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Overview

"Code Equivalence" describes the problem of finding a linear isometry between two codes. An
isometry is a map which preserves the weight, in our case: the Hamming weight. We can easily
identify the linear isometries in the Hamming metric to be all monomial transformations.

Thus the problem reads as follows:

Given C, C ′ ⊆ Fn
q find φ ∈ (F⋆

q)
n ⋊ Sn, such that φ(C) = C ′.

Or equivalently: Given their generator matrices, G,G′ ∈ Fk×n
q find S ∈ GLq(k), a n× n permuta-

tion matrix P and a diagonal matrix D = diag(d), for d ∈ (F⋆
q)

n, such that SGDP = G′.

While the problem is interesting from a pure coding-theoretic perspective, its recent use in the sig-
nature scheme LESS has put the problem in the center of attention of the cryptographic community
as well. In fact, LESS is one of the few surviving signature schemes in the second round of the
additional standardization call by NIST.

The bothersome part about this problem, is that we know it is not NP-hard, without having an
efficient solver.

The whole research area is only now emerging and thus still under-explored. Thus, as of today,
any outcome is within the range of possibilities. In the best (or worst, depending on your stand
point) scenario, we might soon find a (quasi-) polynomial time solver, making LESS obsolete.

Due to its novelty, large impact and cute relations to other topics, I decided to present you this
problem in the Summer School Finite Geometry and Friends. Although the view point of codes
as projective systems is not helpful to solve it, the more people with diverse backgrounds and
approaches try tackling this problem, the closer we might get to finally understanding its hardness-
or breaking it.

We will start with a quick introduction to coding theory and cryptography, before we delve into the
many connections of the problem, the different view points on it and some solvers. We will then
conclude this lecture with some new results and ideas.
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Material: Most of the content of these lecture notes is collected from the seminal papers

• Mohamed Ahmed Saeed. Algebraic approach for code equivalence. Diss. Normandie Uni-
versité; University of Khartoum, 2017. [23]

• Nicolas Sendrier and Dimitrios E. Simos. How easy is code equivalence over Fq? Interna-
tional Workshop on Coding and Cryptography-WCC 2013. 2013.

• Magali Bardet, Ayoub Otmani and Mohamed Saeed-Taha. Permutation code equivalence is
not harder than graph isomorphism when hulls are trivial. 2019 IEEE International Sympo-
sium on Information Theory (ISIT). IEEE, 2019.

Hence, if this introductory lecture got you interested, I highly recommend reading these references.
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Notation
Throughout these lecture notes, we will make use of the following notation

• Let Fq denote the finite field with q elements and F⋆
q the multiplicative group Fq \ {0}.

• For a set S we denote by |S| its cardinality and by SC its complement.

• Idn denotes the identity matrix of size n.

• GLq(n) denotes the general linear group of degree n in Fq, i.e., all invertible matrices in
Fn×n
q .

• For a matrix M we write rk(M) to denote its rank and by M⊤ we denote its transpose.

• For a function f we denote by ker(f) its kernel and by im(f) its image.

• For a vector v ∈ Fk
q and i ∈ {1, . . . , k} we denote by vi the ith entry of the vector v. For

a subset S ⊂ {1, . . . , k} of size s, vS ∈ Fs
q denotes the vector consisting of the entries of v

indexed by S.

• Similarly for a matrix: for a matrix M ∈ Fk×n
q and i ∈ {1, . . . , k}, j ∈ {1, . . . , n} we denote

by Mi,j the entry of M in the ith row and jth column. For a subset S ⊂ {1, . . . , n} of size
s, MS ∈ Fk×s

q denotes the matrix consisting of the columns of M indexed by S.

• For a matrix M ∈ Fk×n
q , we denote by ⟨M⟩ ⊆ Fn

q the span of the rows of M, that is
im(M) = ⟨M⟩.
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1 Background and Motivation: Coding and Cryptography
As this summer school is intended for any finite friend, I do not assume any expertise in coding
theory or cryptography and hence we start with introducing all the necessary notions of coding
theory, before explaining more in detail, how the code equivalence problem is used in LESS.

1.1 Basics of Coding Theory
In this section, we give the basics of algebraic coding theory. This is a short version of Chapter 2
in https://user.math.uzh.ch/weger/CT.pdf.

Algebraic codes are immensely used in our digital lives, due to their ability to correct errors. In the
most prominent example, we want to send a message m ∈ Fk

q through a noisy channel. Thus, we
first encode m to a codeword c ∈ C ⊆ Fn

q , and upon receiving r = c + e, we can use a decoding
algorithm for the code C to recover c (and thus also m).

However, this lecture will not be about decoding, or the error correction capability of codes. We
only use this application, to explain the interest in the Hamming metric.

Let us fix that Fq will denote the finite field of q elements, where q is a prime power.

Definition 1.1 (Linear Code). Let 1 ≤ k ≤ n be integers. Then, an [n, k]q linear code C over Fq is
a k-dimensional linear subspace of Fn

q .

We say that C has length n, dimension k, and call its elements codewords.
As C is linear, it must have some basis, which allows us to represent it compactly. In fact, linear
codes allow for an easy representation through their generator matrices, which have the code as
an image.

Definition 1.2 (Generator Matrix). Let k ≤ n be positive integers and let C be an [n, k]q linear
code. Then, a matrix G ∈ Fk×n

q is called a generator matrix of C if

C =
{
xG | x ∈ Fk

q

}
,

that is, the rows of G form a basis of C.

We will often write ⟨G⟩ to denote the code generated by the rows G. Note that by multiplying a
generator matrix on the left with an invertible matrix S ∈ GLq(k), we simply change the basis of
the code, and thus SG is again a generator matrix.

We say that C is degenerate if there exists a i ∈ {1, . . . , n} such that for all c ∈ C, we have ci = 0.
Equivalently, a code is degenerate, if a generator matrix G has a zero column.

One can also represent a code through a matrix H , which has the code as kernel.

Definition 1.3 (Parity-Check Matrix). Let k ≤ n be positive integers and let C be an [n, k]q linear
code. Then, a matrix H ∈ F(n−k)×n

q is called a parity-check matrix of C, if

C =
{
y ∈ Fn

q | yH⊤ = 0
}
.
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For any x ∈ Fn
q , we call xH⊤ the syndrome of x through H .

Since C = Im(G) = ker(H⊤), we also get a relation between the two matrices, namely

GH⊤ = 0.

For x, y ∈ Fn
q let us denote by ⟨x, y⟩ the standard inner product, i.e.,

⟨x, y⟩ =
n∑

i=1

xiyi.

Then, we can define the dual of an [n, k]q linear code C as the orthogonal space of C.

Definition 1.4 (Dual Code). Let k ≤ n be positive integers and let C be an [n, k]q linear code. The
dual code C⊥ is an [n, n− k]q linear code, defined as

C⊥ = {x ∈ Fn
q | ⟨x, y⟩ = 0 ∀ y ∈ C}.

Thus, the parity-check matrix is in fact the generator matrix of the dual code:

Exercise 1.5. Let C be an [n, k]q linear code and H ∈ F(n−k)×n
q be a parity-check matrix of C.

Show that ⟨H⟩ = C⊥.

In turn, taking the dual of the dual brings us back to our code:

Proposition 1.6. Let q be a prime power and k ≤ n be positive integers. Let C be an [n, k]q linear
code. Then (C⊥)⊥ = C.

Exercise 1.7. Prove Proposition 1.6.

Let us have a look at an example to see all these notions in action.

Example 1.8. Let us consider F5 and the code C ⊆ F4
5 generated by

G =

(
1 0 2 0
0 1 0 4

)
.

Thus, C = ⟨G⟩ is a [4, 2]5 linear code, that is the length is 4 and the dimension is 2.

We could write out all |C| = 52 = 25 codewords, but usingG is much more efficient. By multiplying

G with some invertible matrix S, e.g. S =

(
1 2
0 1

)
we get a different generator matrix of the same

code:

SG =

(
1 2 2 1
0 1 0 4

)
.

We can also compute a parity-check matrix for C (a smart trick is revealed later) as

H =

(
3 0 1 0
0 1 0 1

)
.

In fact, for any codeword, e.g. c = (1, 0, 2, 0), we have that cH⊤ = 0.

The dual code C⊥ is then generated by H and we can see that c = (1, 0, 2, 0) is also in the dual.
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A priori, the code C and its dual C⊥ have no apparent connection. If C ⊆ C⊥, we call C a self-
orthogonal code and if C = C⊥, we call C a self-dual code.

Example 1.9. Let us consider the [n, 1]2 repetition code C with generator matrix

G =
(
1 · · · 1

)
.

Note that C⊥ = ker(G⊤), hence to show that C ⊆ C⊥, it is enough to show that any codeword c ∈ C
is such that cG⊤ = 0. If n is even, then GG⊤ =

∑n
i=1 1 = n and thus any code word c = mG is

such that cG⊤ = mGG⊤ = 0.

Exercise 1.10. Let C be an [n, k]q linear code with generator matrix G. Show that if GG⊤ = 0,
then C is self-orthogonal.

Exercise 1.11. Let C be an [n, k]q linear code. Show that if k = n/2 and C is self-orthogonal, then
C self-dual.

Definition 1.12 (Systematic Form). Let k ≤ n be positive integers and C be an [n, k]q linear code.
Then, there exist some n×n permutation matrix P and some invertible matrix S ∈ Fk×k

q that bring
G in systematic form, i.e.,

SGP =
(
Idk A

)
,

where A ∈ Fk×(n−k)
q . Similarly, there exist some n× n permutation matrix P ′ and some invertible

matrix S ′ ∈ F(n−k)×(n−k)
q , that bring H into systematic form, i.e.,

S ′HP ′ =
(
B Idn−k

)
,

where B ∈ F(n−k)×k
q .

Together with the relation GH⊤ = 0, this immediately gives us a way to compute a parity-check
matrix, when given a generator matrix:

Proposition 1.13. Let C be an [n, k, ]q linear code and G be a generator matrix. If G =
(
Idk A

)
,

for some A ∈ Fk×(n−k)
q , then H =

(
−A⊤ Idn−k

)
is a parity-check matrix of C.

As in our example, there exist codewords which live in both; the code and the dual code.

Definition 1.14. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code. The hull of the code C is defined as

H(C) = C ∩ C⊥.

Clearly,H(C) = H(C⊥), by Proposition 1.6.

Exercise 1.15. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code with generator matrix G ∈ Fk×n

q and parity-check matrix H ∈ F(n−k)×n
q . Show that

H(C) = ker

((
G
H

)⊤
)
.
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In [24], Sendrier computed the average dimension of the hull of random codes. The proof is not
easy and the result has been restated several times, to become more of a folklore. But let us start
with what we mean by "random".

A random code, is a code generated by a full rank matrix G ∈ Fk×n
q chosen uniform at random.

For such random codes, the original statement says "the expected dimension of the hull of a random
code is constant" and the small constant becomes negligible for large finite fields.

Codes with hullH(C) = {0} are also called linear complementary dual codes and in this case, we
say that the hull is trivial.

Theorem 1.16. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code with generator matrix G ∈ Fk×n

q and parity-check matrix H ∈ F(n−k)×n
q . Then H(C) = {0}

with high probability, for n growing.

While the proof of [24] uses complicated mass formulas, there exist several short-cuts. These
usually only show that random codes have trivial hull with probability ≥ 1− 1/q, but this will be
enough for us.

Exercise 1.17. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code with generator matrix G ∈ Fk×n

q in systematic form, i.e., G =
(
Idk A

)
for A ∈ Fk×(n−k)

q .
Show that if AA⊤ + Idn−k is full rank, then dim(H(C)) = 0.

