
CIT413045 Summer 25

Coding Theory

Lecturer: Prof. Dr. Violetta Weger

These lecture notes will be consistently updated before the lectures. If you find any typos,
please send them to me via email.

Overview Coding Theory emerged in the 1940’s with the fundamental paper "A mathematical
theory of communication" by Shannon [17].

Shannon was studying therein the properties of communication channels prone to errors. While
Shannon’s focus lays on the channel and its capacity, Hamming [7] started focusing on the alge-
braic properties of the code used to correct errors. Thus, the field has quickly split into two main
parts: Information theory and algebraic coding theory.

This lecture is complementary to the lecture "Channel Coding", as we will solely focus, just
like Hamming, on the algebraic properties of codes.

Algebraic coding theory is a very young mathematical subject and is full of open problems
and possible research questions. Due to the error-correcting capabilities of codes, they find nu-
merous applications in the real world, such as: reliable communication, data storage, distributed
and coded computing, information retrieval, network coding, cryptography and some of the newest
ones include DNA storage and quantum computing.

You will learn about the parameters, properties and relations between codes, the main con-
structions of codes, some decoding algorithms and see different applications.

Disclaimer: This course is not about programming.
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Administrative Information

The lectures will be held

• Tuesdays, 16:15-17:45 in MI 00.07.014

• Wednesday, 14:15-15:45 in MI 00.07.014

The tutorials will be held

• Mondays, 10:15-11:45 in MI 03.08.011

Exercises: I will upload exercise sheets on Moodle, which are voluntary to solve, but upon 70%
of correct completion, I will provide a grade bonus of +0.3.

Exam: The exam will either be in written (90 min) or oral (30 min) form, depending on the number
of students.

Prerequisites:

• MA0004 Linear Algebra 1,

• MA0005 Linear Algebra 2 and Discrete Structures.

Material: Most of the content of these lecture notes is based on

• the book Fundamentals of Error-Correcting Codes by W.C. Hufmann and V. Pless [8],

• the book The Theory of Error-Correcting Codes by N.J.A Sloane F.J. MacWilliams [10],

• the book Introduction to Coding Theory by J. van Lint [19] and

• the book Introduction to Coding Theory by R. Roth [15].
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Schedule

In green we marked the holidays and in red the days I am not here. On these days we will either do
a "flipped classroom", where you will be provided with video lectures to watch and we can discuss
questions at the next in-person event or there will be a substitute lecturer.

Tutorial Monday Hand in Sheet New Sheet to Discuss Lecture Tuesday Lecture Wednesday

21.04 22.04 23.04
28.04 Sheet 1 29.04 30.04
05.05 Sheet 1 Sheet 2 06.05 07.05
12.05 Sheet 2 Sheet 3 13.05 14.05
19.05 Sheet 3 Sheet 4 20.05 21.05
26.05 Sheet 4 Sheet 5 27.05 28.05
02.06 Sheet 5 Sheet 6 03.06 04.06
09.06 10.06 11.06
16.06 Sheet 6 Sheet 7 17.06 18.06
23.06 Sheet 7 Sheet 8 24.06 25.06
30.06 Sheet 8 Sheet 9 01.07 02.07
07.07 Sheet 9 Sheet 10 08.07 09.07
14.07 Sheet 10 Summary 15.07 16.07
21.07 Summary 22.07 23.07
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Let us start with some motivation for this course.

Whenever we communicate digitally, we do so over noisy channels. This means that the chan-
nel will introduce some errors, e.g. flip some bits of the sent message.

sender
m

channel

 
r = m+ e

receiver

Assume the sender sends a message in binary m = (1, 0, 1) over a noisy channel and the
receiver receives (0, 0, 1). The most natural way is to interpret this received vector as m+e, where
e = (1, 0, 0) is called the error vector.

The aim of coding theory is to enable reliable communication. As we cannot alter the channel
we have at hand, we alter what we send. Instead of sending the message directly, we first encode
it. In theory, you could think of this process as adding redundancy to your message.

In our toy example, instead of sending m = (1, 0, 1) we could send c = (1, 0, 1, 1, 0, 1, 1, 0, 1).
The channel might introduce an error, however, our encoding enforces possible sent vectors (called
codewords) to be distant, so that upon receiving r = (1, 0, 0, 1, 0, 1, 1, 0, 1), we can find only one
closest codeword, c and thus in turn m.

sender
m

encoder
c

channel

 
r = c+ e

decoder
m

receiver

The code should also come with an efficient decoder, that is an algorithm which upon receiving
r outputs the closest codeword and knowing the encoding function also the sent message. However,
there are many rules to this game: We cannot correct any amount of errors, which leads us to
consider several bounds on the code parameters and in order to get efficient algorithms we need to
construct codes with algebraic structure.
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Let us have a quick glance at the highlights of this lecture.

Theorem 0.1 (Optimality of Random Codes). Random codes attain with high probability, for n
going to infinity, the Gilbert-Varshamov bound, and for q going to infinity, the Singleton bound.

Interestingly, the most famous conjecture in coding theory is older than coding theory itself
(due to the connection to finite geometry) [16].

Open Question 0.2 (MDS Conjecture). Let q be odd, then there is no code attaining the Singleton
bound with n > q + 1.

This has recently been proven for q being prime, by Ball [2].

Theorem 0.3 (Perfect Codes). The only known perfect codes are the Hamming codes and the two
Golay codes.

Theorem 0.4 (Constant-Weight Codes). Every constant-weight code is an ℓ-fold duplication of the
Simplex code.

Theorem 0.5 (MacWilliams Identities). The weight distribution of a code is completely determined
by that of the dual code.

Theorem 0.6 (SDP is NP-hard). To decode a random code is one of the hardest problems in
mathematics.

Clearly, these statements need to be refined and the bounds and codes introduced, as we plan
to do in this lecture.
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Notation
Since we cannot include everything, we will assume a certain background. For example, we as-
sume that modular arithmetic, the notion of field, vector space, ring, module, basis, cyclicity,
subgroup are known concepts. In particular, the fact that any cyclic group of order n is isomorphic
to Z/nZ.

Throughout these lecture notes, we will make use of the following notation

• For a set S we denote by |S| its cardinality and by SC its complement.

• Z/nZ denotes the integers modulo n.

• φ(n) denotes the Euler-totient function.

• Idn denotes the identity matrix of size n.

• GLq(n) denotes the general linear group of degree n in Fq, i.e., all invertible matrices in
Fn×n
q .

• For a matrix M we write rk(M) to denote its rank, det(M) to denote its determinant and by
M⊤ we denote its transpose.

• For a function f we denote by ker(f) its kernel and by im(f) its image.

• As we can also see a matrix as a function, that is for a given matrix M ∈ Fk×n
q we consider

the function
fM : Fk

q → Fn
q , a 7→ aM,

we denote by ker(M) the kernel of this function and by im(M) the image of this function.

• For a vector v ∈ Fk
q and i ∈ {1, . . . , k} we denote by vi the ith entry of the vector v. For

a subset S ⊂ {1, . . . , k} of size s, vS ∈ Fs
q denotes the vector consisting of the entries of v

indexed by S.

• Similarly for a matrix: for a matrixM ∈ Fk×n
q and i ∈ {1, . . . , k}, j ∈ {1, . . . , n} we denote

by Mi,j the entry of M in the ith row and jth column. For a subset S ⊂ {1, . . . , n} of size
s, MS ∈ Fk×s

q denotes the matrix consisting of the columns of M indexed by S.

• For a matrix M ∈ Fk×n
q , we denote by 〈M〉 ⊆ Fn

q the span of the rows of M, that is
im(M) = 〈M〉.

This list might get updated as we progress in the course.
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1 Finite Fields
In this chapter we introduce finite fields and their main properties, which are useful for this lecture.

1.1 Summary
If you are already familiar with finite fields, here is a short summary of results, which prove to be
useful for the course:

• For every prime p there is a unique finite field Fp = Z/pZ (up to isomorphism) of size p.

• For every prime p and positive integer m there is a unique finite field Fpm (up to isomor-
phism) of size pm. The subfield Fp is called the base field.

• The finite field Fpm is a Fp-linear vector space of dimension m over Fp.

• The set F⋆
pm = Fpm \ {0} is a cyclic multiplicative group.

• In any finite field Fpm there exist φ(pm − 1) many primitive elements α, i.e.,

F⋆
pm = {α0, α1, . . . , αpm−2}.

• Any x ∈ Fpm is such that xpm = x.

• For any x ∈ Fpm with xp = x, we have that x ∈ Fp.

• For any prime p and positive integers m and ℓ such that ℓ | m, the finite field Fpm/ℓ is a
subfield of Fpm .

• For any finite field Fpm the characteristic is p, i.e., for any x ∈ Fpm we have px = 0.

• For any finite field Fpm , Freshman’s dream allows us to do the following

(x+ y)p = xp + yp.

• If α is a primitive element in Fpm , then {1, α, . . . , αm−1} builds a basis of Fpm over Fp. That
is, any x ∈ Fpm can be written as

x =
m−1∑
i=0

xiα
i.

• For any basis Γ = {γ1, . . . , γm} of Fpm over Fp, we can define the expansion map

expΓ : Fpm → Fm
p , x =

m∑
i=1

xiγi 7→ expΓ(x) = (x1, . . . , xm).
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1.2 Prime Fields
Definition 1.1. A finite field is a field which is finite in size.

A first example is the prime field Fp, which we know from the course Discrete Structures (or
Elementary Number Theory).

Theorem 1.2 (Prime Field). For every prime p the integer residue ring (Z/pZ,+, ·) is a field,
denoted by Fp.

Exercise 1.3. Prove Theorem 1.2 by showing that (Z/pZ,+, ·) is a commutative ring with 1 6= 0
and any element in F⋆

p = Fp \ {0} has a multiplicative inverse.

Example 1.4. The finite field of order 3 is given by F3 = Z/3Z = {0, 1, 2}.

We now show that Fp is essentially the only field with p elements, that is all fields with p
elements are isomorphic.

Definition 1.5. Let (F,+F, ·F), (G,+G, ·G), be two fields with additive identities 0F, respectively
0G and multiplicative identities 1F, respectively 1G. The fields F and G are called isomorphic, if
there exists a bijection f : F → G, which is also a field homomorphism, that is for all a, b ∈ F we
have

f(a+F b) = f(a) +G f(b), and f(a ·F b) = f(a) ·G f(b)

and f(0F) = 0G, f(1F) = 1G.

Note that any field homomorphism f is injective, as the only ideals in F are {0F} and F. As we
also have f(1F) = 1G, we must get Ker(f) = {0F} and thus f is injective.

If |F| = |G|, we thus also get that f is surjective and in turn a field isomorphism.

Theorem 1.6. Every finite field F with |F| = p, for p a prime, is isomorphic to Fp.

Proof. Let (F,+F, ·F) be a field with p elements, and denote its additive identity by 0F and its
multiplicative identity by 1F. Recall that it is enough to find a field homomorphism f : F → Fp.

Consider the additive cyclic subgroup S(1F) = {1F +F · · · +F 1F}. By Lagrange’s Theorem,
the order of this subgroup must divide |F| = p, i.e., is either 1 or p. However, order 1 would imply
1F +F 1F = 1F and hence, from 1F = 0F, we get a contradiction.

Thus, the additive cyclic subgroup S(1F) = F and we have

f : F → Z/pZ, 1F +F · · ·+F 1F︸ ︷︷ ︸
x

7→ x mod p.

It is easy to check that

f((1F +F · · ·+F 1F︸ ︷︷ ︸
x

)+F (1F +F · · ·+F 1F︸ ︷︷ ︸
y

)) = f(1F +F · · ·+F 1F︸ ︷︷ ︸
x+y

) = x+y = f(x)+f(y) mod p
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and clearly f(0F) = 0 mod p.
We are left with showing that this correspondence extends also for multiplication.
Since

f((1F +F · · ·+F 1F︸ ︷︷ ︸
x

) ·F (1F +F · · ·+F 1F︸ ︷︷ ︸
y

)) = f(1F +F · · ·+F 1F︸ ︷︷ ︸
xy

) = xy = f(x)f(y) mod p

and clearly f(1F) = 1 mod p we have an isomorphism.

Not every integer residue ring Z/nZ defines a finite field, as we might have ab = 0 mod n,
for a, b 6= 0 mod n and thus not all non-zero elements have a multiplicative inverse.

Example 1.7. Z/4Z is not a finite field, as 2 has no multiplicative inverse.

1.3 Subfields and Field Extensions
Prime fields are not the only finite fields we have, in fact, we now construct a finite field for any
prime power pm, where p ∈ P , and m is a positive integer.

Definition 1.8. A subfield G of a field F is a subset G ⊆ F, which is a field under the operations
of F.

To show that G is a subfield of F, it is enough to show that 0F, 1F ∈ G and that G is closed
under addition +F and multiplication ·F.

Theorem 1.9. Let F be a finite field with q elements. Then there exist a subfield Fp of F which is a
prime field.

Proof. Since F is a field, it contains the additive identity 0F and the multiplicative identity 1F.
We consider again S(1F) = {1F +F · · ·+F 1F} and for n = |〈1F〉|, the group isomorphism

f : S(1F) → Z/nZ, 1F +F · · ·+F 1F︸ ︷︷ ︸
x

7→ x mod n.

Let 1F +F · · ·+F 1F︸ ︷︷ ︸
x

, 1F +F · · ·+F 1F︸ ︷︷ ︸
y

6= 0F and thus 1F +F · · ·+F 1F︸ ︷︷ ︸
xy

6= 0F. The map f should

send non-zero elements to non-zero, i.e.,

f(1F +F · · ·+F 1F︸ ︷︷ ︸
xy

) = xy 6= 0 mod n,

which only holds for every x, y 6= 0 mod n if n = p being a prime. Thus, S(1F) is isomorphic to
Fp and since S(1F) ⊆ F, it forms a subfield with p elements.

Within this proof, we have also seen that there can only exist one subfield of prime order.
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Definition 1.10. Let F be a finite field with prime subfield Fp. Then p is called the characteristic
of F.

In particular, for any x ∈ F of characteristic p, we have that xp = 0. Indeed, for any x ∈ F we
have

xp = x+F · · ·+F x︸ ︷︷ ︸
p

= x(1F +F · · ·+F 1F︸ ︷︷ ︸
p

) = x · 0F = 0F.

As any finite field F with characteristic p has the subfield Fp = {0, 1, . . . , p − 1}, we will denote
the additive inverse now simply by 0, and the multiplicative inverse by 1.

Definition 1.11. Let F be a field. A field extension is a field K and a homomorphism ϕ : F → K.

As before, any field extension ϕ is injective and hence ϕ(F) is a subfield of K. Observe that the
scalar multiplication

F×K → K, (λ, k) 7→ ϕ(λ)k

gives K a F-vector space structure.
In the other direction, we have that F with characteristic p is a field extension of Fp. And in

turn, we get that any finite field must be of prime power size.

Lemma 1.12. Let F be a finite field, then there exist p ∈ P and m ∈ N, such that |F| = pm.

Proof. We have seen before that any finite field has a base field Fp = S(1F). Since F is a vector
space over Fp, we have some basis α1, . . . , αm of F over Fp. That is every element of β ∈ F can
be uniquely written as

β =
m∑
i=1

λiαi,

with λi ∈ Fp. As we have p choices for the m many λ′is, we get a total of pm many elements in
F.

Let F be a finite field of order q = pm, then m is called the extension degree of F over Fp.

1.4 Construction of Finite Fields
To construct the finite field F with q = pm many elements, we consider polynomials over Fp:

Fp[x] =

{∑
i≥0

fix
i | fi ∈ Fp

}
.

The addition and multiplication of two polynomials is performed in the usual way, taking
modulo p for the coefficients. Then, Fp[x] forms a ring and is called the polynomial ring over Fp.

Let us recall some definitions:
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• Similar to polynomials over other fields, if f(x) =
∑m

i=0 fix
i, with fm 6= 0, we denote by

m = deg(f), the degree of f and say f is monic if fm = 1. We use the convention that the
zero polynomial f(x) = 0 has degree −∞.

• We say that a polynomial g(x) ∈ Fp[x] is a divisor of f(x) ∈ Fp[x], if there exists a polyno-
mial h(x) ∈ Fp[x], such that f(x) = g(x)h(x).

• Clearly, every polynomial is a divisor of the zero polynomial. Additionally, 1 and f(x) are
always divisors of f(x), these divisors are called trivial divisors. Thus, for any non-trivial
divisor g(x) of f(x) we must have 1 ≤ deg(g) < deg(f).

• If f(x) has positive degree and only trivial divisors, then f(x) is said to be irreducible.

Example 1.13. Let us consider f(x) = x2 + 2x+ 2 ∈ F3[x]. The polynomial is monic of degree 2
and irreducible.

Assuming the existence of a irreducible polynomial g(x) ∈ Fp[x] of degree m, we may con-
struct a finite field with pm elements. The proof, that an irreducible polynomial of any positive
degree m exists over any prime field Fp is omitted.

Let g(x) ∈ Fp[x] be an irreducible polynomial of degree m and let us consider

Fp[x]/〈g(x)〉 = {f(x) + h(x)g(x) | f(x), h(x) ∈ Fp[x]}.

That is, we quotient by the ideal generated by g(x) (similar to integer residue rings, setting all
multiples of g(x) to zero and only considering the remainder f(x).) This is well-defined, as a
monic polynomial q(x) of degree m can uniquely be written as q(x) = g(x)h(x) + f(x), where
deg(f) < m. Thus, we may write q(x) = f(x) mod g(x).

Hence, we may identify an element q(x) = f(x)+h(x)g(x) ∈ Fp[x]/〈g(x)〉 with its remainder
f(x) and the polynomial ring modulo g(x) consists of all polynomials of degree up to m− 1:

Fp[x]/〈g(x)〉 =

{
f(x) =

m−1∑
i=0

fix
i | fi ∈ Fp

}
.

Let q(x) = f(x) + h(x)g(x), r(x) = t(x) + g(x)s(x) with deg(t), deg(f) < m, then

q(x) + r(x) = f(x) + t(x) + g(x)(h(x) + s(x)) = f(x) + t(x) mod g(x),

q(x) · r(x) = f(x)t(x) + g(x)(h(x)t(x) + f(x)s(x) + g(x)s(x)h(x)) = f(x)t(x) mod g(x).

Hence, introducing the operations in Fp[x]/〈g(x)〉

f(x) + t(x) mod g(x), and f(x)t(x) mod g(x).

14



Example 1.14. Let us consider g(x) = x3 + x+ 1 ∈ F2[x]. The polynomial g(x) is clearly monic
and irreducible, as it does not have any roots in F2. The polynomial ring modulo g(x) now consists
of all polynomials with coefficients in F2 up to degree 2:

F2[x]/〈g(x)〉 =

{
f(x) =

2∑
i=0

fix
i | fi ∈ F2[x]

}
.

If we add or multiply two polynomials, we reduce them again modulo g(x) to obtain the resulting
polynomial in F2[x]/〈g(x)〉.

For example, if f(x) = x+ 1 and t(x) = x2 + 1, then

f(x) + t(x) = x2 + x, f(x)t(x) = x3 + x2 + x+ 1 = (x+ 1) + x2 + x+ 1 = x2 mod g(x).

The size of Fp[x]/〈g(x)〉 is thus pm, as we consider all polynomials of degree up to m− 1.

Theorem 1.15. Let p ∈ P ,m a positive integer and g(x) ∈ Fp[x] an irreducible polynomial of
degree m. Then, Fp[x]/〈g(x)〉 is a finite field with pm elements.

Proof. We have seen that

|Fp[x]/〈g(x)〉| =

∣∣∣∣∣
{

m−1∑
i=0

fix
i | fi ∈ Fp

}∣∣∣∣∣ = pm,

and have defined addition and multiplication modulo g(x).

The multiplicative identity is given by the degree 0 polynomial 1(x) = 1, and the additive
identity by the zero polynomial g(x) = 0 mod g(x).

From the properties of the polynomial ring Z[x] we can easily check that Fp[x]/〈g(x)〉 is a
commutative ring with identity. We are left with showing that any non-zero element has a multi-
plicative inverse.

Let f(x) 6= 0 and s(x) 6= t(x) mod g(x), then f(x)s(x) 6= f(x)t(x) mod g(x). This mainly
follows, from the fact that g(x) is irreducible. If f(x)s(x) = f(x)t(x) mod g(x), then there exist
some polynomial h(x) such that f(x)(s(x) − t(x)) = g(x)h(x) and since g(x) is irreducible, it
can only have trivial divisors: 1 and g(x). Thus, either f(x) = 0 mod g(x) or s(x) − t(x) = 0
mod g(x).

Thus, if we run through all non-zero polynomials s(x) ∈ Fp[x]/〈g(x)〉, the products f(x)s(x) ∈
Fp[x]/〈g(x)〉 will also see every non-zero polynomial in Fp[x]/〈g(x)〉, in particular also 1(x) =
1.

Example 1.16. Let us consider g(x) = x2 + x+ 1 ∈ F2[x]. Then,

F2[x]/〈g(x)〉 = {0, 1, x, x+ 1}.

Exercise 1.17. Show that g(x) = x3 + x + 1 ∈ F2[x] is irreducible and give the addition and
multiplication table of F2[x]/〈(x3 + x+ 1)〉.
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+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

Table 1: Addition in F2[x]/〈(x2 + x+ 1)〉

· 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Table 2: Multiplication in F2[x]/〈(x2 + x+ 1)〉

1.5 Multiplicative Group
Let us consider F a finite field with q elements. By the definition of a field, we have that F⋆ =
F \ {0} is an abelian multiplicative group. We now show that this is a cyclic group.

Definition 1.18. Let F be a finite field with q elements. An element α ∈ F is called primitive
element, if

〈α〉 = {αi | i ∈ N} = F⋆.

Exercise 1.19. Show that α ∈ F of size q is primitive if and only if ord(α) = q − 1.

Recall that a degree m polynomial can have at most m factors of degree 1:

Theorem 1.20 (Fundamental Theorem of Algebra). Over any field F, a monic polynomial f(x) ∈
F[x] of degree m can have at most m roots in F.

If f(x) has m roots β1, . . . , βm, then the unique factorization of f(x) is given by

f(x) =
m∏
i=1

(x− βi).

In general, any non-zero polynomial of degree ≤ d has ≤ d roots. Note that this theorem is
also very useful when trying to prove that a polynomial is zero, by showing that it has more than d
roots.

Theorem 1.21. Let F be a finite field, then F⋆ is a cyclic multiplicative subgroup.

Proof. To show that F⋆ is cyclic multiplicative group, we have to show that every finite field F has
a primitive element.
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Let F be a finite field with q elements. Clearly, for any element β ∈ F⋆, the cyclic multiplicative
subgroup 〈β〉 = {βi | i ∈ N} ⊂ F⋆ must have size s = |〈β〉| = ord(β) which is such that
s | (q − 1). If s = q − 1, we would be done, thus we assume that for all β ∈ F⋆, we have
ord(β) < q − 1.

Since any a ∈ 〈β〉 is such that as = 1, we have at least s elements in F with as = 1. Addition-
ally, we have at most s roots of xs − 1 in F, and thus we get that

〈β〉 = {a ∈ F | as = 1}

and there is exactly one cyclic subgroup of order s.

Recall that in a cyclic group 〈β〉, we have φ(d) elements of order d, for d | s. Thus, we have
φ(s) elements in 〈β〉 of order s. Going through all β ∈ F⋆, we get that the number of elements in
F⋆ of order < q − 1, is at most∑

d|(q−1),d<q−1

φ(d) =
∑

d|(q−1)

φ(d)− φ(q − 1) = q − 1− φ(q − 1) < q − 1.

Thus, there must exist at least one element in F of order q − 1, i.e., a primitive element.
Even more, as we also have at most φ(q − 1) elements of order q − 1, we get exactly φ(q − 1)

many primitive elements.

Exercise 1.22. Give an alternative proof that the multiplicative group is cyclic, using the funda-
mental theorem of finite abelian groups.

Example 1.23. In F5, we have 2 is a primitive element, as F⋆
5 = {20, 21, 23, 22}.

Once we are given a primitive element, we can also construct all others and any element of
order d | (q − 1).

Exercise 1.24. Let F be a finite field with q elements and α ∈ F be a primitive element. Show that

• αℓ is primitive if and only if gcd(ℓ, q − 1) = 1.

• If ℓ | (q − 1), then α(q−1)/ℓ has order ℓ.

1.6 Uniqueness
Recall that for any β ∈ Fp we have that βp = β and hence

xp − x =
∏
β∈Fp

(x− β).

If |F⋆| = q − 1, then by Lagrange’s Theorem we have that βq−1 = 1 and hence every element
of F⋆ is a root of the polynomial xq−1 − 1. To include the zero element we simply consider

x(xq−1 − 1) = xq − x.
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As a polynomial of degree q can have at most q roots in F, we get that

xq − x =
∏
β∈F

(x− β).

Theorem 1.25. Every finite field F with q = pm elements is isomorphic to Fp[x]/〈g(x)〉, where
g(x) ∈ Fp[x] is an irreducible polynomial of degree m.

In order to prove this result, we resort to the definition of splitting fields.

Definition 1.26. Let F be a field and f(x) ∈ F[x]. A splitting field of f(x) over F is a field
extension K, such that

f(x) = c
n∏

i=1

(x− αi),

for αi ∈ K and c ∈ F and f(x) does not split in a proper subfield of K.

In short, the splitting field of f(x) is the smallest field K where f(x) splits into linear factors,
i..e, K contains all roots of f(x). We note that splitting fields always exist and they are unique (up
to isomorphism).

Note that if F is a field with q elements and L is any subfield of F, then F is the splitting field
of xq − x over L.

Hence, by the uniqueness of splitting fields (up to isomorphisms) we also get that F with
q = pm elements is unique, and from now on denoted by Fq or Fpm to emphasize the base field Fp.

1.7 Different Representation
Instead of considering elements in the finite field Fpm as polynomials over Fp modulo an irreducible
polynomial f(x) of degree m, we may always use a root α of f(x) to represent the elements of
Fpm .

Definition 1.27. Let p be a prime and m a positive integer. Let f(x) =
∑m−1

i=0 fix
i + xm ∈ Fp[x]

be an irreducible polynomial of degree m and let α be a root of f(x). Then, Fp adjoin α is

Fp(α) = {
m−1∑
i=0

aiα
i | ai ∈ Fp}.

The usual definition is a bit more abstract, stating that for α ∈ L :

Fp(α) =
⋂

Fp⊂K⊂L,α∈K

K.

Note that Fp(α) is the smallest field extension of Fp containing α. The fact that α is contained
in Fp(α) is clear, as we can choose

a1 = 1, ai = 0 ∀ i 6= 1.

Similarly, we can consider all a0 ∈ Fp and ai = 0 for all i > 0 to show that Fp ⊂ Fp(α). Also the
other properties can be easily checked.
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Theorem 1.28. Let p be a prime and m a positive integer. Let f(x) =
∑m−1

i=0 fix
i + xm ∈ Fp[x]

be an irreducible polynomial of degree m and let α be a root of f(x). Then,

Fp[x]/〈f(x)〉 ∼= Fp(α).

Proof. Let us consider the map

evα : Fp[x]/〈f(x)〉 → Fp(α),

a(x) =
m−1∑
i=0

aix
i 7→ a =

m−1∑
i=0

aiα
i,

i.e., sending a(x) to a(α). This is clearly a homomorphism, as

evα(a(x) + b(x)) = evα(a(x)) + evα(b(x)),

evα(a(x)b(x)) = evα(a(x))evα(b(x)).

Since f(x) is irreducible, we have that

ker(evα) = 〈f(x)〉

and by the first isomorphism theorem, we get

Fp[x]/〈f(x)〉 ∼= im(evα).

Clearly, im(evα) contains Fp and α and as it is isomorphic to Fp[x]/〈f(x)〉 it is also a field, inside
the smallest field containing Fp and α. Hence, they must be isomorphic.

Instead of considering any irreducible polynomial, one can also consider a primitive polyno-
mial.

Definition 1.29. Let α ∈ Fpm be a primitive element. The minimal polynomial of α is called
primitive polynomial.

To check whether an irreducible polynomial f(x) of degreem is primitive, we can equivalently
check if the smallest positive integer n such that f(x) divides xn − 1 is n = pm − 1.

Example 1.30. Let us consider F3. The polynomial x2 + 1 is irreducible, but not primitive as it
divides x4 − 1. A primitive polynomial of degree 2 would for example be x2 + 2x+ 2.

Once we have identified a primitive polynomial f(x) ∈ Fp[x] and a root α, we can immediately
write all elements of F⋆

pm as powers of α.

Example 1.31. We are allowed to use any irreducible polynomial, as

F9
∼= F3[x]/〈x2 + 1〉 ∼= F3[x]/〈x2 + 2x+ 2〉.

Let us denote by α a root of x2+2x+2, i.e., α2 = α+1 and β a root of x2+1, i.e., β2 = 2. While
we can write

F9
∼= F3(α) ∼= F3(β),

only α generates the multiplicative group F⋆
9:

α0 = 1, α1 = α, α2 = α + 1, α3 = 2α + 1, α4 = 2, α5 = 2α, α6 = 2α + 2, α7 = α + 2.
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Exercise 1.32. Give the multiplication table of F4
∼= F2(α), where α is a root of x2 + x+ 1.

We can also use a different representation, as Fpm
∼= Fm

p as Fp- vector space.
For this we define the expansion map.

Definition 1.33. Let Γ = {γ0, . . . , γm−1} be a basis of Fpm over Fp. Then the expansion map with
respect to Γ is given by

expΓ : Fpm → Fm
p ,

a =
m−1∑
i=0

aiγi 7→ expΓ(a) = (a0, . . . , am−1).

This map is Fp-linear, meaning that

• For a, b ∈ Fpm we have expΓ(a+ b) = expΓ(a) + expΓ(b),

• for a ∈ Fpm and λ ∈ Fp we have that expΓ(λa) = λexpΓ(a).

As we also want to handle expΓ(ab) we need to introduce the multiplication matrix.

For this we will focus on a basis Γ = {1, α, α2, . . . , αm−1} of Fm
p over Fp, we call such a basis

a polynomial basis. Note that {1, α, α2, . . . , αm−1} is a basis of Fm
p over Fp, if and only if α is a

root of f(x) ∈ Fp[x], which is irreducible and of degree m.

Let α be the root of an irreducible polynomial f(x) =
∑m−1

i=0 fix
i + xm ∈ Fp[x] of degree m

and consider

Fp[x]/〈f(x)〉
evα∼= Fp(α)

expΓ∼= Fm
p ,

a(x) =
m−1∑
i=0

aix
i 7→ a =

m−1∑
i=0

aiα
i 7→ expΓ(a) = (a0, . . . , am−1),

a(x) + b(x) 7→ a+ b 7→ expΓ(a) + expΓ(b).

However, what happens to the multiplication? We can compute a(x)b(x) mod f(x) and ab ∈
Fp(α), thus we need to figure out what expΓ(ab) is in terms of expΓ(a) and expΓ(b).

For this we define the multiplication matrix for b ∈ Fp(α) via the basis Γ as

MΓ(b) =


expΓ(b)

expΓ(αb)
...

expΓ(α
m−1b)


and define

expΓ(a) ◦ expΓ(b) = expΓ(a)MΓ(b).
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Note that for b = α, the multiplication matrix MΓ(α) is the companion matrix of f(x) as

MΓ(α) =


0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1

−f0 −f1 −f2 · · · −fm−1

 .

Example 1.34. Let us consider F8
∼= F2(α) where α is a primitive root and satisfies α3 = α + 1

as the primitive polynomial over F2 is given by x3 + x + 1. Thus, we have the polynomial basis
Γ = {1, α, α2} of F8 over F2. Let a = α2 + 1 and b = α + 1. We can easily expand them to F3

2 as

expΓ(a) = (1, 0, 1), expΓ(b) = (1, 1, 0).

We want to multiply a with b and over F8 we can easily check that ab = α2 which is expanded to

expΓ(ab) = (0, 0, 1).

We compute

MΓ(b) =

1 1 0
0 1 1
1 1 1


and check

MΓ(b)expΓ(a) = (0, 0, 1) = expΓ(ab).

To summarize, we may view the finite field Fpm in three different ways:
Let p be a prime and m a positive integer. Let f(x) =

∑m−1
i=0 fix

i + xm ∈ Fp[x] be an
irreducible polynomial of degree m and let α be a root of f(x).

Fp[x]/〈f(x)〉 Fp(α) Fm
p

a(x) =
∑m−1

i=0 aix
i a =

∑m−1
i=0 aiα

i (a0, . . . , am−1)
a(x) + b(x) mod f(x) a+ b expΓ(a) + expΓ(b)
a(x) · b(x) mod f(x) a · b expΓ(a) ◦ expΓ(b)

Example 1.35. Let us consider again

F9
∼= F3[x]/〈x2 + 1〉 ∼= F3[x]/〈x2 + 2x+ 2〉,

and denote by α a root of x2 + 2x+ 2, i.e., α2 = α + 1 and β a root of x2 + 1, i.e., β2 = 2.
Recall that for α a primitive element over Fq and β of order z, we have that β = αi(q−1)/z for

some i ∈ {1, . . . , z} and gcd(i, (q−1)/z) = 1. Thus, assuming i = 1, we get that β = α2 = α+1,
and can convert the different representations:
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F3(β) 0 1 2 β 2β β + 1 β + 2 2β + 1 2β + 2
F3(α) 0 1 2 α + 1 2α + 2 α + 2 α 2α 2α + 1
〈α〉 α0 α4 α2 α6 α7 α1 α5 α3

1.8 Trace and Norm
We define two more important maps: the trace and the norm.

Definition 1.36. An automorphism σ of Fqm over Fq is a ring homomorphism from Fqm to itself
such that σFq = id is the identity.

Note that it follows from the definition that such automorphism is bijective. Consider the map

σj : Fqm → Fqm , α 7→ αqj .

Theorem 1.37. Let Fqm be a finite field with qm elements (q is a prime power). The automorphisms
of Fqm over Fq are the distinct maps σ0, σ1, . . . , σm−1.

Proof. Clearly, any σj is a ring homomorphism. Moreover, as any element in Fq satisfies αq = α,
we have that σj fixes the elements of Fq. In order to see that the σj are distinct, note that if β
is a primitive element in Fqm , then βqi = βqj forces qi = qj mod qm − 1, and thus i = j ∈
{1, . . . ,m− 1}.

We are left with showing that there are no other automorphisms. Let σ be an automorphism of
Fqm over Fq and β be a primitive element in Fq and

f(x) = xm + fm−1x
m−1 + · · ·+ f0 ∈ Fq[x]

be its minimal polynomial over Fq. Then,

0 =σ(βm + fm−1β
m−1 + · · ·+ f0)

=σ(β)m + fm−1σ(β)
m−1 + · · ·+ f0,

thus σ(β) is a root of f(x) in Fqm . We now show that any root of a primitive polynomial f(x) =∑m−1
i=0 fix

i + xm is of the form βqj for some j ∈ {0, . . . ,m − 1}. Note that it is enough to show
that since β is a root, so is βq, as then we can repeat this argument for βqj to get the root βqj+1

.

In fact, since β is a root we have that

f(β) =
m−1∑
i=0

fiβ
i + βm = 0.
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Now

f(βq) =
m−1∑
i=

fi(β
q)i + (βq)m

=
m−1∑
i=

f q
i β

qi + βqm

=
m−1∑
i=

(fiβ
i)q + (βm)q

= (
m−1∑
i=

fiβ
i + βm)q = (f(β))q = 0,

or by simply observing that σ is a automorphism. Clearly, there are not more roots, as the degree
of f(x) is m.

This implies that σ(β) = βqj for some j ∈ {0, . . . ,m− 1}, thus σ = σj.

Corollary 1.38. The group of automorphisms of Fqm is a cyclic group of order m, generated by
σ1.

This map σ1 : Fqm → Fqm , α 7→ αq is called Frobenius map.

Definition 1.39. Let Fqm and Fq be the finite field with qm, respectively q, elements. The trace
map is defined as

TrFqm/Fq : Fqm → Fq,

α 7→
m−1∑
i=0

αqi .

Note that if q = p is prime we call the trace map TrFpm/Fp = TrFpm
the absolute trace.

It might not directly be clear why this map sends elements from Fqm to Fq. We have a simple
test to check whether an element of x ∈ Fqm is actually living in the subfield Fq: check if xq = x.

Thus, we compute (
m−1∑
i=0

αqi

)q

=
m−1∑
i=0

αqi·q =
m−1∑
i=0

αqi+1

=
m−1∑
i=0

αqi ,

where we have used that αqm = α.

The traces possess many interesting properties, which we leave as an exercise:
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Theorem 1.40. Let α, β ∈ Fqm and λ ∈ Fq. Then

1. TrFqm/Fq(α + β) = TrFqm/Fq(α) + TrFqm/Fq(β),

2. TrFqm/Fq(λα) = λTrFqm/Fq(α),

3. TrFqm/Fq(λ) = mλ,

4. TrFqm/Fq(α
q) = TrFqm/Fq(α).

Exercise 1.41. Prove Theorem 1.40.

