
Code Equivalence

Violetta Weger

Finite Geometry and Friends Summer School 2025

September 2025



Code Equivalence

Violetta Weger

Finite Geometry and Friends Summer School 2025

September 2025



Finite Friends and Geometry, 2023



Finite Friends and Geometry, 2023



On the mathematics of post-quantum cryptography, 2025



On the mathematics of post-quantum cryptography, 2025



On the mathematics of post-quantum cryptography, 2025



Quantum attackers → Quantum heroes post-quantum

Lattice-based Multivariate

Hash-based Isogeny-based

Decoding-based Code-Equivalence

Code-based Cryptography

Violetta Weger 0/64



Code Equivalence - The Problem

Given two codes C,C′, find a linear isometry φ such that φ(C) = C.

”Is code equivalence easy to decide?” Petrank, Roth. 2002.

< LESS signature scheme in 2nd round of NIST standardization call

Plan

◦ Basics of Coding Theory ◦ LESS Signature Scheme ◦ Introduction to Complexity Theory

◦ Hardness of Code Equivalence ◦ Solvers ◦ Finite Friends

◦ Connections to other Problems ◦ Some new Results ◦ Summary

Violetta Weger 1/64



Code Equivalence - The Problem

Given two codes C,C′, find a linear isometry φ such that φ(C) = C.

”Is code equivalence easy to decide?” Petrank, Roth. 2002.

< LESS signature scheme in 2nd round of NIST standardization call

Plan

◦ Basics of Coding Theory ◦ LESS Signature Scheme ◦ Introduction to Complexity Theory

◦ Hardness of Code Equivalence ◦ Solvers ◦ Finite Friends

◦ Connections to other Problems ◦ Some new Results ◦ Summary

Violetta Weger 1/64



Code Equivalence - The Problem

Given two codes C,C′, find a linear isometry φ such that φ(C) = C.

”Is code equivalence easy to decide?” Petrank, Roth. 2002.

< LESS signature scheme in 2nd round of NIST standardization call

Plan

◦ Basics of Coding Theory ◦ LESS Signature Scheme ◦ Introduction to Complexity Theory

◦ Hardness of Code Equivalence ◦ Solvers ◦ Finite Friends

◦ Connections to other Problems ◦ Some new Results ◦ Summary

Violetta Weger 1/64



Code Equivalence - Organization

Material:

Lecture Notes Exercises

Violetta Weger 2/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩

◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword

◦ H ∈ F(n−k)×n
q parity-check matrix: C = {x ∈ Fn

q ∣ xH⊤
= 0} = ker(H⊤)

◦ xH
⊤
= s is syndrome of x

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)

◦ xH
⊤
= s is syndrome of x

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x

sender

m

channel

↯ r =m + e

receiver

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x

sender

c =mG

channel

↯ r = c + e

receiver

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Fq finite field of order q a prime power

Definition ◦ [n, k]q linear code C: Fq-linear subspace of Fn
q of dimension k

◦ G ∈ Fk×n
q generator matrix: C = {mG ∣m ∈ Fk

q } = ⟨G⟩
◦ c ∈ C is codeword
◦ H ∈ F(n−k)×n

q parity-check matrix: C = {x ∈ Fn
q ∣ xH⊤

= 0} = ker(H⊤)
◦ xH

⊤
= s is syndrome of x

sender

c =mG

channel

↯ r = c + e

receiver

•

•

•

•

•

•C

Fn
q

c
r
•

Violetta Weger 3/64



Code Equivalence - Coding Theory

Definition ◦ The Hamming weight of x ∈ Fn
q is wt(x) = ∣{i ∣ xi ≠ 0}∣

◦ The Hamming distance between x, y ∈ Fn
q is

d(x, y) = wt(x − y) = ∣{i ∣ xi ≠ yi}∣
◦ The minimum Hamming distance of C ⊆ Fn

q is

d(C) = min{wt(c) ∣ c ∈ C, c ≠ 0}

A [n, k, d]q code C can correct t = ⌊ d−1
2 ⌋ errors

•

•

•

•

•

•C

Fn
q

c
r
•

d

t

Violetta Weger 4/64



Code Equivalence - Coding Theory

Definition ◦ The Hamming weight of x ∈ Fn
q is wt(x) = ∣{i ∣ xi ≠ 0}∣

◦ The Hamming distance between x, y ∈ Fn
q is

d(x, y) = wt(x − y) = ∣{i ∣ xi ≠ yi}∣
◦ The minimum Hamming distance of C ⊆ Fn

q is

d(C) = min{wt(c) ∣ c ∈ C, c ≠ 0}

A [n, k, d]q code C can correct t = ⌊ d−1
2 ⌋ errors

•

•

•

•

•

•C

Fn
q

c
r
•

d

t

Violetta Weger 4/64



Code Equivalence - Coding Theory

Definition ◦ The Hamming weight of x ∈ Fn
q is wt(x) = ∣{i ∣ xi ≠ 0}∣

◦ The Hamming distance between x, y ∈ Fn
q is

d(x, y) = wt(x − y) = ∣{i ∣ xi ≠ yi}∣
◦ The minimum Hamming distance of C ⊆ Fn

q is

d(C) = min{wt(c) ∣ c ∈ C, c ≠ 0}

A [n, k, d]q code C can correct t = ⌊ d−1
2 ⌋ errors

•

•

•

•

•

•C

Fn
q

c
r
•

d

t

Violetta Weger 4/64



Code Equivalence - Coding Theory

C = ⟨G⟩ = ker(H⊤) ⊆ Fn
q of dimension k

Definition ◦ G is in systematic form if G = (Idk A)
◦ H is in systematic form if H = (B Idn−k)

Properties ◦ For S ∈ GLq(k) also ⟨SG⟩ = C

◦ For some permutation matrix P , SGP is in systematic form
◦ For S ∈ GLq(n − k) also ker((SH)⊤) = C
◦ For some permutation matrix P , SHP is in systematic form
◦ If G = (Idk A) , then H = (−A⊤ Idn−k)

Violetta Weger 5/64



Code Equivalence - Coding Theory

C = ⟨G⟩ = ker(H⊤) ⊆ Fn
q of dimension k

Definition ◦ The dual code of C is

C⊥
= {x ∈ Fn

q ∣ ⟨x, y⟩ = 0 ∀ c ∈ C}
◦ C⊥

= ⟨H⟩ = ker(G⊤) ⊆ Fn
q of dimension n − k

◦ If C = C⊥ then C is called self-dual
◦ If C ⊂ C⊥ then C is called self-orthogonal
◦ The hull of C is H(C) = C ∩ C⊥

Exercises ◦ Show that ⟨H⟩ = C⊥

◦ Show that (C⊥)⊥ = C.
◦ Show that if GG⊤

= 0, then C is self-orthogonal
◦ Show that C is self-dual if and only if C is self-orthogonal and n = 2k

◦ Show that H(C) = ker((G
H
)
⊤

)

Violetta Weger 6/64



Code Equivalence - Coding Theory

C = ⟨G⟩ = ker(H⊤) ⊆ Fn
q of dimension k

Definition ◦ The dual code of C is

C⊥
= {x ∈ Fn

q ∣ ⟨x, y⟩ = 0 ∀ c ∈ C}
◦ C⊥

= ⟨H⟩ = ker(G⊤) ⊆ Fn
q of dimension n − k

◦ If C = C⊥ then C is called self-dual
◦ If C ⊂ C⊥ then C is called self-orthogonal
◦ The hull of C is H(C) = C ∩ C⊥

Exercises ◦ Show that ⟨H⟩ = C⊥

◦ Show that (C⊥)⊥ = C.
◦ Show that if GG⊤

= 0, then C is self-orthogonal
◦ Show that C is self-dual if and only if C is self-orthogonal and n = 2k

◦ Show that H(C) = ker((G
H
)
⊤

)

Violetta Weger 6/64



Code Equivalence - Coding Theory

How large is this hull?

Folklore If C is random, then H(C) = {0} with high probability for large n

Theorem If C is random, then

P(dim(H(C)) = h) = ∏∞
i=1 q

i q
i−1

q2i−1 ∏n
i=1(q

i − 1)−1
∼ (1 − 1/q)q−h(h+1)/2

”On the dimension of the hull” N. Sendrier, 1997

Theorem If C is random, then P(H(C) = {0}) ≥ 1 − 1/q for large n

Exercise ◦ If G = (Idk A) and AA
⊤ + Idn−k has full rank, then H(C) = {0}

◦ If GG⊤ has full rank, then H(C) = {0}

Violetta Weger 7/64



Code Equivalence - Coding Theory

How large is this hull?

Folklore If C is random, then H(C) = {0} with high probability for large n

Theorem If C is random, then

P(dim(H(C)) = h) = ∏∞
i=1 q

i q
i−1

q2i−1 ∏n
i=1(q

i − 1)−1
∼ (1 − 1/q)q−h(h+1)/2

”On the dimension of the hull” N. Sendrier, 1997

Theorem If C is random, then P(H(C) = {0}) ≥ 1 − 1/q for large n

Exercise ◦ If G = (Idk A) and AA
⊤ + Idn−k has full rank, then H(C) = {0}

◦ If GG⊤ has full rank, then H(C) = {0}

Violetta Weger 7/64



Code Equivalence - Coding Theory

How large is this hull?

Folklore If C is random, then H(C) = {0} with high probability for large n

Theorem If C is random, then

P(dim(H(C)) = h) = ∏∞
i=1 q

i q
i−1

q2i−1 ∏n
i=1(q

i − 1)−1
∼ (1 − 1/q)q−h(h+1)/2

”On the dimension of the hull” N. Sendrier, 1997

Theorem If C is random, then P(H(C) = {0}) ≥ 1 − 1/q for large n

Exercise ◦ If G = (Idk A) and AA
⊤ + Idn−k has full rank, then H(C) = {0}

◦ If GG⊤ has full rank, then H(C) = {0}

Violetta Weger 7/64



Code Equivalence - Coding Theory

How large is this hull?

Folklore If C is random, then H(C) = {0} with high probability for large n

Theorem If C is random, then

P(dim(H(C)) = h) = ∏∞
i=1 q

i q
i−1

q2i−1 ∏n
i=1(q

i − 1)−1
∼ (1 − 1/q)q−h(h+1)/2

”On the dimension of the hull” N. Sendrier, 1997

Theorem If C is random, then P(H(C) = {0}) ≥ 1 − 1/q for large n

Exercise ◦ If G = (Idk A) and AA
⊤ + Idn−k has full rank, then H(C) = {0}

◦ If GG⊤ has full rank, then H(C) = {0}

Violetta Weger 7/64



Code Equivalence - Coding Theory

How large is this hull?

Folklore If C is random, then H(C) = {0} with high probability for large n

Theorem If C is random, then

P(dim(H(C)) = h) = ∏∞
i=1 q

i q
i−1

q2i−1 ∏n
i=1(q

i − 1)−1
∼ (1 − 1/q)q−h(h+1)/2

”On the dimension of the hull” N. Sendrier, 1997

Theorem If C is random, then P(H(C) = {0}) ≥ 1 − 1/q for large n

Exercise ◦ If G = (Idk A) and AA
⊤ + Idn−k has full rank, then H(C) = {0}

◦ If GG⊤ has full rank, then H(C) = {0}

Violetta Weger 7/64



Code Equivalence - Coding Theory

G = (1 0 2
0 1 1) , G

′
= (1 1 0

1 0 1) .

0
1

2 0

1

2

0

1

2

c1

c2

c 3

C

0
1

2 0

1

2

0

1

2

c1

c2

c 3

C′

C = {(0, 0, 0), (1, 0, 2), (2, 0, 1), (1, 1, 0), (2, 1, 2), (0, 1, 1), (0, 2, 2), (1, 2, 1), (2, 2, 0)}
C′

= {(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 1, 0), (1, 2, 2), (1, 0, 1), (2, 0, 2), (2, 1, 1), (2, 2, 0)}

Violetta Weger 8/64



Code Equivalence - Coding Theory

Definition ◦ A linear isometry for a distance function d is a linear map

φ ∶ Fn
q → Fn

q s.t. ∀ x, y ∈ Fn
q : d(x, y) = d(φ(x), φ(y))

Proposition For the Hamming metric: φ ∈ (F⋆
q)n ⋊ Sn

Definition ◦ φ = (d, σ) ∈ (F⋆
q)n ⋊ Sn called monomial transformation

◦ D = diag(d), permutation matrix P , DP called monomial matrix
◦ The semi-linear isometries are (F⋆

q)n ⋊ (Aut(Fq) × Sn)

If φ ∶ C → C′ linear such that wt(c) = wt(φ(c)) for all c ∈ C?