Exercise 1.18. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code with generator matrix G ∈ Fk×n

q . Show that if GG⊤ has full rank, then dim(H(C)) = 0.

In fact, the actual short-cut proofs would bound

P(rk(GG⊤) < k) ≤ 1/q.

As we are usually interested in the amount of positions which are erroneous, the most natural
weight to consider is the Hamming metric.

Definition 1.19 (Hamming Metric). Let n be a positive integer. For x ∈ Fn
q , the Hamming weight

of x is given by the number of non-zero positions, i.e.,

wtH(x) =| {i ∈ {1, . . . , n} | xi ̸= 0} | .

For x, y ∈ Fn
q , the Hamming distance between x and y is given by the number of positions in which

they differ, i.e.,
dH(x, y) =| {i ∈ {1, . . . , n} | xi ̸= yi} | .

Note that the Hamming distance is induced by the Hamming weight, that is dH(x, y) = wtH(x−y).
We can also consider the minimum distance of a code, i.e., the smallest distance between any two
distinct codewords.
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Definition 1.20 (Minimum Distance). Let C be a linear code over Fq. The minimum Hamming
distance of C is denoted by dH(C) and given by

dH(C) = min{dH(x, y) | x, y ∈ C, x ̸= y} = min{wtH(c) | c ∈ C, c ̸= 0}.

The minimum Hamming distance of a code turns out to be a very important parameter. Thus,
whenever the minimum Hamming distance d = dH(C) is known, we say C is an [n, k, d]q linear
code.

Let C be an [n, k, d]q linear code with ⟨G⟩ = C = ker(H⊤).

• The parameter n is called the length of the code.

• The parameter k is called the dimension of the code.

• The elements in the code are called codewords.

• The matrix G is called a generator matrix of the code.

• The matrix H is called a parity-check matrix of the code.

• The vector s = xH⊤ is called the syndrome of x.

• The code C⊥ is called the dual code of C.

• The hull of C is given byH(C) = C ∩ C⊥.

• The parameter d is called the minimum Hamming distance of the code.
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1.2 Equivalence of Codes
In mathematics we often ask when two objects are "essentially" the same. Let us clarify what that
means for codes.

Let us consider the following two codes over F3: C = ⟨G⟩ and C ′ = ⟨G′⟩.

G =

(
1 0 2
0 1 1

)
, G′ =

(
1 1 0
1 0 1

)
.

Then

C = {(0, 0, 0), (1, 0, 2), (2, 0, 1), (1, 1, 0), (2, 1, 2), (0, 1, 1), (0, 2, 2), (1, 2, 1), (2, 2, 0)}
C ′ = {(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 1, 0), (1, 2, 2), (1, 0, 1), (2, 0, 2), (2, 1, 1), (2, 2, 0)}

While they are not the same code, their points seem to be just rotated, and all still have the same
distance among each other.

0
1

2 0

1

2
0

1

2

c1
c2

c 3

C

0
1

2 0

1

2
0

1

2

c1
c2

c 3

C ′

Thus, we say two codes are essentially the same, if we can map one code linearly to the other, in
such a way that the distances between the codewords stays the same.

Definition 1.21. A linear isometry for a distance function d is a linear map φ : Fn
q → Fn

q , such
that for all x, y ∈ Fn

q we have that

d(x, y) = d(φ(x), φ(y)).

Clearly, when dealing with a distance which is induced from a weight wt, then we can equivalently
define a linear isometry φ to be such that for all x ∈ Fn

q

wt(x) = wt(φ(x)).

Proposition 1.22. The linear isometries with respect to some distance function form a group with
respect to the composition.

Exercise 1.23. Prove Proposition 1.22 and observe that any linear isometry is a Fq-isomorphism.

In our case, we are interested in the linear isometries for the Hamming metric.
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Proposition 1.24. The linear isometries for the Hamming metric are given by the semidirect prod-
uct (F⋆

q)
n ⋊ Sn, where Sn denotes the symmetric group of degree n.

Proof. For the first direction, we note that φ = (d, σ) ∈ (F⋆
q)

n ⋊ Sn is linear and can be written
as matrix multiplication, where φ(x) = xDP, for D = diag(d1, . . . , dn) a diagonal matrix with
entries di ∈ F⋆

q and P an n× n permutation matrix belonging to the permutation σ. Thus,

φ(x1, . . . , xn) = (dσ−1(1)xσ−1(1), . . . , dσ−1(n)xσ−1(n))

and if xi ̸= 0, then xσ(i) ̸= 0 and by multiplying with a non-zero scalar, we still have non-zero. On
the other hand, if xi = 0, then xσ(i) = 0 and it remains zero after multiplying with some non-zero
dj.

For the other direction, let us assume that φ is a linear isometry and denote by ei the standard vector
having all zero entries but a 1 in position i. These vectors clearly span the whole Fn

q and hence to
define a linear map φ, it is enough to know where φ sends the basis vectors ei for i ∈ {1, . . . , n}.
In fact, any x ∈ Fn

q is such that x =
∑n

i=1 eiλi for λ1, . . . , λn ∈ Fq. By the linearity of φ we thus
get

φ(x) =
n∑

i=1

φ(ei)λi.

For all ei = (0, . . . , 0, 1, 0 . . . , 0) of Hamming weight 1, we must have

φ(ei) ∈ {λ(i)ej(i) | λ(i) ∈ F⋆
q, j(i) ∈ {1, . . . , n}}.

If we assign each of the ei for all i ∈ {1, . . . , n}, then there exists a permutation σ, which sends
i 7→ j(i), and scalar multiples dj(i) = λ(i).

In fact, if the map i 7→ j(i) is not a permutation, then there exist i ̸= i′ with j(i) = j(i′) and
hence φ(ei + ei′) is some multiple of ej(i). This, however, contradicts that φ is an isometry:
wtH(ei + ei′) = 2, whereas wtH(λej(i)) = 1.

Matrices of the form DP, for D a diagonal matrix and P a permutation matrix are also called
monomial matrices and φ ∈ (F⋆

q)
n ⋊ Sn monomial transforms. We will use these notions inter-

changably, i.e., φ = (D,P ).

Note that there also exist the semi-linear isometries, as we also have the automorphisms of the
finite field itself. The semi-linear isometries for the Hamming metric are then given by (F⋆

q)
n ⋊

(Aut(Fq)× Sn). For cryptographic purposes, this type of isometry is however not interesting, and
we will hence ignore it.

If we have a linear isometry between two codes, i.e., let C, C ′ be two [n, k]q linear codes and
there exists a linear map φ : C → C ′ which preserves the weight, that is for all c ∈ C we have
wtH(c) = wtH(φ(c)), we might apriori get other maps than the monomial transforms. Luckily,
MacWilliams [20] showed that this is not the case.
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Theorem 1.25 (Extension Theorem). Let C, C ′ be two [n, k]q linear codes and there exists a linear
map φ : C → C ′ which preserves the weight, then there exists a linear isometry µ : Fn

q → Fn
q with

µ|C = φ.

That is, any linear weight preserving map that we may find between two codes can be extended to
a linear isometry of the whole ambient space.

Definition 1.26. Let C, C ′ be [n, k]q linear codes. We say that C is linearly equivalent to C ′ if there
exists a φ ∈ (F⋆

q)
n ⋊ Sn such that φ(C) = C ′.

Additionally, we say that C is permutation equivalent to C ′ if there exists a σ ∈ Sn such that
σ(C) = C ′.

This leads us to the main problem of this lecture:

Problem 1.27. Given two [n, k]q linear codes C, C ′, find, if one exists, a linear isometry φ ∈
(F⋆

q)
n ⋊ Sn such that φ(C) = C ′.

The equivalence between the two codes also gives rise to a condition for their generator matrices.

Proposition 1.28. Let C, C ′ be [n, k]q linear codes with generator matrices G, respectively G′. If
C is linearly equivalent to C ′, then there exist matrices S ∈ GLq(k), D = diag(d1, . . . , dn) with
di ∈ F⋆

q and a n× n permutation matrix P , such that

SGDP = G′.

This also includes the case of permutation equivalence by setting di = 1 for all i ∈ {1, . . . , n}.

Exercise 1.29. Prove Proposition 1.28.

Example 1.30. Let us consider F4 = F2(α) where α2 = α + 1.
Let C = ⟨G⟩ where

G =

(
1 0 α
0 1 α + 1

)
.

Then we may apply the permutation σ = (1, 2) to get

GP =

(
0 1 α
1 0 α + 1

)
and ⟨GP ⟩ is permutation equivalent to C.
If we also apply the diagonal matrix D = diag(1, α, α+ 1), we get

GPD =

(
0 α 1
1 0 α

)
with ⟨GPD⟩ is linearly equivalent to ⟨GP ⟩ and to C.
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On the other hand we also have linear isometries from C to itself.

Definition 1.31 (Automorphism Group). Let C be an [n, k]q linear code. The automorphism group
of C is given by the linear isometries that map C to C :

Aut(C) = {φ ∈ (F⋆
q)

n ⋊ Sn | φ : C → C}.

Just like the hull, the automorphism group of a random linear code is with high probability trivial
[17], i.e., Aut(C) = {id}.

Exercise 1.32. Give the automorphism group of C = ⟨(1, 0, 0), (0, 1, 1)⟩ ⊆ F3
2.

Exercise 1.33. Let φ ∈ Aut(C) be a permutation. Show that φ ∈ Aut(C ∩ C⊥).

Proposition 1.34. Let C1, C2 be two permutation equivalent [n, k, d]q linear codes. Then C⊥1 is
permutation equivalent to C⊥2 .

Proof. Let σ ∈ Sn be such that σ(C1) = C2 and denote by P the permutation matrix with respect
to σ. Let G1, G2 be generator matrices for C1, respectively C2, then there exist a S ∈ GLq(k) such
that SG1P = G2.

Let H1, H2 be the parity-check matrices for C1, respectively C2. Since G2H
⊤
2 = 0, we also have

G1PH
⊤
2 = G1(H2P

⊤)⊤ = 0. This implies that H2P
⊤ is a parity-check matrix for C1 and hence

H2 = S ′H1P , for some S ′ ∈ GLq(n− k). Thus, σ(C⊥1 ) = C⊥2 .

Exercise 1.35. Let C1, C2 be linearly equivalent codes. Show that C⊥1 is linearly equivalent to C⊥2 .
Hint: Use the fact that G2H

⊤
2 = 0 and SG1PD = G2.

For two permutation equivalent codes, their hulls are also permutation equivalent.

Proposition 1.36. Let C1, C2 be two permutation equivalent [n, k, d]q linear codes. Then H(C1) is
permutation equivalent toH(C2).

Proof. Let σ ∈ Sn be such that σ(C1) = C2 and denote by P the permutation matrix with respect
to σ. Let G1 be a generator matrix for C1 and H1 be a parity-check matrix for C1.

Recall that G1P is a generator matrix for C2 and H1P is a parity-check matrix for C2. Finally, we
have that

H(C2) = ker

((
G2

H2

)⊤
)

= ker

((
G1P
H1P

)⊤
)

= ker

((
G1

H1

)⊤
)
P.
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Let C, C ′ be [n, k, d]q linear codes with ⟨G⟩ = C, ⟨G′⟩ = C ′.

• The linear isometries in the Hamming metric are given by monomial transforms φ ∈
(F⋆

q)
n ⋊ Sn.

• We say that C is linearly equivalent to C ′ if there exists φ ∈ (F⋆
q)

n ⋊ Sn such that
φ(C) = C ′.