The next map is defined in a similar fashion:

Definition 1.42. Let Fqm and Fq be the finite field with qm, respectively q, elements. The norm
map is defined as

NFqm/Fq : Fqm → Fq,

α 7→
m−1∏
i=0

αqi = α(qm−1)/(q−1).

We can again use our test (this time xq−1 = 1), to check whether we land in Fq, by computing(
α(qm−1)/(q−1)

)q−1
= αqm−1 = 1.

We get similar properties to trace, again left as an exercise:

Theorem 1.43. Let α, β ∈ Fqm and λ ∈ Fq. Then

1. NFqm/Fq(αβ) = NFqm/Fq(α)NFqm/Fq(β),

2. NFqm/Fq(λ) = λm,

3. NFqm/Fq(α
q) = NFqm/Fq(α).

Exercise 1.44. Prove Theorem 1.43.

1.9 Some Properties
We may ask if Fpm has also other subfields than Fp.

Theorem 1.45. Let Fq be a field with q = pm elements. Fq has a subfield of order pr, if and only
if r | m.
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Proof. Recall that Fpm is a Fp-vector space of degree m. Thus, for any subfield F ⊂ Fpm , we must
have that F has order pr, where r | m. For the other direction, we assume that r | m and construct
a subfield of Fpm with pr elements. Let d = m/r and note that

pm − 1 = (pr − 1)(1 + pr + · · ·+ pr(d−1)).

Thus, pr − 1 divides pm − 1. Similarly, we see that

(xp
r−1 − 1) | (xpm−1 − 1).

Since Fpm is the splitting fields of xpm−x = x(xp
m−1−1) over Fp, it contains all roots of xpr−1−1.

Together with 0, these roots form a subfield of cardinality pr, as claimed.

And we conclude this short recap on finite fields with Freshman’s dream.

Theorem 1.46 (Freshman’s dream). For any a, b ∈ Fpm we have that

(a+ b)p = ap + bp.

Proof. By the binomial theorem we have that

(a+ b)p =

p∑
i=0

(
p

i

)
aibp−i.

Since for all i ∈ {1, . . . , p − 1} we have p |
(
p
i

)
= p!

i!(p−i)!
, we get that

(
p
i

)
aibp−i = 0 in Fpm . The

only non-zero terms in this sum are i = 0 and i = p, where
(
p
0

)
=
(
p
p

)
= 1.

1.10 Invertible Matrices
Finally, we may consider the invertible matrices.

Proposition 1.47. Let q be a prime power and n a positive integer. Then

|GLq(n)| =
n−1∏
i=0

(qn − qi).

Proof. To count the invertible matrices in Fn×n
q , we may start with any non-zero vector r1 ∈ Fn

q

and use this as first row. Clearly, we have qn − 1 choices. For the second row, we may choose any
vector, which is not a multiple of r1, i.e., r2 ∈ Fn

q \ 〈r1〉. Clearly, we have qn − q choices. We
continue this way, for the ith row choosing ri ∈ Fn

q \ 〈r1, . . . , ri−1〉, for which we have qn − qi−1

choices.

Exercise 1.48. Let q be a prime power andm < n be positive integers. Perform a similar counting
argument, to show that the number of m× n matrices over Fq of full rank m is given by

m−1∏
i=0

(qn − qi).
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Corollary 1.49. Let q be a prime power and m < n be positive integers. The probability for a
uniformly at random chosen matrix A ∈ Fm×n

q to have full rank is

n∏
i=n−m+1

(1− q−i).
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2 Basics of Codes
As we have seen in our introductory example, we would like to encode a message, i.e., add redun-
dancy to it, before sending it through a channel prone to errors.

The encoding in our example, was given by repeating the message three times. This ensured
the message recovery if one error happens. In fact, any sent vector must be of the form (x, x, x),
for some x ∈ F3

2. If only one error happens in the channel, it will only effect one of the three x’s
and as soon as we receive (y, x, x), (x, y, x) or (x, x, y), we can easily recover the sent message
x. The sent vectors are now much larger, of length 3 · 3, in our example. However, we could also
give a different encoding, which is still able to recover the message after one error was inserted,
but with a much shorter length:

Let us consider again m ∈ F3
2 and a channel which inserts one error. By encoding c = mG,

where

G =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,

we get that the sent vectors must live in the set

C = {(0, 0, 0, 0, 0, 0), (1, 0, 0, 1, 0, 1), (0, 1, 0, 1, 1, 1), (0, 0, 1, 0, 1, 1),
(1, 1, 0, 0, 1, 0), (1, 0, 1, 1, 1, 0), (0, 1, 1, 1, 0, 0), (1, 1, 1, 0, 0, 1)}.

Thus, if one error happens, i.e., we receive c+ e, there is no other c′ ∈ C such that c+ e = c′ + e′.

As you can see from our toy example, C, being the rowspan of G, enjoys linearity, i.e., for any
c, c′ ∈ C also λc+ µc′ ∈ C, for λ, µ ∈ F2 scalars.

Thus, it might not come as a surprise, that our main objects for this lecture, called codes, are
defined as linear subspace C ⊂ Fn

q .
Let us formalize the concepts we have observed above, to get a well-founded theory, of what

we mean with encoding, decoding, error-correction capability and so on.

2.1 Generator Matrix and Parity-Check Matrix
Let us fix that Fq will denote the finite field of q elements, where q is a prime power.

Definition 2.1 (Linear Code). Let 1 ≤ k ≤ n be integers. Then, an [n, k]q linear code C over Fq is
a k-dimensional linear subspace of Fn

q .

Note that we emphasize the linearity, as a code is simply any subset C ⊆ Fn
q .

We have a certain terminology in coding theory, which we will continuously update. The first
terms are
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Let C be an [n, k]q linear code.

• The parameter n is called the length of the code.

• The parameter k is called the dimension of the code.

• The elements in the code are called codewords.

• The parameter r = n− k is called the redundancy.

• The parameter R = k/n is called the rate of the code.

We say that a code is non-degenerate if for any i ∈ {1, . . . , n} there exists some c ∈ C with
ci 6= 0.

As C is linear, it must have some basis, which allows us to represent it compactly. In fact, linear
codes allow for an easy representation through their generator matrices, which have the code as
an image.

Definition 2.2 (Generator Matrix). Let k ≤ n be positive integers and let C be an [n, k]q linear
code. Then, a matrix G ∈ Fk×n

q is called a generator matrix of C if

C =
{
xG | x ∈ Fk

q

}
,

that is, the rows of G form a basis of C.

We will often write 〈G〉 to denote the code generated by the rows G. Thus, we can easily check
if a code is degenerate by checking whether a generator matrix has a zero column.

Example 2.3. A repetition code C = 〈G〉, is defined through the generator matrix

G =
(
1 · · · 1

)
∈ F1×n

q .

Thus, the code has dimension 1 and the rate is R = 1
n
.

Given an [n, k]q linear code C = 〈G〉, to encode a message m ∈ Fk
q , we apply the map

Enc : Fk
q → Fn

q , m 7→ mG.

Note that an [n, k]q linear code C has dimension k, that is |C| = qk.
Thus, a generator matrix G ∈ Fk×n

q of C has full rank k and in turn, the encoding map Enc is
injective.

One can also represent a code through a matrix H , which has the code as kernel.

Definition 2.4 (Parity-Check Matrix). Let k ≤ n be positive integers and let C be an [n, k]q linear
code. Then, a matrix H ∈ F(n−k)×n

q is called a parity-check matrix of C, if

C =
{
y ∈ Fn

q | yH⊤ = 0
}
.

For any x ∈ Fn
q , we call xH⊤ the syndrome of x through H .
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Let C be an [n, k]q linear code with 〈G〉 = C = ker(H⊤).

• The parameter n is called the length of the code.

• The parameter k is called the dimension of the code.

• The elements in the code are called codewords.

• The parameter r = n− k is called the redundancy.

• The parameter R = k/n is called the rate of the code.

• The matrix G is called a generator matrix of the code.

• The matrix H is called a parity-check matrix of the code.

• The vector s = xH⊤ is called a syndrome of x.

The parity-check matrix gives an easy way to check whether some vector x is a codeword or
not, by simply computing its syndrome xH⊤. If the syndrome is zero x is a codeword and if the
syndrome is not zero, x is not a codeword.

The name parity-check matrix comes from single parity-check codes.

Example 2.5. In several applications, one uses a single parity-check code, i.e., adding a last digit,
which serves to check whether the whole vector is a valid codeword or not. Over the binary, we
are given a message m = (m1, . . . ,mk) ∈ Fk

2 and we want to encode m to c = (m1, . . . ,mk, y) ∈
Fk+1
2 , where y =

∑k
i=1mi. A generator matrix of such a single parity-check code is given by

G =

 1

Idk
...
1


and a parity-check matrix is simply given by

H =
(
1 · · · 1

)
,

as

Hc⊤ =
k∑

i=1

mi + y ≡ 0 mod 2.

Thus, the name parity-check matrix comes from the binary code, where one checks if a vector
has even weight.

Exercise 2.6. How would a [n, n− 1]q single parity-check code for q 6= 2 be defined?
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Note that there are many generator matrices G which have the same code as image. In fact, for
any U ∈ GLk(q) we have that 〈UG〉 = 〈G〉, as the row operation U only changes the basis but not
the subspace.

Recall the rank-nullity theorem, stating that for any A ∈ Fn×m
q ,

dim(ker(A)) = n− rk(A).

Since ker(H⊤) = C has dimension k we have that H ∈ F(n−k)×n
q has full rank n− k.

We could think of a generator matrix and parity-check matrix as forming a short exact se-
quence:

0 → Fk
q

G−→ Fn
q

H⊤
−−→ Fn−k

q → 0.

Let H ∈ F(n−k)×n
q be a parity-check matrix and assume x ∈ Fn

q is unknown. Then, we get a
system of n− k linear equations in xi from Hx⊤ = s⊤:

n∑
i=1

h1,ixi = s1

...
n∑

i=1

hn−k,ixi = sn−k.

These equations are called parity-check equations or syndrome equations.

Consider our original problem, where we have received r = c + e ∈ Fn
q , with c ∈ C the sent

codeword and e an error vector added by the channel. By computing the syndrome of r via the
parity-check matrix H of C, we get

s = rH⊤ = (c+ e)H⊤ = cH⊤ + eH⊤ = eH⊤,

i.e., we see that the received word is erroneous, and get an equation only depending on the error
vector.

Since C = Im(G) = ker(H⊤), we also get a relation between the two matrices, namely

GH⊤ = 0.

For x, y ∈ Fn
q let us denote by 〈x, y〉 the standard inner product, i.e.,

〈x, y〉 =
n∑

i=1

xiyi.

Then, we can define the dual of an [n, k]q linear code C as the orthogonal space of C.
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Definition 2.7 (Dual Code). Let k ≤ n be positive integers and let C be an [n, k]q linear code. The
dual code C⊥ is an [n, n− k]q linear code, defined as

C⊥ = {x ∈ Fn
q | 〈x, y〉 = 0 ∀ y ∈ C}.

We have to be careful with the term "dual code": we do not intend the space of linear forms on
C, instead we say "dual" to intend the orthogonal space with respect to the standard inner product.
And even though dim(C) + dim(C⊥) = n, we do not necessarily have that C ∩ C⊥ = {0}. In fact,
we can even have C = C⊥.

Exercise 2.8. Show that the code generated by

G =

(
1 0 1 0
0 1 0 1

)
is such that C = C⊥.

Exercise 2.9. Show that a parity-check matrix of C is in fact a generator matrix of C⊥.

Example 2.10. Let C be the [n, 1]2 linear repetition code, generated by

G =
(
1 · · · 1

)
.

Its dual code C⊥ is the [n, n− 1]2 linear single parity-check code generated by

H =

 1

Idn−1
...
1

 .

Proposition 2.11. Let q be a prime power and k ≤ n be positive integers. Let C be an [n, k]q
linear code. Then (C⊥)⊥ = C.

Proof. Let G be a generator matrix of C and H be a parity-check matrix of C. Since H is thus a
generator matrix of C⊥, we get that

(C⊥)⊥ = {x ∈ Fn
q | 〈x, y〉 = 0 for all y ∈ C⊥}, C⊥ = {y ∈ Fn

q | 〈c, y〉 = 0 for all c ∈ C}.

Thus any c ∈ C is also in (C⊥)⊥, as 〈c, y〉 = 0 for all y ∈ C⊥.
Since C has dimension k and (C⊥)⊥ has dimension k, we get the claim.

A priori, the code C and its dual C⊥ have no apparent connection. If C ⊆ C⊥, we call C a
self-orthogonal code and if C = C⊥, we call C a self-dual code.
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Example 2.12. We consider again the [n, 1]2 repetition code C with generator matrix

G =
(
1 · · · 1

)
.

Recall that C⊥ = ker(G⊤), hence to show that C ⊆ C⊥, it is enough to show that any codeword
c ∈ C is such that cG⊤ = 0. If n is even, then GG⊤ =

∑n
i=1 1 = n and thus any code word

c = mG is such that cG⊤ = mGG⊤ = 0.

For x ∈ Fn
q and S ⊆ {1, . . . , n} we denote by xS the vector consisting of the entries of x

indexed by S. While for A ∈ Fk×n
q , we denote by AS the matrix consisting of the columns of A

indexed by S. Similarly, we denote by CS the code consisting of the codewords cS , i.e.,

CS = {cs | c ∈ C}.

An [n, k]q linear code can be completely defined by having access only to (correctly chosen) k
positions. The following concept characterizes such defining sets.

Definition 2.13 (Information Set). Let k ≤ n be positive integers and let C be an [n, k]q linear
code. Then, a set I ⊂ {1, . . . , n} of size k is called an information set of C if

| C |=| CI | .

Exercise 2.14. How many information sets can an [n, k]q linear code have at most?

Proposition 2.15. Let C be an [n, k]q linear code, I an information set and let G be a generator
matrix . The matrix GI is an invertible matrix.

Proof. Since 〈GI〉 = CI has dimension k, we immediately get that GI ∈ Fk×k
q has full rank.

Proposition 2.16. Let C be an [n, k]q linear code, I an information set and H a parity-check
matrix. If IC := {1, . . . , n} \ I is the complement set of I , then, HIC is an invertible matrix.

Exercise 2.17. Prove Proposition 2.16.

Exercise 2.18. Let C be the code generated by G ∈ F2×4
5 , given as

G =

(
1 3 2 3
0 4 4 3

)
.

Determine all information sets of this code.

Since GI and HIC are invertible, we can apply row operations U , respectively U ′ to get

(UG)I = Idk, (U ′H)IC = Idn−k,

which leads to the following definition of a systematic form.
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Definition 2.19 (Systematic Form). Let k ≤ n be positive integers and C be an [n, k]q linear code.
Then, there exist some n × n permutation matrix P and some invertible matrix U ∈ Fk×k

q that
bring G in systematic form, i.e.,

UGP =
(
Idk A

)
,

where A ∈ Fk×(n−k)
q . Similarly, there exist some n× n permutation matrix P ′ and some invertible

matrix U ′ ∈ F(n−k)×(n−k)
q , that bring H into systematic form, i.e.,

U ′HP ′ =
(
B Idn−k

)
,

where B ∈ F(n−k)×k
q .

As we have not introduced permutation equivalence yet, we may think of the standard form as
follows: Let I ⊆ {1, . . . , n} be an information set and G a generator matrix of C, then there exists
U ∈ GLq(k) such that

(UG)I = Idk, and (UG)IC = A,

for some A ∈ Fk×(n−k)
q . We will later see that permuting the identity matrix to be at the first k

coordinates, will not change the underlying structure.
Given a generator matrix, one can easily find a parity-check matrix of the code.

Proposition 2.20. Let C be an [n, k, ]q linear code and G be a generator matrix. If G =
(
Idk A

)
,

for some A ∈ Fk×(n−k)
q , then H =

(
−A⊤ Idn−k

)
is a parity-check matrix of C.

Proof. We clearly have GH⊤ = −A + A = 0, thus C = 〈G〉 ⊆ ker(H⊤). As H has rank n − k,
the kernel of H has dimension k, and is thus equal to C.

If the identity matrix is not in the first k coordinates, we think of Proposition 2.20 as GI = Idk

and GIC = A and thus HIC = Idn−k and HI = −AT .

Proposition 2.21. Let q be a prime power and k ≤ n be positive integers. Let C be an [n, k]q linear
code. Then I ⊆ {1, . . . , n} is an information set of C if and only if IC is an information set of C⊥.

Proof. LetG be a generator matrix of C. Then by the definition of the systematic form, there exists
a U ∈ GLq(k) such that

(UG)I = Idk, and (UG)IC = A,

for some A ∈ Fk×(n−k)
q . Without loss of generality, we may assume I = {1, . . . , k}. Thus, using

Proposition 2.20 on G′ = UG, we get that H ′
IC = Idn−k and hence IC of size n − k forms an

information set for C⊥.

The other direction follows immediately from Proposition 2.11.

Example 2.22. Let us consider again the generator matrix of our toy example:

G =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ∈ F3×6
2 ,
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then a choice for I would be {1, 2, 3} and thus A =

1 0 1
1 1 1
0 1 1

 gives the parity-check matrix

H =

1 1 0 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1

 .

Definition 2.23. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code. The hull of the code C is defined as

H(C) = C ∩ C⊥.

Clearly, H(C) = H(C⊥), by Proposition 2.11.

Exercise 2.24. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code with generator matrix G ∈ Fk×n

q and parity-check matrix H ∈ F(n−k)×n
q . Show that

H(C) = ker

((
G
H

)⊤
)
.

Note that the hull of a random code is with high probability trivial.

Theorem 2.25. Let q be a prime power and k ≤ n be positive integers. Let C be a [n, k]q linear
code with generator matrix G ∈ Fk×n

q and parity-check matrix H ∈ F(n−k)×n
q . Then H(C) = {0}

with high probability, for n growing.

Proof. By Exercise 2.24 We are interested in the dimension of the kernel of the matrix
(
G
H

)
, and

due to the rank-nullity theorem in its rank. We can assume that G,H are in systematic form, i.e.,

G =
(
Idk A

)
, H =

(
−A⊤ Idn−k

)
and perform row operations to get(

G′

H ′

)⊤

=

(
Idk A
0 AA⊤ + Idn−k

)⊤

.

Hence its rank is given by k + rk(AA⊤ + Idn−k). Assuming A was a random matrix, we also have
that AA⊤ + Idn−k has with high probability full rank. Thus, by rank-nullity we get

dim(H(C)) = dim

(
ker

((
G
H

)⊤
))

= n− rk

((
G
H

)⊤
)

= n− n = 0.
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Let C be an [n, k]q linear code with 〈G〉 = C = ker(H⊤).

• The parameter n is called the length of the code.

• The parameter k is called the dimension of the code.

• The elements in the code are called codewords.

• The parameter r = n− k is called the redundancy.

• The parameter R = k/n is called the rate of the code.

• The matrix G is called a generator matrix of the code.

• The matrix H is called a parity-check matrix of the code.

• The vector s = xH⊤ is called the syndrome of x.

• The code C⊥ is called the dual code of C.

• A set I with GI ∈ GLq(k) is called information set.

2.2 Hamming Metric
Now that we have described the linearity of the vectors we can send, how do we decode and how
much can we decode?

Recall that we have received r = c + e ∈ Fn
q , where c ∈ C was sent. To decode, we have to

find the sent c. However, r could be the sum of any codeword and some other vector. In our toy
example r = (1, 0, 0, 1, 0, 1, 1, 0, 1) could also be written as

(1, 1, 1, 1, 1, 1, 1, 1, 1)+(0, 1, 1, 0, 1, 0, 0, 1, 0) or (1, 0, 0, 1, 0, 0, 1, 0, 0)+(0, 0, 0, 0, 0, 1, 0, 0, 1).

However these are less likely than

(1, 0, 1, 1, 0, 1, 1, 0, 1) + (0, 0, 1, 0, 0, 0, 0, 0, 0)

assuming that the channel only introduces a few errors.

Hence, we are looking for the closest codeword c. For this, we first have to define what we
mean by closest, i.e., introduce a metric to Fn

q .

Definition 2.26. A distance is a function d : Fn
q × Fn

q → Q, such that

• it is positive definite, i.e., d(x, y) = 0 if and only if x = y and d(x, y) ≥ 0 for all x, y ∈ Fn
q ,

• it is symmetric, i.e., d(x, y) = d(y, x) for all x, y ∈ Fn
q ,

• it satisfies the triangle inequality, i.e., d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Fn
q .
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We say that a distance is translation-invariant, if for all x, y, z ∈ Fn
q we have d(x, y) = d(x +

z, y + z).

A distance also gives raise to a weight, by defining wt(x) = d(x, 0).

Definition 2.27. A weight is a function wt : Fn
q → Q, such that

• it is positive definite, i.e., wt(x) = 0 if and only if x = 0 and wt(x) ≥ 0 for all x ∈ Fn
q ,

• it is symmetric, i.e., wt(x) = wt(−x) for all x ∈ Fn
q ,

• it satisfies the triangle inequality, i.e., wt(x+ y) ≤ wt(x) + wt(y) for all x, y ∈ Fn
q .

In the other direction, any weight also induces a distance by defining d(x, y) = wt(x− y).

Exercise 2.28. Show that if d is a translation-invariant distance function wt(x) = d(x, 0) is a
weight function.

Exercise 2.29. Show that if wt is a weight function d(x, y) = wt(x− y) is a distance function.

As we are interested in the amount of positions which are erroneous, the most natural weight
to consider is the Hamming metric.

Definition 2.30 (Hamming Metric). Let n be a positive integer. For x ∈ Fn
q , the Hamming weight

of x is given by the number of non-zero positions, i.e.,

wtH(x) =| {i ∈ {1, . . . , n} | xi 6= 0} | .

For x, y ∈ Fn
q , the Hamming distance between x and y is given by the number of positions in which

they differ, i.e.,
dH(x, y) =| {i ∈ {1, . . . , n} | xi 6= yi} | .

Note that the Hamming distance is induced from the Hamming weight, that is dH(x, y) =
wtH(x− y).

Exercise 2.31. Show that the Hamming weight is a weight function.

Let x ∈ Fn
q . We denote by suppH(x) = {i ∈ {1, . . . , n} | xi 6= 0} the Hamming support of x.

The Hamming weight of x is then clearly given as the size of the support: wtH(x) = |suppH(x)|.

Having defined a metric, one can also consider the minimum distance of a code, i.e., the small-
est distance between any two distinct codewords.

Definition 2.32 (Minimum Distance). Let C be a linear code over Fq. The minimum Hamming
distance of C is denoted by dH(C) and given by

dH(C) = min{dH(x, y) | x, y ∈ C, x 6= y} = min{wtH(c) | c ∈ C, c 6= 0}.
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The minimum Hamming distance of a code turns out to be a very important parameter. Thus,
whenever the minimum Hamming distance d = dH(C) is known, we say C is an [n, k, d]q linear
code.

Example 2.33. The [n, 1]2 repetition code has minimum distance dH(C) = n, whereas the [n, n−
1]2 single parity-check code has minimum distance dH(C⊥) = 2.

When defining balls in a certain metric, we have to provide the radius and the center, e.g. we
may define the Hamming ball of radius r and center x as

BH(r, n, q, x) = {y ∈ Fn
q | dH(x, y) ≤ r}.

However, to determine the size of such balls, we observe that the Hamming metric is translation
invariant.

Proposition 2.34. Let q be a prime power and r ≤ n be positive integers. For any x, x′ ∈ Fn
q we

have

|BH(r, n, q, x)| = |BH(r, n, q, x
′)| = |{y ∈ Fn

q | wtH(y) ≤ r}| =
r∑

i=0

(
n

i

)
(q − 1)i.

Exercise 2.35. Prove Proposition 2.34

The minimum distance of a code is an important parameter, since it is connected to the error
correction capability of the code.

2.3 Error-Correction Capability
We denote by dH(x, C) the minimal distance between x ∈ Fn

q and a codeword in C.

We say that a code can correct up to t errors, if for all r ∈ Fn
q with dH(r, C) ≤ t, there exists

at most one c ∈ C, such that dH(r, c) ≤ t. The parameter t is then called the error correction
capability of the code. Equivalently, C can correct t errors, if the balls of radius t around any
distinct codewords c 6= c′ are disjoint: BH(t, n, q, c) ∩BH(t, n, q, c

′) = ∅.
On the other hand, we say that a code can detect w errors, if for any two distinct codewords

c 6= c′ ∈ C we have dH(c, c′) > w. Equivalently, we may say C can detect w errors, if the ball of
radius w around any codeword c does not contain any other codeword: BH(w, n, q, c) ∩ C = {c}.
The parameter w is then called the error detection capability of the code.

How are dH(C) and t, the error correction capability of C, related?

If we are given the code C ⊆ Fn
q and depict its codewords as points, then the shortest distance

between two of them is given by dH(C) = d. To find the error correction capability, we want to
draw balls around the codewords, with radius as large as possible, but such that the balls do not
intersect. This results in the radius

t =

⌊
d− 1

2

⌋
.
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Theorem 2.36. Let C be an [n, k, d]q linear code. Then t =
⌊
d−1
2

⌋
is the error correction capability

of the code.

Proof. Let r ∈ Fn
q be such that there exists a codeword c ∈ C with dH(c, r) ≤

⌊
d−1
2

⌋
. Assume by

contradiction, that there exists another codeword c′ ∈ C with c 6= c′ and dH(c′, r) ≤
⌊
d−1
2

⌋
. Then,

by the triangle inequality, we have that

dH(c, c
′) ≤ dH(c, r) + dH(c

′, r) ≤
⌊
d− 1

2

⌋
+

⌊
d− 1

2

⌋
< d,

contradicting that d is the minimum Hamming distance of C.
This is also the maximal value. In fact, let c, c′ ∈ C be such that dH(c, c′) = d. Then for

t ≥
⌊
d−1
2

⌋
+ 1 there exist r ∈ Fn

q with dH(c, r) ≤ t and dH(c′, r) ≤ t. Without loss of generality,
we may assume that c, c′ differ in the first d positions, i.e., c = (c1, . . . , cd, x1, . . . , xn−d) and
c′ = (c′1, . . . , c

′
d, x1, . . . , xn−d). Then, we can set r = (c1, . . . , ct, c

′
t+1, . . . , c

′
d, x1, . . . , xn−d) and

check dH(c, r) ≤ d− t ≤ t and dH(c′, r) ≤ t.

Exercise 2.37. Let C be an [n, k, d]q linear code. Prove that the error detection capability is given
by w = d− 1.

Decoding denotes a function, that takes as input r = c + e ∈ Fn
q and returns the closest

codeword, c ∈ C, such that dH(r, c) ≤ t.

Dec : Fn
q → C, r 7→ c = argmin{dH(r, x) | x ∈ C}.

Where "function" is bad word, as there might be r ∈ Fn
q which are not decodable. It should

rather be thought as

Dec :
⋃
c∈C

BH(t, n, q, c) → C, r 7→ c = argmin{dH(r, x) | x ∈ C}.

The most interesting codes for applications are codes with an efficient decoding algorithm, i.e.,
where we can compute the function Dec efficiently.

How can we determine the minimum distance of a code?
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Theorem 2.38. Let k ≤ n be positive integers and let C be an [n, k]q linear code. Let H be a
parity-check matrix of C. Then, C has minimum distance d if and only if every d− 1 columns of H
are linearly independent and there exist d columns, which are linearly dependent.

Proof. For the first direction, let c ∈ C be the minimal weight codeword, i.e., wtH(c) = d. Since
c ∈ ker(H⊤), we get cH⊤ = 0 and thus the d columns hi of H , indexed by i ∈ suppH(c) are
linearly dependent as

∑
i∈suppH(c) cihi = 0. On the other hand, any c ∈ C with weight < d must

be the zero codeword. Thus, if a linear combination of less than d columns of H gives zero, the
scalars are zero, i.e., any d− 1 columns are linearly independent.

For the other direction, assume there exist d linearly dependent columns hi of H for i ∈ I and
|I| = d, that is there exist λi ∈ F⋆

q such that
∑

i∈I λihi = 0. Then c with support I and entries
ci = λi for i ∈ I is such that wtH(c) = d and cH⊤ = 0, thus c ∈ C and hence dH(C) ≤ d.
Since any set of d− 1 columns are linearly dependent, by the same argument, there is no non-zero
codeword with weight less than d, thus dH(C) ≥ d.

Example 2.39. Let us consider again the binary code C from the toy example, with parity-check
matrix

H =

1 1 0 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1

 .

We can find 3 columns which are linearly dependent, for example the columns indexed by {1, 4, 6},
as 1

0
1

+

1
0
0

+

0
0
1

 =

0
0
0

 .

And any two columns are linearly independent, thus by Theorem 2.38, we get dH(C) = 3. Thus,
we can correct t = 1 error and detect 2 errors.

Theorem 2.40. Let q be a prime power and k, d ≤ n be positive integers. Let C be an [n, k, d]q
linear code. Then every subset of {1, . . . , n} of size n − d + 1 contains an information set. Fur-
thermore, d is the largest number with this property.

Proof. Let G be a generator matrix of C and consider any set X ⊂ {1, . . . , n} of size s. Without
loss of generality, we may assume X = {1, . . . , s} and split the generator matrix as

G =
(
A B

)
,

where A ∈ Fk×s
q , B ∈ Fk×(n−s)

q . Assume that X does not contain an information set, thus rk(A) <
k. Thus, there exists a non-trivial linear combination of the rows of A which gives 0 and hence
there exists a codeword c having in the first s positions 0’s. Since the rows of G are linearly
independent, c 6= 0 and hence d ≤ wtH(c) ≤ n− s.

Thus, whenever s > n − d, e.g. for s = n − d + 1 the set X must contain an information
set.
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Let C be an [n, k, d]q linear code with 〈G〉 = C = ker(H⊤).

• The parameter n is called the length of the code.

• The parameter k is called the dimension of the code.

• The elements in the code are called codewords.

• The parameter r = n− k is called the redundancy.

• The parameter R = k/n is called the rate of the code.

• The matrix G is called a generator matrix of the code.

• The matrix H is called a parity-check matrix of the code.

• The vector s = xH⊤ is called the syndrome of x.

• The code C⊥ is called the dual code of C.

• A set I with GI ∈ GLq(k) is called information set.

• The parameter d is called the minimum Hamming distance of the code.

• The parameter t =
⌊
d−1
2

⌋
is called the error correction capability of the code.

2.4 Subcodes and Supercodes
If a code contains a smaller code, we call this smaller code a subcode and the larger code a super-
code:

Definition 2.41. Let q be a prime power and k′ ≤ k ≤ n be positive integers. Let C be a [n, k]q
linear code and C ′ be a [n, k′]q linear code. If C ′ ⊆ C, then C ′ is a subcode of C and C is a supercode
of C ′.

Given a generator matrix G ∈ Fk×n
q of a [n, k]q code, then deleting ℓ rows will give a generator

matrix G′ ∈ Fk′×n
q of a [n, k′]q subcode C ′, where k′ = k − ℓ.

Even more is true:

Proposition 2.42. Let q be a prime power and k′ ≤ k ≤ n be positive integers. Let C be a [n, k]q
linear code and C ′ be a [n, k′]q linear code with C ′ ⊆ C. Then for any generator matrix G ∈ Fk×n

q

of C there exist some S ∈ GLq(k) such that the first k′ rows of SG generate C ′.

Exercise 2.43. Prove Proposition 2.42.

For the parity-check matrix the opposite is happening. In fact, while for the code C, we have
that the subcode C ′ is smaller and contained in C, their dual codes are such that

C⊥ ⊆ C ′⊥.
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Proposition 2.44. Let q be a prime power and k′ ≤ k ≤ n be positive integers. Let C be a [n, k]q
linear code and C ′ be a [n, k′]q linear code with C ′ ⊆ C. Then

C⊥ ⊆ C ′⊥.

Proof. Let us consider the generator matrices G ∈ Fk×n
q and G′ ∈ Fk′×n

q of C, respectively C ′

and the parity-check matrices H ∈ F(n−k)×n
q and H ′ ∈ F(n−k′)×n

q . Recall that GH⊤ = 0 and by

Proposition 2.42 we may assume that G =

(
G′

X

)
, where X ∈ Fℓ×n

q for ℓ = k − k′. Since then

GH⊤ =

(
G′

X

)
H⊤ = 0

we also get that G′H⊤ = 0 and hence Im(H) = C⊥ ⊆ C ′⊥.

Hence, we can apply the same argument as in Proposition 2.42 to their duals to get

Corollary 2.45. Let q be a prime power and k′ ≤ k ≤ n be positive integers. Let C be a [n, k]q
linear code and C ′ be a [n, k′]q linear code with C ′ ⊆ C. Then for any parity-check matrix H ′ ∈
F(n−k′)×n
q of C ′ there exist some S ∈ GLq(n − k′) such that the first n − k rows of SH ′ are a

parity-check matrix for C.
Exercise 2.46. Let q be a prime power and k′ ≤ k ≤ n be positive integers. Let C be a [n, k]q
linear code and C ′ be a [n, k′]q linear code with C ′ ⊆ C. Show that dH(C) ≤ dH(C ′).

Example 2.47. Any code of dimension 1 ≤ k < n is a subcode of the [n, n]q code Fn
q and a

supercode of the [n, 0]q code {0}.
Let us consider again the generator matrix of our toy example:

G =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ∈ F3×6
2 ,

with the parity-check matrix

H =

1 1 0 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1

 ∈ F3×6
2 .

Then a subcode of 〈G〉 is generated by

G′ =

(
1 0 0 1 0 1
0 0 1 0 1 1

)
∈ F2×6

2

and a parity-check matrix is then given by

H ′ =


1 1 0 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1
0 1 0 0 0 0

 ∈ F4×6
2 .
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2.5 Counting Codes
If we fix n, k and q, how many [n, k]q linear codes are there?

Definition 2.48. The Gaussian coefficient or the q-binomial coefficient is defined as[
n

k

]
q

=
k−1∏
i=0

qn − qi

qk − qi
=

∏n
i=1(1− qi)∏k

i=1(1− qi)
∏n−k

i=1 (1− qi)
.

To handle the Gaussian coefficient, we often use the following bounds and limits:

Proposition 2.49. Let q be a prime power k ≤ n be positive integers.

• The following identity holds [
n

k

]
q

= q(n−k)k

[
n

k

]
1/q

.

• If k is a constant in n, then

lim
n→∞

[
n

k

]
1/q

=
k∏

i=1

(1− q−i)−1.

• If k = Rn for 0 < R < 1, then

lim
n→∞

[
n

Rn

]
1/q

=
∞∏
i=1

(1− q−i)−1,

whereas for R ∈ {0, 1} we have [
n

Rn

]
1/q

= 1.

• We can bound the Gaussian binomial as

q(n−k)k ≤
[
n

k

]
q

≤ q(n−k)k

∞∏
i=1

(1− q−i)−1.

• Since

lim
q→∞

∞∏
i=1

(1− q−i)−1 = 1,

we have that [
n

k

]
q

∼ q(n−k)k,

for q → ∞.
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• We can also bound
∏∞

i=1(1− q−i)−1, which is called the Euler function, usually denoted by
(1/q)∞, by

1

4
≤

∞∏
i=1

(1− q−i)−1 ≤ 1.

Proposition 2.50. Let q be a prime power and k ≤ n be positive integers. The number of [n, k]q
linear codes is given by

[
n
k

]
q
.

Proof. To determine a k-dimensional subspace in Fn
q , we need to choose k linearly independent

vectors from Fn
q , which act as a basis of C. The first vector b1 should be non-zero, thus we have

qn − 1 choices. The second vector b2 must be chosen outside the span of the first vector b1. Since,
the first vector generates a subspace of dimension 1, we have qn − q choices. We continue in this
way, i.e., for the ith vector, we require bi ∈ Fn

q \ 〈b1, . . . , bi−1〉, which gives qn − qi−1 choices.
Thus, there are

∏k−1
i=0 (q

n − qi) choices for linearly independent vectors, spanning a subspace of
dimension k.

However, some of these subspaces might be the same. Thus, we need to divide this number by
the number of k linearly independent vectors, which span the same space. This follows a similar
argument: having fixed C of dimension k, how many bases does C have, is equivalent to asking for
the number of k linearly independent vectors in C ∼= Fk

q . Thus, by setting n = k in the previous
counting argument, we get

∏k−1
i=0 (q

k − qi) and the final formula∏k−1
i=0 (q

n − qi)∏k−1
i=0 (q

k − qi)
=

[
n

k

]
q

.

Exercise 2.51. Given C a [n, k]q linear code. How many subcodes does C have?

Can we choose any n, k, d?

On one hand, we want to be able to encode many messages, thus we would like to have a large
k. At same time want to be able to correct many errors, which requires a large d. For fixed n,
having both parameters k, d large is not possible. Thus, we are interested in providing bounds on
these parameters and finding optimal codes, e.g. codes which can correct the most errors for given
n, k.
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3 MDS Codes
As we have seen, the minimum distance d of a code is an important parameter, which determines
how many errors the code can correct. Clearly, we cannot have a large amount of codewords qk

while maintaining that they are far apart, i.e., of distance at least d.
Thus, a large branch in coding theory is considering bounds on the dimension k when the

length n and the minimum distance d are fixed, or equivalently, bounds on the minimum distance
d when the length n and the dimension k are fixed. The most prominent such upper bound on k
(respectively on d) is the Singleton bound.

