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Synopsis

Subspace codes are a family of codes used for (among others) random network
coding, which is a model for multicast communication. These codes are defined as sets
of vector spaces over a finite field. The main research problems arising in this area
are the construction of codes with large cardinality for a given length and minimum
distance and the development of fast and efficient decoding algorithms for these codes.
In this thesis we address both of these problems and improve the known results from
different aspects. We mainly focus on constant dimension codes, which is a subclass of
subspace codes where each codeword has the same fixed dimension.

First, we give new code constructions which improve the lower bounds on the size
of constant dimension codes. To do so we introduce the concept of pending dots and
pending blocks and use these to modify the lifted Ferrers diagram rank metric code
construction. With our new constructions we can construct larger codes than known
so far for certain parameter sets. Then we introduce orbit codes and show that these
codes can be seen as the analogs of linear codes in classical block coding theory. We
study the subclass of cyclic orbit codes in more detail and show what type of codes can
be constructed as cyclic orbit codes.

Moreover, we develop several decoding algorithms that are more efficient than other
known algorithms for certain code parameters. The first two algorithms are minimum
distance decoders while the last one is a more general list decoder. First we use the
structure of the family of Desarguesian spread codes to decode these codes in some
extension field of the underlying finite field. For the second algorithm we use the struc-
ture of orbit codes to come up with a syndrome type decoding algorithm (in analogy
to syndrome decoding of linear block codes). Then we use the Plücker embedding to
describe the balls of a given radius in the set of all vector spaces of a given dimension,
which we can use to describe a list decoding algorithm in this embedding. Together
with the fact that the family of lifted Gabidulin codes can be described by equations in
the Plücker embedding we come up with a list decoder for lifted Gabidulin codes that
works by solving a system of equations in the Plücker embedding.

Furthermore, we study the isometry classes and automorphism groups of subspace
codes, both of which are of great interest from a theoretical point of view. We show what
type of isometries for general subspace codes exist and then investigate the isometry
classes and automorphism groups of some known constant dimension code construc-
tions.
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Übersicht

Sogenannte Subspace Codes sind Codes, die unter anderem für Zufalls-Netzwerk-
Kodierung (auch Random Network Coding genannt) gebraucht werden, was wiederum
ein Modell für Multicast-Kommunikation ist. Diese Codes werden als Mengen von Vek-
torräumen über einem endlichen Körper definiert. Die zwei Hauptprobleme, mit denen
man sich in der Forschung beschäftigt, sind zum einen die Konstruktion solcher Codes
und zum anderen die Entwicklung von dazugehörigen effizienten Dekodieralgorithmen.
In der vorliegenden Arbeit befassen wir uns mit beiden Problemen und verbessern die
bereits bekannten Ergebnisse aus verschiedenen Aspekten. Dabei konzentrieren wir uns
hauptsächlich auf Constant Dimension Codes, die eine Unterklasse der Subspace Codes
sind, wobei alle Elemente des Codes die gleiche Dimension haben.

Zunächst erläutern wir neue Konstruktionen für Constant Dimension Codes, die
für gegebene Parameter wie Länge und Minimaldistanz Codes mit mehr Elementen
erzeugen als die bekannten Konstruktionen. Dafür führen wir sogenannte Pending Dots
und Pending Blocks ein und benutzen diese, um die Lifted Ferrers Diagram Rank Metric
Code-Konstruktion zu erweitern. Mit diesen neuen Konstruktionen können wir für
bestimmte Parameter grössere Codes als bisher bekannt erzeugen. Danach beschäftigen
wir uns mit Orbit Codes und zeigen, dass diese Codes als Analogons zu den linearen
Codes in der klassischen Block-Kodierungstheorie angesehen werden können. Wir unter-
suchen ausführlich die Unterklasse der zyklischen Orbit Codes und zeigen, welche Codes
als zyklische Orbit Codes konstruiert werden können.

Des weiteren entwickeln wir drei Dekodieralgorithmen, die im Vergleich zu den
bereits bekannten Algorithmen für bestimmte Parameter effizienter arbeiten. Die zwei
ersten Algorithmen sind Minimaldistanz-Dekodierer, der dritte hingegen ist ein allge-
meinerer List-Dekodierer. Für den ersten Algorithmus nutzen wir die Struktur der
sogenannten Desargueschen Spread Codes, um diese Codes in einem Erweiterungs-
körper des eigentlichen endlichen Körpers zu dekodieren. Der zweite Algorithmus ist
ein Syndrom-Dekodieralgorithmus für Orbit Codes, ähnlich dem Syndrom-Dekodierer
für lineare Block-Codes. Dann verwenden wir die Plücker-Einbettung, um Kugeln
mit gegebenem Radius in der Menge aller Vektorräume mit gleicher Dimension zu
beschreiben. Dies nutzen wir wiederum, um einen List-Dekodieralgorithmus in der
Plücker-Einbettung zu beschreiben. Da man ausserdem die Familie der gelifteten
Gabidulin-Codes mit Gleichungen in der Plücker-Einbettung beschreiben kann, erhal-
ten wir einen List-Dekodierer für diese Codefamilie, der allein durch das Lösen eines
Gleichungssystems funktioniert.

Zusätzlich untersuchen wir die Isometrieklassen und Automorphismen von Subspace
Codes, was aus theoretischer Sicht interessante Ergebnisse liefert. Wir zeigen, welche
Abbildungen Isometrien von generellen Subspace Codes sind und untersuchen die Iso-
metrieklassen und Automorphismengruppen einiger bekannter Code-Konstruktionen.
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Introduction

Subspace codes or projective space codes are a class of codes that can be used for

different applications in modern communications and technologies. The main interest

in these codes arose when Kötter and Kschischang showed how to use them for non-

coherent linear network coding [34], which is a model for multicast communication.

In this model a source wants to send the same information to several receivers over a

network channel. Many real-life applications of multicast can be found, a prominent

example is data streaming over the Internet. The multicast network channel can be

modeled by a directed graph with a source, several sinks as receivers and many inner

nodes which each have incoming and outgoing edges. An example of the multicast

model with four receivers can be found in Figure 1. If one allows each inner node to

Figure 1: The multicast model.

transmit a random linear combination of its incoming information along the outgoing

edges, one speaks of random or non-coherent linear network coding. This setting will

be explained in more detail in Section 1.1.

Recently, it was shown, e.g. in [10, 45], how distributed storage follows the same

model as multicast communication when the aspects of error correction and node re-

pair are taken into account. The main idea is that one stores some given information,

encoded in several small packets, in different storage nodes of a network. Then, when-

ever a node fails and does not return any information, one can use an erasure correcting

code to reconstruct the information. But when a node fails in the sense that it returns

corrupted information, one needs an error correcting code. In some applications one

wants to do node repair every now and then, even if the stored information is not

1



2 Introduction

needed at that moment. Then a new “repaired” node contacts several old nodes and

stores a linear combination of their information. After several node repairs, this model

is equivalent to random linear network coding, as explained above.

Moreover, subspace codes are useful for authentication purposes. In [61] it was

shown how these codes can be used for validating if a sent message is from the correct

sender or if it was intercepted and corrupted by an attacker. This is why these codes

are also called linear authentication codes in this context.

In [42] Marshall, Rosenthal, Schipani and Trautmann explained yet another appli-

cation for subspace codes in biometric authentication. The main point in this topic

is that one needs to store highly delicate data, e.g. a fingerprint or an iris scan, and

decide if another print or scan is similar enough to the original one to be from the same

person, in which case we want to authenticate. For the decision if the committed data

is similar enough, one can use an error-correcting code. In [42] the authors adapted

the fuzzy vault scheme of [30] to work with subspace codes instead of BCH-codes and

showed how this improves the security of such an authentication system.

In this thesis we give several new results on different aspects of subspace codes. For

this we first explain the random linear network coding setting in detail and give some

other preliminary results needed later in Chapter 1.

Chapter 2 deals with constructions of subspace codes. We first explain the known

lifting constructions in Sections 2.1 and 2.2 and then introduce our new extensions of

those in Sections 2.3 and 2.4. The last section of this chapter is devoted to orbit codes,

which is a different way of constructing subspace codes, analogous to linear codes in

classical block coding theory.

In Chapter 3 we focus on decoding algorithms for subspace codes. We explain

two minimum distance decoders for different families of codes in Sections 3.1 and 3.2.

Afterwards we introduce the Plücker embedding and show how it can be used for list

decoding subspace codes. In Section 3.3.2 we derive an explicit list decoding algorithm

for the family of lifted rank-metric codes.

Finally, we investigate the isometries and automorphism groups of subspace codes

in Chapter 4. These are useful for comparing codes among each other and counting

how many codes with equivalent coding theoretic properties there are. Moreover, au-

tomorphism groups have been found useful for certain decoding algorithms in classical

coding theory, which might be done in a similar matter for subspace codes in future

research. In Section 4.1 we derive the set of dimension-preserving isometries of subspace

codes. Afterwards, in Section 4.2, we investigate the isometry classes and automorphism

groups of some of the code constructions explained in Chapter 2.



Chapter 1

Preliminaries

1.1 Random Linear Network Coding

As already mentioned in the introduction, a general network channel is represented

by a directed acyclic graph with three different types of vertices, namely sources, i.e.

vertices with no incoming edges, sinks, i.e. vertices with no outgoing edges, and inner

nodes, i.e. vertices with incoming and outgoing edges. One assumes that at least one

source and one sink exist. The source is sometimes also called the sender and the

sinks are also called the receivers. Under linear network coding the inner nodes are

allowed to forward linear combinations of the incoming information vectors. The use

of linear network coding possibly improves the transmission rate in comparison to just

forwarding information at the inner nodes [1]. This can be illustrated in the example of

the butterfly network (Figure 1.1): The source S wants to send the same information,

Figure 1.1: The butterfly network under the forwarding and the network coding model.

a and b, to both receivers R1 and R2. Under forwarding every inner node forwards the

incoming information and thus has to decide on either a or b (in this example on a) at

the bottleneck vertex, marked by x. Thus, R1 does not receive b. With linear network

coding we allow the bottleneck vertex to send the sum of the two incoming informations,

which allows both receivers to recover both a and b with a simple operation.

In this linear network coding setting, when the topology of the underlying network

is unknown or time-varying, one speaks of random or non-coherent (linear) network

coding. This setting was first studied in [28], and a mathematical model was introduced

in [34], where the authors show that it makes sense to use vector spaces instead of vectors

as codewords. In this model the source injects a basis of the respective codeword into

3



4 1.1 Random Linear Network Coding

the network, and the inner nodes forward a random linear combination of their incoming

vectors. Therefore, each sink receives linear combinations of the vectors injected by the

source, which span the same vector space as the sent vectors, if no errors occurred

during transmission.

In coding practice the base field is a finite field:

Definition 1.1: Fq denotes the finite field having q elements, where q is the power of

a prime number p. Then p is called the characteristic of Fq. Fˆ
q :“ Fqzt0u denotes the

set of all invertible elements of Fq.

More information on finite fields and their construction will be given in Section 1.4.

Definition 1.2: We denote the set of all subspaces of Fnq by Pqpnq. The set of all

k-dimensional subspaces of Fnq is called the Grassmannian and is denoted by Gqpk, nq.

Remark 1.3: Instead of Pqpnq, one can also find the notation PGpn ´ 1, qq, i.e. the

projective geometry of dimension n ´ 1 over Fq (see e.g. [26]), in the literature for the

set of all subspaces of Fnq . Since we mainly think of subspaces non-projectively in this

work we prefer the notation Pqpnq.

We can now give a simple definition of subspace codes.

Definition 1.4: A subspace code C is a subset of Pqpnq. If all codewords of C have the

same dimension, i.e. if C Ď Gqpk, nq for some k, we call it a constant dimension code.

We represent subspaces by matrices such that the rows of these matrices form a

basis of the respective subspace. The set of all k ˆ n-matrices with entries from Fq is

denoted by Fkˆn
q . Let U P Fkˆn

q be a matrix of rank k and

U “ rspUq :“ row spacepUq P Gqpk, nq.

The row space is invariant under multiplication from the left with an invertible matrix

T P Fkˆk
q ,

U “ rspUq “ rspTUq.

Thus, there are several matrices that represent a given subspace. But for computational

and implementation aspects it is important to have a unique representation of the

codewords. Therefore, we use the reduced row echelon form (see e.g. [36]) of a matrix

representing a subspace, which is unique for a given row space. Moreover, any k ˆ n-

matrix can be transformed into reduced row echelon form by multiplication with some

invertible matrix T P F
kˆk
q .
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1.2 Error-Correction and Decoding

There are two types of errors that may occur during transmission, a decrease in

dimension, which is called an erasure, and an increase in dimension, called an insertion.

Assume U P Pqpnq was sent and erasures and insertions occurred during transmission,

then the received word is of the type

R “ Ū ‘ E

where Ū is a subspace of U and E P Pqpnq is the error space, i.e. dimpU X Eq “ 0.

Definition 1.5: A random network coding channel in which both insertions and era-

sures can happen is called an operator channel.