Theorem If φ ∶ C → C′ linear isometry, then exists µ ∈ (F⋆
q)n ⋊ Sn s.t. µ∣C = φ

”Combinatorial problems of elementary abelian groups” F.J. MacWilliams, 1962

Violetta Weger 9/64



Code Equivalence - Coding Theory

Definition ◦ A linear isometry for a distance function d is a linear map

φ ∶ Fn
q → Fn

q s.t. ∀ x, y ∈ Fn
q : d(x, y) = d(φ(x), φ(y))

Proposition For the Hamming metric: φ ∈ (F⋆
q)n ⋊ Sn

Definition ◦ φ = (d, σ) ∈ (F⋆
q)n ⋊ Sn called monomial transformation

◦ D = diag(d), permutation matrix P , DP called monomial matrix
◦ The semi-linear isometries are (F⋆

q)n ⋊ (Aut(Fq) × Sn)

If φ ∶ C → C′ linear such that wt(c) = wt(φ(c)) for all c ∈ C?

Theorem If φ ∶ C → C′ linear isometry, then exists µ ∈ (F⋆
q)n ⋊ Sn s.t. µ∣C = φ

”Combinatorial problems of elementary abelian groups” F.J. MacWilliams, 1962

Violetta Weger 9/64



Code Equivalence - Coding Theory

Definition ◦ A linear isometry for a distance function d is a linear map

φ ∶ Fn
q → Fn

q s.t. ∀ x, y ∈ Fn
q : d(x, y) = d(φ(x), φ(y))

Proposition For the Hamming metric: φ ∈ (F⋆
q)n ⋊ Sn

Definition ◦ φ = (d, σ) ∈ (F⋆
q)n ⋊ Sn called monomial transformation

◦ D = diag(d), permutation matrix P , DP called monomial matrix
◦ The semi-linear isometries are (F⋆

q)n ⋊ (Aut(Fq) × Sn)

If φ ∶ C → C′ linear such that wt(c) = wt(φ(c)) for all c ∈ C?

Theorem If φ ∶ C → C′ linear isometry, then exists µ ∈ (F⋆
q)n ⋊ Sn s.t. µ∣C = φ

”Combinatorial problems of elementary abelian groups” F.J. MacWilliams, 1962

Violetta Weger 9/64



Code Equivalence - Coding Theory

Definition ◦ A linear isometry for a distance function d is a linear map

φ ∶ Fn
q → Fn

q s.t. ∀ x, y ∈ Fn
q : d(x, y) = d(φ(x), φ(y))

Proposition For the Hamming metric: φ ∈ (F⋆
q)n ⋊ Sn

Definition ◦ φ = (d, σ) ∈ (F⋆
q)n ⋊ Sn called monomial transformation

◦ D = diag(d), permutation matrix P , DP called monomial matrix
◦ The semi-linear isometries are (F⋆

q)n ⋊ (Aut(Fq) × Sn)

If φ ∶ C → C′ linear such that wt(c) = wt(φ(c)) for all c ∈ C?

Theorem If φ ∶ C → C′ linear isometry, then exists µ ∈ (F⋆
q)n ⋊ Sn s.t. µ∣C = φ

”Combinatorial problems of elementary abelian groups” F.J. MacWilliams, 1962

Violetta Weger 9/64



Code Equivalence - Coding Theory

Definition ◦ A linear isometry for a distance function d is a linear map

φ ∶ Fn
q → Fn

q s.t. ∀ x, y ∈ Fn
q : d(x, y) = d(φ(x), φ(y))

Proposition For the Hamming metric: φ ∈ (F⋆
q)n ⋊ Sn

Definition ◦ φ = (d, σ) ∈ (F⋆
q)n ⋊ Sn called monomial transformation

◦ D = diag(d), permutation matrix P , DP called monomial matrix
◦ The semi-linear isometries are (F⋆

q)n ⋊ (Aut(Fq) × Sn)

If φ ∶ C → C′ linear such that wt(c) = wt(φ(c)) for all c ∈ C?

Theorem If φ ∶ C → C′ linear isometry, then exists µ ∈ (F⋆
q)n ⋊ Sn s.t. µ∣C = φ

”Combinatorial problems of elementary abelian groups” F.J. MacWilliams, 1962

Violetta Weger 9/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Definition ◦ C is linearly equivalent to C′ if ∃φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

◦ C is permutation equivalent to C′ if ∃φ ∈ Sn s.t. φ(C) = C′

Proposition If C = ⟨G⟩ is linearly equivalent to C′
= ⟨G′⟩, then there exist

S ∈ GLq(k),D = diag(d), permutation matrix P , s.t. SGDP = G
′

Definition ◦ The automorphism group of C is Aut(C) = {φ ∈ (F⋆
q)n ⋊ Sn ∣ φ(C) = C}

Property ◦ If C is random, then Aut(C) = {id} with high probability for large n

”Rigid linear binary codes” H. Lefmann, K. Phelps, V. Rödl, 1993

Violetta Weger 10/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Definition ◦ C is linearly equivalent to C′ if ∃φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

◦ C is permutation equivalent to C′ if ∃φ ∈ Sn s.t. φ(C) = C′

Proposition If C = ⟨G⟩ is linearly equivalent to C′
= ⟨G′⟩, then there exist

S ∈ GLq(k),D = diag(d), permutation matrix P , s.t. SGDP = G
′

Definition ◦ The automorphism group of C is Aut(C) = {φ ∈ (F⋆
q)n ⋊ Sn ∣ φ(C) = C}

Property ◦ If C is random, then Aut(C) = {id} with high probability for large n

”Rigid linear binary codes” H. Lefmann, K. Phelps, V. Rödl, 1993

Violetta Weger 10/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Definition ◦ C is linearly equivalent to C′ if ∃φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

◦ C is permutation equivalent to C′ if ∃φ ∈ Sn s.t. φ(C) = C′

Proposition If C = ⟨G⟩ is linearly equivalent to C′
= ⟨G′⟩, then there exist

S ∈ GLq(k),D = diag(d), permutation matrix P , s.t. SGDP = G
′

Definition ◦ The automorphism group of C is Aut(C) = {φ ∈ (F⋆
q)n ⋊ Sn ∣ φ(C) = C}

Property ◦ If C is random, then Aut(C) = {id} with high probability for large n

”Rigid linear binary codes” H. Lefmann, K. Phelps, V. Rödl, 1993

Violetta Weger 10/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Definition ◦ C is linearly equivalent to C′ if ∃φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

◦ C is permutation equivalent to C′ if ∃φ ∈ Sn s.t. φ(C) = C′

Proposition If C = ⟨G⟩ is linearly equivalent to C′
= ⟨G′⟩, then there exist

S ∈ GLq(k),D = diag(d), permutation matrix P , s.t. SGDP = G
′

Definition ◦ The automorphism group of C is Aut(C) = {φ ∈ (F⋆
q)n ⋊ Sn ∣ φ(C) = C}

Property ◦ If C is random, then Aut(C) = {id} with high probability for large n

”Rigid linear binary codes” H. Lefmann, K. Phelps, V. Rödl, 1993

Violetta Weger 10/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Proposition If φ ∈ Sn is s.t. φ(C) = C′ then φ(C⊥) = C′⊥

Proposition If φ ∈ Sn is s.t. φ(C) = C′ then φ(H(C)) = H(C′)

Exercises ◦ If φ ∈ Sn is s.t. φ ∈ Aut(C) then φ ∈ Aut(H(C))
◦ If φ ∈ (F⋆

q)n ⋊ Sn is s.t. φ(C) = C′ then ∃φ′
∈ (F⋆

q)n ⋊ Sn ∶ φ′(C⊥) = C′⊥

Violetta Weger 11/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Proposition If φ ∈ Sn is s.t. φ(C) = C′ then φ(C⊥) = C′⊥

Proposition If φ ∈ Sn is s.t. φ(C) = C′ then φ(H(C)) = H(C′)

Exercises ◦ If φ ∈ Sn is s.t. φ ∈ Aut(C) then φ ∈ Aut(H(C))
◦ If φ ∈ (F⋆

q)n ⋊ Sn is s.t. φ(C) = C′ then ∃φ′
∈ (F⋆

q)n ⋊ Sn ∶ φ′(C⊥) = C′⊥

Violetta Weger 11/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

Proposition If φ ∈ Sn is s.t. φ(C) = C′ then φ(C⊥) = C′⊥

Proposition If φ ∈ Sn is s.t. φ(C) = C′ then φ(H(C)) = H(C′)

Exercises ◦ If φ ∈ Sn is s.t. φ ∈ Aut(C) then φ ∈ Aut(H(C))
◦ If φ ∈ (F⋆

q)n ⋊ Sn is s.t. φ(C) = C′ then ∃φ′
∈ (F⋆

q)n ⋊ Sn ∶ φ′(C⊥) = C′⊥

Violetta Weger 11/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition The weight enumerator of C is Aw(C) = ∣{c ∈ C ∣ wt(c) = w}∣

Exercise Aw(C) = Aw(C′) for all w ∈ {1, . . . , n}

What about the other direction?

Proposition Aw(C) = Aw(C̃) /⇒ C is linearly equivalent to C̃

Proposition ∣Aut(C)∣ = ∣Aut(C′)∣

Violetta Weger 12/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition The weight enumerator of C is Aw(C) = ∣{c ∈ C ∣ wt(c) = w}∣

Exercise Aw(C) = Aw(C′) for all w ∈ {1, . . . , n}

What about the other direction?

Proposition Aw(C) = Aw(C̃) /⇒ C is linearly equivalent to C̃

Proposition ∣Aut(C)∣ = ∣Aut(C′)∣

Violetta Weger 12/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition The weight enumerator of C is Aw(C) = ∣{c ∈ C ∣ wt(c) = w}∣

Exercise Aw(C) = Aw(C′) for all w ∈ {1, . . . , n}

What about the other direction?

Proposition Aw(C) = Aw(C̃) /⇒ C is linearly equivalent to C̃

Proposition ∣Aut(C)∣ = ∣Aut(C′)∣

Violetta Weger 12/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition The weight enumerator of C is Aw(C) = ∣{c ∈ C ∣ wt(c) = w}∣

Exercise Aw(C) = Aw(C′) for all w ∈ {1, . . . , n}

What about the other direction?

Proposition Aw(C) = Aw(C̃) /⇒ C is linearly equivalent to C̃

Proposition ∣Aut(C)∣ = ∣Aut(C′)∣

Violetta Weger 12/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition The weight enumerator of C is Aw(C) = ∣{c ∈ C ∣ wt(c) = w}∣

Exercise Aw(C) = Aw(C′) for all w ∈ {1, . . . , n}

What about the other direction?

Proposition Aw(C) = Aw(C̃) /⇒ C is linearly equivalent to C̃

Proposition ∣Aut(C)∣ = ∣Aut(C′)∣

Violetta Weger 12/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition ◦ The support of C is supp(C) = {i ∣ ∃c ∈ C ∶ ci ≠ 0}
◦ The weight of C is wt(C) = ∣supp(C)∣
◦ Let r ∈ {1, . . . , k}, the rth generalized weight of C is

dr(C) = min{wt(D) ∣ D ⊆ C,dim(D) = r}

Exercises ◦ Show that dr(C) = dr(C′)
◦ For r ∈ {1, . . . , k − 1} show that dr(C) < dr+1(C)

Violetta Weger 13/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition ◦ The support of C is supp(C) = {i ∣ ∃c ∈ C ∶ ci ≠ 0}
◦ The weight of C is wt(C) = ∣supp(C)∣

◦ Let r ∈ {1, . . . , k}, the rth generalized weight of C is

dr(C) = min{wt(D) ∣ D ⊆ C,dim(D) = r}

Exercises ◦ Show that dr(C) = dr(C′)
◦ For r ∈ {1, . . . , k − 1} show that dr(C) < dr+1(C)

Violetta Weger 13/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition ◦ The support of C is supp(C) = {i ∣ ∃c ∈ C ∶ ci ≠ 0}
◦ The weight of C is wt(C) = ∣supp(C)∣
◦ Let r ∈ {1, . . . , k}, the rth generalized weight of C is

dr(C) = min{wt(D) ∣ D ⊆ C,dim(D) = r}

Exercises ◦ Show that dr(C) = dr(C′)
◦ For r ∈ {1, . . . , k − 1} show that dr(C) < dr+1(C)

Violetta Weger 13/64



Code Equivalence - Coding Theory

Let C,C′ be [n, k]q linear codes

If C is linearly equivalent to C′, which properties remain the same?