3.1 Singleton Bound
One of the most important bounds in coding theory is the Singleton bound, which provides an
upper bound on the minimum distance of a code.

Theorem 3.1 (Singleton Bound). Let q be a prime power and k ≤ n be positive integers. Let C be
an [n, k]q linear code. Then,

dH(C) ≤ n− k + 1.

There exist many different proofs for this bound, using concepts we have not introduced yet.
However, the easiest one follows directly form the systematic form of a generator matrix.

Proof. Let G ∈ Fk×n
q be a generator matrix of C and let I ⊂ {1, . . . , n} be an information set.

Recall that there exist some U ∈ GLk(q), such that we may write (UG)I = Idk and (UG)IC = A

for some A ∈ Fk×(n−k)
q . As any row g of UG is again a codeword in C, we have by definition

dH(C) ≤ wtH(g). By the form of g we see that wtH(gI) = 1 and as gIC ∈ Fn−k
q we get wtH(gIC ) ≤

n− k. Thus,

dH(C) ≤ wtH(g) ≤ 1 + n− k.

A code that achieves the Singleton bound is called a maximum distance separable (MDS) code.
MDS codes are of immense interest, since they can correct the maximal amount of errors for fixed
code parameters n, k. In fact, their error correction capability is given by

t =

⌊
n− k

2

⌋
.

Theorem 3.2. Let q be a prime power and k ≤ n be positive integers. Let C be an [n, k]q linear
code. Then, the following are equivalent:

1. C is an MDS code.

2. Every subset of {1, . . . , n} of size k is an information set.
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3. C⊥ is an MDS code.

Proof. We start by showing 1) =⇒ 2). From Theorem 2.40, we know that any subset of
{1, . . . , n} of size n−d+1 = k contains an information set of size k, i.e., any subset of {1, . . . , n}
of size k is an information set.

This also gives the other direction 2) =⇒ 1) as Theorem 2.40 also states that d is the largest
number with this property, i.e., since every subset of size k is an information set, k = n − d + 1
and thus C is MDS.

Note that this argument can also be applied to the dual code: if C⊥ is MDS, then any subset
of {1, . . . , n} of size n− k is an information set for C⊥. Recall from Proposition 2.21 that J is an
information set of C⊥ if and only if JC is an information set of C, proving that 3) ⇔ 2).

3.2 Trivial MDS Codes
Some examples of MDS codes are quite trivial.

Example 3.3. Let C = Fn
q be the [n, n, 1]q linear code. Then as

n− n+ 1 = 1 = dH(C)

we get that C is MDS. Thus, by Theorem 3.2, the dual code is also MDS. Since C⊥ = {0} is the
[n, 0]q linear code, we see that we should define

dH({0}) = n+ 1.

Example 3.4. Let us consider a code C with dimension 1. If the code is non-degenerate, then
dH(C) = n. Thus, any non-degenerate code of dimension 1 is an MDS code, as

dH(C) = n = n− 1 + 1.

Thus, again by Theorem 3.2, we get that the dual code C⊥ of dimension n− 1 is also MDS. Thus,

dH(C⊥) = n− (n− 1) + 1 = 2.

In fact, C⊥ does not contain any vector of Hamming weight 1. If a generator matrix of C is given
by G = [g1, . . . , gn] with gi ∈ F⋆

q, then G acts as parity-check matrix for C⊥ and for any vector x
with suppH(x) = {i}, we get Gx⊤ = xigi 6= 0.

On the other hand, we have, for example x = (g2,−g1, 0 . . . , 0) ∈ C⊥.

Apart from these trivial codes, we also have a large family of codes, for any k ≤ n ≤ q, which
are MDS, called Reed-Solomon codes.
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3.3 Reed-Solomon Codes
The most famous example is the family of Reed-Solomon (RS) codes.

Definition 3.5. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α = (α1, . . . , αn) ∈
Fn
q , where the αi are pairwise distinct. The Reed-Solomon code RSq,n,k(α) of dimension k is

defined as
RSq,n,k(α) = {(f(α1), . . . , f(αn)) | f(x) ∈ Fq[x], deg(f) < k}.

Thus, any codeword in RSq,n,k(α) is an evaluation of a polynomial of degree up to k, in the
evaluation points α1, . . . , αn.

Why is this a linear code, though?
Let us show that the Vandermonde matrix is a generator matrix of RSq,n,k(α). The Vander-

monde matrix Vq,n,k(α) is given by

Vq,n,k(α) =


1 . . . 1
α1 . . . αn
...

...
αk−1
1 . . . αk−1

n

 ∈ Fk×n
q .

(Note that the usual definition of a Vandermonde matrix is the transpose of this matrix).

Exercise 3.6. Show that

V =


1 . . . 1
α1 . . . αk
...

...
αk−1
1 . . . αk−1

k


has determinant

det(V ) =
∏

0≤i<j≤k

(αj − αi)

and thus, every maximal minor of Vq,n,k(α) is non-zero.

Proposition 3.7. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α = (α1, . . . , αn) ∈
Fn
q , where the αi are pairwise distinct. Then 〈Vq,n,k(α)〉 = RSq,n,k(α).

Proof. Any codeword of RSq,n,k(α) is of the form

c = (f(α1), . . . , f(αn)) =

(
k−1∑
i=0

fiα
i
1, . . . ,

k−1∑
i=0

fiα
i
n

)
,

for f(x) =
∑k−1

i=0 fix
i.

Thus,
c = (f0, . . . , fk−1)Vq,n,k(α)
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and in turn RSq,n,k(α) ⊆ 〈Vq,n,k((α)〉.

We note that |RSq,n,k(α)| = qk, as there are qk many polynomials of degree up to k over Fq.
Since also Vq,n,k(α) has rank k, we get that 〈Vq,n,k(α)〉 = RSq,n,k(α).

Proposition 3.8. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α = (α1, . . . , αn) ∈
Fn
q , where the αi’s are pairwise distinct. The Reed-Solomon code RSq,n,k(α) is an MDS code.

Proof. Since RSq,n,k(α) is a [n, k]q-linear code, we must have dH(RSq,n,k(α)) ≤ n − k + 1.
For the other direction, i.e., dH(RSq,n,k(α)) ≥ n − k + 1, let us consider a codeword c =
(f(α1), . . . , f(αn)), where deg(f) = k − 1.

If, by contradiction, any non-zero codeword has weight smaller than n− k + 1, i.e.,

wtH(c) = n− ℓ < n− k + 1

then there exist ℓ evaluation points αi1 , . . . , αiℓ ∈ {α1, . . . , αn} with

f(αi1) = · · · = f(αiℓ) = 0.

Since deg(f) = m ≤ k − 1, f can have at most m ≤ k − 1 roots in Fq, however,

ℓ > n− (n− k + 1) = k − 1 ≥ m.

Thus, f(x) = 0 and c = 0 leading to the desired contradiction.

Example 3.9. Let us consider α = (1, 2, 4, 3) and RS5,4,3(α) ⊂ F4
5, which is generated by

V5,4,3(α) =

1 1 1 1
1 2 4 3
1 4 1 4

 .

On the other hand, RS5,4,2(α) ⊂ RS5,4,3(α), which is generated by

V5,4,2(α) =

(
1 1 1 1
1 2 4 3

)
.

We can easily see that
RSq,n,ℓ(α) ⊆ RSq,n,k(α)

is a subcode for ℓ ≤ k. The dual code of a Reed-Solomon (RS) code is not necessarily a RS code.
To see this, let us first introduce the systematic form of a generator matrix of a RS code, to find the
parity-check matrix.
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Proposition 3.10. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α =
(α1, . . . , αn) ∈ Fn

q , where the αi’s are pairwise distinct. Then RSq,n,k(α) = 〈G〉, where

G =
(
Idk C

)
and

H =
(
−C⊤ Idn−k,

)
where C ∈ Fk×(n−k)

q is a Cauchy matrix of the form cij =
aibj
xi+yj

, with

xi =− αi, yj = αj+k,

ai =
1∏k

t=1,t ̸=i(αi − αt)
, bj =

k∏
t=1

(αj+k − αt).

We omit the proof, but it essentially computes the inverse of the first k × k Vandermonde
matrix, Vq,n,k(α1, . . . , αk)

−1, and multiplies it to the remaining k × (n− k) Vandermonde matrix,
i..e, Vq,k,k(α1, . . . , αk)

−1Vq,n−k,k(αk+1, . . . , αn).

Example 3.11. Let us consider again α = (1, 2, 4, 3) and RS5,4,3(α) ⊂ F4
5, then in systematic

form, we have a generator matrix

G =

1 0 0 3
0 1 0 1
0 0 1 2

 .

Hence
H =

(
2 4 3 1

)
,

which clearly does not generate a RS code.

However, it is almost a RS code up to scaling of the columns. Thus, let us introduce generalized
Reed-Solomon codes.

3.4 Generalized Reed-Solomon Codes
A natural generalization of the family of Reed-Solomon codes, is to weight each entry i with some
scalar βi 6= 0, giving rise to the Generalized Reed-Solomon (GRS) codes.

Definition 3.12. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α = (α1, . . . , αn) ∈
Fn
q where the αi’s are pairwise distinct and β = (β1, . . . , βn) ∈ (F⋆

q)
n. The Generalized Reed-

Solomon code GRSq,n,k(α, β) of dimension k is defined as

GRSq,n,k(α, β) = {(β1f(α1), . . . , βnf(αn)) | f(x) ∈ Fq[x], deg(f) < k}.
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We first note that a GRS code is generated by a weighted Vandermonde matrix, that is

Vq,n,k(α, β) =


β1 . . . βn
β1α1 . . . βnαn

...
...

β1α
k−1
1 . . . βnα

k−1
n

 ∈ Fk×n
q .

Proposition 3.13. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α =
(α1, . . . , αn) ∈ Fn

q , where the αi are pairwise distinct and β = (β1, . . . , βn) ∈ (F⋆
q)

n. Then
〈Vq,n,k(α, β)〉 = GRSq,n,k(α, β).

Exercise 3.14. Prove Proposition 3.13.

Note that GRS codes are still MDS codes.

Proposition 3.15. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α =
(α1, . . . , αn) ∈ Fn

q , where the αi are pairwise distinct and β = (β1, . . . , βn) ∈ (F⋆
q)

n. Then
GRSq,n,k(α, β) is an MDS code.

Exercise 3.16. Prove Proposition 3.15.

Proposition 3.17. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α =
(α1, . . . , αn) ∈ Fn

q , where the αi are pairwise distinct and β = (β1, . . . , βn) ∈ (F⋆
q)

n. Then
GRS⊥

q,n,k(α, β) = GRSq,n,n−k(α, γ), where

γi = β−1
i

n∏
j=1,j ̸=i

(αi − αj)
−1

for all i ∈ {1, . . . , n}.

Proof. Let us define

Li(x) =
n∏

j=1,j ̸=i

(x− αj)

and γi = β−1
i Li(αi)

−1 for all i ∈ {1, . . . , n}. Let c ∈ GRSq,n,k(α, β) and c′ ∈ GRSq,n,n−k(α, γ)
be arbitrary codewords. We want to show that 〈c, c′〉 = 0.

We can define f(x), f ′(x) ∈ Fq[x] of degree deg(f) < k, deg(f ′) < n− k, such that

c = (β1f(α1), . . . , βnf(αn)),

c′ = (γ1f
′(α1), . . . , γnf

′(αn)).

Clearly, deg(f · f ′) < n− 1, as the degree is at most k − 1 + (n− k − 1) = n− 2.
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Recall that by Lagrange interpolation for any g(x) ∈ Fq[x], of degree ≤ n− 1, we have that

g(x) =
n∑

i=1

Li(x)

Li(αi)
g(αi).

Thus, applying this to g = f · f ′ we get

(f · f ′)(x) =
n∑

i=1

Li(x)

Li(αi)
f(αi)f

′(αi).

As the degree of f ·f ′ is strictly less than n−1,we have that the coefficient of xn−1 of (f ·f ′)(x)
is 0. On the other hand, the coefficient of xn−1 of Li(x) is 1, and hence

0 =
n∑

i=1

1

Li(αi)
f(αi)f

′(αi)

=
n∑

i=1

(βif(αi))

(
β−1
i

Li(αi)
f ′(αi)

)
=

n∑
i=1

(βif(αi))(γif
′(αi))

=
n∑

i=1

cic
′
i = 〈c, c′〉.

Example 3.18. Let us consider F7 and α = (2, 5, 4), β = (1, 2, 3), then

V5,3,2(α, β) =

(
1 2 3
2 3 5

)
and GRS5,3,2(α, β) = 〈V5,3,2(α, β)〉 while γ = (6, 5, 3) and

V5,3,1(α, γ) =
(
6 5 3

)
and GRS⊥

5,3,2(α, β) = 〈V5,3,1(α, γ)〉.
Exercise 3.19. Show that the examples of MDS codes from before, i.e., C of dimension in {n, 0, 1, n−
1} are all GRS codes if n ≤ q.

We can also see now, that the dual of a RS code is a GRS code.

Corollary 3.20. Let q be a prime power and k ≤ n ≤ q be positive integers. Let α = (α1, . . . , αn) ∈
Fn
q , where the αi are pairwise distinct. Then RS⊥

q,n,k(α) = GRSq,n,n−k(α, γ), where

γi =
n∏

j=1,j ̸=i

(αi − αj)
−1

for all i ∈ {1, . . . , n}.

Exercise 3.21. Let C ⊆ Fn
q be a linear code. Show that dH(C) + dH(C⊥) ≤ n+ 2.
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3.5 Primitive Reed-Solomon Codes
A special subclass of RS codes are called primitive RS codes. For these we take a ∈ F⋆

q a primitive
element and define the evaluation points α ∈ Fn

q of the RS code as

αi = ai

for all i ∈ {0, . . . , q − 2}.
Definition 3.22. Let q be a prime power and k ≤ n = q − 1 be positive integers and a ∈ F⋆

q

a primitive element. Further, let α = (1, a, a2, . . . , aq−2) ∈ Fn
q . The code RSq,n,k(α) is called

primitive RS code.

Primitive RS codes have as a generator matrix

Vq,n,k(α) =


1 1 · · · 1
1 a · · · aq−2

...
...

...
1 ak−1 · · · a(k−1)(q−2)

 .

Lemma 3.23. Let q be a prime power, then∑
α∈F⋆

q

αℓ =

{
0 if (q − 1) ∤ ℓ,
−1 if (q − 1) | ℓ.

Proof. If (q − 1) | ℓ, then there exists a positive integer m such that m(q − 1) = ℓ and∑
α∈F⋆

q

αℓ =
∑
α∈F⋆

q

αm(q−1) =
∑
α∈F⋆

q

(αq−1)m =
∑
α∈F⋆

q

1 = q − 1.

On the other hand, if (q − 1) ∤ ℓ, then for any primitive element a ∈ F⋆
q , we have that aℓ 6= 1.

Multiplying by a introduces a bijection φa : F⋆
q → F⋆

q, α 7→ aα. Thus,∑
α∈F⋆

q

αℓ =
∑
α∈F⋆

q

(aα)ℓ = aℓ
∑
α∈F⋆

q

αℓ.

Since aℓ 6= 1, we must have
∑

α∈F⋆
q
αℓ = 0.

We may also extend the primitive RS code to consider n = q, i.e., the evaluation points are all
the elements of the finite field, that is let α = (0, 1, a, a2, . . . , aq−2) ∈ Fn

q and consider the code
RSq,n,k(α).

A generator matrix for RSq,q,k(α) is given by

G =


1 1 1 · · · 1
0 1 a · · · aq−2

...
...

...
...

0 1 ak−1 · · · a(q−2)(k−1)

 .

In the case of this length q RS code, we have that their duals are again RS codes.
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Proposition 3.24. Let q be a prime power and k ≤ n = q be positive integers and a ∈ F⋆
q a

primitive element. Further, let α = (0, 1, a, a2, . . . , aq−2) ∈ Fn
q . Then RS⊥

q,n,k(α) = RSq,n,n−k(α).

Exercise 3.25. Prove Proposition 3.24 using Lemma 3.23.

Proposition 3.26. Let q be a prime power and k ≤ n = q be positive integers and a ∈ F⋆
q a

primitive element. Further, let α = (0, 1, a, a2, . . . , aq−2) ∈ Fn
q . Then RSq,n,k(α) is an MDS code.

Exercise 3.27. Prove Proposition 3.26 using again that any polynomial f(x) ∈ Fq[x] of degree
ℓ < k can have at most ℓ roots in Fq.

We can even consider an "extended" RS code to get to the length n = q + 1, by considering

G =


1 1 1 · · · 1 0
0 1 a · · · aq−2 0
...

...
...

...
...

0 1 ak−1 · · · a(q−2)(k−1) 1

 .

Proposition 3.28. Let q be a prime power and k ≤ n = q + 1 be positive integers and a ∈ F⋆
q a

primitive element. Then RSq,n,k(α) = 〈G〉, where

G =


1 1 1 · · · 1 0
0 1 a · · · aq−2 0
...

...
...

...
...

0 1 ak−1 · · · a(q−2)(k−1) 1


is an MDS code.

Proof. Recall that any c ∈ RSq,n−1,k(α) is of the form

c = (f(0), f(1), f(a), . . . , f(aq−2)),

where f(x) =
∑k−1

i=0 fix
i for some fi ∈ Fq. We can send c to φ(c) ∈ RSq,n,k(α) by defining

φ(c) = (f(0), f(1), f(a), . . . , f(aq−2), fk−1).

After noting that, we can proceed as in the usual proof, that is f(x) ∈ Fq[x] of degree ℓ can have
at most ℓ roots. If the last entry fk−1 = 0, then we are in the case of degree ℓ < k− 1 and thus can
have at most < k − 1 zeros in the first q positions.

Example 3.29. Let us consider q = 3, k = 2 and α = (0, 1, 2). Then RS3,3,2(α) = 〈G〉, where

G =

(
1 1 1
0 1 2

)
.
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The codeword associated to the polynomial f(x) = 1 is c = (1, 0)G = (1, 1, 1) and for f ′(x) = x
we get c′ = (0, 1)G = (0, 1, 2). By the extension to RS3,4,2(α) we get that φ(c) = (1, 1, 1, 0) as
f1 = 0 and φ(c′) = (0, 1, 2, 1) as f ′

1 = 1 and thus

φ(G) =

(
1 1 1 0
0 1 2 1

)
is such that 〈φ(G)〉 = RS3,4,2(α).

Can we have even larger length n? According to the famous MDS conjecture, we cannot.

3.6 MDS Conjecture
We have seen that Reed-Solomon codes are MDS codes, but unfortunately they have a length which
is bounded from above by the size of the finite field. The existence of longer MDS codes is still an
open problem: Apart from Reed-Solomon codes, the only "long" MDS codes which are known are
the trivial MDS codes, [n, n]q and [n, n− 1]q, and the following special case in characteristic two:

Proposition 3.30. Let q = 2m, for some positive integer m. There exists an MDS code of length
q + 2 and dimension 3 and an MDS code of length q + 2 and dimension q − 1 (which is its dual).

We show this existence only in a small case, namely over F4.

Example 3.31. Consider the finite field F4 = F2(α), where α2 = α + 1. The code generated by

G =

0 1 α α + 1 0 1
0 1 α + 1 α 1 0
1 1 1 1 0 0


is a [6, 3]4 linear MDS code. In fact, we can easily check that any 3×3 submatrix ofG is invertible.

The history of the MDS conjecture is quite long and old, in fact it is older than the Singleton
bound itself! This is due to the connection of coding theory to finite geometry. We will not go
deeper into this connection in this course, but in case you are familiar with finite geometry, MDS
codes correspond to arcs in PG(k − 1, q), RS codes correspond to normal rational curves and
finally the MDS conjecture states that an arc cannot be larger than a normal rational curve. This
conjecture is due to Segre [16].

Conjecture 3.32 (Segre, 1955). Let q be a prime power and k ≤ n be positive integers. Then any
[n, k]q linear MDS code is such that n ≤ q + 1, except for

• the trivial MDS codes [n, n]q and [n, n− 1]q,

• the exceptional MDS codes in Proposition 3.30 in characteristic 2.

The conjecture is widely believed to be true, and some cases are also known to be true, most
importantly, over prime fields [2].
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Theorem 3.33 (Ball, 2012). The MDS conjecture is true if q is a prime.

Does that mean there are no other codes attaining the Singleton bound?

Absolutely not. There is a long list of constructions of MDS codes which are not GRS codes,
however their length n does not exceed q+1. Even more is true, if we fix the length and dimension
and let q grow, we expect random codes to attain the Singleton bound.

Theorem 3.34. Let k ≤ n be positive integers. Then,

|{C ⊂ Fn
q | dim(C) = k, dH(C) = n− k + 1}|
|{C ⊂ Fn

q | dim(C) = k}|
−−−→
q→∞

1.

Proof. Recall that the number of codes of dimension k and length n is given by[
n

k

]
q

=
k−1∏
i=0

qn − qi

qk − qi
.

To show that the ratio of MDS codes tends to 1, it is enough to show that a lower bound ℓ(q)
tends to one, as

1 ≥
|{C ⊂ Fn

q | dim(C) = k, dH(C) = n− k + 1}|
|{C ⊂ Fn

q | dim(C) = k}|
≥ ℓ(q) −−−→

q→∞
1.

In order to lower bound the number of MDS codes, we use the characterization, that every
k× k submatrix of a generator matrix G is invertible. Thus, we start with a full rank k× k matrix,
which are

k−1∏
i=0

(qk − qi)

many. For the remaining n − k columns, we choose vectors in Fk
q which do not lie in the span of

any k − 1 vertices among the ones already picked. At each step i ∈ {0, . . . , n − k − 1}, we have(
k+i
k−1

)
choices to build a subspace of dimension k − 1, thus this leads to

k−1∏
i=0

(qk − qi)
n−k−1∏
i=0

(
qk − qk−1

(
k + i

k − 1

))
.

This is not the exact number of MDS codes, as some subspaces can also intersect, hence by sub-
tracting qk−1 for all possible choices of columns, we subtract too much, getting a lower bound.
Clearly, different matrices G will lead to the same code, in fact any S ∈ GLq(k) is such that SG is
again a generator matrix. Thus

|{C ⊂ Fn
q | dim(C) = k, dH(C) = n− k + 1}| ≥

∏k−1
i=0 (q

k − qi)
∏n−k−1

i=0

(
qk − qk−1

(
k+i
k−1

))∏k−1
i=0 (q

k − qi)
.
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Thus, the probability of having a MDS code is bounded from below by∏n−k−1
i=0

(
qk − qk−1

(
k+i
k−1

))∏k−1
i=0

qn−qi

qk−qi

=
qkn
∏k−1

i=0 (1− qi−k)
∏n−k−1

i=0

(
1− q−1

(
k+i
k−1

))
qkn
∏k−1

i=0 (1− qi−n)

=

∏k−1
i=0 (1− qi−k)

∏n−k−1
i=0

(
1− q−1

(
k+i
k−1

))∏k−1
i=0 (1− qi−n)

.

Note that
(
k+i
k−1

)
≤
(
k+n−k−1

k−1

)
≤ 2n is a constant for growing q, and∏k−1

i=0 (1− qi−k)∏k−1
i=0 (1− qi−n)

=

[
n

k

]−1

1/q

−−−→
q→∞

1.

Finally,

|{C ⊂ Fn
q | dim(C) = k, dH(C) = n− k + 1}|
|{C ⊂ Fn

q | dim(C) = k}|

≥
∏n−k−1

i=0 (1− 2nq−1)[
n
k

]
1/q

≥ (1− 2nq−1)n−k[
n
k

]
1/q

−−−→
q→∞

1.

On the other hand, if we fix the alphabet size q and the rate R and let n grow, then MDS codes
have density 0. One could easily prove this assuming the MDS conjecture, however, it also holds
without assuming the conjecture is true.

Theorem 3.35. Let q be a prime power and R ∈ (0, 1). For n ∈ N, let kn = bRnc. Then,

|{C ⊂ Fn
q | dim(C) = kn, dH(C) = n− kn + 1}|

|{C ⊂ Fn
q | dim(C) = kn}|

−−−→
n→∞

0.

Proof. The proof works similarly as for Theorem 3.34. This time we need an upper bound u(n)
which tends to 0, as

0 ≤
|{C ⊂ Fn

q | dim(C) = kn, dH(C) = n− kn + 1}|
|{C ⊂ Fn

q | dim(C) = kn}|
≤ u(n) −−−→

n→∞
0.

To get an upper bound, we thus want to subtract too little, e.g. only once qkn−1, assuming any
choice of kn − 1 columns spans the same subspace, leading to

|{C ⊂ Fn
q | dim(C) = kn, dH(C) = n− kn + 1}|

≤
∏kn−1

i=0 (qkn − qi)
∏n−kn−1

i=0

(
qkn − qkn−1

)∏kn−1
i=0 (qkn − qi)

.

55



Thus, by dividing again by
[
n
kn

]
q

we get

|{C ⊂ Fn
q | dim(C) = kn, dH(C) = n− kn + 1}|

|{C ⊂ Fn
q | dim(C) = kn}|

≤
∏kn−1

i=0 (qkn − qi)
∏n−kn−1

i=0

(
qkn − qkn−1

)∏kn−1
i=0 (qn − qi)

=

∏n−kn−1
i=0 (1− q−1)[

n
kn

]
1/q

,

similar to the previous proof.
We note that [

n

kn

]
1/q

−−−→
n→∞

∞∏
i=1

(1− q−i)−1 ≥ 1/4.

Then

|{C ⊂ Fn
q | dim(C) = kn, dH(C) = n− kn + 1}|

|{C ⊂ Fn
q | dim(C) = kn}|

≤
n−kn−1∏

i=0

(
1− q−1

) [ n
kn

]−1

1/q

≤ 4(1− q−1)n−kn −−−→
n→∞

0.

We can also state the Singleton bound in its asymptotic form. Given a function f(n), computing
the asymptotic form of f(n) means to compute

lim
n→∞

1

n
logq(f(n)),

if it exists.

In the case of the Singleton bound, i.e., d ≤ n− k + 1, we thus see k and d as functions in n,
and assume that

lim
n→∞

k(n)

n
= R, lim

n→∞

d(n)

n
= δ

exist.
Note that d/n is called the relative minimum distance and R usually denotes the rate. In the

asymptotic case, we de not make a difference whether n grows or is fixed.

Corollary 3.36. Let C be an [n, k, d]q linear code and assume that k and d are functions in n, while
q is fixed. Then,

δ ≤ 1−R + o(1).
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A different way to phrase such asymptotic result, is stating that there must exist a sequence of
codes, whose parameters tend to this limit.

Corollary 3.37. Let (Cr)r∈N be a sequence of codes with parameters [nr, kr, dr] over Fq. Assume
that

R = lim
r→∞

kr
nr

, δ = lim
r→∞

dr
nr

exist. Then
R + δ ≤ 1.

3.7 Decoding of RS Codes
Throughout this section, we let q be a prime power, k ≤ n be positive integers and α ∈ Fn

q be such
that αi are pairwise distinct. Recall that any codeword c ∈ RSq,n,k(α) is given as

c = (f(α1), . . . , f(αn))

for some f(x) ∈ Fq[x] of degree < k.
Recall that the main aim of codes is to correct errors and RS codes can correct the most errors

for a given length n and dimension k, namely

t =

⌊
n− k

2

⌋
.

A decoder is given a received word r = c+ e, where c = mG is a codeword of C = 〈G〉 and e
is an error vector of weight up to t. The decoder then returns either e, c or m.

Exercise 3.38. Show that given any of the three vectors e, c,m and knowing G, one can easily
recover the other vectors.

Note that any decoder of a RS code RSq,n,k(α) will also decode a GRS code GRSq,n,k(α, β).
In fact, assume we have received r = c+ewith c ∈ GRSq,n,k(α, β) and e ∈ Fn

q of weight wtH(e) ≤
t = bn−k

2
c. Note that c′ = (c1β

−1
1 , . . . , cnβ

−1
n ) ∈ RSq,n,k(α). Hence we can simply compute

r′ = (r1β
−1
1 , . . . , rnβ

−1
n ) and a decoder for RSq,n,k(α) would find c′ and knowing β1, . . . , βn, we

can easily recover c ∈ GRSq,n,k(α, β).

One of the most famous ones, and easy to understand is the Berlekamp-Welch decoder.

3.7.1 Berlekamp-Welch

Let us denote by suppH(e) = {i ∈ {1, . . . , n} | ei 6= 0} the support of e. Let c ∈ RSq,n,k(α) be
such that c = (f(α1), . . . , f(αn)) for some f(x) ∈ Fq[x] of degree < k, and let r = c+ e.

Let us define the error polynomial as

E(x) =
∏

i∈suppH(e)

(x− αi).
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Since |suppH(e)| ≤ t, the polynomial E has degree at most t.

Note that for any i ∈ suppH(e), we have that E(αi) = 0, while for i 6∈ suppH(e), we get
E(αi) 6= 0.

With this we immediately get that

riE(αi) = f(αi)E(αi)

for all i ∈ {1, . . . , n}. This gives a system of n equations, where the unknowns are the coefficients
of E(x) and f(x), and the system is not linear. To solve this issue, we want to linearize it and
hence define

N(x) = E(x)f(x).

As deg(f) ≤ k − 1, deg(E) ≤ t, we get deg(N) ≤ k + t− 1.
The system now becomes

riE(αi) = N(αi), (1)

for all i ∈ {1, . . . , n}. Thus, it is a linear system of n equations and the unknowns, being the
coefficients of E(x) and N(x), are k + 2t + 1 ≤ n + 1 many. In fact, a degree ℓ polynomial has
ℓ+ 1 coefficients. We have the existence of a non-trivial solution (namely the coefficients of E(x)
and N(x)). Moreover any other non-trivial solution allows us to recover f(x).

Lemma 3.39. Let (E1(x), N1(x)), (E2(x), N2(x)) ∈ Fq[x]
2 of degree deg(Ei) ≤ t, deg(Ni) ≤

k + t− 1 for i ∈ {1, 2} be two distinct non-trivial solutions of (1). Then E1(x), E2(x) 6= 0 and

N1(x)

E1(x)
=
N2(x)

E2(x)
= f(x).

Proof. If we set E1(x) = 0 in the system (1), we get the system

0 = N(αi)

for all i ∈ {1, . . . , n}. Thus, N(x) has n distinct roots αi and since its degree is at most k+ t−1 <
n, we must have N(x) = 0 and thus the solution is trivial. Clearly, the same holds for E2(x) and
we get the first claim, i.e., E1(x), E2(x) 6= 0.

Set S(x) = N1(x)E2(x)−N2(x)E1(x), with

deg(S) ≤ k + 2t− 1 ≤ n− 1.

Since (E1(x), N1(x)), (E2(x), N2(x)) are both solutions to (1), we also have that

S(αi) = N1(αi)E2(αi)−N2(αi)E1(αi)

= riE1(αi)E2(αi)− riE2(αi)E1(αi) = 0,
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for all i ∈ {1, . . . , n}. Thus S has n distinct roots αi but since its degree is less than n, it must
be the zero polynomial and thus N1(x)E2(x) = N2(x)E1(x) for every non-trivial solution, in
particular also for N(x) = E(x)f(x), which leads to the second claim

N1(x)

E1(x)
= f(x).

Thus, we only have to solve the system (1) and given a non-trivial solution (E(x), N(x))
compute f(x) = N(x)/E(x). The complexity of this algorithm is thus in O(n3).

We can also invoke a check, namely deg(f) < k, and

dH(r, (f(α1), . . . , f(αn))) ≤ t.

If this is not fulfilled, the weight of the error vector e is larger than the error-correction capa-
bility. We will later see how to decode RS codes beyond this threshold.

Example 3.40. Let us consider F4 = F2(α) where α2 = α + 1. Then RS4,4,2(0, 1, α, 1 + α) can
correct 1 error. Assume we received r = (1, 1 + α, α, α).

We know that deg(E) ≤ 1 and deg(N) ≤ 2, thus E(x) = e0 + e1x,N(x) = n0 + n1x + n2x
2

and our unknowns are e0, e1, n0, n1, n2.
From the equations riE(αi)−N(αi) = 0 we build the following linear system


r1 r1α1 −1 −α1 −α2

1

r2 r2α2 −1 −α2 −α2
2

r3 r3α3 −1 −α3 −α2
3

r4 r4α4 −1 −α4 −α2
4



e0
e1
n0

n1

n2

 =


1 0 1 0 0

1 + α 1 + α 1 1 1
α 1 + α 1 α 1 + α
α 1 1 1 + α α



e0
e1
n0

n1

n2

 =


0
0
0
0

 .

By solving this system (e.g. using Gaussian elimination) we get the solution

(e0, e1, n0, n1, n2) = (1 + α, 1, 1 + α, 0, α)

and we see that
N(x)

E(x)
=

1 + α + αx2

1 + α + x
= 1 + αx = f(x).

Hence the sent codeword is

c = (f(α1), f(α2), f(α3), f(α4)) = (1, 1 + α, α, 0)

which has indeed distance 1 from r.
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• The Singleton bound states that every [n, k, d] code is such that d ≤ n− k + 1.

• Codes attaining this bound are called MDS.

• C is MDS if and only if C⊥ is MDS.

• Asymptotically, the bound states δ ≤ 1−R.

• Generalized Reed-Solomon codes are MDS.

• The GRS construction requires n ≤ q + 1.

• It is unknown whether larger non-trivial MDS codes exist.

• For fixed k ≤ n and q growing, the probability of an [n, k]q code being MDS goes to
one.

• For fixed q and n growing, the probability of an [n, bRnc]q code being MDS goes to
zero.
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4 Sphere-Packing and Sphere-Covering
Recall that the Singleton bound gives an upper bound on the size of a code with prescribed mini-
mum distance dH(C) and length n as

|C| ≤ qn−dH(C)+1.

Apart from this upper bound, we also have the sphere-packing bound, also called Hamming
bound and a lower bound given by the sphere-covering bound, also called Gilbert-Varshamov
bound.

Let us denote by VH(r, n, q) the size (or volume) of a ball, i.e.,

VH(r, n, q) = |BH(r, n, q, x)| =
r∑

i=0

(
n

i

)
(q − 1)i

for any x ∈ Fn
q .

4.1 Hamming bound
The Hamming bound, or sphere-packing bound can be depicted as follows:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

C

Fn
q

d

t

In this picture we cannot place any other codeword, without their balls of radius t intersecting.

Theorem 4.1 (Hamming Bound). Let q be a prime power and k ≤ n be positive integers. Let C be
an [n, k]q code with dH(C) ≥ d and let t =

⌊
d−1
2

⌋
. Then

|C| ≤ qn

VH(t, n, q)
.

Proof. The balls of radius t around codewords of C have to be pairwise disjoint. In fact, if there
exist c 6= c′ ∈ C such that

x ∈ BH(t, n, q, c) ∩BH(t, n, q, c
′)
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for some x ∈ Fn
q , then by the triangle inequality

dH(c, c
′) ≤ dH(x, c) + dH(x, c

′) ≤ 2t < d ≤ dH(C),

a contradiction to dH(C) being the minimum distance among all distinct codewords.

Thus, we must have that the union of all balls around the codewords is disjoint and contained
in Fn

q , i.e., ⋃
c∈C

BH(t, n, q, c) ⊆ Fn
q

and due to the disjointness

|C|VH(t, n, q) =
∑
c∈C

VH(t, n, q) = |
⋃
c∈C

BH(t, n, q, c)| ≤ qn.

We can also provide an alternative proof, which follows a greedy algorithm.
For this let us denote by A(d, n, q) the largest size of any code (also non-linear), in Fn

q with
minimum distance at least d. The Hamming bound then states that

A(d, n, q) ≤ qn

VH(t, n, q)
,

and since any linear code C ⊆ Fn
q with minimum distance at least d is such that |C| ≤ A(d, n, q)

we recover the Hamming bound from Theorem 4.1.

However, the proof now follows a greedy argument: we start by placing a random vector c ∈ Fn
q

in our code C. We then build a ball of radius t =
⌊
d−1
2

⌋
around c and choose a next codeword c′

with the property
BH(t, n, q, c) ∩BH(t, n, q, c

′) = ∅.

This way, we ensure that dH(c, c′) > 2t.

We continue placing codewords and their balls of radius t, until there is no more space, getting
a "packing", i.e., a disjoint union ⋃

c∈C

BH(t, n, q, c) ⊆ Fn
q .

The rest of the proof works in the same way.

4.2 Perfect Codes
We are again interested in codes which attain this bound.
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Definition 4.2. Let q be a prime power and k ≤ n be positive integers. An [n, k, d]q code C with

qn−k = VH

(⌊
d− 1

2

⌋
, n, q

)
is called a perfect code.

They are called perfect, for a very special property: they can correct any received vector.

Proposition 4.3. Let q be a prime power and k ≤ n be positive integers. Let C be an [n, k, d]q code
and set t = bd−1

2
c. Then, C is perfect if and only if for all r ∈ Fn

q there exists a unique codeword
c ∈ C such that

r ∈ BH(t, n, q, c).