In order to have a notion of decoding capability of some code a suitable metric is

required on the set Pqpnq:

Theorem 1.6: The subspace distance dS is a metric on Pqpnq, given by

dSpU ,Vq :“dimpU ` Vq ´ dimpU X Vq

“dimpUq ` dimpVq ´ 2 dimpU X Vq

for any U ,V P Pqpnq. Another metric on Pqpnq is the injection distance dI , defined as

dIpU ,Vq :“maxtdimpUq, dimpVqu ´ dimpU X Vq.

PROOF: The proof that the subspace distance is a metric on Pqpnq can be found in

[34]. For the injection distance it is easy to see that dIpU ,Uq “ 0 and dIpU ,Vq ě 0 for

any U ,V P Pqpnq. It remains to show the triangle inequality:

dIpU ,Vq ` dIpV,Wq

“
1

2
pdSpU ,Vq ` dSpV,Wqq ` maxtdimpUq, dimpVqu ` maxtdimpVq, dimpWqu

´
1

2
pdimpUq ` 2 dimpVq ` dimpWqq

ě
1

2
dSpU ,Wq ` maxtdimpUq, dimpVqu ` maxtdimpVq, dimpWqu

´
1

2
pdimpUq ` 2 dimpVq ` dimpWqq

ě
1

2
dSpU ,Wq ` maxtdimpUq, dimpWqu ´

1

2
pdimpUq ` dimpWqq

“dIpU ,Wq,

i.e. dIpU ,Vq ` dIpV,Wq ě dIpU ,Wq for any U ,V,W P Pqpnq and thus dI is a metric on

Pqpnq. A similar approach for this proof can be found in [47]. ˝



6 1.2 Error-Correction and Decoding

Remark 1.7: Note that for U ,V P Gqpk, nq (i.e. dimpUq “ dimpVq “ k) it holds that

dSpU ,Vq “ 2dIpU ,Vq.

Definition 1.8: The minimum injection distance of a subspace code C Ď Pqpnq is

defined as

dIpCq “ mintdIpU ,Vq | U ,V P C,U ‰ Vu.

The minimum subspace distance is defined analogously.

Since we mainly investigate constant dimension codes in this thesis, by Remark 1.7

it does not matter which distance we use. In the following, if not stated differently, we

always use the injection distance. All results can then be carried over to the subspace

distance. We henceforth call a code C Ď Gqpk, nq with minimum injection distance δ

and cardinality N an pn,N, δ, kqq-code.

Recall that the dual space UK of some subspace U P Gqpk, nq is defined as

UK :“ tv P F
n
q | vuT “ 0 @u P Uu P Gqpn ´ k, nq.

Theorem 1.9 ([34]): Let C Ď Pqpnq be a subspace code. The dual code is defined as

CK :“ tUK | U P Cu.

It holds that, if C is an pn,N, δ, kqq-code, then CK is an pn,N, δ, n´ kqq-code.

This theorem implies that for our studies of constant dimension codes, we may

restrict ourselves to the case where n ě 2k. For the remaining cases the dual codes will

give us codes of the same cardinality and minimum distance.

We now focus on different decoding methods for subspace codes.

Definition 1.10: Consider a subspace code C Ď Pqpnq and a received word R P Pqpnq.

1. A maximum likelihood decoder decodes to a codeword U P C that maximizes the

probability

P pR received | U sentq

over all U P C.

2. A minimum distance decoder chooses the closest codeword to the received word

with respect to the subspace or injection distance. If there is more than one

closest codeword, the decoder returns “failure”.

Lemma 1.11: Assume that the minimum (injection or subspace) distance of a subspace

code C P Pqpnq is δ, and let R P Pqpnq be a received word. If there exists U P C whose

distance from R is at most δ´1
2

, then U is the unique closest codeword and the minimum

distance decoder will always decode to U .
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PROOF: If the distance between U and R is at most δ´1
2

and the distance between any

two codewords is at least δ, then by the triangle inequality it holds that the distance

between R and any other codeword must be at least δ ´ δ´1
2

“ δ`1
2

. This implies the

statement. ˝

Let us assume that both the erasure and the insertion probability are less than

some ǫ ă 1
2
. Then, over an operator channel where the insertion probability is equal

to the erasure probability, and under the assumption that at most δ´1
2

insertions and

erasures happened during transmission, minimum distance decoding with respect to

the subspace distance is equivalent to maximum likelihood decoding [34]. On the other

hand, in an adversarial model it is more suitable to use a minimum distance decoder

with respect to the injection distance to resemble maximum likelihood decoding [47].

Proposition 1.12: Minimum subspace distance decoding is equivalent to minimum in-

jection distance decoding when C is a constant dimension code.

PROOF: Let C Ď Gqpk, nq, U ,V P C and R P Pqpnq be the received word. Then, since

dimpUq “ dimpVq, it holds that

dSpR,Uq ď dSpR,Vq

ðñ dimpRq ` dimpUq ´ 2 dimpR X Uq ď dimpRq ` dimpVq ´ 2 dimpR X Vq

ðñ dimpR X Uq ě dimpR X Vq

ðñ maxpdimpRq, dimpUqq ´ dimpR X Uq ď maxpdimpRq, dimpVqq ´ dimpR X Vq

ðñ dIpR,Uq ď dIpR,Vq.

Hence, U is the closest codeword to R with respect to the subspace distance if and only

if U is the closest codeword to R with respect to the injection distance. ˝

Another important concept in coding theory is the problem of list decoding. The

goal of list decoding is to come up with an algorithm which allows one to compute

all codewords which are within some distance of some received subspace. For some

U P Pqpnq we denote the ball of radius t with center U in Pqpnq by BtpUq. If we want

to describe the same ball inside Gqpk, nq we denote it by Bk
t pUq.

Definition 1.13: Given a subspace code C Ď Pqpnq and a received word R P Pqpnq,

a list decoder with error bound t outputs the list of codewords U1, . . . ,Um P C whose

injection distance from R is at most t. In other words, the list is equal to the set

BtpRq X C.

If C is a constant dimension code, then the output of the list decoder becomes Bk
t pRqXC.
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1.3 Bounds on the Size of Constant Dimen-

sion Codes

To have some kind of measure how “good” a code is in terms of its rate and error-

correction capability, one uses bounds on the size of codes for a given field, minimum

distance and length. We now present some bounds for constant dimension codes. In

this case not only the field size q, minimum injection distance δ and length n of the

code is given, but also the constant dimension k.

Definition 1.14: We denote by Aqpn, δ, kq the maximal cardinality of a code C Ď

Gqpk, nq with minimum injection distance δ.

Two of the most natural bounds are the sphere packing and the sphere covering

bound. In the former one takes the number of elements in the Grassmannian and divides

it by the number of elements inside a ball of radius t δ´1
2

u around some U P Gqpk, nq, in

the latter one divides by the cardinality of a ball of radius δ ´ 1.

Proposition 1.15: Sphere packing bound:

Aqpn, δ, kq ď
|Gqpk, nq|
ˇ

ˇ

ˇ
Bk

t δ´1

2
u
pUq

ˇ

ˇ

ˇ

“

„

n

k



q

t δ´1

2
u

ř

i“0

qi
2

„

k

i



q

„

n´ k

i



q

Sphere covering bound:

Aqpn, δ, kq ě
|Gqpk, nq|
ˇ

ˇBk
δ´1pUq

ˇ

ˇ

“

„

n

k



q

δ´1
ř

i“0

qi
2

„

k

i



q

„

n ´ k

i



q

Both of these bounds were first derived by Kötter and Kschischang in [34], where one

can also find a proof for the formula of the cardinality of the balls. The gap between

these two bounds is quite large, so one tries to find tighter bounds. We now present

some other upper bounds that are lower than the sphere packing bound.

In the same paper [34] the authors define a puncturing operation on constant dimen-

sion codes and with that derive a bound in analogy to the classical Singleton bound:

Proposition 1.16:

Aqpn, δ, kq ď |Gqpn ´ δ ` 1, k ´ δ ` 1q| “

„

n´ δ ` 1

n´ k



q

This bound is always lower and hence stronger than the sphere packing bound.
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In [61] the authors Wang, Xing and Safavi-Naini found the following bound:

Proposition 1.17:

Aqpn, δ, kq ď

„

n

k ´ δ ` 1



q
„

k

k ´ δ ` 1



q

This bound is also known as the anticode bound since it can be derived by noticing

that Gqpk, nq is an association scheme and that one can then apply Delsarte’s anticode

bound [9]. This second point of view is due to Etzion and Vardy [16]. The anticode

bound is always stronger than the Singleton-type bound.

One can always associate a binary constant weight block code C to a given constant

dimension code C Ď Gqpk, nq as follows: The codewords of C are of length qn ´ 1,

where each coordinate is associated to a (different) fixed non-zero element of Fnq . Each

codeword U of C has an associated codeword u in C, where a 1-entry in u denotes that

the corresponding vector of Fnq is in U , and a 0-entry denotes that this vector is not

an element of U . Hence, C has constant weight qk ´ 1 and one can apply the classical

Johnson bounds (cf. [38]) to C. Then one also gets bounds on the associated code C

as follows:

Proposition 1.18: Johnson-type I bound:

Aqpn, δ, kq ď

Z

pqn´k ´ qn´k´δqpqn ´ 1q

pqn´k ´ 1q2 ´ pqn ´ 1qpqn´k´δ ´ 1q

^

Johnson-type II bound:

Aqpn, δ, kq ď

Z

qn ´ 1

qk ´ 1
Aqpn ´ 1, δ, k ´ 1q

^

ď

Z

qn ´ 1

qk ´ 1

Z

. . .

Z

qn´k`δ ´ 1

qδ ´ 1

^

. . .

^^

These bounds were first shown by Xia and Fu in [62]. There it was also shown that these

bounds always improve the anticode bound and hence also the other above mentioned

bounds.

In the special case of δ “ k, i.e. codes of maximal minimum distance, Etzion and

Vardy derived the following bound in [17]:

Proposition 1.19: If k ffl n, then

Aqpn, k, kq ď

Z

qn ´ 1

qk ´ 1

^

´ 1.

If one can find codes such that any of these bounds is attained with equality, it

follows that one cannot find any larger codes for the same parameters.
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Definition 1.20: We call a code C Ď Gqpk, nq with minimum injection distance δ

optimal if it attains any of the upper bounds on the cardinality of constant dimension

codes, i.e. if

|C| “ Aqpn, δ, kq.

Naturally, any general construction of constant dimension codes gives a new lower

bound. Therefore we derive new and tighter lower bounds in Chapter 2.

For completeness we also want to mention at this point that there exist more bounds

on the size of constant dimension codes under certain conditions. E.g. Etzion and

Silberstein found some bounds on constant dimension codes that contain a lifted rank-

metric code of a given size [15]. We show one of these bounds in Chapter 2 when we

explain the respective constructions meeting that bound.
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1.4 Finite Fields and Irreducible Polynomials

We need the following definitions and results on finite fields and irreducible poly-

nomials over finite fields. For a more detailed introduction to finite fields the reader is

referred to [31, 37].

Theorem 1.21 ([31, 37]): 1. A finite field Fq with q elements exists if and only if

q is a power of some prime number p.

2. For a given q the finite field Fq is unique (up to isomorphism).

3. For a prime number p the finite field Fp is isomorphic to Zp “ Z{pZ.

Recall that a polynomial ppxq P Fqrxs is called irreducible if for any apxq, bpxq P Fqrxs

ppxq “ apxqbpxq ùñ degpapxqq “ 0 or degpbpxqq “ 0.

Definition 1.22: Let ppxq “ p0 ` p1x ` . . . ` pn´1x
n´1 ` xn be a monic irreducible

polynomial of degree n over the finite field Fq. Then the companion matrix Mp of ppxq

is given by

Mp :“

¨

˚

˚

˚

˚

˚

˝

0 1 0 . . . 0

0 0 1 . . . 0
. . .

0 0 0 . . . 1

´p0 ´p1 ´p2 . . . ´pn´1

˛

‹

‹

‹

‹

‹

‚

.

Remark 1.23: In some literature the companion matrix of a polynomial is defined as

the transpose of our previous definition. Nonetheless, all results related to companion

matrices are analogous in both settings.

Theorem 1.24 ([31]): Let ppxq “ p0`p1x` . . .`pn´1x
n´1`xn be a monic irreducible

polynomial of degree n over the finite field Fq and α P Fqn a root of ppxq. Then the

extension field Fqn can be represented by

Fqn – Fqrxs{ppxq – Fqrαs – FqrMps.

Lemma 1.25 ([37]): For any finite field Fq the multiplicative group Fˆ
q is cyclic, i.e.

it can be generated by one element.

An irreducible polynomial ppxq P Fqrxs of degree n is called primitive if any of its

roots is a multiplicative generator of Fˆ
qn.

Lemma 1.26 ([37]): If ppxq P Fqrxs is a primitive polynomial, then the multiplicative

group generated by Mp has order qn ´ 1.

