
Summer 25

Information Set Decoding

Lecturer: Violetta Weger

These lecture notes were prepared for the ENCODE Summer School, July 2025. Any com-
ments or corrections can be sent to violetta.weger@tum.de The distribution of the notes is
of course allowed.

Overview The main task of Information Set Decoding (ISD) is to decode a random linear code:
Given a random n− k × n matrix H and vector s of length n− k, find a vector e of length n and
Hamming weight up to t, such that eH⊤ = s.

Information set decoding dates back to the algorithm of Prange in 1962 - which for coding
theory is pretty old.

Until today, over 40 ISD algorithms have emerged. Clearly, we will not cover all of those
algorithms. The major ones ([25, 26, 21, 6, 22]) are depicted in the timeline below. The ones
we cover (if time permits) are in blue, where e(R) denotes their asymptotic cost, i.e., their cost is
2e(R)n+o(n) for q = 2.

| | | | | ?
1962 1988 2011 2012 2015

Prange Stern MMT BJMM MO
e(R) 0.057 0.055 0.053 0.049 0.047

Hence, we can also see on this timeline how little the cost of these algorithms has decreased. We
left out some improvements by polynomial factors [20, 19] or algorithms achieving the same cost
with different methods [15, 12].

We can clearly see the renewed interest in these algorithms since 2010, when the threat of
quantum computers gave a boost to research in code-based cryptography in general.

This lecture is meant to give an introduction and a foundation on this research direction, hopefully
helping you understand the main idea and the used techniques.

The main motivation to study these algorithms lies in their use in code-based cryptography, where
at the heart of code-based cryptosystems we find the problem of decoding a random linear code.

This problem is known to be NP-hard and so we expect any solver, in particular information
set decoders to have an exponential cost.

However, any improvement (especially targeting specific structures, such as quasi-cyclic, ex-
tension fields or regular weight distribution) could have a great impact on the proposed systems -
or more precisely on their proposed parameters.

We will conclude this lecture with some of the many open questions which still remain after over
60 years of information set decoding.

1

Material: Most of the content of these lecture notes is collected from the seminal papers

• "Decoding random linear codes in." by Alexander May, Alexander Meurer, and Enrico
Thomae. In International Conference on the Theory and Application of Cryptology and
Information Security, 2011. [21]

• "Decoding random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding." By Anja Becker, Antoine Joux, Alexander May and Alexander Meurer. In An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
2012. [6]

• "On computing nearest neighbors with applications to decoding of binary linear codes." By
Alexander May and Ilya Ozerov. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2015. [22]

and the nice overviews provided in

• The Ph.D. dissertation of Alexander Meurer: "A coding-theoretic approach to cryptanaly-
sis." Ruhr university Bochum, 2013. [24]

• The survey on code-based cryptography by me, Niklas Gassner and Joachim Rosenthal. "A
survey on code-based cryptography.", 2022. [27]

Hence, if this introductory lecture got you interested, I highly recommend reading these references.

Since we cannot include everything, we will assume a certain background, most importantly: finite
fields and coding theory. For more details on these topics, you may consult the appendix: Appendix
7.1, respectively Appendix 7.2.

2

Contents
1 The Decoding Problem 5

1.1 Interlude: Code-based Cryptography . 5
1.2 Related Problems . 6
1.3 The Hardness . 8

2 What is a Random Code? 10
2.1 Syndrome Equation . 10
2.2 Weight Constraint . 11

3 First Solvers: Brute Force and Prange 15
3.1 Brute Force . 15
3.2 Information Set Decoding Idea . 16
3.3 Prange’s Algorithm . 19

4 The usual ISD: Stern’s ISD 22
4.1 Asymptotic Cost . 25

5 More Advanced Algorithms: BJMM 29
5.1 The Idea: Representations . 29
5.2 The Subroutine: Stern . 30

6 Summary and Open Questions 32
6.1 Summary . 32
6.2 Open Problems . 33

7 Additional Material a.k.a. Appendix 35
7.1 Finite Fields . 35
7.2 Codes . 42
7.3 Complexity Classes . 47
7.4 Cost of Algorithms . 49
7.5 Cryptography . 50

3

Notation
Throughout these lecture notes, we will make use of the following notation

• For a set S we denote by |S| its cardinality and by SC its complement.

• Idn denotes the identity matrix of size n.

• GLq(n) denotes the general linear group of degree n in Fq, i.e., all invertible matrices in
Fn×n
q .

• For a matrix M we write rk(M) to denote its rank, det(M) to denote its determinant and by
M⊤ we denote its transpose.

• For a function f we denote by ker(f) its kernel and by im(f) its image.

• For a vector v ∈ Fk
q and i ∈ {1, . . . , k} we denote by vi the ith entry of the vector v. For

a subset S ⊂ {1, . . . , k} of size s, vS ∈ Fs
q denotes the vector consisting of the entries of v

indexed by S.

• Similarly for a matrix: for a matrix M ∈ Fk×n
q and i ∈ {1, . . . , k}, j ∈ {1, . . . , n} we denote

by Mi,j the entry of M in the ith row and jth column. For a subset S ⊂ {1, . . . , n} of size
s, MS ∈ Fk×s

q denotes the matrix consisting of the columns of M indexed by S.

• For a matrix M ∈ Fk×n
q , we denote by 〈M〉 ⊆ Fn

q the span of the rows of M, that is
im(M) = 〈M〉.

4

1 The Decoding Problem
Usually, we are interested in using algebraic codes for reliable communication, storage, network
coding, information retrieval etc.

In all these scenarios, we want the codes to have an efficient decoder, meaning that if we are given
a corrupted codeword, we can recover the codeword in polynomial time.

However, if we have no information on the algebraic structure of the code, or even try to decode a
random code, a new question arises: how hard is it to decode in general?

This will be the main task of this chapter: generic decoding.

The main problem of this chapter, is called Decoding Problem (DP).

Problem 1.1 (Decoding Problem). Let Fq be a finite field and k ≤ n be positive integers. Given
G ∈ Fk×n

q , r ∈ Fn
q and t ∈ N, find e ∈ Fn

q with wtH(e) ≤ t and r − e ∈ 〈G〉.
Clearly, generic decoders are algorithms that solve the DP.

1.1 Interlude: Code-based Cryptography
Such generic decoders have a great impact for cryptography: coding theory can also be used
in cryptography. This intersection is called code-based cryptography and is as old as the RSA
cryptosystem (i.e., from 1978 [23]).

On a very high level, the idea of the McEliece public-key encryption scheme is to use a code
with an efficient decoder (he suggested Goppa codes) as a secret key, and to publish an equivalent
code, where the structure of the secret code is hidden (and thus also the necessary information for
the decoder). That is, we take as secret key G ∈ Fk×n

q , a generator matrix for the secret code,
and publish G′ = SGP for some S ∈ GLq(k), P a permutation matrix, and the error-correction
capability t.

Anyone can then encrypt a message m ∈ Fk
q , by computing a corrupted codeword:

c = mG′ + e,

where wtH(e) ≤ t.

The person with the secret key, i.e., S, P, and the decoding algorithm of C, can then compute

cP⊤ = mSG+ eP⊤ = m′G+ e′,

and since wtH(eP⊤) = wtH(e′) = wtH(e) ≤ t, the decoder for C = 〈G〉, will return m′ = mS.
Finally by multiplying with S−1, we recover the message m.

An eavesdropper has only access to the public key, i.e., G′ and the corrupt codeword c. Thus their
main task, is to decode a (seemingly) random code.

Clearly, in this scenario, the public code is not random: it is still an equivalent code to a Goppa
code. By now, we also have new code-based cryptosystems, where we employ actually random
codes.

For more details on public-key encryption, have a look at the Appendix 7.5.

5

Table 1: McEliece Cryptosystem

ALICE BOB

KEY GENERATION

Choose G ∈ Fk×n
q , a generator matrix of a code

with efficient decoder D and error-correction ca-
pability t.

Choose randomly S ∈ GLk(q) and an n×n per-
mutation matrix P . Compute G′ = SGP .

The public key is given by P = (t, G′) and the
secret key is S = (G,S, P,D)

P−−→

ENCRYPTION

Choose a message m ∈ Fk
q and a random

e ∈ Fn
q with wtH(e) ≤ t

Ciphertext: c = mG′ + e

c←−−

DECRYPTION

Compute D(cP−1) = D(mSG+ eP−1) = mS,
and recover the message as m = (mS)S−1

1.2 Related Problems
Note that the DP is formulated through the generator matrix and we can get an equivalent formu-
lation using the parity-check matrix: the Syndrome Decoding Problem (SDP).

Problem 1.2 (Syndrome Decoding Problem). Let Fq be a finite field and k ≤ n be positive integers.
Given H ∈ F(n−k)×n

q , s ∈ Fn−k
q and t ∈ N,find e ∈ Fn

q such that wtH(e) ≤ t and eH⊤ = s.

These two problems are also equivalent to the Codeword Finding Problem (CFP):

Problem 1.3 (Codeword Finding Problem). Let Fq be a finite field and k ≤ n be positive integers.
Let k ≤ n be positive integers. Given H ∈ F(n−k)×n

q and t ∈ N, find c ∈ Fn
q such that wtH(c) ≤ t

and cH⊤ = 0.

Theorem 1.4. The DP, SDP and CFP are equivalent.

Proof. Let us start with showing that the DP and SDP are equivalent. For this we start with an
instance of DP, i.e., G, r, t. We can then transform this instance to an instance of the SDP. In fact,

6

we can bring G into systematic form, that is
(

Idk A
)

and immediately get a parity-check matrix

for the same code H =
(
−A⊤ Idn−k

)
.

We can then multiply H to the received vector r = mG+ e, getting the syndrome

s = rH⊤ = eH⊤.

Hence, if we can solve the SDP on the instance H, s, t, that is we find e, we have also solved the
DP.

On the other hand, given an instance of SDP, i.e., H, s, t, we can find an instance of DP: we bring
H into systematic form

(
B Idn−k

)
and read of a generator matrix G =

(
Idk −B⊤

)
for the

same code.

We can now solve
xH⊤ = s (1)

for some unknown x ∈ Fn
q and since this is a linear system of n− k equations in n unknowns, we

get N = qk possible solutions: x1, . . . , xN . Note that for each of the qk codewords c1, . . . , cN , we
have that ci + e is a possible solution to (1). Thus, each of the qk solutions xi correspond to some
ci + e.

Hence, any of the solutions xi can be used as received vector r and we have recovered an instance
of DP, as G, r, t. Hence, solving DP, i.e., finding e, also solves the SDP instance.

Finally, we show that the DP and SDP are also equivalent to CFP. For this, we recall that the
error-correction capability t is set as t = bd−1

2
c, where d denotes the minimum distance of 〈G〉.

Given an instance of DP, i.e., G, r, t we can add r as a row to the generator matrix, getting

G′ =

G

r

 .

Note that the code generated by G′ is also generated byG

e

 ,

as r = mG + e. The new code of dimension k + 1 has now as lowest weight codeword λe of
weight t for some λ ∈ F×

q .

In fact, if there would exist some codeword a ∈ 〈G′〉 of weight t, which is not of the form a = λe,
then a must also involve codewords of 〈G〉, that is a = c+ be, for c ∈ 〈G〉 \ {0} and some b ∈ Fq.

Since we know wtH(e) ≤ t, we must have that c = a− be ∈ 〈G〉 \ {0} has weight

wtH(c) = wtH(a− be) ≤ wtH(a) + wtH(−be) ≤ 2t < d,

7

a contradiction to the minimum distance of 〈G〉 being d.

Hence, we can compute the corresponding parity-check matrix H ′ of 〈G′〉 and solving the CFP on
the instance H ′, t we recover the solution e to the DP instance.

On the other hand, given an instance H, t of the CFP, we can define an instance of SDP, by taking
the same parity-check matrix and setting the syndrome s = 0. Thus, a solver for SDP, searching
for a weight t vector e with eH⊤ = 0 also solves the CFP instance.

Thus, we may choose which of the three problems we wish to solve with our generic decoder. For
this lecture, we will stick to the SDP.

1.3 The Hardness
Our first question, "how hard is it to decode in general?" has already been solved: The SDP has
been proven to be NP-hard [7, 5], meaning it is one of the hardest problems in mathematics.