Definition ◦ The support of C is supp(C) = {i ∣ ∃c ∈ C ∶ ci ≠ 0}
◦ The weight of C is wt(C) = ∣supp(C)∣
◦ Let r ∈ {1, . . . , k}, the rth generalized weight of C is

dr(C) = min{wt(D) ∣ D ⊆ C,dim(D) = r}

Exercises ◦ Show that dr(C) = dr(C′)
◦ For r ∈ {1, . . . , k − 1} show that dr(C) < dr+1(C)

Violetta Weger 13/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called

length
◦ k is called

dimension

◦ d is called

minimum distance

◦ G is called

generator matrix

◦ H is called

parity-check matrix

◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length

◦ k is called

dimension

◦ d is called

minimum distance

◦ G is called

generator matrix

◦ H is called

parity-check matrix

◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called

dimension
◦ d is called

minimum distance

◦ G is called

generator matrix

◦ H is called

parity-check matrix

◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension

◦ d is called

minimum distance

◦ G is called

generator matrix

◦ H is called

parity-check matrix

◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called

minimum distance
◦ G is called

generator matrix

◦ H is called

parity-check matrix

◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance

◦ G is called

generator matrix

◦ H is called

parity-check matrix

◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called

generator matrix
◦ H is called

parity-check matrix

◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called

parity-check matrix
◦ c ∈ C is called

codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called parity-check matrix
◦ c ∈ C is called

codeword
◦ s = xH

⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called parity-check matrix
◦ c ∈ C is called codeword

◦ s = xH
⊤ is called

syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called parity-check matrix
◦ c ∈ C is called codeword
◦ s = xH

⊤ is called

syndrome
◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called parity-check matrix
◦ c ∈ C is called codeword
◦ s = xH

⊤ is called syndrome

◦ C⊥ is called

dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called parity-check matrix
◦ c ∈ C is called codeword
◦ s = xH

⊤ is called syndrome
◦ C⊥ is called

dual code
◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called parity-check matrix
◦ c ∈ C is called codeword
◦ s = xH

⊤ is called syndrome
◦ C⊥ is called dual code

◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called parity-check matrix
◦ c ∈ C is called codeword
◦ s = xH

⊤ is called syndrome
◦ C⊥ is called dual code
◦ H(C) is called

hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Let C be an [n, k, d]q linear code. ⟨G⟩ = C = ker(H⊤)

Summary ◦ n is called length
◦ k is called dimension
◦ d is called minimum distance
◦ G is called generator matrix
◦ H is called parity-check matrix
◦ c ∈ C is called codeword
◦ s = xH

⊤ is called syndrome
◦ C⊥ is called dual code
◦ H(C) is called hull

Violetta Weger 14/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if

∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if

∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→

φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if

∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→

φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if

∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→

φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→

φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→

φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→

φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→ φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→ φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→

∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→ φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→ ∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→ φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→ ∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants

◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→ φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→ ∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants ◦ Automorphism group Aut(C)

◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→ φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→ ∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants ◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)

◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Coding Theory

Two C,C′ [n, k]q linear codes are said to be

Summary ◦ linearly equivalent if ∃φ ∈ (F⋆
q)n ⋊ Sn ∶ φ(C) = C′

◦ permutation equivalent if ∃φ ∈ Sn ∶ φ(C) = C′

◦ ∃S ∈ GLq(k),D = diag(d), P perm. matrix, s.t. SGDP = G
′

If ∃φ ∈ Sn s.t. φ(C) = C′
→ φ(C⊥) = C′⊥

If ∃φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

→ ∃φ′
= (D−1

, P ) s.t. φ′(C⊥) = C′⊥

Invariants ◦ Automorphism group Aut(C)
◦ Weight enumerator Aw(C)
◦ rth generalized weight dr(C)

Violetta Weger 15/64



Code Equivalence - Cryptography

Goal: secure communication

Symmetric cryptography: both have same key

How to exchange the keys?

Asymmetric/ public-key cryptography

Signature scheme

Violetta Weger 16/64



Code Equivalence - Cryptography

Goal: secure communication

Symmetric cryptography: both have same key

How to exchange the keys?

Asymmetric/ public-key cryptography

Signature scheme

Violetta Weger 16/64



Code Equivalence - Cryptography

Goal: secure communication

Symmetric cryptography: both have same key

How to exchange the keys?

Asymmetric/ public-key cryptography

Signature scheme

Violetta Weger 16/64



Code Equivalence - Cryptography

Goal: secure communication

Symmetric cryptography: both have same key

How to exchange the keys?

Asymmetric/ public-key cryptography

Public-key encryption (PKE)

Signature scheme

Violetta Weger 16/64



Code Equivalence - Cryptography

Goal: secure communication

Symmetric cryptography: both have same key

How to exchange the keys?

Asymmetric/ public-key cryptography

Key encapsulation mechanism (KEM)

Signature scheme

Violetta Weger 16/64



Code Equivalence - Cryptography

Goal: secure communication

Symmetric cryptography: both have same key

How to exchange the keys?

Asymmetric/ public-key cryptography

Key encapsulation mechanism (KEM)

Signature scheme

Violetta Weger 16/64



Code Equivalence - Cryptography

Signer Signature Scheme Verifier

secret key public key

message m

, m→ signature s

,m, s,→◦

◦

authentication
integrity

attacker: recover

from and many (m, s)

integrity

probability of getting accepted:

cheating probability α

Violetta Weger 17/64



Code Equivalence - Cryptography

Signer Signature Scheme Verifier

secret key public key

message m

, m→ signature s

,m, s,→◦

◦

authentication
integrity

attacker: recover

from and many (m, s)

integrity

probability of getting accepted:

cheating probability α

Violetta Weger 17/64



Code Equivalence - Cryptography

Signer Signature Scheme Verifier

secret key public key

message m

, m→ signature s

,m, s,→

◦

◦

authentication
integrity

attacker: recover

from and many (m, s)

integrity

probability of getting accepted:

cheating probability α

Violetta Weger 17/64



Code Equivalence - Cryptography

Signer Signature Scheme Verifier

secret key public key

message m

, m→ signature s

,m, s,→◦

◦

authentication
integrity

attacker: recover

from and many (m, s)

integrity

probability of getting accepted:

cheating probability α

Violetta Weger 17/64



Code Equivalence - Cryptography

Signer Signature Scheme Verifier

secret key public key

message m

, m→ signature s

,m, s,→◦

◦

authentication
integrity

attacker: recover

from and many (m, s)

integrity

probability of getting accepted:

cheating probability α

Violetta Weger 17/64



Code Equivalence - Cryptography

Signer Signature Scheme Verifier

??? public key

message m

??? , m→ signature s

,m, s,→◦

◦

authentication
integrity

attacker: recover

from and many (m, s)

integrity

probability of getting accepted:

cheating probability α

Violetta Weger 17/64



Code Equivalence - Cryptography

Prover Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t

Violetta Weger 18/64



Code Equivalence - Cryptography

Prover Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t

Violetta Weger 18/64



Code Equivalence - Cryptography

Prover Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}

b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t

Violetta Weger 18/64



Code Equivalence - Cryptography

Prover Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}

b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb

check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t

Violetta Weger 18/64



Code Equivalence - Cryptography

Prover Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}

b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t

Violetta Weger 18/64



Code Equivalence - Cryptography

Prover Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

??? public key

c0, c1 commitments

challenge b ∈ {0, 1}

b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t

Violetta Weger 18/64



Code Equivalence - Cryptography

Prover Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}

b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t

Violetta Weger 18/64



Code Equivalence - Cryptography

Signer

Zero-Knowledge Protocol

Fiat-Shamir Transform

ZK Protocol → Signature Scheme

Verifier

secret key public key

c0, c1 commitments

challenge b ∈ {0, 1}

b = Hash(m, c0, c1)
b = Hash(m, c0, c1)

response rb

m, s = (c0, c1, rb)

check , rb → cb

check , rb → cb

◦

◦

zero-knowledge

complete
◦ soundness error α

t rounds

→ α
t

Violetta Weger 18/64



Code Equivalence - Cryptography

Main motivation: LESS

◦ code-based signature scheme ◦ 2nd round candidate in NIST call

◦ 14 surviving schemes ◦ 6 code-based schemes

Urgent: ◦ until 2030 all critical use cases should update
◦ until 2035 all use cases should update

Problem: ◦ Standardizations take time
◦ All based on novel problems: secure?

Violetta Weger 19/64



Code Equivalence - Cryptography

Main motivation: LESS
◦ code-based signature scheme ◦ 2nd round candidate in NIST call

◦ 14 surviving schemes ◦ 6 code-based schemes

Urgent: ◦ until 2030 all critical use cases should update
◦ until 2035 all use cases should update

Problem: ◦ Standardizations take time
◦ All based on novel problems: secure?

Violetta Weger 19/64



Code Equivalence - Cryptography

Main motivation: LESS
◦ code-based signature scheme ◦ 2nd round candidate in NIST call

◦ 14 surviving schemes ◦ 6 code-based schemes

Urgent: ◦ until 2030 all critical use cases should update
◦ until 2035 all use cases should update

Problem: ◦ Standardizations take time
◦ All based on novel problems: secure?

Violetta Weger 19/64



Code Equivalence - Cryptography

Main motivation: LESS
◦ code-based signature scheme ◦ 2nd round candidate in NIST call

◦ 14 surviving schemes ◦ 6 code-based schemes

Urgent: ◦ until 2030 all critical use cases should update
◦ until 2035 all use cases should update

Problem: ◦ Standardizations take time
◦ All based on novel problems: secure?

Violetta Weger 19/64



Code Equivalence - Cryptography

Main motivation: LESS
◦ code-based signature scheme ◦ 2nd round candidate in NIST call

◦ 14 surviving schemes ◦ 6 code-based schemes

Urgent: ◦ until 2030 all critical use cases should update
◦ until 2035 all use cases should update

Problem: ◦ Standardizations take time
◦ All based on novel problems: secure?

Violetta Weger 19/64



Code Equivalence - Cryptography

Main motivation: LESS
◦ code-based signature scheme ◦ 2nd round candidate in NIST call

◦ 14 surviving schemes ◦ 6 code-based schemes

Urgent: ◦ until 2030 all critical use cases should update
◦ until 2035 all use cases should update

Problem: ◦ Standardizations take time
◦ All based on novel problems: secure?