In the setting of Lemma 1.26, the group generated by Mp is known as the Singer
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group. This notation is used e.g. by Kohnert et al. in their subspace code construction

[12, 33]. Elsewhere Mp is called Singer cycle or cyclic projectivity (e.g. in [26]).

The following fact is well-known and can easily be verified.

Theorem 1.27: Let α be a root of a monic irreducible polynomial ppxq P Fqrxs of

degree n. Then Fqn – Fqrαs can be seen as an n-dimensional vector space over Fq. The

map

φpnq : Fnq ÝÑ Fqn – Fqrαs

pu1, . . . , unq ÞÝÑ
n´1
ÿ

i“0

ui`1α
i.

is an isomorphism. The analog holds for the other representations of Fqn.

Remark 1.28: In the finite field Fqrxs{ppxq, the modular multiplication of an element

vpxq “ v0 ` v1x ` . . .` vn´1x
n´1 by x always yields

vpxq ¨ x “ ´vn´1p0 `
n´1
ÿ

i“1

pvi´1 ´ vn´1piqx
i mod ppxq.

If we apply φpnq´1

to it, we get φpnq´1

pvpxq ¨ xq “ pv0, v1, . . . , vn´1qMp.

If we substitute the indeterminate x in the polynomials v P Fq by the generator

α P F
ˆ
qn , the modular multiplication with x corresponds to the multiplication with α

and hence to multiplication with the companion matrix Mp:

Theorem 1.29 ([53]): Let ppxq be a monic irreducible polynomial over Fq of degree

n and Mp its companion matrix. Furthermore let α P F
ˆ
qn be a root of ppxq. Then the

multiplication with Mp respectively α commutes with the mapping φ, i.e. for all v P Fnq

we get

φpnqpvMpq “ φpnqpvqα.

We denote by AutpFqq :“ tϕ : Fq Ñ Fq | ϕ is isomorphismu the automorphism

group of the finite field Fq. Furthermore, we denote by GalpFqk ,Fqq the Galois group of

Fqk over Fq, i.e. the set of all automorphisms of Fqk that fix the subfield Fq.

Theorem 1.30 ([37]): The distinct elements of GalpFqk ,Fqq are exactly the mappings

ϕ1, . . . , ϕk, defined by ϕjpxq “ xq
j

for any x P Fqk .



Chapter 2

Code Constructions

In this chapter we introduce and explain several constructions for constant dimen-

sion codes. These constructions can be divided into two large classes, namely lifted

matrix codes and orbit codes, where the first class contains different constructions,

corresponding to the first four sections of this chapter. Inside each section we repeat

known results and then state our improvements or other results related to them.

2.1 Lifted Rank-Metric Codes

There is a complete theory of matrix codes with the rank distance, which can be

used to construct constant dimension codes. We now give a brief overview on the most

important definitions and results of this topic.

Theorem 2.1 ([19]): Let A,B P Fmˆn
q be two matrices. It holds that

dRpA,Bq :“ rankpA´ Bq

defines a metric on Fmˆn
q . It is called the rank distance.

Definition 2.2: A linear rank-metric code is simply a subspace of Fmˆn
q . The minimum

rank distance of a code C Ď Fmˆn
q is defined as

dRpCq :“ mintdRpA,Bq | A,B P C,A ‰ Bu.

The following two theorems can be found in [19]:

Theorem 2.3: Let C Ď Fmˆn
q be a linear rank-metric code with minimum rank distance

δ. Then

|C| ď qmaxtm,nupmintm,nu´δ`1q.

13
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Theorem 2.4: For any set of parameters n,m ě δ P N and arbitrary field size there

exist codes attaining the bound of Theorem 2.3. These codes are called maximum rank

distance (MRD) codes.

A general construction for MRD codes was given by Gabidulin in [19], which we

will explain in the following. These codes are called Gabidulin codes and can be seen as

the analogs of Reed-Solomon codes for the rank metric. Assume you want to construct

an MRD code C Ď Fmˆn
q with minimum rank distance δ, where m ě n. We can

represent each column of a codeword as an element of the isomorphic extension field, i.e.

Fqm – Fmq , and view the MRD code as a linear block code over Fqm. Let g1, . . . , gn P Fqm

be linearly independent over Fq. If the generator matrix of our code in extension field

representation is of the form

G “

¨

˚

˚

˚

˚

˚

˚

˝

g1 g2 . . . gn

g
r1s
1 g

r1s
2 . . . g

r1s
n

g
r2s
1 g

r2s
2 . . . g

r2s
n

...
...

...
...

g
rn´δs
1 g

rn´δs
2 . . . g

rn´δs
n

˛

‹

‹

‹

‹

‹

‹

‚

,

where ris “ qi, then the code in matrix representation has minimum rank distance δ

and dimension mpn´ δ` 1q, i.e. it is an MRD code. If you want to construct an MRD

code C Ď Fmˆn
q , where m ă n, you can use the construction from before to construct

the transpose elements of the code.
Example 2.5: Let m “ n “ δ “ 2 and α be a root of x2 `x`1 such that F22 “ F2rαs.
Moreover let g1 “ 1, g2 “ α. Then the generator matrix is G “ p1 αq and the codewords
are

p0 0q –

˜

0 0

0 0

¸

, p1 αq –

˜

1 0

0 1

¸

, pα α ` 1q –

˜

0 1

1 1

¸

, pα ` 1 1q –

˜

1 1

1 0

¸

.

We will now explain how to use MRD codes for the construction of constant dimen-

sion codes. To distinguish between them we denote matrices by normal font letters and

subspaces by curly letters. In the same manner we denote rank-metric codes by C and

subspace codes by C.

Definition 2.6: For a given rank-metric code C Ď Fkˆn
q the set

liftpCq :“
 

rs
“

Ik A
‰

|A P C
(

is called the lifting of C.
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Theorem 2.7 ([48]): If C Ď F
kˆpn´kq
q is an MRD code of minimum rank distance δ,

then liftpCq Ď Gqpk, nq is a constant dimension code with minimum injection distance

δ. Moreover,

|liftpCq| “ qpn´kqpk´δ`1q.

Note that, since we restrict ourselves to n ě 2k, it holds that k ď n´ k. Hence, the

cardinality formula in Theorem 2.7 follows directly from Theorem 2.3.

Remark 2.8: Lifting a Gabidulin code is analogous to the Reed-Solomon-like construc-

tion from Kötter and Kschischang [34]. We do not want to explain this construction in

detail here, but the interested reader is referred to [34].

Naturally, appending 0-columns in front of all code elements does not change the

minimum distance. Thus, if C Ď F
kˆpn´k´ℓq
q is an MRD code of minimum rank distance

δ, then
 

rs
“

0kˆℓ Ikˆk M
‰

|M P C
(

is an pn, qpn´k´ℓqpk´δ`1q, δ, kqq-code. This fact can be used to construct even larger

codes, which has also been observed in, among others, [17, 20]. We will now give our

own formulation of this construction and derive an exact formula for the cardinality of

these codes, which we call the multi-component lifted MRD codes.

Theorem 2.9: Let Cj be some MRD code with minimum rank distance δ in F
kˆpn´k´jδq
q

for j “ 0, . . . , tn´k
δ

u. Then

Cj “
 

rs
“

0kˆjδ Ikˆk M
‰

| M P Cj
(

are called the component codes and the union

C “

tn´k
δ

u
ď

j“0

Cj

is an pn,N, δ, kqq-code, where

N “

tn´2k
δ

u
ÿ

i“0

qpk´δ`1qpn´k´δiq `

tn´k
δ

u
ÿ

i“tn´2k
δ

u`1

rqkpn´k`1´δpi`1qqs.

If k “ δ and n ” r mod k (such that 0 ď r ă k), it holds that

N “
qn ´ qr`k

qk ´ 1
` 1 “ qr

ˆ

qn´r ´ 1

qk ´ 1
` q´r ´ 1

˙

.

PROOF: We will first prove the minimum distance. It follows from Theorem 2.7 that
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the distance between any elements of the same component Ci is greater than or equal

to δ. Now let U P Ci and V P Ci`1. Since the identity blocks are shifted by δ positions,

the maximal intersection is pk ´ δq-dimensional. Thus

dIpU, V q “ k ´ dimpU X V q ě k ´ pk ´ δq “ δ.

Let us now investigate the size of the code. The subspace component code Ci is as large

as the corresponding MRD code (which is of size k ˆ pn´ k ´ iδq), thus

|Ci| “

"

rqpn´k´δiqpk´δ`1qs for n´ k ´ δi ě k

rqkpn´k`1´δpi`1qqs for n´ k ´ δi ă k
.

As n´ k´ δi ě k ô i ď n´2k
δ

and we look at codes with n ě 2k, we proved the general

formula. For δ “ k it holds that

N “

tn
k

u´2
ÿ

i“0

qn´kpi`1q `

tn
k

u´1
ÿ

i“tn
k

u´1

rqkpn´k`1´kpi`1qqs “

tn
k

u´2
ÿ

i“0

qn´kpi`1q ` rqkpn´k`1´ktn
k

uqs

“
qn ´ qk`n´ktn

k
u

qk ´ 1
` rqkpn´k`1´ktn

k
uqs.

Note that n ´ ktn
k

u “ r, if n ” r mod k. Thus, the exponent of the second summand

is non-positive and the formula for N follows. ˝

These multi-component lifted MRD codes attain the Johnson-type II bound (see

Proposition 1.18) for some certain cases, as explained in the following.

Corollary 2.10: 1. If δ “ k and k|n, the code construction of Theorem 2.9 is opti-

mal.

2. If δ “ k, q “ 2 and k|n´ 1, the code construction of Theorem 2.9 is optimal.

PROOF: 1. Assume that k|n. Then the cardinality of a multi-component lifted

MRD code with parameters pn,N, δ, kqq is

N “
qn ´ qk

qk ´ 1
` 1 “

qn ´ 1

qk ´ 1
,

hence it meets the Johnson-type II bound.

2. Assume now that k ě 2 (otherwise it is a trivial code), k|n ´ 1 and q “ 2. Then

the cardinality of the code is

N “
2n ´ 2k`1

2k ´ 1
` 1 “

2n ´ 2

2k ´ 1
´ 1 “

Z

2n ´ 1

2k ´ 1

^

´ 1,

which attains the bound given in Proposition 1.19. ˝
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Remark 2.11: In the case of k|n and δ “ k, these optimal codes are also called

spread codes [39]. The name arises from the well-known geometrical object k-spread

of Fnq which is defined as a set of k-dimensional subspaces of Fnq such that any pair of

elements intersects only trivially and the whole set covers the whole space Fnq . Note

that, besides lifting MRD codes, there exist also other constructions for spread codes,

some of which are explained in Sections 2.5 and 3.1.

Example 2.12: We want to construct a spread code in G2p2, 4q. Denote by C the

Gabidulin code from Example 2.5. Then the component codes are

C1 “ liftpCq and C2 “ rsr 02ˆ2 I2ˆ2 s

and C “ C1 Y C2 is the desired code with minimum distance 2 and cardinality 5.

Remark 2.13: Constant dimension codes in Gqpk, nq where k ffl n and δ “ k are also

known as (strictly) partial spreads. Results on partial spreads can be found in [6, 7],

among others. The decoding of partial spread codes was studied e.g. in [23, 35].

Moreover, it was proven in [35] that the second statement of Corollary 2.10 also holds

for q ą 2.
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2.2 Lifted Ferrers Diagram Codes

One can generalize the lifting idea to general reduced row echelon forms of matrices,

where the unit column vectors are not necessarily in the first k columns. This idea

was first introduced by Etzion and Silberstein [13]. First, let us briefly provide some

definitions needed for this construction.

We denote the matrix representation of a vector space U P Gqpk, nq in reduced row

echelon form by RREFpUq P F
kˆn
q .

Definition 2.14: The identifying vector of U P Gqpk, nq, denoted by vpUq is the binary

vector of length n and weight k, such that the k ones of vpUq are exactly in the positions

where RREFpUq has the leading ones (also called the pivots).

All the binary vectors of length n and weight k can be considered as the identifying

vectors of all the subspaces in Gqpk, nq. These
`

n

k

˘

vectors partition Gqpk, nq into the
`

n

k

˘

different classes, where each class consists of all subspaces in Gqpk, nq with the same

identifying vector. These classes are also called the (Schubert) cells of Gqpk, nq [8, 59].

Definition 2.15: The Ferrers tableaux form of a subspace U P Gqpk, nq, denoted by

FpUq, is obtained from RREFpUq by first removing the zeros to the left of the leading

coefficient from each row of RREFpUq, and then removing the columns which contain

the leading ones. All the remaining entries are shifted to the right. The Ferrers diagram

of U , denoted by FU , is obtained from FpUq by replacing the entries of FpUq with dots.

In general, a Ferrers diagram is a collection of dots such that the rows have a

decreasing and the columns have an increasing number of dots (from top to bottom

and from left to right, respectively).