The problem is further also in NP. This means, if we are given a candidate solution e′ we can easily
(in polynomial time) check whether it is actually a solution, i.e., if wtH(e′) ≤ t and eH⊤ = s.
Thus, the SDP is a NP-complete problem, which makes it a perfect candidate for cryptography.

For more details on complexity classes, you may consult Appendix 7.3.

We prove the NP-hardness of the SDP through a polynomial-time reduction. For this, we choose
the 3-dimensional matching (3DM) problem, which is a well-known NP-hard problem.

Problem 1.5 (3-Dimensional Matching (3DM) Problem). Let T be a finite set and U ⊆ T×T×T .
Given U, T , decide if there exists a set W ⊆ U such that | W |=| T | and no two elements of W
agree in any coordinate.

Proposition 1.6. The SDP is NP-complete.

Proof. We prove the NP-completeness by a polynomial-time reduction from the 3DM problem.
For this, we start with a random instance of 3DM with T of size t, and U ⊆ T × T × T of size u.
Let us denote the elements in T = {b1, . . . , bt} and in U = {a1, . . . , au}. From this we build the
matrix H⊤ ∈ Fu×3t

q , as follows:

• for j ∈ {1, . . . , t}, we set hi,j = 1 if ai[1] = bj and hi,j = 0 else,

• for j ∈ {t+ 1, . . . , 2t}, we set hi,j = 1 if ai[2] = bj and hi,j = 0 else,

• for j ∈ {2t+ 1, . . . , 3t}, we set hi,j = 1 if ai[3] = bj and hi,j = 0 else.

With this construction, we have that each row of H⊤ corresponds to an element in U , and has
weight 3. Let us set the syndrome s as the all-one vector of length 3t. Assume that we can solve
the SDP on the instances H, s and t in polynomial time. Let us consider two cases.

Case 1: First, assume that the SDP solver returns as answer ‘yes’, i.e., there exists an e ∈ Fu
q , of

weight less than or equal to t and such that eH⊤ = s.

8

• We first observe that we must have wtH(e) =| suppH(e) |= t. For this note that each row of
H⊤ adds at most 3 non-zero entries to s. Therefore, we need to add at least t rows to get s,
i.e., | suppH(e) |≥ t and hence wtH(e) ≥ t. As we also have wtH(e) ≤ t by hypothesis, this
implies that wtH(e) =| suppH(e) |= t.

• Secondly, we observe that the weight t solution must be a binary vector. For this we note that
the matrix H⊤ has binary entries and has constant row weight three, and since | suppH(e) |=
t, the supports of the t rows of H⊤ that sum up to the all-one vector have to be disjoint.
Therefore, we get that the j-th equation from the system of equations eH⊤ = s is of the
form eihi,j = 1 for some i ∈ suppH(e). Since hi,j = 1, we have ei = 1.

Recall from above that the rows of H⊤ correspond to the elements of U . The t rows corresponding
to the support of e are now a solution W to the 3DM problem. This follows from the fact that the
t rows have disjoint supports and add up to the all-one vector, which implies that each element of
T appears exactly once in each coordinate of the elements of W .

Case 2: Now assume that the SDP solver returns as answer ‘no’, i.e., there exists no e ∈ Fu
q of

weight at most t such that eH⊤ = s. This response is now also the correct response for the 3DM
problem. In fact, if there exists W ⊆ U of size t such that all coordinates of its elements are
distinct, then t rows of H⊤ should add up to the all one vector, which in turn means the existence
of a vector e ∈ {0, 1}u of weight t such that eH⊤ = s.

Thus, if such a polynomial time solver exists, we can also solve the 3DM problem in polynomial
time.

Example 1.7. Let us consider T = {A,B,C,D} and

U = {(D,A,B), (C,B,A), (D,A,B), (B,C,D), (C,D,A), (A,D,A), (A,B,C)}.

Then the above construction would yield

H⊤ =



0 0 0 1 1 0 0 0 0 1 0 0

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1 1 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0


.

A solution to eH⊤ = (1, . . . , 1) would be e = (1, 0, 0, 1, 1, 0, 1) which corresponds to

W = {(D,A,B), (B,C,D), (C,D,A), (A,B,C)}.

9

2 What is a Random Code?
Now that the task is clear: we have to solve one of the hardest problems in mathematics, we can
work out our assumptions on the instance.

These assumptions are motivated from the application in code-based cryptography.

Recall that the SDP is given H ∈ F(n−k)×n
q , s ∈ Fn−k

q , t ∈ N and searches for a vector e ∈ Fn
q with

1. eH⊤ = s (called syndrome equation)

2. and wtH(e) ≤ t (called weight constraint).

2.1 Syndrome Equation
First of all, what do we mean with random code?

If we were to choose C uniform at random from the space

{C ⊂ Fn
q | dim(C) = k},

of size [
n

k

]
q

=
k−1∏
i=0

(qn − qi)

(qk − qi)

then each of the C has multiple parity-check matrices. In fact, for a parity-check matrix H ∈
F(n−k)×n
q also SH is a parity-check matrix, where S ∈ GLq(n− k).

Instead, we say C is random, if C is generated by a matrix G ∈ Fk×n
q chosen uniform at random

of full rank. Equivalently, we can choose H ∈ F(n−k)×n
q uniform at random of full rank and set

C = ker(H⊤).

To ensure the full rank condition, we usually set H =
(

Idn−k A
)
, for some A chosen uniform at

random from F(n−k)×k
q .

This is (more or less) legitimate, as

q(n−k)k ≤
[
n

k

]
q

≤ 4q(n−k)k.

Note that since H is chosen uniform at random, also the syndrome is chosen uniform at random
from Fn−k

q .

Lemma 2.1. Let H ∈ F(n−k)×n
q . Then for any x ∈ Fn

q \ {0}, the syndrome s = xH⊤ is chosen
uniform at random from Fn−k

q .

10

Proof. Let us denote the columns of H by hi ∈ Fn−k
q . We note that for each i ∈ {1, . . . , n − k}

we have

si = 〈hi, x〉 =
n∑

j=1

xjhj,i

is also chosen uniform at random.

What is the probability that a random x ∈ Fn
q is such that xH⊤ = s?

Lemma 2.2. Let H ∈ F(n−k)×n
q and s ∈ Fn−k

q . The probability of a x ∈ Fn
q chosen uniform at

random to be such that xH⊤ = s is given by q−(n−k).

Proof. We first note that for a fixed H ∈ F(n−k)×n
q of rank n−k the map x 7→ xH⊤ is not injective.

We can have x 6= x′ with s = xH⊤ = x′H⊤. This implies that x− x′ ∈ ker(H⊤). Since ker(H⊤)
has dimension k, for a fixed x ∈ Fn

q there exist qk many xi such that x− xi ∈ ker(H⊤).

Since this is true for any syndrome s ∈ Fn−k
q , we have that each s ∈ Fn−k

q is the image of qk many
x ∈ Fn

q . Thus, for a random x ∈ Fn
q the probability to be such that xH⊤ = s is qk

qn
= q−(n−k).

2.2 Weight Constraint
For the weight constraint, we want to restrict ourselves to weights t up to the correction capability
of the code, that is t ≤ bd−1

2
c, where d denotes the minimum distance of the code ker(H⊤), and

(due to its use in cryptography) we will assume that a solution e exists. Thus, it is also the unique
solution.

Exercise 2.3. Show that if e, e′ ∈ Fn
q are both solutions to the SDP with t ≤ bd−1

2
c, then e = e′.

We cannot choose any t and assume the problem is still hard; in fact, we will see that if τ = t/n ∈
[(1−R) q−1

q
, R + (1−R) q−1

q
] we have a polynomial time solver.

This is not a problem, as we know how the minimum distance of a random code behaves (for large
n).

Let us denote by VH(r, n, q) is the size (or volume) of a ball and A(d, n, q) the largest size of any
code (also non-linear), in Fn

q with minimum distance at least d.

The Gilbert-Varshamov (GV) bound provides a lower bound on A(d, n, q).

Theorem 2.4 (Gilbert-Varshamov Bound). Let q be a prime power and n, d be positive integers.
Then,

A(d, n, q) ≥ qn

VH(d− 1, n, q)
.

Note that this bound is an existence bound. It should be read as follows:

There exists a (possibly non-linear) code which has size larger than qn

VH(d−1,n,q)
.

11

This does not imply that a given code should have size larger, equal or smaller than qn

VH(d−1,n,q)
.

In fact, many codes, e.g. RS codes have size smaller than qn

VH(d−1,n,q)
and there exist codes which

have a larger size.

A similar argument, also tells us the number of solutions to a SDP instance.

Lemma 2.5. The number of solutions of a SDP instance H ∈ F(n−k)×n
q , s ∈ Fn−k

q , t is given by

|{x ∈ Fn
q | wtH(x) ≤ t}|

|{x ∈ Fn
q | xH⊤ = s}|

=

∑t
i=0

(
n
i

)
(q − 1)i

qn−k
.

Exercise 2.6. Prove Lemma 2.5.

It turns out that random codes attain the asymptotic GV bound with high probability for n growing.

Before we can give the asymptotic version of the GV bound, recall the definition of the entropy
function:

Definition 2.7 (Entropy Function). For a positive integer q ≥ 2 the q-ary entropy function is
defined as follows:

Hq : [0, 1]→ R,
x→ x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

We want to find
lim
n→∞

1

n
logq(VH(rn, n, q)),

for some r ∈ [0, 1− 1/q].

Lemma 2.8. Let q ≥ 2 and n a positive integer and x ∈ [0, 1− 1/q]. Then,

VH(xn, n, q) ≤ qHq(x)n.

Proof. We have that

VH(xn, n, q)

qHq(x)n
=

∑xn
i=0

(
n
i

)
(q − 1)i

(q − 1)xnx−xn(1− x)−(1−x)n

=
xn∑
i=0

(
n

i

)
(q − 1)i(q − 1)−xnxxn(1− x)(1−x)n

=
xn∑
i=0

(
n

i

)
(q − 1)i(1− x)n

(
x

(q − 1)(1− x)

)xn

.

12

Since x ≤ 1 − 1/q, we get that x/(q − 1) ≤ 1/q ≤ 1 − x and hence x
(q−1)(1−x)

< 1 and by
decreasing the power, we increase the formula. Thus,

VH(xn, n, q)

qHq(x)n
≤

xn∑
i=0

(
n

i

)
(q − 1)i(1− x)n

(
x

(q − 1)(1− x)

)i

=
xn∑
i=0

(
n

i

)
(1− x)n−ixi

≤
n∑

i=0

(
n

i

)
(1− x)n−ixi = 1,

where we used the binomial theorem in the last equality.

We can also give a lower bound, using Sterling’s formula. For this, recall that

m! =
√
2πm

(m
e

)m
(1 + o(1))

and hence (
n

xn

)
≥
(
1

x

)xn(
1

1− x

)(1−x)n

exp(−o(n)) = 2Hq(x)n−o(n).

From this we can follow that

VH(xn, n, q) ≥
(

n

xn

)
(q − 1)xn ≥ qHq(x)n−o(n).

Corollary 2.9. Let q ≥ 2 and n a positive integer and x ∈ [0, 1− 1/q]. Then,

lim
n→∞

1

n
logq(VH(xn, n, q)) = Hq(x).

We see k, d as a function in n and set

δ = lim
n→∞

d(n)

n
∈ [0, 1− 1/q], R = lim

n→∞

1

n
logq A(δn, n, q)

to be the relative minimum distance and the asymptotic rate.

The asymptotic Hamming bound then states

Corollary 2.10. Let C be an [n, k, d]q linear code and assume that k and d are functions in n, while
q is fixed. Then,

R ≤ 1−Hq(δ/2) + o(1).

We can formulate the asymptotic Gilbert-Varshamov bound as the existence of a infinite family of
codes as

13

Theorem 2.11 (The Asymptotic Gilbert-Varshamov Bound). For every prime power q and δ ∈
[0, 1− 1/q] there exists an infinite family C of codes with rate

R(δ) ≥ 1−Hq(δ).

