

Exercises: Code Equivalence - Day 1

Problem 1: Basics of Codes

Let \mathcal{C} be an $[n,k]_q$ linear code with generator matrix $G \in \mathbb{F}_q^{k \times n}$ and parity-check matrix $H \in \mathbb{F}_q^{(n-k) \times n}$.

- 1. Show that $\langle H \rangle = \mathcal{C}^{\perp}$.
- 2. Show that $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$.
- 3. Show that if $GG^{\top} = 0$, then \mathcal{C} is self-orthogonal.
- 4. Show that \mathcal{C} is self-dual if and only if \mathcal{C} is self-orthogonal and n=2k.
- 5. Show that

$$\mathcal{H}(\mathcal{C}) = \ker\left(\begin{pmatrix} G \\ H \end{pmatrix}^{\top}\right).$$

- 6. Let G be in systematic form, i.e., $G = (\operatorname{Id}_k A)$ for $A \in \mathbb{F}_q^{k \times (n-k)}$. Show that if $AA^{\top} + \operatorname{Id}_{n-k}$ is full rank, then $\dim(\mathcal{H}(\mathcal{C})) = 0$.
- 7. Show that if GG^{\top} has full rank, then $\dim(\mathcal{H}(\mathcal{C})) = 0$.

Problem 2: Equivalence of Codes

Let $\mathcal{C}, \mathcal{C}'$ be $[n, k]_q$ linear codes with generator matrices G, respectively G'.

- 1. Show that the linear isometries with respect to some distance function form a group with respect to the composition.
- 2. Give the automorphism group of $\mathcal{C} = \langle (1,0,0), (0,1,1) \rangle \subseteq \mathbb{F}_2^3$.
- 3. Let $\varphi \in \operatorname{Aut}(\mathcal{C})$ be a permutation. Show that $\varphi \in \operatorname{Aut}(\mathcal{C} \cap \mathcal{C}^{\perp})$.
- 4. Show that C^{\perp} is linearly equivalent to C'^{\perp} .

 Hint: Use the fact that $G'H'^{\top} = 0$ and SGDP = G'.
- 5. Show that for all $w \in \{1, ..., n\}$ we have that

$$A_w(\mathcal{C}) = A_w(\mathcal{C}').$$

- 6. Show that generalized weights are strictly increasing, that is for $r \in \{1, \ldots, k-1\}$ we have $d_r(\mathcal{C}) < d_{r+1}(\mathcal{C})$.

 Hint: Use the subcode $D(\{i\}) = \{d \in \mathcal{D} \mid d_i = 0\}$ and its dual.
- 7. Show that for all $r \in \{1, \dots, k\}$ we have that

$$d_r(\mathcal{C}) = d_r(\mathcal{C}').$$

8. Consider the code $C_1 \subseteq \mathbb{F}_3^3$ generated by $G_1 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ and the code $C_2 \subseteq \mathbb{F}_3^3$ generated by $G_2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Are the two codes linear equivalent, permutation equivalent or not equivalent?

Exercises: Code Equivalence - Day 2

Problem 1: Hermitian Dual

Let C be an $[n,k]_q$ linear code with generator matrix $G \in \mathbb{F}_q^{k \times n}$ and parity-check matrix $H \in \mathbb{F}_q^{(n-k) \times n}$.

1. Let $H^* \in \mathbb{F}_q^{(n-k) \times n}$ be a Hermitian parity-check matrix of \mathcal{C} . Show that

$$H^{\star}(G^{p^m})^{\top} = 0.$$

That is $C^* = \ker((G^{p^m})^\top)$.

2. Use

$$\langle x, y \rangle_H = \sum_{i=1}^n x_i y_i^{p^m} = (\sum_{i=1}^n x_i^{p^m} y_i)^{p^m}$$

to show that $H^* = H^{p^m}$ is a Hermitian parity-check matrix.

- 3. Show that $(\mathcal{C}^*)^* = \mathcal{C}$.
- 4. Show that

$$\mathcal{H}^{\star}(\mathcal{C}) = \ker \left(\begin{pmatrix} G^{p^m} \\ H \end{pmatrix}^{\top} \right).$$

- 5. Let $\mathcal{C} \subset \mathbb{F}_q^n$ be linearly equivalent to \mathcal{C}' . Show that \mathcal{C}^* is linearly equivalent to $(\mathcal{C}')^*$. Hint: Use again that $G((H^*)^{p^m})^{\top} = 0$ and GDP = G'.
- 6. Let $\mathcal{C} \subset \mathbb{F}_q^n$ be permutation equivalent to \mathcal{C}' . Show that $\mathcal{H}^*(\mathcal{C})$ is permutation equivalent to $\mathcal{H}^*(\mathcal{C}')$.
- 7. Show that A^* is independent on the choice of G.
- 8. Show that if $G(G^{p^m})^{\top}$ has full rank, then $\dim(\mathcal{H}^{\star}(\mathcal{C})) = 0$.

Problem 2: Sums in finite fields

Let q be a prime power and ℓ be a positive integer, then

$$\sum_{\alpha \in \mathbb{F}_q^{\star}} \alpha^{\ell} = \begin{cases} 0 & \text{if } (q-1) \nmid \ell, \\ -1 & \text{if } (q-1) \mid \ell. \end{cases}$$

Problem 3: Square Codes

Let C be an $[n, k]_q$ linear code with generator matrix $G \in \mathbb{F}_q^{k \times n}$ and parity-check matrix $H \in \mathbb{F}_q^{(n-k) \times n}$.

1. Let \mathcal{C} be generated by $G = \begin{pmatrix} g_1 \\ \vdots \\ g_k \end{pmatrix} \in \mathbb{F}_q^{k \times n}$. Then $\mathcal{C}^{(2)}$ is generated by

$$G^{(2)} = \begin{pmatrix} g_1 * g_1 \\ \vdots \\ g_1 * g_k \\ \vdots \\ g_k * g_k \end{pmatrix} \in \mathbb{F}_q^{\binom{k+1}{2} \times n}.$$

2. Let $\mathcal{C}, \mathcal{C}'$ be two $[n,k]_q$ linear codes and $\varphi = (D,P) \in (\mathbb{F}_q^*)^n \rtimes S_n$ be such that $\varphi(\mathcal{C}) = \mathcal{C}'$. Then $\varphi' = (D^2,P) \in (\mathbb{F}_q^*)^n \rtimes S_n$ is such that

$$\varphi'(\mathcal{C}^{(2)}) = \mathcal{C}'^{(2)}.$$

- 3. Let \mathcal{C} be a $[n,k]_q$ linear code. Show that $\mathcal{H}(\mathcal{C})^{(2)} \neq \mathcal{H}(\mathcal{C}^{(2)})$.
- 4. Reduce the following LEP instance to GI using the square code:

$$G = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 0 \end{pmatrix} \in \mathbb{F}_5^{2 \times 4}$$

and

$$G' = \begin{pmatrix} 4 & 1 & 0 & 2 \\ 0 & 4 & 2 & 0 \end{pmatrix}.$$

5. Let α be a primitive element in \mathbb{F}_q . Define $\lambda = (1, \alpha, \dots, \alpha^{q-2})$. Show that

$$(\lambda \otimes \mathcal{C})^{(2)} \neq \lambda \otimes \mathcal{C}^{(2)}$$
.

6. Show that

$$(\lambda \otimes G)^{(\ell)} = \lambda^{\ell} \otimes G^{(\ell)}.$$