Example 2.16: Let U be the subspace in G2p3, 8q with the following generator matrix

in reduced row echelon form:

RREFpUq “

¨

˝

1 0 0 0 1 1 0 0

0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 1

˛

‚.

Its identifying vector is vpUq “ p10110000q, and its Ferrers tableaux form and Ferrers

diagram are given by

FpUq “

0 1 1 0 0

1 0 1 0

0 1 1 1

, FU “

‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

.

Given vpUq, the unique corresponding FU can be found. For this, consider the zeros

of vpUq – each zero after the first one represents a column in the Ferrers diagram, where

the number of dots in the column is equal to the number of ones before the zero in vpUq.
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Example 2.17: Consider k “ 3, n “ 5 and vpUq “ p11010q. Then the corresponding

Ferrers diagram is
‚ ‚

‚ ‚

‚

.

On the other hand, given FpUq, the unique corresponding subspace U P Gqpk, nq

can easily be found, as illustrated in the following.

Example 2.18: Let q “ 3, k “ 2, n “ 4 and

FpUq “
2 0

1
.

Then, by the shape of FpUq, the identifying vector must be vpUq “ p1010q and it follows

that

U “ rs

ˆ

1 2 0 0

0 0 1 1

˙

.

In the following we will consider Ferrers diagram rank-metric codes which are gen-

eralizations of the classical rank-metric codes from the previous section.

Definition 2.19: Let F be a Ferrers diagram with m dots in the rightmost column and

ℓ dots in the top row. A code CF Ď Fmˆℓ
q is an rF , ρ, δs-Ferrers diagram rank-metric

(FDRM) code if

• for all codewords of CF , all entries not in F are zeros,

• it forms a linear subspace of dimension ρ of Fmˆℓ
q , and

• the rank distance between any two distinct codewords is at least δ.

Remark 2.20: If F is a rectangular mˆℓ diagram with mℓ dots then the FDRM code

is a classical rank-metric code, as explained in Section 2.1.

The following theorem provides an upper bound on the cardinality of CF . It can be

seen as a generalization of Theorem 2.3.

Theorem 2.21 ([14]): Let F be a Ferrers diagram and CF the corresponding FDRM

code. Then |CF | ď qminitwiu, where wi is the number of dots in F which are not contained

in the first i rows and the rightmost δ ´ 1 ´ i columns (0 ď i ď δ ´ 1).

Definition 2.22: A code which attains the bound of Theorem 2.21 is called a Ferrers

diagram maximum rank distance (FDMRD) code.

Remark 2.23: In [14] some code constructions attaining the bound of Theorem 2.21

are given. These constructions work for any Ferrers diagram if δ “ 1, 2 and for some

special cases for δ ě 3. We do not want to explain these constructions in detail here,

but refer the interested reader to [14].
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Example 2.24: We want to find a FDMRD code with minimum rank distance δ “ 2

for the Ferrers diagram

F “

‚ ‚ ‚

‚

‚

.

The code

CF “

$

&

%

¨

˝

0 0 0

0 0 0

0 0 0

˛

‚,

¨

˝

1 0 0

0 0 0

0 0 1

˛

‚,

¨

˝

0 1 0

0 0 1

0 0 0

˛

‚,

¨

˝

1 1 0

0 0 1

0 0 1

˛

‚

,

.

-

fulfills all the conditions, i.e. it fits F , forms a subspace of dimension 2 and has minimum

rank distance 2.

Definition 2.25: For a codeword A P CF Ď F
kˆpn´kq
q let AF denote the part of A

related to the entries of F in A. Given a FDRM code CF , a lifted FDRM code CF is

defined as follows:

CF “ liftpCFq :“ tU P Gqpk, nq | FpUq “ AF , A P CFu.

This definition is the generalization of the definition of a lifted rank-metric code (see

Definition 2.6). For this, note that all the codewords of a lifted MRD code have the

same identifying vector of the type p11 . . . 100 . . . 0q. In analogy, the following theorem

is the generalization of the result given in Theorem 2.7.

Theorem 2.26 ([14]): If CF Ď F
kˆpn´kq
q is an rF , ρ, δs-Ferrers diagram rank-metric

code, then its lifted code CF is an pn, qρ, δ, kqq-constant dimension code.

As before, we can now construct multi-component lifted FDRM codes. As a first

step one needs to decide which identifying vectors one wants to use for the component

codes. The following result gives some insight into this decision. Recall, that the

Hamming distance dH is defined as dHpu, vq “ wtpu ´ vq for any u, v P Fnq [38].

Proposition 2.27 ([14]): For U ,V P Gqpk, nq it holds that dIpU ,Vq ě 1
2
dHpvpUq, vpVqq.

Moreover, if vpUq “ vpVq then dIpU ,Vq “ dRpRREFpUq,RREFpVqq.

Thus, we can now formulate the construction of multi-component lifted FDRM codes,

also called the multi-level construction, as explained in [14].

Theorem 2.28: The following construction produces an pn,N, δ, kqq-code C:

• Choose a binary block code C Ď Fn2 of constant weight k and minimum Hamming

distance 2δ.

• Use each codeword vi P C as the identifying vector of a component code and

construct the corresponding lifted FDRM code Ci with minimum rank distance δ.
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• The union C “
Ť|C|
i“1Ci is the final code.

Example 2.29: We want to construct a p6, N, 2, 3qq-code, hence we start with a binary

linear code of length 6, weight 3 and Hamming distance 4:

C “ tp111000q, p100110q, p010101qu

The corresponding reduced row echelon forms and Ferrers diagrams are:

¨

˝

1 0 0 ‚ ‚ ‚

0 1 0 ‚ ‚ ‚

0 0 1 ‚ ‚ ‚

˛

‚,

¨

˝

1 ‚ ‚ 0 0 ‚

0 0 0 1 0 ‚

0 0 0 0 1 ‚

˛

‚,

¨

˝

0 1 ‚ 0 ‚ 0

0 0 0 1 ‚ 0

0 0 0 0 0 1

˛

‚.

We can fill the Ferrers diagrams with FDMRD codes with minimum rank distance 2 of

size q6, q2 and q, respectively (see Remark 2.23). The union of the lifting of these codes

is a p6, q6 ` q2 ` q, 2, 3qq-code.

Remark 2.30: The size of these codes depends mainly on the choice of the identifying

vectors. It is conjectured that lexicographic binary constant weight codes are the best

choice (cf. [14]), and for this choice one gets constant dimension codes that are at least

as large as the respective multi-component lifted MRD codes from Section 2.1, where

equality is attained if δ “ k.
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2.3 The Pending Dots Extension

Now we want to show how one can improve the previous construction by using

pending dots. The results of this subsection were first published by Trautmann and

Rosenthal in [55].

The main idea is that some identifying vectors lead to a Ferrers diagram where

one can remove dots and still achieve the same size of the corresponding FDRM code.

We can improve the size of the multicomponent lifted FDRM codes if we take these

removable dots into account.

Example 2.31: All of the following Ferrers diagrams give rise to a FDRM code with

minimum rank distance 2 of size q3, since the minimum number of dots not contained

either in the first row or in the last column is 3:

‚ ‚ ‚ ‚

‚ ‚

‚

‚ ‚ ‚

‚ ‚

‚

‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚

‚ ‚ ‚

‚ ‚ ‚

Definition 2.32: Let F be a Ferrers diagram and fij be the dot in the i-th row and

j-th column of F . Fztfiju denotes the Ferrers diagram F after removing fij. We call

a set of dots FP pending if the dots are in the first row and the leftmost columns of F

and

|CF | “ |CFzFP
|.

One can also define pending dots in the rightmost column on the very bottom and

translate the following results to that setting.

Remark 2.33: For δ “ 1 there are never any pending dots, since the dimension of the

corresponding FDMRD code is the number of all dots.

Example 2.34: In Example 2.31 the first and the second Ferrers diagrams lead to the

same-size FDRM code. Thus, the top leftmost dot of the first diagram is pending. In

the third Ferrers diagram the first three dots of the top row are pending.

One can compute the number of pending dots from the respective identifying vector

as follows. We consider the case δ “ 2, where we know from Theorem 2.21 that the

dimension of the FDMRD code is the minimum of the number of dots not contained in

the first row and the number of dots not contained in the last column.

Proposition 2.35: Let δ “ 2 and v P Fn2 be an identifying vector of weight k with the

corresponding Ferrers diagram F . Moreover, let zi be the number of zeros between the

i-th and the pi` 1q-th one of v for any 0 ď i ď k. Then the number of pending dots in

the first row of F is

n ´ k ´ z0 ´ maxti P t0, . . . , ku | zi ą 0u

if this value is positive. Otherwise, there are no pending dots in the first row of F .
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PROOF: With the formula from Theorem 2.21 we know that we have pending dots in

the first row whenever the number of dots in the first row is greater than the number

of dots in the last column, since then the minimum number of dots not contained in

the first row or the number of dots not contained in the last column is attained in the

former case. The number of dots in the first row of F is n ´ k ´ z0 and the number

of dots in the last column is maxti P t0, . . . , ku | zi ą 0u, which implies the statement.

Note that, if n´k´ z0 ´maxti P t0, . . . , ku | zi ą 0u ă 0, then one would have pending

dots in the last column. ˝

We need the following main result about pending dots for our extended code con-

struction.

Theorem 2.36: Let U and V be two subspaces in Gqpk, nq with dHpvpUq, vpVqq “ 2δ´2,

such that the leftmost one of vpUq is in the same position as the leftmost one of vpVq.

If U and V have a common pending dot and this dot is assigned with different values,

respectively, then dIpU ,Vq ě δ.

PROOF: From the Hamming distance of the identifying vectors we know that

rank

„

RREF pUq

RREF pVq



ě k ` δ ´ 1.

Moreover, the first row of RREF pUq and the first row of RREF pVq are linearly in-

dependent since they share the pivot in the same position but differ in at least one

pending dot position. Together with the fact that all other leading ones appear to the

right of the pending dots, we know that

rank

„

RREF pUq

RREF pVq



ě k ` δ,

which is equivalent to dIpU ,Vq ě δ. ˝

Example 2.37: Let n “ 7, k “ 3, δ “ 2 and consider the identifying vector p1001100q,

that gives rise to the matrix

¨

˝

1 ‚ ‚ 0 0 ‚ ‚

0 0 0 1 0 ‚ ‚

0 0 0 0 1 ‚ ‚

˛

‚

where the dot in the box marks the position of the pending dot. We fix it once as 0

and once as 1 and assign

U “ rs

¨

˝

1 0 ‚ 0 0 ‚ ‚

0 0 0 1 0 ‚ ‚

0 0 0 0 1 ‚ ‚

˛

‚,V “ rs

¨

˝

1 1 ‚ 0 0 ‚ ‚

0 0 0 1 0 ‚ ‚

0 0 0 0 1 ‚ ‚

˛

‚.

Then dHpvpUq, vpVqq “ 0 but dIpU ,Vq ě 1 for any values filling the remaining dots.
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We can now modify the construction of Theorem 2.28 as follows.

Theorem 2.38: The following construction produces an pn,N, δ, kqq-code C:

• Choose a binary block code C Ď F
n
2 of constant weight k and minimum Hamming

distance 2δ ´ 2 , such that any elements v, w P C with dHpv, wq “ 2δ ´ 2 have

the first one in the same position and a common pending dot in the corresponding

Ferrers diagram, which can be fixed with distinct values from Fq for each distinct

element, respectively.

• Use each codeword vi P C as the identifying vector of a component code and

construct the corresponding lifted FDRM code Ci with minimum rank distance δ.

• The union C “
Ť|C|
i“1 Ci is the final code.

PROOF: Let U ,V P C be two codewords. If dHpvpUq, vpVqq ě 2δ, then, by Proposition

2.27, dIpU ,Vq ě δ. If dHpvpUq, vpVqq “ 2δ ´ 2, then the pending dots imply the

minimum distance by Theorem 2.36. ˝

As before, we choose the identifying vectors in our examples in lexicographic order.

Example 2.39: We want to construct a code in Gqp3, 7q with minimum injection dis-

tance 2.

1. We choose the first identifying vector v1 “ p1110000q, whose Ferrers diagram has

no pending dot and it can be filled with an FDMRD code of size q8.

2. The second identifying vector v2 “ p1001100q (with dHpv1, v2q “ 4) leads to a

Ferrers diagram with one pending dot. Fix the pending dot as 0 and fill the

remaining Ferrers diagram with an FDMRD code of size q4:
¨

˝

1 0 ‚ 0 0 ‚ ‚

0 0 0 1 0 ‚ ‚

0 0 0 0 1 ‚ ‚

˛

‚

3. The next identifying vector v3 “ p1001010q (with dHpv1, v3q “ 4, dHpv2, v3q “ 2)

leads to a Ferrers diagram with a pending dot in the same position as before. Fix

the pending dot as 1 and fill the remaining Ferrers diagram with an FDMRD code

of size q3:
¨

˝

1 1 ‚ 0 ‚ 0 ‚

0 0 0 1 ‚ 0 ‚

0 0 0 0 0 1 ‚

˛

‚

4. The next identifying vector v4 “ p1000101q (with dHpv1, v4q “ 4, dHpv2, v4q “ 2,

dHpv3, v4q “ 4) leads to a Ferrers diagram with a pending dot in the same position

as before. (Actually there are two pending dots but we only need the one from

before.) Fix the pending dot as 1. The echelon-Ferrers form can be filled with a

Ferrers diagram code of size q.
¨

˝

1 1 ‚ ‚ 0 ‚ 0

0 0 0 0 1 ‚ 0

0 0 0 0 0 0 1

˛

‚
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5. The next identifying vectors p0101001q, p0100110q, p0010011q have Hamming dis-

tance 4 to any other identifying vector and lead to FDMRD codes of size q2, q2

and 1, respectively.