• We say that C is permutation equivalent to C ′ if there exists σ ∈ Sn such that σ(C) = C ′.

• The automorphism group of C is given by all φ ∈ (F⋆
q)

n ⋊ Sn, such that φ(C) = C.

• If C and C ′ are linearly equivalent, then C⊥ and C ′⊥ are linearly equivalent.

14



1.3 Invariants
To determine whether two codes are equivalent is important for coding theory, especially when
claiming one has found a new construction of a code. In this case, one should first check whether
this new family of codes is not equivalent to an already known family.

However, determining whether two codes are equivalent or not is not an easy task - it is exactly
what this lecture is about. We might instead look for invariants, i.e., properties of a code C that
remain the same for φ(C).
There are several parameters or properties of equivalent codes which remain invariant. Clearly,
equivalent codes have the same length, dimension and minimum distance. But we can also find
more interesting invariants.

Definition 1.37 (Weight Enumerator). Let C ⊆ Fn
q be a linear code. For any w ∈ {1, . . . , n}, let

us denote by Aw(C) = |{c ∈ C | wtH(c) = w}| the weight enumerator of C.

Proposition 1.38. Let C1, C2 ⊆ Fn
q be linearly equivalent codes, then for all w ∈ {1, . . . , n} we

have that
Aw(C1) = Aw(C2).

Exercise 1.39. Prove Proposition 1.38.

Note that the other direction is not true: We can have codes with the same weight enumerator,
which are not linearly equivalent!

Example 1.40. Let us consider F4 = F2(α) with α2 = α+1. The two codes C1 = ⟨G1⟩, C2 = ⟨G2⟩
with

G1 =

(
0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 1 1 α

)
, G2 =

(
0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 1 1 α + 1

)
have the same weight enumerators. In fact, all non-zero codewords of C1, respectively C2, either
have no zero, 4 zeros in {1, 2, 3, 4}, 3 zeros in {5, 6, 7}, 2 zeros in {8, 9} or 1 zero in {10}, but no
mixed zeros between these index sets. Thus,

A0(C1) = A0(C2) = 1,

A1(Ci) = A2(Ci) = A3(Ci) = A4(Ci) = A5(Ci) = 0,

A6(C1) = A6(C2) = 3,

A7(C1) = A7(C2) = 3,

A8(C1) = A8(C2) = 3,

A9(C1) = A9(C2) = 3,

A10(C1) = A10(C2) = 3.

However, there is no linear equivalence between C1 and C2. To see this, let us assume that there
exists a φ ∈ (F⋆

q)
n ⋊ Sn, which is such that φ(C1) = C2. Such φ would need to map the weight
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7 codewords of C1 to the weight 7 codewords of C2, that is if (1, 1, 1, 1, 0, 0, 0, 1, 1, α) = x and
(1, 1, 1, 1, 0, 0, 0, 1, 1, α+ 1) = y, then φ(x) ∈ {y, αy, (α + 1)y}.
If φ(x) = y, then φwould be a permutation, except for the index which gets sent to y10 = α+1, and
the index which sends x10 somewhere, i.e., if φ = DP, for D = diag(d1, . . . , dn), P a permutation
matrix belonging to the permutation σ ∈ Sn, then d10 ̸= 1 and dσ−1(10) ̸= 1.

The same φ also needs to send the codewords of weight 6 to each other. Here the two sets are the
same for C1, C2, implying that φ can only have d5 = · · · = d10, a contradiction.

The cases φ(x) ∈ {αy, (α + 1)y} work similarly.

Another invariant are the generalized weights. For this, we need to introduce the support of a code.

Definition 1.41 (Support of a Code). Let C be a [n, k]q linear code. The support of C is defined as

suppH(C) = {i ∈ {1, . . . , n} | ∃c ∈ C : ci ̸= 0}.

Clearly, for a non-degenerate code, the support will be full, i.e., {1, . . . , n}, however, as soon as
we go to subcodes of C, this will change. Similar to how the weight of a vector is the size of its
support, we may define the weight of a code as the size of its support.

Definition 1.42. Let C be an [n, k, d]q linear code. The weight of C is given by

wtH(C) = |suppH(C)|.

Again, if C is non-degenerate then wtH(C) = n.

Clearly, the weight of a code is also an invariant for code equivalence: if C is linearly equivalent to
C ′ then wtH(C) = wtH(C ′).
We may now consider the smallest weights of any subcode:

Definition 1.43. Let C be an [n, k, d]q linear code and let r ∈ {1, . . . , k}. The rth generalized
weight of C is given by

dr(C) = min{wtH(D) | D ⊂ C, dim(D) = r}.

If r = 1, we are asking for the smallest weight of any c ∈ C, i.e., the first generalized weight d1(C)
is the minimum distance dH(C).
On the other hand, if r = k, we are asking for the weight of the whole code, i.e., dk(C) = wtH(C).

Example 1.44. Let C = ⟨G⟩ ⊂ F4
2, where

G =

1 0 0 1
0 1 0 0
0 0 1 1

 .

Then d1 = dH(C) = 1 as D1 = ⟨(0, 1, 0, 0)⟩ has the smallest weight wtH(D1) = 1. d2 = 3 as
D2 = ⟨(0, 1, 0, 0), (0, 0, 1, 1)⟩ has the smallest weight wtH(D2) = 3 and finally d3 = wtH(C) = 4.
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Exercise 1.45. Show that generalized weights are strictly increasing, that is for r ∈ {1, . . . , k−1}
we have dr(C) < dr+1(C).

Proposition 1.46. Let C1, C2 be [n, k, d]q linear codes, which are linearly equivalent. For all r ∈
{1, . . . , k} we have that

dr(C1) = dr(C2).

Exercise 1.47. Prove Proposition 1.46.

A last invariant we want to introduce is the size of the automorphism group.

Proposition 1.48. Let C1, C2 be two linearly equivalent [n, k, d]q linear codes. Then

|Aut(C1)| = |Aut(C2)|.

Proof. If φ ∈ (F⋆
q)

n ⋊ Sn is such that φ(C1) = C2, then for any ψ ∈ Aut(C1) we have that

ψ′ = φ ◦ ψ ◦ φ−1 ∈ Aut(C2).

Let C be an [n, k]q linear code.

• The weight enumerator Aw(C) is the amount of codewords in C of weight w.

• The weight enumerator is invariant for equivalent codes.

• The rth generalized weight is dr(C) = min{wtH(D) | D ⊆ C, dim(D) = r}.

• The rth generalized weight is invariant for equivalent codes.

• The size of the automorphism group is invariant for equivalent codes.
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1.4 Cryptography
As coding theory is the art of reliable communication, this goes hand in hand with cryptography,
the art of secure communication. We will keep this section short, as it only serves as motivation
to study the code equivalence problem, but try to (as rigorously as possible) introduce the main
concepts.

In public-key cryptography, we have three main algorithms; Key-Encapsulation Mechanisms
(KEMs), Public-Key Encryptions (PKEs) and signature schemes. PKEs and KEMs are directly
related, as any PKE can be turned into a KEM.

PKE are very likely the kind of cryptographic protocol you are familiar with: we want to send an
encrypted message such that only a legitimate receiver is able to decrypt.

We do have very famous code-based PKEs such as Classic McEliece [3], chosen to be standardized
in Germany, or HQC [1], chosen to be standardized in the US by NIST.
However, our main focus will be on signature schemes and more precisely, on signatures derived
from Zero-Knowledge (ZK) protocols.

Currently, our public-key encryption relies one the following schemes: RSA, DH, DSA, ECDH,
ECDSA - that is on the hardness of integer factorization or the discrete logarithm problem.

These algorithms are quite old (at least in the cryptographic world) dating back to 1978 and will
become obsolete if (or when) a capable quantum computer is available.

While the arrival of such computer is greatly discussed and uncertain, it makes sense to update
the cryptographic protocols with more secure ones. This triggered the transition to post-quantum
cryptography: cryptographic protocols, which are secure against attacks from quantum computers.

The transition is quite pressing, as already by 2035, NIST wants to "disallow" RSA. The standard-
ization process is still ongoing for signature schemes, where we are currently in the second round,
with 14 surviving schemes (6 of those are code-based).

1.4.1 Signature Schemes

In a signature scheme, we want a guarantee of the legitimate origin of the message, exactly as
signing a letter to prove that the sender of this letter is really you.

In this process we speak of authentication, meaning that a receiver of the message can (with some
probability) be sure that the sender is legit, and of integrity, meaning that the message has not been
altered.

A digital signature scheme consists of three steps: key generation, signing and verification. We
consider two parties, one is the signer, who wants to send and sign a message to the second party,
called verifier, who wants to verify the signature of the message.

As a first step, the signer constructs a secret key S, which is kept private and a public key P , which
is made public. The signer then chooses a message m, and creates a signature s using the secret
key S and the message m, getting a signed message (m, s).
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The verifier can easily read the message m, but wants to be sure that the sender is legit and the
message has not been altered. Thus, the verifier uses the public key P and the message m to verify
the validity of the signature s.

Table 1: Signature Scheme

SIGNER VERIFIER

KEY GENERATION

Construct a secret key S

Construct a connected public key P
P−−→

SIGNING

Choose a message m

Construct a signature s from S and m
m,s−−→

VERIFICATION

Verify the signature s using P and m

The security of a digital signature scheme introduces a new person, called impersonator. An
impersonator, tries to cheat the verifier and acts as a signer, however without the knowledge of the
secret key S. An impersonator wins if a verifier accepts a forged signature. This comes with a
certain probability, called cheating probability.

For the signature scheme to be secure, we want that it is infeasible to forge a signature or to recover
the secret key from the publicly known key.

What exactly does infeasible mean, though? We speak of computational security, assuming that
any attacker has only a limited computational power. Hence we define the security level to be the
number of binary operations needed for an adversary to break the cryptosystem, i.e., either to forge
a signature or to recover the secret key.

Usual security levels are 2λ, with λ ∈ {80, 128, 256, 512}, meaning for example that an adversary
is expected to need at least 280 binary operations in order to forge a signature. These are referred
to as 80 bit, 128 bit, 256 bit, or 512 bit security levels.

Hence, when proposing a signature scheme, we consider the best known attack, whether it is a
forgery or a secret key recovery, and choose parameters of our scheme in such a way that the
attack costs more than 2λ.
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1.4.2 ZK Protocols

There exist several approaches to construct a signature scheme, if lucky one can "invert" a PKE,
like it is done for RSA. This is called the hash-and-sign approach. The one we are interested in, is
also the most used one in the NIST standardization call: using ZK protocols.

The process and notation for ZK protocols are similar to that of a signature scheme. We have two
parties, a prover and a verifier. Different to a digital signature scheme, the prover does not want
to sign a message, but rather convince the verifier of the knowledge of a secret object, without
revealing said object.

A ZK protocol consists of two stages: key generation and verification. The verification process
can consist of several communication steps between the verifier and the prover. In case there areN
such steps, we usually call it anN -pass scheme. For this lecture, we are interested in one particular
ZK protocol, called sigma protocol, which is a 3-pass scheme.