Violetta Weger 19/64



Code Equivalence - Cryptography

Prover LESS ZK-Protocol Verifier

φ = D,P G,G
′ s.t. SGDP = G

′

commitment G̃ = φ̃(G)

challenge b ∈ {0, 1}

response r0 = φ̃, r1 = φ̃ ◦ φ−1 check φ̃(G) = G̃ or φ̃ ◦ φ−1(G′) = G̃

C
φ

C′

C̃
φ̃ φ̃ ◦ φ−1 soundness error 1

2

Violetta Weger 20/64



Code Equivalence - Cryptography

Prover LESS ZK-Protocol Verifier

φ = D,P G,G
′ s.t. SGDP = G

′

commitment G̃ = φ̃(G)

challenge b ∈ {0, 1}

response r0 = φ̃, r1 = φ̃ ◦ φ−1 check φ̃(G) = G̃ or φ̃ ◦ φ−1(G′) = G̃

C
φ

C′

C̃
φ̃ φ̃ ◦ φ−1 soundness error 1

2

Violetta Weger 20/64



Code Equivalence - Cryptography

Prover LESS ZK-Protocol Verifier

φ = D,P G,G
′ s.t. SGDP = G

′

commitment G̃ = φ̃(G)

challenge b ∈ {0, 1}

response r0 = φ̃, r1 = φ̃ ◦ φ−1 check φ̃(G) = G̃ or φ̃ ◦ φ−1(G′) = G̃

C
φ

C′

C̃
φ̃ φ̃ ◦ φ−1 soundness error 1

2

Violetta Weger 20/64



Code Equivalence - Cryptography

Prover LESS ZK-Protocol Verifier

φ = D,P G,G
′ s.t. SGDP = G

′

commitment G̃ = φ̃(G)

challenge b ∈ {0, 1}

response r0 = φ̃, r1 = φ̃ ◦ φ−1

check φ̃(G) = G̃ or φ̃ ◦ φ−1(G′) = G̃

C
φ

C′

C̃
φ̃ φ̃ ◦ φ−1 soundness error 1

2

Violetta Weger 20/64



Code Equivalence - Cryptography

Prover LESS ZK-Protocol Verifier

φ = D,P G,G
′ s.t. SGDP = G

′

commitment G̃ = φ̃(G)

challenge b ∈ {0, 1}

response r0 = φ̃, r1 = φ̃ ◦ φ−1 check φ̃(G) = G̃ or φ̃ ◦ φ−1(G′) = G̃

C
φ

C′

C̃
φ̃ φ̃ ◦ φ−1 soundness error 1

2

Violetta Weger 20/64



Code Equivalence - Cryptography

Prover LESS ZK-Protocol Verifier

φ = D,P G,G
′ s.t. SGDP = G

′

commitment G̃ = φ̃(G)

challenge b ∈ {0, 1}

response r0 = φ̃, r1 = φ̃ ◦ φ−1 check φ̃(G) = G̃ or φ̃ ◦ φ−1(G′) = G̃

C
φ

C′

C̃
φ̃ φ̃ ◦ φ−1

soundness error 1
2

Violetta Weger 20/64



Code Equivalence - Cryptography

Prover LESS ZK-Protocol Verifier

φ = D,P G,G
′ s.t. SGDP = G

′

commitment G̃ = φ̃(G)

challenge b ∈ {0, 1}

response r0 = φ̃, r1 = φ̃ ◦ φ−1 check φ̃(G) = G̃ or φ̃ ◦ φ−1(G′) = G̃

C
φ

C′

C̃
φ̃ φ̃ ◦ φ−1 soundness error 1

2

Violetta Weger 20/64



Code Equivalence - Complexity

Set up P a decisional problem, I an instance, s a solution

Example Syndrome Decoding Problem:

Instance =(H, s, t)

Aim complexity theory: How hard are such problems?

Is SDP harder than sorting / determining minimum distance/ code equivalence?

Violetta Weger 21/64



Code Equivalence - Complexity

Set up P a decisional problem, I an instance, s a solution

Example Syndrome Decoding Problem:

Given H, s, t, does there exist a e s.t. eH⊤
= s,wt(e) ≤ t

Instance =(H, s, t) Solution = yes/no

Aim complexity theory: How hard are such problems?

Is SDP harder than sorting / determining minimum distance/ code equivalence?

Violetta Weger 21/64



Code Equivalence - Complexity

Set up P a computational problem,I an instance, s a solution

Example Syndrome Decoding Problem:

Given H, s, t, find error vector e s.t. eH⊤
= s,wt(e) ≤ t

Instance =(H, s, t) Solution = e

Aim complexity theory: How hard are such problems?

Is SDP harder than sorting / determining minimum distance/ code equivalence?

Violetta Weger 21/64



Code Equivalence - Complexity

Set up P a computational problem,I an instance, s a solution

Example Syndrome Decoding Problem:

Given H, s, t, find error vector e s.t. eH⊤
= s,wt(e) ≤ t

Instance =(H, s, t) Solution = e

Aim complexity theory: How hard are such problems?

Is SDP harder than sorting / determining minimum distance/ code equivalence?

Violetta Weger 21/64



Code Equivalence - Complexity

Complexity Classes

P

◦ P ∈ P if can solve P in poly. time

by a deterministic Turing machine

NP

◦

◦ P ⊂ NP

◦ polynomial time: O(nc) for some constant c

◦ quasi- polynomial time: O(2log(n)c

) for some constant c
◦ exponential time: O(2nc) for some constant c

Violetta Weger 22/64



Code Equivalence - Complexity

Complexity Classes

P

◦ P ∈ P if can solve P in poly. time

by a deterministic Turing machine
NP

◦

◦ P ⊂ NP

◦ polynomial time: O(nc) for some constant c

◦ quasi- polynomial time: O(2log(n)c

) for some constant c
◦ exponential time: O(2nc) for some constant c

Violetta Weger 22/64



Code Equivalence - Complexity

Complexity Classes

P

◦ P ∈ P if can solve P in poly. time

by a deterministic Turing machine
NP

◦ P ∈ NP if can solve P in poly. time

by a non-deterministic Turing machine

◦ P ⊂ NP

◦ polynomial time: O(nc) for some constant c

◦ quasi- polynomial time: O(2log(n)c

) for some constant c
◦ exponential time: O(2nc) for some constant c

Violetta Weger 22/64



Code Equivalence - Complexity

Complexity Classes

P

◦ P ∈ P if can solve P in poly. time

by a deterministic Turing machine
NP

◦ P ∈ NP if can check candidate
is a solution in poly. time

◦ P ⊂ NP

◦ polynomial time: O(nc) for some constant c

◦ quasi- polynomial time: O(2log(n)c

) for some constant c
◦ exponential time: O(2nc) for some constant c

Violetta Weger 22/64



Code Equivalence - Complexity

Complexity Classes

P

◦ P ∈ P if can solve P in poly. time

by a deterministic Turing machine
NP

◦ P ∈ NP if can check candidate
is a solution in poly. time

◦ P ⊂ NP

◦ polynomial time: O(nc) for some constant c

◦ quasi- polynomial time: O(2log(n)c

) for some constant c
◦ exponential time: O(2nc) for some constant c

Violetta Weger 22/64



Code Equivalence - Complexity

Complexity Classes

P

◦ P ∈ P if can solve P in poly. time

by a deterministic Turing machine
NP

◦ P ∈ NP if can check candidate
is a solution in poly. time

◦ P ⊂ NP

◦ polynomial time: O(nc) for some constant c
◦ quasi- polynomial time: O(2log(n)c

) for some constant c
◦ exponential time: O(2nc) for some constant c

Violetta Weger 22/64



Code Equivalence - Complexity

How to compare hardness of problems?

Polynomial-time reduction form R to P

1. take any instance I of R → 2. transform to a instance I ′ of P
↓

3. oracle gives solution s
′ to I ′←4. transform to a solution s of I

→ hardness(P) ≥ hardness(R)

P

NP

NP -hard
◦ P ∈ NP -hard if ∃ poly. time reduction

from every R ∈ NP to P

◦ NP -complete = NP ∩NP -hard
◦ if R ∈ NP -hard and R → P then P ∈ NP -hard

Violetta Weger 23/64



Code Equivalence - Complexity

How to compare hardness of problems?

Polynomial-time reduction form R to P

1. take any instance I of R → 2. transform to a instance I ′ of P
↓

3. oracle gives solution s
′ to I ′←4. transform to a solution s of I

→ hardness(P) ≥ hardness(R)

P

NP

NP -hard
◦ P ∈ NP -hard if ∃ poly. time reduction

from every R ∈ NP to P

◦ NP -complete = NP ∩NP -hard
◦ if R ∈ NP -hard and R → P then P ∈ NP -hard

Violetta Weger 23/64



Code Equivalence - Complexity

How to compare hardness of problems?

Polynomial-time reduction form R to P

1. take any instance I of R → 2. transform to a instance I ′ of P
↓

3. oracle gives solution s
′ to I ′←4. transform to a solution s of I

→ hardness(P) ≥ hardness(R)

P

NP

NP -hard
◦ P ∈ NP -hard if ∃ poly. time reduction

from every R ∈ NP to P

◦ NP -complete = NP ∩NP -hard
◦ if R ∈ NP -hard and R → P then P ∈ NP -hard

Violetta Weger 23/64



Code Equivalence - Coffee break

Violetta Weger 24/64



Code Equivalence - Exercises

Violetta Weger 25/64



Code Equivalence - Exercises

C = ⟨G⟩ = ker(H⊤) a [n, k]q linear code

1. Show that ⟨H⟩ = C⊥
.

2. Show that (C⊥)⊥ = C.
3. Show that if GG⊤

= 0, then C is self-orthogonal.
4. Show that C is self-dual iff C is self-orthogonal and n = 2k.

5. Show that H(C) = ker((G
H
)
⊤

) .

6. Let G be in systematic form, i.e., G = (Idk A) for A ∈ Fk×(n−k)
q .

Show that if AA⊤ + Idn−k is full rank, then dim(H(C)) = 0.
7. Show that if GG⊤ has full rank, then dim(H(C)) = 0.

Violetta Weger 26/64



Code Equivalence - Exercises

C = ⟨G⟩ and C′
= ⟨G′⟩

1. Show that the linear isometries form a group with respect to the composition.

2. Give the automorphism group of C = ⟨(1, 0, 0), (0, 1, 1)⟩ ⊆ F3
2.

3. Let φ ∈ Aut(C) be a permutation. Show that φ ∈ Aut(C ∩ C⊥).
4. Show that C⊥ is linearly equivalent to C′⊥

.

5. Show that for all w ∈ {1, . . . , n} we have that Aw(C) = Aw(C′).
6. Show that for r ∈ {1, . . . , k − 1} we have dr(C) < dr+1(C).
7. Show that for all r ∈ {1, . . . , k} we have that dr(C) = dr(C′).
8. Consider the code C1 ⊆ F3

3 generated by

G1 = (1 0 2
0 1 1) and the code C2 ⊆ F3

3 generated by G2 = (1 0 1
0 1 0).

Are the two codes linear equivalent, permutation equivalent or not equivalent?

Violetta Weger 27/64



Code Equivalence - The Problem

How hard is code equivalence?

Linear Equivalence Problem (LEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Permutation Equivalence Problem (PEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ Sn s.t. φ(C) = C′

hardness(LEP) ≥ hardness(PEP)

Are they NP-hard?

Violetta Weger 28/64



Code Equivalence - The Problem

How hard is code equivalence?

Linear Equivalence Problem (LEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Permutation Equivalence Problem (PEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ Sn s.t. φ(C) = C′

hardness(LEP) ≥ hardness(PEP)

Are they NP-hard?

Violetta Weger 28/64



Code Equivalence - The Problem

How hard is code equivalence?

Linear Equivalence Problem (LEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Permutation Equivalence Problem (PEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ Sn s.t. φ(C) = C′

hardness(LEP) ≥ hardness(PEP)

Are they NP-hard?

Violetta Weger 28/64



Code Equivalence - The Problem

How hard is code equivalence?

Linear Equivalence Problem (LEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Permutation Equivalence Problem (PEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ Sn s.t. φ(C) = C′

hardness(LEP) ≥ hardness(PEP)

Are they NP-hard?

Violetta Weger 28/64



Code Equivalence - The Problem

How hard is code equivalence?

Linear Equivalence Problem (LEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Permutation Equivalence Problem (PEP)

Given C,C′ two [n, k]q linear codes, find φ ∈ Sn s.t. φ(C) = C′

hardness(LEP) ≥ hardness(PEP)

Are they NP-hard?