Hence we constructed a p7, q8 `q4 `q3 `2q2 `q`1, 2, 3qq-code, which is larger than the

code constructed by the classical multi-level construction from the previous section.

The following table shows some examples where the new construction leads to larger

codes than the classical construction (with a lexicographic block code C) for δ “ 2.

n k classical lifted FDRM construction new pending dots construction

7 3 q8 ` q4 ` q3 ` 2q2 ` 1 q8 ` q4 ` q3 ` 2q2 ` q ` 1

8 3 q10 ` q6 ` q5 ` 2q4 ` q3 ` q2 q10 ` q6 ` q5 ` 2q4 ` 2q3 ` 2q2 ` q ` 1

9 3 q12 ` q8 ` q7 ` 2q6 ` q5 ` q4 ` 1 q12 ` q8 ` q7 ` 2q6 ` 2q5 ` 3q4 ` 2q3`

2q2 ` q ` 1

Table 2.1: Sizes of codes Ď Gqpk, nq with minimum injection distance 2.

Based on this pending dots construction Etzion and Silberstein came up with a

modified construction for k “ 3 and δ “ 2 in [15], which they showed to be optimal

under the condition that a maximal lifted MRD code is contained in the constant

dimension code. This construction includes our example from Table 2.1 for k “ 3 and

n “ 8. Since we will need this construction in the sequel we will now briefly describe

it.

To do so we need the following lemma which follows from a one-factorization and

near-one-factorization of a complete graph.

Lemma 2.40 ([58]): Let D be the set of all binary vectors of length m and weight 2.

• If m is even, D can be partitioned into m ´ 1 classes, each of m
2

vectors with

pairwise disjoint positions of ones;

• If m is odd, D can be partitioned into m classes, each of m´1
2

vectors with pairwise

disjoint positions of ones.

Theorem 2.41 ([15]): Let n ě 8 and q2 ` q ` 1 ě ℓ, where ℓ “ n ´ 4 for odd n and

ℓ “ n´3 for even n. The following construction produces an pn,N, 2, 3qq-code C, where

N “ q2pn´3q `

„

n´ 3

2



q

.

Construction:

• By Lemma 2.40, we partition the set of weight-2 vectors of F
n´3
2 into ℓ classes

P1, P2, . . . , Pℓ and define the following four sets of identifying vectors:

A0 “ tp111||0 . . . 0qu,
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A1 “ tp001||yq | y P P1u,

A2 “ tp010||yq | y P Pi, 2 ď i ď mintq ` 1, ℓuu,

A3 “

"

tp100||yq | y P Pi, q ` 2 ď i ď ℓu if ℓ ą q ` 1

∅ if ℓ ď q ` 1
.

Elements with the same prefix and distinct suffices from the same class Pi have

Hamming distance 4. When we use the same prefix for two different classes Pi, Pj,

we assign different values in the pending dots of the Ferrers tableaux forms.

• For each identifying vector from A0, . . . ,A3 construct the corresponding lifted

FDMRD code Ci with rank distance 4. Note that the Ferrers diagrams used here

are without the pending dots used in the step before.

• The union
Ťℓ

i“0 Ci forms the final code C.

As already mentioned, this construction attains the following bound for k “ 3:

Theorem 2.42 ([15]): Let k ě 3. If an pn,N, k ´ 1, kqq-constant dimension code C

contains an pn, qpn´kqpk´δ`1q, k ´ 1, kqq-lifted MRD code then

N ď q2pn´kq ` Aqpn´ k, k ´ 2, k ´ 1q.
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2.4 The Pending Blocks Constructions

We now want to extend the definition of pending dots to a two-dimensional setting.

Most of the results of this section were first published by Silberstein and Trautmann in

[46].

Definition 2.43: Let F be a Ferrers diagram with m dots in the rightmost column

and ℓ dots in the top row. We say that the ℓ1 ă ℓ leftmost columns of F form a pending

block if the upper bound on the size of FDMRD code CF from Theorem 2.21 is equal

to the upper bound on the size of CF without the ℓ1 leftmost columns.

Example 2.44: Consider the following Ferrers diagrams:

F1 “

‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚

, F2 “

‚ ‚ ‚

‚ ‚ ‚

‚ ‚ ‚

.

For δ “ 3, by Theorem 2.21, both codes CF1
and CF2

have |CFi
| ď q3, i “ 1, 2. The

diagram F1 has the pending block
‚ ‚

‚
and the diagram F2 has no pending block.

Definition 2.45: Let F be a Ferrers diagram with m dots in the rightmost column

and ℓ dots in the top row, and let ℓ1 ď ℓ,m1 ă m such that the m1-th row has ℓ´ ℓ1 `1

many dots. If the pm1 ` 1q-th row of F has less dots than the m1-th row of F , then

the ℓ1 leftmost columns of F are called a quasi-pending block (of size m1 ˆ ℓ1).

As in the one-dimensional case, one could also define (quasi-)pending blocks in the

lowest rows and rightmost columns of a Ferrers diagram. The following results are then

easily carried over to that case.

Remark 2.46: A pending block is also a quasi-pending block.

Theorem 2.47: Let U ,V P Gqpk, nq, such that the first m1 ones of vpUq and vpVq

are in the same positions and RREFpUq, RREFpVq have a quasi-pending block of size

m1 ˆ ℓ1 in the same position. Let dHpvpUq, vpVqq “ 2δ and denote the submatrices of

FpUq and FpVq corresponding to the quasi-pending blocks by BU and BV , respectively.

Then dIpU ,Vq ě δ ` rankpBU ´ BVq.

PROOF: Since the first ones of the identifying vectors are in the same position, it has

to hold that the first m1 pivots of RREFpUq and RREFpVq are in the same columns.

To compute the rank of
„

RREFpUq

RREFpVq



we permute the columns such that the m1 first pivot columns are to the very left,

then the columns of the pending block, then the other pivot columns and then the rest
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(WLOG in the following figure we assume that the pm1 ` 1q-th pivots are also in the

same column):

rank

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–
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...

. . .
...

. . . BU

...
...

...

0 . . . 1 0 . . . 0 0 . . .

0 . . . 0 0 . . . 0 . . . 0 1 . . .
...

...

1 . . . 0 0 . . .
...

. . .
...

. . . BV

...
...

...

0 . . . 1 0 . . . 0 0 . . .

0 . . . 0 0 . . . 0 . . . 0 1 . . .
...

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi
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1 . . . 0 0 . . .
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. . .
...

. . . BU

...
...

...

0 . . . 1 0 . . . 0 0 . . .

0 . . . 0 0 . . . 0 . . . 0 1 . . .
...

...

0 . . . 0 0 . . .
...

. . .
...

. . . BU ´ BV

...
...

...

0 . . . 0 0 . . . 0 0 . . .

0 . . . 0 0 . . . 0 . . . 0 0 . . .
...

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi
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The additional pivots of RREFpUq and RREFpVq (to the right in the above represen-

tation) that were in different columns in the beginning are still in different columns,

hence it follows that

rank

„

RREFpUq

RREFpVq



ě k `
1

2
dHpvpUq, vpVqq ` rankpBU ´ BVq,

which implies the statement with the formula

dIpU ,Vq “ rank

„

RREFpUq

RREFpVq



´ k ě k ` δ ` rankpBU ´ BVq ´ k.
˝

In analogy to the pending dots scenario, this theorem implies that for the construc-

tion of an pn,M, δ, kqq-code, by filling the (quasi-)pending blocks with a suitable FDRM

code, one can choose a set of identifying vectors with lower minimum Hamming distance

than 2δ.
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2.4.1 Constructions for pn,N, 2, kqq-Codes

In this subsection we present a construction based on quasi-pending blocks for

pn,M, 4, kqq-codes with k ě 4 and n ě 2k ` 2. This construction will then give rise to

new lower bounds on the size of constant dimension codes with this minimum distance.

Moreover, we will give some extension of this construction and give an additional con-

struction for new codes from known codes in the end of the section. First we need the

following results.

Lemma 2.48: Let n ě 2k ` 2 and v P Fn2 be an identifying vector of weight k, such

that there are k ´ 2 many ones in the first k positions of v. Then the Ferrers diagram

arising from v has more or equally many dots in the first row than in the last column.

PROOF: Because of the distribution of the ones, it holds that the number of dots in

the first row of the Ferrers diagram is

n ´ k ´ 2 ` i, i P t0, 1, 2u

and the number of dots in the last column of the Ferrers diagram is

k ´ 2 ` j, j P t0, 1, 2u.

Since we assume that n ě 2k ` 2, the number of dots in the first row is always greater

or equal to the number of dots in the last column. ˝

Then it follows from Theorem 2.21:

Corollary 2.49: The upper bound for the dimension of a FDRM code with minimum

rank distance 2 in the setting of Lemma 2.48 is the number of dots that are not in the

first row.

Lemma 2.50: The number of all matrices filling the Ferrers diagrams arising from all

elements of Fkq of weight k ´ 2 as identifying vectors is ν :“
řk´2

j“0

řk´2

i“j q
i`j ´ 1.

PROOF: Assume the first zero is in the j-th and the second zero is in the i-th position

of the identifying vector. Then the corresponding Ferrers diagram has j´ 1 dots in the

first column and i´ 2 dots in the second column. I.e., there are

k´1
ÿ

j“1

k
ÿ

i“j`1

pj ´ 1q ` pi´ 2q “
k´2
ÿ

j“0

k´2
ÿ

i“j

i` j

dots over all and we can fill each diagram with i dots with qi many different matrices.

The formula follows, since we have to subtract 1 for the summand where i “ j “ 0. ˝

We can now describe the first construction for pn,N, 2, kqq-codes with k ě 4 and

n ě 2k ` 2.

Construction 2.51: First, by Lemma 2.40, we partition the weight-2 vectors of Fn´k
2

into classes P1, . . . , Pℓ of size ℓ̄
2

(where ℓ “ ℓ̄ ´ 1 “ n ´ k ´ 1 if n ´ k even and

ℓ “ ℓ̄ ` 1 “ n´ k if n ´ k odd) with pairwise disjoint positions of the ones.
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• We define the following sets of identifying vectors (of weight k):

A0 “ tp1 . . . 1||0 . . . 0qu

A1 “ tp0011 . . . 1||yq | y P P1u,

A2 “ tp0101 . . . 1||yq | y P P2, . . . , Pq`1u,

...

Apk
2q

“ tp1 . . . 1100||yq | y P Pµ, . . . , Pνu.

such that the prefixes in A1, . . . ,Apk
2
q are all vectors of Fk2 of weight k ´ 2. The

number of Pi’s used in each set depends on the size of the quasi-pending block

arising in the k leftmost columns of the respective matrices. Thus, ν is the value

from Lemma 2.50 and µ :“ ν ´ q2pk´2q.

• For each vector vj in a given Ai for i P t2, . . . ,
`

k

2

˘

u assign a different matrix filling

for the quasi-pending block in the k leftmost columns of the respective matrices.

Fill the remaining part of the Ferrers diagram with a suitable FDMRD code of the

minimum rank distance 2 and lift the code to obtain Ci,j . Define Ci “
Ť|Ai|
j“1 Ci,j.

• Take the largest known code C̄ Ď Gqpk, n´ kq with minimum injection distance 2

and append k zero columns in front of every matrix representation of the code-

words. Call this code C̃.

• The union

C “

pk
2
q

ď

i“0

Ci Y C̃

forms the final code C, where C0 is the lifted MRD code corresponding to A0.

Remark 2.52: If ℓ ă ν, then we use only the sets A0, . . . ,Ai (where i ď
`

k

2

˘

) such

that all of P1, . . . , Pℓ are used once.

Theorem 2.53: A code C Ď Gqpk, nq constructed according to Construction 2.51 has

minimum injection distance 2.

PROOF: Let U ,V P C be two codewords. If both are from C̃, the distance is given

by definition of C̃. If U is from C̃ and V is not, then dHpvpUq, vpVqq ě 2pk ´ 2q. Since

k ě 4, it follows that dIpU ,Vq ě 2. For the rest we distinguish four different cases:

1. If vpUq “ vpVq, then the FDMRD code implies the distance.

2. If vpUq ‰ vpVq and both vpUq, vpVq are in the same set Ai for some i, then

dHpvpUq, vpVqq ě 2 (because of the structure of the Pi’s). The quasi-pending

blocks then imply by Theorem 2.47 that dIpU ,Vq ě 1 ` 1 “ 2.