Theorem 2.12. Let q be a prime power, δ ∈ [0, 1 − 1/q) and 0 < ε and n a positive integer.
Set k ≤ n(1 − Hq(δ) − ε) and let C ⊆ Fn

q be a random code of dimension k. Then, with high
probability, C has minimum Hamming distance at least δn, for n growing.

Proof. We want to show that
P(dH(C) > δn) ≥ 1− q−εn.

We first choose G ∈ Fk×n
q uniform at random of rank k and then bound the counter probability,

that is
P(dH(C) ≤ δn)

which is given by the probability that there exists a non-zero codeword of weight at most δn. Since
G is uniform at random, also any non-zero codeword mG ∈ Fn

q \ {0} is uniform at random.

We note that for a random non-zero codeword the probability of having weight at most δn can be
bounded as

P(wtH(mG) ≤ δn) =
VH(δn, n, q)

qn − 1
≤ qn(Hq(δ)−1).

Thus, using a union bound, we get

P(dH(C) ≤ δn) = P(∃m ∈ Fk
q \ {0} : wtH(mG) ≤ δn)

≤
∑

m∈Fk
q\{0}

P(wtH(mG) ≤ δn)

≤ (qk − 1)qn(Hq(δ)−1)

≤ qn(1−Hq(δ)−ε)+n(Hq(δ)−1) = q−εn.

Hence P(dH(C) > δn) ≥ 1− q−εn and lim
n→∞

P(dH(C) > δn) = 1.

Thus, for large n, we now know that random codes attain with high probability the Gilbert-
Varshamov bound, that is we may set

dH(C) = max

{
r

∣∣∣∣∣
r−1∑
i=0

(
n

i

)
(q − 1)i < qn−k

}
.

Or equivalently, we can set δ = H−1
q (1−R), and t = nδ/2.

14

3 First Solvers: Brute Force and Prange
The two conditions on e of the SDP are not compatible:

1. the parity-check equation eH⊤ = s, is a linear constraint, while

2. the weight constraint wtH(e) ≤ t is non-linear.

One condition alone is clearly not hard to solve: the first one is a linear system with n−k equations
and n unknowns, for which we can find a solution in polynomial time. We can also simply list all
vectors of weight t.

However, it is very unlikely that any solution for one of the conditions will also satisfy the other.
In particular, since we assumed that in their intersection, we only have a unique solution.

The first try we could have at solving the DP is straightforward: solve only one of the conditions
and check for the other. These are the two brute-force algorithms.

3.1 Brute Force
The first Brute-Force Algorithm, simply solves the syndrome equation and checks whether a found
solution has the target weight.

Algorithm 1 Brute-Force Decoding 1

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , t ∈ N.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) ≤ t.

1: Find the solution set L to the linear system xH⊤ = s.
2: for x ∈ L do
3: if wtH(x) ≤ t then
4: Return x

Proposition 3.1. The Brute-Force Algorithm 1 has a cost in O(qk).

Proof. Recall that there exist qk many vectors with syndrome s. This follows easily from the
observation that the solution set L is expected to have size qk. Out of all these vectors only one has
weight ≤ t, thus the cost of such brute-force algorithm is in

O(|L|) = O(qk).

Similarly, we can go through the vectors of weight t and check if the syndrome equations are
satisfied. For this we denote by

BH(t, n, q) = {x ∈ Fn
q | wtH(x) ≤ t}

15

the Hamming ball of radius t.

Algorithm 2 Brute-Force Decoding 2

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , t ∈ N.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) ≤ t.

1: Build the list BH(t, n, q) of all vectors of weight ≤ t.
2: for x ∈ BH(t, n, q) do
3: if xH⊤ = s then
4: Return x

Proposition 3.2. The Brute-Force Algorithm 2 has a cost in O
(∑t

i=0

(
n
i

)
(q − 1)i

)
.

Proof. Note that

BH(t, n, q) =
t∑

i=0

(
n

i

)
(q − 1)i

and since there exists a unique solution to the SDP, we are expected to go through all elements of
BH(t, n, q).

3.2 Information Set Decoding Idea
There are of course a more clever algorithms to solve SDP than brute-forcing, but we note that
their costs will remain exponential.

The main idea is to use the information sets. These types of algorithms have been initialized by
Prange in 1962 [25], and are called Information Set Decoding (ISD) algorithms.

Recall the definition and the properties of information sets:
An [n, k]q linear code can be completely defined by having access only to (correctly chosen) k
positions. The following concept characterizes such defining sets.

Definition 3.3 (Information Set). Let k ≤ n be positive integers and let C be an [n, k]q linear code.
Then, a set I ⊂ {1, . . . , n} of size k is called an information set of C if

| C |=| CI | .

Exercise 3.4. How many information sets can an [n, k]q linear code have at most?

Proposition 3.5. Let C be an [n, k]q linear code, I an information set and let G be a generator
matrix . The matrix GI is an invertible matrix.

Proposition 3.6. Let C be an [n, k]q linear code, I an information set and H a parity-check matrix.
If IC := {1, . . . , n} \ I is the complement set of I , then, HIC is an invertible matrix.

16

Finally, we can also compute the probability of a chosen set I to be an information set.

The probability for a random set I ⊂ {1, . . . , n} of size k to be an information set is large and
ignored in the cost computations:∏k−1

i=0 (q
k − qi)

qk2
=

k∏
i=1

(1− q−i).

Note that if k = Rn→∞, we have
∏k

i=1(1− q−i)→ 1.

As all ISD algorithms follow a similar structure, we will first introduce them on a high-level: We
start by picking a set J of size k + ℓ containing an information set and assume a certain weight of
eJ , say w, and thus impose eJC has the remaining weight t− w.

By doing so, we may solve a smaller problem than the initial SDP instance.

In fact, we can bring H into a quasi-systematic form, i.e.,

H ′ =

Idn−k−ℓ A

0 B

 ,

where A ∈ F(n−k−ℓ)×(k+ℓ)
q , B ∈ Fℓ×(k+ℓ)

q . We then also split the syndrome s′ accordingly: s′ =(
s1 s2

)
, where s1 ∈ Fn−k−ℓ

q and s2 ∈ Fℓ
q.

The parity-check equation e′H ′⊤ = s′ becomes two equations:

eJC + eJA
⊤ = s1, (2)

eJB
⊤ = s2. (3)

Note that if we find a solution eJ ∈ Fk+ℓ
q of weight w, to (3), we can simply check if

wtH(eJC) = wtH(s1 − eJA
⊤) = t− w.

Thus, we have reduced the initial SDP with instance (H, s, t) into a smaller SDP with instance
(B, s2, w).

The solution to the smaller instance is now not unique. In fact, using Lemma 2.5 we get∑w
i=0

(
k+ℓ
i

)
(q − 1)i

qℓ
> 1.

17

We may summarize the general idea of ISD as:

1. Find a set J ⊂ {1, . . . , n} of size k + ℓ containing an information set for C.

2. Find an invertible matrix U ∈ F(n−k)×(n−k)
q , and a permutation matrix P , such that

UHP =

Idn−k−ℓ A

0 B

 .

3. Compute s′ = sU⊤ and split it into s1, s2.

4. Find eJ ∈ Fk+ℓ
q of weight w and such that eJB⊤ = s2.

5. Check if wtH(eJC) = wtH(s1 − eJA
⊤) = t− w.

6. If this is satisfied, output e = (eJ , eJC)P⊤, if not start over with a new choice of J .

Note that for a fixed set J, the sought error vector e might not be such that eJ has weight w. Thus,
the iteration above has to be repeated several times, and the final cost of such algorithm is given by
the cost of one iteration times the expected number of required iterations.

On average, the number of iterations required is given by the reciprocal of the success probability
of one iteration and this probability is completely determined by the assumed weight distribution.

Lemma 3.7. Let k ≤ n, ℓ ≤ n− k and w ≤ t be positive integers. Let e ∈ Fn
q be of weight t. For

a randomly chosen J ⊂ {1, . . . , n} of size k + ℓ, the probability that wtH(eJ) = w is given by(
t

w

)(
n− t

k + ℓ− w

)(
n

k + ℓ

)−1

.

We note that fixing e and going through all possible choices of J , is indeed what the algorithm tells
us to do. However, to compute the success probability of one iteration, it is usually easier to go the
other direction: fix a set J and compute the probability that e has the desired weight distribution.

Lemma 3.8. Let k ≤ n and w ≤ t be positive integers. Let J ⊂ {1, . . . , n} be of size k + ℓ. For a
randomly chosen e ∈ Fn

q of weight t, the probability that wtH(eJ) = w is given by(
k + ℓ

w

)(
n− k − ℓ

t− w

)(
n

t

)−1

.

Exercise 3.9. Prove Lemma 3.7 and 3.7 and show that the two probabilities are the same.

18

3.3 Prange’s Algorithm
In Prange’s algorithm we assume that there exists an information set I that is disjoint to the support
of the error vector suppH(e), i.e.,

I ∩ suppH(e) = ∅.

Thus, in terms of our previous general algorithm for ISD, we set w = ℓ = 0 and hence J = I and
eI = 0.

To illustrate the algorithm, let us assume that the information set is I = {1, . . . , k}. To bring
the parity-check matrix H ∈ F(n−k)×n

q into systematic form, we multiply by an invertible matrix
U ∈ F(n−k)×(n−k)

q . Since we assume that no errors occur in the information set, we have that
e = (0, eIC) with wtH(eIC) = t. We are in the following situation:

UHe⊤ =
(

Idn−k A
)e⊤IC

0⊤

 = Us⊤,

for A ∈ F(n−k)×k
q .

It follows that eIC = sU⊤ and hence we are only left with checking the weight of s′ = sU⊤.

Algorithm 3 Prange’s Algorithm

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , t ∈ N.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Choose an information set I ⊂ {1, ..., n} of size k.
2: Compute U ∈ F(n−k)×(n−k)

q , such that

(UH)I = A and (UH)IC = Idn−k,

where A ∈ F(n−k)×k
q .

3: Compute s′ = sU⊤.
4: if wtH(s′) = t then
5: Return e such that eI = 0 and eIC = s′.
6: Start over with Step 1 and a new selection of I .

Theorem 3.10. Prange’s algorithm has a cost in

O

((
n− k

t

)−1(
n

t

))
.

binary operations.

19

Proof. One iteration of Algorithm 3 only consists of bringing H into systematic form and applying
the same row operations on the syndrome; thus, the cost can be assumed equal to that of computing
U
(
H s⊤

)
, i.e., (n− k)2(n+ 1) Fq-operations or

(n− k)2(n+ 1)(dlog2(q)e+ dlog2(q)e
2)

binary operations.

The success probability is given by having chosen the correct weight distribution of e. In this case,
we require that no errors happen in the chosen information set, hence the probability is given by(

n− k

t

)(
n

t

)−1

.

Since the average number of iterations are then
(
n−k
t

)−1(n
t

)
and

(n− k)2(n+ 1)
(
dlog2(q)e+ dlog2(q)e

2)(n− k

t

)−1(
n

t

)
∈ O

((
n− k

t

)−1(
n

t

))
,

the Gaussian elimination part introduces only polynomial factors which we may ignore.

Let us consider an example for Prange’s algorithm.

Example 3.11. Let us consider F5 and

H =


1 0 0 1 2

0 1 0 2 3

0 0 1 3 4

 , s = (2, 4, 1)

and we are looking for e ∈ F3
5 with weight t = 1.

We might start with the information set I1 = {4, 5} as H is already in systematic form for I1. That
is the necessary U1 = Id3, however s′ = s does not have weight t = 1.

Instead, the information set I2 = {1, 2} leads to

U2 =


1 3 1

2 2 0

2 4 0

 , i.e., U2H =


1 3 1 0 0

2 2 0 1 0

2 4 0 0 1

 .

Now we get s′ = sU⊤
1 = (0, 2, 0) has weight 1, and hence we found the error vector

e = (0, 0, 0, 2, 0).

20

Recall that we claimed at the beginning that there is a region, where SDP is easy.

In fact, we have the following situation

T |

0

|

(1−R) q−1
q

hard

|

R + (1−R) q−1
q

easy

|

hard

1

This is not a problem, as we usually set T = t/n to be half the minimum distance on the GV
bound, that is T = H−1

q (1−R)/2.