Violetta Weger 28/64



Code Equivalence - The Problem

No: any isomorphism problem is not NP-hard

Merlin Arthur

◦

◦ if PH ≠ AM: P ∈ co-AM is not NP-hard

I = (C1,C2) choose b ∈ {1, 2} and φ

compute C = φ(Cb)
C

find Cb equivalent to C
b

soundness error: 1/2 t rounds → 1/2t
→ LEP ∈ co-AM

Violetta Weger 29/64



Code Equivalence - The Problem

No: any isomorphism problem is not NP-hard

Merlin Arthur

◦

◦ if PH ≠ AM: P ∈ co-AM is not NP-hard

I = (C1,C2) choose b ∈ {1, 2} and φ

compute C = φ(Cb)
C

find Cb equivalent to C
b

soundness error: 1/2 t rounds → 1/2t
→ LEP ∈ co-AM

Violetta Weger 29/64



Code Equivalence - The Problem

No: any isomorphism problem is not NP-hard

Merlin Arthur

◦ P ∈ AM if Merlin can convince Arthur that the answer to instance I is yes
◦ if PH ≠ AM: P ∈ co-AM is not NP-hard

I = (C1,C2) choose b ∈ {1, 2} and φ

compute C = φ(Cb)
C

find Cb equivalent to C
b

soundness error: 1/2 t rounds → 1/2t
→ LEP ∈ co-AM

Violetta Weger 29/64



Code Equivalence - The Problem

No: any isomorphism problem is not NP-hard

Merlin Arthur

◦ P ∈ co-AM if Merlin can convince Arthur that the answer to instance I is no
◦ if PH ≠ AM: P ∈ co-AM is not NP-hard

I = (C1,C2) choose b ∈ {1, 2} and φ

compute C = φ(Cb)
C

find Cb equivalent to C
b

soundness error: 1/2 t rounds → 1/2t
→ LEP ∈ co-AM

Violetta Weger 29/64



Code Equivalence - The Problem

No: any isomorphism problem is not NP-hard

Merlin Arthur

◦ P ∈ co-AM if Merlin can convince Arthur that the answer to instance I is no
◦ if PH ≠ AM: P ∈ co-AM is not NP-hard

I = (C1,C2) choose b ∈ {1, 2} and φ

compute C = φ(Cb)
C

find Cb equivalent to C
b

soundness error: 1/2 t rounds → 1/2t
→ LEP ∈ co-AM

Violetta Weger 29/64



Code Equivalence - The Problem

No: any isomorphism problem is not NP-hard

Merlin Arthur

◦ P ∈ co-AM if Merlin can convince Arthur that the answer to instance I is no
◦ if PH ≠ AM: P ∈ co-AM is not NP-hard

I = (C1,C2) choose b ∈ {1, 2} and φ

compute C = φ(Cb)
C

find Cb equivalent to C
b

soundness error: 1/2 t rounds → 1/2t
→ LEP ∈ co-AM

Violetta Weger 29/64



Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ k(n − k) equations

Violetta Weger 30/64



Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ k(n − k) equations

Violetta Weger 30/64



Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ k(n − k) equations

Violetta Weger 30/64



Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ GDPH
′⊤

= 0

→ k(n − k) equations

Violetta Weger 30/64



Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ GMH
′⊤

= 0

→ k(n − k) equations

Violetta Weger 30/64



Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ GMH
′⊤

= 0

→ k(n − k) equations

→ n variables

Violetta Weger 30/64



Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ GMH
′⊤

= 0

→ k(n − k) equations

→ n
2 variables

Violetta Weger 30/64



Code Equivalence - Solvers

LEP not NP-hard, but is it easy to solve?

Solvers Given G,G
′
∈ Fk×n

q find S ∈ GLq(k),D = diag(d), P n × n permutation matrix

s.t. SGDP = G
′

◦ algebraic solvers

G
′
H

′⊤
= 0 and ⟨GDP ⟩ = C′

→ GMH
′⊤

= 0

→ k(n − k) equations

→ n
2 variables

Violetta Weger 30/64



Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP (NP-hard)∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP ∈ O(2nc)

Violetta Weger 31/64



Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP (NP-hard)∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP ∈ O(2nc)

Violetta Weger 31/64



Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP

(NP-hard)∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP ∈ O(2nc)

Violetta Weger 31/64



Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP (NP-hard)

∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP ∈ O(2nc)

Violetta Weger 31/64



Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP (NP-hard)∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP ∈ O(2nc)

Violetta Weger 31/64



Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP (NP-hard)∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP ∈ O(2nc)

Violetta Weger 31/64



Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP (NP-hard)∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP

∈ O(2nc)

Violetta Weger 31/64



Code Equivalence - Solvers

◦ combinatorial solvers

idea: choose subset S ⊂ C, S ′
⊂ C′ invariant: φ(S) = S ′

◦ Leon: weight enumerator
”Computing automorphism groups of error-correcting codes” J. Leon, 1982

S = {c ∈ C ∣ wt(c) = w} φ
−→ S

′
= {c′ ∈ C′ ∣ wt(c′) = w}

→ cost = cost of solving SDP (NP-hard)∈ O(2nc)

◦ Beullens: 2nd generalized weight
”Not enough LESS” W. Beullens, 2020

S = {D < C ∣ dim(D) = 2,wt(D) = w} φ
−→ S

′
= {D′

< C′ ∣ dim(D′) = 2,wt(D′) = w}

→ cost = cost of solving SDP ∈ O(2nc)

Violetta Weger 31/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes

→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver

◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}

→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy

→ other solvers using canonical forms → cost ∈ O (
√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

◦ Sendrier: Support Splitting Algorithm (SSA)
”The support splitting algorithm” N. Sendrier, 2002

→ only for PEP: puncture in position i: P(C, {i}) = Ci and consider the hull

H(Ci)
φ
−→ H(C′

j)

→ cost ∈ O(qdim(H(C)))

◦ C random then dim(H(C)) constant w.h.p. → PEP is easy for random codes
→ if C has constant hull → polynomial time solver
◦ if puncture in information set I → H(CIC ) = {0}
→ only need to find φ(I) to puncture also C′

→ if we know φ(I) → easy
→ other solvers using canonical forms → cost ∈ O (

√
(n

k
))

”On linear equivalence, canonical forms, and digital signatures”, T. Chou, E. Persichetti, P. Santini, 2025

Violetta Weger 32/64



Code Equivalence - Solvers

Summary ◦ LEP, PEP not NP-hard

◦ solvers for LEP have exponential cost
◦ solvers for PEP have cost in O(qdim(H(C)))
◦ PEP easy for random codes
◦ PEP hardest instance: self-orthogonal codes H(C) = C

Violetta Weger 33/64



Code Equivalence - Solvers

Summary ◦ LEP, PEP not NP-hard
◦ solvers for LEP have exponential cost

◦ solvers for PEP have cost in O(qdim(H(C)))
◦ PEP easy for random codes
◦ PEP hardest instance: self-orthogonal codes H(C) = C

Violetta Weger 33/64



Code Equivalence - Solvers

Summary ◦ LEP, PEP not NP-hard
◦ solvers for LEP have exponential cost
◦ solvers for PEP have cost in O(qdim(H(C)))

◦ PEP easy for random codes
◦ PEP hardest instance: self-orthogonal codes H(C) = C

Violetta Weger 33/64



Code Equivalence - Solvers

Summary ◦ LEP, PEP not NP-hard
◦ solvers for LEP have exponential cost
◦ solvers for PEP have cost in O(qdim(H(C)))
◦ PEP easy for random codes

◦ PEP hardest instance: self-orthogonal codes H(C) = C

Violetta Weger 33/64



Code Equivalence - Solvers

Summary ◦ LEP, PEP not NP-hard
◦ solvers for LEP have exponential cost
◦ solvers for PEP have cost in O(qdim(H(C)))
◦ PEP easy for random codes
◦ PEP hardest instance: self-orthogonal codes H(C) = C

Violetta Weger 33/64



Code Equivalence - Different View Point

Finite Geometry

Definition Finite projective geometry of dimension k and order q

PG(k, q) = (Fk+1
q \ {0})/ ∼

where u ∼ v iff u = λv for some λ ∈ F⋆
q

Definition M is a projective [n, k, d]q system if M is a finite set

of n points of PG(k − 1, q) not all on a hyperplane and

d = n − max{∣H ∩M∣ ∣ H ⊆ PG(k − 1, q),dim(H) = k − 2}

Violetta Weger 34/64



Code Equivalence - Different View Point

Finite Geometry

Definition Finite projective geometry of dimension k and order q

PG(k, q) = (Fk+1
q \ {0})/ ∼

where u ∼ v iff u = λv for some λ ∈ F⋆
q

Definition M is a projective [n, k, d]q system if M is a finite set

of n points of PG(k − 1, q) not all on a hyperplane and

d = n − max{∣H ∩M∣ ∣ H ⊆ PG(k − 1, q),dim(H) = k − 2}

Violetta Weger 34/64



Code Equivalence - Different View Point

Finite Geometry

Definition Finite projective geometry of dimension k and order q

PG(k, q) = (Fk+1
q \ {0})/ ∼

where u ∼ v iff u = λv for some λ ∈ F⋆
q

Definition M is a projective [n, k, d]q system if M is a finite set

of n points of PG(k − 1, q) not all on a hyperplane and

d = n − max{∣H ∩M∣ ∣ H ⊆ PG(k − 1, q),dim(H) = k − 2}

Violetta Weger 34/64



Code Equivalence - Different View Point

Connection

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

C a [n, k, d]q linear non-degenerate code

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

M a projective [n, k, d]q system

Violetta Weger 35/64



Code Equivalence - Different View Point

Connection

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

C a [n, k, d]q linear non-degenerate code

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

M a projective [n, k, d]q system

Violetta Weger 35/64



Code Equivalence - Different View Point

Connection

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

C a [n, k, d]q linear non-degenerate code

G =

⎛
⎜
⎝

g1,1 ⋯ g1,n

⋮ ⋮
gk,1 ⋯ gk,n

⎞
⎟
⎠

M a projective [n, k, d]q system

Violetta Weger 35/64



Code Equivalence - Different View Point

Matroids

Definition A matroid M is a pair (E, I) where E is a finite set and
I is a collection of subsets of E, called independent sets, s.t.

1. ∅ ∈ I

2. if A ∈ I,B ⊆ A then B ∈ I

3. if A,B ∈ I, ∣A∣ < ∣B∣, then ∃b ∈ B \A s.t. A ∪ {b} ∈ I

Connection

G ∈ Fk×n
q generator matrix → representable matroid M(G) = (E, I) where

E = {1, . . . , n} and I = {S ⊂ E ∣ GS has full rank }

Violetta Weger 36/64



Code Equivalence - Different View Point

Matroids

Definition A matroid M is a pair (E, I) where E is a finite set and
I is a collection of subsets of E, called independent sets, s.t.

1. ∅ ∈ I

2. if A ∈ I,B ⊆ A then B ∈ I

3. if A,B ∈ I, ∣A∣ < ∣B∣, then ∃b ∈ B \A s.t. A ∪ {b} ∈ I

Connection

G ∈ Fk×n
q generator matrix → representable matroid M(G) = (E, I) where

E = {1, . . . , n} and I = {S ⊂ E ∣ GS has full rank }

Violetta Weger 36/64



Code Equivalence - Different View Point

Matroids

Definition A matroid M is a pair (E, I) where E is a finite set and
I is a collection of subsets of E, called independent sets, s.t.

1. ∅ ∈ I

2. if A ∈ I,B ⊆ A then B ∈ I

3. if A,B ∈ I, ∣A∣ < ∣B∣, then ∃b ∈ B \A s.t. A ∪ {b} ∈ I

Connection

G ∈ Fk×n
q generator matrix → representable matroid M(G) = (E, I) where

E = {1, . . . , n} and I = {S ⊂ E ∣ GS has full rank }

Violetta Weger 36/64



Code Equivalence - Different View Point

Matroids

Definition A matroid M is a pair (E, r) where E is a finite set and

r ∶ P(E) → N0 is a rank function, s.t.

1. 0 ≤ r(X) ≤ ∣X∣ for all X ⊆ E

2. if X ⊆ Y ⊆ E then r(X) ≤ r(Y )
3. for all X,Y ⊆ E: r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y )

Connection

G ∈ Fk×n
q generator matrix → representable matroid M(G) = (E, I) where

E = {1, . . . , n} and for all S ∈ P(E): r(S) = dim(⟨GS⟩)

Violetta Weger 37/64



Code Equivalence - Different View Point

Matroids

Definition A matroid M is a pair (E, r) where E is a finite set and

r ∶ P(E) → N0 is a rank function, s.t.

