Main motivation: LESS code-based signature scheme 2nd round candidate in NIST call # Cryptography ### Main motivation: LESS code-based signature scheme 2nd round candidate in NIST call - Cryptography Prover $\varphi = D, P$ Verifier $$G, G'$$ s.t. $SGDP = G'$ - # Cryptography ${\bf Prover}$ LESS ZK-Protocol Verifier _____ • commitment $\tilde{G} = \tilde{\varphi}(G)$ $\bigcirc G, G' \text{ s.t. } SGDP = G'$ - # Cryptography Prover LESS ZK-Protocol Verifier $$\varphi = D, P$$ commitment $$\tilde{G} = \tilde{\varphi}(G)$$ $$\bigcirc$$ G, G' s.t. $SGDP = G'$ challenge $b \in \{0, 1\}$ # Cryptography Prover LESS ZK-Protocol ### LESS ZIV-I TOTOCC (~(~) commitment $$\tilde{G} = \tilde{\varphi}(G)$$ ### Verifier $$\bigcirc$$ G, G' s.t. $SGDP = G'$ challenge $b \in \{0, 1\}$ # Cryptography Prover LESS ZK-Protocol $\varphi = D, P$ commitment $\tilde{G} = \tilde{\varphi}(G)$ response $r_0 = \tilde{\varphi}, r_1 = \tilde{\varphi} \circ \varphi^{-1}$ **P** **P**= Verifier \bigcirc G, G' s.t. SGDP = G' challenge $b \in \{0, 1\}$ check $\tilde{\varphi}(G) = \tilde{G} \text{ or } \tilde{\varphi} \circ \varphi^{-1}(G') = \tilde{G}$ # Cryptography Prover LESS ZK-Protocol Verifier $$\varphi = D, P$$ commitment $\tilde{G} = \tilde{\varphi}(G)$ ____ $\cite{G} G, G' \text{ s.t. } SGDP = G'$ challenge $b \in \{0, 1\}$ response $$r_0 = \tilde{\varphi}, r_1 = \tilde{\varphi} \circ \varphi^{-1}$$ $\xrightarrow{\varphi}$ φ check $\tilde{\varphi}(G) = \tilde{G}$ or $\tilde{\varphi} \circ \varphi^{-1}(G') = \tilde{G}$ # Cryptography Prover # LESS ZK-Protocol Verifier ($$Q \qquad \varphi = D, P$$ G, G' s.t. SGDP = G' commitment $\tilde{G} = \tilde{\varphi}(G)$ challenge $b \in \{0, 1\}$ response $$r_0 = \tilde{\varphi}, r_1 = \tilde{\varphi} \circ \varphi^{-1}$$ $\xrightarrow{\varphi}$ φ check $$\tilde{\varphi}(G) = \tilde{G}$$ or $\tilde{\varphi} \circ \varphi^{-1}(G') = \tilde{G}$ soundness error $\frac{1}{2}$ $\tilde{\varphi} \circ \varphi^{-1}$ Set up ${\mathcal P}$ a decisional problem, I an instance, s a solution Complexity Set up ${\mathcal P}$ a decisional problem, I an instance, s a solution Example Syndrome Decoding Problem: Given H, s, t, does there exist a e s.t. $eH^{\top} = s$, wt $(e) \le t$ Instance =(H, s, t) Solution = yes/no Set up ${\mathcal P}$ a computational problem, \! I an instance, $\ \ s$ a solution ${\bf Example}$ Syndrome Decoding Problem: Given H, s, t, find error vector e s.t. $eH^{\top} = s$, $wt(e) \le t$ Instance =(H, s, t) Solution = e Set up ${\mathcal P}$ a computational problem, $\!I$ an instance, $\,$ $\!s$ a solution Example Syndrome Decoding Problem: Given H, s, t, find error vector e s.t. $eH^{\top} = s$, wt $(e) \le t$ Instance =(H, s, t) Solution = e Aim complexity theory: How hard are such problems? Is SDP harder than sorting / determining minimum distance/ code equivalence? ## Complexity Classes $\mathcal{P} \in P \text{ if can solve } \mathcal{P} \text{ in poly. time}$ by a deterministic Turing machine o polynomial time: $\mathcal{O}(n^c)$ for some constant c ## Complexity Classes o polynomial time: $\mathcal{O}(n^c)$ for some constant c 0 ### Complexity Classes $\mathcal{P} \in P \text{ if can solve } \mathcal{P} \text{ in poly. time}$ by a deterministic Turing machine $\mathcal{P} \in NP$ if can solve \mathcal{P} in poly. time by a non-deterministic Turing machine o polynomial time: $\mathcal{O}(n^c)$ for some constant c ## Complexity Classes - $\mathcal{P} \in P \text{ if can solve } \mathcal{P} \text{ in poly. time}$ by a deterministic Turing machine - $\mathcal{P} \in NP$ if can check candidate is a solution in poly. time o polynomial time: $\mathcal{O}(n^c)$ for some constant c ### Complexity Classes - $\mathcal{P} \in P$ if can solve \mathcal{P} in poly. time by a deterministic Turing machine - $\mathcal{P} \in NP \text{ if can check candidate}$ is a solution in poly. time - \circ $P \subset NP$ \circ polynomial time: $\mathcal{O}(n^c)$ for some constant c # Complexity ### Complexity Classes ``` P∈ P if can solve P in poly. time by a deterministic Turing machine P∈ NP if can check candidate is a solution in poly. time P∈ NP ``` ``` o polynomial time: \mathcal{O}(n^c) for some constant c o quasi- polynomial time: \mathcal{O}(2^{\log(n)^c}) for some constant c o exponential time: \mathcal{O}(2^{nc}) for some constant c ``` How to compare hardness of problems? Polynomial-time reduction form \mathcal{R} to \mathcal{P} - 1. take any instance I of \mathcal{R} \rightarrow 2. transform to a instance I' of \mathcal{P} - 4. transform to a solution s of $I \leftarrow 3$. oracle gives solution s' to I' How to compare hardness of problems? Polynomial-time reduction form \mathcal{R} to \mathcal{P} - . take any instance I of \mathcal{R} - transform to a instance I' of \mathcal{P} - transform to a solution s of $I \leftarrow S$ - 3. oracle gives solution s' to I' \rightarrow hardness(\mathcal{P}) \geq hardness(\mathcal{R}) How to compare hardness of problems? ### Polynomial-time reduction form \mathcal{R} to \mathcal{P} - 1. take any instance I of \mathcal{R} \rightarrow 2. transform to a instance I' of \mathcal{P} - 4. transform to a solution s of $I \leftarrow 3$. oracle gives solution s' to I' - \rightarrow hardness(\mathcal{P}) \geq hardness(\mathcal{R}) - $\mathcal{P} \in NP$ -hard if \exists poly. time reduction from every $\mathcal{R} \in NP$ to \mathcal{P} - \sim NP-complete = $NP \cap NP$ -hard - o if $\mathcal{R} \in NP$ -hard and $\mathcal{R} \to \mathcal{P}$ then $\mathcal{P} \in NP$ -hard Coffee break ### Exercises $$C = \langle G \rangle = \ker(H^{\top})$$ a $[n, k]_q$ linear code - 1. Show that $\langle H \rangle = \mathcal{C}^{\perp}$. - 2. Show that $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$. - 3. Show that if $GG^{\mathsf{T}} = 0$, then \mathcal{C} is self-orthogonal. - 4. Show that C is self-dual iff C is self-orthogonal and n = 2k. - 5. Show that $\mathcal{H}(\mathcal{C}) = \ker\left(\begin{pmatrix} G \\ H \end{pmatrix}^{\mathsf{T}}\right)$. 7. Show that if GG^{T} has full rank, then $\dim(\mathcal{H}(\mathcal{C})) = 0$. $$\mathcal{C} = \langle G \rangle$$ and $\mathcal{C}' = \langle G' \rangle$ - 1. Show that the linear isometries form a group with respect to the composition. - 2. Give the automorphism group of $C = \langle (1,0,0), (0,1,1) \rangle \subseteq \mathbb{F}_2^3$. - 3. Let $\varphi \in \operatorname{Aut}(\mathcal{C})$ be a permutation. Show that $\varphi \in \operatorname{Aut}(\mathcal{C} \cap \mathcal{C}^{\perp})$. - 4. Show that C^{\perp} is linearly equivalent to $C^{\prime\perp}$. - 6. Show that for $r \in \{1, ..., k-1\}$ we have $d_r(\mathcal{C}) < d_{r+1}(\mathcal{C})$. - 7. Show that for all $r \in \{1, ..., k\}$ we have that $d_r(\mathcal{C}) = d_r(\mathcal{C}')$. - 8. Consider the code $C_1 \subseteq \mathbb{F}_3^3$ generated by $$G_1 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$ and the code $C_2 \subseteq \mathbb{F}_3^3$ generated by $G_2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Are the two codes linear equivalent, permutation equivalent or not equivalent? - The Problem How hard is code equivalence? Violetta Weger Linear Equivalence Problem (LEP) Given