1. The prover prepares two commitments c0, c1, and sends them to the verifier.

2. The verifier randomly picks a challenge b ∈ {0, 1}, and sends it to the prover.

3. The prover provides a response rb that allows to verify cb.

4. The verifier checks the validity of cb, by recovering cb using rb and the public key.

Table 2: ZK Protocol

PROVER VERIFIER

KEY GENERATION

Construct a secret key S

Construct a connected public key P
P−−→

VERIFICATION

Construct commitments c0, c1
c0,c1−−−→

Choose b ∈ {0, 1}
b←−−

Construct response rb
rb−−→

Verify cb using rb
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A ZK protocol has three important attributes:

1. Zero-knowledge: this means that no information about the secret is revealed during the pro-
cess.

2. Completeness: meaning that an honest prover will always get accepted.

3. Soundness: for this, we want that an impersonator has only a small probability to get ac-
cepted.

In order to achieve that the soundness error (the probability that a dishonest prover will be accepted)
is below a certain threshold, usually 2−λ, the protocols are often repeated several times (called
rounds) and only if each round was verified will the prover be accepted. Thus, if the ZK protocol
previously had soundness error α, after N parallel rounds we have a soundness error of αN .

Once we have a ZK protocol, we can use the Fiat-Shamir transform to get a signature scheme. In
this transform, instead of asking for a challenge from the verifier, the prover challenges themselves,
by computing the hash of the message and the commitments. The signature then consists of the
commitment and the response, as the verifier can use the message and the commitment to compute
their hash and thus the challenge. The verification process then continues in the same manner as
for the ZK protocol.
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1.5 LESS
LESS [6] is one of the 14 surviving signature schemes in the NIST standardization call. It is based
on the sigma protocol and uses our favorite problem: code equivalence.

The high-level idea is as follows: Choose G ∈ Fk×n
q of full rank, uniformly at random (that is

good for cryptography: it means we can send a seed). Also choose at random a secret monomial
transform φ ∈ (F⋆

q)
n ⋊ Sn, i.e., φ = (D,P ) and a matrix S ∈ GLq(k), then compute the generator

matrix of a linearly equivalent code G′ = SGDP.

We can then use G,G′ as public key and S, φ = (D,P ) as secret key. The verifier wants to check
that we know the secret monomial transform, but we should reply in such a way, that we do not
reveal any information on φ (other than it is a monomial transform).

This can be done by preparing as commitment another linearly equivalent code: choose φ̃ =
(D̃, P̃ ) ∈ (F⋆

q)
n ⋊ Sn and a S̃ ∈ GLq(k) and compute the commitment G̃ = S̃GD̃P̃ .

The verifier may now challenge the prover, and ask either for b = 0: revealing the transform φ̃
from G to G̃ or for b = 1: revealing the transform φ̃ ◦ φ−1 from G′ to G̃.

C C ′

φ

C̃

φ̃ φ̃ ◦ φ−1

By revealing another monomial transform, nothing is revealed about the secret φ. If we are a
honest verifier, we can also always reply with a response that gets accepted. However, if we are a
dishonest verifier, not knowing the secret φ, we have quite a large cheating probability.

Proposition 1.49. Assuming that the code equivalence problem is infeasible to solve, the cheating
probability of the sigma protocol is given by 1/2.

Exercise 1.50. Prove Proposition 1.49.

Thus, forging a signature or recovering the secret key mount both to solving the code equivalence
problem.

The actual LESS signature scheme is more involved, having multiple public keys and using canon-
ical forms to reduce signature and public key sizes.
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That is: we start with a random G ∈ Fk×n
q , generating the code C = ⟨G⟩. We then select randomly

the secret monomials φi = (Di, Pi) ∈ (F⋆
q)

n ⋊ Sn and the public keys are then computed as
Gi = GDiPi for all i ∈ {1, . . . , N}.

We then commit to a single G̃ = GDP , i.e., to another code C̃ = ⟨G̃⟩, which is such that φ0(C) =
C̃, for φ0 = (D,P ).

The verifier then selects as challenge i ∈ {0, . . . , N} and the prover either reveals φ0 = (D,P )
when i = 0, or φ0 ◦ φ−1

i = P−1
i D−1

i DP.

C

C1

...

CN

φ1

φN

C̃

φ0 φ0 ◦ φ−1
i

This increases the challenge space from {0, 1} to {0, . . . , N} and thus decreases the cheating
probability from 1/2 to 1/(N + 1).
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1.6 Complexity Classes
Complexity theory tries to arrange problems in terms of how hard it is to solve them. It usually fo-
cuses on decision problems, i.e., a problem with answer ”yes” or ”no”. We often use the complexity
terms also for computational problems, as clearly, solving the computational problem would also
solve the decisional version. Hence, we will not make a difference between the computational and
the decisional version here.

LetP denote a problem. In order to estimate how hard it is to solveP we have two main complexity
classes.

Definition 1.51. P denotes the class of problems that can be solved by a deterministic Turing
machine in polynomial time.

We might think of this class, as "we can efficiently, i.e., in polynomial time, solve this problem".

Definition 1.52. NP denotes the class of problems that can be solved by a non-deterministic Turing
machine in polynomial time.

Thus, in contrary to the popular belief that NP stands for non-polynomial time, it actually stands
for non-deterministic polynomial time. The difference is important: all problems in P live inside
NP!

Instead of going into non-deterministic Turing machines, we prefer to use the equivalent statement:
a problem P is in NP if and only if one can check that a candidate is a solution to P in polynomial
time.

The most important complexity class, for us, will be that of NP-hard problems. In order to define
this class, we first have to define polynomial-time reductions.

A polynomial-time reduction fromR to P follows the following steps:

1. take any instance I ofR,

2. transform I to an instance I ′ of P in polynomial time,

3. assume that (using an oracle) you can solve P in the instance I ′ in polynomial time, getting
the solution s′,

4. transform the solution s′ in polynomial time to get a solution s of the problemR in the input
I .

The existence of a polynomial-time reduction fromR to P , informally speaking, means that if we
can solve P , we can also solveR and thus solving P is at least as hard as solvingR.

Definition 1.53. P is NP-hard if for every problemR in NP, there exists a polynomial-time reduc-
tion fromR to P .
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Hence, this class contains all problems which are at least as hard as the hardest problems in NP.

In order to prove that a problemP is NP-hard, fortunately we do not have to give a polynomial-time
reduction from every problem in NP: there are already problems which are known to be NP-hard,
thus it is enough to give a polynomial-time reduction from an NP-hard problem to P .

Finally, NP-completeness denotes the intersection of NP-hardness and NP.

Definition 1.54. A problem P is NP-complete, if it is NP-hard and in NP.

This class is perfect for cryptography: it is in NP, thus we can efficiently check a solution, e.g.
decrypt or verify, but to break the system one has to solve one of the hardest problems in mathe-
matics.

1.6.1 Two Examples

Let us quickly recall the big-O notation, used to estimate the cost of algorithms.

Definition 1.55. Let f(n), g(n) be functions over the reals. We write f(n) ∈ O(g(n)) to denote
that there exists a positive real constant N such that |f(n)| < N |g(n)| for all n > n0, meaning that
if n grows, f(n) will not grow faster than g(n).

Example 1.56. For example n+ 2n2 ∈ O(n2), while 2n/2n5 + n22n ∈ O (2n) .

Thus, we should read it as "we ignore all lower terms".

We have several problems in NP, where we can assess their complexity even more precisely: Most
famously, the Graph Isomorphism (GI) problem has lived in its own complexity class (also called
GI) for several decades, until Babai [5] showed that one can solve GI in quasi-polynomial time.
That is we can solve it with a cost in

O
(
2log(n)

c)
,

for some constant c.

Most code-based systems base their security on the decoding problem, which was shown to be
NP-complete [11, 9].

Problem 1.57 (Decoding Problem). Let G ∈ Fk×n
q , r ∈ Fn

q and t be a positive integer. Find a
vector e ∈ Fn

q , such that t = wtH(e) and there exists a m ∈ Fk
q with r = mG+ e.

The cost of solving the decoding problem (e.g. using ISD) is exponential, that isO (2nc) , for some
constant c, and being an NP-hard problem, we should not get a lower cost. This makes it attractive
for cryptography, as we can get reasonable sizes for a given security level 2λ. On the other hand,
the GI problem is a sub-optimal choice, as it requires much larger parameters to reach the same
security level.
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2 The Problem
After having seen the application of code equivalence in cryptography, and how we compute the
security level of cryptosystems based on a problem, we come back to our main protagonist with
the question:

How hard is code equivalence?

Recall that we have two types of equivalences, linear equivalence and permutation equivalence.
Thus, we get in turn, two kinds of code equivalence problems:

Problem 2.1 (Linear Equivalence Problem (LEP)). Given C, C ′ two [n, k]q linear codes, find, if one
exists, a monomial transform φ ∈ (F⋆

q)
n ⋊ Sn, such that φ(C) = C ′.

And the weaker version:

Problem 2.2 (Permutation Equivalence Problem (PEP)). Given C, C ′ two [n, k]q linear codes, find,
if one exists, a permutation σ ∈ Sn, such that σ(C) = C ′.

We have a first obvious reduction: if we can solve LEP, we can also solve PEP, thus LEP is harder
than PEP.

We can use our description of code equivalence using the generator matrix to reformulate the two
problems as follows:

Problem 2.3 (Linear Equivalence Problem (LEP)). Given G,G′ ∈ Fk×n
q , find, if any exists, a S ∈

GLq(k), D = diag(d), for d ∈ (F⋆
q)

n and an n× n permutation matrix P such that SGDP = G′.

And the weaker version:

Problem 2.4 (Permutation Equivalence Problem (PEP)). Given G,G′ ∈ Fk×n
q , find, if any exists, a

S ∈ GLq(k) and an n× n permutation matrix P such that SGP = G′.

We start with discovering in which complexity class they live.
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2.1 Arthur and Merlin
The area of complexity classes is much larger than our small introduction, in this section, we will
encounter something similar to a ZK protocol, which lets us determine the complexity class of
code equivalence.

Contrary to what you might hope for,

all isomorphism problems

whether it is code equivalence, GI, Isomorphism of Polynomials (IP), Lattice Isomorphism Prob-
lem (LIP), isogenies between elliptic curves, or any other objects with isomorphisms between
them:

are not NP-hard1.

This kind of statement is usually possible, when we have found an algorithm solving the problem
in time less than exponential, e.g., in quasi-polynomial or in polynomial time.

This is not the case here: instead we need the help of Arthur and Merlin.

The complexity class we are interested in is called AM. In this class live all problems that can be
decided through an Arthur-Merlin protocol.

The protocol is similar to the ZK protocol we have seen before, with the prover “Merlin” and
the verifier “Arthur”. The protocol is a 3-pass protocol and does not need to have the ZK prop-
erty. The main difference lies in the power of the two parties: while Arthur still has polynomial
computational power, Merlin has infinite computation power (indeed Merlin is a wizard).

We say that a problem P can be decided by the AM protocol if Merlin is able to convince Arthur
that the answer upon the instance I is “yes”. Merlin might be cheating, i.e., the answer to I is
actually “no”, and we allow for a soundness error of ≤ 1/3.

No NP-hard problem can live in AM, else we have AM=PH (the polynomial hierarchy) and this
implies a collapse of polynomial hierarchy - which we assume does not collapse.

Theorem 2.5. Assuming PH ̸= AM , code-equivalence is not NP-hard.

Proof. To show this, we construct the 3-pass Arthur-Merlin protocol - not for code equivalence,
but its opposite; that is we want to show two codes are not equivalent.

This will then place code-equivalence in what we call co-AM.

Both parties see the instance (C1, C2) and Merlin wants to convince Arthur, that the two codes are
not equivalent.

1Unless of course, P=NP and the whole hierarchy collapses, which we will from now on assume is not the case.
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Arthur chooses one of the codes, Ci, a random isometry φ and computes a generator matrix G′ for
φ(Ci) and sends G′ to Merlin.

Merlin, with the infinite computational power, can compute which code Ci Arthur has chosen and
reply with i. If Merlin was honest, then only one of the codes C1, C2 will be equivalent to the sent
C ′ = ⟨G′⟩.