3. If vpUq P A0, vpVq P Aj, where j ą 0, then dHpvpUq, vpVqq ě 4. Hence, dIpU ,Vq ě

2.

4. If vpUq P Ai, vpVq P Aj, where i ‰ j and i, j ą 0, then dHpvpUq, vpVqq ě 4

because the first k coordinates have minimum distance ě 2 and the last n ´ k
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coordinates have minimum distance ě 2, since they are in different Pi’s. Hence,

dIpU ,Vq ě 2.

˝

Theorem 2.54: If ℓ ď ν, a code C Ď Gqpk, nq constructed according to Construction

2.51 has cardinality

|C| “ qpk´1qpn´kq ` qpn´k´2qpk´3q

„

n´ k

2



q

` Aqpn´ k, 2, kq.

PROOF: It holds that |C0| “ qpk´1qpn´kq and |C̃| “ Aqpn ´ k, 2, kq. Because of the

assumption on k and q it follows from Lemma 2.50 that all the yi P F
n´k
2 are used for

the identifying vectors, hence the submatrices corresponding to the Ferrers diagrams in

the lower two rows are in one-to-one correspondence with Gqp2, n´ kq, which has

„

n ´ k

2



q

elements. Moreover, we can fill the second to pk´2q-th row of the Ferrers diagrams with

all possible values in the construction of the FDMRD code, hence there are qpn´k´2qpk´3q

possibilities for these dots. Together with the size of C0 and C̃, we have the lower bound

on the code size. ˝

Example 2.55: We want to construct a p10, N, 2, 4q2-code. We partition the binary

vectors of length 6 and weight 2 into the following 5 classes:

P1 “ t110000, 001010, 000101u, P2 “ t101000, 010001, 000110u,

P3 “ t011000, 100100, 000011u, P4 “ t010100, 100010, 001001u,

P5 “ t100001, 010010, 001100u.

Then we define the identifying vectors as

A0 “ tp1111||000000qu,

A1 “ tp0011||110000q, p0011||001010q, p0011||000101qu,

A2 “ tp0101||yq | y P P2 Y P3u, using one pending dot,

A3 “ tp1001||yq | y P P4 Y P5u, using one of the two pending dots.

The lifted FDMRD code for A0 has 218, the one for A1 has 212 ` 27 ` 25 elements, etc.

The union of all these lifted FDMRD codes has cardinality

N “ 218 ` 24
„

6

2



2

“ 218 ` 10416.

We can then add a p6, 21, 2, 4q2-code (the dual of a p6, 21, 2, 2q-spread code) with four

zero columns appended in front of each codeword and get a final code size of 218`10437.
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In comparison, the multi-component lifted MRD code from Section 2.1 has cardinality

218 ` 4113.

We can now retrieve a lower bound on the size of constant dimension codes for

minimum injection distance 2.

Corollary 2.56: Let k ě 4, n ě 2k ` 2 and
řk´2

j“0

řk´2

i“j q
i`j ´ 1 ě n´ k if n´ k is odd

(otherwise ě n´ k ´ 1). Then

Aqpn, 4, kq ě qpk´1qpn´kq ` qpn´k´2qpk´3q

„

n´ k

2



q

` Aqpn ´ k, 2, kq.

Proposition 2.57: This bound is always tighter than the one given by the multi-

component lifted MRD code construction from Theorem 2.9.

PROOF: The cardinality from Theorem 2.9 with δ “ 2 is given by

N “

tn´2k
2

u
ÿ

i“0

qpk´1qpn´k´2iq `

tn´k
2

u
ÿ

i“tn´2k
2

u`1

qkpn´k`1´2pi`1qq

ď qpk´1qpn´kq `

tn´2k
2

u
ÿ

i“1

qpk´1qpn´k´2iq `

tn´k
2

u
ÿ

i“tn´2k
2

u`1

qkpn´k`1´2pi`1qq

ď qpk´1qpn´kq ` qpk´3qpn´k´2q

tn´2k
2

u
ÿ

i“1

q2pn´ki`i´3q ` Aqpn´ k, 2, kq

hence, it remains to show that

tn´2k
2

u
ÿ

i“1

q2pn´ki`i´3q ď

„

n ´ k

2



q

.

This is true because
„

n´ k

2



q

“
pqn´k ´ 1qpqn´k´1 ´ 1q

pq2 ´ 1qpq ´ 1q

“

$

&

%

´

ř

n´k
2

i“1 q
n´k´2i

¯´

ř

n´k
2

i“1 q
n´k´1´i

¯

if n ´ k is even
´

ř

n´k´1

2

i“1 qn´k´2i´1
¯´

ř

n´k`1

2

i“1 qn´k´i
¯

if n ´ k is odd

ě

n´k´1

2
ÿ

i“1

q2n´2k´3i´1 ě

n´k´1

2
ÿ

i“1

q2pn´ki`i´3q ě

tn´2k
2

u
ÿ

i“1

q2pn´ki`i´3q. ˝

Note that in the construction we did not use the dots in the quasi-pending blocks

for the calculation of the size of a FDMRD code. Thus, the bound of Corollary 2.56

is not tight. To make it tighter, one can use less pending blocks and larger FDMRD
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codes, as illustrated in the following construction. We denote by Py the class of suffixes

which contains the suffix vector y (in the partition according to Lemma 2.40).

Construction 2.58: First, in addition to A0 of Construction 2.51, we define the fol-

lowing sets of identifying vectors:

Ā1 “ tp11...1100||yq | y P P1100...00u, Ā2 “ tp11...1010||yq | y P P1010...00u,

Ā3 “ tp11...0110||yq | y P P1001...00u, Ā4 “ tp11...1001||yq | y P P0110...00u.

All the other identifying vectors are distributed as in Construction 2.51, using possible

pending blocks. Then we construct the respective lifted FDMRD codes, where we now

consider the whole Ferrers diagram (and not only the one of the last n ´ k columns)

for Ā1, . . . , Ā4. The other identifying vectors are treated as in Construction 2.51.

With this construction, we get larger FDMRD codes for Ā1, . . . , Ā4 but we also have

a stricter condition on q and k such that all Pi’s are used (compared to Construction

2.51). I.e., the lower bound on the cardinality becomes

Corollary 2.59: If
řk´2

j“0

řk´2

i“j q
i`j ´

ř5

i“4 q
2k´i ´ 2q2k´6 ě n´ k, then

Aqpn, 4, kq ě qpk´1qpn´kq ` qpn´k´2qpk´3q

„

n ´ k

2



q

` pq2pk´3q ´ 1qqpk´1qpn´k´2q

`pq2pk´3q´1 ´ 1qqpk´1qpn´k´2q´1 ` 2pq2pk´4q ´ 1qqpk´1qpn´k´2q´2 ` Aqpn´ k, 4, kq.

Remark 2.60: One can use the idea of Construction 2.58 on more Ai’s, as long as

there are enough pending blocks such that all Pi’s are used.

Another modification of the previous constructions is explained in the following. It

does not give rise to a general formula on the size of codes for arbitrary q, k, n but one

can construct codes for specific parameters, that appear to be the largest known codes

in some cases.

Construction 2.61: Consider Construction 2.51, but instead of using all the Pi-classes,

use the classes which contribute the most codewords more than once with disjoint pre-

fixes.

Example 2.62: Consider the setting of Example 2.55. We want to again construct a

p10, N, 2, 4q2-code. We define A0 as previously and

A1 “ tp1100||yq | y P P1u,A2 “ tp0011||yq | y P P1u,

A3 “ tp0110||yq | y P P4u,A4 “ tp1001||yq | y P P4u,

A5 “ tp1010||yq | y P P2 Y P3u,A6 “ tp0101||yq | y P P2 Y P3u,

where we use the pending dot in A5 and A6. Note that we do not use P5. Also, the

FDMRD codes are now constructed for the whole Ferrers diagrams (without the pending

dot), and not only for the last 6 columns. We can again add A2p6, 2, 4q “ 21 codewords

corresponding to C̃ in Construction 2.51. The size of the final code is 218 ` 37477. The

largest previously known code was obtained by the multi-level construction and has size

218 ` 34768 [14].
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2.4.2 Construction for pn,N, k ´ 1, kqq-Codes

In this section we provide a recursive construction for pn,N, k ´ 1, kqq-codes, which

uses the pending dots based construction described in Theorem 2.41 as an initial step.

This construction provides a new lower bound on the cardinality of pn,M, k ´ 1, kqq-

codes containing a lifted MRD code for general k.

First, we need the following generalization of Lemma 2.48.

Lemma 2.63: Let n ´ k ´ 2 ě n1 ě k ´ 2 and v be an identifying vector of length n

and weight k, such that there are k ´ 2 many ones in the first n1 positions of v. Then

the Ferrers diagram arising from v has more or equally many dots in any of the first

k ´ 2 rows than in the last column.

PROOF: Naturally, the last column of the Ferrers diagram has at most k many dots.

Since there are k ´ 2 many ones in the first n1 positions of v, it follows that there are

n´n1 ´2 zeros in the last n´n1 positions of v. Thus, there are at least n´n1 ´2 many

dots in any but the lower two rows of the Ferrers diagram arising from v. Therefore, if

n ´ n1 ´ 2 ě k ðñ n ´ k ´ 2 ě n1 the Ferrers diagram arising from v has more or

equally many dots in any of the first k ´ 2 rows than in the last column. It holds that

any column has at most as many dots as the last one. ˝

Then it follows from Theorem 2.21:

Corollary 2.64: The upper bound for the dimension of a Ferrers diagram code with

minimum rank distance k ´ 1 in the setting of Lemma 2.63 is the number of dots that

are not in the first k ´ 2 rows.

Remark 2.65: If an m ˆ ℓ-Ferrers diagram has δ rows with ℓ dots each, then the

construction of [14] provides respective FDMRD codes of minimum distance δ ` 1

attaining the bound of Theorem 2.21.

Lemma 2.66: For an m ˆ ℓ-Ferrers diagram where the j-th row has at least x more

dots than the pj ` 1q-th row for 1 ď j ď m ´ 1 and the lowest row has x many dots,

one can construct a FDMRD code with minimum rank distance m and cardinality qx

as follows. For each codeword take a different w P Fxq and fill the first x dots of every

row with this vector, whereas all other dots are filled with zeros.

PROOF: The minimum distance follows easily from the fact that the positions of the

w’s in each row have no column-wise intersection. Since they are all different, any

difference of two codewords has a non-zero entry in each row and it is already row-

reduced.

The cardinality is clear, hence it remains to show that this attains the bound of

Theorem 2.21. Plugging in i “ k´ 1 in Theorem 2.21 we get that the dimension of the

code is less than or equal to the number of dots in the last row, which is achieved by

this construction. ˝

Construction 2.67: Let s “
řk
i“3 i, n ě s` 2` k and q2 ` q` 1 ě ℓ, where ℓ “ n´ s
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for odd n ´ s (or ℓ “ n ´ s ´ 1 for even n ´ s).

• Identifying vectors: In addition to the identifying vector vk00 “ p11 . . . 1100 . . . 0q

of the lifted MRD code Ck˚ (of size q2pn´kq and distance 2pk ´ 1q), the other

identifying vectors of the codewords are defined as follows. First, by Lemma 2.40,

we partition the weight-2 vectors of Fn´s
2 into classes P1, . . . , Pℓ of size ℓ̄

2
(where

ℓ “ ℓ̄ ´ 1 “ n ´ s ´ 1 if n ´ s even and ℓ “ ℓ̄ ` 1 “ n ´ s if n ´ s odd) with

pairwise disjoint positions of the ones. We define the sets of identifying vectors

by a recursion. Let v0 and A1,A2,A3 Ď Fn´s`3
q as defined in Theorem 2.41. Then

v300 “ v0,

A3
0 “ H, A3

i “ Ai, 1 ď i ď 3.

For k ě 4 we define:

Ak
0 “ tvk01, . . . , v

k
0k´3u,

where vk0j “ p000 wkj ||vk´1
0j´1q (1 ď j ď k ´ 3), such that the wkj are all different

weight-1 vectors of Fk´3
2 . Furthermore we define:

Ak
1 “ tp0010 . . . 00||zq | z P Ak´1

1 u,

Ak
2 “ tp0100 . . . 00||zq | z P Ak´1

2 u,

Ak
3 “ tp1000 . . . 00||zq | z P Ak´1

3 u,

such that the prefixes of the vectors in Y3
i“0A

k
i are vectors of Fk2 of weight 1. Note

that the suffix y P Fn´s
q (from Theorem 2.41) in all the vectors from Ak

1 belongs

to P1, the suffix y in all the vectors from Ak
2 belongs to Y

mintq`1,ℓu
i“2 Pi, and the

suffix y in all the vectors from Ak
3 belongs to Yℓ

i“q`2Pi. (The set Ak
3 is empty if

ℓ ď q ` 1.)