$\mathcal{C}, \mathcal{C}'$ two $[n,k]_q$ linear codes, find $\varphi \in (\mathbb{F}_q^{\star})^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ ### Linear Equivalence Problem (LEP) Given $\mathcal{C}, \mathcal{C}'$ two $[n,k]_q$ linear codes, find $\varphi \in (\mathbb{F}_q^{\star})^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ ### Permutation Equivalence Problem (PEP) Given $\mathcal{C}, \mathcal{C}'$ two $[n, k]_q$ linear codes, find $\varphi \in S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ ### Linear Equivalence Problem (LEP) Given $\mathcal{C}, \mathcal{C}'$ two $[n,k]_q$ linear codes, find $\varphi \in (\mathbb{F}_q^{\star})^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ ### Permutation Equivalence Problem (PEP) Given $\mathcal{C}, \mathcal{C}'$ two $[n, k]_q$ linear codes, find $\varphi \in S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ $hardness(LEP) \ge hardness(PEP)$ ### Linear Equivalence Problem (LEP) Given $\mathcal{C}, \mathcal{C}'$ two $[n,k]_q$ linear codes, find $\varphi \in (\mathbb{F}_q^{\star})^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ ### Permutation Equivalence Problem (PEP) Given $\mathcal{C}, \mathcal{C}'$ two $[n, k]_q$ linear codes, find $\varphi \in S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ $hardness(LEP) \ge hardness(PEP)$ Are they NP-hard? _ The Problem No: any isomorphism problem is not NP-hard ## The Problem No: any isomorphism problem is $\operatorname{\mathsf{not}}$ NP-hard Merlin Arthur No: any isomorphism problem is not NP-hard Merlin Arthur - $\mathcal{P} \in AM$ if Merlin can convince Arthur that the answer to instance I is yes - if PH \neq AM: $\mathcal{P} \in \text{co-AM}$ is not NP-hard ${\color{red}{ m No:}}$ any isomorphism problem is ${\color{red}{ m not}}$ NP-hard Merlin Arthur - $\mathcal{P} \in \text{co-AM}$ if Merlin can convince Arthur that the answer to instance I is no - if PH \neq AM: $\mathcal{P} \in \text{co-AM}$ is not NP-hard No: any isomorphism problem is not NP-hard Merlin Arthur - $\mathcal{P} \in \text{co-AM}$ if Merlin can convince Arthur that the answer to instance I is no - if PH \neq AM: $\mathcal{P} \in \text{co-AM}$ is not NP-hard $$I=(\mathcal{C}_1,\mathcal{C}_2)$$ find C_b equivalent to C choose $b \in \{1, 2\}$ and φ compute $C = \varphi(C_b)$ No: any isomorphism problem is not NP-hard Merlin Arthur - $\mathcal{P} \in \text{co-AM}$ if Merlin can convince Arthur that the answer to instance I is no - if PH \neq AM: $\mathcal{P} \in \text{co-AM}$ is not NP-hard $$I = (\mathcal{C}_1, \mathcal{C}_2)$$ ______C find C_b equivalent to C \longrightarrow b soundness error: 1/2 $t \text{ rounds} \rightarrow 1/2^t$ choose $b \in \{1, 2\}$ and φ compute $C = \varphi(C_b)$ $\to \mathrm{LEP} \in \mathrm{co}\text{-}\mathrm{AM}$ Code Equivalence Solvers LEP not NP-hard, but is it easy to solve? Solvers Given $$G, G' \in \mathbb{F}_q^{k \times n}$$ find $S \in GL_q(k), D = diag(d), P \ n \times n$ permutation matrix s.t. $SGDP = G'$ Solvers Given $$G, G' \in \mathbb{F}_q^{k \times n}$$ find $S \in GL_q(k), D = \operatorname{diag}(d), P \ n \times n$ permutation matrix s.t. $SGDP = G'$ Solvers Given $$G, G' \in \mathbb{F}_q^{k \times n}$$ find $S \in GL_q(k), D = \operatorname{diag}(d), P \ n \times n$ permutation matrix s.t. $SGDP = G'$ $$G'H^{\prime\top}=0$$ and $\langle GDP\rangle=\mathcal{C}'$ $\rightarrow GDPH^{\prime\top}=0$ Solvers Given $$G, G' \in \mathbb{F}_q^{k \times n}$$ find $S \in GL_q(k), D = \operatorname{diag}(d), P \ n \times n$ permutation matrix s.t. $SGDP = G'$ $$G'H'^{\top} = 0 \text{ and } \langle GDP \rangle = C' \longrightarrow GMH'^{\top} = 0$$ Solvers Given $$G, G' \in \mathbb{F}_q^{k \times n}$$ find $S \in GL_q(k), D = \operatorname{diag}(d), P \ n \times n$ permutation matrix s.t. $SGDP = G'$ $$G'H^{\prime \top} = 0$$ and $\langle GDP \rangle = \mathcal{C}'$ $\rightarrow GMH^{\prime \top} = 0$ - $\rightarrow k(n-k)$ equations - $\rightarrow n$ variables Solvers LEP not NP-hard, but is it easy to solve? Solvers Given $$G, G' \in \mathbb{F}_q^{k \times n}$$ find $S \in GL_q(k), D = \operatorname{diag}(d), P \ n \times n$ permutation matrix s.t. $SGDP = G'$ $$G'H^{\prime \top} = 0$$ and $\langle GDP \rangle = \mathcal{C}'$ $\rightarrow GMH^{\prime \top} = 0$ - $\rightarrow k(n-k)$ equations - $\rightarrow n^2$ variables Solvers Given $$G, G' \in \mathbb{F}_q^{k \times n}$$ find $S \in GL_q(k), D = \operatorname{diag}(d), P \ n \times n$ permutation matrix s.t. $SGDP = G'$ $$G'H'^{\top} = 0$$ and $\langle GDP \rangle = C'$ $\rightarrow GMH'^{\top} = 0$ $$\rightarrow GMH'^{\top} = 0$$ - $\rightarrow k(n-k)$ equations - $\rightarrow n^2$ variables idea: choose subset $S \subset \mathcal{C}, S' \subset \mathcal{C}'$ invariant: $\varphi(S) = S'$ idea: choose subset $S \subset \mathcal{C}, S' \subset \mathcal{C}'$ invariant: $\varphi(S) = S'$ • Leon: weight enumerator "Computing automorphism groups of error-correcting codes" J. Leon, 1982 $$S = \{c \in \mathcal{C} \mid \operatorname{wt}(c) = w\} \xrightarrow{\varphi} S' = \{c' \in \mathcal{C}' \mid \operatorname{wt}(c') = w\}$$ idea: choose subset $S \subset \mathcal{C}, S' \subset \mathcal{C}'$ invariant: $\varphi(S) = S'$ • Leon: weight enumerator "Computing automorphism groups of error-correcting codes" J. Leon, 1982 $$S = \{c \in \mathcal{C} \mid \operatorname{wt}(c) = w\} \xrightarrow{\varphi} S' = \{c' \in \mathcal{C}' \mid \operatorname{wt}(c') = w\}$$ \rightarrow cost = cost of solving SDP idea: choose subset $S \subset \mathcal{C}, S' \subset \mathcal{C}'$ invariant: $\varphi(S) = S'$ • Leon: weight enumerator "Computing automorphism groups of error-correcting codes" J. Leon, 1982 $$S = \{c \in \mathcal{C} \mid \operatorname{wt}(c) = w\} \xrightarrow{\varphi} S' = \{c' \in \mathcal{C}' \mid \operatorname{wt}(c') = w\}$$ \rightarrow cost = cost of solving SDP (NP-hard) idea: choose subset $S \subset \mathcal{C}, S' \subset \mathcal{C}'$ invariant: $\varphi(S) = S'$ Leon: weight enumerator "Computing automorphism groups of error-correcting codes" J. Leon, 1982 $$S = \{c \in \mathcal{C} \mid \operatorname{wt}(c) = w\} \xrightarrow{\varphi} S' = \{c' \in \mathcal{C}' \mid \operatorname{wt}(c') = w\}$$ \rightarrow cost = cost of solving SDP $\in \mathcal{O}(2^{nc})$ (NP-hard) idea: choose subset $S \subset \mathcal{C}, S' \subset \mathcal{C}'$ invariant: $\varphi(S) = S'$ Leon: weight enumerator "Computing automorphism groups of error-correcting codes" J. Leon, 1982 $$S = \{c \in \mathcal{C} \mid \operatorname{wt}(c) = w\} \xrightarrow{\varphi} S' = \{c' \in \mathcal{C}' \mid \operatorname{wt}(c') = w\}$$ - $cost = cost \text{ of solving SDP} \in \mathcal{O}(2^{nc})$ (NP-hard) Beullens: 2nd generalized weight 0 "Not enough LESS" W. Beullens, 2020 $$S = \{\mathcal{D} < \mathcal{C} \mid \dim(\mathcal{D}) = 2, \operatorname{wt}(\mathcal{D}) = w\} \xrightarrow{\varphi} S' = \{\mathcal{D}' < \mathcal{C}' \mid \dim(\mathcal{D}') = 2, \operatorname{wt}(\mathcal{D}') = w\}$$ idea: choose subset $S \subset \mathcal{C}, S' \subset \mathcal{C}'$ invariant: $\varphi(S) = S'$ - Leon: weight enumerator - "Computing automorphism groups of error-correcting codes" J. Leon, 1982 $$S = \{c \in \mathcal{C} \mid \operatorname{wt}(c) = w\} \xrightarrow{\varphi} S' = \{c' \in \mathcal{C}' \mid \operatorname{wt}(c') = w\}$$ - $cost = cost \text{ of solving SDP} \in \mathcal{O}(2^{nc})$ (NP-hard) \rightarrow Beullens: 2nd generalized weight 0 "Not enough LESS" W. Beullens, 2020 $$S = \{ \mathcal{D} < \mathcal{C} \mid \dim(\mathcal{D}) = 2, \operatorname{wt}(\mathcal{D}) = w \} \xrightarrow{\varphi} S' = \{ \mathcal{D}' < \mathcal{C}' \mid \dim(\mathcal{D}') = 2, \operatorname{wt}(\mathcal{D}') = w \}$$ cost = cost of solving SDP idea: choose subset $S \subset \mathcal{C}, S' \subset \mathcal{C}'$ invariant: $\varphi(S) = S'$ Leon: weight enumerator "Computing automorphism groups of error-correcting codes" J. Leon, 1982 $$S = \{c \in \mathcal{C} \mid \operatorname{wt}(c) = w\} \xrightarrow{\varphi} S' = \{c' \in \mathcal{C}' \mid \operatorname{wt}(c') = w\}$$ - $cost = cost \text{ of solving SDP} \in \mathcal{O}(2^{nc})$ (NP-hard) Beullens: 2nd generalized weight 0 "Not enough LESS" W. Beullens, 2020 $$S = \{\mathcal{D} < \mathcal{C} \mid \dim(\mathcal{D}) = 2, \operatorname{wt}(\mathcal{D}) = w\} \xrightarrow{\varphi} S' = \{\mathcal{D}' < \mathcal{C}' \mid \dim(\mathcal{D}') = 2, \operatorname{wt}(\mathcal{D}') = w\}$$ - $cost = cost of solving SDP \in \mathcal{O}(2^{nc})$ $\circ \qquad \text{Sendrier: Support Splitting Algorithm (SSA)}$ "The support splitting algorithm" N. Sendrier, 2002 - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, 2002 - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C}, \{i\}) = \mathcal{C}_i$ and consider the hull - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, $2002\,$ - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C}, \{i\}) = \mathcal{C}_i$ and consider the hull $$\mathcal{H}(\mathcal{C}_i) \xrightarrow{\varphi} \mathcal{H}(\mathcal{C}_j')$$ - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, 2002 - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C}, \{i\}) = \mathcal{C}_i$ and consider the hull $$\mathcal{H}(\mathcal{C}_i) \xrightarrow{\varphi} \mathcal{H}(\mathcal{C}'_j)$$ $$\rightarrow$$ cost $\in \mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, 2002 - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C}, \{i\}) = \mathcal{C}_i$ and consider the hull $$\mathcal{H}(\mathcal{C}_i) \xrightarrow{\varphi} \mathcal{H}(\mathcal{C}'_j)$$ - \rightarrow cost $\in \mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ - \circ C random then dim(
$\mathcal{H}(\mathcal{C})$) constant w.h.p. \rightarrow PEP i - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, $2002\,$ - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C}, \{i\}) = \mathcal{C}_i$ and consider the hull $$\mathcal{H}(\mathcal{C}_i) \xrightarrow{\varphi} \mathcal{H}(\mathcal{C}'_j)$$ - \rightarrow cost $\in \mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ - C random then dim($\mathcal{H}(C)$) constant w.h.p. PEP is easy for random codes \rightarrow if \mathcal{C} has constant hull \rightarrow polynomial time solver - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, 2002 - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C},\{i\}) = \mathcal{C}_i$ and consider the hull $$\mathcal{H}(\mathcal{C}_i) \xrightarrow{\varphi} \mathcal{H}(\mathcal{C}'_j)$$ - \rightarrow cost $\in \mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ - \circ C random then dim($\mathcal{H}(\mathcal{C})$) constant w.h.p. - \rightarrow if C has constant hull \rightarrow polynomial time solver - if puncture in information set $I \to \mathcal{H}(\mathcal{C}_{I^C}) = \{0\}$ - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, 2002 - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C},\{i\}) = \mathcal{C}_i$ and consider the hull $$\mathcal{H}(\mathcal{C}_i) \xrightarrow{\varphi} \mathcal{H}(\mathcal{C}'_j)$$ - \rightarrow cost $\in \mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ - \circ C random then dim($\mathcal{H}(\mathcal{C})$) constant w.h.p. - \rightarrow if C has constant hull \rightarrow polynomial time solver - if puncture in information set $I \to \mathcal{H}(\mathcal{C}_{I^C}) = \{0\}$ - \rightarrow only need to find $\varphi(I)$ to puncture also \mathcal{C}' - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, $2002\,$ - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C},\{i\}) = \mathcal{C}_i$ and consider the hull $$\mathcal{H}(\mathcal{C}_i) \xrightarrow{\varphi} \mathcal{H}(\mathcal{C}'_j)$$ - \rightarrow cost $\in \mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ - C random then $\dim(\mathcal{H}(C))$ constant w.h.p. - \rightarrow if C has constant hull \rightarrow polynomial time solver - if puncture in information set $I \to \mathcal{H}(\mathcal{C}_{I^C}) = \{0\}$ - \rightarrow only need to find $\varphi(I)$ to puncture also \mathcal{C}' - \rightarrow if we know $\varphi(I) \rightarrow \text{easy}$ - Sendrier: Support Splitting Algorithm (SSA) - "The support splitting algorithm" N. Sendrier, 2002 - \rightarrow only for PEP: puncture in position i: $\mathcal{P}(\mathcal{C},\{i\}) = \mathcal{C}_i$ and consider the hull $$\mathcal{H}(\mathcal{C}_i) \xrightarrow{\varphi} \mathcal{H}(\mathcal{C}'_j)$$ - \rightarrow cost $\in \mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ - \circ \mathcal{C} random then dim($\mathcal{H}(\mathcal{C})$) constant w.h.p. - \rightarrow if C has constant hull \rightarrow polynomial time solver - if puncture in information set $I \to \mathcal{H}(\mathcal{C}_{I^C}) = \{0\}$ - \rightarrow only need to find $\varphi(I)$ to puncture also \mathcal{C}' - \rightarrow if we know $\varphi(I) \rightarrow \text{easy}$ - \rightarrow other solvers using canonical forms \rightarrow cost $\in \mathcal{O}\left(\sqrt{\binom{n}{k}}\right)$ "On linear equivalence, canonical forms, and digital signatures", T. Chou, E. Persichetti, P. Santini, 2025 Summary • LEP, PEP not NP-hard Solvers Summary - LEP, PEP not NP-hard - \circ solvers for LEP have exponential cost # Summary - LEP, PEP not NP-hard - \circ solvers for LEP have exponential cost - solvers for PEP have cost in $\mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ Solvers # $\operatorname{Summary}$ - LEP, PEP not NP-hard - solvers for LEP have exponential cost - ° solvers for PEP have cost in $\mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ Solvers • PEP easy for random codes ## Solvers ## Summary - LEP, PEP not NP-hard - solvers for LEP have exponential cost - ° solvers for PEP have cost in $\mathcal{O}(q^{\dim(\mathcal{H}(\mathcal{C}))})$ - PEP easy for random codes - \circ PEP hardest instance: self-orthogonal codes $\mathcal{H}(\mathcal{C})=\mathcal{C}$ Finite Geometry Different View Point Code Equivalence ## Finite Geometry ## Definition Finite projective geometry of dimension k and order q $$\mathrm{PG}(k,q) = (\mathbb{F}_q^{k+1} \setminus \{0\})/\sim$$ where $u \sim v$ iff $u = \lambda v$ for some $\lambda \in \mathbb{F}_q^{\star}$ ## Finite Geometry ### Definition Finite projective geometry of dimension k and order q $$PG(k,q) = (\mathbb{F}_q^{k+1} \setminus \{0\}) / \sim$$ where $u \sim v$ iff $u = \lambda v$ for some $\lambda \in \mathbb{F}_q^*$ ### Definition \mathcal{M} is a projective $[n,k,d]_q$ system if \mathcal{M} is a finite set of n points of $\operatorname{PG}(k-1,q)$ not all on a hyperplane and $d=n-\max\{|H\cap\mathcal{M}|\;|\;H\subseteq\operatorname{PG}(k-1,q),\dim(H)=k-2\}$ Different View Point Code Equivalence Connection Connection $$G = \begin{pmatrix} g_{1,1} & \cdots & g_{1,n} \\ \vdots & & \vdots \\ g_{k,1} & \cdots & g_{k,n} \end{pmatrix}$$ $\mathcal C$ a $[n,k,d]_q$ linear non-degenerate code #### Connection $$G = \begin{pmatrix} g_{1,1} & \cdots & g_{1,n} \\ \vdots & & \vdots \\ g_{k,1} & \cdots & g_{k,n} \end{pmatrix}$$ $$\mathcal C$$ a $[n,k,d]_q$ linear non-degenerate code $$G = \begin{pmatrix} g_{1,1} & \cdots & g_{1,n} \\ \vdots & & \vdots \\ g_{k,1} & \cdots & g_{k,n} \end{pmatrix}$$ $$\mathcal{M}$$ a projective $[n,k,d]_q$ system Different View Point Code Equivalence Matroids #### Definition A matroid M is a pair (E, I) where E is a finite set and ${\cal I}$ is a collection of subsets of E, called independent sets, s.t. - $1. \ \varnothing \in I$ - 2. if $A \in I, B \subseteq A$ then $B \in I$ - 3. if $A, B \in I$, |A| < |B|, then $\exists b \in B \setminus A$ s.t. $A \cup \{b\} \in I$ #### Matroids #### Definition A matroid M is a pair (E, I) where E is a finite set and I is a collection of subsets of E, called independent sets, s.t. - 1. $\emptyset \in I$ - 2. if $A \in I, B \subseteq A$ then $B \in I$ - 3. if $A,B\in I,\ |A|<|B|,\ {\rm then}\ \exists b\in B\setminus A\ {\rm s.t.}\ A\cup\{b\}\in I$ #### Connection $G \in \mathbb{F}_q^{k \times n}$ generator matrix \rightarrow representable matroid M(G) = (E, I) where $$E = \{1, \dots, n\}$$ and $I = \{S \in E \mid G_S \text{ has full rank }\}$ Different View Point Code Equivalence Matroids ### Definition A matroid M is a pair (E, r) where E is a finite set and $r: \mathcal{P}(E) \to \mathbb{N}_0$ is a rank function, s.t. 1. $0 \le r(X) \le |X|$ for all $X \subseteq E$ 2. if $X \subseteq Y \subseteq E$ then $r(X) \le r(Y)$ 3. for all $X,Y\subseteq E$: $r(X\cup Y)+r(X\cap Y)\leq r(X)+r(Y)$ #### Matroids #### Definition A matroid M is a pair (E, r) where E is a finite set and $r: \mathcal{P}(E) \to \mathbb{N}_0$ is a rank function, s.t. 1. $$0 \le r(X) \le |X|$$ for all $X \subseteq E$ 2. if $$X \subseteq Y \subseteq E$$ then $r(X) \le r(Y)$ 3. for all $$X, Y \subseteq E$$: $r(X \cup Y) + r(X \cap Y) \le r(X) + r(Y)$ #### Connection $G \in \mathbb{F}_q^{k \times n}$ generator matrix \rightarrow representable matroid M(G) = (E, I) where $$E = \{1, ..., n\}$$ and for all $S \in \mathcal{P}(E)$: $r(S) = \dim(\langle G_S \rangle)$ Code Equivalence Different View Point Designs Violetta Weger 38/64 Designs Definition A $t-(v,k,\lambda)$ design is a pair (X,B), where X= set of v points B= collection of k-elements subsets of X (blocks), s.t. every t-element subset of X is contained in exactly λ blocks Violetta Weger 38/64 #### Designs ### Definition A $t - (v, k, \lambda)$ design is a pair (X, B), where X = set of v points B = collection of k-elements subsets of X (blocks), s.t. every t-element subset of X is contained in exactly λ blocks #### Connection $$\mathcal C$$ a $[n,k,d]_q$ linear code $\to X$ = $\{1,\dots,n\}$ and $$B = \{\operatorname{supp}(c_1),\dots,\operatorname{supp}(c_N) \mid c_i \in \mathcal C,\operatorname{wt}(c_i) = d\}$$ Designs #### Assmus-Mattson Theorem \mathcal{C} a $[n,k,d]_q$ linear code with weight enumerators A_i \mathcal{C}^\perp a $[n,n-k,d']_q$ linear code with weight enumerators A_i' For t < d, s the number of i < n-t s.t. $A_i' \neq 0$ If $s \le d-t$, then the supports of all codewords in \mathcal{C} of weight u with $d \le u \le n$ form a t-design "New 5-designs" E.F. Assmus, H.F. Mattson, 1969 # Reductions \circ PEP \rightarrow LEP Reduction $\mathcal{R} \to \mathcal{P}$ if can solve $\mathcal{P} \to$ can solve \mathcal{R} hardness(\mathcal{P}) \geq hardness(\mathcal{R}) Connections # Reductions 0 \circ PEP \rightarrow LEP \checkmark $\text{LEP} \rightarrow \text{PEP}$ Reduction $\mathcal{R} \to \mathcal{P}$ if can solve $\mathcal{P} \to \operatorname{can}$ solve \mathcal{R} $hardness(\mathcal{P}) \ge hardness(\mathcal{R})$ # Reductions \circ PEP \rightarrow LEP \circ LEP \rightarrow PEP \circ PEP \rightarrow GI Reduction $\mathcal{R} \to \mathcal{P}$ if can solve $\mathcal{P} \to$ can solve \mathcal{R} $hardness(\mathcal{P}) \ge hardness(\mathcal{R})$ # Reductions - \circ PEP \rightarrow LEP - LEP → PEP - PEP → GI - o GI → PEP Reduction $\mathcal{R} \to \mathcal{P}$ if can solve $\mathcal{P} \to \text{can solve } \mathcal{R}$ hardness(\mathcal{P}) \geq hardness(\mathcal{R}) favorite finite friend: graphs Reduction from LEP to PEP Connections Code Equivalence # Reduction from LEP to PEP Definition $\mathcal C$ a $[n,k]_q$ linear code, $\alpha \in \mathbb F_q$ be a primitive element and $$\lambda=(1,\alpha,\dots,\alpha^{q-2})\in\mathbb{F}_q^{q-1}.$$ The closure of $\mathcal C$ is