If Merlin was cheating and C1 is equivalent to C2, then Merlin has two choices and has a success
probability of 1/2.

By repeating this protocol for t rounds, we get a soundness error of 2−t that Arthur accepts a
cheating Merlin.

Now we know the problem we want to solve is not one of the hardest problems, but it might still
be quite hard for an algorithm to solve.
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2.2 Solvers
There are two different kind of solvers, the first being an algebraic one, the second a combinatorial
one.

The algebraic solver goes back to Saeed’s thesis [23], where he uses that if C = ⟨G⟩ = ker(H⊤)
and C ′ = ⟨G′⟩ = ker(H ′⊤) are linearly equivalent, i.e., there exist S ∈ GLq(k), D = diag(d), P ∈
Sn such that SGDP = G′, then

G′H ′⊤ = 0 implies that GDPH⊤ = 0.

Hence it is enough to solve the linear system GMH⊤ = 0, with k(n − k) equations and where
the entries of M are the n2 unknowns. The main problem is: how to put the fact that we are only
interested in M = DP into this model as equations?

As it happens so often in code-based cryptography, the algebraic solvers are not as efficient as the
combinatorial solvers (meaning they have a much larger cost).

The combinatorial solvers date back to Leon [18], and have been improved by Sendrier [25],
Beullens [12] and recently in [8]. The combinatorial solvers are split into two directions: the first
one is called codeword-search, whereas the second one relies on canonical forms [15, 21]. In
the latter, it was observed that it is enough to know the action of the monomial transform on an
information set to recover the whole transform. This did not only speed up the solvers, but also
allowed them to reduce the signature and public key sizes of LESS.

The idea of the codeword-search solvers is to find subsets of codewords S ⊂ C and S ′ ⊂ C ′
which are also invariant under the isometry φ, i.e., φ(S) = S ′. For the smaller sets S, S ′ it will
become easier to find an isometry between them. The most preferred way of constructing such
subsets, is to use invariants, such as the weight enumerator, or in case of permutation equivalence
the hull. However, to find a subset S consisting of small weight codewords, these solvers rely
on Information Set Decoders (ISD). Thus, they all come with a cost in O(2nc). Note that this is,
however, solving a much harder problem: the problem of finding low weight codewords (equivalent
to the decoding problem), which is known to be NP-hard.

As our main goal is not to improve upon the constant c in the solvers, but to break code equivalence
completely (i.e., show it is (quasi-) polynomial time), we will only cover a short overview of the
ideas of the solvers.

Algorithm Problem Invariant Cost

Leon LEP weight enumerator exponential in n (bottleneck: ISD)

Beullens LEP second generalized weight exponential in n (bottleneck: ISD)

SSA PEP (punctured) hull exponential in dimension of the hull

Table 3: Summary of the existing solvers
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As a very short summary: Leon is using weight enumerator, Beullens is using the second general-
ized weight (which is indeed a more refined invariant) and SSA is using that the hull is an invariant
for permutation equivalence.

Leon’s Algorithm for LEP The main observation of Leon [18], is that the sought isometry has to
map all codewords of weight w in C to all codewords of weight w in C ′. Thus, Leon first constructs
the sets

S = {c ∈ C | wtH(c) = w},
S ′ = {c ∈ C | wtH(c) = w}

and then searches for φ ∈ (F⋆
q)

n ⋊ Sn such that φ(S) = S ′.

The cost of finding such a map φ is polynomial in the size of S. However, to construct S, we rely
on ISD.

Beullens’ Algorithm for PEP The main observation of Beullens [12], is that a permutation σ
does not only fix the weight of a vector, but also the multiset of its entries. Thus, instead of seeing
the elements in S and S ′ as vectors c, Beullens’ algorithm treats them as multisets and searches
for a collision in S × S ′, i.e., c ∈ S has the same multiset as c′ ∈ S ′. This allows us to store less
elements in S.

Each found collision is then used to piece-wise reconstruct the permutation: if c, c′ have the same
multisets and ci ̸= c′j , then we guess σ(i) ̸= j. Again, the bottleneck remains constructing the sets
S, S ′ using ISD.

Beullens’ Algorithm for LEP Beullens also provides an algorithm to solve LEP. In the case of
linear equivalence, the multiset of the entries are clearly not preserved. However, for any subcode
D < C there exists a φ(D) = D′ < C ′ with the same dimension and support size. In particular,
Beullens proposes to use subcodes of dimension 2, that is: Beullens uses as invariant the second
generalized weight. The lists now contain generator matrices in F2×n

q :

S = {D ∈ F2×n
q | ⟨D⟩ < C, |supp(⟨D⟩)| = s},

S ′ = {D′ ∈ F2×n
q | ⟨D′⟩ < C ′, |supp(⟨D′⟩)| = s}.

One then again searches for collisions, i.e., an isometry φ(⟨D⟩) = ⟨D′⟩. In order to find such
isometry, one can either use Leon’s algorithm or first Beullens’ algorithm to find the permutation
and then reconstruct the scalar factors.

This algorithm has also been improved in [8], modifying the subroutine to find small support
subcodes, while relying on the same post-processing to recover the secret monomial.
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Support Splitting for PEP A bit a special case is the Support Splitting Algorithm (SSA) from
Sendrier [25]: it requires a "signature" function, i.e., a property for each position of the code which
is invariant under the permutation. More precisely, for a given code C and position i ∈ {1, . . . , n},
one wants S(C, i) = S(σ(C), σ(i)).

Sendrier chooses this signature function (or rather the invariant of the code) to be the weight
enumerator of the hull (of a punctured code), i.e.,

S(C, i) = A(H(Ci)),

where A(C) = (A0(C), . . . , An(C)) are all the weight enumerators, Ci is the code C punctured in
the position i.

Having defined such a signature function, one can now compare S(C, i) with S(C ′, i) for all i ∈
{1, . . . , n} and if a match is found, recover the permutation between the original codes.

The hull, however, is only an invariant for permutation equivalence. Hence, the SSA has a cost of
solving PEP in

O(qdim(H(C))).

Thus, if the code is self-orthogonal, the SSA algorithm has an exponential cost, while if the code
has a trivial hull (as we expect random codes to have), we get a polynomial-time solver.

The attentive reader has already realized a big spoiler now: PEP can be solved (with high proba-
bility) in polynomial time for random codes! We come back to this in the next chapter.
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2.3 Different View Points
What if we consider the many connections of coding theory to other finite friends in order to solve
this problem?

2.3.1 Projective Systems

Our first finite friend is finite geometry. I suspect you to be more familiar with this topic than I am,
but I will do my best to recap the main notions correctly:

Definition 2.6. Let q be a prime power and k be a positive integer. The finite projective geometry
of dimension k and order q is then given by

PG(k, q) = (Fk+1
q \ {0})/ ∼,

where ∼ denotes the following equivalence relation on Fk+1
q \ {0} :

u ∼ v if and only if u = λv for some λ ∈ F⋆
q.

We call elements in PG(k, q) points and say H ⊂ PG(k, q) is a hyperplane if it is isomorphic to
PG(k − 1, q).

This allows us to see codes as projective systems:

Definition 2.7. Let q be a prime power and k ≤ n be positive integers. We say that M is a
projective [n, k, d]q system, ifM is a finite set of n points (counted with multiplicity) of PG(k −
1, q), which do not all lie on a hyperplane. Further,

d = n−max{|H ∩M| | H ⊆ PG(k − 1, q), dim(H) = k − 2}.

Let C be an [n, k, d]q linear non-degenerate code with generator matrix G ∈ Fk×n
q . If we consider

the (multi-) set of one dimensional subspaces of Fn
q generated by the columns of G, then these

form a multisetM of points in PG(k − 1, q).

Additionally, for any vector v ∈ Fk
q , the projective hyperplane

k∑
i=1

vixi = 0

contains |M| − w points ofM, if and only if wtH(vG) = w.

Hence, we have a one-to-one correspondence between [n, k, d]q linear non-degenerate codes and
projective [n, k, d]q systems.

Example 2.8. Let us consider

G =

1 0 2 3

0 1 4 0


32



over F5. Then the rows span C = ⟨G⟩ is a [4, 2]5 linear code. We can easily check that its minimum
distance d = 2, as c = (0, 1, 4, 0) ∈ C.On the other hand, the columns form points in the projective
line PG(1, 5), being

M = {[0 : 1], [1 : 0], [3 : 1], [1 : 0]}.

Thus, we want to find a hyperplane

H = {[x : y] ∈ PG(1, 5) | ax+ by = 0},

containing the most points ofM. The maximal amount of points we can contain is 2, being [1 : 0],
counted with multiplicity two and thus H = {[x : y] | y = 0}, giving us

d = n−max{|H ∩M| | H ⊆ PG(k − 1, q), dim(H) = k − 2} = 4− 2 = 2.

We quickly observe that any two linearly equivalent codes define the same projective system.

In fact, by permuting the columns of G, we do not change the multisetM, and neither by multi-
plying a column of G with a non-zero scalar. Indeed, the projective system is another invariant.

2.3.2 Matroids

Our next finite friend is matroid theory.

Definition 2.9. A matroid M is a pair (E, I), where E is a finite set and I is a collection of subsets
of E, called independent sets, such that

1. ∅ ∈ I ,

2. if A ∈ I, B ⊆ A then B ∈ I ,

3. if a,B ∈ I with |A| < |B|, then there exists a b ∈ B \ A such that A ∪ {b} ∈ I.

Starting from a generator matrix G ∈ Fk×n
q we can get a representable matroid M(G) by setting

E = {1, . . . , n} and
I = {S ⊂ E | GS has full rank}.

Example 2.10. In our previous example,

G =

1 0 2 3

0 1 4 0


over F5, we set E = {1, 2, 3, 4} and get the following independent sets:

I = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {2, 3, 4}}.

Equivalently, one can define a matroid using the rank function. For this we denote by P(E) the
powerset of E, i.e., all subsets of E.
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Definition 2.11. A matroid is a pair (E, r), where E is a finite set and r : P(E) → N0 is a rank
function, such that

1. 0 ≤ r(X) ≤ |X| for all X ⊆ E,

2. if X ⊆ Y ⊆ E then r(X) ≤ r(Y ),

3. for all X, Y ⊆ E we have

r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

With this the definition, a representable matroid M(G) becomes: E = {1, . . . , n} and for all
S ∈ P(E) we set

r(S) = dim(⟨GS⟩).

Example 2.12. In our favorite example, we get

r(∅) = 0

r({i}) = 1 for all i ∈ E,
r({1, 4}) = 1

and all other subsets have rank 2 (as this is already the dimension of the code itself).

Note that the minimum distance d = dH(⟨G⟩) can then also be determined as

d = min{|S| | r(E \ S) < k},

that is the smallest number of columns of G, such that removing these columns reduces the rank.

In our example, we get again d = 2, since we need to remove the columns indexed by S = {2, 3}

to get GSC =

1 3

0 0

 of rank 1.

If C, C ′ are two linearly equivalent [n, k]q codes, then the linear dependency relations among
columns of G,G′ are the same: the permutation of columns only introduces a relabeling of E
and the scalar multiplications do not change the linear dependencies.

Thus, they define the same representable matroid- yet another invariant.

2.3.3 Designs

We can also go to the finite friend of design theory.

Definition 2.13. A t − (v, k, λ) design is a pair (X,B), where X is a set of v points and B is
a collection of k-elements subsets of X, called blocks, such that every t-element subset of X is
contained in exactly λ blocks.
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Given a [n, k, d]q linear code C, we may define X = {1, . . . , n} and B being the support of all
codewords of weight d.