1. 0 ≤ r(X) ≤ ∣X∣ for all X ⊆ E

2. if X ⊆ Y ⊆ E then r(X) ≤ r(Y )
3. for all X,Y ⊆ E: r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y )

Connection

G ∈ Fk×n
q generator matrix → representable matroid M(G) = (E, I) where

E = {1, . . . , n} and for all S ∈ P(E): r(S) = dim(⟨GS⟩)

Violetta Weger 37/64



Code Equivalence - Different View Point

Matroids

Definition A matroid M is a pair (E, r) where E is a finite set and

r ∶ P(E) → N0 is a rank function, s.t.

1. 0 ≤ r(X) ≤ ∣X∣ for all X ⊆ E

2. if X ⊆ Y ⊆ E then r(X) ≤ r(Y )
3. for all X,Y ⊆ E: r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y )

Connection

G ∈ Fk×n
q generator matrix → representable matroid M(G) = (E, I) where

E = {1, . . . , n} and for all S ∈ P(E): r(S) = dim(⟨GS⟩)

Violetta Weger 37/64



Code Equivalence - Different View Point

Designs

Definition A t − (v, k, λ) design is a pair (X,B), where X = set of v points
B = collection of k-elements subsets of X (blocks), s.t.

every t-element subset of X is contained in exactly λ blocks

Connection
C a [n, k, d]q linear code → X = {1, . . . , n} and

B = {supp(c1), . . . , supp(cN ) ∣ ci ∈ C,wt(ci) = d}

Violetta Weger 38/64



Code Equivalence - Different View Point

Designs

Definition A t − (v, k, λ) design is a pair (X,B), where X = set of v points
B = collection of k-elements subsets of X (blocks), s.t.

every t-element subset of X is contained in exactly λ blocks

Connection
C a [n, k, d]q linear code → X = {1, . . . , n} and

B = {supp(c1), . . . , supp(cN ) ∣ ci ∈ C,wt(ci) = d}

Violetta Weger 38/64



Code Equivalence - Different View Point

Designs

Definition A t − (v, k, λ) design is a pair (X,B), where X = set of v points
B = collection of k-elements subsets of X (blocks), s.t.

every t-element subset of X is contained in exactly λ blocks

Connection
C a [n, k, d]q linear code → X = {1, . . . , n} and

B = {supp(c1), . . . , supp(cN ) ∣ ci ∈ C,wt(ci) = d}

Violetta Weger 38/64



Code Equivalence - Different View Point

Designs

Assmus-Mattson Theorem
C a [n, k, d]q linear code with weight enumerators Ai

C⊥ a [n,n − k, d′]q linear code with weight enumerators A′
i

For t < d, s the number of i < n − t s.t. A′
i ≠ 0

If s ≤ d − t, then the supports of all codewords in C of weight u

with d ≤ u ≤ n form a t-design

”New 5-designs” E.F. Assmus, H.F. Mattson, 1969

Violetta Weger 39/64



Code Equivalence - Connections

Reductions

◦ PEP → LEP ✓ Reduction R → P

if can solve P → can solve R

hardness(P) ≥ hardness(R)

◦ LEP → PEP

◦ PEP → GI

◦ GI → PEP

favorite finite friend: graphs

Violetta Weger 40/64



Code Equivalence - Connections

Reductions

◦ PEP → LEP ✓ Reduction R → P

if can solve P → can solve R

hardness(P) ≥ hardness(R)◦ LEP → PEP

◦ PEP → GI

◦ GI → PEP

favorite finite friend: graphs

Violetta Weger 40/64



Code Equivalence - Connections

Reductions

◦ PEP → LEP ✓ Reduction R → P

if can solve P → can solve R

hardness(P) ≥ hardness(R)◦ LEP → PEP

◦ PEP → GI

◦ GI → PEP

favorite finite friend: graphs

Violetta Weger 40/64



Code Equivalence - Connections

Reductions

◦ PEP → LEP ✓ Reduction R → P

if can solve P → can solve R

hardness(P) ≥ hardness(R)◦ LEP → PEP

◦ PEP → GI

◦ GI → PEP

favorite finite friend: graphs

Violetta Weger 40/64



Code Equivalence - Connections

Reduction from LEP to PEP

Definition C a [n, k]q linear code, α ∈ Fq be a primitive element and

λ = (1, α, . . . , αq−2) ∈ Fq−1
q . The closure of C is λ⊗ C

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Proposition C,C′ [n, k]q linear codes, φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Then exists σ ∈ Sn(q−1) s.t. σ(λ⊗ C) = λ⊗ C′

Violetta Weger 41/64



Code Equivalence - Connections

Reduction from LEP to PEP

Definition C a [n, k]q linear code, α ∈ Fq be a primitive element and

λ = (1, α, . . . , αq−2) ∈ Fq−1
q . The closure of C is λ⊗ C

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Proposition C,C′ [n, k]q linear codes, φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Then exists σ ∈ Sn(q−1) s.t. σ(λ⊗ C) = λ⊗ C′

Violetta Weger 41/64



Code Equivalence - Connections

Reduction from LEP to PEP

Definition C a [n, k]q linear code, α ∈ Fq be a primitive element and

λ = (1, α, . . . , αq−2) ∈ Fq−1
q . The closure of C is λ⊗ C

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Proposition C,C′ [n, k]q linear codes, φ ∈ (F⋆
q)n ⋊ Sn s.t. φ(C) = C′

Then exists σ ∈ Sn(q−1) s.t. σ(λ⊗ C) = λ⊗ C′

Violetta Weger 41/64



Code Equivalence - Connections

Reduction from PEP to GI

Violetta Weger 42/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition A graph G is a pair (V,E) with vertices V and edges E ⊆ V × V

Violetta Weger 42/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition A graph G is a pair (V,E) with vertices V and edges E ⊆ V × V

Definition Two graphs G = (V,E) and G ′
= (V ′

, E
′) are isomorphic if

∃f ∶ V → V
′ {u, v} ∈ E ↔ {f(u), f(v)} ∈ E ′

Violetta Weger 42/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition A undirected, weighted graph G = (V,E) is s.t.

with {u, v} ∈ E iff {v, u} ∈ E and edges have weight w(u, v)

Definition Two graphs G = (V,E) and G ′
= (V ′

, E
′) are isomorphic if

∃f ∶ V → V
′ with {u, v} ∈ E ↔ {f(u), f(v)} ∈ E ′

and w(u, v) = w(f(u), f(v))

Violetta Weger 42/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition A undirected, weighted graph G = (V,E) is s.t.

with {u, v} ∈ E iff {v, u} ∈ E and edges have weight w(u, v)

Definition Two graphs G = (V,E) and G ′
= (V ′

, E
′) are isomorphic if

∃f ∶ V → V
′ with {u, v} ∈ E ↔ {f(u), f(v)} ∈ E ′

and w(u, v) = w(f(u), f(v))

Violetta Weger 42/64



Code Equivalence - Connections

Reduction from PEP to GI

Graph Isomorphism (GI) Problem

Given G = (V,E),G ′
= (V,E ′) with V = {1, . . . , n}

find φ ∈ Sn s.t. {u, v} ∈ E ↔ {φ(u), φ(v)} ∈ E ′

Babai’s algorithm: GI is quasi-polynomial time! cost in O(2log(n)c

)
”Graph isomorphism in quasipolynomial time” L. Babai, 2016

Violetta Weger 43/64



Code Equivalence - Connections

Reduction from PEP to GI

Graph Isomorphism (GI) Problem

Given G = (V,E),G ′
= (V,E ′) with V = {1, . . . , n}

find φ ∈ Sn s.t. {u, v} ∈ E ↔ {φ(u), φ(v)} ∈ E ′

Babai’s algorithm: GI is quasi-polynomial time! cost in O(2log(n)c

)
”Graph isomorphism in quasipolynomial time” L. Babai, 2016

Violetta Weger 43/64



Code Equivalence - Connections

Reduction from PEP to GI

Graph Isomorphism (GI) Problem

Given G = (V,E),G ′
= (V,E ′) with V = {1, . . . , n}

find φ ∈ Sn s.t. {u, v} ∈ E ↔ {φ(u), φ(v)} ∈ E ′

Babai’s algorithm: GI is quasi-polynomial time! cost in O(2log(n)c

)
”Graph isomorphism in quasipolynomial time” L. Babai, 2016

Violetta Weger 43/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition The adjacency matrix A of a weighted graph G is

Ai,j = {w(i, j) if {i, j} ∈ E
0 else

Proposition Two graphs G,G ′ are isomorphic iff

∃P permutation matrix s.t. P⊤
AP = A

′

Theorem If H(C) = {0} then PEP can be reduced to GI

”Permutation code equivalence is not harder than GI” M. Bardet, A. Otmani, M. Saeed-Taha, 2019

→ PEP is easier than GI

Violetta Weger 44/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition The adjacency matrix A of a weighted graph G is

Ai,j = {w(i, j) if {i, j} ∈ E
0 else

Proposition Two graphs G,G ′ are isomorphic iff

∃P permutation matrix s.t. P⊤
AP = A

′

Theorem If H(C) = {0} then PEP can be reduced to GI

”Permutation code equivalence is not harder than GI” M. Bardet, A. Otmani, M. Saeed-Taha, 2019

→ PEP is easier than GI

Violetta Weger 44/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition The adjacency matrix A of a weighted graph G is

Ai,j = {w(i, j) if {i, j} ∈ E
0 else

Proposition Two graphs G,G ′ are isomorphic iff

∃P permutation matrix s.t. P⊤
AP = A

′

Theorem If H(C) = {0} then PEP can be reduced to GI

”Permutation code equivalence is not harder than GI” M. Bardet, A. Otmani, M. Saeed-Taha, 2019

→ PEP is easier than GI

Violetta Weger 44/64



Code Equivalence - Connections

Reduction from PEP to GI

Definition The adjacency matrix A of a weighted graph G is

Ai,j = {w(i, j) if {i, j} ∈ E
0 else

Proposition Two graphs G,G ′ are isomorphic iff

∃P permutation matrix s.t. P⊤
AP = A

′

Theorem If H(C) = {0} then PEP can be reduced to GI

”Permutation code equivalence is not harder than GI” M. Bardet, A. Otmani, M. Saeed-Taha, 2019

→ PEP is easier than GI

Violetta Weger 44/64



Code Equivalence - Connections

Reduction from GI to PEP

Definition The incidence matrix B of a graph G with ∣V ∣ = v, ∣E∣ = e is

Bi,j = {1 if i = {ℓ, j} ∈ E
0 else

B ∈ Fe×v
2

Proposition Two graphs G,G ′ are isomorphic iff

∃Q ∈ Se, P ∈ Sv , such that QBP = B
′

Theorem We can reduce GI to PEP

”Is code equivalence easy to decide?” E. Petrank, M. Roth, 2002

Violetta Weger 45/64



Code Equivalence - Connections

Reduction from GI to PEP

Definition The incidence matrix B of a graph G with ∣V ∣ = v, ∣E∣ = e is

Bi,j = {1 if i = {ℓ, j} ∈ E
0 else

B ∈ Fe×v
2

Proposition Two graphs G,G ′ are isomorphic iff

∃Q ∈ Se, P ∈ Sv , such that QBP = B
′

Theorem We can reduce GI to PEP

”Is code equivalence easy to decide?” E. Petrank, M. Roth, 2002

Violetta Weger 45/64



Code Equivalence - Connections

Reduction from GI to PEP

Definition The incidence matrix B of a graph G with ∣V ∣ = v, ∣E∣ = e is

Bi,j = {1 if i = {ℓ, j} ∈ E
0 else

B ∈ Fe×v
2

Proposition Two graphs G,G ′ are isomorphic iff

∃Q ∈ Se, P ∈ Sv , such that QBP = B
′

Theorem We can reduce GI to PEP

”Is code equivalence easy to decide?” E. Petrank, M. Roth, 2002

Violetta Weger 45/64



Code Equivalence - Connections

Reduction from GI to PEP

Definition The incidence matrix B of a graph G with ∣V ∣ = v, ∣E∣ = e is

Bi,j = {1 if i = {ℓ, j} ∈ E
0 else

B ∈ Fe×v
2

Proposition Two graphs G,G ′ are isomorphic iff

∃Q ∈ Se, P ∈ Sv , such that QBP = B
′

Theorem We can reduce GI to PEP

”Is code equivalence easy to decide?” E. Petrank, M. Roth, 2002

Violetta Weger 45/64



Code Equivalence - Connections

If LEP → PEP and PEP → GI then LEP → GI

NO

Under the rug

We can only reduce PEP to GI if H(C) = {0} is H(λ⊗ C) = {0}?