Using the same reasoning, we could also do "full distance decoding" and set T = H−1
q (1− R) as

on average we still expect at most one solution. We also remark that the entropy function is not
injective and there are two solutions to H−1

q (1−R), say δ1 < 1/2 and δ2 > 1/2.

Thus for our usual choice of T , we are in the "hard" region:

T |

0

|

(1−R) q−1
q

|

δ1

hard

|

R + (1−R) q−1
q

easy

|

hard

|

δ2 1

unique sol.

|

exp. many sol.

|

unique sol.

To see that for t ∈ [(n− k)(q − 1)/q, k + (n− k)(q − 1)/q] decoding becomes polynomial time,
we use Prange’s idea.

Recall that we have (
Idn−k A

)
(eI , eIC)

⊤ = s′⊤.

we set eI = 0 and eIC = s′. Note that we expect a random s′ ∈ Fn−k
q to have weight q−1

q
(n − k).

Thus, with high probability, we get that wtH(eIC) = t = q−1
q
(n− k) = wtH(s′).

We could also set eI ∈ Fk
q to be anything else of weight 0 ≤ ℓ ≤ k and set s̃ = s′ − eIA

⊤. Again
we expect it to be of weight q−1

q
(n − k) and thus get that eIC has the remaining weight to get

wtH(e) = ℓ+ (n− k) q−1
q

.

21

4 The usual ISD: Stern’s ISD
A few years later in 1988, Stern [26] proposed a meet-in-the-middle approach to solve for the
smaller instance.

Recall that when we are given the instance H ∈ F(n−k)×n
q , s ∈ Fn−k

q and t and are searching for
e ∈ Fn

q such that wtH(e) = t and eH⊤ = s, we may first reduce it to a smaller instance, e′ ∈ Fk+ℓ
q

with wt(e′) = w and e′H ′⊤ = s′, where H ′ ∈ Fℓ×(k+ℓ)
q , s′ ∈ Fℓ

q.

Stern proposes to split e′ = (e1, e2), where ei ∈ F(k+ℓ)/2
q are of weight w/2 and similarly to split

H ′ =
(
H1 H2

)
, with Hi ∈ Fℓ×(k+ℓ)/2

q . The syndrome equation e′H> = s′ then becomes

(
H1 H2

)e⊤1

e⊤2

 = s′⊤

that is
e1H

⊤
1 + e2H

⊤
2 = s′.

If we denote (for the correct choice e) that e1H⊤
1 = s1 and e2H

⊤
2 = s2, then it is again enough to

find a pair (e1, e2) such that s1 + s2 = s′. Thus we simply set s1 = s′ − e2H
⊤
2 .

We may then build two lists

L1 = {(e1H⊤
1 , e1) | e1 ∈ F(k+ℓ)/2

q ,wtH(e1) = w/2},
L2 = {(s′ − e2H

⊤
2 , e2) | e2 ∈ F(k+ℓ)/2

q ,wtH(e2) = w/2}.

If we find a collision, that is ((a, e1), (a, e2)) ∈ L1 × L2, we know that e1H⊤
1 = s′ − e2H

⊤
2 and

hence (e1, e2)H
′⊤ = s′.

Theorem 4.1. Stern’s algorithm has a cost in

O

((
(k + ℓ)/2

w/2

)−2(
n− k − ℓ

t− w

)−1(
n

t

)((
(k + ℓ)/2

w/2

)
(q − 1)w/2 +

(
(k + ℓ)/2

w/2

)2

(q − 1)w−ℓ

))
.

Proof. We start with the cost of one iteration. Again, the computation of UH is only polynomial
in n and thus negligible. On the other hand, the construction of the lists Li costs

|Li| =
(
(k + ℓ)/2

w/2

)
(q − 1)w/2.

To go through L1×L2 would usually cost |Li|2, but since we are only interested in collisions, i.e.,
when s′ − e2H

⊤
2 = e1H

⊤
1 ∈ Fℓ

q, we can multiply |Li|2 with the probability of having a collision,
that is q−ℓ.

22

Algorithm 4 Stern’s Algorithm

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , w < t, ℓ < n− k.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Choose a set J ⊂ {1, ..., n} of size k + ℓ.
2: Compute U ∈ F(n−k)×(n−k)

q , such that

(UH)J =

A

H ′

 , (UH)JC =

Idn−k−ℓ

0

 ,

where A ∈ F(n−k−ℓ)×(k+ℓ)
q and H ′ ∈ Fℓ×(k+ℓ)

q .
3: Split H ′ = (H1, H2), with Hi ∈ Fℓ×(k+ℓ)/2

q .
4: Compute sU⊤ =

(
s̃ s′

)
, where s̃ ∈ Fn−k−ℓ

q and s′ ∈ Fℓ
q.

5: Compute the sets

L1 = {(e1H⊤
1 , e1) | e1 ∈ F(k+ℓ)/2

q ,wtH(e1) = w/2},
L2 = {(s′ − e2H

⊤
2 , e2) | e2 ∈ F(k+ℓ)/2

q ,wtH(e2) = w/2}.

6: for (a, e1) ∈ L1 do
7: for (a, e2) ∈ L2 do
8: if wtH(s̃− (e1, e2)A

⊤) = t− w then
9: Return e such that eJ = (e1, e2), eJC = s̃− (e1, e2)A

⊤.
10: Start over with Step 1 and a new selection of J .

We get that the cost of one iteration is in

O

((
(k + ℓ)/2

w/2

)
(q − 1)w/2 +

(
(k + ℓ)/2

w/2

)2

(q − 1)w−ℓ

)
.

For the success probability of one iteration, we need to compute

|{e ∈ Fn
q | eJ = (e1, e2),wtH(ei) = w/2,wtH(eJC) = t− w}|

|{e ∈ Fn
q | wtH(e) = t}

,

which is given by (
(k + ℓ)/2

w/2

)2(
n− k − ℓ

t− w

)(
n

t

)−1

.

Thus the overall cost of Stern’s algorithm is in

O

((
(k + ℓ)/2

w/2

)−2(
n− k − ℓ

t− w

)−1(
n

t

)((
(k + ℓ)/2

w/2

)
(q − 1)w/2 +

(
(k + ℓ)/2

w/2

)2

(q − 1)w−ℓ

))
.

23

Example 4.2. Let us consider again F5, n = 10, k = 4, t = 3, w = 2, and ℓ = 2.

Let

H =



1 2 3 1

2 4 1 2

3 3 2 4

Id6 1 2 1 3

4 1 1 2

3 3 4 1


, s = (1, 0, 3, 1, 4, 4).

If we set J = {5, 6, 7, 8, 9, 10} then this clearly contains the information set I = {7, 8, 9, 10}, for
which H is already in systematic form.

Thus, we get

H ′ =

1 0 4 1 1 2

0 1 3 3 4 1

 , s′ = (4, 4).

We can then split H ′ into

H1 =

1 0 4

0 1 3

 , H2 =

1 1 2

3 4 1

 .

We build the lists

L1 = {(e1H⊤
1 , e1) | e1 ∈ F3

5,wtH(e1) = 1}
= {((λ, 0), (λ, 0, 0)), ((0, λ), (0, λ, 0)), ((4λ, 3λ), (0, 0, λ)) | λ ∈ F×

5 },
L2 = {(s′ − e2H

⊤
2 , e2) | e2 ∈ F3

5,wtH(e2) = 1}
= {((4− λ, 4− 3λ), (λ, 0, 0)), ((4− λ, 4− 4λ), (0, λ, 0)), ((4− 2λ, 4− λ), (0, 0, λ)) | λ ∈ F×

5 }.

Both lists have size 12 =
(
3
1

)
(5− 1)1 = 3 · 4.

24

We then search for collisions among the two lists, we find

((1, 0), (1, 0, 0)) ∈ L1, ((1, 0), (3, 0, 0)) ∈ L2,

((3, 0), (3, 0, 0)) ∈ L1, ((3, 0), (0, 1, 0)) ∈ L2,

((1, 0), (1, 0, 0)) ∈ L1, ((1, 0), (0, 0, 4)) ∈ L2,

((0, 1), (0, 1, 0)) ∈ L1, ((0, 1), (4, 0, 0)) ∈ L2,

((0, 3), (0, 3, 0)) ∈ L1, ((0, 3), (0, 4, 0)) ∈ L2,

((0, 2), (0, 2, 0)) ∈ L1, ((0, 2), (0, 0, 2)) ∈ L2,

((3, 1), (0, 0, 2)) ∈ L1, ((3, 1), (1, 0, 0)) ∈ L2,

((1, 2), (0, 0, 4)) ∈ L1, ((1, 2), (0, 3, 0)) ∈ L2,

((3, 1), (0, 0, 2)) ∈ L1, ((3, 1), (0, 0, 3)) ∈ L2.

Which are more than the expected |Li|25−2 = 5.76 collisions.

For each of the candidate e′ = (e1, e2) we compute

x = s̃− e′A⊤ = (1, 0, 3, 1)− (e1, e2)


0 0 1 2 3 1

0 0 2 4 1 2

0 0 3 3 2 4

0 0 1 2 1 3



⊤

and check if it has the remaining weight t− w = 1.

For e′ = (e1, e2) = (1, 0, 0, 3, 0, 0) we get x = (0, 3, 4, 0) which is not of weight 1, for e′ =
(3, 0, 0, 0, 1, 0) we get x = (3, 4, 1, 0) and we continue until the very last collision, where e′ =
(0, 0, 2, 0, 0, 3) and we get x = (1, 0, 0, 0).

Hence, we set e = (x, e′) = (1, 0, 0, 0, 0, 0, 2, 0, 0, 3) which is of weight t = 3 and such that
eH⊤ = s.

Note that Stern’s algorithm is always at least as fast as Prange, as it recovers Prange by setting
w = ℓ = 0.

4.1 Asymptotic Cost
An important aspect of ISD algorithms (apart from the cost) is their asymptotic cost. The idea of
the asymptotic cost is that we are interested in the exponent e(R, q) such that for large n the cost
of the algorithm is given by q(e(R,q)+o(1))n. This is crucial in order to compare different algorithms.

We consider codes of large length n, and consider the dimension and the error correction capacity
as functions in n, for which we define

lim
n→∞

t(n)/n = T,

lim
n→∞

k(n)/n = R.

25

Recall that Hq(x) = x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x) and due to the GV bound
we can set T = δ/2, where δ = H−1

q (1 − R). If c(n, k, t, q) denotes the cost of an algorithm, for
example Prange’s algorithm, then we are now interested in

e(R, q) = lim
n→∞

1

n
logq(c(n, k, t, q)).

For this we often use Stirlings formula, that is if

lim
n→∞

a(n)/n = A,

lim
n→∞

b(n)/n = B

then

lim
n→∞

1

n
logq

(
a

b

)
= A logq(A)− B logq(B)− (A− B) logq(A− B).

Theorem 4.3. The asymptotic cost of Prange’s algorithm is q(e(q,R)+o(1))n, where

e(q, R) =− (1− T) logq(1− T)− (1−R) logq(1−R) + (1−R− T) logq(1−R− T),

where T = H−1
q (1−R)/2.

Proof. Recall that the cost of Prange’s algorithm is given by

c(n, k, t, q) =

(
n− k

t

)−1(
n

t

)
.

Using Stirling’s formula, we get that

lim
n→∞

1

n
logq

((
n− k

t

)−1(
n

t

))
=

− ((1−R) logq(1−R)− T logq(T)− (1−R− T) logq(1−R− T))

+ 1 logq(1)− T logq(T)− (1− T) logq(1− T)

= −(1− T) logq(1− T)− (1−R) logq(1−R) + (1−R− T) logq(1−R− T).

Finally, due to the GV we have that T = H−1
q (1−R)/2.

Exercise 4.4. Prove that the asymptotic cost of Prange is equal to

Hq(T)− (1−R)Hq(T/(1−R)).

Let us also compute the asymptotic cost of Stern. Since we have internal parameters ℓ, w we first
need to set

lim
n→∞

ℓ(n)/n = L,

lim
n→∞

w(n)/n = W.