The connection between codes and designs is established through the Assmus-Mattson theorem
[4], which states the following:

Theorem 2.14. Let C be a [n, k, d]q linear code and C⊥ be a [n, n−k, d′]q linear code. Let us denote
by Ai the weight enumerators of C and by A′

i the weight enumerators of C⊥, for i ∈ {0, . . . , n}.
Fix a positive integer t < d and denote by s the number of i ∈ {1, . . . , n − t} with A′

i ̸= 0. If
s ≤ d− t, then the supports of all codewords in C of any fixed weight d ≤ u ≤ n form a t-design.

Example 2.15. Our running example is unfortunately not projective, so we get a degenerate de-
sign, but we can still do it: recall that

G =

1 0 2 3

0 1 4 0

 ,

then the minimum weight codewords are given by (0, 1, 4, 0), (0, 2, 3, 0), (0, 3, 2, 0), (0, 4, 1, 0), and
all of them have support {2, 3}. Thus, we set X = {1, 2, 3, 4} and B = {{2, 3}}. We can easily
check that this is a 1− (4, 2, 1) design.

By considering two linearly equivalent codes C, C ′, the permutation will only introduce a relabeling
of X such that the support of their minimum weight codewords is the same. Thus, again the design
from minimum weight codewords is ultimately an invariant.

There is one final finite friend, which will be helpful in solving code equivalence: graph theory.
This will be the topic of the next chapter.
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3 Connections to other Problems
In this chapter we want to explore the connections of LEP and PEP to other problems, hoping they
might be easier to solve.

To this extend, we will show two main reductions:

1. The reduction from LEP to PEP.

2. The reduction from PEP to GI.

We then ask ourselves; shouldn’t this also allow us to reduce LEP to GI? And recalling that GI is
quasi-polynomial time: haven’t we achieved our goal then?

The answer is: unfortunately no (to both), as we hid some details under the rug. Thus, as last point
in this chapter, we will lift the rug and discover the unfortunate truth.

3.1 Reduction from LEP to PEP or How to Close a Code
The reduction from PEP to LEP is straightforward: if we have a solver for LEP, we can also give
this solver any instance of PEP and get a solution. The more interesting direction is to go from
LEP to PEP instead.

This has been done in [26], by defining the closure of a code.

Definition 3.1. Let C be an [n, k]q linear code, let α ∈ Fq be a primitive element and denote by
λ = (1, α, . . . , αq−2) ∈ Fq−1

q . The closure of C is given by the Kronecker product λ⊗ C.

The new code is now of length n(q− 1) and still of dimension k. In fact, if G is a generator matrix
of C, then λ⊗G is a generator matrix of λ⊗ C.

Example 3.2. Let us consider the code over F5 generated by

G =

1 0 1

0 1 3


and take α = 2, that is λ = (1, 2, 4, 3), then its closure λ⊗ C is generated by

λ⊗G =

1 2 4 3 0 0 0 0 1 2 4 3

0 0 0 0 1 2 4 3 2 4 3 1

 .

Clearly, the closure depends on the choice of λ, however, for a different λ′ we simply get a permu-
tation equivalent code.
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Example 3.3. Let us consider again the code over F5 generated by

G =

1 0 1

0 1 3


and take a different α′ = 3, giving λ′ = (1, 3, 4, 2), then its closure λ′ ⊗ C is generated by

λ′ ⊗G =

1 3 4 2 0 0 0 0 1 3 4 2

0 0 0 0 1 3 4 2 2 1 3 4

 .

Clearly, we have λ ⊗ G = (λ′ ⊗ G)P, where P is the permutation matrix corresponding to the
permutation (2, 4)(6, 8)(10, 12) or equivalently Id4 ⊗ (1, 2).

We could extend the definition of closure to allow any λ which consists of all non-zero elements
of Fq, but this definition will be enough for us.

Proposition 3.4. Let C1, C2 be two linearly equivalent [n, k]q linear codes. Then λ⊗ C1 is permu-
tation equivalent to λ⊗ C2.

Proof. Let φ = DP, with D = diag(d1, . . . , dn) and P a n × n permutation matrix, such that
φ(C1) = C2.

If G1 =
(
g⊤1 · · · g⊤n

)
is a generator matrix for C1 then

λ⊗G1 =
(
g⊤1 αg⊤1 · · · αq−2g⊤1 · · · g⊤n αg⊤n · · · αq−2g⊤n

)
is a generator matrix of λ⊗ C1.
We note that multiplying with di is a permutation in F⋆

q , that is σi : F⋆
q → F⋆

q, x 7→ xdi can be
seen as σi ∈ Sq−1. Thus, multiplying column gi with di, means (dig

⊤
i , diαg

⊤
i , . . . , diα

q−2g⊤i ) =
σ(g⊤i , αg

⊤
i , . . . , α

q−2g⊤i ). Hence the scalars di are introducing permutations σi within the n blocks
of length m.

The permutation P instead shifts around these blocks, that is if σ is the permutation corresponding
to P and σ sends the index i to j, then we have to send the ith block to the jth block.

Thus,

Q =


P1

. . .

Pn

 (Idq−1 ⊗ P ) ∈ Sn(q−1)

is such that (λ⊗G1)Q is a generator matrix of λ⊗ C2.

This is a nice result, allowing us to focus on PEP more.
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3.2 Reduction from PEP to GI
Due to Babai’s algorithm [5], we know that Graph Isomorphism (GI) takes at most quasi-polynomial
time to solve. Thus, a reduction from PEP to GI, i.e., showing that if we can solve GI then we can
also solve PEP, implies that PEP is easier than GI. In particular, PEP should not be used for cryp-
tography.

The reduction has been proposed in [7] and has a small drawback: it only works for codes with triv-
ial hull. Since random codes have with high probability a trivial hull, we call this a "randomized"
reduction, meaning that it will not work for any instance, but it works with high probability.

Before we can give the reduction, let us recall some graph theory.

A graph G = (V,E) consists of vertices V and edges E between the vertices, i.e., E ⊆ V × V.

We will focus on undirected graphs, thus whenever {u, v} ∈ E also {v, u} ∈ E and we label the
edges with a weight w(u, v).

We say that two weighted graphs G = (V,E) and G ′ = (V ′, E ′) are isomorphic, if there exists a
bijective map f : V → V ′ with

1. {u, v} ∈ E ↔ {f(u), f(v)} ∈ E ′,

2. w(u, v) = w(f(u), f(v)).

Thus, we can focus on V = V ′ = {1, . . . , n} and maps f = σ ∈ Sn.

Problem 3.5 (Weighted Graph Isomorphism Problem). Given G = (V,E),G ′ = (V,E ′), find
σ ∈ Sn, such that {u, v} ∈ E ↔ {σ(u), σ(v)} ∈ E ′ and w(u, v) = w(σ(u), σ(v)).

The quasi-polynomial time solver also works for weighted graphs, as it was shown that the weight
graphs problem is GI-complete.

Definition 3.6. The adjacency matrix of a weighted graph G is defined as the n× n matrix A with
entries

Ai,j =

{
w(i, j) if {i, j} ∈ E,
0 else.

Since we are only interested in undirected graphs, the adjacency matrices are symmetric.

Proposition 3.7. Two graphs G,G ′ are isomorphic if and only if there exists a permutation matrix
P such that P⊤AP = A′.

This almost looks like what we need for PEP, except for the fact that in PEP (treatingA as generator
matrix) we also accept SAP = A′ for any invertible matrix S, not necessarily of the form P⊤.

In fact, one can easily make an example of two graphs, where there exists S ∈ GLq(n), P ∈ Sn

with SAP = A′ but the two graphs are clearly not isomorphic.
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Example 3.8. Let G = (V,E) with V = {1, 2, 3, 4} andE = {w(1, 2) = 1, w(2, 3) = 1, w(2, 4) =
2} and G ′ = (V,E ′) with E ′ = {w(1, 1) = 3, w(1, 2) = 1, w(1, 3) = 1, w(1, 4) = 2}.

These graphs can clearly not be isomorphic. However, their adjacency matrices

A =


0 1 0 0

1 0 1 2

0 1 0 0

0 2 0 0

 and A′ =


3 1 1 2

1 0 0 0

1 0 0 0

2 0 0 0



generate the codes C = ⟨G⟩ with G =

1 0 1 2

0 1 0 0

 and C ′ = ⟨G′⟩ with G′ =

1 0 0 0

0 1 1 2

,

which are clearly permutation equivalent through the permutation σ = (2134). And there exists
S ∈ GL5(4), P ∈ S4 (the permutation matrix of σ) such that SAP = A′, namely

S =


0 1 0 0

1 0 0 0

3 0 0 2

0 0 3 0

 .

Luckily, in order to reduce PEP to GI, we do not have to start with an instance of GI and transform
it to an instance of PEP. Instead, we start from codes and transform them to graphs.

Hence, the main question is: given G ∈ Fk×n
q , how to define a symmetric matrix in Fn×n

q , which
can act as adjacency matrix?

For this [7] introduced the following: For C with trivial hull, we define

A = G⊤(GG⊤)−1G.

Clearly, this matrix can only exist if GG⊤ is invertible, i.e., if the hull of C is trivial. The matrix
A ∈ Fn×n

q is symmetric, ⟨A⟩ = C and, moreover, independent of the choice of G.

In fact, taking any other generator matrix, SG, we get

(SG)⊤(SG(SG)⊤)−1SG = G⊤(GG⊤)G.
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Theorem 3.9. PEP is easier than weighted GI, for codes with trivial hull.

Proof. Assume that the codes in the instance of PEP (C, C ′) have trivial hulls. For arbitrary gener-
ator matrices G, respectively G′, take

A = G⊤(GG⊤)−1G,

A′ = G′⊤(G′G′⊤)−1G′.

And define G, respectively G ′, to have adjacency matrices A, respectively A′.

We now show that the answer to the constructed weighted GI instance is also the answer to the
PEP instance. In fact, σ(G) = G ′ if and only if σ(C) = C ′.
For the first direction, note that for any choice of generator matrices, there exist S ∈ GLq(k) with
SGP = G′. However, since A is independent of the choice of basis, we can ignore the S and get

A′ = (GP )⊤(GP (GP )⊤)−1GP = P⊤AP.

Thus, the two graphs are isomorphic.

The other direction is straightforward, as the P⊤AP = A′ implies that the two codes are permuta-
tion equivalent.

3.2.1 Reduction from GI to PEP

Note, that we can also go the other direction (which is less interesting as it says PEP is harder than
GI), but it does have a positive effect on subcode equivalence.

We say that G = (V,E) with |V | = v, |E| = e has incidence matrix B ∈ Fe×v
2 , if B has entries bi,j

with

bi,j =

{
1 if i = {ℓ, j} ∈ E,
0 else.

That is the rows correspond to the edges and the columns to the vertices. Considering the edge
{u, v}, we set a 1 in the position u and in the position v.

Example 3.10. The graph G with vertex set V = {1, 2, 3, 4} and edge setE = {{(1, 2}, {2, 3}, {3, 4}}
has incidence matrix

B =


1 1 0 0

0 1 1 0

0 0 1 1

 .

Clearly, there are different incidence matrices, depending on the ordering of the edges.

Similar to the characterization with the adjacency matrix, two graphs G,G ′ with incidence matri-
ces B, respectively B′, are isomorphic, if there exist a e × e permutation matrix Q and a v × v
permutation matrix P , such that QBP = B′.
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Theorem 3.11. There exists a polynomial-time reduction from GI to PEP.

We follow the proof of [22].