$\lambda\otimes\mathcal C$ "How easy is code equivalence over \mathbb{F}_q ?" N. Sendrier, D. Simos, 2013 ### Reduction from LEP to PEP # Definition \mathcal{C} a $[n,k]_q$ linear code, $\alpha \in \mathbb{F}_q$ be a primitive element and $\lambda = (1,\alpha,\ldots,\alpha^{q-2}) \in \mathbb{F}_q^{q-1}$. The closure of \mathcal{C} is $\lambda \otimes \mathcal{C}$ "How easy is code equivalence over \mathbb{F}_q ?" N. Sendrier, D. Simos, 2013 # Proposition $$\mathcal{C}, \mathcal{C}'$$ $[n, k]_q$ linear codes, $\varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$ Then exists $\sigma \in S_{n(q-1)}$ s.t. $\sigma(\lambda \otimes \mathcal{C}) = \lambda \otimes \mathcal{C}'$ Connections Code Equivalence Violetta Weger 42/64 Connections Reduction from PEP to GI Definition A graph $\mathcal G$ is a pair (V,E) with vertices V and edges $E\subseteq V\times V$ Violetta Weger 42/64 Definition A graph $\mathcal G$ is a pair (V,E) with vertices V and edges $E\subseteq V\times V$ Definition Two graphs $$\mathcal{G} = (V, E)$$ and $\mathcal{G}' = (V', E')$ are isomorphic if $\exists f: V \to V' \ \{u, v\} \in E \leftrightarrow \{f(u), f(v)\} \in E'$ # Definition A undirected, weighted graph $\mathcal{G} = (V, E)$ is s.t. with $\{u,v\} \in E$ iff $\{v,u\} \in E$ and edges have weight w(u,v) # Definition Two graphs $\mathcal{G} = (V, E)$ and $\mathcal{G}' = (V', E')$ are isomorphic if $$\exists f: V \rightarrow V' \text{ with } \{u,v\} \in E \leftrightarrow \{f(u),f(v)\} \in E'$$ and w(u, v) = w(f(u), f(v)) # Definition A undirected, weighted graph $\mathcal{G} = (V, E)$ is s.t. with $\{u,v\} \in E$ iff $\{v,u\} \in E$ and edges have weight w(u,v) # Definition Two graphs $\mathcal{G} = (V, E)$ and $\mathcal{G}' = (V', E')$ are isomorphic if $$\exists f: V \rightarrow V' \text{ with } \{u,v\} \in E \leftrightarrow \{f(u),f(v)\} \in E'$$ and w(u, v) = w(f(u), f(v)) Graph Isomorphism (GI) Problem Given $$\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$$ with $V = \{1, \dots, n\}$ find $\varphi \in S_n$ s.t. $\{u, v\} \in E \leftrightarrow \{\varphi(u), \varphi(v)\} \in E'$ Violetta Weger 43/64 # Graph Isomorphism (GI) Problem Given $$\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$$ with $V = \{1, \dots, n\}$ find $\varphi \in S_n$ s.t. $\{u, v\} \in E \leftrightarrow \{\varphi(u), \varphi(v)\} \in E'$ Violetta Weger 43/64 # Graph Isomorphism (GI) Problem Given $$\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$$ with $V = \{1, \dots, n\}$ find $\varphi \in S_n$ s.t. $\{u, v\} \in E \leftrightarrow \{\varphi(u), \varphi(v)\} \in E'$ Babai's algorithm: GI is quasi-polynomial time! cost in $$\mathcal{O}(2^{\log(n)^c})$$ "Graph isomorphism in quasipolynomial time" L. Babai, 2016 Connections 44/64 Code Equivalence Violetta Weger Definition The adjacency matrix A of a weighted graph $\mathcal G$ is $$A_{i,j} = \begin{cases} w(i,j) & \text{if } \{i,j\} \in E \\ 0 & \text{else} \end{cases}$$ Definition The adjacency matrix A of a weighted graph \mathcal{G} is $$A_{i,j} = \begin{cases} w(i,j) & \text{if } \{i,j\} \in E \\ 0 & \text{else} \end{cases}$$ Proposition Two graphs $\mathcal{G}, \mathcal{G}'$ are isomorphic iff $\exists P$ permutation matrix s.t. $P^{\top}AP = A'$ Definition The adjacency matrix A of a weighted graph \mathcal{G} is $$A_{i,j} = \begin{cases} w(i,j) & \text{if } \{i,j\} \in E \\ 0 & \text{else} \end{cases}$$ Proposition Two graphs $\mathcal{G}, \mathcal{G}'$ are isomorphic iff $\exists P$ permutation matrix s.t. $P^{\mathsf{T}}AP = A'$ Theorem If $\mathcal{H}(\mathcal{C}) = \{0\}$ then PEP can be reduced to GI \rightarrow PEP is easier than GI "Permutation code equivalence is not harder than GI" M. Bardet, A. Otmani, M. Saeed-Taha, 2019 Connections Code Equivalence Violetta Weger 45/64 Definition The incidence matrix B of a graph \mathcal{G} with |V| = v, |E| = e is $$B_{i,j} = \begin{cases} 1 & \text{if } i = \{\ell, j\} \in E \\ 0 & \text{else} \end{cases} \qquad B \in \mathbb{F}_2^{e \times v}$$ Definition The incidence matrix B of a graph $\mathcal G$ with |V|=v, |E|=e is $$B_{i,j} = \begin{cases} 1 & \text{if } i = \{\ell, j\} \in E \\ 0 & \text{else} \end{cases} \qquad B \in \mathbb{F}_2^{e \times v}$$ Proposition Two graphs $\mathcal{G}, \mathcal{G}'$ are isomorphic iff $\exists Q \in S_e, P \in S_v$, such that QBP = B' The incidence matrix B of a graph \mathcal{G} with |V| = v, |E| = e is $$B_{i,j} = \begin{cases} 1 & \text{if } i = \{\ell, j\} \in E \\ 0 & \text{else} \end{cases} \qquad B \in \mathbb{F}_2^{e \times v}$$ # Proposition Two graphs $\mathcal{G}, \mathcal{G}'$ are isomorphic iff $\exists Q \in S_e, P \in S_v$, such that QBP = B' Theorem We can reduce GI to PEP "Is code equivalence easy to decide?" E. Petrank, M. Roth, 2002 If LEP \rightarrow PEP and PEP \rightarrow GI then LEP \rightarrow GI If LEP \rightarrow PEP and PEP \rightarrow GI then LEP \rightarrow GI NO # Code Equivalence Connections If LEP \rightarrow PEP and PEP \rightarrow GI then LEP \rightarrow GI NO ## Under the rug We can only reduce PEP to GI if $\mathcal{H}(C) = \{0\}$ is $\mathcal{H}(\lambda \otimes \mathcal{C}) = \{0\}$? # Code Equivalence ### Connections If LEP $$\rightarrow$$ PEP and PEP \rightarrow GI then LEP \rightarrow GI #### Under the rug We can only reduce PEP to GI if $\mathcal{H}(C) = \{0\}$ is $$\mathcal{H}(\lambda \otimes \mathcal{C}) = \{0\}$$? Show that $$\sum_{\alpha \in \mathbb{F}_q^*} \alpha^{\ell} = \begin{cases} 0 & \text{if } (q-1) \nmid \ell \\ -1 & \text{if } (q-1) \mid \ell \end{cases}$$ ## Code Equivalence ### Connections If LEP \rightarrow PEP and PEP \rightarrow GI then LEP \rightarrow GI NO #### Under the rug We can only reduce PEP to GI if $\mathcal{H}(C) = \{0\}$ is $$\mathcal{H}(\lambda \otimes \mathcal{C}) = \{0\}$$? Exercise Show that $$\sum_{\alpha \in \mathbb{F}_q^*} \alpha^{\ell} = \begin{cases} 0 & \text{if } (q-1) \nmid \ell \\ -1 & \text{if } (q-1) \mid \ell \end{cases}$$ Proposition If $q \geq 4$, then $\lambda \otimes C$ is