Proof. For the first direction, we assume that C is a perfect code, i.e.,

|C| = qn

VH(t, n, q)

which implies that ⋃
c∈C

BH(t, n, q, c) = Fn
q ,

as a disjoint union. Thus, for any r ∈ Fn
q there exists a unique ball BH(t, n, q, c) such that r ∈

BH(t, n, q, c).

For the other direction, we have that any r ∈ Fn
q is in exactly one ball BH(t, n, q, c) and thus⋃

c∈C

BH(t, n, q, c) = Fn
q

as disjoint union, implying that

|C| = qn

VH(t, n, q)

and that C is perfect.

Example 4.4. Let n be an odd positive integer and consider the [n, 1]2 repetition code C. Recall
that dH(C) = n = 2t+ 1, for some t and thus,

|C| = 2 =
2n

2n−1
=

2n∑t
i=0

(
n
i

) .
The fact, that we had to choose an odd minimum distance in this example is actually always

true for perfect codes:

Proposition 4.5. Let q be a prime power and k ≤ n be positive integers. Let C be an [n, k, d]q
code. If d is even, then C is not perfect.
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Proof. Assume that d = 2(t + 1) for some t and note that t = bd−1
2
c. Let c ∈ C and r ∈ Fn

q be
such that dH(c, r) = t+ 1.

To show that C is not perfect, it is enough to show that there is no codeword c′ ∈ C, such that
r ∈ BH(t, n, q, c

′).
Assume by contradiction, that such c′ ∈ C exists, then by the triangle inequality we get that

dH(c, c
′) ≤ dH(c

′, r) + dH(c, r) ≤ t+ t+ 1 < d,

a contradiction to d being the minimum distance.

There only exist very few non-trivial perfect codes: the Golay code [23, 12, 7]2 the Golay code
[11, 6, 5]3 and the Hamming code.

Definition 4.6. Let q be a prime power and r ≥ 2 be a positive integer. Let n = qr−1
q−1

and H
be the r × n matrix having as columns all vectors in Fr

q up to non-zero scalar multiples. Then
C = ker(H⊤) is called Hamming code.

Example 4.7. Let us consider q = 2 and r = 3 and define

H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

The code C = ker(H⊤) is a [7, 4]2 Hamming code.

Hamming codes are in fact perfect codes.

Proposition 4.8. Let q be a prime power and r ≥ 2 be a positive integer and set n = qr−1
q−1

. The
[n, n− r]q Hamming code has dH(C) = 3 and is perfect.

Proof. Let us first show that the construction of a Hamming code provides us with the parameters
n = qr−1

q−1
and k = n − r. We note that there exist qr − 1 non-zero vectors in Fr

q and by excluding
scalar multiples (which are q − 1 many) we get that there are n = qr−1

q−1
many vectors in Fr

q up to
scalar multiples, and thus C has length n. As the vectors ei ∈ Fr

q with only the ith entry being 1
and the rest 0, are choices (up to scalar multiplication) for columns of H, we get that rk(H) = r
and hence dim(C) = n− r.

We now prove that dH(C) = 3. Since one column is not a scalar multiple of another column,
any two columns must be linearly independent. Moreover, there exist 3 columns which are linearly
dependent (for example choosing e1, e2 and e1+ e2 again up to scalar multiples). Thus, dH(C) = 3
by Proposition 2.38.

We can now show that Hamming codes are perfect. For this we note that t = 1 and

VH(t, n, q) =
1∑

i=0

(
n

i

)
(q − 1)i = 1 + n(q − 1) = 1 + qr − 1 = qr.
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Hence,

|C| = qn−r =
qn

qr
.

The dual code of the Hamming code is called simplex code.

Definition 4.9 (Simplex Code). Let q be a prime power and r ≥ 2 be a positive integer. Let
n = qr−1

q−1
and G be the r × n matrix having as columns all vectors in Fr

q up to non-zero scalar
multiples. Then C = 〈G〉 is called simplex code.

Corollary 4.10. Let q be a prime power and r ≥ 2 be a positive integer. Let n = qr−1
q−1

. The simplex
code is a [n, r]q code.

We will see the simplex code again, after we introduced the Plotkin bound.

Note, often in literature the Hamming code and simplex code are only defined for r ≥ 3.
This is not because the Hamming code for r = 2 is not a perfect code, instead it is the known
[q + 1, q − 1]q code. For example, for q = 2, we get the [3, 1]2 repetition code. For q = 3, the
simplex and Hamming codes coincide being a [4, 2]3 code.

4.3 Asymptotic Hamming bound
Recall that given a function f(n), computing the asymptotic form of f(n) means to compute

lim
n→∞

1

n
logq(f(n)),

if it exists.

We again let the dimension k and the minimum distance d be functions in n and assume

R = lim
n→∞

k(n)

n
, δ = lim

n→∞

d(n)

n

exist.

To give the asymptotic version of the Hamming bound, we first have to find

lim
n→∞

1

n
logq(VH(rn, n, q)),

for some r ∈ [0, 1− 1/q].

Definition 4.11 (Entropy Function). For a positive integer q ≥ 2 the q-ary entropy function is
defined as follows:

Hq : [0, 1] → R,
x→ x logq(q − 1)− x logq(x)− (1− x) logq(1− x).
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The entropy function is originally introduced in information theory, in particular setting q = 2,
the entropy function H2(x) measures the uncertainty in the outcome of a x-biased coin toss (which
lands heads with probability x and tails with probability 1− x).

Lemma 4.12. Let q ≥ 2 and n a positive integer and x ∈ [0, 1− 1/q]. Then,

VH(xn, n, q) ≤ qHq(x)n.

Proof. We have that

VH(xn, n, q)

qHq(x)n
=

∑xn
i=0

(
n
i

)
(q − 1)i

(q − 1)xnx−xn(1− x)−(1−x)n

=
xn∑
i=0

(
n

i

)
(q − 1)i(q − 1)−xnxxn(1− x)(1−x)n

=
xn∑
i=0

(
n

i

)
(q − 1)i(1− x)n

(
x

(q − 1)(1− x)

)xn

.

Since x ≤ 1 − 1/q, we get that x/(q − 1) ≤ 1/q ≤ 1 − x and hence x
(q−1)(1−x)

< 1 and by
decreasing the power, we increase the formula. Thus,

VH(xn, n, q)

qHq(x)n
≤

xn∑
i=0

(
n

i

)
(q − 1)i(1− x)n

(
x

(q − 1)(1− x)

)i

=
xn∑
i=0

(
n

i

)
(1− x)n−ixi

≤
n∑

i=0

(
n

i

)
(1− x)n−ixi = 1,

where we used the binomial theorem in the last equality.

We can also give a lower bound, using Sterling’s formula. For this, recall that

m! =
√
2πm

(m
e

)m
(1 + o(1))

and hence (
n

xn

)
≥
(
1

x

)xn(
1

1− x

)(1−x)n

exp(−o(n)) = 2Hq(x)n−o(n).

From this we can follow that

VH(xn, n, q) ≥
(
n

xn

)
(q − 1)xn ≥ qHq(x)n−o(n).
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Corollary 4.13. Let q ≥ 2 and n a positive integer and x ∈ [0, 1− 1/q]. Then,

lim
n→∞

1

n
logq(VH(xn, n, q)) = Hq(x).

The asymptotic Hamming bound then states

Corollary 4.14. Let C be an [n, k, d]q linear code and assume that k and d are functions in n, while
q is fixed. Then,

R ≤ 1−Hq(δ/2) + o(1).

4.4 Gilbert-Varshamov Bound
We finally move to a first lower bound on the size of a code with prescribed length and minimum
distance.

While the Hamming bound is considered a packing bound, the Gilbert-Varshamov bound is a
covering bound.

Recall that VH(r, n, q) is the size (or volume) of a ball and A(d, n, q) the largest size of any
code (also non-linear), in Fn

q with minimum distance at least d.
We start with the non-linear version of the Gilbert-Varshamov bound, which provides a lower

bound on A(d, n, q).

Theorem 4.15 (Gilbert-Varshamov Bound). Let q be a prime power and n, d be positive integers.
Then,

A(d, n, q) ≥ qn

VH(d− 1, n, q)
.

Note that this bound is an existence bound. It should be read as follows:

There exists a (possibly non-linear) code which has size larger than qn

VH(d−1,n,q)
.

This does however not imply that a given code should have size larger, equal or smaller than
qn

VH(d−1,n,q)
. In fact, many codes, e.g. RS codes have size smaller than qn

VH(d−1,n,q)
, we will see later

that random codes attain this bound with high probability, for large n and finally, there exist also
algebraic geometry codes which have a larger size.

We can again depict the idea of the Gilbert-Varshamov bound as

•

•

•

•

•

•

•

•

•

•

•

•

•

•

C
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In this picture we cannot place any other codeword outside of any ball of radius d− 1.

The proof of the non-linear version follows the same greedy argument as the proof for the
Hamming bound.

Proof. We start by placing a random vector c ∈ Fn
q in our code C. We then build a ball of radius

d− 1 around c and choose a next codeword c′ outside of this ball, i.e., c′ ∈ Fn
q \BH(d− 1, n, q, c).

This way, we ensure that dH(c, c′) > d− 1.

We continue placing codewords and their balls of radius d − 1, until there is no more space,
getting a "covering" of Fn

q , i.e.,

Fn
q ⊆

⋃
c∈C

BH(d− 1, n, qc).

Hence, we get

qn ≤ |
⋃
c∈C

BH(d− 1, n, qc)| ≤
∑
c∈C

VH(d− 1, n, q) = |C|VH(d− 1, n, q).

There also exists a linear version of the Gilbert-Varshamov bound, which ensures the existence
of a code with minimum distance at least d.

Theorem 4.16 (Gilbert-Varshamov bound). Let q be a prime power and let k ≤ n and d be positive
integers, such that

VH(d− 2, n− 1, q) < qn−k.

Then, there exists a [n, k]q linear code with minimum Hamming distance at least d.

Exercise 4.17. Prove Theorem 4.16 using a greedy algorithm to construct a (n − k) × n parity-
check matrix H , such that every d− 1 columns are linearly independent.

4.5 Asymptotic Gilbert-Varshamov Bound
It turns out that random codes attain the asymptotic Gilbert-Varshamov (GV) bound with high
probability for n growing.

We again see k, d as a function in n and set

δ = lim
n→∞

d(n)

n
∈ [0, 1− 1/q], R(δ) = lim sup

n→∞

1

n
logq A(δn, n, q)

to be the relative minimum distance and the asymptotic information rate.

We can formulate the asymptotic Gilbert-Varshamov bound as the existence of a infinite family
of codes as
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Theorem 4.18 (The Asymptotic Gilbert-Varshamov Bound). For every prime power q and δ ∈
[0, 1− 1/q] there exists an infinite family C of codes with rate

R(δ) ≥ 1−Hq(δ).

Theorem 4.19. Let q be a prime power, δ ∈ [0, 1 − 1/q) and 0 < ε and n a positive integer.
Set k ≤ n(1 − Hq(δ) − ε) and let C ⊆ Fn

q be a random code of dimension k. Then, with high
probability, C has minimum Hamming distance at least δn, for n growing.

Proof. We want to show that
P(dH(C) > δn) ≥ 1− q−εn.

We first choose G ∈ Fk×n
q uniform at random of rank k and then bound the counter probability,

that is
P(dH(C) ≤ δn)

which is given by the probability that there exists a non-zero codeword of weight at most δn. Since
G is uniform at random, also any non-zero codeword mG ∈ Fn

q \ {0} is uniform at random.

We note that for a random non-zero codeword the probability of having weight at most δn can
be bounded as

P(wtH(mG) ≤ δn) =
VH(δn, n, q)

qn − 1
≤ qn(Hq(δ)−1).

Thus, using a union bound, we get

P(dH(C) ≤ δn) = P(∃m ∈ Fk
q \ {0} : wtH(mG) ≤ δn)

≤
∑

m∈Fk
q\{0}

P(wtH(mG) ≤ δn)

≤ (qk − 1)qn(Hq(δ)−1)

≤ qn(1−Hq(δ)−ε)+n(Hq(δ)−1) = q−εn.

Hence P(dH(C) > δn) ≥ 1− q−εn and lim
n→∞

P(dH(C) > δn) = 1.

Hence, for large q, we know that random codes are with high probability MDS codes, i.e.,

dH(C) = n− k + 1,

while for large n, we now know that random codes attain with high probability the Gilbert-
Varshamov bound, that is we may set

dH(C) = max

{
r

∣∣∣∣∣
r−1∑
i=0

(
n

i

)
(q − 1)i < qn−k

}
.
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• The Hamming bound states that every [n, k, 2t+1] code is such that VH(t, n, q) ≤ qn−k.

• Codes attaining this bound are called perfect.

• Asymptotically, the Hamming bound states R ≤ 1−Hq(δ/2).

• Hamming codes are perfect.

• The Gilbert-Varshamov bound states that there exists a (possibly non-linear) code with
|C| ≥ qn

VH(d−1,n,q)
.

• The linear GV bound states there there exists a linear [n, k, d] code with VH(d− 2, n−
1, q) < qn−k.

• Asymptotically, the Gilbert-Varshamov bound states R ≥ 1−Hq(δ).

• For fixed q and n growing, the probability of an [n,Rn]q code attaining the GV bound
goes to one.
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5 Plotkin Bound
We come to one of our last bounds for the minimum distance dH(C) given n, k. This one is called
Plotkin bound and again comes in different forms and with different proofs (we will see some of
the proof techniques). It mainly comes from two easy observations:

1. All non-zero codewords have weight ≥ dH(C). Thus, if we sum all their weights we must
have ∑

c∈C

wtH(c) =
∑

c∈C\{0}

wtH(c) ≥ (|C| − 1)dH(C),

with equality only if all non-zero codewords have minimal Hamming weight dH(C).

2. The average weight of a code is the same as the average weight of the whole space Fn
q .

Let us elaborate more on the second point:

Definition 5.1. Let C be an [n, k]q linear code. The average weight of C is given by

wtH(C) =
∑

c∈C wtH(c)
|C|

.

We can do a quick example to get an intuition.

Example 5.2. Let us consider the code generated by

G =

(
1 0 1
0 1 2

)
∈ F2×3

3 .

The code is then

C = {(0, 0, 0), (1, 0, 1), (2, 0, 2), (0, 1, 2), (1, 1, 0), (2, 1, 1), (0, 2, 1), (1, 2, 2), (2, 2, 0)}.

We can quickly check that

wtH(C) =
0 + 2 + 2 + 2 + 2 + 3 + 2 + 3 + 2

32
=

18

9
= 2.

Let i ∈ {1, . . . , n} and let us denote by πi the projection to the ith coordinate. That is

πi : Fn
q → Fq

x = (x1, . . . , xn) 7→ xi

Then we can show that the amount of x ∈ Fn
q with πi(x) = a for a fixed a ∈ Fq is given by

qn−1.
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Lemma 5.3. Let q be a prime power and n a positive integer. Let a ∈ Fq and i ∈ {1, . . . , n}.
There are qn−1 many x ∈ Fn

q such that xi = a.

Or equivalently
|π−1

i (a)| = qn−1.

Proof. We note that πi is a Fq-linear map, since for any x, x′ ∈ Fn
q , a ∈ Fq

πi(x+ x′) = πi(x) + πi(x
′),

πi(ax) = aπi(x).

We also note that Im(πi) = Fq, as it is an ideal in Fq and clearly not {0}. Finally, using the first
isomorphism theorem, we get that

Fn
q /ker(πi) ∼= Fq,

which also tells us that
|ker(πi)| = qn−1.

With this we can compute |π−1
i (a)| as every a ∈ Fq has the same preimage size.

Exercise 5.4. Use a similar proof to show that the restriction of the projection on a non-degenerate
[n, k]q linear code C, i.e., πi : C → Fq is also such that |π−1

i (a)| = qk−1.

If we consider the whole ambient space Fn
q , we can quickly compute its average weight.

Lemma 5.5. Let q be a prime power and n be a positive integer. Then

wtH(Fn
q ) = n

q − 1

q
.

Proof. We observe that

wtH(Fn
q ) =

∑
x∈Fn

q
wtH(x)

qn

=

∑
x∈Fn

q

∑n
i=1 wtH(xi)

qn

=

∑n
i=1

∑
x∈Fn

q :xi=a wtH(a)

qn

=
qn−1

∑n
i=1

∑
a∈Fq

wtH(a)

qn

=
qn−1

∑n
i=1(q − 1)

qn

= n
q − 1

q
.

Where we have used that qn−1 many x ∈ Fn
q are such that xi = a for a fixed a ∈ Fq.
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In our previous example, this gives exactly the same.

Example 5.6. Let us consider wtH(F3
3) = 32

3
= 2 = wtH(C).

This is always true.

Lemma 5.7. Let C be a non-degenerate [n, k]q linear code. Then

wtH(C) = n
q − 1

q
.

Exercise 5.8. Repeat the proof of Lemma 5.5 for C, thus proving Lemma 5.7.

We can now put the two observations together, to get

dH(C)(|C| − 1) ≤
∑
c∈C

wtH(c) = |C|wtH(C) = |C|nq − 1

q

and dividing both sides by |C| − 1, we get the Plotkin bound.

Theorem 5.9 (Plotkin Bound). Let q be a prime power, k ≤ n be positive integers and C be a
non-degenerate [n, k]q linear code. Then

dH(C) ≤
|C|

|C| − 1
n
q − 1

q
.

While our previous argumentation is completely fine as a proof, we will also include a more
standard proof here.

Proof. In this proof we construct a huge matrix, where the rows are given by all c ∈ C. The
resulting matrix A ∈ Fqk×n

q . Using Lemma 5.7, we get that in each column every finite field
element appears equally often, namely qk−1 times. Since the number of zeroes in each column is
qk−1, we get that number of non-zero entries of A is nqk−1(q − 1). Similarly, going through the
rows being c ∈ C, we must have that the non-zero entries of A are at least dH(C)(qk − 1), getting

dH(C)(qk − 1) ≤ nqk−1(q − 1).

This implies the claim.

We can also prove the Plotkin bound using the Cauchy-Schwarz inequality.

Lemma 5.10. Let n be a positive integer and let x, y ∈ Rn. Then(
n∑

i=1

x2i

)(
n∑

i=1

y2i

)
≥

(
n∑

i=1

xiyi

)2

.
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In the following theorem, we do not assume that C is linear, hence we denote its cardinality
simply by M = |C|. As the code is not necessarily linear, we also have to work with dH(x, y)
instead of wtH(c).

Theorem 5.11 (Plotkin Bound). Let n be a positive integer and let q be a prime power. Let C ⊂ Fn
q

with size M > 2 and minimum distance dH(C) > n(q − 1)/q. Then

|C| ≤ qdH(C)
qdH(C)− (q − 1)n

.

Proof. We compute the sum ∑
x∈C

∑
y∈C

dH(x, y)

in two different ways. We first observe that∑
x∈C

∑
y∈C

dH(x, y) ≥ dH(C)M(M − 1),

by the definition of dH(C) = min{dH(x, y) | x 6= y ∈ C}.

Let us denote by δ(a, b) =

{
1 if a 6= b,

0 else.
. With this we can write our sum as

∑
x∈C

∑
y∈C

dH(x, y) =
n∑

i=1

∑
x∈C

∑
y∈C

δ(xi, yi)

=
n∑

i=1

∑
a∈Fq

∑
x∈C:xi=a

∑
y∈C

δ(a, yi)

=
n∑

i=1

∑
a∈Fq

|{(x, y) ∈ C2 | xi = a, yi 6= a}|.

Let us denote by c(a, i) = |{x ∈ C | xi = a}|, for some fixed a ∈ Fq and i ∈ {1, . . . , n}. Then

∑
x∈C

∑
y∈C

dH(x, y) =
n∑

i=1

∑
a∈Fq

c(a, i)(M − c(a, i))

= nM2 −
n∑

i=1

∑
a∈Fq

c(a, i)2.

We can now apply the Cauchy-Schwarz inequality to the vectors x = (1, . . . , 1) and y = (c(a, i))a∈Fq ,
that is ∑

a∈Fq

12
∑
a∈Fq

c(a, i)2 = q
∑
a∈Fq

c(a, i)2 ≥

∑
a∈Fq

c(a, i)

2

=M2,
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as for all x ∈ C we must have some a ∈ Fq such that xi = a.

Putting this inside our sum, we get

∑
x∈C

∑
y∈C

dH(x, y) = nM2 −
n∑

i=1

∑
a∈Fq

c(a, i)2

≤ nM2 −
n∑

i=1

M2/q = nM2 − nM2q

= nM2 q − 1

q
.

Combining this with ∑
x∈C

∑
y∈C

dH(x, y) ≥ dH(C)M(M − 1),

we get that

dH(C)M(M − 1) ≤ nM2 q − 1

q

and thus dividing by M on both sides, we get the claim.

5.1 Simplex Code
We are again interested in codes which are optimal for this bound. As we have seen before∑

c∈C\{0}

wtH(c) ≥ (|C| − 1)dH(C),

only holds with equality if all non-zero codewords have minimal Hamming weight dH(C).

Definition 5.12. Let 1 ≤ k ≤ n be positive integers and q be a prime power. Let C be an [n, k, d]q
linear code. We say that C is a constant weight code, if for all c ∈ C \ {0} we have

wtH(c) = dH(C).

In case we are interested in non-linear codes, obtaining the non-linear version of the Plotkin
bound, we would be asking for equidistant codes, i.e., for all x 6= y ∈ C we have

dH(x, y) = dH(C).

We have already seen an optimal linear code for the Plotkin bound:

Definition 5.13. Let q be a prime power and r ≥ 2 be a positive integer. Let n = qr−1
q−1

and G be
the r×nmatrix having as columns all vectors in Fr

q up to non-zero scalar multiples. Then C = 〈G〉
is called simplex code.
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Recall that the simplex code C is a [n, r]q linear code. We now show that these codes are indeed
optimal.

Proposition 5.14. Let C be a simplex code then all non-zero codewords ofC have Hamming weight
qr−1.

Thus if we plug in their minimum distance in the Plotkin bound, we get that

dH(C) = qr−1 =
|C|

|C| − 1
n
q − 1

q
=

qr

qr − 1

qr − 1

q − 1

q − 1

q
.

Proof. By definition, a generator matrix G of C has all vectors of Fr
q up to scalar multiples as

columns. If we fix any non-zero codeword c ∈ C, there exists a non-zero vector m ∈ Fr
q with

mG = c.

We observe that for every non-zero m ∈ Fr
q there exist qr−1−1

q−1
many non-zero vectors h ∈ Fr

q

up to scalar multiples, such that 〈m,h〉 = 0.

Thus, there are qr−1−1
q−1

columns h of G such that 〈m,h〉 = 0.
Hence the Hamming weight of c = mG is given by

qr − 1

q − 1
− qr−1 − 1

q − 1
= qr−1.

Example 5.15. Let us consider q = 2 and r = 3. Then a generator matrix of the simplex code is
given by

G =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .

We can check that all rows of G have Hamming weight dH(C) = qr−1 = 4, and also any
non-zero combination of the rows has weight 4.

These are also essentially all optimal codes for the Plotkin bound. Indeed, according to the
following result of Wood [20], we have that any constant weight code must be an ℓ fold of a
simplex code.

Theorem 5.16. Let q be a prime power and n a positive integer. Any constant weight code C ⊆ Fn
q

is an ℓ fold of simplex codes.

The proof of this theorem is unfortunately too complicated for a introductory course in coding
theory. Instead we look at an example:

Example 5.17. Let us consider q = 2 and n = 6. A two fold simplex code can be constructed by
taking a generator matrix of a [3, 2]2 simplex code

G =

(
1 0 1
0 1 1

)
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a permutation matrix P ∈ Fn×n
q and considering the generator matrix

G′ =
(
G G

)
P.

For example

G′ =

(
1 0 0 1 1 1
0 1 1 1 1 0

)
which has constant weight 4.

Exercise 5.18. Let q be a prime power. For which lengths n does there exist a constant weight
code of length n?

Exercise 5.19. Let q be a prime power. For which minimum distances d does there exist a constant
weight code of minimum distance d?

5.2 Asymptotic Bound
Let us formulate the Plotkin bound in an asymptotic manner. For this, we again consider k, d as a
function in n and set

δ = min
n→∞

d(n)

n
, R = lim sup

n→∞

k(n)

n

to be the relative minimum distance and the asymptotic information rate.
We can formulate the asymptotic Plotkin bound as the existence of a infinite family of codes as

Theorem 5.20. Let (Cs)s be a sequence of [ns, ks, ds]q linear code. Then

R ≤ max{1− qδ

q − 1
, 0}.

Unfortunately we do not have the right tools yet to prove this asymptotic formula, but we may
come back to it later.
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5.3 Comparison of the Bounds

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

δ

R

q = 2

Singleton bound

Hamming bound

GV bound

Plotkin bound

We recall that the Gilbert-Varshamov bound is a lower bound (and an existence bound), while
the Singleton, the Hamming and the Plotkin bound are all upper bounds on dH(C). Thus, we can
see that the Singleton bound is by far the loosest lower bound, for rates R < 0.3, the Hamming
bound provides a tighter lower bound than the Plotkin bound, but for a short range, roughly R ∈
(0.35, 0.5) we have that the Plotkin bound is tighter.

5.4 Quick overview of other bounds
These are not all the bounds we have in coding theory, some other famous bounds are the Elias-
Bassalygo bound and the Griesmer bound. We give here only a short overview of their statements.

The Griesmer bound is a lower bound, this time on n, when k, dH(C) are given.

Theorem 5.21 (Griesmer Bound). Let C be an [n, k, d]q linear code. Then

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

The proof requires residual codes, which we might encounter at a later point.

The Elias-Bassalygo bound can be seen as an upper bound on the size of the code qk, when we
fix its length n and minimum distance dH(C).

Theorem 5.22 (Elias-Bassalygo Bound). Let C be an [n, k, d]q linear code. Then

qk ≤ qnd
qn

|BH(q, n, r, 0)|
,
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where r = q−1
q

(
n−

√
n2 − qnd

q−1

)
− 1.

To prove this, we first need to prove the Johnson bound. In fact, the value

Jq(δ) =
q − 1

q

(
1−

√
1− qδ

q − 1

)

is known as the Johnson radius.

• The Plotkin bound states [n, k, d]q linear codes are such that d ≤ qk

qk−1
n q−1

q
.

• Codes attaining this bound are called constant weight codes.

• Simplex codes are constant weight codes.

• Any constant weight code is an ℓ fold of simplex codes.
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6 Construction of New Codes
Given a [n, k, d]q linear code C, there are many different ways to construct a new code C ′, with new
parameters. In the following we will see how to extend, shorten, puncture, concatenate, add and
multiply codes (and many more constructions).

6.1 Extension of Codes
We may recall the definition of a single parity-check code, which is

C = {c = (c1, . . . , ck,−
k∑

i=1

ci) | ci ∈ Fq}.

The single parity-check code is a [n, n− 1, 2]q linear code, generated by

G =

 −1

Idk
...

−1


and the dual code is the repetition code.

The encoding is thus simply given bym = (m1, . . . ,mk) ∈ Fk
q 7→ c = (m1, . . . ,mk,−

∑k
i=1mi).

We may use a similar idea, to extend a code, instead of m.

Definition 6.1. Let C be a [n, k, d]q linear code. The extended code of C is defined as

Ĉ = {(c1, . . . , cn,−
n∑

i=1

ci) | (c1, . . . , cn) ∈ C}.

Example 6.2. Let us consider the code

C = {(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 0, 1), (1, 1, 0), (1, 2, 2), (2, 0, 2), (2, 1, 1), (2, 2, 0)} ⊂ F3
3.

Then,

Ĉ = {(0, 0, 0, 0),(0, 1, 2, 0), (0, 2, 1, 0), (1, 0, 1, 1),
(1, 1, 0, 1), (1, 2, 2, 1), (2, 0, 2, 2), (2, 1, 1, 2), (2, 2, 0, 2)}.

The length of the new set is now n + 1, but is it still a linear code, and what is the new
dimension?

It turns out, that this extension does not change the linearity or the dimension.

Proposition 6.3. Let C be a [n, k, d]q linear code. Then Ĉ is a [n+ 1, k,≥ d]q linear code.
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Proof. Let G ∈ Fk×n
q be a generator matrix of C, i.e., for any c ∈ C, there exists a m ∈ Fk

q such
that mG = c, or equivalently for all j ∈ {1, . . . , n} we have cj =

∑k
i=1migi,j.

We show that a generator matrix of the extended code is then given by

Ĝ =

 −
∑n

j=1 g1,j

G
...

−
∑n

j=1 gk,j

 .

In fact, for any m ∈ Fk
q we have that

mĜ = (
k∑

i=1

migi,1, . . . ,

k∑
i=1

migi,n,−
n∑

j=1

k∑
i=1

migi,j) ∈ Ĉ,

thus 〈Ĝ〉 ⊆ Ĉ.

For the other direction, we observe that for every vector ĉ = (c1, . . . , cn,−
∑n

j=1 cj) ∈ Ĉ, there
exists a m ∈ Fk

q such that ĉ = mĜ, thus Ĉ ⊆ 〈Ĝ〉 and as rk(Ĝ) = k, we get that Ĉ has length n+1
and dimension k.

Clearly, for all c ∈ C we have that wtH(c) ≤ wtH(ĉ), hence we also get

dH(C) ≤ dH(Ĉ).

Exercise 6.4. Given a parity-check matrix H of C, find a formulation for a parity-check matrix Ĥ
of the extended code Ĉ.

Example 6.5. In our previous example, we see that C = 〈G〉 ⊂ F3
3, where

G =

(
1 0 1
0 1 2

)
.

Thus, the extended code Ĉ is generated by

Ĝ =

(
1 0 1 1
0 1 2 0

)
.

Exercise 6.6. Let C ⊂ Fn
2 . Show that, if dH(C) is odd, then dH(Ĉ) = dH(C) + 1.

If we can make codes longer, can we also make them shorter?
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6.2 Puncturing
Clearly, we can just delete a position i ∈ {1, . . . , n} over the whole code and obtain a shorter set.
If we delete the last position, then we return form Ĉ to C.

However, we can also generalize this and puncture in any subset S ⊂ {1, . . . , n}.

Definition 6.7. Let C be an [n, k, d]q linear code and S ⊂ {1, . . . , n} be a subset of size s. The
punctured code in S is then

PS(C) = {(ci)i/∈S | c ∈ C}.

This is the opposite of the projection we have seen for the definition of the information set, i.e.,

CI = {(ci)i∈I | c ∈ C},

i.e.,
PS(C) = CSC .

Clearly, the length of the new set is n−s, but is it still linear and what happens to its dimension?

Proposition 6.8. Let C be an [n, k, d]q linear code and S ⊂ {1, . . . , n} be a subset of size s < d.
Then PS(C) is a [n− s, k,≤ d]q linear code.

Proof. Let G ∈ Fk×n
q be a generator matrix of C. Since PS(C) = CSC , we recall that GSC , i.e., the

columns of G indexed by SC generate the code PS(C).

However, the rank of GSC might apriori drop. With the condition s < d, we ensure that this
does not happen: for any two distinct codewords c 6= c′ ∈ C, we have that dH(c, c′) ≥ d and by
deleting s positions we get

dH(cSC , c′SC ) ≥ d− s > 0,

hence they will not collide and we still have qk distinct codewords, which gives us that the dimen-
sion of PS(C) is k.

Clearly, we must have wtH(c) ≥ wtH(cSc) and hence dH(PS(C)) ≤ dH(C), but we can also
bound it from below. Since we delete s positions of c, we decrease its weight at most by s, i.e.,
wtH(cSC ) ≥ wtH(c)− s, with equality only if S ⊆ suppH(c).

Example 6.9. Let us consider the code of our previous example again, namely Ĉ = 〈Ĝ〉 ⊂ F4
3,

where

Ĝ =

(
1 0 1 1
0 1 2 0

)
.

This code is a [4, 2, 2]3 linear code. By puncturing in S = {4} we recover the code C, i.e.,

PS(Ĉ) = C,

which is a [3, 2, 2]3 linear code.
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If we puncture in s ≥ d = 2, say S ′ = {2, 3}, we might decrease the dimension. In fact, in this
case we get that

ĜS′C =

(
1 1
0 0

)
,

has rank 1 and thus we get that PS′(Ĉ) is a [2, 1, 2]3 linear code.

Exercise 6.10. Is the extended RS code RSq,q+1,k an extension of a code?

6.3 Shortening
There also exists a different method to reduce the length, called shortening and it is in some sense
(actually every sense) the dual of puncturing.

Shortening a code means to puncture a specific subcode of it.

Definition 6.11. Let C be a [n, k, d]q linear code and let S ⊂ {1, . . . , n} be a subset of size s. Let
us consider the subcode

C(S) = {c ∈ C | ci = 0 ∀i ∈ S}.
Then the shortened code in S is given by

SS(C) = PS(C(S)) = C(S)SC .

Since any punctured code is still linear, so is C(S). How will a parity-check matrix for the
shortened code look like?

Lemma 6.12. Let C be a [n, k, d]q linear code and let S ⊂ {1, . . . , n} be a subset of size s. Let
c′ ∈ SS(C), then there exists a codeword c ∈ C such that

ci =

{
c′i if i /∈ S,

0 if i ∈ S

for all i ∈ {1, . . . , n}.

Exercise 6.13. Prove Lemma 6.12.

Lemma 6.14. Let C be a [n, k, d]q linear code and let S ⊂ {1, . . . , n} be a subset of size s. Let
H ∈ F(n−k)×n

q be a parity-check matrix of C and define H ′ = HSC to be the matrix obtained by
deleting all columns of H indexed by S. Then SS(C) = ker(H ′⊤).

Proof. Since c ∈ C we have that cH⊤ = 0 and hence for any c′ ∈ SS(C) we get that c′H ′⊤ = 0,
which implies that SS(C) ⊂ ker(H ′⊤).

For the other direction, let us consider a vector c′ ∈ Fn−s
q with c′H⊤ = 0.We can now construct

a c ∈ C using Lemma 6.12, i.e.,

ci =

{
c′i if i /∈ S,

0 if i ∈ S

for all i ∈ {1, . . . , n}.
Since c′H ′⊤ = 0, we must also get that cH⊤ = 0 and hence c ∈ C, and in turn c′ ∈ SS(C).
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Example 6.15. Let us again consider Ĉ = 〈Ĝ〉 ⊂ F4
3, where

Ĝ =

(
1 0 1 1
0 1 2 0

)
.

Hence Ĝ is a parity-check matrix of Ĉ⊥ and to get a parity-check matrix H ′ of SS′(Ĉ⊥), for S ′ =
{2, 3} we delete the second and third column, getting

H ′ =

(
1 1
0 0

)
.

This parity-check matrix reminds us of how we constructed the generator matrix for the punc-
tured code. In fact, these two notions are dual.

Theorem 6.16. Let C be a [n, k, d]q linear code and let S ⊂ {1, . . . , n} be a subset of size s.

1. SS(C⊥) = (PS(C))⊥, and

2. PS(C⊥) = (SS(C))⊥.

Proof. Let G ∈ Fk×n
q be a generator matrix of C and H ∈ F(n−k)×n

q be a parity-check matrix.
Recall that G is then a parity-check matrix of C⊥ and H is a generator matrix of C⊥.

We have seen that GSC is then a generator matrix for PS(C) and note that GSC is also how we
constructed the parity-check matrix of a shortened code, that is we get the first claim.

For the second claim we can argue similarly, as SS(C) = ker(H⊤
SC ) and thus,HSC is a generator

matrix of SS(C)⊥. Since H is a generator matrix of C⊥, by the same construction as before, we get
that HSC is a generator matrix of PS(C⊥), implying the second claim.

Now we can quickly deduce what happens to the code parameters.

Corollary 6.17. Let C be a [n, k, d]q linear code and let S ⊂ {1, . . . , n} be a subset of size
s < dH(C⊥). Then SS(C) is a [n− s, k − s,≥ d]q linear code.

The corollary follows directly from the parameters of the punctured code and Theorem 6.16,
as

SS(C)⊥ = PS(C⊥),

thus if s < dH(C⊥), then PS(C⊥) has parameters [n − s, n − k,≤ dH(C⊥)]q and thus, SS(C) has
parameters [n− s, k − s,≥ d]q.

Example 6.18. Let us again consider Ĉ = 〈Ĝ〉 ⊂ F4
3, where

Ĝ =

(
1 0 1 1
0 1 2 0

)
.
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We have seen that puncturing Ĉ in S ′ = {2, 3} gives us P ′
S(Ĉ) = 〈G′〉, where

G′ =

(
1 1
0 0

)
.

This means that
PS′(Ĉ) = {(0, 0), (1, 1), (2, 2)} ⊂ F2

3.

Since Ĝ is a parity-check matrix of Ĉ⊥ we get a parity-check matrix H ′ of SS′(Ĉ⊥) as

H ′ =

(
1 1
0 0

)
.

Clearly,
〈G′〉 = PS′(Ĉ) = 〈H ′〉 = (SS′(Ĉ⊥))⊥.