Exercise Show that ∑
α∈F⋆q

α
ℓ
= {0 if (q − 1) ∤ ℓ

−1 if (q − 1) ∣ ℓ

Proposition If q ≥ 4, then λ⊗ C is self-orthogonal

Violetta Weger 46/64



Code Equivalence - Connections

If LEP → PEP and PEP → GI then LEP → GI NO

Under the rug

We can only reduce PEP to GI if H(C) = {0} is H(λ⊗ C) = {0}?

Exercise Show that ∑
α∈F⋆q

α
ℓ
= {0 if (q − 1) ∤ ℓ

−1 if (q − 1) ∣ ℓ

Proposition If q ≥ 4, then λ⊗ C is self-orthogonal

Violetta Weger 46/64



Code Equivalence - Connections

If LEP → PEP and PEP → GI then LEP → GI NO

Under the rug

We can only reduce PEP to GI if H(C) = {0} is H(λ⊗ C) = {0}?

Exercise Show that ∑
α∈F⋆q

α
ℓ
= {0 if (q − 1) ∤ ℓ

−1 if (q − 1) ∣ ℓ

Proposition If q ≥ 4, then λ⊗ C is self-orthogonal

Violetta Weger 46/64



Code Equivalence - Connections

If LEP → PEP and PEP → GI then LEP → GI NO

Under the rug

We can only reduce PEP to GI if H(C) = {0} is H(λ⊗ C) = {0}?

Exercise Show that ∑
α∈F⋆q

α
ℓ
= {0 if (q − 1) ∤ ℓ

−1 if (q − 1) ∣ ℓ

Proposition If q ≥ 4, then λ⊗ C is self-orthogonal

Violetta Weger 46/64



Code Equivalence - Connections

If LEP → PEP and PEP → GI then LEP → GI NO

Under the rug

We can only reduce PEP to GI if H(C) = {0} is H(λ⊗ C) = {0}?

Exercise Show that ∑
α∈F⋆q

α
ℓ
= {0 if (q − 1) ∤ ℓ

−1 if (q − 1) ∣ ℓ

Proposition If q ≥ 4, then λ⊗ C is self-orthogonal

Violetta Weger 46/64



Code Equivalence - Connections

A bit of hope q = p
2m

Definition ◦ Let x, y ∈ Fn
q . The Hermitian inner product is

⟨x, y⟩H = ∑n
i=1 xiy

p
m

i

◦ Let C be a [n, k]q linear code. The Hermitian dual is

C⋆
= {x ∈ Fn

q ∣ ⟨x, y⟩H = 0 ∀ y ∈ C}
◦ A Hermitian parity-check matrix H⋆ is s.t. ⟨H⋆⟩ = C⋆

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Violetta Weger 47/64



Code Equivalence - Connections

A bit of hope q = p
2m

Definition ◦ Let x, y ∈ Fn
q . The Hermitian inner product is

⟨x, y⟩H = ∑n
i=1 xiy

p
m

i

◦ Let C be a [n, k]q linear code. The Hermitian dual is

C⋆
= {x ∈ Fn

q ∣ ⟨x, y⟩H = 0 ∀ y ∈ C}
◦ A Hermitian parity-check matrix H⋆ is s.t. ⟨H⋆⟩ = C⋆

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Violetta Weger 47/64



Code Equivalence - Connections

A bit of hope q = p
2m

Definition ◦ Let x, y ∈ Fn
q . The Hermitian inner product is

⟨x, y⟩H = ∑n
i=1 xiy

p
m

i

◦ Let C be a [n, k]q linear code. The Hermitian dual is

C⋆
= {x ∈ Fn

q ∣ ⟨x, y⟩H = 0 ∀ y ∈ C}

◦ A Hermitian parity-check matrix H⋆ is s.t. ⟨H⋆⟩ = C⋆

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Violetta Weger 47/64



Code Equivalence - Connections

A bit of hope q = p
2m

Definition ◦ Let x, y ∈ Fn
q . The Hermitian inner product is

⟨x, y⟩H = ∑n
i=1 xiy

p
m

i

◦ Let C be a [n, k]q linear code. The Hermitian dual is

C⋆
= {x ∈ Fn

q ∣ ⟨x, y⟩H = 0 ∀ y ∈ C}
◦ A Hermitian parity-check matrix H⋆ is s.t. ⟨H⋆⟩ = C⋆

”How easy is code equivalence over Fq?” N. Sendrier, D. Simos, 2013

Violetta Weger 47/64



Code Equivalence - Connections

A bit of hope q = p
2m Let C = ⟨G⟩ = ker(H⊤)

Exercises ◦ Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤)
◦ Show that H⋆

= H
p

m

is a Hermitian parity-check matrix
◦ Show that (C⋆)⋆ = C

◦ Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠

◦ Let C ⊂ Fn
q be linearly equivalent to C′

.

Show that C⋆ is linearly equivalent to (C′)⋆

◦ Let C ⊂ Fn
q be permutation equivalent to C′

.

Show that H⋆(C) is permutation equivalent to H⋆(C′)

Violetta Weger 48/64



Code Equivalence - Connections

A bit of hope q = p
2m Let C = ⟨G⟩ = ker(H⊤)

Exercises ◦ Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤)

◦ Show that H⋆
= H

p
m

is a Hermitian parity-check matrix
◦ Show that (C⋆)⋆ = C

◦ Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠

◦ Let C ⊂ Fn
q be linearly equivalent to C′

.

Show that C⋆ is linearly equivalent to (C′)⋆

◦ Let C ⊂ Fn
q be permutation equivalent to C′

.

Show that H⋆(C) is permutation equivalent to H⋆(C′)

Violetta Weger 48/64



Code Equivalence - Connections

A bit of hope q = p
2m Let C = ⟨G⟩ = ker(H⊤)

Exercises ◦ Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤)
◦ Show that H⋆

= H
p

m

is a Hermitian parity-check matrix

◦ Show that (C⋆)⋆ = C

◦ Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠

◦ Let C ⊂ Fn
q be linearly equivalent to C′

.

Show that C⋆ is linearly equivalent to (C′)⋆

◦ Let C ⊂ Fn
q be permutation equivalent to C′

.

Show that H⋆(C) is permutation equivalent to H⋆(C′)

Violetta Weger 48/64



Code Equivalence - Connections

A bit of hope q = p
2m Let C = ⟨G⟩ = ker(H⊤)

Exercises ◦ Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤)
◦ Show that H⋆

= H
p

m

is a Hermitian parity-check matrix
◦ Show that (C⋆)⋆ = C

◦ Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠

◦ Let C ⊂ Fn
q be linearly equivalent to C′

.

Show that C⋆ is linearly equivalent to (C′)⋆

◦ Let C ⊂ Fn
q be permutation equivalent to C′

.

Show that H⋆(C) is permutation equivalent to H⋆(C′)

Violetta Weger 48/64



Code Equivalence - Connections

A bit of hope q = p
2m Let C = ⟨G⟩ = ker(H⊤)

Exercises ◦ Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤)
◦ Show that H⋆

= H
p

m

is a Hermitian parity-check matrix
◦ Show that (C⋆)⋆ = C

◦ Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠

◦ Let C ⊂ Fn
q be linearly equivalent to C′

.

Show that C⋆ is linearly equivalent to (C′)⋆

◦ Let C ⊂ Fn
q be permutation equivalent to C′

.

Show that H⋆(C) is permutation equivalent to H⋆(C′)

Violetta Weger 48/64



Code Equivalence - Connections

A bit of hope q = p
2m Let C = ⟨G⟩ = ker(H⊤)

Exercises ◦ Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤)
◦ Show that H⋆

= H
p

m

is a Hermitian parity-check matrix
◦ Show that (C⋆)⋆ = C

◦ Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠

◦ Let C ⊂ Fn
q be linearly equivalent to C′

.

Show that C⋆ is linearly equivalent to (C′)⋆

◦ Let C ⊂ Fn
q be permutation equivalent to C′

.

Show that H⋆(C) is permutation equivalent to H⋆(C′)

Violetta Weger 48/64



Code Equivalence - Connections

A bit of hope q = p
2m Let C = ⟨G⟩ = ker(H⊤)

Exercises ◦ Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤)
◦ Show that H⋆

= H
p

m

is a Hermitian parity-check matrix
◦ Show that (C⋆)⋆ = C

◦ Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠

◦ Let C ⊂ Fn
q be linearly equivalent to C′

.

Show that C⋆ is linearly equivalent to (C′)⋆

◦ Let C ⊂ Fn
q be permutation equivalent to C′

.

Show that H⋆(C) is permutation equivalent to H⋆(C′)

Violetta Weger 48/64



Code Equivalence - New Directions

Two New results

How many pairs (c, φ(c)) needed to recover φ?

Rouché-Capelli Test Let A ∈ Fk×n
q of rank r and b ∈ Fk

q

The system Ax
⊤
= b

⊤ has a solution iff rk([A ∣ b]) = r

→ only 2! (with some heuristics)
”Two Is All It Takes” A. Budroni, A. Esser, E. Franch, A. Natale, 2025

How many pairs (C, φ(C)) needed to recover φ?
→ only 2!

”Don’t use it twice!” A. Budroni, J. Chi-Domı́nguez, D. D’Alconzo, A. Di Scala, M. Kulkarni, 2024

Violetta Weger 49/64



Code Equivalence - New Directions

Two New results

How many pairs (c, φ(c)) needed to recover φ?

Rouché-Capelli Test Let A ∈ Fk×n
q of rank r and b ∈ Fk

q

The system Ax
⊤
= b

⊤ has a solution iff rk([A ∣ b]) = r

→ only 2! (with some heuristics)
”Two Is All It Takes” A. Budroni, A. Esser, E. Franch, A. Natale, 2025

How many pairs (C, φ(C)) needed to recover φ?
→ only 2!

”Don’t use it twice!” A. Budroni, J. Chi-Domı́nguez, D. D’Alconzo, A. Di Scala, M. Kulkarni, 2024

Violetta Weger 49/64



Code Equivalence - New Directions

Two New results

How many pairs (c, φ(c)) needed to recover φ?

Rouché-Capelli Test Let A ∈ Fk×n
q of rank r and b ∈ Fk

q

The system Ax
⊤
= b

⊤ has a solution iff rk([A ∣ b]) = r

→ only 2! (with some heuristics)
”Two Is All It Takes” A. Budroni, A. Esser, E. Franch, A. Natale, 2025

How many pairs (C, φ(C)) needed to recover φ?
→ only 2!