self-orthogonal $q = p^{2m}$ Connections $$q = p^{2m}$$ Definition • Let $x, y \in \mathbb{F}_q^n$. The Hermitian inner product is $$\langle x, y \rangle_H = \sum_{i=1}^n x_i y_i^{p^m}$$ $$q = p^{2m}$$ Definition • Let $x, y \in \mathbb{F}_q^n$. The Hermitian inner product is $$\langle x, y \rangle_H = \sum_{i=1}^n x_i y_i^{p^m}$$ • Let C be a $[n,k]_q$ linear code. The Hermitian dual is $$\mathcal{C}^{\star} = \{ x \in \mathbb{F}_q^n \mid \langle x, y \rangle_H = 0 \ \forall \ y \in \mathcal{C} \}$$ $$q = p^{2m}$$ Definition • Let $x, y \in \mathbb{F}_q^n$. The Hermitian inner product is $$\langle x, y \rangle_H = \sum_{i=1}^n x_i y_i^{p^m}$$ Let C be a $[n,k]_q$ linear code. The Hermitian dual is $$\mathcal{C}^{\star} = \{ x \in \mathbb{F}_q^n \mid \langle x, y \rangle_H = 0 \ \forall \ y \in \mathcal{C} \}$$ • A Hermitian parity-check matrix H^* is s.t. $\langle H^* \rangle = C^*$ [&]quot;How easy is code equivalence over \mathbb{F}_q ?" N. Sendrier, D. Simos, 2013 $$a = n^{2m}$$ $$q = p^{2m}$$ Let $C = \langle G \rangle = \ker(H^{\top})$ Connections $$q = p^{2m}$$ Let $$C = \langle G \rangle = \ker(H^{\top})$$ 48/64 Exercises Show that $H^{\star}(G^{p^m})^{\top} = 0$. That is $\mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$ Violetta Weger $$q = p^{2m}$$ Let $$C = \langle G \rangle = \ker(H^{\top})$$ - Show that $H^{\star}(G^{p^m})^{\top} = 0$. That is $\mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$ - Show that $H^* = H^{p^m}$ is a Hermitian parity-check matrix $$q = p^{2m}$$ Let $$C = \langle G \rangle = \ker(H^{\top})$$ - Show that $H^{\star}(G^{p^m})^{\top} = 0$. That is $\mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$ - ° Show that $H^* = H^{p^m}$ is a Hermitian parity-check matrix - Show that $(\mathcal{C}^*)^* = \mathcal{C}$ $$q = p^{2m}$$ Let $$C = \langle G \rangle = \ker(H^{\top})$$ - Show that $H^{\star}(G^{p^m})^{\top} = 0$. That is $\mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$ - ° Show that $H^* = H^{p^m}$ is a Hermitian parity-check matrix - Show that $(C^*)^* = C$ Show that $$\mathcal{H}^{\star}(\mathcal{C}) = \ker \left(\begin{pmatrix} G^{p^m} \\ H \end{pmatrix}^{\top} \right)$$ $$q = p^{2m}$$ Let $$C = \langle G \rangle = \ker(H^{\top})$$ Exercises - Show that $H^{\star}(G^{p^m})^{\top} = 0$. That is $\mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$ - Show that $H^* = H^{p^m}$ is a Hermitian parity-check matrix - Show that $(C^*)^* = C$ Show that $$\mathcal{H}^{\star}(\mathcal{C}) = \ker \left(\begin{pmatrix} G^{p^m} \\ H \end{pmatrix}^{\mathsf{T}} \right)$$ Let $\mathcal{C} \subset \mathbb{F}_q^n$ be linearly equivalent to \mathcal{C}' . Show that C^* is linearly equivalent to $(C')^*$ $$q = p^{2m}$$ Let $$C = \langle G \rangle = \ker(H^{\top})$$ Exercises - Show that $H^{\star}(G^{p^m})^{\top} = 0$. That is $\mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$ - Show that $H^* = H^{p^m}$ is a Hermitian parity-check matrix - Show that $(C^*)^* = C$ - Show that $\mathcal{H}^{\star}(\mathcal{C}) = \ker \left(\begin{pmatrix} G^{p^m} \\ H \end{pmatrix}^{\mathsf{T}} \right)$ - Let $\mathcal{C} \subset \mathbb{F}_q^n$ be linearly equivalent to \mathcal{C}' . - Show that C^* is linearly equivalent to $(C')^*$ - Let $\mathcal{C} \subset \mathbb{F}_q^n$ be permutation equivalent to \mathcal{C}' . Show that $\mathcal{H}^{\star}(\mathcal{C})$ is permutation equivalent to $\mathcal{H}^{\star}(\mathcal{C}')$ Two New results How many pairs $(c, \varphi(c))$ needed to recover φ ? Two New results How many pairs $(c, \varphi(c))$ needed to recover φ ? Rouché-Capelli Test Let $$A \in \mathbb{F}_q^{k \times n}$$ of rank r and $b \in \mathbb{F}_q^k$ The system $$Ax^{\top} = b^{\top}$$ has a solution iff $\operatorname{rk}([A \mid b]) = r$ → only 2! (with some heuristics) "Two Is All It Takes" A. Budroni, A. Esser, E. Franch, A. Natale, 2025 Two New results How many pairs $(c, \varphi(c))$ needed to recover φ ? Rouché-Capelli Test Let $$A \in
\mathbb{F}_q^{k \times n}$$ of rank r and $b \in \mathbb{F}_q^k$ The system $$Ax^{\top} = b^{\top}$$ has a solution iff $\operatorname{rk}([A \mid b]) = r$ → only 2! (with some heuristics) "Two Is All It Takes" A. Budroni, A. Esser, E. Franch, A. Natale, 2025 How many pairs $(C, \varphi(C))$ needed to recover φ ? - \rightarrow only 2! - "Don't use it twice!" A. Budroni, J. Chi-Domínguez, D. D'Alconzo, A. Di Scala, M. Kulkarni, 2024 • Let $x, y \in \mathbb{F}_q^n$. The Schur product is $x * y = (x_1 y_1, \dots, x_n y_n)$ Definition - Let $x, y \in \mathbb{F}_q^n$. The Schur product is $x * y = (x_1 y_1, \dots, x_n y_n)$ - Let C_i be $[n, k_i]_q$ linear codes. The Schur product is $$\mathcal{C}_1 * \mathcal{C}_2 = \langle \{c_1 * c_2 \mid c_1 \in \mathcal{C}_1, c_2 \in \mathcal{C}_2\} \rangle$$ ## Definition - Let $x, y \in \mathbb{F}_q^n$. The Schur product is $x * y = (x_1 y_1, \dots, x_n y_n)$ - Let C_i be $[n, k_i]_q$ linear codes. The Schur product is $$\mathcal{C}_1 * \mathcal{C}_2 = \langle \{c_1 * c_2 \mid c_1 \in \mathcal{C}_1, c_2 \in \mathcal{C}_2\} \rangle$$ \circ Let $\mathcal C$ be an $[n,k]_q$ linear code. The square code is $\mathcal C^{(2)}=\mathcal C*\mathcal C$ #### Definition - Let $x, y \in \mathbb{F}_q^n$. The Schur product is $x * y = (x_1 y_1, \dots, x_n y_n)$ - Let C_i be $[n, k_i]_q$ linear codes. The Schur product is $$\mathcal{C}_1 * \mathcal{C}_2 = \langle \{c_1 * c_2 \mid c_1 \in \mathcal{C}_1, c_2 \in \mathcal{C}_2\} \rangle$$ • Let $\mathcal C$ be an $[n,k]_q$ linear code. The square code is $\mathcal C^{(2)}=\mathcal C*\mathcal C$ $$\langle G \rangle = \mathcal{C}$$. Show that $\langle G^{(2)} \rangle = \mathcal{C}^{(2)}$ where $$G^{(2)} = \begin{pmatrix} g_1 * g_1 \\ \vdots \\ g_1 * g_k \\ \vdots \\ g_k * g_k \end{pmatrix} \in \mathbb{F}_q^{\binom{k+1}{2} \times n}$$ Theorem Let $\mathcal C$ be a $[n,k]_q$ linear code. Then $\dim(\mathcal C^{(2)})=\min\left\{n,\binom{k+1}{2}\right\}$ Theorem Let \mathcal{C} be a $[n,k]_q$ linear code. Then $\dim(\mathcal{C}^{(2)}) = \min\{n, \binom{k+1}{2}\}$ - Let $\mathcal{C}, \mathcal{C}'$ be $[n, k]_q$ linear codes and $\varphi = (D, P) \in (\mathbb{F}_q^*)^n \rtimes S_n$ s.t. $\varphi(\mathcal{C}) = \mathcal{C}'$. Then $\varphi' = (D^2, P) \in (\mathbb{F}_q^*)^n \rtimes S_n$ is s.t. $\varphi'(\mathcal{C}^{(2)}) = \mathcal{C}^{l(2)}$ - Show that $\mathcal{H}(\mathcal{C}^{(2)}) \neq \mathcal{H}(\mathcal{C})^{(2)}$ Recall SSA Recall SSA # ee - New Directions # ence - New Directions Let $$\mathcal C$$ be an $[n,k]_q$ linear code. The ℓ power code is $$\mathcal C^{(\ell)} = \underbrace{\mathcal C \star \cdots \star \mathcal C}_\ell$$ Theorem Let $$\mathcal C$$ be an $[n,k]_q$ linear code. If $\ell < q$, then $$\dim(\mathcal C^{(\ell)}) = \min\left\{\binom{k+\ell-1}{\ell}, n\right\}$$ - Show that $(\lambda \otimes \mathcal{C})^{(2)} \neq \lambda \otimes \mathcal{C}^{(2)}$ - Show that $(\lambda \otimes G)^{(\ell)} = \lambda^{\ell} \otimes G^{(\ell)}$ Why $$A(G, \mathbf{G}^{\mathsf{T}}) = \mathbf{G}^{\mathsf{T}} (G\mathbf{G}^{\mathsf{T}})^{-1} G$$? If $$\varphi \in S_n$$ $$\overset{\varphi}{-\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-}$$ $$C = \langle G \rangle$$ $$\varphi \longrightarrow$$ $$\mathcal{C}^{\perp} = \ker(G^{\top})$$ Why $$A(G, G^{\top}) = G^{\top} (GG^{\top})^{-1} G$$? If $$\varphi \in S_n$$ F(C) $$C = \langle G \rangle$$ $$\varphi \longrightarrow$$ $$\mathcal{C}^{\perp} = \ker(G^{\top})$$ If $$\varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$$ F(C) Summary • Differentiate between LEP and PEP Summary Summary • Differentiate between LEP and PEP $^{\circ}$ If $\mathcal C$ is linearly equivalent to $\mathcal C'$ then $\mathcal C^{\perp}$ is linearly equivalent to ${\mathcal C'}^{\perp}$ Summary • Differentiate between LEP and PEP - ° If $\mathcal C$ is linearly equivalent to $\mathcal C'$ then $\mathcal C^\perp$ is linearly equivalent to ${\mathcal C'}^\perp$ - Only for PEP is the dual connected through the same permutation # Summary $\begin{array}{ccc} \textbf{Summary} & \bullet & \textbf{Differentiate between LEP and PEP} \end{array}$ - ° If $\mathcal C$ is linearly equivalent to $\mathcal C'$ then $\mathcal C^\perp$ is linearly equivalent to ${\mathcal C'}^\perp$ - Only for PEP is the dual connected through the same permutation - Several invariants: weight enumerators, generalized weights # Summary Summary • Differentiate between LEP and PEP - ° If C is linearly equivalent to C' then C^{\perp} is linearly equivalent to C'^{\perp} - \circ $\,$ $\,$ Only for PEP is the dual connected through the same permutation - Several invariants: weight enumerators, generalized weights - Hulls of random codes are w.h.p. trivial # Summary ### $\begin{array}{ccc} \text{Summary} & \circ & \text{Differentiate between LEP and PEP} \end{array}$ - $^{\circ}$ If \mathcal{C} is linearly equivalent to \mathcal{C}' then \mathcal{C}^{\perp} is linearly equivalent to \mathcal{C}'^{\perp} - \circ $\,$ $\,$ Only for PEP is the dual connected through the same permutation - \circ Several invariants: weight enumerators, generalized weights - Hulls of random codes are w.h.p. trivial - LEP, PEP $\notin NP$ -hard, they are in co-AM \cap NP Violetta Weger 55/64 # Summary ### $\begin{array}{ccc} \text{Summary} & \circ & \text{Differentiate between LEP and PEP} \end{array}$ - ° If C is linearly equivalent to C' then C^{\perp} is linearly equivalent to C'^{\perp} - \circ $\,$ $\,$ Only for PEP is the dual connected through the same permutation - Several invariants: weight enumerators, generalized weights - Hulls of random codes are w.h.p. trivial - LEP, PEP $\notin NP$ -hard, they are in co-AM \cap NP - Several solvers use invariants, but all exponential cost Violetta Weger 55/64 # Summary Summary • Differentiate between LEP and PEP - ° If C is linearly equivalent to C' then C^{\perp} is linearly equivalent to C'^{\perp} - \circ Only for PEP is the dual connected through the same permutation - Several invariants: weight enumerators, generalized weights - Hulls of random codes are w.h.p. trivial - LEP, PEP $\notin NP$ -hard, they are in co-AM \cap NP - Several solvers use invariants, but all exponential cost - There are several reductions: hard? LEP \leftarrow PEP \leftarrow GI easy! for $q \ge 4$ only if $C \cap C^{\perp} = \{0\}$ Bonus Round Code Equivalence Other metrics? Violetta Weger 56/64 Bonus Round Code Equivalence #### Rank metric ° Matrix code" or \mathbb{F}_q -linear code ($\mathbb{F}_q^{m \times n}$, wt_R) $$X \in \mathbb{F}_q^{m \times n}$$ then $\operatorname{wt}_R(X) = \operatorname{rk}(X)$ ### Rank metric ° Matrix code" or \mathbb{F}_q -linear code ($\mathbb{F}_q^{m \times n}$, wt_R) $$X \in \mathbb{F}_q^{m \times n}$$ then $\operatorname{wt}_R(X) = \operatorname{rk}(X)$ linear isometries: #### Rank metric ° Matrix code" or \mathbb{F}_q -linear code ($\mathbb{F}_q^{m \times n}$, wt_R) $$X \in \mathbb{F}_q^{m \times n}$$ then $\operatorname{wt}_R(X) = \operatorname{rk}(X)$ linear isometries: $$\varphi = (A, B) \in GL_q(m) \times GL_q(n)$$ #### Rank metric ° Matrix code" or \mathbb{F}_q -linear code ($\mathbb{F}_q^{m \times n}$, wt $_R$) $$X \in \mathbb{F}_q^{m \times n}$$ then $\operatorname{wt}_R(X) = \operatorname{rk}(X)$ linear isometries: $$\varphi = (A, B) \in GL_q(m) \times GL_q(n)$$ → no idea #### Rank metric ° Matrix code" or \mathbb{F}_q -linear code ($\mathbb{F}_q^{m \times n}$, wt $_R$) $$X \in \mathbb{F}_q^{m \times n}$$ then $\operatorname{wt}_R(X) = \operatorname{rk}(X)$ linear isometries: $$\varphi = (A, B) \in GL_q(m) \times GL_q(n)$$ #### Rank metric ° Matrix code" or \mathbb{F}_q -linear code ($\mathbb{F}_q^{m \times n}$, wt_R) $$X \in \mathbb{F}_q^{m \times n}$$ then $\operatorname{wt}_R(X) = \operatorname{rk}(X)$ linear isometries: $$\varphi = (A, B) \in GL_q(m) \times GL_q(n)$$ $$x \in \mathbb{F}_{q^m}^n$$ then $\operatorname{wt}_R(x) = \dim_{\mathbb{F}_q} (\langle x_1, \dots, x_n \rangle_{\mathbb{F}_q})$ #### Rank metric ° Matrix code" or \mathbb{F}_q -linear code ($\mathbb{F}_q^{m \times n}$, wt $_R$) $$X \in \mathbb{F}_q^{m \times n}$$ then $\operatorname{wt}_R(X) = \operatorname{rk}(X)$ linear isometries: $$\varphi = (A, B) \in GL_q(m) \times GL_q(n)$$ $$x \in \mathbb{F}_{q^m}^n$$ then $\operatorname{wt}_R(x) = \dim_{\mathbb{F}_q} (\langle x_1, \dots, x_n \rangle_{\mathbb{F}_q})$ linear isometries: #### Rank metric "Matrix code" or \mathbb{F}_q -linear code ($\mathbb{F}_q^{m \times n}$, wt_R) 0 $$X \in \mathbb{F}_q^{m \times n}$$ then $\operatorname{wt}_R(X) = \operatorname{rk}(X)$ linear isometries: $$\varphi = (A, B) \in GL_q(m) \times GL_q(n)$$ no idea $$x \in \mathbb{F}_{q^m}^n$$ then $\operatorname{wt}_R(x) = \dim_{\mathbb{F}_q} (\langle x_1, \dots, x_n \rangle_{\mathbb{F}_q})$ linear isometries: $\varphi = (B) \in \operatorname{GL}_q(n)$ $$\varphi = (B) \in \mathrm{GL}_q(n$$ easy! [&]quot;On the hardness of code equivalence problems in rank metric" A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020 Violetta Weger 56/64 Bonus Round Code Equivalence Other metrics? Violetta Weger 57/64 Other metrics? Lee metric Bonus Round Code Equivalence Lee metric $(\mathbb{Z}/p^s\mathbb{Z}^n, \operatorname{wt}_L)$ $$x \in \mathbb{Z}/p^s\mathbb{Z}^n$$ then $\operatorname{wt}_L(x) = \sum_{i=1}^n \min\{x_i, |p^s - x_i|\}$ Lee metric $(\mathbb{Z}/p^s\mathbb{Z}^n,\mathrm{wt}_L)$ $$x \in \mathbb{Z}/p^s\mathbb{Z}^n$$ then $\operatorname{wt}_L(x) = \sum_{i=1}^n \min\{x_i, |p^s - x_i|\}$ linear isometries: Lee metric $(\mathbb{Z}/p^s\mathbb{Z}^n, \operatorname{wt}_L)$ $$x \in \mathbb{Z}/p^s\mathbb{Z}^n$$ then $\operatorname{wt}_L(x) = \sum_{i=1}^n \min\{x_i, |p^s - x_i|\}$ $$x \in \mathbb{Z}/p^{\mathbb{Z}}$$ then $\operatorname{wt}_L(x) = \sum_{i=1} \min\{x_i, |p^i - x_i|\}$ linear isometries: $\varphi = (D, P) \in \{\pm 1\}^n \rtimes S_n$ Lee metric $$(\mathbb{Z}/p^s\mathbb{Z}^n,\mathrm{wt}_L)$$ $$x \in