Example 6.19. Let α ∈ Fn
q be such that αi 6= αj for all i 6= j and β ∈ (F⋆

q)
n. Let S ⊂ {1, . . . , n}

of size s < n− k + 1, then

PS(GRSq,n,k(α, β)) = GRSq,n−s,k(α
′, β′),

where
α′ = (αi)i ̸∈S, β′ = (βi)i ̸∈S.

By duality of shortening and puncturing, also the shortened GRS code is a GRS code:

SS(GRSq,n,k(α, β)
⊥) = SS(GRSq,n,n−k(α, γ)) = PS(GRSq,n,k(α, β))

⊥

= GRSq,n−s,k(α
′, β′))⊥ = GRSq,n−s,n−s−k(α

′, γ′)),

where

γi = β−1
i

n∏
j=1,j ̸=i

(αi − αj)
−1, γ′ = (γi)i ̸∈S.

6.4 Product of codes
The easiest way to think of combining two codes C1, C2 is to simply put the codewords of C2 after
those of C1 :

Definition 6.20. Let n1, n2 be two positive integers and k1 ≤ n1, k2 ≤ n2 be positive integers. Let
C1 be a [n1, k1]q linear code and C2 be a [n2, k2]q linear code. The product code of C1 and C2 is
given by

C1 × C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2}.

This construction is also called direct sum of C1, C2.
Clearly, the new length is now n1 + n2. What happens to the other parameters?
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Proposition 6.21. Let k1, d1 ≤ n1 and k2, d2 ≤ n2 be positive integers. Let C1 be a [n1, k1, d1]q
linear code and C2 be a [n2, k2, d2]q linear code. The product code C1 × C2 is a [n1 + n2, k1 +
k2,min{d1, d2}]q linear code.

Proof. Let G1 be a generator matrix of C1 and G2 a generator matrix of C2. We first show that
C1 × C2 is linear, by showing that

G =

(
G1 0
0 G2

)
is a generator matrix of C1 × C2.

For any codeword c = (c1, c2) ∈ C1 × C2, there exists a m = (m1,m2) ∈ Fk1+k2
q such that

c = mG.

Indeed, since c1 ∈ C1, there exists a m1 ∈ Fk1
q such that c1 = m1G1 and similarly, since

c2 ∈ C2, there exists a m2 ∈ Fk2
q such that c2 = m2G2, thus 〈G〉 = C1 × C2.

Since rk(G1) = k1 and rk(G2) = k2, we immediately get that rk(G) = k1 + k2.

Finally, for the minimum distance, we note that the minimal weight codeword c1 of C1 is such
that (c1, 0) ∈ C1 × C2 with wtH((c1, 0)) = d1 and similarly, the minimal weight codeword c2 of C2
is such that (0, c2) ∈ C1 × C2 with wtH((0, c2)) = d2.

Since any codeword (x, y) has weight ≥ d1 and in the same way ≥ d2, we get that

dH(C1 × C2) = min{d1, d2}.

Example 6.22. let C1 be a [3, 2, 2]3 linear code generated by

G1 =

(
1 0 2
0 1 1

)
and C2 be a [2, 1, 2]3 linear code generated by G2 =

(
1 2

)
.

Their product code C1 × C2 is then generated by

G =

1 0 2 0 0
0 1 1 0 0
0 0 0 1 2

 .

6.5 Plotkin Sum
This construction is also called (u, u+ v) construction, which is a huge spoiler.

Definition 6.23. Let n be a positive integer and k1, k2 ≤ n be positive integers. Let C1 be a [n, k1]q
linear code and C2 be a [n, k2]q linear code. The Plotkin sum of C1 and C2 is given by

C1 +P C2 = {(c1, c1 + c2) | c1 ∈ C1, c2 ∈ C2}.
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The length of the new set is again clear: 2n.

Proposition 6.24. Let n be a positive integer and k1, k2 ≤ n be positive integers. Let C1 be a
[n, k1]q linear code and C2 be a [n, k2]q linear code. The Plotkin sum C1 +P C2 is a [2n, k1 + k2]q
linear code.

Exercise 6.25. Prove Proposition 6.24 by writing the generator matrix of C1 +P C2 in terms of the
generator matrix of C1 and the generator matrix of C2.

Exercise 6.26. Let n be a positive integer and k1, k2 ≤ n be positive integers. Let C1 be a [n, k1]q
linear code and C2 be a [n, k2]q linear code.

Is it true that C1 +P C2 = C2 +P C1?

Example 6.27. Let us consider the repetition code C, which is a [n, 1, n]q linear code. Then

C +P C = 〈
(
1 · · · 1 1 · · · 1
0 · · · 0 1 · · · 1

)
〉

is a [2n, 2, n]q linear code.

An important property of such Plotkin sum codes is the following.

Proposition 6.28. Let n be a positive integer and k1, k2, d1, d2 ≤ n be positive integers. Let C1
be a [n, k1, d1]q linear code and C2 be a [n, k2, d2]q linear code. The Plotkin sum C1 +P C2 has
minimum Hamming distance min{2d1, d2}.

Proof. Let c1 ∈ C1 and c2 ∈ C2 be the minimum weight codewords. Clearly, (c1, c1+0) ∈ C1+P C2
and wtH((c1, c1)) = 2d1. We also have that (0, c2) ∈ C1 +P C2 and thus

dH(C1 +P C2) ≤ min{2d1, d2}.

Let us consider now any c = (x, x + y) ∈ C1 +P C2, which is non-zero. If y = 0, then x 6= 0
and wtH(c) ≥ 2d1.

If y 6= 0, then to get a non-zero codeword c, we must have that if yi 6= 0, then either xi 6= 0 or
yi 6= −xi. Thus, the weight of c is at least wtH(y) ≥ d2.

If we know a decoding algorithm Dec1 for C1 and a decoding algorithm Dec2 for C2, we can
then devise a decoding strategy for their Plotkin sum:

Assume we received the vector r = (r1, r2) ∈ F2n
q .

1. Use Dec1 to decode r1 and recover the codeword c1 ∈ C1.

2. Compute r′2 = r2 − c1 = c2 + e and decode r′2 using Dec2 to recover c2.

3. Recover the sent codeword c = (c1, c1 + c2).
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6.6 Sum of Codes
The usual definition of a sum of sets would be the following construction.

Definition 6.29. Let n be a positive integer and k1, k2 ≤ n be positive integers. Let C1 be a [n, k1]q
linear code and C2 be a [n, k2]q linear code. The sum of C1 and C2 is given by

C1 + C2 = {c1 + c2 | c1 ∈ C1, c2 ∈ C2}.

Exercise 6.30. Is it true that C1 +P C2 = C1 × (C1 + C2)?

Proposition 6.31. Let n be a positive integer and k1, k2, d1, d2 ≤ n be positive integers. Let C1 be
a [n, k1, d1]q linear code and C2 be a [n, k2, d2]q linear code. The sum C1 + C2 is a [n,≤ k1 + k2,≤
min{d1, d2}]q linear code.

Proof. We first show that C1 + C2 is generated by G =

(
G1

G2

)
, where C1 = 〈G1〉, C2 = 〈G2〉.

Clearly, for any codeword c = (c1+c2) there exists a message vectorm = (m1+m2) ∈ Fk1+k2
q

such that c = mG, as we can choose m1,m2 such that c1 = m1G and c2 = m2G.

However, the dimension of C1 + C2 is then the rank of G, which might not be k1 + k2, in fact,
think of the case G1 = G2.

If rk(G) = k1 + k2 − ℓ, then there are ℓ rows of G2 which are linearly dependent to the rows
of G1, and their linear combinations give qℓ codewords which live in both C1 and C2.

Hence,
dim(C1 + C2) = rk(G)− ℓ = rk(G)− dim(C1 ∩ C2).

The minimum distance is harder to control. We know however, that C1, C2 ⊆ C1 + C2 as
subcodes and hence dH(C1 + C2) ≤ min{d1, d2}.

Example 6.32. Let us consider F5 and the two RS codes generated by

G1 =

(
1 1 1 1
1 2 3 4

)
, G2 =

1 1 1 1
2 3 4 1
4 4 1 1

 .

Then C1 is a [4, 2, 3]5 linear code and C2 is a [4, 3, 2]5 linear code. The sum C = C1 + C2 is a
[4, 4, 1]5 linear code and thus C = F4

5.

6.7 Intersection of Codes
Given two codes C1 and C2 we can also consider their intersection, i.e., codewords which live in
both codes.
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Definition 6.33. Let n be a positive integer and k1, k2 ≤ n be positive integers. Let C1 be a [n, k1]q
linear code and C2 be a [n, k2]q linear code. The intersection of C1 and C2 is given by

C1 ∩ C2 = {c | c ∈ C1, c ∈ C2}.

Proposition 6.34. Let n be a positive integer and k1, k2, d1, d2 ≤ n be positive integers. Let C1
be a [n, k1, d1]q linear code and C2 be a [n, k2, d2]q linear code. The intersection C1 ∩ C2 is a
[n,≤ min{k1, k2},≥ max{d1, d2}]q linear code.

Proof. We show that H =

(
H1

H2

)
has C1 ∩ C2 as kernel, for C1 = ker(H⊤

1 ) and C2 = ker(H⊤
2 ).

This is again clear, as any c ∈ C1 ∩ C2 must be such that cH⊤
1 = 0 and cH⊤

2 = 0.
Since C1 ∩ C2 is a subcode of both C1 and C2 we easily get the dimension ≤ min{k1, k2} and

the minimum distance dH(C1 ∩ C2) ≥ max{d1, d2}.

However, we can also say more: the dimension of C1 ∩ C2 is given by the rank-nullity theorem
as

dim(C1 ∩ C2) = n− rk(H) = n− (2n− (k1 + k2)− ℓ′).

As before we have that ℓ′ denotes the rank deficiency of H , implying that there are codewords
living in both 〈H1〉 = C⊥

1 and 〈H2〉 = C⊥
2 .

Thus,
dim(C1 ∩ C2) = (k1 + k2)− n+ dim(C⊥

1 ∩ C⊥
2 ).

We can see a clear connection to the sum of C1 and C2. In fact, these two constructions are dual
to each other:

Proposition 6.35. Let n be a positive integer and k1, k2 ≤ n be positive integers. Let C1 be a
[n, k1]q linear code and C2 be a [n, k2]q linear code. Then (C1 ∩ C2)⊥ = C⊥

1 + C⊥
2 .

Proof. Let C1 = ker(H1)
⊤ and C2 = ker(H2)

⊤. We have seen that C1 ∩ C2 = ker

((
H1

H2

)⊤
)

and

hence

(C1 ∩ C2)⊥ =

〈(
H1

H2

)〉
= C⊥

1 + C⊥
2 .

Note that the hull of a [n, k]q linear code C, i.e., H(C) = C ∩ C⊥ is also a code intersection.
Thus, we can write the dual of the hull as a sum:

H(C)⊥ = C⊥ + C.
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6.8 Expansion Codes
If a code C is Fqm-linear, for some prime power q and positive integer m, it is also Fq-linear. Thus,
we can also think of it as a code in Fmn

q .
For this, let us recall the expansion map.

Definition 6.36. Let Γ = {γ0, . . . , γm−1} be a basis of Fqm over Fq. Then the expansion map with
respect to Γ is given by

expΓ : Fqm → Fm
q ,

a =
m−1∑
i=0

aiγi 7→ expΓ(a) = (a0, . . . , am−1).

Definition 6.37. Let q be a prime power, m a positive integer and k ≤ n be positive integers. Let
C be an [n, k]qm linear code. The expanded code of C is

Γ(C) = {expΓ(c) ∈ Fn
q | c ∈ C}.

By abuse of notation, we will introduce writing Γ(x) instead of expΓ(x) for any x ∈ Fn
qm .

Clearly, the expanded code depends on the choice basis Γ.

Example 6.38. Let us consider F4 = F2(α) where α2 = α + 1.
Let us consider the code C generated by

G =

(
1 0 α
0 1 α + 1

)
,

that is

C = {(0, 0, 0), (1, 0, α), (α, 0, α + 1), (α + 1, 0, 1),

(0, 1, α + 1), (1, 1, 1), (α, 1, 0), (α + 1, 1, α)

(0, α, 1), (1, α, α + 1), (α, α, α), (α + 1, α, 0)

(0, α + 1, α), (1, α + 1, 0), (α, α + 1, 1), (α + 1, α + 1, α + 1)}.

Let us choose the polynomial basis Γ = {1, α}. Then

Γ(C) = {(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 1, 1), (1, 1, 0, 0, 1, 0),
(0, 0, 1, 0, 1, 1), (1, 0, 1, 0, 1, 0), (0, 1, 1, 0, 0, 0), (1, 1, 1, 0, 0, 1)

(0, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 1), (1, 1, 0, 1, 0, 0)

(0, 0, 1, 1, 0, 1), (1, 0, 1, 1, 0, 0), (0, 1, 1, 1, 1, 0), (1, 1, 1, 1, 1, 1)}.

If we however choose the basis Γ′ = {α, 1} we get

Γ′(C) = {(0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 1, 0), (1, 0, 0, 0, 1, 1), (1, 1, 0, 0, 0, 1),
(0, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 0, 0), (1, 1, 0, 1, 1, 0)

(0, 0, 1, 0, 0, 1), (0, 1, 1, 0, 1, 1), (1, 0, 1, 0, 1, 0), (1, 1, 1, 0, 0, 0)

(0, 0, 1, 1, 1, 0), (0, 1, 1, 1, 0, 0), (1, 0, 1, 1, 0, 1), (1, 1, 1, 1, 1, 1)}.
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We can easily check that these are not the same codes, e.g. (1, 0, 0, 0, 0, 1) ∈ Γ(C) but (1, 0, 0, 0, 0, 1) 6∈
Γ′(C)

Proposition 6.39. Let q be a prime power, m a positive integer and k, d ≤ n be positive integers.
Let C be an [n, k, d]qm linear code. The expanded code Γ(C) is a [mn,mk,≤ dm]q linear code.

Proof. Recall that expΓ is an isomorphism between Fq-vector spaces. Hence we keep the Fq

linearity, getting a linear code and since

|C| = |Γ(C)| = qmk.

With this we immediately get length mn and dimension mk.

Clearly, for any a ∈ Fqm we have that wtH(a) ≤ wtH(Γ(a)) ≤ mwtH(a).

As in the previous example the minimum distance stayed the same, let us also show an example
where it increases.

Example 6.40. Let us consider F4 = F2(α) where α2 = α + 1.
Let us consider the code C generated by

G =

(
1 0 α α + 1
0 1 α + 1 α

)
,

that is

C = {(0, 0, 0, 0), (1, 0, α, α + 1), (α, 0, α + 1, 1), (α + 1, 0, 1, α),

(0, 1, α + 1, α), (1, 1, 1, 1), (α, 1, 0, α + 1), (α + 1, 1, α, 0)

(0, α, 1, α + 1), (1, α, α + 1, 0), (α, α, α, α), (α + 1, α, 0, 1)

(0, α + 1, α, 1), (1, α + 1, 0, α), (α, α + 1, 1, 0), (α + 1, α + 1, α + 1, α + 1)}.

We have dH(C) = 3.
Let us choose the polynomial basis Γ = {1, α}. Then

Γ(C) = {(0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1, 1, 1), (0, 1, 0, 0, 1, 1, 1, 0), (1, 1, 0, 0, 1, 0, 0, 1),
(0, 0, 1, 0, 1, 1, 0, 1), (1, 0, 1, 0, 1, 0, 1, 0), (0, 1, 1, 0, 0, 0, 1, 1), (1, 1, 1, 0, 0, 1, 0, 0)

(0, 0, 0, 1, 1, 0, 1, 1), (1, 0, 0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 0, 1, 0, 1), (1, 1, 0, 1, 0, 0, 1, 0)

(0, 0, 1, 1, 0, 1, 1, 0), (1, 0, 1, 1, 0, 0, 0, 1), (0, 1, 1, 1, 1, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1)}.

In this case we get dH(Γ(C)) = 4.

We can also write down a generator matrix for Γ(C) in terms of the generator matrix of C.
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Proposition 6.41. Let Γ = {γ0, . . . , γm−1} be a basis of Fqm over Fq. Let C be a [n, k]qm linear

code with generator matrix G =

g1...
gk

 , where gi ∈ Fn
qm are the rows of G.

Then a generator matrix Γ(G) of Γ(C) is given by

Γ(G) =



Γ(g1γ0)
...

Γ(g1γm−1)
...

Γ(gkγ0)
...

Γ(gkγm−1)


∈ Fmk×mn

q .

That is, every entry gi,j of G is expanded to its multiplication matrix MΓ(gi,j).

Proof. Let us take a random codeword c ∈ C, then there exists a m ∈ Fk
qm such that c = mG.

Since Γ(c) = (Γ(c1), . . . ,Γ(cn)), it will be enough to consider Γ(ci). We want to show that

Γ(ci) = Γ(m)

MΓ(g1,i)
...

MΓ(gk,i)

 ,

which implies Γ(C) ⊆ 〈Γ(G)〉.

From c = mG, we get that ci =
∑k

j=1mjgj,i for all i ∈ {1, . . . , n}. Thus

Γ(ci) = Γ(
k∑

j=1

mjgj,i) =
k∑

j=1

Γ(mjgj,i)

=
k∑

j=1

Γ(mj)MΓ(gj,i) = Γ(m)

MΓ(g1,i)
...

MΓ(gk,i)

 ,

where we have used that to keep linearity, we have to involve the multiplication matrix, that is: if
a, b ∈ Fqm we have Γ(ab) = Γ(a)MΓ(b).

At the same time, we recall that Γ(C) has dimension mk, thus it will be enough to show that
Γ(G) has full rank km.

We can see this by considering G in systematic form, i.e., there exists an information set I ,
with GI = Idk. Let us denote by ei the standard vector of length k having all entries zero except
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for the ith entry being 1. Then,

Γ(GI) =



Γ(e1γ0)
...

Γ(e1γm−1)
...

Γ(ekγ0)
...

Γ(ekγm−1)


=



e′1
...
e′m
...

e′mk−m
...
e′mk


,

where e′i is the standard vector of length mk.

Thus, rk(Γ(G)) = mk and hence Γ(C) = 〈Γ(G)〉.

Exercise 6.42. Write down a parity-check matrix, called Γ(H), of Γ(C) in terms of the parity-check
matrix H of C.

Proposition 6.43. Let q be a prime power, m a positive integer, Γ = {γ0, . . . , γm−1} a basis of Fqm

over Fq. and k ≤ n be positive integers. Let C be an [n, k]qm linear code with generator matrix
G ∈ Fk×n

qm . Then Γ(mG) = Γ(m)Γ(G) for all m ∈ Fk
qm .

Proof. Let m = (m1, . . . ,mk) ∈ Fk
qm and mi =

∑m−1
j=0 mi,jγj , and Γ(G) as in the proof of

Proposition 6.47, then

Γ(m)Γ(G) =
k∑

i=1

m−1∑
j=0

mi,jΓ(giγj)

=
k∑

i=1

Γ(
m−1∑
j=0

mi,jgiγj)

=
k∑

i=1

Γ(migi)

= Γ(
k∑

i=1

migi) = Γ(mG).

Exercise 6.44. Let H be a parity-check matrix of C and Γ(H) a parity-check matrix of Γ(C). Show
that Γ(Hy⊤) = Γ(H)Γ(y)⊤ for all y ∈ Fn

qm .

93



6.9 Subfield Subcodes
Given a linear code C ⊂ Fqm for some prime power q and positive integer m, we can also consider
the subcode living only in a subfield Fq.

Definition 6.45. Let q be a prime power, m a positive integer and k ≤ n be positive integers. Let
C be an [n, k]qm linear code. The subfield subcode of C is

CFq = {c ∈ Fn
q | c ∈ C} = C ∩ Fn

q .

By Proposition 6.35 we have that

CFq = (C ∩ Fn
q )

⊥ = C⊥ + (Fn
q )

⊥ = C⊥ + {0} = C⊥.

This is true thinking of CFq ⊂ Fn
qm , i.e., as a Fqm-linear subspace. However, when considering

subfield subcodes, we are more interested in seeing them as Fq-linear subspace and in this case we
have that

C⊥
Fq

= C⊥ ∩ Fn
q .

With this special subcode construction, we still have the same length, but in general we should
reduce the dimension (recall that C, seen as Fq-linear code, has dimension mk), and due to the fact
CFq ⊂ C we have that dH(CFq) ≥ dH(C). For the dimension, we can say even more:

Proposition 6.46. Let n be a positive integer and k, d ≤ n be positive integers. Let C be a [n, k, d]q
linear code. The subfield subcode CFq is a [n,≥ km− n(m− 1),≥ d]q linear code.

Proof. Let us consider the map

ϕ : Fqm → Fqm ,

x 7→ xq − x.

We clearly get that Fq = ker(ϕ). We can extend this componentwise to consider

ϕ : Fn
qm → Fn

qm ,

(x1, . . . , xn) 7→ (xq1 − x1, . . . , x
q
n − xn).

Hence dim(ker(ϕ)) = n and thus, dim(im(ϕ)) = nm− n. If we restrict ϕ to C, i.e., ϕ|C : C → Fn
qm

we get that ker(ϕ|C) are exactly the codewords which live in Fn
q , i.e., CFq . We also get that im(ϕ|C)

has Fqm- dimension at most nm− n, thus

dimFq(ker(ϕ|C)) ≥ dimFq(C)− nm+ n = mk − nm+ n.

If we consider again the expanded code of C, we can see a connection between Γ(C) and CFq :
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Proposition 6.47. Let C be a [n, k]qm linear code. Let H ∈ F(n−k)×n
qm be a parity-check matrix of

C, then
CFq = ker

((
Γ(h1)

⊤ · · · Γ(hn)
⊤)) .

Thus, a subfield subcode is a shortened expanded code Γ(C). This is now also independent on
the choice of basis Γ.

Proof. By definition the subfield subcode of ker(H⊤) is the Fq-kernel of H⊤, that is any c ∈ Fn
q

such that Hc⊤ = 0.

Let c ∈ kerFq(H
⊤), that is c ∈ CFq , then

n∑
i=1

hj,ici = 0

for all j ∈ {1, . . . , n− k}.
Fix the basis Γ = {1, a, . . . , am−1} of Fqm over Fq. Then we can write

hj,i =
m−1∑
ℓ=0

aℓhj,i,ℓ,

with hj,i,ℓ ∈ Fq.

Then

Γ(
n∑

i=1

hj,ici) = Γ(0) = (0, . . . , 0)

and since ci ∈ Fq, we get

Γ(
n∑

i=1

hj,ici) =
n∑

i=1

Γ(hj,i)ci = (
n∑

i=1

hj,i,0ci, . . . ,
n∑

i=1

hj,i,m−1ci) = (0, . . . , 0)

for all j ∈ {1, . . . , n− k}.
Thus,

(
Γ(h1)

⊤ · · · Γ(hn)
⊤) c⊤ =



h1,1,0 h1,n,0
...

...
h1,1,m−1 h1,n,m−1

... · · · ...
hn−k,1,0 hn−k,n,0

...
...

hn−k,1,m−1 hn−k,n,m−1



c1...
cn

 = 0.

The other direction works in the same way.
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6.9.1 Alternant Codes

We have seen that GRS codes are optimal in terms of their error-correction capability. Unfortu-
nately, they are limited in their length by n ≤ q + 1. And so over the binary, no non-trivial MDS
codes exist. However, we can consider subfield subcodes of MDS codes, getting alternant codes.

Definition 6.48. Let α ∈ Fn
qm have pairwise distinct entries, β ∈ (F⋆

qm)
n. The alternant code is

then defined as
Aq,m,n,k(α, β) = (GRSqm,n,k(α, β)Fq .

Corollary 6.49. The alternant code Aq,m,n,k(α, β) is a [n,≥ n−m(n− k),≥ n− k + 1]q linear
code.

The dimension directly follows from being a subfield subcode of a [n, k]qm linear code:

dim(Aq,m,n,k(α, β)) ≥ km− n(m− 1),

and the minimum distance of a subfield subcode is at least the minimum distance of the original
code, in our case dH(GRSqm,n,k(α, β)) = n − k + 1. Alternant codes are not optimal, we get as
rate

R′ ≥ km− nm+ n

n
= 1−m+ logq(n)R,

where R = k
n

is the rate of the original GRS code, and their relative minimum distance stays the
same

δ′ ≥ δ =
d

n
=
n− k + 1

n
∼ 1−R.

Thus, we are far away from being optimal with respect to the Singleton bound δ′ ≤ 1 − R′.
However, the minimum distance is usually much larger than d.

Example 6.50. Let us consider F9 = F3(α) where α2 = α + 1. Let us consider the [3, 2, 2]9 RS
code C generated by

G =

(
1 1 1
1 2 α

)
and with parity-check matrix

H =
(
α + 1 2α + 1 1

)
.

Let Γ = {1, α}, then

Γ(H) =

(
1 1 1 2 1 0
1 2 2 0 0 1

)
.

Note that ker(Γ(H)⊤) = Γ(C). The subfield subcode CF3 is the kernel of ϕ|C → F3
9 and consists

only of CF3 = {(0, 0, 0), (1, 1, 1), (2, 2, 2)}, which is a [3, 1, 3]3 linear code.
The same code is generated by taking the parity-check matrix

(
Γ(h1)

⊤ Γ(h2)
⊤ Γ(h3)

⊤) = (1 1 1
1 2 0

)
.
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6.9.2 Goppa Codes

One special subclass of alternant codes are Goppa codes introduced by Goppa [5]. There are
several different definitions for this class of codes, in particular there exist the algebraic geometry
version of the Goppa codes and the so-called "classical" Goppa codes. We will stick to the classical
version.

Proposition 6.51. Let g(x) ∈ Fqm [x] be a polynomial of degree s ≥ 1. Let α ∈ Fn
qm consist of

pairwise distinct entries. If g(αi) 6= 0 for all i ∈ {1, . . . , n}, then there exist hi(x) ∈ Fqm [x] with

(x− αi)hi(x) ≡ 1 mod g(x).

In fact,

hi(x) = −g(x)− g(αi)

x− αi

g(αi)
−1.

Exercise 6.52. Prove Proposition 6.51.

Example 6.53. Let us consider F4 = F2(a) with a2 = a + 1 and g(x) = 1 + ax + x2. We may
choose α = (0, 1, a, a+ 1) since g(x) is irreducible.

Using Proposition 6.51, we get

h1(x) =
1 + ax+ x2 + 1

x
1−1 = a+ x,

h2(x) =
1 + ax+ x2 + a

x+ 1
a−1 = a+ (1 + a)x,

h3(x) =
1 + ax+ x2 + 1

x+ a
1−1 = x,

h4(x) =
1 + ax+ x2 + a

x+ (1 + a)
a−1 = (1 + a) + (1 + a)x.

Definition 6.54. Let g(x) ∈ Fqm [x] be a polynomial of degree s ≥ 1. Let α ∈ Fn
qm consist of

pairwise distinct entries, such that g(αi) 6= 0 for all i ∈ {1, . . . , n}. The Goppa code with Goppa
polynomial g(x) is then defined as

Γq,m,n(g(x), α) = {c ∈ Fn
q |

n∑
i=1

cihi(x) ≡ 0 mod g(x)}.

Example 6.55. Let us consider again F4 = F2(a) with a2 = a + 1 and g(x) = 1 + ax + x2.
We may choose α = (0, 1, a, a + 1) with h1(x) = a + x, h2(x) = a + (1 + a)x, h3(x) = x and
h4(x) = (1 + a) + (1 + a)x.

The only c ∈ F4
2 which is such that

∑n
i=1 cihi(x) ≡ 0 mod g(x) is c = (0, 0, 0, 0).

Let us thus consider g(x) = 1+ax,with α = (0, 1, a) and h1(x) = a, h2(x) = 1+a, h3(x) = 1.
Thus, Γ2,2,3(1 + ax, (0, 1, a)) = {(0, 0, 0), (1, 1, 1)}.
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The drop in the degree of g(x) resulted in a larger dimension.

Proposition 6.56. Let g(x) ∈ Fqm [x] be a polynomial of degree s ≥ 1. Let α ∈ Fn
qm consist of

pairwise distinct entries with g(αi) 6= 0 for all i ∈ {1, . . . , n}. The alternant code Aq,m,n,n−s(α, β),
for

βi = g(αi)
∏
i ̸=j

(αi − αj)
−1

is exactly the Goppa code Γq,m,n(g(x), α).

Proof. First, let us denote by g(α)−1 = (g(α1)
−1, . . . , g(αn)

−1).
The Goppa code consists of all the c ∈ Fn

q such that
∑n

i=1 cihi(x) ≡ 0 mod g(x). Since
deg(hi) < s, this implies

n∑
i=1

cihi(x) = −
n∑

i=1

g(αi)
−1ci

g(x)− g(αi)

x− αi

= 0

is the zero polynomial.

We may write out the polynomial

g(x)− g(αi)

x− αi

= gs(x
s−1 + xs−2αi + · · ·+ αs−1

i )

+ gs−1(x
s−2 + · · ·+ αs−2

i ) + g2(x+ αi) + g1.

By setting the coefficients of xi to 0 in
∑n

i=1 cihi(x), we hence get that c ∈ Γq,m,n(g(x), α) if and
only if Hc⊤ = 0, where

H =


gs · · · gs

gs−1 + α1gs · · · gs−1 + αngs
...

...
g1 + α1g2 + · · ·+ αs−1

1 gs · · · g1 + αng2 + · · ·+ αs−1
n gs

 diag(g(α)−1)

=


gs 0 · · · 0
gs−1 gs · · · 0

... . . . ...
g1 g2 · · · gs




1 · · · 1
α1 · · · αn
...

...
αs−1
1 · · · αs−1

n

 diag(g(α)−1) = SVqm,n,s(α, g(α)
−1).

Since S is an invertible matrix, we get that H generates the same code as
1 · · · 1
α1 · · · αn
...

...
αs−1
1 · · · αs−1

n


g(α1)

−1

. . .
g(αn)

−1

 ∈ Fs×n
qm .
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We can now easily check that for γ = g(α)−1 we get

βi = g(αi)
∏
i ̸=j

(αi − αj)
−1

and thus the claim.

Since the Goppa code is a subfield subcode we can immediately bound its dimension and
minimum distance.

Corollary 6.57. Let g(x) ∈ Fqm [x] be a polynomial of degree s ≥ 1. Let α ∈ Fn
qm consist of

pairwise distinct entries with g(αi) 6= 0 for all i ∈ {1, . . . , n}. The Γq,m,n(g(x), α) Goppa code is
a [n,≥ n−ms,≥ s+ 1]q linear code.

6.10 Trace Codes
There exists also another way to go from an extension field to a subfield and keeping the linearity,
i.e., by using the trace. For this we recall the trace function:

Definition 6.58. Let Fqm and Fq be the finite field with qm, respectively q, elements. The trace
map is defined as

TrFqm/Fq : Fqm → Fq,

α 7→
m−1∑
i=0

αqi .

For convenience (and when there is no ambiguity to which subfield we are going) we will
simply write Tr instead of TrFqm/Fq .

Definition 6.59. Let C be an [n, k]qm linear code. The trace code is then defined as

Tr(C) = {(Tr(c1), . . . ,Tr(cn)) | (c1, . . . , cn) ∈ C}.

Since Tr : Fqm → Fq the new set now lives in Fn
q .

Proposition 6.60. Let C be an [n, k, d]qm linear code. The trace code Tr(C) is then a [n,≤ mk,≤
d]q linear code.

Proof. Recall that dimFq(C) = km and Tr is a Fq-linear map, thus

Tr|C : C → Fn
q

has im(Tr|C) = Tr(C) and is of dimension ≤ mk.

For the minimum distance, we observe that Tr(0) = 0 and thus, wtH(Tr(c)) ≤ wtH(c).
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How can we express the generator matrix and the parity-check matrix of Tr(C) in terms of
G,H the generator, respectively the parity-check matrix of C? For this we first need to introduce
the dual basis.

Proposition 6.61. Let Γ = {γ1, . . . , γm} be a basis of Fqm over Fq. Then there exists a unique
basis Γ′ = {γ′1, . . . , γ ′m} such that

Tr(γiγ′j) =

{
1 if i = j,

0 else.

This Γ′ is called dual basis to Γ.

The uniqueness and existence follow from the fact that given a non-degenerate bilinear map,
any basis has a dual basis.

Corollary 6.62. Let Γ be a basis of Fqm over Fq and dual basis Γ′. Let x ∈ Fqm . Then we may
write

x =
m∑
i=1

Tr(γ′ix)γi.

This follows directly as the decomposition x =
∑m

i=1 xiγi with xi ∈ Fq is unique. Thus, for
any i ∈ {1, . . . ,m} we have that

Tr(γ′ix) =
m∑
j=1

Tr(γ′iγj)xj = xi.

Similarly, for a vector x ∈ Fn
qm , we may write

x =
m∑
i=1

γiTr(γ′ix).

Proposition 6.63. Let C be an [n, k]qm linear code and Γ be a basis of Fqm over Fq with dual basis

Γ′. Let G =

g1...
gk

 be a generator matrix of C. Then Tr(C) is generated by



Tr(γ′1g1)
...

Tr(γ′mg1)
...

Tr(γ′1gk)
...

Tr(γ′mgk)


.
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Exercise 6.64. Prove Proposition 6.63.

Example 6.65. Let us consider F4 = F2(α) with α2 = α + 1. Let C = 〈G〉 where

G =

(
0 1 α α + 1 0 1
α 1 α + 1 α 1 0

)
.

then Tr(C) is generated by 
0 0 1 1 0 0
0 1 1 0 0 1
1 0 1 1 0 0
1 1 0 1 1 0

 .

The trace code and the subfield subcode are also dual to each other! First, we have to differen-
tiate whether we take the inner product in Fq, i.e., 〈·, ·〉Fq or in Fqm , i.e., 〈·, ·〉Fqm

.

Theorem 6.66 (Delsarte Theorem). Let C be an [n, k]qm linear code. Then (CFq)
⊥ = Tr(C⊥).

Proof. Let u ∈ C⊥ and v ∈ CFq , then

〈Tr(u), v〉Fq =
n∑

i=1

Tr(ui)vi =
n∑

i=1

Tr(uivi) = Tr(〈u, v〉Fqm
) = 0,

where we have used that vi ∈ Fq. Hence we get the first direction: Tr(C⊥) ⊆ (CFq)
⊥.

For the other direction, let us consider u ∈ (Tr(C⊥))⊥ and v ∈ C⊥, λ ∈ Fqm . Then

Tr(λ〈u, v〉Fqm
) = Tr(λ

n∑
i=1

uivi) =
n∑

i=1

Tr(λuivi).

Since u ∈ (Tr(C⊥))⊥ is in Fn
q , we get

Tr(λ〈u, v〉Fqm
) =

n∑
i=1

uiTr(λvi) = 〈u,Tr(λv)〉Fqm
.

Since C⊥ is Fqm linear, we have λv ∈ C⊥ and thus for all λ ∈ Fqm we get

Tr(λ〈u, v〉Fqm
) = 0.

Thus 〈u, v〉Fqm
= 0, as Tr(λx) = 0 for all λ implies x = 0.

Hence (Tr(C⊥))⊥ ⊆ (C⊥)⊥ = C. As (Tr(C⊥))⊥ ⊂ Fn
q , we also get

(Tr(C⊥))⊥ ⊂ C ∩ Fn
q = CFq .
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6.11 Power Codes
One construction has been used several times to distinguish structured codes (e.g. RS codes) from
random codes, breaking cryptosystems trying to hide this code structure. This construction is
called square code, or in more generality, power code.

Definition 6.67. Let x, y ∈ Fn
q . Let us denote by ∗ the componentwise product or Schur product

between x and y, i.e.,
x ∗ y = (x1y1, . . . , xnyn).

The Schur product has many nice properties, in particular, it is symmetric and bilinear. That
means

1. For λ ∈ Fq we have (λx) ∗ y = x ∗ (λy) = λ(x ∗ y).

2. For z ∈ Fn
q we have (x+ z) ∗ y = x ∗ y + z ∗ y and x ∗ (y + z) = x ∗ y + x ∗ z.

3. We have x ∗ y = x ∗ y.

We can thus also consider this operation on codes, leading to

Definition 6.68. Let C1 be an [n, k1]q linear code and C2 be an [n, k2]q linear code. The Schur
product code of C1 and C2 is defined as

C1 ∗ C2 = 〈{c1 ∗ c2 | c1 ∈ C1, c2 ∈ C2}〉.

If we apply this to the same code, we get the square code of C, defined as

C(2) = 〈{c ∗ c′ | c, c′ ∈ C}〉.

Example 6.69. Let us consider the [3, 2]3 linear code C generated by G =

(
1 0 2
0 1 1

)
. That is

C = {(0, 0, 0), (1, 0, 2), (2, 0, 1), (0, 1, 1), (1, 1, 0), (2, 1, 2), (0, 2, 2), (1, 2, 1), (2, 2, 0)}.

Then the square code is given by
C(2) = F3

3.