26

Theorem 4.5. The asymptotic cost of Stern’s algorithm is q(e(q,R)+o(1))n, where

e(q, R) = min
L,W

{
−2A− B + C +max

{
A+

W

2
logq(q − 1), 2A+ (W − L) logq(q − 1)

}}
,

where

A =
R + L

2
logq

(
R + L

2

)
− W

2
logq

(
W

2

)
− R + L−W

2
logq

(
R + L−W

2

)
,

B =(1−R− L) logq(1−R− L)− (T −W) logq(T −W)

− (1−R− L− T +W) logq(1−R− L− T +W),

C =− T logq(T)− (1− T) logq(1− T).

Proof. Recall that the cost of Stern’s algorithm is given by

c(n, k, t, q) =

(
(k + ℓ)/2

w/2

)−2(
n− k − ℓ

t− w

)−1(
n

t

)
·

((
(k + ℓ)/2

w/2

)
(q − 1)w/2 +

(
(k + ℓ)/2

w/2

)2

(q − 1)w−ℓ

)
.

We start by computing

A = lim
n→∞

1

n
logq

((
(k + ℓ)/2

w/2

))
=

R + L

2
logq

(
R + L

2

)
− W

2
logq

(
W

2

)
− R + L−W

2
logq

(
R + L−W

2

)
.

We then compute

B = lim
n→∞

1

n
logq

((
n− k − ℓ

t− w

))
= (1−R− L) logq(1−R− L)− (T −W) logq(T −W)

− (1−R− L− T +W) logq(1−R− L− T +W).

Finally,

C = lim
n→∞

1

n
logq

((
n

t

))
= −T logq(T)− (1− T) logq(1− T).

Thus, we get that

lim
n→∞

1

n
logq (c(n, k, t, q))

= −2A− B + C +max

{
A+

W

2
logq(q − 1), 2A+ (W − L) logq(q − 1)

}
.

27

Since the algorithm will optimize the choices of ℓ, w with the restrictions

ℓ < n− k − t+ w, w < t.

We can then plot the cost for a fixed q = 2, as

Their difference is barely visible.

We often also give the maximal cost over all rates, that is

e∗(q) = max{e(R, q) | R ∈ [0, 1]}.

We then get for q = 2 that

Algorithm e∗(q)

Prange 0.05747

Stern 0.05563

Table 2: Comparison of Prange and Stern for q = 2.

28

5 More Advanced Algorithms: BJMM
I would love to show you the many ideas people have come up with to solve the SDP.

Due to time limitations, we will focus on one of the most interesting ones: BJMM [6]. For this
algorithm, we will restrict ourselves to q = 2. A non-binary version has been proposed in [24].

5.1 The Idea: Representations
Recall that Stern’s idea was to split the smaller instance of the error vector into two halves

e′ = (e1, e2).

We could also think of this splitting as a sum:

e′ = (e1, 0) + (0, e2) = x1 + x2.

Now instead of assuming that x1 and x2 have weight w/2 and thus no overlap in their support, we
could generalize this to e = x1 + x2, where wtH(xi) = w/2 + ε, that is we assume that

|suppH(x1) ∩ suppH(x2)| = ε.

Since we are over the binary, any overlap in their support will cancel out when adding them.

Example 5.1. Consider e′ = (1, 0, 1, 0, 1, 1), then we could choose

x1 = (1, 0, 1, 1, 0, 0), x2 = (0, 0, 0, 1, 1, 1)

and get
x1 + x2 = e′.

While before, we had a unique way of splitting e′ into two halves (at least when the halves are
fixed), now we have many different possibilities to write e′ = x1 + x2.

Exercise 5.2. Find all possible ways of writing e′ = (1, 0, 1, 0, 1, 1) as sum of two binary vectors
of weight 3.

That is: the main idea of BJMM is instead of only writing e′i = 0 as x1,i + x2,i = 0 + 0, we make
use of the binary structure as we could also have e′i = 1 = xi,1 + x2,i = 1 + 1.

This gives raise to the following definition.

Definition 5.3. Let e′ ∈ Fk+ℓ
2 be of weight w. The number of pairs (x1, x2) with xi ∈ Fk+ℓ

2 of
weight w/2 + ε and such that x1 + x2 = e′ is called the number of representations.

Lemma 5.4. Let e′ ∈ Fk+ℓ
2 be of weight w. The number of representations of weight w/2 + ε is

given by

R(ε, w, ℓ) =

(
w

w/2

)(
k + ℓ− w

ε

)
.

29

Proof. We note that if e′i = 1, we can only write it as 0 + 1 or 1 + 0, thus we have to split the
support of e′ into two halves, resulting in the first

(
w

w/2

)
. That is for J1 ∪ J2 = suppH(e

′) with size
w/2 we set x1,i = 1, x2,i = 0 for all i ∈ J1 and x1,j = 0, x2,j = 1 for all j ∈ J2.

In the positions where e′i = 0, which are k + ℓ − w many, we can now choose ε many positions,
where we set x1,i = x2,i = 1. This gives us

(
k+ℓ−w

ε

)
many possibilities.

To construct x1, x2 we could again build a list of all possible vectors

L = {x ∈ Fk+ℓ
q | wtH(x) = w/2 + ε}

and merge them, that is construct the list

L′ = {e′ ∈ Fk+ℓ
q | e′ = x1 + x2, xi ∈ L, x1H

′⊤ + x2H
′⊤ = s′,wtH(e′) = w}

whenever the resulting sum e′ has the desired weight w.

This, unfortunately, is not a good idea. We would get a collision search cost of

|L|2

qℓ
,

which will optimize at setting ε = 0, that is: at Stern.

Additionally, we would clearly store several times the same e′ in L′, as we have seen that there are
many pairs (x1, x2) adding up to the same e′. Thus, instead of stopping here, we have to go one
level further.

5.2 The Subroutine: Stern
To construct L, consisting of vectors x of length k + ℓ and weight w/2 + ε, we will use Stern’s
approach.

We can write x = (y1, y2) where yi ∈ F(k+ℓ)/2
q and wtH(yi) = w/4 + ε/2.

Until now, we have not talked about the syndrome equation yet. Our new splitting

e′ = x1 + x2

means that we also need
x1H

′⊤ + x2H
′⊤ = s′.

As we now start solving for x1, x2 independently, we need to fix a target syndrome for both of
them, say x1H

′⊤ = t1 and x2H
′⊤ = t2 with t1 + t2 = s′.

Since any syndrome is equally likely, we may simply set t1 = s′ and t2 = 0.

Thus, we build our base lists:

B = {y ∈ F(k+ℓ)/2
q ,wtH(y) = w/4 + ε/2}

30

and start merging them à la Stern to the lists Lx1 ,Lx2 .

We do need two different lists this time, as the merge happens differently: To construct Lx1 , we
take all (y1, y2) ∈ B × B which by construction are such that x1 = (y1, y2) has weight w/2 + ε,
but we also require that

y1H
⊤
1 + y2H

⊤
2 = s′.

Instead for Lx2 , we require that
y1H

⊤
1 + y2H

⊤
2 = 0.

Now clearly, it would not make sense for an algorithm to store several times the same e′ ∈ L′, as
there exist R(ε, w, ℓ) many pairs (x1, x2) ∈ Lx1 × Lx2 which add up to the same e′.

Hence, we will not construct the whole set Lxi
but only a fraction of it: we will not ask y1H

⊤
1 +

y2H
⊤
2 to be equal to s′, respectively 0 on all ℓ positions. Instead, we only require them to match

the targets s′, respectively 0 on
r = log2(R(ε, w, ℓ))

many positions. This way, such collision search would result in lists of size

|Lxi
| = |B|

2

qr
=
|B|2

R
,

which ensures that on average at least 1 representation (x1, x2) of e′ will live in the resulting
Lx1 × Lx2 .

Let us summarize the steps of BJMM again:

1. Find a set J ⊂ {1, . . . , n} of size k + ℓ containing an information set for C.

2. Find an invertible matrix U ∈ F(n−k)×(n−k)
q , and a permutation matrix P , such that

UHP =

Idn−k−ℓ A

0 H ′

 .

3. Compute sU⊤ and split it into s̃, s′. Split H ′ = (H1, H2).

4. Build the base list
B = {y ∈ F(k+ℓ)/2

q wtH(y) = w/4 + ε/2}.

5. Merge Lx1 = B × B on the target s′ for r many positions.

6. Merge Lx2 = B × B on the target 0 for r many positions.

7. Merge L′ = Lx1 × Lx2 .

8. For all e′ ∈ L′: check if wtH(eJC) = wtH(s̃− e′A⊤) = t− w.

9. If this is satisfied, output e = (e′, eJC)P⊤, if not start over with a new choice of J .

Note that the actual BJMM algorithm uses 3 levels and not two - even more complicated.

31

6 Summary and Open Questions

6.1 Summary
ISD algorithms aim at decoding a random linear code and are thus of exponential cost.

Their main idea is to make use of the information set of the code and thus to reduce the instance to
a smaller SDP instance.

Their structure is as follows:

1. Find a set J ⊂ {1, . . . , n} of size k + ℓ containing an information set for C.

2. Find an invertible matrix U ∈ F(n−k)×(n−k)
q , and a permutation matrix P , such that

UHP =

Idn−k−ℓ A

0 B

 .

3. Compute s′ = sU⊤ and split it into s1, s2.

4. Find eJ ∈ Fk+ℓ
q of weight w and such that eJB⊤ = s2.

5. Check if wtH(eJC) = wtH(s1 − eJA
⊤) = t− w.

6. If this is satisfied, output e = (eJ , eJC)P⊤, if not start over with a new choice of J .

The cost of ISD algorithms is always given by

(Cost of one iteration) · (average number of iterations).

ISD algorithms only differ in point 4.: How to solve the smaller instance.

• Prange solves it immediately by setting eJ = 0.

• Stern solves it by splitting eJ = (e1, e2) and with a collision search.

• BJMM solves it by splitting eJ = x1 + x2 and using Stern as subroutine.

Clearly, there are many more improvements to the simple ideas of Prange and Stern, but most rely
on the explained steps and have a similar cost analysis. In fact, over the last 60 years, the exponent
e∗(q) has only decreased from Prange’s 0.05747 to 0.0473 [22].

Some of the newest methods are sieving [11, 16] or nearest-neighbor search [22, 14, 8].

While these are all nice ideas, in practice we (usually) only rely on Stern. This is due to the huge
memory required in these improvements.

32

6.2 Open Problems
Although this research area is active and important for code-based cryptography there are many
unsolved questions:

1. How to decode a (quasi-)cyclic code?

2. How to decode a q-ary code (faster)?

3. How to decode for large weights?

4. How to decode using quantum algorithms?

5. How to decode a regular error?

6. How to decode a restricted error?

Let us have a closer look at these open problems:

1. Note that the code-based cryptosystem to be standardized (by the U.S. authorities) is HQC [1],
which relies on quasi-cyclic codes. None of the ISD algorithms (until now) is able to incorporate
this additional structure to lower its cost.

2. New proposals use codes over F2m (such as the first version of SDitH [2]) and while the algo-
rithms we have seen so far are also able to decode such q-ary codes, none of them use the additional
structure of the extension field F2m . In fact, all the q-ary algorithms are simply generalizations of
the binary version.

We have several techniques to exploit an extension field structure, such as using the expansion
map, the trace or the Frobenius, however, none of these ideas seem to improve the cost, leading
to the conjecture that ISD over Fp and F2m (where p and 2m are roughly of the same size) costs
equally much.

For large q, the best decoder is the simple algorithm by Prange. In fact, all other decoders involve
an enumeration step (that is build a list of vectors in Fn′

q of some weight w). As such lists have
size

(
n′

w

)
(q− 1)w, the cost of such algorithms quickly grows too large. On the other hand, Prange’s

algorithm is oblivious of the underlying field.

3. The NIST round 1 proposal Wave [4] relies on a SDP instance where t is large. The usual way
to deal with large weights, is too simplistic:

Let N be the number of solutions to the SDP (since we might not have a unique solution), then the
cost of finding one solution is given by the usual cost, divided by N.

Additionally, the large weight decoders are again generalizations of the usual ISD algorithms,
which were constructed for small weights.

4. There are several quantum ISD proposals [17, 18, 13]. However, they all use existing ISD
algorithms and sprinkle some quantum algorithms (like Grover or quantum walks) on top.