• Pending blocks:

– All Ferrers diagrams that correspond to the vectors in Ak
1 have a common

pending block with k ´ 3 rows and
řk´j
i“3 i dots in the j-th row, for 1 ď

j ď k ´ 3. We fill each of these pending blocks with a different element

of a suitable FDMRD code with minimum rank distance k ´ 3 and size q3,

according to Lemma 2.66. Note that the initial conditions imply that q3 ě ℓ̄,

i.e. we always have enough fillings for the pending block to use all elements

of the given set Pi.

– All Ferrers diagrams that correspond to the vectors in Ak
2 have a common

pending block with k ´ 2 rows and
řk´j
i“3 i` 1 dots in the j-th row, 1 ď j ď

k´2. Every vector which has a suffix y from the same Pi will have the same

value ai P Fq in the first entry in each row of the common pending block, s.t.

the vectors with suffixes from the different classes will have different values

in these entries. (This corresponds to a FDMRD code of distance k ´ 2 and

size q.) Given the filling of the first entries of every row, all the other entries

of the pending blocks are filled by a FDMRD code with minimum distance

k ´ 3, according to Lemma 2.66.
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– All Ferrers diagrams that correspond to the vectors in Ak
3 have a com-

mon pending block with k ´ 2 rows and
řk´j
i“3 i ` 2 dots in the j-th row,

1 ď j ď k ´ 2. The filling of these pending blocks is analogous to the pre-

vious case, but for the suffixes from the different Pi-classes we fix the first

two entries in each row of a pending block. Hence, there are q2 different

possibilities.

• Ferrers tableaux forms: On the dots corresponding to the last n´ s ´ 2 columns

of the Ferrers diagrams for each vector vj in a given Ak
i , 0 ď i ď 3, we construct

a FDMRD code with minimum distance k ´ 1 (according to Remark 2.65) and

lift it to obtain Cki,j . We define Cki “
Ť|Ak

i |
j“1 C

k
i,j .

• Code: The final code is defined as

Ck “
3
ď

i“0

Cki Y Ck˚ .

Remark 2.68: The existence and size of the pending blocks for Ak
1,A

k
2,A

k
3 follows

directly from Corollary 2.64.

Theorem 2.69: The code Ck obtained by Construction 2.67 has minimum injection

distance k ´ 1.

PROOF: Let U ,V P Ck, U ‰ V. If vpUq “ vpVq then by Lemma 2.26 dIpU ,Vq ě k´ 1.

Next, assume that vpUq ‰ vpVq. Note that, according to the definition of the identifying

vectors, dIpU ,Vq ě 1
2
dHpvpUq, vpVqq “ k ´ 1 for pU ,Vq P Ck˚ ˆ Cki , 0 ď i ď 3, for

pU ,Vq P Ck0 ˆ Ck0 , and for pU ,Vq P Cki ˆ Ckj , i ‰ j.

Now let U ,V P Cki , for some 1 ď i ď 3.

• If the suffixes of vpUq and vpVq of length n ´ s belong to the same class Pt,

then dHpvpUq, vpVqq “ 4 and dRpBU , BVq “ k ´ 3, for the common pending

block submatrices BU , BV of FpUq,FpVq, respectively. Then by Theorem 2.47,

dIpU ,Vq ě 2 ` pk ´ 3q “ k ´ 1.

• If the suffixes of vpUq and vpVq of length n ´ s belong to different classes, say

Pt1 , Pt2 respectively, then dHpvpUq, vpVqq ě 2 and dRpBU , BVq “ k ´ 2, for the

common pending block submatrices BU , BV of FpUq,FpVq, respectively. Then by

Theorem 2.47, dIpU ,Vq ě 1 ` pk ´ 2q “ k ´ 1.

Hence, for any U ,V P Ck it holds that dIpU ,Vq ě k ´ 1. ˝

Theorem 2.70: The code Ck obtained by Construction 2.67 has cardinality

|Ck| “ q2pn´kq ` q2pn´pk`pk´1qqq ` . . .` q2pn´p
řk

i“3
iqq `

«

n ´ p
řk

i“3 iq

2

ff

q

.

PROOF: First observe that, for all identifying vectors except vk00, the additional line of

dots of the corresponding Ferrers diagrams does not increase the cardinality compared



2 Code Constructions 37

to the previous recursion step, due to Lemma 2.63. The only identifying vector that

contributes additional words to Ck is vk00, and thus |Ck| “ |Ck´1| ` q2pn´kq for any k ě 4.

Inductively, the cardinality formula follows, together with the cardinality formula for

k “ 3 from Theorem 2.41. ˝

Corollary 2.71: Let n ě s` 2` k and q2 ` q` 1 ě ℓ, where s “
řk
i“3 i and ℓ “ n´ s

for odd n´ s (or ℓ “ n´ s ´ 1 for even n´ s). Then

Aqpn, k ´ 1, kq ě
k
ÿ

j“3

q2pn´
řk

i“j iq `

«

n´ p
řk
i“3 iq

2

ff

q

.

Example 2.72: Let k “ 4, δ “ 3, n “ 13, and q “ 2. The code C4 obtained by

Construction 2.67 has cardinality

218 ` 212 `

„

6

2



q

“ 218 ` 4747.

The largest previously known code was of cardinality 218 ` 4357 [14].

Example 2.73: Let k “ 5, δ “ 4, n “ 19, and q “ 2. The code C5 obtained by

Construction 2.67 has cardinality

228 ` 220 ` 214 `

„

7

2



q

“ 228 ` 1067627.

The largest previously known code was of cardinality 228 ` 1052778 [14]. We now

illustrate the construction:

First, we partition the set of suffixes y P F7
2 of weight 2 into 7 classes, P1, . . . , P7 of

size 3 each. The identifying vectors of the code are partitioned as follows:

v500 “p11111||0000||000||0000000q,

A5
0 “tp00001||1111||000||0000000q, p00010||0001||111||0000000qu

A5
1 “tp00100||0010||001||yq | y P P1u

A
5
2 “tp01000||0100||010||yq | y P tP2, P3uu

A5
3 “tp10000||1000||100||yq | y P tP4, P5, P6, P7uu

To demonstrate the idea of the construction we will consider the set A5
2. All the

codewords corresponding to A5
2 have the common pending block

B “

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚

.
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Then, to distinguish between the two classes P2 and P3, we assign the following values

to B, respectively:

1 ‚ ‚ ‚ ‚ ‚ ‚ ‚

1 ‚ ‚ ‚

1

0 ‚ ‚ ‚ ‚ ‚ ‚ ‚

0 ‚ ‚ ‚

0

For the remaining dots of B we construct a FDMRD code of distance 2 (here a “ 0 for

P2 or a “ 1 for P3):

a 0 0 0 0 0 0 0

a 0 0 0

a

,

a 1 0 0 0 0 0 0

a 1 0 0

a

,

a 0 1 0 0 0 0 0

a 0 1 0

a

,

a 0 0 1 0 0 0 0

a 0 0 1

a

,

a 1 1 0 0 0 0 0

a 1 1 0

a

,

a 1 0 1 0 0 0 0

a 1 0 1

a

,

a 0 1 1 0 0 0 0

a 0 1 1

a

,

a 1 1 1 0 0 0 0

a 1 1 1

a

.

Since both P2 and P3 contain only three elements, we only need to use three of the

above tableaux to assign a different filling of the common pending block for the different

elements corresponding to A5
2. We proceed analogously for the pending blocks of A5

1,A
5
3.

Then we fill the Ferrers diagrams corresponding to the last 7 columns of the identifying

vectors with an FDMRD code of minimum rank distance 4 and lift these elements.

Moreover, we add the lifted MRD code corresponding to v500, which has cardinality 228.

The number of codewords which corresponds to the set A5
0 is 220 ` 214. The number of

codewords that correspond to A5
1 Y A5

2 Y A5
3 is

„

7

2



q

.
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2.5 Orbit Codes

In this section we consider a new point of view: we derive subspace codes from group

actions—such codes are called orbit codes [41, 54]. In Section 2.5.2 we show that this

group theoretic approach yields a certain generalization of a classical linear block code

to subspace codes. Moreover, we investigate in more detail orbit codes that arise from

cyclic groups, called cyclic orbit codes, in Sections 2.5.3 and 2.5.4.

First we introduce the basic definitions and notation of groups acting on sets we

need for our further investigations. These definitions and preliminary results can be

found in [11, 32].

Definition 2.74: Let G be a finite multiplicative group with one-element 1G and let

X denote a finite set. A (right) group action of G on X is a mapping

X ˆ G ÝÑ X

px, gq ÞÝÑ xg

such that x1G “ x and xpgg1q “ pxgqg1 holds for all x P X and g, g1 P G. The

fundamental property is that

x „G x
1 : ðñ Dg P G : x1 “ xg

defines an equivalence relation on X. The induced equivalence classes are the orbits of

G on X. The orbit of x P X is abbreviated by

xG :“ txg | g P Gu

and we denote the set of all orbits of G on X by

X{G :“ txG | x P Xu.

A transversal of the orbits X{G, denoted by T pX{Gq, is a minimal subset of X such

that X{G :“ txG | x P T pX{Gqu, i. e. it is a set of representatives of the orbits.

In the same manner one can define a left group action of G on X. Then the orbit

of x P X under G is denoted by Gx and the set of all orbits of G on X is denoted by

GzX :“ tGx | x P Xu.

Definition 2.75: The stabilizer of an element x P X is the set of group elements that

fix x:

StabGpxq :“ tg P G | xg “ xu.

Proposition 2.76: Stabilizers are subgroups of G having the property that the stabiliz-
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ers of different elements of the same orbit are conjugated subgroups:

StabGpxgq “ g´1StabGpxqg @g P G.

If H is a subgroup of G and g P G, the set Hg is called a right coset of H in G. The

Fundamental Lemma of Group Actions states that an orbit can be bijectively mapped

onto the right cosets of the stabilizer:

Lemma 2.77 ([11, 32]): The mapping, defined by

xG ÝÑ StabGpxqzG

xg ÞÝÑ StabGpxqg.

is bijective. In particular, if T pStabGpxqzGq denotes a transversal between StabGpxq

and G, the mapping

T pStabGpxqzGq ÝÑ xG

g ÞÝÑ xg

is also one-to-one.

As an immediate consequence we obtain the equation for the orbit size:
Proposition 2.78:

|xG| “
|G|

|StabGpxq|

2.5.1 Orbit Codes in Gqpk, nq

Now we consider orbit codes in the Grassmannian. The results of this subsection

were first published in [54].

Definition 2.79: The general linear group of degree n, denoted by GLn, is the set of

all invertible n ˆ n-matrices with entries in Fq. If we have to specify the underlying

field Fq we will write GLnpqq:

GLnpqq :“ tA P F
nˆn
q | rankpAq “ nu.

Proposition 2.80: Multiplication with GLn-elements actually defines a group action

from the right on the linear lattice Pqpnq by

Pqpnq ˆ GLn ÝÑ Pqpnq

pU , Aq ÞÝÑ UA :“ tvA | v P Uu.

Since GLn is rank-preserving when acting on matrices, it induces an action on the

Grassmannian:

Gqpk, nq ˆ GLn ÝÑ Gqpk, nq
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pU , Aq ÞÝÑ UA.

Since any two k-subspaces can be mapped onto each other by an invertible matrix, the

orbit of the general linear group GLn on any k-subspace U is the whole set of all k-

subspaces. Thus, we say that GLn acts transitively on Gqpk, nq.

Now the definition of an orbit code in the Grassmannian is straightforward.

Definition 2.81: The orbits of a subgroup of the general linear group GLn on the

Grassmannian Gqpk, nq are called (subspace) orbit codes.

Lemma 2.82: Since GLn is rank-preserving on Fkˆn
q , it is also injection distance-

preserving on Gqpk, nq, i.e. for U ,V P Gqpk, nq and A P GLn

dIpU ,Vq “ dIpUA,VAq.

Theorem 2.83: Let U P Gqpk, nq, G be a subgroup of GLn and C “ UG be an orbit

code.

1. The code C has size

|C| “
|G|

|StabGpUq|
“

|G|

|G X StabGLn
pUq|

.

2. The minimum distance dIpCq of the code satisfies

dIpCq “mintdIpU ,UAq | A P T pStabGpUqzGq, A R StabGpUqu.

3. The stabilizers in GLn of different codewords V,W P C are conjugate subgroups,

i. e. there exists A P G with

StabGLn
pVq “ A´1StabGLn

pWqA.

and

StabGpVq “ A´1StabGpWqA.

4. In particular, |StabGLn
pVq| “ |StabGLn

pWq|, respectively |StabGpVq| “

|StabGpWq|.

PROOF: The first part follows from Proposition 2.78, the second from Lemma 2.82

and the last two from Proposition 2.76. ˝

Proposition 2.84: Let U0 “ rsr Ikˆk 0kˆpn´kq s. It holds that

StabGLn
pU0q “

#˜

A1 0

A3 A4

¸

| A1 P GLk, A3 P F
pn´kqˆk
q , A4 P GLn´k

+

.