Proof. Let G = (V,E) and G ′ = (V,E ′) be an instance of GI. Let B and B′ be two incidence
matrices for G, respectively G ′. We can transform this instance to an instance of PEP, by defining
the two generator matrices in Fe×(3e+v)

q

G =
(

Ide Ide Ide B
)
,

G′ =
(

Ide Ide Ide B′
)
.

Let us consider two cases. In the first case, the answer to GI is “yes”, as there exists a f : V → V ,
such that {f(u), f(v)} ∈ E ′ for all {u, v} ∈ E. Thus, there exists a permutation of V which maps
one graph to the other and the two incidence matrices B and B′ are such that

QBP = B′

for some e× e permutation matrix Q and v× v permutation matrix P. Clearly, the codes generated
by G and G′ are then also permutation equivalent.

In the second case, we assume that the two graphs are not isomorphic, hence there exists no per-
mutation on V , which maps G to G ′. Thus, no v×v permutation matrix P and no e×e permutation
matrix Q exists for which QBP = B′.

The two codes generated by G and G′ are only permutation equivalent, if we can find S ∈ GL2(e)
and (3e+ v)× (3e+ v) permutation matrix P such that

SGP =
(
S S S SB

)
P = G′.

Both generator matrices have the following properties: each row has weight 5 and any linear
combination of them has weight ≥ 6. (Actually ≥ 8, but I guess the original proof considered
directed graphs).

Since G′ and GP generate the same code, the two matrices must be the same up to permutations
of the rows. Hence S must be a permutation matrix.

Note that the first 3e columns of SG consist of all unit vectors of length e, each appearing exactly
three times. Hence, the first 3e columns of G′ are obtained by permuting the first 3e columns of
SG and thus, we also have the permutation matrix P ′ = diag(S−1, S−1, S−1, T ), where T is a
v × v permutation matrix, which is such that

G′ = SGP ′ =
(

Ide Ide Ide SBT
)
.

Hence, we must haveB′ = SBT , which is against the assumption that G and G ′ are not isomorphic.
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Due to this result, we know that PEP (and thus also LEP) are at least as hard as GI.

This has the nice implication, that the subcode equivalence problem is NP-hard, as the subgraph
isomorphism problem is NP-hard [16]!

Problem 3.12 (Subcode Equivalence Problem (SEP)). Let k′ ≤ k ≤ n be positive integers. Given
G ∈ Fk×n

q , G′ ∈ Fk′×n
q , find, if any exists, permutation matrix P such that ⟨G′⟩ ⊆ ⟨GP ⟩.
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3.3 Under the Rug
Let us come back to our question: If LEP → PEP → GI, then LEP → GI and LEP is quasi-
polynomial time -right?

Indeed, we can solve PEP using Babai’s quasi-polynomial time solver for GI [5] if the codes have
trivial hulls.

When first reducing linearly equivalent codes to permutation equivalent codes, we cannot reduce
them further to GI, as the closure of codes is in fact self-orthogonal for q ≥ 4.

Before we can prove this, we need the following Lemma.

Lemma 3.13. Let q be a prime power, then

∑
α∈F⋆

q

αℓ =

{
0 if (q − 1) ∤ ℓ,
−1 if (q − 1) | ℓ.

Exercise 3.14. Prove Lemma 3.13.

Proposition 3.15. If q ≥ 4, then λ⊗ C is self-orthogonal.

Proof. Recall that a code D is self-orthogonal if D ⊆ D⊥, thus H(D) = D. We have also seen
that if G is a generator matrix of D, then GG⊤ = 0 implies that D is self-orthogonal.

To understand the hull of the closure, we thus have to compute

(λ⊗G)(λ⊗G)⊤ =
(
g⊤1 αg⊤1 · · · αq−2g⊤n

)


g1

αg1
...

αq−2gn

 .

One can easily check that
(λ⊗G)(λ⊗G)⊤ = λλ⊤GG⊤.

While we assumed that for random G we have that GG⊤ is full rank, we also have that λλ⊤ = 0,
as

λλ⊤ =

q−2∑
i=0

α2i =
∑
β∈F⋆

q

β2 = 0,

by Lemma 3.13, unless q = 2, 3.
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Example 3.16. Let us consider F4 = F2(α), where α2 = α + 1. Let C = ⟨G⟩ ⊂ F3
4, where

G =

1 0 α

0 1 1

 .

Let D = diag(α, 1, α) and P be the permutation matrix corresponding to σ = (1, 3), then

GDP =

α + 1 0 α

α 1 0

 .

Bringing this into systematic form, we get a linearly equivalent code C ′ generated by

G′ =

1 0 α + 1

0 1 1

 .

Let λ = (1, α, α+ 1). The closure of C is generated by

λ⊗G =

1 α α+ 1 0 0 0 α α+ 1 1

0 0 0 1 α α+ 1 1 α α + 1

 ,

while the closure of C ′ is generated by

λ⊗G′ =

1 α α+ 1 0 0 0 α + 1 1 α

0 0 0 1 α α+ 1 1 α α+ 1

 .

We can find

Q =



0 0 1

1 0 0 0 0

0 1 0

1 0 0

0 0 1 0 0

0 0 1

0 0 1

0 0 1 0 0

0 1 0




0 0 Id3

0 Id3 0

Id3 0 0

 ∈ S9

which is such that S(λ⊗G)Q = λ⊗G′, for some S ∈ GLq(k).
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3.4 A bit of Hope
We have seen the limitations of the reductions - but this is not the end of the story! No one said,
we have to use this construction of an adjacency matrix, or this construction of a closure!

In fact, we can also handle q = 4, however, not with the classical dual defined through the standard
inner product.

Definition 3.17 (Hermitian Inner Product). Let q = p2m, for some prime p and positive integer m.
For x, y ∈ Fn

q let us denote by ⟨x, y⟩H the Hermitian inner product, i.e.,

⟨x, y⟩H =
n∑

i=1

xiy
pm

i .

Note that the Hermitian inner product is positive definite, linear but is not symmetric! Instead we
have ⟨x, y⟩H = (⟨y, x⟩H)p

m .

Thus, to define the Hermitian dual, we have to fix on which side we place the codewords.

Definition 3.18 (Hermitian Dual Code). Let k ≤ n be positive integers and let C be an [n, k]q
linear code over Fq. The Hermitian dual code C⋆ is an [n, n− k] linear code over Fq, defined as

C⋆ = {x ∈ Fn
q | ⟨x, y⟩H = 0 ∀ y ∈ C}.

Note that since p = char(Fq), we get

⟨x, y⟩H =
n∑

i=1

xiy
pm

i = (
n∑

i=1

xp
m

i yi)
pm . (1)

For a matrix M ∈ Fm×n
q and a positive integer x, let us denote by Mx the matrix, where each entry

of M is raised to the power x.

Definition 3.19 (Hermitian Parity-Check Matrix). Let k ≤ n be positive integers and let C be an
[n, k]q linear code over Fq with Hermitian dual code C⋆. Then, a matrix H⋆ ∈ F(n−k)×n

q is called a
Hermitian parity-check matrix of C if H⋆ is a generator matrix of C⋆.

Exercise 3.20. Let C be an [n, k]q linear code and G ∈ Fk×n
q be a generator matrix and H⋆ ∈

F(n−k)×n
q be a Hermitian parity-check matrix of C. Show that

H⋆(Gpm)⊤ = 0.

That is C⋆ = ker((Gpm)⊤).

Exercise 3.21. Let C be an [n, k]q linear code and H ∈ F(n−k)×n
q be a parity-check matrix of C.

Use Equation (1) to show that H⋆ = Hpm is a Hermitian parity-check matrix.
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We want to translate the following description of the dual to the Hermitian dual:

C = ⟨G⟩ = ker(H⊤), C⊥ = ⟨H⟩ = ker(G⊤), and (C⊥)⊥ = C.

Exercise 3.22. Let C be a [n, k]q linear code with C = ⟨G⟩ = ker(H⊤). Show that (C⋆)⋆ = C.

Thus, we get

C = ⟨G⟩ = ker(H⊤), C⋆ = ⟨Hpm⟩ = ker((Gpm)⊤), and (C⋆)⋆ = C.
Let us see an example of this new dual.

Example 3.23. Let us consider F4 = F2(α) with α2 = α + 1 and a generator matrix of C is given
by

G =

1 0 α

0 1 α + 1

 .

A normal parity-check matrix would be

H =
(
α α+ 1 1

)
,

as it is such thatGH⊤ = 0. To get to a Hermitian parity-check matrix, we can computeH⋆ = H1/2,
that gives

H⋆ =
(
α + 1 α 1

)
.

This generates the Hermitian dual

C⋆ = {(0, 0, 0), (α + 1, α, 1), (1, α+ 1, α), (α, 1, α+ 1)}.

If we compute the Hermitian parity-check matrix of that, we can start with a normal parity-check
matrix

G⋆ =

1 0 α + 1

0 1 α


and compute

(G⋆)2 =

1 0 α

0 1 α + 1

 = G.

The Hermitian hull is then defined asH⋆(C) = C ∩ C⋆.

Exercise 3.24. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code with generator matrix G ∈ Fk×n

q and parity-check matrix H ∈ F(n−k)×n
q . Show that

H⋆(C) = ker


Gpm

H

⊤
 .
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The Hermitian dual and Hermitian hull are still invariants.

Exercise 3.25. Let C ⊂ Fn
q be linearly equivalent to C ′. Show that C⋆ is linearly equivalent to (C ′)⋆.

Hint: Use again that G((H⋆)p
m
)⊤ = 0 and GDP = G′.

Exercise 3.26. Let C ⊂ Fn
q be permutation equivalent to C ′. Show that H⋆(C) is permutation

equivalent toH⋆(C ′).

Having this new definition of hull, we can define

A⋆ = (Gpm)⊤(G(Gpm)⊤)−1G,

again A⋆ is independent of the choice of generator matrix, symmetric and exists if C has trivial
Hermitian hull.

Exercise 3.27. Show that A⋆ is independent on the choice of G.

Similar to before, we can assume that random codes have with high probability trivial Hermitian
hull.

Exercise 3.28. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code with generator matrix G ∈ Fk×n

q . Show that if G(Gpm)⊤ has full rank, then dim(H⋆(C)) = 0.

The only thing left to check is that the closure of a code in F4 has with high probability trivial
Hermitian hull. For this let α be a primitive element in F4 and consider λ = (1, α, α2), thus we get

X = (λ⊗G)((λ⊗G)2)⊤ =


| | | | | |

g⊤1 αg⊤1 α2g⊤1 · · · g⊤n αg⊤n α2g⊤n

| | | | | |





− g21 −

− α2g21 −

− αg21 −
...

− g2n −

− α2g2n −

− αg2n −


.

One can easily check that
X = λ(λ2)⊤G(G2)⊤.

For λ = (1, α, α+ 1), we now get

λ(λ2)⊤ = 1 · 1 + α · (α + 1) + (α + 1) · α = −1.

Hence, under our assumption that G(G2)⊤ has full rank, the adjacency matrix A⋆ exists and we
can give the same reduction to GI as before.
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The immediate question we have in mind now is: why not do this for large Fpm?

Let’s try: if λ = (1, α, . . . , αp2m−2) then we are considering

λ(λp
m

)⊤ = (1, α, . . . , αp2m−2)(1, αpm , . . . , α(p2m−2)pm)⊤

=

p2m−2∑
i=0

αi · αipm =

p2m−2∑
i=0

αi(pm+1)

=
∑
β∈F⋆

q

βpm+1.