33

5. The NIST round 2 proposal SDitH also relies on regular errors, meaning that the sought-after
error vector e = (e1, . . . , eℓ), where ei ∈ Fn/ℓ

q and wtH(ei) = 1. They adapt Stern’s algorithm to
this more structured problem, however, we could possibly do better than that.

6. In the NIST round 2 proposal CROSS [3], we drop the weight constraint, and instead ask for
error vectors e ∈ En, where

E = {gi | i ∈ {0, . . . , z − 1}},

and g ∈ F⋆
q has order z. While we adapted Stern and BJMM to this scenario, there might be other

attack strategies, which are -again- not simply adapting existing algorithms.

I hope you did learn something new or even better, you liked the topic.

If you got interested in ISD or you have some ideas on how to solve the open questions - do let me
know!

34

7 Additional Material a.k.a. Appendix

7.1 Finite Fields
This section is covering the background on finite fields and their main properties, which might be
useful for this lecture.

Summary

If you are already familiar with finite fields, here is a short summary of results, which prove to be
useful for the course:

• For every prime p there is a unique finite field Fp = Z/pZ (up to isomorphism) of size p.

• For every prime p and positive integer m there is a unique finite field Fpm (up to isomor-
phism) of size pm. The subfield Fp is called the base field.

• The finite field Fpm is a Fp-linear vector space of dimension m over Fp.

• The set F⋆
pm = Fpm \ {0} is a cyclic multiplicative group.

• In any finite field Fpm there exist φ(pm − 1) many primitive elements α, i.e.,

F⋆
pm = {α0, α1, . . . , αpm−2}.

• Any x ∈ Fpm is such that xpm = x.

• For any x ∈ Fpm with xp = x, we have that x ∈ Fp.

• For any prime p and positive integers m and ℓ such that ℓ | m, the finite field Fpm/ℓ is a
subfield of Fpm .

• For any finite field Fpm the characteristic is p, i.e., for any x ∈ Fpm we have px = 0.

• For any finite field Fpm , Freshman’s dream allows us to do the following

(x+ y)p = xp + yp.

• If α is a primitive element in Fpm , then {1, α, . . . , αm−1} builds a basis of Fpm over Fp. That
is, any x ∈ Fpm can be written as

x =
m−1∑
i=0

xiα
i.

• For any basis Γ = {γ1, . . . , γm} of Fpm over Fp, we can define the expansion map

expΓ : Fpm → Fm
p , x =

m∑
i=1

xiγi 7→ expΓ(x) = (x1, . . . , xm).

35

Some more Details

This is a very compact form of the first chapter in https://user.math.uzh.ch/weger/
CT.pdf. Thus, if you are interested in the proofs, have a look there!

Definition 7.1. A finite field is a field which is finite in size.

A first example is the prime field Fp:

Theorem 7.2 (Prime Field). For every prime p the integer residue ring (Z/pZ,+, ·) is a field,
denoted by Fp.

Example 7.3. The finite field of order 3 is given by F3 = Z/3Z = {0, 1, 2}. Z/4Z is not a finite
field, as 2 has no multiplicative inverse.

Theorem 7.4. Let F be a finite field with q elements. Then there exist a subfield Fp of F which is a
prime field.

Definition 7.5. Let F be a finite field with prime subfield Fp. Then p is called the characteristic of
F.

Lemma 7.6. Let F be a finite field, then there exist p ∈ P and m ∈ N, such that |F| = pm.

Let F be a finite field of order q = pm, then m is called the extension degree of F over Fp.
To construct the finite field F with q = pm many elements, we consider polynomials over Fp:

Fp[x] =

{∑
i≥0

fix
i | fi ∈ Fp

}
.

The addition and multiplication of two polynomials is performed in the usual way, taking modulo
p for the coefficients. Then, Fp[x] forms a ring and is called the polynomial ring over Fp.

Let g(x) ∈ Fp[x] be an irreducible polynomial of degree m and let us consider

Fp[x]/〈g(x)〉 = {f(x) + h(x)g(x) | f(x), h(x) ∈ Fp[x]}.

That is, we quotient by the ideal generated by g(x) (similar to integer residue rings, setting all
multiples of g(x) to zero and only considering the remainder f(x).) This is well-defined, as a
monic polynomial q(x) of degree m can uniquely be written as q(x) = g(x)h(x) + f(x), where
deg(f) < m. Thus, we may write q(x) = f(x) mod g(x).

Hence, we may identify an element q(x) = f(x) + h(x)g(x) ∈ Fp[x]/〈g(x)〉 with its remainder
f(x) and the polynomial ring modulo g(x) consists of all polynomials of degree up to m− 1:

Fp[x]/〈g(x)〉 =

{
f(x) =

m−1∑
i=0

fix
i | fi ∈ Fp

}
.

The size of Fp[x]/〈g(x)〉 is thus pm, as we consider all polynomials of degree up to m− 1.

36

Theorem 7.7. Let p ∈ P ,m a positive integer and g(x) ∈ Fp[x] an irreducible polynomial of
degree m. Then, Fp[x]/〈g(x)〉 is a finite field with pm elements.

Example 7.8. Let us consider g(x) = x2 + x+ 1 ∈ F2[x]. Then,

F2[x]/〈g(x)〉 = {0, 1, x, x+ 1}.

+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

Table 3: Addition in F2[x]/〈(x2 + x+ 1)〉

· 0 1 x x+ 1

0 0 0 0 0

1 0 1 x x+ 1

x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Table 4: Multiplication in F2[x]/〈(x2 + x+ 1)〉

Let us consider F a finite field with q elements. By the definition of a field, we have that F⋆ =
F \ {0} is an abelian multiplicative group. This turns out to be a cyclic group.

Definition 7.9. Let F be a finite field with q elements. An element α ∈ F is called primitive
element, if

〈α〉 = {αi | i ∈ N} = F⋆.

Theorem 7.10. Let F be a finite field, then F⋆ is a cyclic multiplicative subgroup.

Example 7.11. In F5, we have 2 is a primitive element, as F⋆
5 = {20, 21, 23, 22}.

Once we are given a primitive element, we can also construct all others and any element of order
d | (q − 1).

Instead of considering elements in the finite field Fpm as polynomials over Fp modulo an irreducible
polynomial f(x) of degree m, we may always use a root α of f(x) to represent the elements of
Fpm .

37

Definition 7.12. Let p be a prime and m a positive integer. Let f(x) =
∑m−1

i=0 fix
i + xm ∈ Fp[x]

be an irreducible polynomial of degree m and let α be a root of f(x). Then, Fp adjoin α is

Fp(α) =

{
m−1∑
i=0

aiα
i | ai ∈ Fp

}
.

Similarly, we can consider all a0 ∈ Fp and ai = 0 for all i > 0 to show that Fp ⊂ Fp(α). Also the
other properties can be easily checked.

Theorem 7.13. Let p be a prime and m a positive integer. Let f(x) =
∑m−1

i=0 fix
i + xm ∈ Fp[x]

be an irreducible polynomial of degree m and let α be a root of f(x). Then,

Fp[x]/〈f(x)〉 ∼= Fp(α).

Instead of considering any irreducible polynomial, one can also consider a primitive polynomial.

Definition 7.14. Let α ∈ Fpm be a primitive element. The minimal polynomial of α is called
primitive polynomial.

To check whether an irreducible polynomial f(x) of degree m is primitive, we can equivalently
check if the smallest positive integer n such that f(x) divides xn − 1 is n = pm − 1.

Example 7.15. Let us consider F3. The polynomial x2 + 1 is irreducible, but not primitive as it
divides x4 − 1. A primitive polynomial of degree 2 would for example be x2 + 2x+ 2.

If we have identified a primitive polynomial f(x) ∈ Fp[x] and a root α, we can immediately write
all elements of F⋆

pm as powers of α.

Example 7.16. We are allowed to use any irreducible polynomial, as

F9
∼= F3[x]/〈x2 + 1〉 ∼= F3[x]/〈x2 + 2x+ 2〉.

Let us denote by α a root of x2+2x+2, i.e., α2 = α+1 and β a root of x2+1, i.e., β2 = 2. While
we can write

F9
∼= F3(α) ∼= F3(β),

only α generates the multiplicative group F⋆
9:

α0 = 1, α1 = α, α2 = α + 1, α3 = 2α + 1, α4 = 2, α5 = 2α, α6 = 2α + 2, α7 = α + 2.

We can also use a different representation, as Fpm
∼= Fm

p as Fp- vector space. For this we define
the expansion map.

Definition 7.17. Let Γ = {γ0, . . . , γm−1} be a basis of Fpm over Fp. Then the expansion map with
respect to Γ is given by

expΓ : Fpm → Fm
p ,

a =
m−1∑
i=0

aiγi 7→ expΓ(a) = (a0, . . . , am−1).

38

This map is Fp-linear, meaning that

• For a, b ∈ Fpm we have expΓ(a+ b) = expΓ(a) + expΓ(b),

• for a ∈ Fpm and λ ∈ Fp we have that expΓ(λa) = λexpΓ(a).

As we also want to handle expΓ(ab) we need to introduce the multiplication matrix.

For this we will focus on a basis Γ = {1, α, α2, . . . , αm−1} of Fm
p over Fp, we call such a basis a

polynomial basis. Note that {1, α, α2, . . . , αm−1} is a basis of Fm
p over Fp, if and only if α is a root

of f(x) ∈ Fp[x], which is irreducible and of degree m.

Let α be the root of an irreducible polynomial f(x) =
∑m−1

i=0 fix
i + xm ∈ Fp[x] of degree m and

consider

Fp[x]/〈f(x)〉
evα∼= Fp(α)

expΓ∼= Fm
p ,

a(x) =
m−1∑
i=0

aix
i 7→ a =

m−1∑
i=0

aiα
i 7→ expΓ(a) = (a0, . . . , am−1),

a(x) + b(x) 7→ a+ b 7→ expΓ(a) + expΓ(b).

However, what happens to the multiplication? We can compute a(x)b(x) mod f(x) and ab ∈
Fp(α), thus we need to figure out what expΓ(ab) is in terms of expΓ(a) and expΓ(b).

For this we define the multiplication matrix for b ∈ Fp(α) via the basis Γ as

MΓ(b) =


expΓ(b)

expΓ(αb)
...

expΓ(α
m−1b)


and define

expΓ(a) ◦ expΓ(b) = expΓ(a)MΓ(b).

Note that for b = α, the multiplication matrix MΓ(α) is the companion matrix of f(x) as

MΓ(α) =



0 1 0 · · · 0

0 0 1 · · · 0
. . .

0 0 0 · · · 1

−f0 −f1 −f2 · · · −fm−1


.

39

Example 7.18. Let us consider F8
∼= F2(α) where α is a primitive root and satisfies α3 = α + 1

as the primitive polynomial over F2 is given by x3 + x + 1. Thus, we have the polynomial basis
Γ = {1, α, α2} of F8 over F2. Let a = α2 + 1 and b = α + 1. We can easily expand them to F3

2 as

expΓ(a) = (1, 0, 1), expΓ(b) = (1, 1, 0).

We want to multiply a with b and over F8 we can easily check that ab = α2 which is expanded to

expΓ(ab) = (0, 0, 1).

We compute

MΓ(b) =


1 1 0

0 1 1

1 1 1


and check

MΓ(b)expΓ(a) = (0, 0, 1) = expΓ(ab).

To summarize, we may view the finite field Fpm in three different ways:

Let p be a prime and m a positive integer. Let f(x) =
∑m−1

i=0 fix
i + xm ∈ Fp[x] be an irreducible

polynomial of degree m and let α be a root of f(x).

Fp[x]/〈f(x)〉 Fp(α) Fm
p

a(x) =
∑m−1

i=0 aix
i a =

∑m−1
i=0 aiα

i (a0, . . . , am−1)

a(x) + b(x) mod f(x) a+ b expΓ(a) + expΓ(b)

a(x) · b(x) mod f(x) a · b expΓ(a) ◦ expΓ(b)

Example 7.19. Let us consider again

F9
∼= F3[x]/〈x2 + 1〉 ∼= F3[x]/〈x2 + 2x+ 2〉,

and denote by α a root of x2 + 2x+ 2, i.e., α2 = α + 1 and β a root of x2 + 1, i.e., β2 = 2.
Recall that for α a primitive element over Fq and β of order z, we have that β = αi(q−1)/z for some
i ∈ {1, . . . , z} and gcd(i, (q− 1)/z) = 1. Thus, assuming i = 1, we get that β = α2 = α+ 1, and
can convert the different representations:

Definition 7.20. The map φ : Fqm → Fqm , α 7→ αq is called Frobenius map.