Proposition 6.70. Let C be generated by G =

g1...
gk

 ∈ Fk×n
q . Then C(2) is generated by

G(2) =


g1 ∗ g1

...
g1 ∗ gk

...
gk ∗ gk

 ∈ F(
k+1
2
)×n

q .
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Proof. Let c ∈ C(2), then there exist c1, c2 ∈ C such that c = c1 ∗ c2. Hence we have m1,m2 ∈ Fk
q

such that c1 = m1G =
∑k

i=1m1,igi and c2 = m2G =
∑k

i=1m2,igi.
Thus,

c = m1G ∗m2G = (
k∑

i=1

m1,igi,1 ·
k∑

i=1

m2,igi,1, . . . ,
k∑

i=1

m1,igi,n ·
k∑

i=1

m2,igi,n)

= (
k∑

i,j=1

(gi,1gj1)(m1,im2,j), . . . ,
k∑

i,j=1

(gi,ngjn)(m1,im2,j))

=MG(2),

where M = (m1,1m2,1,m1,1m2,2, . . . ,m1,km2,k).

Proposition 6.71. Let g1, . . . , gk ∈ Fn
q be linearly independent over Fq. Then for x ∈ (F⋆

q)
n, also

x ∗ g1, . . . , x ∗ gk are linearly independent.

Exercise 6.72. Prove Proposition 6.71.

Using this fact, it was shown that with high probability (for increasing n), random codes have
square codes of maximal dimension:

Theorem 6.73. Let C be a random [n, k]q linear code. Then with high probability

dim(C(2)) = min

{(
k + 1

2

)
, n

}
.

However, for more structured code the square code dimension is much lower.

Proposition 6.74. Let α ∈ Fn
q be such that αi 6= αj for i 6= j and β, β′ ∈ (F⋆

q)
n. Let k′ =

min{n, 2k − 1}. Then

GRSq,n,k(α, β) ∗ GRSq,n,k(α, β
′) = GRSq,n,k′(α, β ∗ β′).

Exercise 6.75. Prove Proposition 6.74.

Thus,

dim(GRSq,n,k(α, β)
(2)) = min{n, 2k − 1} ≤ min

{(
k + 1

2

)
, n

}
,

which is the expected dimension of a square code of a random code.

Exercise 6.76. Let C be self-orthogonal. Show that (1, . . . , 1) ∈ (C(2))⊥.

We can also generalize this idea and take larger powers.

Definition 6.77. Let C be a [n, k]q linear code. The ℓth power code of C is defined as

C(ℓ) = 〈{c1 ∗ · · · ∗ cℓ︸ ︷︷ ︸
ℓ times

| c1, . . . , cℓ ∈ C}〉.
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We can construct again a generator matrix taking as rows all g1 ∗ · · · ∗ gℓ︸ ︷︷ ︸
ℓ times

, where gi are rows of

G. The dimension of a ℓth power code of a random code is now a bit more complicated, but has
been shown to be with high probability

dim(C(ℓ)) =

(
k + ℓ− 1

ℓ

)
,

for ℓ ∈ {0, . . . , q}.

Exercise 6.78. Find a description of GRSq,n,k(α, β)
(ℓ), for ℓ ∈ {0, . . . , q}.

6.12 Concatenation
As last construction, we want to consider concatenation of codes. This construction was introduced
by Forney [4] and is encoding a message vector twice:

Definition 6.79. Let C1 be a [n1, k1, d1]q linear code, called inner code and C2 be an [n2, k2, d2]qk1
linear code, called outer code. The concatenated code C2 ◦C1 is then defined through the following
encoding: Let Γ be a basis of Fqk1 over Fq

Fk1k2
q

exp−1
Γ→ Fk2

qk1

C2→ Fn1

qk1

expΓ→ Fk1n2
q

C1→ Fn1n2
q

(expΓ(u1), . . . , expΓ(uk2)) 7→ (u1, . . . , uk2) 7→ ((uG2)1, . . . , (uG2)n2)

7→ (expΓ((uG2)1), . . . ,expΓ((uG2)n2)) 7→ (expΓ((uG2)1)G1, . . . , expΓ((uG2)n2)G1).

Proposition 6.80. Let C1 be a [n1, k1, d1]q linear code and C2 be an [n2, k2, d2]qk1 linear code. The
concatenated code C2 ◦ C1 is a [n1n2, k1k2,≥ d1d2]q linear code.

Exercise 6.81. Prove Proposition 6.80.

Example 6.82. Let us consider F4 = F2(α) where α2 = α+1 and the basis Γ = {1, α}. Let C1 be

a [4, 2]2 linear code generated by G1 =

(
1 0 1 0
0 1 1 1

)
and C2 be a [3, 2]4 linear code generated

by G2 =

(
1 0 α
0 1 α + 1

)
.

The concatenated code C2 ◦ C1 is then the encoding map

F4
2 → F2

4 → F3
4 → F6

2 → F12
2 .

If we for example want to encode the message (1, 0, 0, 1) then we first compute exp−1
Γ (1, 0) =

1, exp−1
Γ (0, 1) = α. Thus, we encode (1, α) using G2 getting (1, α, α+1). We can then expand the

outer codeword to get (1, 0, 0, 1, 1, 1) and encode each expanded vector using G1 to get

(1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1).
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The concatenated code can be thought of as a subcode of C1 × · · · × C1︸ ︷︷ ︸
n2 times

, as the resulting code-

word lives in C1 × · · · × C1, but we are not able to see all possible codewords, only those, which
are codewords of expΓ(C2).

Exercise 6.83. Can you find an outer code C2, such that C2 ◦ C1 = C1?

In order to decode, we have to reverse the chain, i.e., we first apply the decoder of the inner
code C1, then we apply exp−1

Γ , then the decoder of C2 and finally, we apply expΓ. For simplicity, let
us denote the decoding of Ci by C−1

i , then we get the decoding process as

Fn1n2
q

C−1
1→ Fk1n2

q

exp−1
Γ→ Fn1

qk1

C−1
2→ Fk2

qk1

expΓ→ Fk1k2
q .

Summary

Construction C1 C2 → C
Extension [n, k, d]q [n+ 1, k ≥ d]q
Puncturing [n, k, d]q [n− s, k,≤ d]q
Shortening [n, k, d]q [n− s, k − s,≥ d]q
Product [n1, k1, d1]q [n2, k2, d2]q [n1 + n2, k1 + k2,min{d1, d2}]q
Plotkin sum [n, k1, d1]q [n, k2, d2]q [2n, k1 + k2,min{2d1, d2}]q
Sum [n, k1, d1]q [n, k2, d2]q [n,≤ k1 + k2,≤ min{d1, d2}]q
Intersection [n, k1, d1]q [n, k2, d2]q [n,≤ min{k1, k2},≥ max{d1, d2}]q
Expansion [n, k, d]qm [mn,mk,≤ dm]q
Subfield Subcode [n, k, d]qm [n,≥ km− nm+ n,≥ d]q
Trace [n, k, d]qm [n,≤ mk,≤ d]q
Square [n, k]q [n, k′]q
Concatenation [n1, k1, d1]q [n2, k2, d2]qk1 [n1n2, k1k2,≥ d1d2]q
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7 Equivalence of Codes
In mathematics we often ask when to objects are "essentially" the same. Let us clarify what that
means for codes.

Let us consider the following two codes over F3: C = 〈G〉 and C ′ = 〈G′〉.

G =

(
1 0 2
0 1 1

)
, G′ =

(
1 1 0
1 0 1

)
.

Then

C = {(0, 0, 0), (1, 0, 2), (2, 0, 1), (1, 1, 0), (2, 1, 2), (0, 1, 1), (0, 2, 2), (1, 2, 1), (2, 2, 0)}
C ′ = {(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 1, 0), (1, 2, 2), (1, 0, 1), (2, 0, 2), (2, 1, 1), (2, 2, 0)}

While they are not the same code, their points seem to be just rotate, and all still have the same
distance among each other.

0
1

2 0

1

2
0

1

2

c1
c2

c 3

C

0
1

2 0

1

2
0

1

2

c1
c2

c 3

C ′

In fact, we two codes are essentially the same, if we can map one code linearly to the other, in
such a way that the distances between the codewords stays the same.

Definition 7.1. A linear isometry for a distance function d is a linear map φ : Fn
q → Fn

q , such that
for all x, y ∈ Fn

q we have that
d(x, y) = d(φ(x), φ(y)).

Clearly, when dealing with a distance which is induced from a weight wt, then we can equiva-
lently define a linear isometry φ to be such that for all x ∈ Fn

q

wt(x) = wt(φ(x)).

Proposition 7.2. The linear isometries with respect to some distance function form a group with
respect to the composition.

Exercise 7.3. Prove Proposition 7.2 and observe that any linear isometry is a Fq-isomorphism.

In our case, we are interested in the linear isometries for the Hamming metric.
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Proposition 7.4. The linear isometries for the Hamming metric are given by the semidirect product
(F⋆

q)
n ⋊ Sn, where Sn denotes the symmetric group of degree n.

Proof. For the first direction, we note that φ ∈ (F⋆
q)

n ⋊ Sn is linear and can be written as matrix
multiplication, where φ(x) = xDP, for D = diag(d1, . . . , dn) a diagonal matrix with entries
di ∈ F⋆

q and P an n× n permutation matrix belonging to the permutation σ. Thus,

φ(x1, . . . , xn) = (dσ−1(1)xσ−1(1), . . . , dσ−1(n)xσ−1(n))

and if xi 6= 0, then xσ(i) 6= 0 and by multiplying with a non-zero scalar, we still have non-zero. On
the other hand, if xi = 0, then xσ(i) = 0 and it remains zero after multiplying with some non-zero
dj.

For the other direction, let us assume that φ is a linear isometry and denote by ei the standard
vector having all zero entries but a 1 in position i. These vectors clearly span the whole Fn

q and
hence to define a linear map φ, it is enough to know where φ sends the basis ei. In fact, any x ∈ Fn

q

is such that x =
∑n

i=1 eiλi for λ1, . . . , λn ∈ Fq. By the linearity of φ we thus get

φ(x) =
n∑

i=1

φ(ei)λi.

For all ei = (0, . . . , 0, 1, 0 . . . , 0) of Hamming weight 1, we must have

φ(ei) ∈ {λ(i)ej(i) | λ(i) ∈ F⋆
q, j(i) ∈ {1, . . . , n}}.

If we assign each of the ei for all i ∈ {1, . . . , n}, then there exists a permutation σ, which sends
i 7→ j(i), and scalar multiples dj(i) = λ(i).

In fact, if the map i 7→ j(i) is not a permutation, then there exist i 6= i′ with j(i) = j(i′)
and hence φ(ei + ei′) is some multiple of ej(i). This, however, contradicts that φ is an isometry:
wtH(ei + ei′) = 2, whereas wtH(λej(i)) = 1.

Matrices of the form DP, for D a diagonal matrix and P a permutation matrix are also called
monomial matrices and φ ∈ (F⋆

q)
n ⋊ Sn monomial transforms.

We might sometimes be interested in the semi-linear isometries instead, as in fact we also have
the automorphisms of the finite field itself.

The semi-linear isometries for the Hamming metric are then given by (F⋆
q)

n⋊ (Aut(Fq)×Sn).

For codes, we thus define two codes to be equivalent, if there exists some (semi-) linear isom-
etry between them.

However, if we have a linear isometry between two codes, i.e., let C, C ′ be two [n, k]q linear
codes and there exists a linear map φ : C → C ′ which preserves the weight, that is for all c ∈ C we
have wtH(c) = wtH(φ(c)), we might apriori get other maps than the monomial transforms.

MacWilliams in her thesis [10] showed that this is not the case.
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Theorem 7.5 (Extension Theorem). Let C, C ′ be two [n, k]q linear codes and there exists a linear
map φ : C → C ′ which preserves the weight, then there exists a linear isometry µ : Fn

q → Fn
q with

µ|C = φ.

That is, any linear weight preserving map that we may find between two codes can be extended
to a linear isometry of the whole ambient space.

Definition 7.6. Let C, C ′ be [n, k]q linear codes. We say that C is equivalent to C ′ if there exists a
φ ∈ (F⋆

q)
n ⋊ (Aut(Fq)× Sn) such that φ(C) = C ′.

We say that C is linearly equivalent to C ′ if there exists a φ ∈ (F⋆
q)

n ⋊ Sn such that φ(C) = C ′.

We say that C is permutation equivalent to C ′ if there exists a φ ∈ Sn such that φ(C) = C ′.

The equivalence between the two codes also gives rise to a condition for their generator matri-
ces.

Proposition 7.7. Let C, C ′ be [n, k]q linear codes with generator matrices G, respectively G′. If
C is linearly equivalent to C ′, then there exist matrices S ∈ GLq(k), D = diag(d1, . . . , dn) with
di ∈ F⋆

q and a n× n permutation matrix P , such that

SGDP = G′.

This also includes the case of permutation equivalence by setting di = 1 for all i ∈ {1, . . . , n}.

Exercise 7.8. Prove Proposition 7.7.

Example 7.9. Let us consider F4 = F2(α) where α2 = α + 1.
Let C = 〈G〉 where

G =

(
1 0 α
0 1 α + 1

)
.

Then we may apply the permutation σ = (1, 2) to get

GP =

(
0 1 α
1 0 α + 1

)
and 〈GP 〉 is permutation equivalent to C.

If we also apply the diagonal matrix D = diag(1, α, α + 1), we get

GPD =

(
0 α 1
1 0 α

)
with 〈GPD〉 is linearly equivalent to 〈GP 〉 and to C.

Finally, we can also apply the non-trivial automorphism of F4, namely x 7→ x2, to get

G′ =

(
0 α + 1 1
1 0 α + 1

)
,

with 〈G′〉 is equivalent to 〈GP 〉, 〈GPD〉 and C.
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We also note that our definition of systematic form, i.e., there exists an information set I such
that we may write

GI = Idk, GIC = A,

for some A ∈ Fk×(n−k)
q , can now be read as: any code is permutation equivalent to a code with

generator matrix
G′ =

(
Idk A

)
.

On the other hand we also have linear isometries from C to itself.

Definition 7.10 (Automorphism Group). Let C be an [n, k]q linear code. The automorphism group
of C is given by the linear isometries that map C to C :

Aut(C) = {φ ∈ (F⋆
q)

n ⋊ Sn | φ : C → C}.

If φ is a linear isometry from C to C ′, then φ−1 is a linear isometry from C ′ to C, which gives
us an easy way to construct automorphisms: let φ, ψ : C → C ′ be two linear isometries, then
ψ−1 ◦ φ ∈ Aut(C).

On the other hand, having φ : C → C ′ and ψ : C → C to linear isometries, then φ ◦ ψ is again
a linear isometry between C and C ′.

Exercise 7.11. Let φ ∈ Aut(C) be a permutation. Show that φ ∈ Aut(C⊥).

Just like the hull, the automorphism group of a random linear code is with high probability
trivial [9], i.e., Aut(C) = {id}.

Exercise 7.12. Give the automorphism group of C = 〈(1, 0, 0), (0, 1, 1)〉 ⊆ F3
2.

Exercise 7.13. Let φ ∈ Aut(C) be a permutation. Show that φ ∈ Aut(C ∩ C⊥).

Proposition 7.14. Let C1, C2 be two permutation equivalent [n, k, d]q linear codes. Then C⊥
1 is

permutation equivalent to C⊥
2 .

Proof. Let σ ∈ Sn be such that σ(C1) = C2 and denote by P the permutation matrix with respect
to σ. Let G1, G2 be generator matrices for C1, respectively C2, then there exist a S ∈ GLq(k) such
that SG1P = G2.

Let H1, H2 be the parity-check matrices for C1, respectively C2. Since G2H
⊤
2 = 0, we also

have G1PH
⊤
2 = G1(H2P

⊤)⊤ = 0. This implies that H2P
⊤ is a parity-check matrix for C1 and

hence H2 = S ′H1P , for some S ∈ GLq(n− k). Thus, σ(C⊥
1 ) = C⊥

2 .

Exercise 7.15. Let C, C ′ be linearly equivalent codes. Show that C⊥ is linearly equivalent to C ′⊥.
Hint: Use the fact that GH⊤ = 0 and SGPD = G′.

For two permutation equivalent codes, their hulls are also permutation equivalent.
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Proposition 7.16. Let C1, C2 be two permutation equivalent [n, k, d]q linear codes. Then H(C1) is
permutation equivalent to H(C2).

Proof. Let σ ∈ Sn be such that σ(C1) = C2 and denote by P the permutation matrix with respect
to σ. Let G1 be a generator matrix for C1 and H1 be a parity-check matrix for C1.

Recall that G1P is a generator matrix for C2 and H1P is a parity-check matrix for C2. Finally,
we have that

H(C2) = ker

((
G2

H2

)⊤
)

= ker

((
G1P
H1P

)⊤
)

= ker

((
G1

H1

)⊤
)
P.

To determine whether two codes are equivalent is important, especially when claiming one has
found a new construction of a code. In this case, one should first check whether this new family of
codes is not equivalent to an already known family.

However, determining whether two codes are equivalent or not is not an easy task. We might
instead look for invariants, i.e., properties of a code C that remain the same for φ(C).

7.1 Invariants
There are several parameters or properties of equivalent codes which remain invariant. Clearly,
equivalent codes have the same length, dimension and minimum distance.

But we can also find more such invariants.

Definition 7.17 (Weight Enumerator). Let C ⊆ Fn
q be a linear code. For any w ∈ {1, . . . , n}, let

us denote by Aw(C) = |{c ∈ C | wtH(c) = w}| the weight enumerator of C.

Proposition 7.18. Let C1, C2 ⊆ Fn
q be linearly equivalent codes, then for all w ∈ {1, . . . , n} we

have that
Aw(C1) = Aw(C2).

Proof. Since C1 is linearly equivalent to C2, there exists some isometry φ : C1 → C2. Thus, if we
consider the set

Sw(C1) = {c ∈ C1 | wtH(c) = w}
then

φ(Sw(C1)) = {φ(c) | c ∈ C1,wtH(c) = w}
= {c′ ∈ C2 | wtH(c′) = w} = Sw(C ′)

and hence they have the same size.

Note that the other direction is not true: We can have codes with the same weight enumerator,
which are not linearly equivalent!
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Example 7.19. Let us consider F4 = F2(α) with α2 = α+1. The two codes C1 = 〈G1〉, C2 = 〈G2〉
with

G1 =

(
0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 1 1 α

)
, G2 =

(
0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 1 1 α + 1

)
have the same weight enumerators. In fact, all codewords of C1, respectively C2, either have no
zero, 4 zeros in {1, 2, 3, 4}, 3 zeros in {5, 6, 7}, 2 zeros in {8, 9} or 1 zero in {10}, but no mixed
zeros between these index sets. Thus,

A0(C1) = A0(C2) = 1,

A1(Ci) = A2(Ci) = A3(Ci) = A4(Ci) = A5(Ci) = 0,

A6(C1) = A6(C2) = 3,

A7(C1) = A7(C2) = 3,

A8(C1) = A8(C2) = 3,

A9(C1) = A9(C2) = 3,

A10(C1) = A10(C2) = 3.

However, there is no linear equivalence between C1 and C2. To see this, let us assume that there
exists a φ ∈ (F⋆

q)
n ⋊ Sn, which is such that φ(C1) = C2. Such φ would need to send the weight

7 codewords of C1 to the weight 7 codewords of C2, that is if (1, 1, 1, 1, 0, 0, 0, 1, 1, α) = x and
(1, 1, 1, 1, 0, 0, 0, 1, 1, α + 1) = y, then φ(x) ∈ {y, αy, (α + 1)y}.

If φ(x) = y, then φ would be a permutation, except for the index which gets sent to y10 =
α + 1, and the index which sends x10 somewhere, i.e., if φ = DP, for D = diag(d1, . . . , dn), P a
permutation matrix belonging to the permutation σ ∈ Sn, then d10 6= 1 and dσ−1(10) 6= 1.

The same φ also needs to send the codewords of weight 6 to each other. Here the two sets are
the same for C1, C2, implying that φ can only have d5 = · · · = d10, a contradiction.

The cases φ(x) ∈ {αy, (α + 1)y} work similarly.

Another invariant are the generalized weights. For this, we need to introduce the support of a
code.

Definition 7.20 (Support of a Code). Let C be a [n, k, d]q linear code. The support of C is defined
as

SuppH(C) = {i ∈ {1, . . . , n} | ∃c ∈ C : ci 6= 0}.

Clearly, for a non-degenerate code, the support will be full, i.e., {1, . . . , n}, however, as soon
as we go to subcodes of C, this will change. Similar to how the weight of a vector is the size of its
support, we may define the weight of a code as the size of its support.

Definition 7.21. Let C be an [n, k, d]q linear code. The weight of C is given by

wtH(C) = |SuppH(C)|.
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Again, if C is non-degenerate then wtH(C) = n.

Clearly, the weight of a code is also an invariant for code equivalence: if C is linearly equivalent
to C ′ then wtH(C) = wtH(C ′).

We may now consider the smallest weights of any subcode:

Definition 7.22. Let C be an [n, k, d]q linear code and let r ∈ {1, . . . , k}. The rth generalized
weight of C is given by

dr(C) = min{wtH(D) | D ⊂ C, dim(D) = r}.

If r = 1, we are asking for the smallest weight of any c ∈ C, i.e., the first generalized weight
d1(C) is the minimum distance dH(C).

On the other hand, if r = k, we are asking for the weight of the whole code, i.e., dk(C) =
wtH(C).

Example 7.23. Let C = 〈G〉 ⊂ F4
2, where

G =

1 0 0 1
0 1 0 0
0 0 1 1

 .

Then d1 = dH(C) = 1 as D1 = 〈(0, 1, 0, 0)〉 has the smallest weight wtH(D1) = 1. d2 = 3 as
D2 = 〈(0, 1, 0, 0), (0, 0, 1, 1)〉 has the smallest weight wtH(D2) = 3 and finally d3 = wtH(C) = 4.

Exercise 7.24. Show that generalized weights are strictly increasing, that is for r ∈ {1, . . . , k−1}
we have dr(C) < dr+1(C).

Proposition 7.25. Let C1, C2 be [n, k, d]q linear codes, which are linearly equivalent.
For all r ∈ {1, . . . , k} we have that

dr(C1) = dr(C2).

Proof. Let φ ∈ (F×
q )

n ⋊ Sn be such that φ(C1) = C2 and let D be any subcode of C1, then φ(D) is
a subcode of C2.

As wtH(D) = wtH(φ(D)), we immediately get

dr(C1) = min{wtH(D) | D ⊂ C1, dim(D) = r}
= min{wtH(φ(D)) | φ(D) ⊂ φ(C1), dim(φ(D)) = r}
= dr(φ(C1)) = dr(C2).

A last invariant is the size of the automorphism group.
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Proposition 7.26. Let C1, C2 be two linearly equivalent [n, k, d]q linear codes. Then

|Aut(C1)| = |Aut(C2)|.

Proof. If φ ∈ (F×
q )

n ⋊ Sn is such that φ(C1) = C2, then for any ψ ∈ Aut(C1) we have that

ψ′ = φ ◦ ψ ◦ φ−1 ∈ Aut(C2).

7.2 Closure
Given two linearly equivalent codes, we can construct two new codes, which are now permutation
equivalent.

For this we introduce the closure of a code.

Definition 7.27. Let C be an [n, k]q linear code, let α ∈ Fq be a primitive element and denote by
λ = (1, α, . . . , αq−2) ∈ Fq−1

q . The closure of C is given by the Kronecker product λ⊗ C.

The new code is now of length n(q − 1) and still of dimension k. In fact, if G is a generator
matrix of C, then λ⊗G is a generator matrix of λ⊗ C.

Proposition 7.28. Let C1, C2 be two linearly equivalent [n, k]q linear codes. Then λ⊗C1 is permu-
tation equivalent to λ⊗ C2.

Proof. Let φ = DP, with D = diag(d1, . . . , dn) and P a n × n permutation matrix, such that
φ(C1) = C2.

If G1 =
(
g⊤1 · · · g⊤n

)
is a generator matrix for C1 then

λ⊗G1 =
(
g⊤1 αg⊤1 · · · αq−2g⊤1 · · · g⊤n αg⊤n · · · αq−2g⊤n

)
is a generator matrix of λ⊗ C1.

We note that multiplying with di is a permutation in F⋆
q , that is σi : F⋆

q → F⋆
q, x 7→ xdi can

be seen as σi ∈ Sq−1. Thus, multiplying column gi with di, means (dig⊤i , diαg
⊤
i , . . . , diα

q−2g⊤i ) =
σ(g⊤i , αg

⊤
i , . . . , α

q−2g⊤i ). Hence the scalars di are introducing permutations σi within the n blocks
of length m.

The permutation P instead shifts around these blocks, that is if σ is the permutation corre-
sponding to P and σ sends the index i to j, then we have to send the ith block to the jth block.

Thus,

Q =

P1

. . .
Pn

 (Idq−1 ⊗ P ) ∈ Sn(q−1)

is such that (λ⊗G1)Q is a generator matrix of λ⊗ C2.
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The problem of finding a permutation between two random codes can be solved in quasi-
polynomial time, using a reduction to the Graph Isomorphism (GI) problem and Babai’s quasi-
polynomial time solver for GI [1].

This works only with high probability, as it requires the code to have a trivial hull.

When first reducing linearly equivalent codes to two permutation equivalent codes, we cannot
reduce them further to GI, as the closure of codes is in fact self-orthogonal for q ≥ 4.

Proposition 7.29. If q ≥ 4, then λ⊗ C is self-orthogonal.

Proof. Recall that a code D is self-orthogonal if D ⊆ D⊥, thus H(D) = D. We have also seen
that if D G is a generator matrix of D, then GG⊤ = 0 implies that D is self-orthogonal.

To understand the hull of the closure, we thus have to compute

(λ⊗G)(λ⊗G)⊤ =
(
g⊤1 αg⊤1 · · · αq−2g⊤n

)


g1
αg1

...
αq−2gn

 .

One can easily check that

(λ⊗G)(λ⊗G)⊤ = λλ⊤GG⊤.

While we assumed that for random G we have that GG⊤ is full rank, we also have that λλ⊤ =
0, as

λλ⊤ =

q−2∑
i=0

α2i =
∑
β∈F⋆

q

β2 = 0,

by Lemma 3.23, unless q = 2, 3.

On the other hand, if q < 4, then λ⊗ C has with high probability a trivial hull.

Example 7.30. Let us consider F4 = F2(α), where α2 = α + 1. Let C = 〈G〉 ⊂ F3
4, where

G =

(
1 0 α
0 1 1

)
.

Let D = diag(α, 1, α) and P be the permutation matrix corresponding to σ = (1, 3), then

GDP =

(
α + 1 0 α
α 1 0

)
.

Bringing this into systematic form, we get a linearly equivalent code C ′ generated by

G′ =

(
1 0 α + 1
0 1 1

)
.
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Let λ = (1, α, α + 1). The closure of C is generated by

λ⊗G =

(
1 α α + 1 0 0 0 α α + 1 1
0 0 0 1 α α + 1 1 α α + 1

)
,

while the closure of C ′ is generated by

λ⊗G′ =

(
1 α α + 1 0 0 0 α + 1 1 α
0 0 0 1 α α + 1 1 α α + 1

)
.

We can find

Q =



0 0 1
1 0 0 0 0
0 1 0

1 0 0
0 0 1 0 0

0 0 1
0 0 1

0 0 1 0 0
0 1 0



 0 0 Id3

0 Id3 0
Id3 0 0

 ∈ S9

which is such that S(λ⊗G)Q = λ⊗G′, for some S ∈ GLq(k).

Let C, C ′ be [n, k]q linear codes.

• The linear isometries in the Hamming metric are (F⋆
q)

n ⋊ Sn.

• C, C ′ are linearly equivalent if there exists a φ ∈ (F⋆
q)

n ⋊ Sn such that φ(C) = C ′.

• C, C ′ are permutation equivalent if there exists a φ ∈ Sn such that φ(C) = C ′.

• If C and C ′ are linearly equivalent, then their duals are linearly equivalent.

• The automorphism group of C are the linear isometries φ : C → C.

• The weight enumerator Aw(C) is the amount of codewords in C of weight w.

• The weight enumerator is invariant for equivalent codes.

• The rth generalized weight is dr(C) = min{wtH(D) | D ⊆ C, dim(D) = r}.

• The rth generalized weight is invariant for equivalent codes.

• Let α be a primitive element in Fq, the closure of C is (1, α, . . . , αq−2)⊗ C.

• If C is linearly equivalent to C ′, then their closures are permutation equivalent.
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8 Cyclic Codes
Another family of interesting codes is that of cyclic codes. From a practical point of view, cyclic
codes admit a very compact representation and enjoy very efficient decoders.

From the theoretical side, they are full of algebraic structure as we describe next.
First, let us introduce the shift of vectors to the right:

Definition 8.1. Let us define the following map

σ : Fn
q → Fn

q ,

(x0, x1, . . . , xn−1) 7→ (xn−1, x0, . . . , xn−2).

Then σ is called a cyclic shift.

Attention, in this chapter, we will mostly start indexing our vectors at 0 instead of 1.
We may also write σi for some i ≥ 1 to denote

σ ◦ · · · ◦ σ︸ ︷︷ ︸
i times

.

Definition 8.2. Let C be an [n, k]q linear code. Then C is called cyclic if σ(C) = C.

Thus, if for all c ∈ C we have that σ(c) = c′ ∈ C, then also σ2(c) = σ(c′) ∈ C. We conclude
that for any i, we have that σi(c) ∈ C. Clearly, σn(c) = σ0(c) = c, hence the power of σ should
always be treated modulo n.

Clearly all (non-degenerate) trivial codes are cyclic, or equivalent to a cyclic code.

In fact, for k = 0 we have that {0} is cyclic, similarly for k = n we have that Fn
q is cyclic and

if k = 1, then the code generated by (c, . . . , c) is cyclic, similarly for k = n− 1, we have that the

code generated by G =

 1

Idn−1
...
1

 is cyclic.

Example 8.3. Let us consider the code generated by G = (1, 2) in F5, then clearly (2, 1) 6∈ 〈G〉,
and 〈G〉 is not cyclic, however it is equivalent to the code generated by G = (1, 1).

We have also seen some non-trivial cyclic codes:

Lemma 8.4. Let a ∈ Fq be a primitive element and define α = (1, a, . . . , aq−2). Then the primitive
Reed-Solomon code RSq,n,k(α) is cyclic for all k ≤ q − 1.

Proof. Let f(x) ∈ Fq[x] be an arbitrary polynomial of degree deg(f) < k and consider the code-
word

c = (f(1), f(a), . . . , f(aq−2)) ∈ RSq,n,k(α).
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Let us define g(x) = f(aq−2x), then we clearly have that

g(ai) = f(ai−1)

for all i ∈ {0, . . . , q − 2} and hence

c′ = (g(1), g(a), . . . , g(aq−2)) = (f(aq−2), f(1), . . . , f(aq−3)) = σ(c).

Since deg(g) < k, we have that c′ = σ(c) ∈ RSq,n,k(α).

Lemma 8.5. Let α = (0, 1, . . . , p − 1) then for any k ≤ p − 1, we have that the primitive Reed-
Solomon code RSp,n,k(α) is cyclic.

Exercise 8.6. Prove Lemma 8.5 using g(x) = f(x− 1).

Exercise 8.7. Is every Reed-Solomon code a cyclic code?

8.1 Polynomial Representation
To understand the algebraic structure, we associate to any vector (c0, . . . , cn−1) the polynomial
c(x) =

∑n−1
i= cix

i. We have to restrict the degree of c(x) ∈ Fq[x] to be n − 1 and note that
Fq[x]/(x

n − 1) is isomorphic to

{f(x) ∈ Fq[x] | deg(f) < n}.

Proposition 8.8. Let n be a positive integer, then

φ : Fq[x]/(x
n − 1) → Fn

q ,

c(x) =
n−1∑
i=0

cix
i 7→ (c0, . . . , cn−1)

is a Fq-vector space isomorphism.

Exercise 8.9. Prove Proposition 8.8.

Although they are isomorphic as vector spaces, Fq[x]/(x
n − 1) enjoys some more algebraic

structure: it is a ring!

Lemma 8.10. The cyclic shift σ : Fn
q → Fn

q corresponds in Fq[x]/(x
n − 1) to multiplying with x.

Proof. Let φ(c(x)) = (c0, . . . , cn−1) = c, then σ(c) = (cn−1, c0, . . . , cn−2) has the preimage
σ(c)(x) =

∑n−1
i=0 ci−1x

i, where the indices are modulo n. On the other hand

xc(x) =
n−1∑
i=0

cix
i+1 =

n−1∑
i=0

ci−1x
i = σ(c)(x).

117



With this we have a correspondence between ideals in Fq[x]/(x
n − 1) and cyclic codes in Fn

q .

Proposition 8.11. φ introduces a 1-to-1 correspondence between ideals over Fq[x]/(x
n − 1) and

cyclic codes in Fn
q .

Proof. Let us consider an ideal I in Fq[x]/(x
n − 1) generated by g(x) =

∑n−1
i=0 gix

i and denote
φ(g(x)) = g ∈ Fn

q .

Thus any element of I can be written as

a(x) = λ(x)g(x), λ(x) ∈ Fq[x]/(x
n − 1).

If λ(x) =
∑n−1

i=0 λix
i, we can write

a(x) = λ0g(x) + λ1(xg(x)) + · · ·+ λn−1(x
n−1g(x))

and thus
φ(a(x)) = λ0g + λ1σ(g) + · · ·+ σn−1(g).

Since g(x) ∈ I, we have that φ(g(x)) = g ∈ C and since C is cyclic, we have that σi(g) ∈ C,
thus also φ(a(x)) ∈ C for any a(x) ∈ I .

The other direction works similarly.

Even more is true, we can only focus on the factors of (xn − 1) in Fq[x]. We state this lemma
without proof, but this result follows straight from some facts from algebra:

• Fq[x] is a principal ideal ring (meaning each ideal I ⊆ Fq[x] can be written as I = 〈a(x)〉),

• for any ideal I = 〈a(x)〉 ⊆ Fq[x], Fq[x]/I is also a principle ideal ring and any ideal
J = 〈b(x)〉 with b(x) ∈ Fq[x]/I is such that b(x) ∈ Fq[x] with b(x) | a(x).

Lemma 8.12. There is a 1-to-1 correspondence between ideals in Fq[x]/(x
n− 1) and monic (with

leading coefficient equal to 1) divisors of (xn − 1).

Example 8.13. Let us consider F2 and n = 7. We note that

x7 + 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1).

The ideal generated by the polynomial g(x) = x3 + x+ 1 is given by

I = {0,x3 + x+ 1, x4 + x2 + x, x4 + x3 + x2 + 1, x5 + x3 + x2, x5 + x2 + x+ 1,

x5 + x4 + x3 + x, x5 + x4 + 1, x6 + x4 + x3, x6 + x4 + x+ 1, x6 + x3 + x2 + x,

x6 + x5 + x4 + x2, x6 + x2 + 1, x6 + x5 + x4 + x3 + x+ 1, x6 + x5 + x, x6 + x5 + x3 + 1}.
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Hence

φ(I) = {(0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1, 0, 0), (1, 0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 0, 1, 0),
(1, 1, 1, 0, 0, 1, 0), (0, 1, 0, 1, 1, 1, 0), (1, 0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 0, 1), (1, 1, 0, 0, 1, 0, 1),

(0, 1, 1, 1, 0, 0, 1), (0, 0, 1, 0, 1, 1, 1), (1, 0, 1, 0, 0, 0, 1), (1, 1, 0, 1, 1, 1, 1), (0, 1, 0, 0, 0, 1, 1),

(1, 0, 0, 1, 0, 1, 1)}.

We can generate this code using

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

Since we can see cyclic codes as ideals in Fq[x]/(x
n − 1), we can also consider the generator

polynomial g(x) of a cyclic code. As we have seen above, it is enough to consider g(x) which are
such that g(x) | (xn − 1).

Definition 8.14 (Generator Polynomial). The generator polynomial of a cyclic code C ⊂ Fn
q is the

monic generator of minimal degree of the corresponding ideal in Fq[x]/(x
n − 1).

This generator polynomial is in fact unique:

Exercise 8.15. Let g(x) be a polynomial in Fq[x] with g(x) | (xn − 1). If 〈g(x)〉 = 〈g′(x)〉 for
some g′(x) ∈ Fq[x], show that g′(x) = λg(x) for some λ ∈ F⋆

q.

In our previous example, we considered g(x) = x3+x+1, a factor of (x7−1) and constructed
a code of dimension 7 − 3 = 4. Additionally, the generator matrix in our example has a lot of
structure, it is built as

G =


φ(g(x))
φ(xg(x))

...
φ(xn−deg(g)g(x))

 =


g

σ(g)
...

σn−deg(g)(g)

 .

This is true in general:

Theorem 8.16. Let C be an [n, k]q linear cylcic code. Then there exists a generator c ∈ C, such
that c, σ(c), . . . , σk−1(c) generate C.

Proof. Let us consider a generator matrix G of C in systematic form. Without loss of generality,
we may assume G =

(
A Idk

)
. Thus, there exists a codeword c ∈ C (e.g. the first row of G)

which has zeros in the last k − 1 positions.

c = (c0, . . . , cn−k, 0 . . . , 0).
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Note that c, σ(c), . . . , σk−1(c) are all linearly independent, as stacked together we get the matrix

G′ =


c0 · · · cn−k 0 · · · 0

0 c0 · · · cn−k
. . . ...