”Don’t use it twice!” A. Budroni, J. Chi-Domı́nguez, D. D’Alconzo, A. Di Scala, M. Kulkarni, 2024

Violetta Weger 49/64



Code Equivalence - New Directions

Definition ◦ Let x, y ∈ Fn
q . The Schur product is x ∗ y = (x1y1, . . . , xnyn)

◦ Let Ci be [n, ki]q linear codes. The Schur product is

C1 ∗ C2 = ⟨{c1 ∗ c2 ∣ c1 ∈ C1, c2 ∈ C2}⟩
◦ Let C be an [n, k]q linear code. The square code is C(2)

= C ∗ C

Exercise ⟨G⟩ = C. Show that ⟨G(2)⟩ = C(2)

where G(2)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

g1 ∗ g1
⋮

g1 ∗ gk

⋮
gk ∗ gk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ F
(k+1

2 )×n
q

Violetta Weger 50/64



Code Equivalence - New Directions

Definition ◦ Let x, y ∈ Fn
q . The Schur product is x ∗ y = (x1y1, . . . , xnyn)

◦ Let Ci be [n, ki]q linear codes. The Schur product is

C1 ∗ C2 = ⟨{c1 ∗ c2 ∣ c1 ∈ C1, c2 ∈ C2}⟩

◦ Let C be an [n, k]q linear code. The square code is C(2)
= C ∗ C

Exercise ⟨G⟩ = C. Show that ⟨G(2)⟩ = C(2)

where G(2)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

g1 ∗ g1
⋮

g1 ∗ gk

⋮
gk ∗ gk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ F
(k+1

2 )×n
q

Violetta Weger 50/64



Code Equivalence - New Directions

Definition ◦ Let x, y ∈ Fn
q . The Schur product is x ∗ y = (x1y1, . . . , xnyn)

◦ Let Ci be [n, ki]q linear codes. The Schur product is

C1 ∗ C2 = ⟨{c1 ∗ c2 ∣ c1 ∈ C1, c2 ∈ C2}⟩
◦ Let C be an [n, k]q linear code. The square code is C(2)

= C ∗ C

Exercise ⟨G⟩ = C. Show that ⟨G(2)⟩ = C(2)

where G(2)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

g1 ∗ g1
⋮

g1 ∗ gk

⋮
gk ∗ gk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ F
(k+1

2 )×n
q

Violetta Weger 50/64



Code Equivalence - New Directions

Definition ◦ Let x, y ∈ Fn
q . The Schur product is x ∗ y = (x1y1, . . . , xnyn)

◦ Let Ci be [n, ki]q linear codes. The Schur product is

C1 ∗ C2 = ⟨{c1 ∗ c2 ∣ c1 ∈ C1, c2 ∈ C2}⟩
◦ Let C be an [n, k]q linear code. The square code is C(2)

= C ∗ C

Exercise ⟨G⟩ = C. Show that ⟨G(2)⟩ = C(2)

where G(2)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

g1 ∗ g1
⋮

g1 ∗ gk

⋮
gk ∗ gk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ F
(k+1

2 )×n
q

Violetta Weger 50/64



Code Equivalence - New Directions

Theorem Let C be a [n, k]q linear code. Then dim(C(2)) = min {n, (k+1
2 )}

Exercises ◦ Let C,C′ be [n, k]q linear codes and φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn

s.t. φ(C) = C′
. Then φ

′
= (D2

, P ) ∈ (F⋆
q)n ⋊ Sn is s.t. φ′(C(2)) = C′(2)

◦ Show that H(C(2)) ≠ H(C)(2)

Violetta Weger 51/64



Code Equivalence - New Directions

Theorem Let C be a [n, k]q linear code. Then dim(C(2)) = min {n, (k+1
2 )}

Exercises ◦ Let C,C′ be [n, k]q linear codes and φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn

s.t. φ(C) = C′
. Then φ

′
= (D2

, P ) ∈ (F⋆
q)n ⋊ Sn is s.t. φ′(C(2)) = C′(2)

◦ Show that H(C(2)) ≠ H(C)(2)

Violetta Weger 51/64



Code Equivalence - New Directions

Recall SSA

C C′

φ

CIC C′
JC

H(CIC ) H(C′
JC )

φ
′

H(CIC )(2) H(C′
JC )(2)

φ
′

”Using the Schur Product to Solve

the Code Equivalence Problem”

M. Battagliola, R. Mora, Rocco, P. Santini, 2025

recent attack on

”Hollow LWE” M. Albrecht, B. Benčina, R. Lai, 2025

Violetta Weger 52/64



Code Equivalence - New Directions

Recall SSA

C C′

φ

CIC C′
JC

H(CIC ) H(C′
JC )

H(CIC )(2) H(C′
JC )(2)

φ
′

”Using the Schur Product to Solve

the Code Equivalence Problem”

M. Battagliola, R. Mora, Rocco, P. Santini, 2025

recent attack on

”Hollow LWE” M. Albrecht, B. Benčina, R. Lai, 2025

Violetta Weger 52/64



Code Equivalence - New Directions

Recall SSA

C C′

φ

CIC C′
JC

H(CIC ) H(C′
JC )

H(CIC )(2) H(C′
JC )(2)

φ
′

”Using the Schur Product to Solve

the Code Equivalence Problem”

M. Battagliola, R. Mora, Rocco, P. Santini, 2025

recent attack on

”Hollow LWE” M. Albrecht, B. Benčina, R. Lai, 2025

Violetta Weger 52/64



Code Equivalence - New Directions

Definition Let C be an [n, k]q linear code. The ℓ power code is
C(ℓ)

= C ⋆⋯⋆ CÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
ℓ

Theorem Let C be an [n, k]q linear code. If ℓ < q, then

dim(C(ℓ)) = min {(k+ℓ−1
ℓ

), n}

Exercises ◦ Show that (λ⊗ C)(2) ≠ λ⊗ C(2)

◦ Show that (λ⊗G)(ℓ) = λℓ ⊗G
(ℓ)

Violetta Weger 53/64



Code Equivalence - More Philosophy

Why A(G,G⊤) = G⊤(GG⊤)−1
G?

If φ ∈ Sn C C′

φ

C⊥ C⊥

φ

C = ⟨G⟩

C⊥
= ker(G⊤)

If φ ∈ (F⋆
q)n ⋊ Sn C C′

φ

F (C) F (C)

φ

Violetta Weger 54/64



Code Equivalence - More Philosophy

Why A(G,G⊤) = G⊤(GG⊤)−1
G?

If φ ∈ Sn C C′

φ

C⊥ C⊥

φ

C = ⟨G⟩

C⊥
= ker(G⊤)

If φ ∈ (F⋆
q)n ⋊ Sn C C′

φ

F (C) F (C)

φ

Violetta Weger 54/64



Code Equivalence - Summary

Summary

◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Summary

Summary ◦ Differentiate between LEP and PEP

◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Summary

Summary ◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Summary

Summary ◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation

◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Summary

Summary ◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights

◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Summary

Summary ◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial

◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Summary

Summary ◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP

◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Summary

Summary ◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost

◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Summary

Summary ◦ Differentiate between LEP and PEP
◦ If C is linearly equivalent to C′ then C⊥ is linearly equivalent to C′⊥

◦ Only for PEP is the dual connected through the same permutation
◦ Several invariants: weight enumerators, generalized weights
◦ Hulls of random codes are w.h.p. trivial
◦ LEP, PEP /∈ NP -hard, they are in co-AM ∩ NP
◦ Several solvers use invariants, but all exponential cost
◦ There are several reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥

only if

C ∩ C⊥
= {0}

Violetta Weger 55/64



Code Equivalence - Bonus Round

Other metrics?

Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries:

φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)

→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries:

φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics? Rank metric

◦ ”Matrix code” or Fq-linear code (Fm×n
q ,wtR)

X ∈ Fm×n
q then wtR(X) = rk(X)

linear isometries: φ = (A,B) ∈ GLq(m) × GLq(n)
→ no idea

◦ ”Vector code” or Fqm -linear code (Fn
qm ,wtR)

x ∈ Fn
qm then wtR(x) = dimFq

(⟨x1, . . . , xn⟩Fq

linear isometries: φ = (B) ∈ GLq(n)
→ easy!

”On the hardness of code equivalence problems in rank metric” A. Couvreur, T. Debris-Alazard, P. Gaborit, 2020

Violetta Weger 56/64



Code Equivalence - Bonus Round

Other metrics?

Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric

(Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries:

φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries:

φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Other metrics? Lee metric (Z/psZn
,wtL)

x ∈ Z/psZn then wtL(x) = ∑n
i=1 min{xi, ∣ps − xi∣}

linear isometries: φ = (D,P ) ∈ {±1}n ⋊ Sn

→ like PEP

Homogeneous metric (Z/psZn
,wtHom)

x ∈ Z/psZn then wtHom(x) = ∑n
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if xi = 0,
1 if xi /∈ ⟨ps−1⟩,
p/(p − 1) if xi ∈ ⟨ps−1⟩ \ {0}

linear isometries: φ = (D,P ) ∈ (Z/psZ×)n ⋊ Sn

→ easier than Hamming

Violetta Weger 57/64



Code Equivalence - Bonus Round

Every code is linearly equivalent to a code with trivial hull
”Linear codes over Fq are equivalent to LCD codes for q > 3”

C. Carlet, S. Mesnager, C. Tang,Y. Qi, R. Pellikaan, 2018

C C′

φ

λ⊗ C λ⊗ C′

σ

ψ(λ⊗ C) ψ(λ⊗ C′)

µ

Violetta Weger 58/64



Code Equivalence - Bonus Round

Every code is linearly equivalent to a code with trivial hull
”Linear codes over Fq are equivalent to LCD codes for q > 3”

C. Carlet, S. Mesnager, C. Tang,Y. Qi, R. Pellikaan, 2018

C C′

φ

λ⊗ C λ⊗ C′

σ

ψ(λ⊗ C) ψ(λ⊗ C′)

µ

Violetta Weger 58/64



Code Equivalence - Bonus Round

Every code is linearly equivalent to a code with trivial hull
”Linear codes over Fq are equivalent to LCD codes for q > 3”

C. Carlet, S. Mesnager, C. Tang,Y. Qi, R. Pellikaan, 2018

C C′

φ

λ⊗ C λ⊗ C′

σ

ψ(λ⊗ C) ψ(λ⊗ C′)

µ

Violetta Weger 58/64



Code Equivalence - Bonus Round

Every code is linearly equivalent to a code with trivial hull
”Linear codes over Fq are equivalent to LCD codes for q > 3”

C. Carlet, S. Mesnager, C. Tang,Y. Qi, R. Pellikaan, 2018

C C′

φ

λ⊗ C λ⊗ C′

σ

ψ(λ⊗ C) ψ(λ⊗ C′)

µ

Violetta Weger 58/64



Code Equivalence - Bonus Round

Computational → decisional
”A search-to-decision reduction for the permutation code equivalence

problem” J.-F. Biasse, G. Micheli, 2023

Violetta Weger 59/64



Code Equivalence - Coffee break

Workshop on the Mathematics of Post-Quantum Cryptography
Munich, September 7–11, 2026

https://mathpqc26.cry.cit.tum.de/

Violetta Weger 60/64

https://mathpqc26.cry.cit.tum.de/


Code Equivalence - Exercises

Violetta Weger 61/64



Code Equivalence - Exercises

C = ⟨G⟩ = ker(H⊤) a [n, k]q linear code

1. Let H⋆
∈ F(n−k)×n

q be a Hermitian parity-check matrix of C.

Show that H⋆(Gp
m

)⊤ = 0. That is C⋆
= ker((Gp

m

)⊤).
2. Show that H⋆

= H
p

m

is a Hermitian parity-check matrix.
3. Show that (C⋆)⋆ = C.

4. Show that H⋆(C) = ker
⎛
⎜
⎝
(G

p
m

H
)
⊤⎞
⎟
⎠
.

5. Let C be linearly equivalent to C′
. Show that C⋆ is linearly equivalent to (C′)⋆.

6. Show that if φ ∈ Sn is such that φ(C) = C′,

then H⋆(C) is permutation equivalent to H⋆(C′).
7. Show that A⋆ is independent on the choice of G.

Show that if G(Gp
m

)⊤ has full rank, then dim(H⋆(C)) = 0.

Violetta Weger 62/64



Code Equivalence - Exercises

C = ⟨G⟩ = ker(H⊤) a [n, k]q linear code

1. Show that ∑α∈F⋆q α
ℓ
= {0 if (q − 1) ∤ ℓ,

−1 if (q − 1) ∣ ℓ.

2. Show that C(2) is generated by G(2)
.

3. Show that if φ = (D,P ) ∈ (F⋆
q)n ⋊ Sn is such that φ(C) = C′

,

then φ
′
= (D2

, P ) ∈ (F⋆
q)n ⋊ Sn is such that φ′(C(2)) = C′(2)

.

4. Show that H(C)(2) ≠ H(C(2)).
5. Reduce the following LEP instance to GI using the square code:

G = (1 0 2 1
0 1 3 0) ∈ F2×4

5 and G
′
= (4 1 0 2

0 4 2 0) .

6. Show that (λ⊗ C)(2) ≠ λ⊗ C(2)
.

7. Show that (λ⊗G)(ℓ) = λℓ ⊗G
(ℓ)
.

Violetta Weger 63/64



Code Equivalence - Solutions

Solutions Slides

Violetta Weger 64/64