Note that for any x ∈ Fqm we have x ∈ Fq if and only if xq = x.

40

F3(β) 0 1 2 β 2β β + 1 β + 2 2β + 1 2β + 2

F3(α) 0 1 2 α + 1 2α + 2 α + 2 α 2α 2α + 1

〈α〉 α0 α4 α2 α6 α7 α1 α5 α3

Definition 7.21. Let Fqm and Fq be the finite field with qm, respectively q, elements. The trace
map is defined as

TrFqm/Fq : Fqm → Fq,

α 7→
m−1∑
i=0

αqi .

It might not directly be clear why this map sends elements from Fqm to Fq. We have a simple test
to check whether an element of x ∈ Fqm is actually living in the subfield Fq: check if xq = x.

Thus, we compute (
m−1∑
i=0

αqi

)q

=
m−1∑
i=0

αqi·q =
m−1∑
i=0

αqi+1

=
m−1∑
i=0

αqi ,

where we have used that αqm = α.

The traces possess many interesting properties, which we leave as an exercise:

Theorem 7.22. Let α, β ∈ Fqm and λ ∈ Fq. Then

1. TrFqm/Fq(α + β) = TrFqm/Fq(α) + TrFqm/Fq(β),

2. TrFqm/Fq(λα) = λTrFqm/Fq(α),

3. TrFqm/Fq(λ) = mλ,

4. TrFqm/Fq(α
q) = TrFqm/Fq(α).

We may ask if Fpm has also other subfields than Fp.

Theorem 7.23. Let Fq be a field with q = pm elements. Fq has a subfield of order pr, if and only
if r | m.

And we conclude this short recap on finite fields with Freshman’s dream.

Theorem 7.24 (Freshman’s dream). For any a, b ∈ Fpm we have that

(a+ b)p = ap + bp.

41

7.2 Codes
In this section, we give the basics of algebraic coding theory. This is a short version of Chapter 2
in https://user.math.uzh.ch/weger/CT.pdf.

Let us fix that Fq will denote the finite field of q elements, where q is a prime power.

Definition 7.25 (Linear Code). Let 1 ≤ k ≤ n be integers. Then, an [n, k]q linear code C over Fq

is a k-dimensional linear subspace of Fn
q .

As C is linear, it must have some basis, which allows us to represent it compactly. In fact, linear
codes allow for an easy representation through their generator matrices, which have the code as
an image.

Definition 7.26 (Generator Matrix). Let k ≤ n be positive integers and let C be an [n, k]q linear
code. Then, a matrix G ∈ Fk×n

q is called a generator matrix of C if

C =
{
xG | x ∈ Fk

q

}
,

that is, the rows of G form a basis of C.

We will often write 〈G〉 to denote the code generated by the rows G.

One can also represent a code through a matrix H , which has the code as kernel.

Definition 7.27 (Parity-Check Matrix). Let k ≤ n be positive integers and let C be an [n, k]q linear
code. Then, a matrix H ∈ F(n−k)×n

q is called a parity-check matrix of C, if

C =
{
y ∈ Fn

q | yH⊤ = 0
}
.

For any x ∈ Fn
q , we call xH⊤ the syndrome of x through H .

Let H ∈ F(n−k)×n
q be a parity-check matrix and assume x ∈ Fn

q is unknown. Then, we get a system
of n− k linear equations in xi from Hx⊤ = s⊤:

n∑
i=1

h1,ixi = s1

...
n∑

i=1

hn−k,ixi = sn−k.

These equations are called parity-check equations or syndrome equations.

Consider our original problem, where we have received r = c + e ∈ Fn
q , with c ∈ C the sent

codeword and e an error vector added by the channel. By computing the syndrome of r via the
parity-check matrix H of C, we get

s = rH⊤ = (c+ e)H⊤ = cH⊤ + eH⊤ = eH⊤,

42

i.e., we see that the received word is erroneous, and get an equation only depending on the error
vector.

Since C = Im(G) = ker(H⊤), we also get a relation between the two matrices, namely

GH⊤ = 0.

For x, y ∈ Fn
q let us denote by 〈x, y〉 the standard inner product, i.e.,

〈x, y〉 =
n∑

i=1

xiyi.

Then, we can define the dual of an [n, k]q linear code C as the orthogonal space of C.

Definition 7.28 (Dual Code). Let k ≤ n be positive integers and let C be an [n, k]q linear code.
The dual code C⊥ is an [n, n− k]q linear code, defined as

C⊥ = {x ∈ Fn
q | 〈x, y〉 = 0 ∀ y ∈ C}.

Proposition 7.29. Let q be a prime power and k ≤ n be positive integers. Let C be an [n, k]q
linear code. Then (C⊥)⊥ = C.

For x ∈ Fn
q and S ⊆ {1, . . . , n} we denote by xS the vector consisting of the entries of x indexed

by S. While for A ∈ Fk×n
q , we denote by AS the matrix consisting of the columns of A indexed by

S. Similarly, we denote by CS the code consisting of the codewords cS , i.e.,

CS = {cs | c ∈ C}.

An [n, k]q linear code can be completely defined by having access only to (correctly chosen) k
positions. The following concept characterizes such defining sets.

Definition 7.30 (Information Set). Let k ≤ n be positive integers and let C be an [n, k]q linear
code. Then, a set I ⊂ {1, . . . , n} of size k is called an information set of C if

| C |=| CI | .

Exercise 7.31. How many information sets can an [n, k]q linear code have at most?

Proposition 7.32. Let C be an [n, k]q linear code, I an information set and let G be a generator
matrix . The matrix GI is an invertible matrix.

Proposition 7.33. Let C be an [n, k]q linear code, I an information set and H a parity-check
matrix. If IC := {1, . . . , n} \ I is the complement set of I , then, HIC is an invertible matrix.

Exercise 7.34. Let C be the code generated by G ∈ F2×4
5 , given as

G =

1 3 2 3

0 4 4 3

 .

Determine all information sets of this code.

43

Since GI and HIC are invertible, we can apply row operations U , respectively U ′ to get

(UG)I = Idk, (U ′H)IC = Idn−k,

which leads to the following definition of a systematic form.

Definition 7.35 (Systematic Form). Let k ≤ n be positive integers and C be an [n, k]q linear code.
Then, there exist some n × n permutation matrix P and some invertible matrix U ∈ Fk×k

q that
bring G in systematic form, i.e.,

UGP =
(

Idk A
)
,

where A ∈ Fk×(n−k)
q . Similarly, there exist some n× n permutation matrix P ′ and some invertible

matrix U ′ ∈ F(n−k)×(n−k)
q , that bring H into systematic form, i.e.,

U ′HP ′ =
(
B Idn−k

)
,

where B ∈ F(n−k)×k
q .

As we have not introduced permutation equivalence yet, we may think of the standard form as
follows: Let I ⊆ {1, . . . , n} be an information set and G a generator matrix of C, then there exists
U ∈ GLq(k) such that

(UG)I = Idk, and (UG)IC = A,

for some A ∈ Fk×(n−k)
q . We will later see that permuting the identity matrix to be at the first k

coordinates, will not change the underlying structure.

Given a generator matrix, one can easily find a parity-check matrix of the code.

Proposition 7.36. Let C be an [n, k,]q linear code and G be a generator matrix. If G =
(

Idk A
)
,

for some A ∈ Fk×(n−k)
q , then H =

(
−A⊤ Idn−k

)
is a parity-check matrix of C.

If the identity matrix is not in the first k coordinates, we think of Proposition 7.36 as GI = Idk and
GIC = A and thus HIC = Idn−k and HI = −AT .

As we are interested in the amount of positions which are erroneous, the most natural weight to
consider is the Hamming metric.

Definition 7.37 (Hamming Metric). Let n be a positive integer. For x ∈ Fn
q , the Hamming weight

of x is given by the number of non-zero positions, i.e.,

wtH(x) =| {i ∈ {1, . . . , n} | xi 6= 0} | .

For x, y ∈ Fn
q , the Hamming distance between x and y is given by the number of positions in which

they differ, i.e.,
dH(x, y) =| {i ∈ {1, . . . , n} | xi 6= yi} | .

44

Note that the Hamming distance is induced from the Hamming weight, that is dH(x, y) = wtH(x−
y). We can also consider the minimum distance of a code, i.e., the smallest distance between any
two distinct codewords.

Definition 7.38 (Minimum Distance). Let C be a linear code over Fq. The minimum Hamming
distance of C is denoted by dH(C) and given by

dH(C) = min{dH(x, y) | x, y ∈ C, x 6= y} = min{wtH(c) | c ∈ C, c 6= 0}.

The minimum Hamming distance of a code turns out to be a very important parameter. Thus,
whenever the minimum Hamming distance d = dH(C) is known, we say C is an [n, k, d]q linear
code.

When defining balls in a certain metric, we have to provide the radius and the center, e.g. we may
define the Hamming ball of radius r and center x as

BH(r, n, q, x) = {y ∈ Fn
q | dH(x, y) ≤ r}.

However, to determine the size of such balls, we observe that the Hamming metric is translation
invariant.

Proposition 7.39. Let q be a prime power and r ≤ n be positive integers. For any x, x′ ∈ Fn
q we

have

|BH(r, n, q, x)| = |BH(r, n, q, x
′)| = |{y ∈ Fn

q | wtH(y) ≤ r}| =
r∑

i=0

(
n

i

)
(q − 1)i.

We denote by dH(x, C) the minimal distance between x ∈ Fn
q and a codeword in C.

We say that a code can correct up to t errors, if for all r ∈ Fn
q with dH(r, C) ≤ t, there exists at most

one c ∈ C, such that dH(r, c) ≤ t. The parameter t is then called the error correction capability of
the code. Equivalently, C can correct t errors, if the balls of radius t around any distinct codewords
c 6= c′ are disjoint: BH(t, n, q, c) ∩BH(t, n, q, c

′) = ∅.

If we are given the code C ⊆ Fn
q and depict its codewords as points, then the shortest distance

between two of them is given by dH(C) = d. To find the error correction capability, we want to
draw balls around the codewords, with radius as large as possible, but such that the balls do not
intersect. This results in the radius

t =

⌈
d− 1

2

⌉
.

45

•

•

•

•

•

•

•C

Fn
q

d

t

Theorem 7.40. Let C be an [n, k, d]q linear code. Then t =
⌈
d−1
2

⌉
is the error correction capability

of the code.

The following theorem let’s us compute the minimum distance from the parity-check matrix H.

Theorem 7.41. Let k ≤ n be positive integers and let C be an [n, k]q linear code. Let H be a
parity-check matrix of C. Then, C has minimum distance d if and only if every d− 1 columns of H
are linearly independent and there exist d columns, which are linearly dependent.

Let C be an [n, k, d]q linear code with 〈G〉 = C = ker(H⊤).

• The parameter n is called the length of the code.

• The parameter k is called the dimension of the code.

• The elements in the code are called codewords.

• The parameter r = n− k is called the redundancy.

• The parameter R = k/n is called the rate of the code.

• The matrix G is called a generator matrix of the code.

• The matrix H is called a parity-check matrix of the code.

• The vector s = xH⊤ is called the syndrome of x.

• The code C⊥ is called the dual code of C.

• A set I with GI ∈ GLq(k) is called information set.

• The parameter d is called the minimum Hamming distance of the code.

• The parameter t =
⌈
d−1
2

⌉
is called the error correction capability of the code.

46

7.3 Complexity Classes
LetP denote a problem. In order to estimate how hard it is to solveP we have two main complexity
classes.

Definition 7.42. P denotes the class of problems that can be solved by a deterministic Turing
machine in polynomial time.

The concept of deterministic and non-deterministic Turing machines will exceed the scope of this
chapter, just note that "can be solved by a deterministic Turing machine in polynomial time" is the
same as our usual "can be solved in polynomial time".

Example 7.43. Given a list S of n integers and an integer k, determine whether there is an integer
s ∈ S such that s > k? Clearly, this can be answered by going through the list and checking for
each element whether it is greater than k, thus it has running time at most n and this problem is in
P.