... . . . . . . . . . 0
0 · · · 0 c0 · · · cn−k


which has full rank k.

Thus 〈G′〉 = C and c is a generator of C.

The described generator c is such that c(x) =
∑n−1

i=0 cix
i has degree deg(c) ≤ n − k and this

polynomial turns out to be a generator for φ−1(C).

Exercise 8.17. Let C be an [n, k]q linear cylcic code. Let c ∈ C be a generator. Show that
〈φ−1(c)〉 = φ−1(C) in Fq[x]/(x

n − 1),

Hence, given a factor g(x) of (xn − 1), we know how to construct a generator matrix G for the
code φ(〈g(x)〉), which is circulant.

Definition 8.18. Let A ∈ Fk×n
q have rows ai for i ∈ {1, . . . , k}. Then A is called circulant, if

ai = σ(ai−1), or equivalently ai = σi−1(a1).

Hence the matrix A is completely determined by a single row, e.g. a1. This has important
benefits, e.g. in storage.

Corollary 8.19. Let g(x) ∈ Fq[x] be a factor of xn − 1. Then the corresponding cyclic code
C = φ(〈g(x)〉 is a [n, n− deg(g)]q linear code.

Exercise 8.20. How many cyclic codes over F3 of length 4 exist?

8.2 Duality
How will duals of cyclic codes behave? We start by observing the behavior of the cyclic shift in an
inner product.

Lemma 8.21. Let x, y ∈ Fn
q , then 〈x, σ(y)〉 = 〈σ−1(x), y〉.

Proof. We write this out as

〈x, σ(y)〉 =
n−1∑
i=0

xiyi+1 =
n−1∑
i=0

xi−1yi = 〈σ−1(x), y〉.
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Example 8.22. Let us consider again F2 and n = 7 and the code generated by

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

We may bring this in systematic form to get
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 .

Its dual code is then generated by

H =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1


and we can see that if c′ = (1, 1, 1, 0, 0, 1, 0) the rows ofH consist of σi(c′). Thus also C⊥ is cyclic.

Theorem 8.23. The dual of a cyclic code is cyclic.

Proof. Let C be a cyclic code and let c ∈ C, c′ ∈ C⊥ be arbitrary. Then due to Lemma 8.21, we get

〈c, σ(c′)〉 = 〈σ−1(c), c′〉

and since σ−1(c) ∈ C, we get for any c ∈ C, c′ ∈ C⊥ that 〈c, σ(c′)〉 = 0, that is σ(c′) ∈ C⊥.

We can also describe C⊥ knowing the generator polynomial of C.

Definition 8.24. Let f(x) ∈ Fq[x] be a polynomial of degree d, i.e., f(x) =
∑d

i=0 fix
i. The

reciprocal f̃(x) of f(x) is obtained by reversing the order of the coefficients of f(x), that is

f̃(x) = xdf(1/x)

or equivalently φ(f(x)) = (f0, . . . , fd) then φ(f̃(x)) = (fd, . . . , f0).

Example 8.25. Let us consider again q = 2, n = 7 and h(x) = x4+x2+x+1, then the reciprocal
of h(x) is given by

h̃(x) = x4 + x3 + x2 + 1.

Theorem 8.26. Let g(x), h(x) be two polynomials in Fq[x] of degree n − k, respectively k, with
g(x)h(x) = xn − 1. Then their respective codes are dual. That is φ(〈g(x)〉)⊥ = φ(〈h̃(x)〉).
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Proof. Let us denote C = φ(〈g(x)〉) and C ′ = 〈h̃(x)〉). We first note that since g(x)h(x) = xn−1,
we get

deg(g) + deg(h) = deg(g) + deg(h̃) = n.

Thus,
dim(C) + dim(C ′) = n

and we are left with showing their orthogonality.

Let deg(h) = k. If k = 0, then h(x) = h̃(x) = 1 and g(x) = xn − 1 and their codes
C ′ = Fn

q , C = {0} are clearly dual.

Let us assume k ≥ 1 denote by

c = φ(g(x)) = (g0, . . . , gn−k, 0 . . . , 0),

c′ = φ(h̃(x)) = (hk, . . . , h0, 0 . . . , 0).

By Theorem 8.16, we know that C is generated by c, σ(c), . . . , σk−1(c) and C ′ is generated by
c′, σ(c′), . . . , σn−k−1(c′).

It is enough to show that any element of the basis of C, say σi(c), is orthogonal to a basis of C ′,
say σj(c′).

Let us assume that 0 ≤ i < k, 0 ≤ j < n− k and j ≥ i (the case j < i works similarly).
Then,

〈σi(c), σj(c′)〉 = 〈c, σj−i(c′)〉
= gj−ihk + gj−i+1hk−1 + · · ·+ gj−i+kh0,

where we set gℓ = 0 if ℓ < k.
We thus get the coefficient of order j − i + k of their product g(x)h(x). Since this is xn − 1

and 0 < j − i+ k < n, we get that 〈σi(c), σj(c′)〉 = 0.

Hence given a generator polynomial g(x) of C, we may compute

h(x) = (xn − 1)/g(x)

and then get C⊥ is generated by h̃(x).

Example 8.27. In our previous example for q = 2, n = 7, and g(x) = x3 + x + 1 we get that
h(x) = x4 + x2 + x+ 1 and hence h̃(x) = x4 + x2 + 1.

The generator matrix of the dual code is thus given by

H =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

Exercise 8.28. Give the generator polynomial of the primitive Reed-Solomon code RSq,n,k(α).
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Exercise 8.29. Let us consider the code C over F3 generated by

G =

(
1 0 1 0
0 1 0 1

)
.

1. Show that C is cyclic.

2. Find the generator polynomial of C.

3. Find the generator polynomial of C⊥.

8.3 Cyclotomic Classes
Let us focus on lengths n, which are coprime to char(Fq). Hence xn − 1 has roots of multiplicity
1 in an extension field Fm

q .

Definition 8.30. Let n be coprime to char(Fq), then if xn−1 = (x−a1) · · · (x−an) with ai ∈ Fqm ,
(and Fqm is the first extension field where this happens) then Fqm is called cyclotomic extension of
Fq.

That is Fqm is the smallest extension field containing all n-th roots of unity. In fact, if ai are
roots of xn − 1, then ani = 1.

In particular to have elements of order n, we need n | qm − 1.
Let us denote the n n-th roots of unity by 1, ζn, . . . , ζ

n−1
n .

Exercise 8.31. If ζn is an n-th root of unity, show that for all i ∈ {0, . . . , n− 1} also ζ in is an n-th
root of unity.

Clearly, since ζ0n = ζnn = 1, we should always consider the exponents of ζn modulo n.

Recall that we are interested in the irreducible factors of xn − 1. Clearly over Fqm we have

xn − 1 =
∏

i∈Z/nZ

(x− ζ in),

however x− ζ in does not live in Fq[x].

Lemma 8.32. Let a1, . . . , am ∈ Fqℓ be distinct. Then p(x) =
∏m

i=1(x − ai) ∈ Fq[x] if and only if
aqi ∈ {a1, . . . , am} for all i ∈ {1, . . . ,m}.

Proof. If p(x) =
∑m

i=0 pix
i ∈ Fq[x], then pi ∈ Fq and hence pqi = pi.

Thus

p(xq) =
m∑
i=0

pi(x
q)i =

m∑
i=0

pqi (x
q)i =

m∑
i=0

(pix
i)q = (

m∑
i=0

pix
i)q = (p(x))q.

Thus if a ∈ Fqℓ is such that p(a) = 0 = p(a)q = p(aq), then aq is another root of p(x). For the
other direction we note (without proving it) that the sets of roots are closed under the Frobenius
map.
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Thus, in our case we are interested in the factors

g(x) =
∏
i∈I

(x− ζ in),

for some I ⊆ Z/nZ. To have the condition from before, we require that for each i ∈ I we have
that

(ζ in)
q = ζ iqn = ζjn

for some j ∈ I . Thus, the set I ⊆ Z/nZ should be such that qI = I.

Corollary 8.33. A factor of xn − 1 in Fq[x] is of the form

g(x) =
∏
i∈I

(x− ζ in),

where I ⊆ Z/nZ is stable under multiplication with q.

Definition 8.34. A cylcotomic class is a subset of Z/nZ which is stable under multiplication with
q. It is further called minimal if it is the smallest with respect to inclusion of cyclotomic classes.

We note that cyclotomic classes are in 1-to-1 correspondence with factors of xn − 1 and futher
minimal cyclotomic classes are in 1-to-1 correspondence with irreducible factors of xn − 1. Thus

{cyclic codes over Fn
q } ↔ {ideals in Fq[x]/(x

n − 1)} ↔
{monic factors of xn − 1} ↔ {cyclotomic classes of Z/nZ}.

Example 8.35. Let us consider again q = 2, n = 7, then the first extension field of F2 where we
have 7th roots of unity is for m = 3. That is we are in F8 = F2(α) where α3 = α + 1 and we can
set ζ7 = α.

We now compute the minimal cyclotomic classes of Z/7Z, as {0}, {1, 2, 4}, {3, 6, 5}.
Hence

{0} → (x+ α0) = (x+ 1),

{1, 2, 4} → (x+ α1)(x+ α2)(x+ α4) = x3 + x2(α + α2 + α4)

+ x(αα2 + αα4 + α2α4) + αα2α4 = x3 + x+ 1,

{3, 6, 5} → x3 + x2(α3 + α6 + α5) + x(α3α6 + α3α5 + α5α6) + α3α5α6 = x3 + x2 + 1.

With this we have recovered that

(x7 + 1) = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1).

Some useful observations: for any cyclotomic class A, we have that
∏

i∈A ζ
i
n = 1, for any

i, j ∈ Z/nZ we have that ζ in · ζjn = ζ i+j
n .

Exercise 8.36. Write out all cyclotomic classes of Z/7Z and use them to compute all factors of
x7 − 1 ∈ F2[x].
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8.4 Generalizations
Since we know how to compute the polynomial product u(x) · v(x) ∈ Fq[x]/(x

n − 1), we can
define a new vector multiplication in Fn

q .

Definition 8.37. Let u, v ∈ Fn
q and define the rotation matrix as

rot(u) =


u

σ(u)
...

σn−1(u)

 .

Let us denote by u ◦ v = urot(v).

Observe that this is not much different to the multiplication matrix we have defined for the
expansion map.

Exercise 8.38. 1. Show that φ(u ◦ v) = u(x)v(x).

2. Show that u ◦ v = v ◦ u.

We may consider taking a different modulo. That is for f(x) ∈ Fq[x] of degree n, we can
define new codes corresponding to ideals of Fq[x]/f(x).

We then again find a Fq-vector space isomorphism

ψ : Fq[x]/f(x) → Fn
q

a(x) =
n−1∑
i=0

aix
i 7→ (a0, . . . , an−1).

While previously multiplication by x corresponded to the right shift, we now have a different
correspondence.

Definition 8.39. Let

σ : Fn
q → Fn

q ,

(a0, . . . , an−1) 7→ σ(a) = ψ(xa(x)).

We again denote by σi = σ ◦ · · · ◦ σ︸ ︷︷ ︸
i times

.

Exercise 8.40. Show that σi(a) = ψ(xia(x)).

Hence, we also update our definition of a rotation matrix:
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Definition 8.41. Let f(x) ∈ Fq[x] of degree n. The ideal matrix of v ∈ Fn
q is defined as

If (v) =


v

σ(v)
...

σn−1(v)

 .

Exercise 8.42. Let u, v ∈ Fn
q . Show that

u ◦ v = uIf (v) = If (v)
⊤u = u ◦ v.

And ψ(u(x)v(x)) = u ◦ v.
We can then generalize the definition of a cyclic code:

Definition 8.43. Let f(x) ∈ Fq[x] of degree n. The ideal code C is then given by ψ(〈g(x)〉) for
some g(x) ∈ Fq[x]/f(x) with g(x) | f(x).

The generator matrix of an ideal code is similar to that of a cyclic code, simply using the ideal
matrix instead of the rotation matrix:

Exercise 8.44. Let f(x) ∈ Fq[x] of degree n. Let C = ψ(〈g(x)〉) for some g(x) ∈ Fq[x]/f(x) with
deg(g) = n− k. Show that

G =


g

σ(g)
...

σk−1(g)


Example 8.45. Let us consider F2 and f(x) = x4 + x. For a(x) =

∑3
i= aix

i ∈ F2[x]/f(x) we
can compute

xa(x) = (a3 + a0)x+ a1x
2 + a2x

3,

x2a(x) = a2x+ (a3 + a0)x
2 + a1x

3,

x3a(x) = a1x+ a2x
2 + (a3 + a0)x

3.

Hence we get

σ(a0, a1, a2, a3) = (0, a3 + a0, a1, a2),

σ2(a0, a1, a2, a3) = (0, a2, a3 + a0, a1),

σ3(a0, a1, a2, a3) = (0, a1, a2, a3 + a0).

Let g(x) = (x2 + x) ∈ F2[x]/(x
4 + x), then

〈g(x)〉 = {0, x2 + x, x3 + x2, x3 + x}

and

G =

(
0 1 1 0
0 0 1 1

)
.
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Finally, we introduce quasi-cyclic codes. For a = (a0, . . . , an−1) ∈ Fn
q and some ℓ ∈

{1, . . . , n} we denote by σℓ(x) its ℓ-cyclic shift, i.e.,

σℓ(x) = (x0+ℓ, . . . , xn−1+ℓ),

where the indices i+ ℓ should be considered modulo n.

Definition 8.46. An [n, k]q linear code C is a quasi-cyclic code, if there exists ℓ ∈ N, such that
σℓ(C) = C.

In addition, if n = ℓa, for some a ∈ N, then it is convenient to write the generator matrix
composed into a× a circulant matrices.

Let C be a [n, k]q linear code.

• C is cyclic if σ(C) = C.

• C is isomorphic to 〈g(x)〉 ⊆ Fq[x]/(x
n−1) for g(x) | (xn−1) of degree deg(g) = n−k.

• g(x) is called the generator polynomial of C.

• C⊥ is cyclic with generator polynomial h̃(x), where h(x) = (xn − 1)/g(x).

• The finite field containing all n n-th roots of unity 1 = ζ0n, ζn, . . . , ζ
n−1
n , is called cyclo-

tomic extension field.

• I ⊆ Z/nZ with qI = I is called cyclotomic class.

• g(x) =
∏

i∈I(x− ζ in) ∈ Fq[x] if and only if I is a cyclotomic class.

• C is called ideal code, if it corresponds to an ideal of Fq[x]/f(x).
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9 Generic Decoding
We have seen an efficient decoder for GRS codes and to ensure reliable communication is also
efficient, this is a condition we impose on families of codes.

However, if we have no information on the algebraic structure of the code, or even try to decode
a random code, a new question arises: how hard is it to decode in general?

This will be the main task of this chapter: generic decoding.

9.1 Interlude: Code-based Cryptography
Such generic decoders have a great impact for cryptography: we have hinted at it several times
(and next semester there will be a lecture purely on this subject): coding theory can also be used
in cryptography. This intersection is called code-based cryptography and is as old as the RSA
cryptosystem (i.e., from 1978 [13]).

On a very high level, the idea of the McEliece public-key encryption scheme is to use a code
with an efficient decoder (he suggested Goppa codes) as a secret key, and to publish an equivalent
code, where the structure of the secret code is hidden (and thus also the necessary information for
the decoder). That is, we take as secret key G ∈ Fk×n

q , a generator matrix for the secret code,
and publish G′ = SGP for some S ∈ GLq(k), P a permutation matrix, and the error-correction
capability t.

Anyone can then encrypt a message m ∈ Fk
q , by computing a corrupted codeword:

c = mG′ + e,

where wtH(e) = t.

The person with the secret key, i.e., S, P, and the decoding algorithm of C, can then compute

cP⊤ = mSG+ eP⊤ = m′G+ e′,

and since wtH(eP⊤) = wtH(e′) = wtH(e) = t, the decoder for C = 〈G〉, will return m′ = mS.
Finally by multiplying with S−1, we recover the message m.

An eavesdropper has only access to the public key, i.e., G′ and the corrupt codeword c. Thus
their main task, is to decode a (seemingly) random code.

Clearly, in this scenario, the public code is not random: it is still an equivalent code to a Goppa
code. By now, we also have new code-based cryptosystems, where we employ actually random
codes. If you want to learn more about these cryptosystems and their security, sign up for the
lecture "Code-Based Cryptography".
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9.2 Decoding Problem
The main problem of this chapter, is called Decoding Problem (DP).

Problem 9.1 (Decoding Problem). Let Fq be a finite field and k ≤ n be positive integers. Given
G ∈ Fk×n

q , r ∈ Fn
q and t ∈ N, find e ∈ Fn

q with wtH(e) = t and r − e ∈ 〈G〉.

Clearly, generic decoders are algorithms that solve the DP.

Our first question, "how hard is it to decode in general?" has already been solved: The DP has
been proven to be NP-hard [3], meaning it is one of the hardest problems in mathematics.

The problem is further also in NP. This means, if we are given a candidate solution we can
easily (in polynomial time) check whether it is actually a solution. Thus, the DP is a NP-complete
problem, which makes it a perfect candidate for cryptography.

Note that the DP is formulated through the generator matrix and we can get an equivalent
formulation using the parity-check matrix: the Syndrome Decoding Problem (SDP).

Problem 9.2 (Syndrome Decoding Problem). Let Fq be a finite field and k ≤ n be positive integers.
Given H ∈ F(n−k)×n

q , s ∈ Fn−k
q and t ∈ N,find e ∈ Fn

q such that wtH(e) = t and eH⊤ = s.

These two problems are also equivalent to the Codeword Finding Problem (CFP):

Problem 9.3 (Codeword Finding Problem). Let Fq be a finite field and k ≤ n be positive integers.
Let k ≤ n be positive integers. Given H ∈ F(n−k)×n

q and t ∈ N, find c ∈ Fn
q such that wtH(c) = t

and cH⊤ = 0.

Theorem 9.4. The DP, SDP and CFP are equivalent.

Proof. Let us start with showing that the DP and SDP are equivalent. For this we start with an
instance of DP, i.e., G, r, t. We can then transform this instance to an instance of the SDP. In fact,
we can bring G into systematic form, that is

(
Idk A

)
and immediately get a parity-check matrix

for the same code H =
(
−A⊤ Idn−k

)
.

We can then multiply H to the received vector r = mG+ e, getting the syndrome

s = rH⊤ = eH⊤.

Hence, if we can solve the SDP on the instance H, s, t, that is we find e, we have also solved the
DP.

On the other hand, given an instance of SDP, i.e., H, s, t, we can find an instance of DP: we
bring H into systematic form

(
B Idn−k

)
and read of a generator matrix G =

(
Idk −B⊤) for the

same code.

We can now solve
xH⊤ = s (2)
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for some unknown x ∈ Fn
q and since this is a linear system of n− k equations in n unknowns, we

get N = qk possible solutions: x1, . . . , xN . Note that for each of the qk codewords c1, . . . , cN , we
have that ci + e is a possible solution to (2). Thus, each of the qk solutions xi correspond to some
ci + e.

Hence, any of the solutions xi can be used as received vector r and we have recovered an
instance of DP, as G, r, t. Hence, solving DP, i.e., finding e, also solves the SDP instance.

Finally, we show that the DP and SDP are also equivalent to CFP. For this, we recall that the
error-correction capability t is set as t = bd−1

2
c, where d denotes the minimum distance of 〈G〉.

Given an instance of DP, i.e., G, r, t we can add r as a row to the generator matrix, getting

G′ =

(
G
r

)
.

Note that the code generated by G′ is also generated by(
G
e

)
,

as r = mG + e. The new code of dimension k + 1 has now as lowest weight codeword λe of
weight t for some λ ∈ F×

q .

In fact, if there would exist some codeword a ∈ 〈G′〉 of weight t, which is not of the form
a = λe, then a must also involve codewords of 〈G〉, that is a = c+ be, for c ∈ 〈G〉 \ {0} and some
b ∈ Fq.

Since we know wtH(e) = t, we must have that c = a− be ∈ 〈G〉 \ {0} has weight

wtH(c) = wtH(a− be) ≤ wtH(a) + wtH(−be) = 2t < d,

a contradiction to the minimum distance of 〈G〉 being d.

Hence, we can compute the corresponding parity-check matrix H ′ of 〈G′〉 and solving the CFP
on the instance H ′, t we recover the solution e to the DP instance.

On the other hand, given an instance H, t of the CFP, we can define an instance of SDP, by
taking the same parity-check matrix and setting the syndrome s = 0. Thus, a solver for SDP,
searching for a weight t vector e with eH⊤ = 0 also solves the CFP instance.

Thus, we may choose which of the three problems we wish to solve with our generic decoder.
For this lecture, we will stick to the SDP.

9.3 Solvers
Recall that the SDP is given H ∈ F(n−k)×n

q , s ∈ Fn−k
q , t ∈ N and searches for a vector e ∈ Fn

q with
eH⊤ = s and wtH(e) = t.

For our solvers, we will restrict ourselves to weights t up to the correction capability of the
code, that is t ≤ bd−1

2
c, where d denotes the minimum distance of the code ker(H⊤), and we will

assume that a solution e exists. Thus, it is also the unique solution.
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Exercise 9.5. Show that if e, e′ ∈ Fn
q are both solutions to the SDP with t ≤ bd−1

2
c, then e = e′.

Note that any generic decoding algorithm will not "break" a code-based cryptosystem: these
algorithms have an exponential cost (in n)! Instead, we use them to determine which parameters
(q, n, k, t) we should use to reach a given security level, e.g. λ = 128 bits.

In the following, we will often simply say "an object is random", meaning it is chosen uniform
at random from the whole space.

Since we assume that C = ker(H⊤) in the SDP is random, let us quickly recall what we have
learned so far about random codes: we may assume that H ∈ F(n−k)×n

q has full rank and no zero
column, thus there exists some invertible matrix U and a permutation matrix P , such that

UHP =
(
Idn−k A

)
,

where A ∈ F(n−k)×k
q is a random matrix with no zero column.

• For large n, we can assume their minimum distance of C is given by the GV bound. Asymp-
totically this lets us set δ = d/n is

δ = H−1
q (1−R),

where R = k/n.

• The probability for a random set J ⊂ {1, . . . , n} of size k to be an information set is large
and ignored in the cost computations:∏k−1

i=0 (q
k − qi)

qk2
=

k∏
i=1

(1− q−i).

• A random vector of Fn
q has probability q−(n−k) to be in the code.

• The syndrome of a random vector x ∈ Fn
q is also random.

Let us start with some remarks on what makes the SDP so hard to solve:

The two conditions on e of the SDP are not compatible:

1. the parity-check equation eH⊤ = s, is a linear constraint, while

2. the weight constraint wtH(e) = t is non-linear.

One condition alone is clearly not hard to solve: the first one is a linear system with n−k equations
and n unknowns, for which we can find a solution in polynomial time. We can also simply list all
vectors of weight t.

However, it is very unlikely that any solution for one of the conditions will also satisfy the
other. In particular, since we assumed that in their intersection, we only have a unique solution.
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The first try we could have at solving the DP is straightforward: solve only one of the conditions
and check for the other. These are the two brute-force algorithms.

Algorithm 1 Brute-Force Decoding 1

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , t ∈ N.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Find the solution set L to the linear system xH⊤ = s.
2: for x ∈ L do
3: if wtH(x) = t then
4: Return x

To estimate the cost of algorithms, we use the big-O notation.

Definition 9.6. Let f(x), g(x) be functions over the reals. We write f(x) ∈ O(g(x)) to denote
that there exists a positive real constant N such that |f(x)| < Ng(x) for all x > x0, meaning that
if x grows, f(x) will not grow faster than g(x).

Proposition 9.7. The Brute-Force Algorithm 1 has a cost in O(qk).

Proof. This follows easily from the observation that the solution set L is expected to have size
qk. In fact, any vector x ∈ Fn

q has probability q−(n−k) to have syndrome s, thus in total there are
qnq−(n−k) = qk many vectors with syndrome s.

Out of all these vectors only one has weight t, thus the cost of such brute-force algorithm is in

O(|L|) = O(qk).

Similarly, we can go through the vectors of weight t and check if the syndrome equations are
satisfied. For this we denote by

SH(t, n, q) = {x ∈ Fn
q | wtH(x) = t}

the Hamming sphere of radius t.

Algorithm 2 Brute-Force Decoding 2

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , t ∈ N.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Build the list SH(t, n, q) of all vectors of weight t.
2: for x ∈ SH(t, n, q) do
3: if xH⊤ = s then
4: Return x
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Proposition 9.8. The Brute-Force Algorithm 2 has a cost in O
((

n
t

)
(q − 1)t

)
.

Proof. Note that

SH(t, n, q) =

(
n

t

)
(q − 1)t

and since there exists a unique solution to the SDP, we are expected to go through all elements of
SH(t, n, q).

9.4 ISD Algorithms
There are of course a more clever algorithms to solve SDP than brute-forcing, but we note that
their costs will remain exponential.

The main idea is to use the information sets. These types of algorithms have been initialized
by Prange in 1962 [14], and are called Information Set Decoding (ISD) algorithms.

As they all follow a similar structure, we will first introduce them on a high-level: We start by
picking an information set I and assume a certain weight of eI , say w, and thus impose eIC has the
remaining weight t− w.

By doing so, we may solve a smaller problem than the initial SDP instance.

Let H ∈ F(n−k)×n
q , and I be an information set, then there exists U ∈ GLq(n − k) and P a

permutation matrix such that
UHP = H ′ =

(
Idn−k A

)
,

for some A ∈ F(n−k)×k
q . Since eH⊤ = s we now have

e′H ′⊤ = (eP )(P⊤H⊤U⊤) = sU⊤ = s′,

and hence we can rewrite the parity-check equation(
Idn−k A

)(e⊤IC
e⊤I

)
= s′⊤

as
eIC + eIA

⊤ = s′.

Thus if we find eI ∈ Fk
q , of weight w and such that eIA⊤ = s̃, for some s̃ ∈ Fn−k

q , then we are
left with checking that

wtH(eIC ) = wtH(s′ − s̃) = t− w.

We can generalize this idea further, as the new ISD algorithms actually find a set J ⊆ {1, . . . , n}
of size k + ℓ, for some ℓ ≤ n− k, containing an information set I.

Then, we bring H into a quasi-systematic form, i.e.,

H ′ =

(
Idn−k−ℓ A

0 B

)
,
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where A ∈ F(n−k−ℓ)×(k+ℓ)
q , B ∈ Fℓ×(k+ℓ)

q . We then also split the syndrome s′ accordingly: s′ =(
s1 s2

)
, where s1 ∈ Fn−k−ℓ

q and s2 ∈ Fℓ
q.

The parity-check equation e′H ′⊤ = s′ becomes two equations:

eJC + eJA
⊤ = s1, (3)

eJB
⊤ = s2. (4)

Note that if we find a solution eJ ∈ Fk+ℓ
q of weight w, to (4), we can simply check if

wtH(eJC ) = wtH(s1 − eJA
⊤) = t− w.

Thus, we have reduced the initial SDP with instance (H, s, t) into a smaller SDP with instance
(B, s2, w).

We may summarize the general idea of ISD as:

1. Find a set J ⊂ {1, . . . , n} of size k + ℓ containing an information set for C.

2. Find an invertible matrix U ∈ F(n−k)×(n−k)
q , and a permutation matrix P , such that

UHP =

(
Idn−k−ℓ A

0 B

)
.

3. Compute s′ = sU⊤ and split it into s1, s2.

4. Find eJ ∈ Fk+ℓ
q of weight w and such that eJB⊤ = s2.

5. Check if wtH(eJC ) = wtH(s1 − eJA
⊤) = t− w.

6. If this is satisfied, output e = (eJ , eJC )P⊤, if not start over with a new choice of J .

Note that for a fixed set J, the sought error vector e might not be such that eJ has weight w.
Thus, the iteration above has to be repeated several times, and the final cost of such algorithm is
given by the cost of one iteration times the expected number of required iterations.

On average, the number of iterations required is given by the reciprocal of the success proba-
bility of one iteration and this probability is completely determined by the assumed weight distri-
bution.

Lemma 9.9. Let k ≤ n and w ≤ t be positive integers. Let e ∈ Fn
q be of weight t. For a randomly

chosen J ⊂ {1, . . . , n} of size k + ℓ, the probability that wtH(eJ) = w is given by(
t

w

)(
n− t

k + ℓ− w

)(
n

k + ℓ

)−1

.
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We note that fixing e and going through all possible choices of J , is indeed what the algorithm
tells us to do. However, to compute the success probability of one iteration, it is usually easier
to go the other direction: fix a set J and compute the probability that e has the desired weight
distribution.

Lemma 9.10. Let k ≤ n and w ≤ t be positive integers. Let J ⊂ {1, . . . , n} be of size k + ℓ. For
a randomly chosen e ∈ Fn

q of weight t, the probability that wtH(eJ) = w is given by(
k + ℓ

w

)(
n− k − ℓ

t− w

)(
n

t

)−1

.

Exercise 9.11. Prove Lemma 9.9 and 9.9 and show that the two probabilities are the same.

9.4.1 Prange’s Algorithm

In Prange’s algorithm we assume that there exists an information set I that is disjoint to the support
of the error vector suppH(e), i.e.,

I ∩ suppH(e) = ∅.

Thus in terms of our previous general algorithm for ISD, we set w = ℓ = 0 and hence J = I
and eI = 0.

To illustrate the algorithm, let us assume that the information set is I = {1, . . . , k}. To bring
the parity-check matrix H ∈ F(n−k)×n

q into systematic form, we multiply by an invertible matrix
U ∈ F(n−k)×(n−k)

q . Since we assume that no errors occur in the information set, we have that
e = (0, eIC) with wtH(eIC ) = t. We are in the following situation:

UHe⊤ =
(
Idn−k A

)(e⊤IC
0⊤

)
= Us⊤,

for A ∈ F(n−k)×k
q .

It follows that eIC = sU⊤ and hence we are only left with checking the weight of s′ = sU⊤.
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Algorithm 3 Prange’s Algorithm

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , t ∈ N.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Choose an information set I ⊂ {1, ..., n} of size k.
2: Compute U ∈ F(n−k)×(n−k)

q , such that

(UH)I = A and (UH)IC = Idn−k,

where A ∈ F(n−k)×k
q .

3: Compute s′ = sU⊤.
4: if wtH(s′) = t then
5: Return e such that eI = 0 and eIC = s′.
6: Start over with Step 1 and a new selection of I .

Theorem 9.12. Prange’s algorithm has a cost in

O

((
n− k

t

)−1(
n

t

))
.

binary operations.

Proof. One iteration of Algorithm 3 only consists of bringingH into systematic form and applying
the same row operations on the syndrome; thus, the cost can be assumed equal to that of computing
U
(
H s⊤

)
, i.e., (n− k)2(n+ 1) Fq-operations or

(n− k)2(n+ 1)(dlog2(q)e+ dlog2(q)e
2)

binary operations.
The success probability is given by having chosen the correct weight distribution of e. In this

case, we require that no errors happen in the chosen information set, hence the probability is given
by (

n− k

t

)(
n

t

)−1

.

Since the average number of iterations are then
(
n−k
t

)−1(n
t

)
and

(n− k)2(n+ 1)
(
dlog2(q)e+ dlog2(q)e

2)(n− k

t

)−1(
n

t

)
∈ O

((
n− k

t

)−1(
n

t

))
,

the Gaussian elimination part introduces only polynomial factors which we may ignore.
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Let us consider an example for Prange’s algorithm.

Example 9.13. Let us consider F5 and

H =

1 0 0 1 2
0 1 0 2 3
0 0 1 3 4

 , s = (2, 4, 1)

and we are looking for e ∈ F3
5 with weight t = 1.

We might start with the information set I1 = {4, 5} as H is already in systematic form for I1.
That is the necessary U1 = Id3, however s′ = s does not have weight t = 1.

Instead, the information set I2 = {1, 2} leads to

U2 =

1 3 1
2 2 0
2 4 0

 ,

i.e.,

U2H =

1 3 1 0 0
2 2 0 1 0
2 4 0 0 1

 .

Now we get s′ = sU1> = (0, 2, 0) has weight 1, and hence we found the error vector

e = (0, 0, 0, 2, 0).

9.5 Stern’s Algorithm
A few years later in 1988, Stern proposed a meet-in-the-middle approach to solve for the smaller
instance.

Recall that when we are given the instanceH ∈ F(n−k)×n
q , s ∈ Fn−k

q and t and are searching for
e ∈ Fn

q such that wtH(e) = t and eH⊤ = s, we may first reduce it to a smaller instance, e′ ∈ Fk+ℓ
q

with wt(e′) = w and e′H ′⊤ = s′, where H ′ ∈ Fℓ×(k+ℓ)
q , s′ ∈ Fℓ

q.

Stern proposes to split e′ = (e1, e2), where ei ∈ F(k+ℓ)/2
q are of weight w/2 and similarly to

split H ′ =
(
H1 H2

)
, with Hi ∈ Fℓ×(k+ℓ)/2

q . The syndrome equation e′H> = s′ then becomes

(
H1 H2

)(e⊤1
e⊤2

)
= s′⊤

that is
e1H

⊤
1 + e2H

⊤
2 = s′.

If we denote (for the correct choice e) that e1H⊤
1 = s1 and e2H⊤

2 = s2, then it is again enough
to find a pair (e1, e2) such that s1 + s2 = s′. Thus we simply set s1 = s′ − e2H

⊤
2 .
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We may then build two lists

L1 = {(e1H⊤
1 , e1) | e1 ∈ F(k+ℓ)/2

q ,wtH(e1) = w/2},
L2 = {(s′ − e2H

⊤
2 , e2) | e2 ∈ F(k+ℓ)/2

q ,wtH(e2) = w/2}.

If we find a collision, that is ((a, e1), (a, e2)) ∈ L1×L2, we know that e1H⊤
1 = s′− e2H

⊤
2 and

hence (e1, e2)H
′⊤ = s′.

Algorithm 4 Stern’s Algorithm

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , w < t, ℓ < n− k.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Choose a set J ⊂ {1, ..., n} of size k + ℓ.
2: Compute U ∈ F(n−k)×(n−k)

q , such that

(UH)J =

(
A
H ′

)
, (UH)JC =

(
Idn−k−ℓ

0

)
,

where A ∈ F(n−k−ℓ)×(k+ℓ)
q and H ′ ∈ Fℓ×(k+ℓ)

q .
3: Split H ′ = (H1, H2), with Hi ∈ Fℓ×(k+ℓ)/2

q .
4: Compute sU⊤ =

(
s̃ s′

)
, where s̃ ∈ Fn−k−ℓ

q and s′ ∈ Fℓ
q.

5: Compute the sets

L1 = {(e1H⊤
1 , e1) | e1 ∈ F(k+ℓ)/2

q ,wtH(e1) = w/2},
L2 = {(s′ − e2H

⊤
2 , e2) | e2 ∈ F(k+ℓ)/2

q ,wtH(e2) = w/2}.

6: for (a, e1) ∈ L1 do
7: for (a, e2) ∈ L2 do
8: if wtH(s̃− (e1, e2)A

⊤) = t− w then
9: Return e such that eJ = (e1, e2), eJC = s̃− (e1, e2)H

′⊤.
10: Start over with Step 1 and a new selection of J .

Theorem 9.14. Stern’s algorithm has a cost in

O

((
(k + ℓ)/2

w/2

)−2(
n− k − ℓ

t− w

)−1(
n

t

)((
(k + ℓ)/2

w/2

)
(q − 1)w/2 +

(
(k + ℓ)/2

w/2

)2

(q − 1)w−ℓ

))
.

Proof. We start with the cost of one iteration. Again, the computation of UH is only polynomial
in n and thus negligible. On the other hand, the construction of the lists Li costs

|Li| =
(
(k + ℓ)/2

w/2

)
(q − 1)w/2.
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To go through L1 ×L2 would usually cost |Li|2, but since we are only interested in collisions, i.e.,
when s′ − e2H

⊤
2 = e1H

⊤
1 ∈ Fℓ

q, we can multiply |Li|2 with the probability of having a collision,
that is q−ℓ.

We get that the cost of one iteration is in

O

((
(k + ℓ)/2

w/2

)
(q − 1)w/2 +

(
(k ∗ ℓ)/2
w/2

)2

(q − 1)w−ℓ

)
.

For the success probability of one iteration, we need to compute

|{e ∈ Fn
q | eJ = (e1, e2),wtH(ei) = w/2,wtH(eJC ) = t− w}|

|{e ∈ Fn
q | wtH(e) = t}

,

which is given by (
(k + ℓ)/2

w/2

)2(
n− k − ℓ

t− w

)(
n

t

)−1

.

Thus the overall cost of Stern’s algorithm is in

O

((
(k + ℓ)/2

w/2

)−2(
n− k − ℓ

t− w

)−1(
n

t

)((
(k + ℓ)/2

w/2

)
(q − 1)w/2 +

(
(k + ℓ)/2

w/2

)2

(q − 1)w−ℓ

))
.