Recall from Lemma 3.13 that in order to get ̸= 0, we need (p2m − 1) | (pm + 1). However, this is
only given for p = 2 and m = 1, that is for F4.
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4 New Directions
As the topic is very young, we of course have some new results:

4.1 New Results

Two is all it takes: We have seen that we can set up a linear system GMH⊤ = 0, where M are
the unknowns, and we are only interested in the unique solution M of the form DP. The system is
clearly under-determined, as there is no easy way to incorporate "M is a monomial matrix" to the
system.

On the other hand, the combinatorial solvers are trying to find pairs of codewords (c, c′) ∈ C × C ′
which are mapped to each other through the secret monomial DP . In these solvers, one needed
roughly log(n) such pairs of codewords to recover the monomial.

A very old result from basic linear algebra has been resurrected to lower this amount to only 2.
The paper "Two is all it takes" [14], uses the Rouché-Capelli test.

Theorem 4.1. Let A ∈ Fm×n
q be a matrix of rank rk(A) = r. Let b ∈ Fm

q and x = (x1, . . . , xn) be

unknown variables. The system Ax⊤ = b⊤ admits a solution if and only if
(
A b

)
has rank r.

If we are given (say by an oracle) two pairs (c1, c′1), (c2, c
′
2) ∈ C×C ′ which are such that ciDP = c′i

for i ∈ {1, 2}, then these codewords leak already a lot of information on the monomial DP .

For example, if ci has in the first entry a zero, this might only be mapped to a zero entry of c′i.
Hence, we know where the first position is not mapped to. This allows us to set some entries of
DP . Similarly, if the secret monomial sends the ith entry to the jth entry and multiplies with
λ ∈ F⋆

q , then c1,i = λc′1,j and c2,i = λc2,j , thus their ratios must be the same:

c1,i
c2,i

=
c′1,j
c′2,j

.

We can use these hints on the entries of the secretM = DP in the algebraic modelingGMH⊤ = 0,
however, we are still left with a under-determined system. Thus, we require to make certain guesses
on the entries of M.

Whenever a guess is made, we can check if the system still admits a solution with the Rouché
Capelli test. Clearly, if it does not admit a solution anymore is much stronger: then we know the
guess was wrong.

Clearly, the main problem is now to find two pairs (c1, c
′
1), (c2, c

′
2) ∈ C × C ′ which are mapped

through the secret DP.

49



Don’t use it twice: Recall that LESS uses multiple public keys; G,G1, . . . , GN , and they are all
linearly equivalent to each other, but using different monomial transformations.

In the paper "Don’t use it twice" [13], the authors show that if we are given two pairs of codes
connected through the same secret monomial, that is

φ(C1) = C ′1 and φ(C2) = C ′2

then we can find the secret monomial φ easily; again using Rouché Capelli.
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4.2 Square Codes
The square code is usually used in cryptanalysis of structured systems, i.e., to distinguish between
algebraically structured codes, such as Reed-Solomon codes, from random codes. However, it will
also come in handy for code equivalence.

Definition 4.2. Let x, y ∈ Fn
q . Let us denote by ∗ the componentwise product or Schur product

between x and y, i.e.,
x ∗ y = (x1y1, . . . , xnyn).

The Schur product has many nice properties, in particular, it is symmetric and bilinear. That means

1. For λ ∈ Fq we have (λx) ∗ y = x ∗ (λy) = λ(x ∗ y).

2. For z ∈ Fn
q we have (x+ z) ∗ y = x ∗ y + z ∗ y and x ∗ (y + z) = x ∗ y + x ∗ z.

3. We have x ∗ y = x ∗ y.
We can thus also consider this operation on codes, leading to

Definition 4.3. Let C1 be an [n, k1]q linear code and C2 be an [n, k2]q linear code. The Schur
product code of C1 and C2 is defined as

C1 ∗ C2 = ⟨{c1 ∗ c2 | c1 ∈ C1, c2 ∈ C2}⟩.

If we apply this to the same code, we get the square code of C, defined as

C(2) = ⟨{c ∗ c′ | c, c′ ∈ C}⟩.

Example 4.4. Let us consider the [3, 2]3 linear code C generated by G =

1 0 2

0 1 1

 . That is

C = {(0, 0, 0), (1, 0, 2), (2, 0, 1), (0, 1, 1), (1, 1, 0), (2, 1, 2), (0, 2, 2), (1, 2, 1), (2, 2, 0)}.

Then the square code is given by
C(2) = F3

3.

Proposition 4.5. Let C be generated by G =


g1
...

gk

 ∈ Fk×n
q . Then C(2) is generated by

G(2) =



g1 ∗ g1
...

g1 ∗ gk
...

gk ∗ gk


∈ F(

k+1
2 )×n

q .
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Exercise 4.6. Prove Proposition 4.5.

With this in mind, we have a clear bound on the dimension of the square code:

Theorem 4.7. Let C be a [n, k]q linear code. Then

dim(C(2)) ≤ min

{(
k + 1

2

)
, n

}
.

We again know, that random codes attain this bound with high probability, for n growing.

If we start with two linearly equivalent codes, their square codes will also be linearly equivalent.

Theorem 4.8. Let C, C ′ be two [n, k]q linear codes and φ = (D,P ) ∈ (F⋆
q)

n ⋊ Sn be such that
φ(C) = C ′. Then φ′ = (D2, P ) ∈ (F⋆

q)
n ⋊ Sn is such that

φ′(C(2)) = C ′(2).

Exercise 4.9. Prove Theorem 4.8.

If we consider the hardest instance of PEP, that is C is self-orthogonal, i.e., C ⊆ C⊥, does this imply
that C(2) is also self-orthogonal?

Not necessarily!

Exercise 4.10. Let C be a [n, k]q linear code. Show thatH(C)(2) ̸= H(C(2)).

However, we can use the square of the hull to solve PEP faster: for this consider two linearly
equivalent codes C, C ′, which are self-orthogonal. The idea of [10], is to first puncture C and C ′
in the positions I , respectively I ′, denoted by PI(C) and PI′(C ′), and then to compute the square
codes of their hulls. These are again permutation equivalent.

C C ′
φ

PI(C) PI′(C ′)

H(PI(C)) H(PI′(C ′))

H(PI(C))(2) H(PI′(C ′))(2)
φ′

Using this idea, the paper [10] recently attacked the proposal [2].
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The case q = 5 In fact, the square code can now also handle LEP for q = 5.

Let C, C ′ be two [n, k]q linear codes and φ = (D,P ) ∈ (F⋆
q)

n ⋊ Sn be such that φ(C) = C ′. By
Theorem 4.8 we get that φ′ = (D2, P ) is such that φ′(C(2)) = C ′(2).

However, for q = 5, D2 has only entries of {±1} on the diagonal. Thus, if we compute the
adjacency matrices A,A′, we get

A = G(2)⊤(G(2)G(2)⊤)−1G(2),

A′ = P⊤D2G(2)⊤(G(2)D2PP⊤D2G(2)⊤)−1G(2)D2P

= P⊤AP.

Since square codes of random codes have with high probability a trivial hull, G(2)G(2)⊤ is with
high probability invertible.

Exercise 4.11. Perform the reduction for the code generated by

G =

1 0 2 1

0 1 3 0

 ∈ F2×4
5

and the linearly equivalent code generated by

G′ =

4 1 0 2

0 4 2 0

 .
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4.3 Power Codes
We can also go to larger powers, C(ℓ). The dimension of a ℓth power code of a random code is now
a bit more complicated, but has been shown [19] to be with high probability

dim(C(ℓ)) = min

{(
k + ℓ− 1

ℓ

)
, n

}
,

for ℓ ∈ {0, . . . , q}.

If we use the power codes in combination with the closure, we first note that these operations are
not commutative:

Exercise 4.12. Let C be a [n, k]q linear code and α be a primitive element in Fq. Define λ =
(1, α, . . . , αq−2). Show that

(λ⊗ C)(2) ̸= λ⊗ C(2).

If we first compute the ℓth power code and then the closure, i.e., λ ⊗ C(2), then we get again a
self-orthogonal code and cannot build the adjacency matrix.

Instead, we start by first computing the closure and then form the ℓth power code.

Exercise 4.13. Let G ∈ Fk×n
q and λ = (1, α, . . . , αq−2). Show that

(λ⊗G)(ℓ) = λℓ ⊗G(ℓ).

Hence,
(λ⊗G)(ℓ)(λ⊗G)(ℓ)⊤ = λℓλℓ

⊤ ⊗G(ℓ)G(ℓ)⊤.

Thus a first approach would be to use the power (q − 1)/2, as then

λ(q−1)/2λ(q−1)/2⊤ ̸= 0,

due to Lemma 3.13.

The main problem of this idea is that by first computing the closure of a code, and then the (q −
1)/2-th power code, we get that the dimension quickly reaches the length n, that is(

k + (q − 1)/2− 1

(q − 1)/2

)
≥ n.

Only in the unlikely case that n >
(
k+(q−1)/2−1

(q−1)/2

)
can the ((q − 1)/2)-th power code approach be

applied.
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4.4 More Philosophy than Math
Why are we choosing A or A⋆ in this way? If we take a closer look at the adjacency matrix A for
the generator matrix G, let us call it A(G,G⊤) for now:

A(G,G⊤) = (G⊤)(G(G⊤))−1G,

we can see the involvement ofG, as a generator of C, and the involvement ofG⊤ as the parity-check
matrix of C⊤. Equivalently, we could state that the inner part GG⊤ is for the hull of C.

We are using the fact, that if φ ∈ Sn is such that φ(C) = C ′, then φ(C⊥) = C ′⊥.

C C ′
φ

C⊥ C ′⊥
φ

However, this reduction does not work for LEP, as

A(G,G⊤) = (G⊤)(GG⊤)−1G,

A(GDP, (GDP )⊤) = P⊤DG⊤(GD2G⊤)−1GDP

̸= P⊤A(G,G⊤)P,

since if φ = (D,P ) is such that φ(C) = C ′, we do not have that φ(C⊥) = C ′⊥, instead, the duals
are connected through a different monomial φ′ = (D−1, P ).

One idea is to try and find another construction F (C) starting from C, such that for φ = (D,P ) we
do get

C C ′
φ

F (C) F (C ′)
φ
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5 Summary and Open Questions
We have seen that the code equivalence problem is much more involved than previously thought.
What we do know:

• We differentiate between linear equivalence (LEP) and permutation equivalence (PEP).

• If two codes are linearly equivalent, their duals are as well.

• Only for permutation equivalence are the duals connected through the same permutation.

• There are several invariants, such as weight enumerators and generalized weights.

• The hull is only an invariant for permutation equivalence.

• Hulls of random codes are with high probability trivial.

• LEP and PEP are not NP-hard, they are in co-AM ∩ NP.

• There exist several solvers which make use of these invariants but have exponential cost.

• We can clearly reduce PEP to LEP and we can reduce GI to PEP.

• We can reduce LEP to PEP using the closure.

• The closure of a code is a self-orthogonal code for q ≥ 4.

• We can reduce PEP to GI, if the codes have trivial hulls.

Let us depict the reductions:

hard? LEP PEP GI easy!

for q ≥ 4

get C ⊆ C⊥
only if

C ∩ C⊥ = {0}

But there is much more that we do not know:

• How to find a code F (C) from C which is connected through the same monomial?

• Can we change the definition of the adjacency matrix to make it work also for LEP?

• Can we ultimately reduce LEP to GI?

The intend of these lectures was to show you certain tools and connections we have explored, but
more importantly, show how much we have not explored yet.

If you are intrigued with the problem now, I hope these notes will help you and that in the near
future we might finally solve the mystery: how hard is code equivalence really?
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