Definition 7.44. NP denotes the class of problems that can be solved by a non-deterministic Turing
machine in polynomial time.

Thus, in contrary to the popular belief that NP stands for non-polynomial time, it actually stands
for non-deterministic polynomial time. The difference is important: all problems in P live inside
NP!

To understand NP better, we might use the equivalent definition: A problem P is in NP if and only
if one can check that a candidate is a solution to P in polynomial time.

The example from before is thus also clearly in NP, since if given a candidate a, we can check in
polynomial time whether a ∈ S and whether a > k.

There are, however, interesting problems which are in NP, but we do not know whether they are in
P. Let us change the previous example a bit.

Example 7.45. Given a list S of n integers and an integer k, is there a set of integers T ⊆ S, such
that

∑
t∈T

t = k? Since there are exponentially many subsets of S, there is no known algorithm to

solve this problem in polynomial time and thus, we do not know whether it lives in P. But, if given
a candidate T , we can check in polynomial time if all t ∈ T are also in S and if

∑
t∈T

t = k, which

clearly places this problem inside NP.

The most important complexity class, for us, will be that of NP-hard problems. In order to define
this class, we first have to define polynomial-time reductions.

A polynomial-time reduction fromR to P follows the following steps:

1. take any instance I ofR,

2. transform I to an instance I ′ of P in polynomial time,

47

3. assume that (using an oracle) you can solve P in the instance I ′ in polynomial time, getting
the solution s′,

4. transform the solution s′ in polynomial time to get a solution s of the problemR in the input
I .

The existence of a polynomial-time reduction fromR to P , informally speaking, means that if we
can solve P , we can also solveR and thus solving P is at least as hard as solvingR.

Definition 7.46. P is NP-hard if for every problemR in NP, there exists a polynomial-time reduc-
tion fromR to P .

Informally speaking, this class contains all problems which are at least as hard as the hardest
problems in NP.

Example 7.47. One of the most famous examples for an NP-hard problem is the subset sum prob-
lem: given a set of integers S, is there a non-empty subset T ⊆ S, such that

∑
t∈T

t = 0?

We want to remark here, that NP-hardness is only defined for decisional problems, that are prob-
lems of the form "decide whether there exists.." and not for computational/search problems, that
are problems of the form "find a solution..". However, considering for example the SDP, in its
decisional version, it asks whether there exists error vector e with certain conditions. If one could
solve the computational problem, that is to actually find such an error vector e in polynomial time,
then one would also be able to answer the decisional problem in polynomial time. Thus, not being
very rigorous, we call also the computational SDP NP-hard.

In order to prove that a problem P is NP-hard, fortunately we do not have to give a polynomial-
time reduction to every problem in NP: there are already problems which are known to be NP-hard,
thus it is enough to give a polynomial-time reduction from an NP-hard problem to P .

Finally, NP-completeness denotes the intersection of NP-hardness and NP.

Definition 7.48. A problem P is NP-complete, if it is NP-hard and in NP.

48

7.4 Cost of Algorithms
To estimate the cost of algorithms, we use the big-O notation.

Definition 7.49. Let f(n), g(n) be functions over the reals. We write f(n) ∈ O(g(n)) to denote
that there exists a positive real constant N such that |f(n)| < Ng(n) for all n > n0, meaning that
if n grows, f(n) will not grow faster than g(n).

Example 7.50. For example n+ 2n2 ∈ O(n2), while 2n/2n5 + n22n ∈ O (2n) .

Thus, we should read it as "we ignore all lower term".

We say that f(n) is polynomial if f(n) ∈ O (nc) for some constant c.

In this lecture we are dealing with objects over Fq, where we can add, multiply or invert elements
with different costs:

• adding in Fq has a cost in O (dlog2(q)e),

• multiplication in Fq has a cost in O (dlog2(q)e2),

• inverting an element in Fq has a cost in O (dlog2(q)e3).

In our algorithms we are also interested in doing matrix multiplication. Here school-book multi-
plication will be enough. That is for A ∈ Fk×n

q , B ∈ Fn×m
q computing AB has a cost in O(mnk).

If we have to construct a list L containing L elements and each element costs a operations, we get
that the construction of the list has a cost in O(La).

If for example L ∈ O (2n) and a ∈ O(n), then clearly we get a cost in O(L).

To go through lists L costs O(L). We could also sort it (or use hashing), costing O(L log2(L)),
but then going through the list becomes less costly with O(log2(L)).

If we have two lists L1,L2 and we want to go find a collision between them, e.g. (a, x) ∈ L1

and (a, y) ∈ L2, we multiply the cost of going through L1 × L2 by the probability p of having a
collision: O(L2p).

While the construction of a new list L = L1×L2 can be made faster using sorting, if we later have
to operate on all elements in L, the cost is still given by the expected size of L.

49

7.5 Cryptography
As coding theory is the art of reliable communication, this goes hand in hand with cryptography,
the art of secure communication. In cryptography we differ between two main branches, symmetric
cryptography and asymmetric cryptography.

In symmetric cryptography there are the two parties that want to communicate with each other and
prior to communication have exchanged some key, that will enable them a secure communication.
Such secret key exchange might be performed using protocols such as the Diffie-Hellman key
exchange [10], which itself lies in the realm of asymmetric cryptography.

More mathematically involved is the branch of asymmetric cryptography, where the two parties
do not share the same key. In this survey we will focus on two main subjects of asymmetric
cryptography, that were also promoted by the NIST standardization call [9], namely public-key
encryption (PKE) schemes and digital signature schemes.

Many of these cryptographic schemes seem very abstract when discussed in generality. To get a
grasp of the many definitions and concepts, we will also provide some easy examples. First of all,
let us recall the definition of a hash function. A hash function is a function that compresses the
input value to a fixed length. In addition, we want that it is computationally hard to reverse a hash
function and also to find a different input giving the same hash value. In this chapter, we denote a
publicly known hash function by Hash.

Let us have a look at public-key encryption (PKE) schemes. A PKE consists of three steps:

1. key generation,

2. encryption,

3. decryption.

The main idea is that one party, usually called Alice, constructs a secret key S and a connected
public key P . The public key, as the name suggests, is made publicly known, while the secret key
is kept private.

This allows another party, usually called Bob, to use the public key to encrypt a message m by
applying the public key, gaining the so called cipher c.

The cipher is now sent through the insecure channel to Alice, who can use her secret key S to
decrypt the cipher and recover the message m.

An adversary, usually called Eve, can only see the cipher c and the public key P . In order for a
public-key encryption scheme to be considered secure, it should be infeasible for Eve to recover
from c and P the message m. This also implies that the public key should not reveal the secret key.

What exactly does infeasible mean, however? This is the topic of security. For a cryptographic
scheme, we define its security level to be the average number of binary operations needed for an
adversary to break the cryptosystem, that means either to recover the message (called message
recovery) or the secret key (called key recovery).

50

Table 5: Public-Key Encryption

ALICE BOB

KEY GENERATION

Construct a secret key S

Construct a connected public key P
P−−→

ENCRYPTION

Choose a message m

Encrypt the message c = P(m)

c←−−

DECRYPTION

Decrypt the cipher m = S(c)

Usual security levels are 280, 2128, 2256 or even 2512, meaning for example that an adversary is
expected to need at least 280 binary operations in order to reveal the message. These are referred
to as 80 bit, 128 bit, 256 bit, or 512 bit security levels.

Apart from the security of a PKE, one is also interested in the performance, including how
fast the PKE can be executed and how much storage the keys require. Important parameters of a
public-key encryption are

• the public key size,

• the secret key size,

• the ciphertext size,

• the decryption time.

These values are considered to be the performance of the public-key encryption. With ’size’ we
intend the bits that have to be sent or stored for this key, respectively for the cipher. Clearly, one
prefers small sizes and a fast decryption.

51

References
[1] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. Bos, J.-C. Deneuville,

A. Dion, P. Gaborit, J. Lacan, E. Persichetti, J.-M. Robert, P. Véron, and G. Zémor. Hamming
Quasi-Cyclic (HQC). NIST PQC Call for Proposals, 2022. Round 4 Submission.

[2] C. Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, A. Joux, E. Per-
sichetti, T. H. Randrianarisoa, M. Rivain, and D. Yue. SDitH. In First Round Submission to
the additional NIST Postquantum Cryptography Call, 2023.

[3] M. Baldi, A. Barenghi, S. Bitzer, P. Karl, F. Manganiello, A. Pavoni, G. Pelosi, P. Santini,
J. Schupp, F. Slaughter, A. Wachter-Zeh, and V. Weger. CROSS. In Second Round Candidate
of the additional NIST Postquantum Cryptography Call, 2023.

[4] G. Banegas, K. Carrier, A. Chailloux, A. Couvreur, T. Debris-Alazard, P. Gaborit, P. Karp-
man, J. Loyer, R. Niederhagen, N. Sendrier, B. Smith, and J.-P. Tillich. WAVE. In First
Round Submission to the additional NIST Postquantum Cryptography Call, 2023.

[5] S. Barg. Some new NP-complete coding problems. Problemy Peredachi Informatsii,
30(3):23–28, 1994.

[6] A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes in 2n/20:
How 1 + 1 = 0 improves information set decoding. In Annual international conference on
the theory and applications of cryptographic techniques, pages 520–536. Springer, 2012.

[7] E. Berlekamp, R. McEliece, and H. Van Tilborg. On the inherent intractability of certain
coding problems. IEEE Transactions on Information Theory, 24(3):384–386, 1978.

[8] L. Both and A. May. Decoding linear codes with high error rate and its impact for LPN se-
curity. In International Conference on Post-Quantum Cryptography, pages 25–46. Springer,
2018.

[9] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone.
Report on post-quantum cryptography, volume 12. US Department of Commerce, National
Institute of Standards and Technology, 2016.

[10] W. Diffie and M. Hellman. New directions in cryptography. IEEE transactions on Informa-
tion Theory, 22(6):644–654, 1976.

[11] L. Ducas, A. Esser, S. Etinski, and E. Kirshanova. Asymptotics and improvements of sieving
for codes. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 151–180. Springer, 2024.

[12] I. I. Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Informatsii,
25(1):24–32, 1989.

52

[13] L. Engelberts, S. Etinski, and J. Loyer. Quantum sieving for code-based cryptanalysis and its
limitations for isd. Designs, Codes and Cryptography, pages 1–34, 2025.

[14] A. Esser. Revisiting nearest-neighbor-based information set decoding. In IMA International
Conference on Cryptography and Coding, pages 34–54. Springer, 2023.

[15] M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosystems.
In International Conference on the Theory and Application of Cryptology and Information
Security, pages 88–105. Springer, 2009.

[16] Q. Guo, T. Johansson, and V. Nguyen. A new sieving-style information-set decoding algo-
rithm. IEEE Transactions on Information Theory, 2024.

[17] G. Kachigar and J.-P. Tillich. Quantum information set decoding algorithms. In International
Workshop on Post-Quantum Cryptography, pages 69–89. Springer, 2017.

[18] E. Kirshanova. Improved quantum information set decoding. In International Conference on
Post-Quantum Cryptography, pages 507–527. Springer, 2018.

[19] P. J. Lee and E. F. Brickell. An observation on the security of McElieces public-key cryp-
tosystem. In Workshop on the Theory and Application of of Cryptographic Techniques, pages
275–280. Springer, 1988.

[20] J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-
correcting codes. IEEE Transactions on Information Theory, 34(5):1354–1359, 1988.

[21] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in õ(20.054n). In Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
pages 107–124. Springer, 2011.

[22] A. May and I. Ozerov. On computing nearest neighbors with applications to decoding of
binary linear codes. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 203–228. Springer, 2015.

[23] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. Deep Space
Network Progress Report, 44:114–116, Jan. 1978.

[24] A. Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis, Ruhr-Universität
Bochum, 2012.

[25] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Infor-
mation Theory, 8(5):5–9, 1962.

[26] J. Stern. A method for finding codewords of small weight. In International Colloquium on
Coding Theory and Applications, pages 106–113. Springer, 1988.

[27] V. Weger, N. Gassner, and J. Rosenthal. A survey on code-based cryptography. arXiv preprint
arXiv:2201.07119, 2022.

53