Example 9.15. Let us consider again F5, n = 10, k = 4, t = 3, w = 2, and ℓ = 2.
Let

H =


1 2 3 1
2 4 1 2
3 3 2 4

Id6 1 2 1 3
4 1 1 2
3 3 4 1

 , s = (1, 0, 3, 1, 4, 4).

If we set J = {5, 6, 7, 8, 9, 10} then this clearly contains the information set I = {7, 8, 9, 10},
for which H is already in systematic form.

Thus, we get

H ′ =

(
1 0 4 1 1 2
0 1 3 3 4 1

)
, s′ = (4, 4).

We can then split H ′ into H1 =

(
1 0 4
0 1 3

)
, H2 =

(
1 1 2
3 4 1

)
.

We build the lists

L1 = {(e1H⊤
1 , e1) | e1 ∈ F3

5,wtH(e1) = 1}
= {((λ, 0), (λ, 0, 0)), ((0, λ), (0, λ, 0)), ((4λ, 3λ), (0, 0, λ)) | λ ∈ F×

5 },
L2 = {(s′ − e2H

⊤
2 , e2) | e2 ∈ F3

5,wtH(e2) = 1}
= {((4− λ, 4− 3λ), (λ, 0, 0)), ((4− λ, 4− 4λ), (0, λ, 0)), ((4− 2λ, 4− λ), (0, 0, λ)) | λ ∈ F×

5 }.
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Both lists have size 12 =
(
3
1

)
(5− 1)1 = 3 · 4.

We then search for collisions among the two lists, we find

((1, 0), (1, 0, 0)) ∈ L1, ((1, 0), (3, 0, 0)) ∈ L2,

((3, 0), (3, 0, 0)) ∈ L1, ((3, 0), (0, 1, 0)) ∈ L2,

((1, 0), (1, 0, 0)) ∈ L1, ((1, 0), (0, 0, 4)) ∈ L2,

((0, 1), (0, 1, 0)) ∈ L1, ((0, 1), (4, 0, 0)) ∈ L2,

((0, 3), (0, 3, 0)) ∈ L1, ((0, 3), (0, 4, 0)) ∈ L2,

((0, 2), (0, 2, 0)) ∈ L1, ((0, 2), (0, 0, 2)) ∈ L2,

((3, 1), (0, 0, 2)) ∈ L1, ((3, 1), (1, 0, 0)) ∈ L2,

((1, 2), (0, 0, 4)) ∈ L1, ((1, 2), (0, 3, 0)) ∈ L2,

((3, 1), (0, 0, 2)) ∈ L1, ((3, 1), (0, 0, 3)) ∈ L2.

Which are more than the expected |Li|25−2 = 5.76 collisions.
For each of the candidate e′ = (e1, e2) we compute

x = s̃− e′A⊤ = (1, 0, 3, 1)− (e1, e2)


0 0 1 2 3 1
0 0 2 4 1 2
0 0 3 3 2 4
0 0 1 2 1 3


⊤

and check if it has the remaining weight t− w = 1.
For e′ = (e1, e2) = (1, 0, 0, 3, 0, 0) we get x = (0, 3, 4, 0) which is not of weight 1, for e′ =

(3, 0, 0, 0, 1, 0) we get x = (3, 4, 1, 0) and we continue until the very last collision, where e′ =
(0, 0, 2, 0, 0, 3) and we get x = (1, 0, 0, 0).

Hence, we set e = (x, e′) = (1, 0, 0, 0, 0, 0, 2, 0, 0, 3) which is of weight t = 3 and such that
eH⊤ = s.

Note that Stern’s algorithm is always at least as fast as Prange, as it recovers Prange by setting
w = ℓ = 0.

9.5.1 Asymptotic Cost

An important aspect of ISD algorithms (apart from the cost) is their asymptotic cost. The idea of
the asymptotic cost is that we are interested in the exponent e(R, q) such that for large n the cost
of the algorithm is given by q(e(R,q)+o(1))n. This is crucial in order to compare different algorithms.

We consider codes of large length n, and consider the dimension and the error correction
capacity as functions in n, for which we define

lim
n→∞

t(n)/n = T,

lim
n→∞

k(n)/n = R.
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Recall that Hq(x) = x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x) and due to the GV bound
we can set T = δ/2, where δ = H−1

q (1 − R). If c(n, k, t, q) denotes the cost of an algorithm, for
example Prange’s algorithm, then we are now interested in

e(R, q) = lim
n→∞

1

n
logq(c(n, k, t, q)).

For this we often use Stirlings formula, that is if

lim
n→∞

a(n)/n = A,

lim
n→∞

b(n)/n = B

then

lim
n→∞

1

n
logq

(
a

b

)
= A logq(A)− B logq(B)− (A− B) logq(A− B).

Theorem 9.16. The asymptotic cost of Prange’s algorithm is q(e(q,R)+o(1))n, where

e(q, R) =− (1− T ) logq(1− T )− (1−R) logq(1−R) + (1−R− T ) logq(1−R− T ),

where T = H−1
q (1−R)/2.

Proof. Recall that the cost of Prange’s algorithm is given by

c(n, k, t, q) =

(
n− k

t

)−1(
n

t

)
.

Using Stirling’s formula, we get that

lim
n→∞

1

n
logq

((
n− k

t

)−1(
n

t

))
=

− ((1−R) logq(1−R)− T logq(T )− (1−R− T ) logq(1−R− T ))

+ 1 logq(1)− T logq(T )− (1− T ) logq(1− T )

= −(1− T ) logq(1− T )− (1−R) logq(1−R) + (1−R− T ) logq(1−R− T ).

Finally, due to the GV we have that T = H−1
q (1−R)/2.

Exercise 9.17. Prove that the asymptotic cost of Prange is equal to

Hq(T )− (1−R)Hq(T/(1−R)).

Let us also compute the asymptotic cost of Stern. Since we have internal parameters ℓ, w we
first need to set

lim
n→∞

ℓ(n)/n = L,

lim
n→∞

w(n)/n = W.

141



Theorem 9.18. The asymptotic cost of Stern’s algorithm is q(e(q,R)+o(1))n, where

e(q, R) = min
L,W

{
−2A− B + C +max

{
A+

W

2
logq(q − 1), 2A+ (W − L) logq(q − 1)

}}
,

where

A =
R + L

2
logq

(
R + L

2

)
− W

2
logq

(
W

2

)
− R + L−W

2
logq

(
R + L−W

2

)
,

B =(1−R− L) logq(1−R− L)− (T −W ) logq(T −W )

− (1−R− L− T +W ) logq(1−R− L− T +W ),

C =− T logq(T )− (1− T ) logq(1− T ).

Proof. Recall that the cost of Stern’s algorithm is given by

c(n, k, t, q) =

(
(k + ℓ)/2

w/2

)−2(
n− k − ℓ

t− w

)−1(
n

t

)
·

((
(k + ℓ)/2

w/2

)
(q − 1)w/2 +

(
(k + ℓ)/2

w/2

)2

(q − 1)w−ℓ

)
.

We start by computing

A = lim
n→∞

1

n
logq

((
(k + ℓ)/2

w/2

))
=
R + L

2
logq

(
R + L

2

)
− W

2
logq

(
W

2

)
− R + L−W

2
logq

(
R + L−W

2

)
.

We then compute

B = lim
n→∞

1

n
logq

((
n− k − ℓ

t− w

))
= (1−R− L) logq(1−R− L)− (T −W ) logq(T −W )

− (1−R− L− T +W ) logq(1−R− L− T +W ).

Finally,

C = lim
n→∞

1

n
logq

((
n

t

))
= −T logq(T )− (1− T ) logq(1− T ).

Thus, we get that

lim
n→∞

1

n
logq (c(n, k, t, q))

= −2A− B + C +max

{
A+

W

2
logq(q − 1), 2A+ (W − L) logq(q − 1)

}
.
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Since the algorithm will optimize the choices of ℓ, w with the restrictions

ℓ < n− k − t+ w, w < t.

We can then plot the cost for a fixed q = 2, as

Figure 1: Comparison plot of Stern vs. Prange, q = 2

Their difference is barely visible. This changes if we also include newer ISD algorithms, such as
MMT [11].

Figure 2: Comparison plot of MMT vs. Stern vs. Prange, q = 2
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We often also give the maximal cost over all rates, that is

e∗(q) = max{e(R, q) | R ∈ [0, 1]}.

We then get for q = 2 that

Algorithm e∗(q)
Prange 0.05747
Stern 0.05563

Table 3: Comparison of Prange and Stern for q = 2.

Clearly, there are more improvements to the simple ideas of Prange and Stern, but most rely
on the explained steps and have a similar cost analysis. In fact, over the last 60 years, the exponent
e∗(q) has only decreased from Prange’s 0.05747 to 0.0473 [12].

Although this research area is active and important for code-based cryptography there are many
unsolved questions:

• How to decode a (quasi-)cyclic code?

• How to decode a q-ary code (faster)?

• How to decode for large weights?

Note that the code-based cryptosystem to be standardized (by the U.S. authorities) is HQC [?],
which relies on quasi-cyclic codes. None of the ISD algorithms (until now) is able to incorporate
this additional structure to lower its cost.

New proposals use codes over F2m and while the algorithms we have seen so far are also able
to decode such q-ary codes, none of them use the additional structure of the extension field F2m .

Additionally, for large q, the best decoder is the simple algorithm by Prange. In fact, all other
decoders involve an enumeration step (that is build a list of vectors in Fn′

q of some weight w). As
such lists have size

(
n′

w

)
(q− 1)w, the cost of such algorithms quickly grows too large. On the other

hand, Prange’s algorithm is oblivious of the underlying field.

• The Decoding Problem (DP) is to decode a random linear code and is NP-hard.

• The DP is equivalent to the Syndrome Decoding Problem (SDP) and to the Codeword
Finding Problem (CFP).

• Information Set Decoding (ISD) algorithms decode a random linear code.

• ISD algorithms use information sets and assume a weight distribution of the error vector.

• ISD algorithms have exponential cost.
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10 List Decoding
Let us revisit our decoding problem: previously we were given r ∈ Fn

q and wanted to find the
unique codeword c ∈ C which is such that dH(r, c) ≤ t and to do this we needed t ≤ bd−1

2
c.

In this chapter we will relax the condition of having a unique closest codeword.

If we go back to our geometric interpretation, we had before, that is:

•

•

•

•

•

•

•C

Fn
q

d
• r

t

In this scenario, we wanted that the balls of radius t around codewords of C do not intersect,
so that r lands in exactly one ball. Equivalently, there is only one codeword in the ball of radius t
around r :

•

•

•

•

•

•

•C

Fn
q

• r

However, we can allow for a larger distance, say w > t, paying the price in having several
codewords ci in the Hamming ball of radius w around r.
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•

•

•

•

•

•

•C

Fn
q

• r

Equivalently, the balls of radius w around the codewords will intersect; thus r lives in the ball
of several codewords:

•

•

•

•

•

•

•C

Fn
q

• r

w

Assume that we have access to a decoder outputting all codewords in the ball of radius w
around r

L = {c ∈ C | dH(r, c) ≤ w} = C ∩ BH(w, n, q, r).

We want that this list of this possibly sent codewords is not too large. For example, exponen-
tially large lists would not be feasible, since also a decoder, having to output all these codewords
immediately becomes infeasible, but a polynomial-sized list we can handle.

In practice, a receiver also has some "soft information" on what the sent message could be. For
example, if our list of possible sent codewords encodes the information of

we might easily find the right message.
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This motivates the following definition

Definition 10.1. Let C be a [n, k]q linear code. We say that C is (w,L)- list decodable, if for all
r ∈ Fn

q we have that
L = |{c ∈ C | dH(r, c) ≤ w}|.

Thus, this is a generalization of our previous scenario, where we considered L = 1, and w =
t = bd−1

2
c.

The first question we have to ask is: until which radius w can we go, such that L is still
polynomial in n?

10.1 Johnson Bound
This question is answered by the Johnson bound.

Theorem 10.2. Let q be a prime power, k, d ≤ n and C be [n, k, d]q linear code. Define

Jq(n, d) = n
q − 1

q

(
1−

√
1− q

q − 1

d

n

)
.

Then if w < Jq(n, d) we have that C is (w, qnd) -list decodable.

For q = 2, we get

J2(n, d) =
n

2

(
1−

√
1− 2

d

n

)
.

Proof. We will only prove the statement for q = 2, as it is already complicated enough for this
case.

Given r ∈ Fn
2 and denote by L the codewords at radius ≤ w from r that is

L = C ∩ BH(w, n, q, r),

and denote its size by L.

We now construct a bipartite graph G = (P1 ∪ P2, E), where we can partition the nodes into
two sets P1, P2 and only have edges between nodes from P1 and P2, but for example no edges
between nodes from P1 and P1. We set the following rules:

• Each c ∈ L is a node in P1 and each entry ri is a node in P2.

• We put an edge between c and rj if and only if cj = rj .
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Let us denote by dj the degree of the node rj , that is: in how many edges is rj .

We say we have an angle in the graph, when we have two codewords c, c′ with (c, rj) ∈
E, (c′, rj) ∈ E.

Since the codewords c ∈ L all have distance ≤ w from r, we know that for each c ∈ L, it must
have ≥ n− w edges to r1, . . . , rn. Thus, if we sum all edges, we get

n∑
j=1

dj ≥ (n− w)L.

Let us count the number of angles in the graph. Since each rj has dj edges going out of rj , we
have to select two edges, giving

n∑
j=1

(
dj
2

)
.

n∑
j=1

(
dj
2

)
=

n∑
j=1

(dj − 1)dj
2

=
1

2

(
n∑

j=1

d2j −
n∑

j=1

dj

)
.

Due to the Cauchy-Schwarz inequality, we have that

n∑
j=1

d2j ≥
1

n

(
n∑

j=1

dj

)2

and hence

n∑
j=1

(
dj
2

)
≥ 1

2

 1

n

(
n∑

j=1

dj

)2

−
n∑

j=1

dj


=

1

2

(
n∑

j=1

dj

)(
1

n

n∑
j=1

dj − 1

)
.

Since
∑n

j=1 dj ≥ (n− w)L, we get that

n∑
j=1

(
dj
2

)
≥ 1

2

(
1

n
(n− w)2L2 − (n− w)L

)
.

We can also count the number of angles using c : Fixed c, c′ ∈ L can only agree in at most
n − d entries, since dH(c, c′) ≥ d. Hence, the number of angles between the same c, c′ cannot be
larger than n− d, that is for each pair (c, c′) we have at most n− d angles:

Hence we have
n∑

j=1

(
dj
2

)
≤
(
L

2

)
(n− d) =

1

2
(n− d)(L2 − L).
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Hence,
1

2

(
1

n
(n− w)2L2 − (n− w)L

)
≤ 1

2
(n− d)(L2 − L).

Which implies that

L2

(
1

n
(n− w)2 − (n− d)

)
≤ L(n− w − n+ d) = L(d− w),

and thus if 1
n
(n− w)2 6= (n− d), we get

L ≤ d− w
1
n
(n− w)2 − (n− d)

=
d
n
− w

n

(1− w
n
)2 − (1− d

n
)
.

Thus, if (1− w
n
)2 > (1− d

n
), then L must be bounded, in particular L ≤ (d− w)/n.

This is equivalent to w < n
(
1−

√
1− d

n

)
≤ J2(n, d).

We note that within this proof we have discovered a universal bound oblivious of q, that is

J(n, d) = n

(
1−

√
1− d

n

)
.

More precisely, for all 0 ≤ x ≤ 1− 1/q it holds that

1−
√
1− x ≤ (1− 1/q)

√
1− q

q − 1
x.

Hence if we use this in out Jq(n, d), by setting x = d/n we get that

J(n, d) = n

(
1−

√
1− d

n

)
≤ (1− 1/q)

√
1− q

q − 1
δ = Jq(n, d).

Definition 10.3. Let d ≤ n be positive integers. The Johnson radius is given by

J(n, d) = n

(
1−

√
1− d

n

)
= n−

√
n(n− d).

Corollary 10.4. Let C be an [n, k, d]q linear code and let w < J(n, d). Then C is (w, qdn)−list
decodable.

Equivalently, any ball of radius up to J(n, d) contains at most poly(qn) codewords.
For Reed-Solomon codes, this means that

J(n, n− k + 1) = n−
√
n(k − 1) ∼ n(1−

√
R).

This is much larger than the unique decoding radius t = n−k
2

= n(1−R)/2.
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10.2 Bivariate Polynomials
Before we can start with a list decoder for Reed-Solomon codes, let us recall some useful facts of
bivariate polynomials.

Definition 10.5. A bivariate polynomial Q(x, y) ∈ Fq[x, y] is a polynomial in two variables x, y
and given by

Q(x, y) =
dx∑
i=0

dy∑
j=0

qi,jx
iyj,

with qi,j ∈ Fq.We say thatQ(x, y) has x-degree degx(Q(x, y)) = dx and y-degree degy(G(x, y)) =
dy. For a monomial xiyj , we say it has degree i + j. The total degree of (Q(x, y)) is given by the
largest i+ j, for which qi,j 6= 0.

We can write a bivariate polynomial also as univariate polynomial in the polynomial ring, that
is Q(x, y) ∈ (Fq[x])[y], by gathering all the monomials of the same y-degree, i.e.,

Q(x, y) =

dy∑
j=0

Qj(x)y
j,

where Qj(x) ∈ Fq[x].

Example 10.6. Let us consider Q(x, y) = (x2 − y)(y − y) = x3 − xy − x2y + y2. Then

Q(x, y) = x3 · y0 + (−x− x2)y1 + 1 · y2,
and hence we can set

Q0(x) = x3, Q1(x) = −x− x2, Q3(x) = 1.

As for univariate polynomials, we have that their roots correspond to factors:

Proposition 10.7. Let Q(x, y) ∈ Fq[x, y] and let f(x) ∈ Fq[x]. Then Q(x, f(x)) = 0 if and only if
(y − f(x)) | Q(x, y).
Example 10.8. In our previous example, that is Q(x, y) = x3 − xy− x2y+ y2, we plug in y = x2

and get that +
Q(x, x2) = x3 − x3 − x4 + x4 = 0.

Hence (y − x2) | Q(x, y), which is true as Q(x, y) = (x2 − y)(y − y) = x3 − xy − x2y + y2.

Similar to univariate polynomials, we have that bivariate polynomials can not have more roots
than their total degree.

Proposition 10.9. Let Q(x, y) ∈ Fq[x, y] with degy(Q(x, y)) = d. Then there exist at most d many
polynomials f(x) ∈ Fq[x] with Q(x, f(x)) = 0.

Proof. If Q(x, fi(x)) = 0 for i ∈ {1, . . . , d + 1}, then by Proposition 10.7, we have that
d+1∏
i=1

(y − fi(x)) | Q(x, y).

However, as the left hand has y-degree d + 1, while the right hand has y-degree d, we get a
contradiction.

150



10.3 Recap on Berlekamp-Welch
In this section, we want to list-decode RS codes. Thus, we let α ∈ Fn

q consist of all distinct entries
and define C = RSq,n,k(α).

If we receive r ∈ Fn
q , the task is to efficiently recover all c ∈ C with dH(r, c) ≤ w, for some

w ≤ n(1−
√
R), as per the Johnson bound. This is equivalent to finding a polynomial f(x) ∈ Fq[x]

of degree deg(f(x)) ≤ k − 1, such that f(αi) = ri for at least n− w many i ∈ {1, . . . , n}.

In Chapter 3, we decoded uniquely up to w = bd−1
2
c, using the Berlekamp-Welch decoder.

And while there are more efficient decoders, this one is perfect for educational reasons: we can
generalize this unique decoder to a list decoder.

Recall that in the Berlekamp-Welch algorithm, we recover f(x) by performing two steps:

1. Find E(x), N(x) (of degree t, respectively k + t− 1) which are such that E(αi)ri = N(αi)
for all i ∈ {1, . . . , n}.

2. Compute N(x)/E(x) = f(x).

This works as N(x) = E(x)f(x) and E(x) is the error locator polynomial, that is E(αi) = 0
for all i ∈ suppH(e), that is whenever ri 6= f(αi).

We can reformulate this algorithm using bivariate polynomials.

1. FindQ(x, y) (of some appropriate degree which we will clarify later) such thatQ(αi, ri) = 0
for all i ∈ {1, . . . , n}.

2. Find f(x) ∈ Fq[x] of degree < k such that Q(x, f(x)) = 0.

By setting Q(x, y) = E(x)y −N(x) we recover the original Berlekamp-Welch algorithm.

In fact, if we have found the correct Q(x, y), that is Q(x, y) = E(x)y − N(x), then f(x) =
N(x)/E(x) is such that Q(x, f(x)) = 0.

10.4 Sudan’s Algorithm
By relaxing the form of Q(x, y) = Q0(x) + yQ1(x) (where Q0(x) = N(x) and Q1(x) = E(x)
before) and allowing also larger degrees of y, we are able to handle more than just t = bd−1

2
c

errors.

The algorithm we present here is by Sudan [18], and is able to list-decode an error of weight
up to

w = bn− 2
√
nkc.

Note that w/n = 1 − 2
√
R < 1 −

√
R and the algorithm does not reach yet the possible Johnson

radius. This was later solved by the Guruswami-Sudan algorithm [6]. For this lecture, we will
already be content with Sudan’s list decoder.
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Algorithm 5 Sudan’s Algorithm

Input: the evaluation points α ∈ Fn
q , the received vector r ∈ Fn

q , ℓ =
√
nk.

Output: f(x) ∈ Fq[x], such that dH(f(α), r) ≤ n− 2ℓ.

1: Find Q(x, y) ∈ Fq[x, y] of degx(Q(x, y)) ≤ ℓ, degy(Q(x, y)) ≤ n/ℓ such that

Q(αi, ri) = 0 ∀ i{1, . . . , n}.

2: Find all fi(x) ∈ Fq[x] of degree deg(fi) ≤ k − 1 such that

Q(x, fi(x)) = 0.

3: return all ci = (β1fi(α1), . . . , βnfi(αn)).

In the algorithm we set the x-degree of Q(x, y) to be ℓ =
√
nk and will later see why this

makes sense. The algorithm of Sudan then works as follows.
We see that we have not changed the second step, or the condition of the first step, i.e.,

Q(αi, ri) = 0 for all i{1, . . . , n}. The only difference to the Berlekamp-Welch decoder lies in
the degree of Q(x, y).

How do we perform these two steps?

The first step can be solved as before, by setting up a linear system of equations and solving it.

In order for such a system to have a non-trivial solution we require that the number of vari-
ables is greater than or equal to the number of equations. The number of equations is still n, as
Q(αi, ri) = 0 should hold for i ∈ {1, . . . , n}. The number of variables is the number of coeffi-
cients qi,j in the bivariate polynomial Q(x, y). As Q(x, y) has x-degree ≤ ℓ and y-degree ≤ n/ℓ,
we get that the number of coefficients is ≤ (ℓ+ 1)(n/ℓ+ 1) = n+ ℓ+ n/ℓ+ 1.

Thus, we get that the total degree of Q(x, y) is at most n+
√
nk+

√
R

−1
+ 1, which is indeed

always greater than n.

The second step still makes sense, that is if f(x) is the polynomial belonging to a possible
codeword, that is deg(f) < k and f(αi) = ri for more than 2ℓ many i, then

Q(x, f(x)) = 0.

Proposition 10.10. Let f(X) ∈ Fq[x] be such that deg(f) < k and f(αi) = ri for more than 2ℓ
many i, then

Q(x, f(x)) = 0.

Proof. Let us define R(x) = Q(x, f(x)). In order to show that R(x) = 0, we want to show that
R(x) has more roots than its degree allows.
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Thus, we start by computing the degree as

deg(r) ≤ degx(Q) + deg(f)degy(Q) < ℓ+ kn/ℓ = 2
√
nk,

which follows again by the choice of ℓ =
√
nk. Here we also see the reasoning for setting ℓ =√

nk: this choice balances the two degrees out.

Next, we check in how many αi the polynomial R vanishes. Since f(αi) = ri for more than
2
√
nk many i, in those positions i we get that

R(αi) = Q(αi, f(αi)) = Q(αi, ri) = 0.

Hence deg(R) < 2
√
nk, while R(x) has more than 2

√
nk roots.

There are at most degy(Q) = n/ℓ =
√
n/k many polynomials f(x) which are such that

Q(x, f(x)) = 0 and thus our list has size at most

L ≤
√
1/R,

and hence if R is a constant, then our list size L is also a constant.

Unfortunately, there is no short example for this list decoder. In fact, in order to have that the
list decoding radius of Sudan’s algorithm is greater than the unique decoding radius, we want that

w = bn− 2
√
nkc > t = bn− k

2
c,

which is equivalent to

n(1− 2
√
R) > n(1−R)/2,

which only holds for very small rates, i.e., R < 0.07 and thus to have at least k = 2, we already
need n = 29.

• A code is called (w,L)-list decodable if |BH(w, n, q) ∩ C| = L.

• The Johnson bound tells us that for any [n, k, d]q linear code if w < Jq(n, d), then C is
(w, qnd)-list decodable.

• The Johnson radius J(n, d) = n −
√
n(n− d) is such that any [n, k, d]q linear code is

(w, qnd)-list decodable for w < J(n, d).

• Sudan’s list-decoding algorithm is a generalization of the Berlekamp-Welch algorithm.

• Sudan’s algorithm can correct up to w = bn− 2
√
nkc errors and produces a list of size

L ≤
√

1/R.
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11 MacWilliams Identity
In this chapter we show one of the most elegant results in coding theory: the MacWilliams identi-
ties.

For this recall the definition of the weight enumerator: Let C be a [n, k, d]q linear code. Then
for a weight 0 ≤ w ≤ n the weight enumerator of C is given by

Aw(C) = |{c ∈ C | wtH(c) = w}|.

Clearly, we know some of the weight enumerators: A0(C) = 1 and since dH(C) = d we also
have Ai(C) = 0 for all 0 < i < d.

If we are interested in all weights w, that is (0, 1, . . . , n) we call this the weight distribution.

Definition 11.1. Let C be a [n, k]pm linear code. The weight distribution of C is given by

(A0(C), A1(C), . . . , An(C)).

Although the weight enumerator of a code is a priori independent of the weight enumerator of
its dual, their weight distributions are not.

Theorem 11.2 (MacWilliams Identities). Let C be a [n, k]pm linear code. Let 0 ≤ w ≤ n. Then

Aw(C⊥) =
1

|C|

n∑
v=0

Av(C)
w∑

s=0

(
n− v

w − s

)(
v

s

)
(−1)s(pm − 1)w−s.

Hence if we are given the weight distribution of C we also know the weight distribution of C⊥.

In order to prove this beautiful result, we first need a few ingredients, namely: characters, the
Schur orthogonality and the Krawtchouk coefficients.

11.1 Characters
In all generality, a group character defines a representation of a group G in terms of a complex
function.

Definition 11.3. Let (G,+) be a group and denote by C⋆ = {z ∈ C | |z| = 1}. A character is a
function

χ : G→ C⋆,

such that
χ(a+ b) = χ(a)χ(b)

for all a, b ∈ G.

We further say that χ is principal is χ(x) = 1 for all x ∈ G. Clearly, we are usually interested
in non-principal characters.
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Exercise 11.4. Let (G,+) be a group and χ : G→ C⋆ a character. Show that χ(0) = 1.

There is a large theory on characters, but in the case where (G,+) = (Fn
pm ,+) we know exactly

how they look like.

Proposition 11.5. Let ζ be a pth root of unity. Then any character χ : Fn
pm → C⋆ is given by

χa(x) = ζTr(⟨x,a⟩),

for some a ∈ Fn
pm .

We note that if a = 0, then χa is a principal character.

11.2 Schur Orthogonality
The Schur orthogonality is an important property of characters. We start with the easy case of
G = Fpm .

Lemma 11.6. Let χ be a character of Fpm , then

∑
x∈Fpm

χ(x) =

{
pm if χ is principal,
0 else.

Proof. If χ is principal then ∑
x∈Fpm

χ(x) =
∑

x∈Fpm

1 = pm.

If χ is non-principal, that is there exists some b ∈ Fpm such that χ(b) 6= 1, then∑
x∈Fpm

χ(x) =
∑

x∈Fpm

χ(x+ b) =
∑

x∈Fpm

χ(x)χ(b) = χ(b)
∑

x∈Fpm

χ(x).

Since χ(b) 6= 1, this implies that
∑

x∈Fpm
χ(x) = 0.

Corollary 11.7. Let χ be a non-principal character. Then∑
x∈F⋆

pm

χ(x) = −1.

We can extend this result to codes.

Lemma 11.8. Let C be a [n, k]pm linear code and χa be a non-principal character. Then

∑
c∈C

χa(c) =

{
|C| if a ∈ C⊥,

0 else.
.
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Proof. If a ∈ C⊥, then 〈a, c〉 = 0 for all c ∈ C, thus∑
c∈C

χa(c) =
∑
c∈C

ζTr(⟨a,c⟩) =
∑
c∈C

ζ0 =
∑
c∈C

1 = |C|.

If a 6∈ C⊥, then there exists some b ∈ C such that 〈a, b〉 6= 0 and hence χa(b) = ζTr(⟨a,b⟩) 6= 1,
then ∑

c∈C

χa(c) =
∑
c∈C

χa(c+ b) =
∑
c∈C

χa(c)χa(b) = χa(b)
∑
c∈C

χa(c).

Since χa(b) 6= 1, this implies that
∑

c∈C χa(c) = 0.

For some set A let us denote by !A(x) the indicator function, that is

1A(x) =

{
1 if x ∈ A,

0 else.
.

We will rewrite this result as follows:

Corollary 11.9. Let C be a [n, k]pm linear code. Let χ be a non-principal character. Then

1C⊥(x) =
1

|C|
∑
c∈C

χx(c).

11.3 Krawtchouk Coefficients
The way we want to prove the MacWilliams identities (spoilers ahead) is:

Aw(C⊥) =
∑

x∈Fpm :wtH(x)=w

1C⊥(x) =
1

|C|
∑
c∈C

∑
x∈Fpm :wtH(x)=w

χx(c),

where we have used the Schur orthogonality.

Thus if, for all c of weight v ∑
x∈Fpm :wtH(x)=w

χx(c) = Kw(v)

then we get that

Aw(C⊥) =
1

|C|
∑
c∈C

n∑
v=0

1wtH(c)=vKw(v) =
1

|C|

n∑
v=0

Av(C)Kw(v).

Thus, we are left with showing that Kw(v) exists, that is for all c ∈ Fpm of weight wtH(c) = v
the quantity

∑
x∈Fn

pm :wtH(x)=w χx(c) is independent on the choice of c and only depends on the
weight w.
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Definition 11.10. Let w, v ∈ {0, . . . , n} and c ∈ Fn
pm have weight v. The Krawtchouk coefficient

is defined as
Kw(v) =

∑
x∈Fpm :wtH(x)=w

χx(c).

Lemma 11.11. Let w, v ∈ {0, . . . , n} and c ∈ Fn
pm have weight v. The Krawtchouk coefficient is

given by

Kw(v) =
w∑

s=0

(
n− v

w − s

)(
v

s

)
(−1)s(pm − 1)w−s.

Proof. Let us fix c ∈ Fn
pm of weight v. We will later see that the resulting formula is independent

on the choice of c.

To compute
Kw(v) =

∑
x∈Fn

pm :wtH(x)=w

χx(c) =
∑

x∈Fn
pm :wtH(x)=w

ζTr(⟨x,c⟩)

we observe that 〈x, c〉 = x1c1 + · · · + xncn and thus Tr(〈x, y〉) = Tr(x1c1) + · · · + Tr(xncn) is
defined componentwise.

Thus,

Kw(v) =
n∏

j=1

∑
xj∈Fpm

ζTr(xjcj).

Since we have to go through all possible x ∈ Fn
pm with wtH(x) = w, we have to go through all

possible support overlaps of size s ∈ {0, . . . , w}:

c

v︷ ︸︸ ︷ n−v︷ ︸︸ ︷
0

︸ ︷︷ ︸
v−s

0 ︸ ︷︷ ︸
s

︸ ︷︷ ︸
w−s

︸ ︷︷ ︸
n−v−w+s

0x

This already implies we have
(
v
s

)(
n−v
w−s

)
choices to place the support overlap.

Now in the first (blue) region of size v − s, we get in each entry∑
xj∈Fpm

ζTr(xjcj) =
∑
xj=0

ζ0 = 1.

In the second (purple) region of size s, we get in each entry∑
xj∈Fpm

ζTr(xjcj) =
∑

a∈F⋆
pm

ζa = −1.
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In the third (orange) region of size w − s, we get in each entry∑
xj∈Fpm

ζTr(xjcj) =
∑

xj∈F⋆
pm

ζ0 = (pm − 1).

Finally, in the fourth (red) region of size n− v − w + s, we get in each entry∑
xj∈Fpm

ζTr(xjcj) =
∑
xj=0

ζ0 = 1.

Hence if the support overlap size s is fixed, then

n∏
j=1

∑
xj∈Fq

ζTr(xjcj) = (−1)s(pm − 1)w−s.

Thus,

Kw(v) =
w∑

s=0

(
n− v

w − s

)(
v

s

)
(−1)s(pm − 1)w−s.

With this we can finally prove the MacWilliams identities.

Proof. Let us write

Aw(C⊥) =
∑

x∈Fpm :wtH(x)=w

1C⊥(x)

=
1

|C|
∑
c∈C

∑
x∈Fpm :wtH(x)=w

χx(c).

=
1

|C|
∑
c∈C

n∑
v=0

1wtH(c)=vKw(v)

=
1

|C|

n∑
v=0

Av(C)Kw(v)

=
1

|C|

n∑
v=0

Av(C)
w∑

s=0

(
n− v

w − s

)(
v

s

)
(−1)s(pm − 1)w−s,

where we have used the Schur orthogonality and the Krawtchouk coefficients.

Note that the MacWilliams identities are often formulated in its polynomial form, that is: we
define the weight enumerator polynomial as

WC(x, y) =
n∑
i=

Aix
n−iyi,

158



then
WC⊥(x, y) =

1

|C|
WC(x+ (pm − 1)y, x− y).

Example 11.12. Let us consider C = 〈(0, 1, 2)〉 ⊂ F3
3. Thus A0 = 1, A1 = 0, A2 = 2, A3 = 0.

This is enough information to get the weight distribution of the dual.

A0(C⊥) =
1

3

(
A0

(
0

0

)(
3

0

)
20 + A1 + A2

(
2

0

)(
1

0

)
20 + A3

)
=

1

3
(1 · 1 + 0 + 2 · 1 + 0) =

1

3
3 = 1,

A1(C⊥) =
1

3

(
A0

((
0

0

)(
3

1

)
21 + 0

)
+ A1 + A2

((
2

0

)(
1

1

)
21 +

(
2

1

)(
1

0

)
(−1)20

)
+ A3

)
=

1

3
(1 · (6 + 0) + 0 + 2 · (2− 2) + 0) =

1

3
6 = 2,

A2(C⊥) =
1

3

(
A0

((
0

0

)(
3

2

)
22 + 0 + 0

)
+ A1 + A2

(
0 +

(
2

1

)(
1

1

)
(−1)21 +

(
2

2

)(
1

0

)
20
)
+ A3

)
=

1

3
(1 · 12 + 0 + 2 · (−3) + 0) =

1

3
6 = 2,

A3(C⊥) =
1

3

(
A0

((
0

0

)(
3

3

)
23 + 0 + 0 + 0

)
+ A1 + A2

(
0 + 0 +

(
2

2

)(
1

1

)
21 + 0

)
+ A3

)
=

1

3
(1 · 8 + 0 + 2 · 2 + 0) =

1

3
12 = 4.

Which is correct as C⊥ = 〈(1, 0, 0), (0, 1, 1)〉.

11.4 Linear Programming Bound
We may use these identities to get a bound on the size of the code. In fact, if C has weight
distribution (A0, . . . , An), then

|C| =
n∑
i=

Ai.

This gives one of the tighest upper bounds on the size of a code with given length n and
minimum distance d.

Theorem 11.13 (Linear Programming Bound). Maximize
∑n

i=0Ai under the linear constraint

• A0 = 1,

• Ai ≥ 0 for all i ∈ {0, . . . , n},

• Ai = 0 for all i ∈ {1, . . . , d− 1},
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•
∑n

v=0AvKw(v) ≥ 0.

Then any linear code C ⊂ Fn
q of minimum distance d is such that

|C| ≤
n∑

i=0

Ai.

Unfortunately, there is no closed formula for this bound, as the name says: the bound has to be
programmed.

We may explain it though:

• the first condition makes sure that there is the zero codeword,

• the second condition makes sure the weight enumerators are non-negative,

• the third condition ensures that dH(C) ≥ d,

• and the fourth condition ensures that the hypothetical dual code also has non-negative weight
enumerators.

• The weight distribution of a code is given by all its weight enumerators (Ai)0≤i≤n.

• The MacWilliams identities show that the weight distribution of the dual code is com-
pletely determined given the weight distribution of the code.

• The linear programming bound uses the MacWilliams identities in its linear constraints
to maximize the size of a code of a given minimum distance.
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12 Rank-Metric Codes
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