\mathbb{Z}/p^s\mathbb{Z}^n$$ then $\operatorname{wt}_L(x) = \sum_{i=1}^n \min\{x_i, |p^s - x_i|\}$ linear isometries: $$\varphi = (D, P) \in \{\pm 1\}^n \rtimes S_n$$ → like PEP ### Bonus Round Other metrics? Lee metric $$(\mathbb{Z}/p^s\mathbb{Z}^n,\mathrm{wt}_L)$$ $$x \in \mathbb{Z}/p^s\mathbb{Z}^n$$ then $\operatorname{wt}_L(x) = \sum_{i=1}^n \min\{x_i, |p^s - x_i|\}$ linear isometries: $\varphi = (D, P) \in \{\pm 1\}^n \rtimes S_n$ → like PEP Homogeneous metric $(\mathbb{Z}/p^s\mathbb{Z}^n, \operatorname{wt}_{\operatorname{Hom}})$ Lee metric $$(\mathbb{Z}/p^s\mathbb{Z}^n,\mathrm{wt}_L)$$ $$x \in \mathbb{Z}/p^s\mathbb{Z}^n$$ then $\operatorname{wt}_L(x) = \sum_{i=1}^n \min\{x_i, |p^s - x_i|\}$ linear isometries: $\varphi = (D, P) \in \{\pm 1\}^n \rtimes S_n$ → like PEP Homogeneous metric $(\mathbb{Z}/p^s\mathbb{Z}^n, \operatorname{wt}_{\operatorname{Hom}})$ $$x \in \mathbb{Z}/p^s \mathbb{Z}^n \text{ then } \operatorname{wt_{Hom}}(x) = \sum_{i=1}^n \begin{cases} 0 & \text{if } x_i = 0, \\ 1 & \text{if } x_i \notin \langle p^{s-1} \rangle, \\ p/(p-1) & \text{if } x_i \in \langle p^{s-1} \rangle \setminus \{0\} \end{cases}$$ Lee metric $$(\mathbb{Z}/p^s\mathbb{Z}^n,\mathrm{wt}_L)$$ $$x \in \mathbb{Z}/p^s\mathbb{Z}^n$$ then $\operatorname{wt}_L(x) = \sum_{i=1}^n \min\{x_i, |p^s - x_i|\}$ linear isometries: $\varphi = (D, P) \in \{\pm 1\}^n \rtimes S_n$ → like PEP Homogeneous metric $(\mathbb{Z}/p^s\mathbb{Z}^n, \operatorname{wt}_{\operatorname{Hom}})$ $$x \in \mathbb{Z}/p^s \mathbb{Z}^n \text{ then } \operatorname{wt_{Hom}}(x) = \sum_{i=1}^n \begin{cases} 0 & \text{if } x_i = 0, \\ 1 & \text{if } x_i \notin \langle p^{s-1} \rangle, \\ p/(p-1) & \text{if } x_i \in \langle p^{s-1} \rangle \setminus \{0\} \end{cases}$$ linear isometries: Lee metric $$(\mathbb{Z}/p^s\mathbb{Z}^n,\mathrm{wt}_L)$$ $$x \in \mathbb{Z}/p^s\mathbb{Z}^n$$ then $\operatorname{wt}_L(x) = \sum_{i=1}^n \min\{x_i, |p^s - x_i|\}$ linear isometries: $\varphi = (D, P) \in \{+1\}^n \rtimes S_m$ $$\varphi = (D, P) \in \{\pm 1\}^n \rtimes S_n$$ like PEP Homogeneous metric $(\mathbb{Z}/p^s\mathbb{Z}^n, \text{wt}_{Hom})$ $$x \in \mathbb{Z}/p^{s}\mathbb{Z}^{n} \text{ then } \operatorname{wt_{Hom}}(x) = \sum_{i=1}^{n} \begin{cases} 0 & \text{if } x_{i} = 0, \\ 1 & \text{if } x_{i} \notin \langle p^{s-1} \rangle, \\ p/(p-1) & \text{if } x_{i} \in \langle p^{s-1} \rangle \setminus \{0\} \end{cases}$$ linear isometries: $$\varphi = (D, P) \in (\mathbb{Z}/p^s\mathbb{Z}^{\times})^n \rtimes S_n$$ easier than Hamming "Linear codes over \mathbb{F}_q are equivalent to LCD codes for q>3 " C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, 2018 Violetta Weger 58/64 "Linear codes over \mathbb{F}_q are equivalent to LCD codes for q > 3" C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, 2018 "Linear codes over \mathbb{F}_q are equivalent to LCD codes for q>3 " C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, 2018 Violetta Weger 58/64 "Linear codes over \mathbb{F}_q are equivalent to LCD codes for q>3 " C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, 2018 # Code Equivalence - Bonus Round #### $\textbf{Computational} \, \rightarrow \, \textbf{decisional}$ "A search-to-decision reduction for the permutation code equivalence problem" J.-F. Biasse, G. Micheli, 2023 Violetta Weger 59/64 Workshop on the Mathematics of Post-Quantum Cryptography Munich, September 7–11, 2026 https://mathpqc26.cry.cit.tum.de/ Violetta Weger 60/64 # Exercises Violetta Weger 61/64 # Code Equivalence #### Exercises $$\mathcal{C} = \langle G \rangle = \ker(\boldsymbol{H}^\top)$$ a $[n,k]_q$ linear code 1. Let $H^* \in \mathbb{F}_q^{(n-k)\times n}$ be a Hermitian parity-check matrix of \mathcal{C} . Show that $H^{\star}(G^{p^m})^{\top} = 0$. That is $\mathcal{C}^{\star} = \ker((G^{p^m})^{\top})$. - 2. Show that $H^* = H^{p^m}$ is a Hermitian parity-check matrix. - 3. Show that $(C^*)^* = C$. - 4. Show that $\mathcal{H}^{\star}(\mathcal{C}) = \ker\left(\begin{pmatrix} G^{p^m} \\ H \end{pmatrix}^{\top}\right)$. - 5. Let \mathcal{C} be linearly equivalent to \mathcal{C}' . Show that \mathcal{C}^{\star} is linearly equivalent to $(\mathcal{C}')^{\star}$. - 6. Show that if $\varphi \in S_n$ is such that $\varphi(\mathcal{C}) = \mathcal{C}'$, then $\mathcal{H}^{\star}(\mathcal{C})$ is permutation equivalent to $\mathcal{H}^{\star}(\mathcal{C}')$. - 7. Show that A^* is independent on the choice of G. Show that if $G(G^{p^m})^{\mathsf{T}}$ has full rank, then $\dim(\mathcal{H}^*(\mathcal{C})) = 0$. Violetta Weger # Code Equivalence #### Exercises $$C = \langle G \rangle = \ker(H^{\top})$$ a $[n, k]_q$ linear code 1. Show that $$\sum_{\alpha \in \mathbb{F}_q^*} \alpha^{\ell} = \begin{cases} 0 & \text{if } (q-1) \nmid \ell, \\ -1 & \text{if } (q-1) \mid \ell. \end{cases}$$ - 2. Show that $C^{(2)}$ is generated by $G^{(2)}$. - 3. Show that if $\varphi = (D, P) \in (\mathbb{F}_q^*)^n \rtimes S_n$ is such that $\varphi(\mathcal{C}) = \mathcal{C}'$, then $\varphi' = (D^2, P) \in (\mathbb{F}_q^*)^n \rtimes S_n$ is such that $\varphi'(\mathcal{C}^{(2)}) = \mathcal{C}'^{(2)}$. - 4. Show that $\mathcal{H}(\mathcal{C})^{(2)} \neq \mathcal{H}(\mathcal{C}^{(2)})$. - 5. Reduce the following LEP instance to GI using the square code: $$G = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 0 \end{pmatrix} \in \mathbb{F}_5^{2 \times 4} \text{ and } G' = \begin{pmatrix} 4 & 1 & 0 & 2 \\ 0 & 4 & 2 & 0 \end{pmatrix}.$$ - 6. Show that $(\lambda \otimes C)^{(2)} \neq \lambda \otimes C^{(2)}$. - 7. Show that $(\lambda \otimes G)^{(\ell)} = \lambda^{\ell} \otimes G^{(\ell)}$. Slides Solutions Violetta Weger 64/64