Since GLn acts transitively on Gqpk, nq, we know that for any U P Gqpk, nq there exists

B P GLn such that U “ U0B and hence

StabGLn
pUq “ B´1StabGLn

pU0qB.
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PROOF: It follows from the block matrix multiplication rules that

rsr Ikˆk 0kˆpn´kq s

˜

A1 A2

A3 A4

¸

“ rsr A1 A2 s

and thus to be in the stabilizer of U0 it has to hold that A1 P GLk (since then rsrA1 A2s “

rsr Ikˆk A
´1
1 A2 s) and A2 “ 0. Then, to make it full-rank, A4 needs to be invertible. ˝

Theorem 2.85: Let U P Gqpk, nq, G a subgroup of GLn and C “ UG be an orbit code.

Then the dual satisfies CK “ pUKqGT where GT “ tAT | A P Gu.

PROOF: The statement immediately follows from the identity pUAqK “ pUKqpA´1qT

and the fact that GT “ tAT | A P Gu “ tpA´1qT | A P Gu. ˝

2.5.2 The Analogy to Linear Block Codes

We now want to explain why orbit codes can be seen as the analog of linear codes

for classical block codes. To do so we will describe how linear codes can be described as

orbits of an additive group, which will then give rise to similar properties for orbit codes

and linear codes, concerning the minimum distance and cardinality of these codes.

These results were first published by Trautmann, Manganiello, Braun and Rosenthal

in [53].

Theorem 2.86: Let C Ď Fnq be a linear code of dimension k. Then C is the orbit of

an additive group, which preserves the Hamming distance.

PROOF: For any vector v P Fnq the mapping

τv : F
n
q ÝÑ F

n
q

w ÞÝÑ τvpwq :“ w ` v

defines a bijection. Since C is a linear subspace and thus an additive group the set

G “ tτc | c P Cu forms a group with respect to the composition. The map

F
n
q ˆ G ÝÑ F

n
q

pw, τcq ÞÝÑ τcpwq “ w ` c

defines a group action, preserving the Hamming distance:

dHpw1, w2q “ dHpw1 ` c, w2 ` cq “ dHpτcpw1q, τcpw2qq.

Then C can be defined as the orbit of G of any element c˚ P C:

C “ c˚G “ tτcpc
˚q | c P Cu “ tc˚ ` c | c P Cu. ˝
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In analogy to Theorem 2.83 we can then deduce the cardinality and minimum dis-

tance from the orbit property:

Corollary 2.87: Let C Ď F
n
q be a linear code of dimension k, c˚ P C and G “ tτc | c P

Cu.

1. The code C has cardinality

|C| “
|G|

|StabGpc˚q|
“ |G| “ qk.

2. The minimum Hamming distance dHpCq of the code satisfies

dHpCq “mintdHpc˚, τcpc
˚qq | τc P T pStabGpc˚qzGq, τc R StabGpc˚qu

“mintdHpc˚, c˚ ` cq | c P C, c ‰ 0u.

If c˚ “ 0, then dHpCq “ mintweightpcq | c P Czt0uu, which is the known formula

for the distance of linear block codes.

Remark 2.88: This analogy between linear block codes and subspace orbit codes can

furthermore be used to develop syndrome or coset leader decoding algorithms for orbit

codes, which will be explained in Section 3.2.

2.5.3 Cardinality and Minimum Distance of Cyclic Or-

bit Codes

In the following we want to investigate the cardinality and minimum distance of

orbit codes. To do so we restrict ourselves to cyclic orbit codes in the following.

Definition 2.89: We call an orbit code C Ď Gqpk, nq cyclic if it is the orbit of a cyclic

subgroup of GLn on some U P Gqpk, nq.

We can use the following fact to reduce the number of subgroups to be investigated.

Lemma 2.90: Let A P GLn, G be a subgroup of GLn and H :“ A´1GA the conjugate

group. Moreover, let U P Gqpk, nq and V “ UA. Then the codes UG and VH have the

same cardinality and minimum injection distance.

PROOF: Let C P G and B “ A´1CA P H . Since GLn is distance-preserving, the

statement follows with

dIpV,VBq “ dIpUA,UABq “ dIpUA,UAA
´1CAq “ dIpU ,UCq. ˝

Naturally, if two matrices A,B P GLn are similar, i.e. there exists C P GLn such

that C´1AC “ B, then the groups generated by them are conjugate. The converse is

not generally true, because a cyclic group might have more than one generator. Hence,
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the isometric cyclic orbit codes correspond to the different conjugacy classes of elements

of GLn. A canonical transversal of the similarity classes in GLn can be obtained from

the different rational canonical forms [24, Chapter 6.7] of the matrices. The interested

reader can find more information on the rational canonical form and conjugacy classes

of cyclic subgroups of GLn in [24, 41, 53].

In this section we will show how to compute the cardinality and minimum distance

of cyclic orbit codes using the polynomial extension field representation of the elements

of the starting point of the orbit.

We will explain in detail the case of irreducible cyclic orbit codes and give some

remarks in the end how to generalize this to arbitrary cyclic subgroups of GLn.

Definition 2.91: 1. A matrix A P GLn is called irreducible if Fnq contains no non-

trivial A-invariant subspace, otherwise it is called reducible.

2. A non-trivial subgroup G of GLn is called irreducible if Fnq contains no non-trivial

G-invariant subspace, otherwise it is called reducible.

Remark 2.92: A cyclic group is irreducible if and only if its generator matrix is ir-

reducible. Moreover, an invertible matrix is irreducible if and only if its characteristic

polynomial is irreducible. The rational canonical form of such an invertible matrix is

the companion matrix of its characteristic polynomial.

It follows that any cyclic irreducible subgroup of GLn is conjugate to a group gen-

erated by a companion matrix of an irreducible polynomial. Therefore, according to

Lemma 2.90, it is sufficient to characterize the orbits of cyclic groups generated by

companion matrices of irreducible polynomials of degree n.

Irreducible Codes

From now on let ppxq P Fqrxs be irreducible of degree n, α P Fqn a root of it and Mp

its companion matrix. Moreover, we need the following notation.

Definition 2.93: A multiset is a generalization of the notion of set in which members

are allowed to appear more than once. To distinguish it from usual sets tx P Xu we

will denote multisets by ttx P Xuu. The number of times an element x belongs to the

multiset X is the multiplicity of that element, denoted by mXpxq.

The following theorem shows how to compute the cardinality and minimum distance

of an irreducible cyclic orbit code by examining the polynomial representation of the

initial point of the orbit. It is a generalization of [33, Lemma 1].

Theorem 2.94: Let U P Gqpk, nq and G “ xMpy. Denote by O1, . . . , Oℓ the distinct
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orbits of G on Fnq zt0u. Assume the orbits are of the type

φpnqpOiq “ tp̃ipαqαj | j “ 1, . . . , ordpMpqu @ i “ 1, . . . , ℓ

for some fixed p̃ipαq P Fqrαs. Then for a given orbit Oi it holds that for any uj P U that

is on Oi there exists bpi,jq P ZordpMpq such that

φpnqpujq “ p̃ipαqαbpi,jq.

For i “ 1, . . . , ℓ define

api,µ,λq :“ bpi,µq ´ bpi,λq

and the difference multisets

Di :“ ttapi,µ,λq | µ, λ P t1, . . . , ordpMpq ´ 1u, µ ‰ λuu,

D :“
ℓ
ď

i“1

Di.

Let d :“ logqpmaxtmDpaq | a P Du ` 1q. If d ă k, then the orbit of G on U is a code of

cardinality ordpMpq and minimum injection distance k ´ d.

PROOF: First we compute the minimum distance of the code. We know from Theorem

2.83 that it suffices to compute the minimum distance and therefore the intersection of

U with UMh
p for h “ 1, . . . , ordpMpq ´ 1. A non-zero element p̃ipαqαbpi,jq P φpnqpUq is

also in φpnqpUMh
p q if and only if there exists p̃ipαqαbpi,j1q P φpnqpUq such that

αbpi,jq “ αbpi,j1q`h

ðñ bpi,jq ´ bpi,j1q ” h mod ordpMpq.

But by assumption there are at most qd ´ 1 many pairs of elements of φpnqpUq fulfilling

this condition. Thus,

dimpC0 X Chq ď d @h P t1, . . . , qn ´ 2u.

Since we chose d minimal, this inequality is actually an equality for some h, hence the

minimum distance of the code is k ´ d.

The cardinality of the code follows from the fact that d ă k, which implies that all

elements of the orbit are distinct. ˝

Proposition 2.95: In the setting of Theorem 2.94, if d “ k, one gets orbit elements

with full intersection which means they are the same vector space.

1. Let D1 :“ Dztta P D | mDpaq “ qk´1uu and d1 :“ logqpmaxtmD1paq | a P D1u`1q.

Then the minimum distance of the code is k ´ d1.

2. Let m be the least element of D of multiplicity qk ´ 1. Then the cardinality of the

code is m.



46 2.5 Orbit Codes

PROOF: 1. Since the minimum distance of the code is only taken between distinct

vector spaces, one has to consider the largest intersection of two elements whose

dimension is less than k.

2. Since

UMm
p “ U ùñ UM lm

p “ U @l P N

and the elements of D are taken modulo the order of Mp, one has to choose the

minimal element of the multiset tta P D | mDpaq “ qk ´ 1uu for the number of

distinct vector spaces in the orbit. ˝

As a direct consequence of Theorem 2.94 and Proposition 2.95, Algorithm 2.1 states

how to compute the cardinality and minimum injection distance of an irreducible cyclic

orbit code from the initial point of the orbit.

Algorithm 2.1 Computing cardinality and minimum distance of irreducible cyclic

orbit codes in Gqpk, nq

Require: ppxq P Fqrxs irreducible of degree n, α a root of ppxq and U “

t0, u1, . . . , uqk´1u P Gqpk, nq

for u in Uzt0u do

find the orbit Oi that u is on

store bi,j :“ logα

´

φpnqpuq
p̃ipαq

¯

end for

for i in t1, . . . , ℓu do

for j, j1 in t1, . . . , ordpMpq ´ 1u, j ‰ j1 do

add the value bi,j ´ bi,j1 to the multiset D

end for

end for

set d :“ logqpmaxtmDpaq | a P Du ` 1q

if d ‰ k then

return ordpαq, k ´ d

else

set d1 :“ logqpmaxtmDpaq | a P D and mDpaq ă du ` 1q

set m :“ minta P D | mDpaq “ du

return m, k ´ d1

end if

Example 2.96: Consider the irreducible polynomial ppxq “ x4`x3`x2`x`1 P F2rxs.

Let α be a root of ppxq and Mp its companion matrix. Then F24zt0u is partitioned by

xαy into

tαi|i “ 0, . . . , 4u Y tαipα ` 1q|i “ 0, . . . , 4u Y tαipα2 ` 1q|i “ 0, . . . , 4u.

Consider

u1 “φp4q´1
p1q “ φp4q´1

pα0q “ p1000q
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u2 “φp4q´1
pα3 ` α2q “ φp4q´1

pα2pα ` 1qq “ p0011q

u3 “u1 ` u2 “ φp4q´1
pα3 ` α2 ` 1q “ φp4q´1

pα4pα2 ` 1qq “ p1011q

i.e. each ui is on a different orbit of xMpy and U “ t0, u1, u2, u3u is a vector space. Then

the orbit of xMpy on U has minimum injection distance 2 and cardinality 5, hence it is

a spread code.

Note that, if ppxq is primitive, there is only one orbit of G on Fnq zt0u. This fact

simplifies the computations as illustrated in the following example.

Example 2.97: Consider the primitive polynomial ppxq “ x6 ` x ` 1 P F2rxs. Let α

be a root of ppxq and Mp its companion matrix. Consider

U “ rs

»

–

1 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

fi

fl ,

then

φp6qpUq “ t0, α0, α8, α10, α48, α61, α20, α59u

and

D “ ˘tt8, 10, 15, 2, 20, 4, 2, 23, 10, 12, 12, 25, 12, 10, 14, 13, 28, 11, 22, 2, 24uu mod 63.

Any element in D occurs at most 3 “ 22 ´ 1 times and some elements appear exactly 3

times, thus the code UxMpy has minimum injection distance 3 ´ 2 “ 1 and cardinality

26 ´ 1 “ 63.

Completely reducible codes

Definition 2.98: We call an orbit code completely reducible if its generating group is

completely reducible. In general, a group is completely reducible or semisimple if it is

the direct product of irreducible groups. For the GLn-action on Fnq a subgroup H of

GLn is completely reducible if Fnq is the direct sum of subspaces V1, . . . , Vi which are

H-invariant but do not have any H-invariant proper subspaces.

Remark 2.99: In the cyclic case these groups are exactly the ones where the blocks

of the rational canonical form of the generator matrix are companion matrices of irre-

ducible polynomials, i.e. all the elementary divisors have exponent 1. Because of this

property one can use the theory of irreducible cyclic orbit codes block-wise to compute

the minimum distances of the block component codes and hence the minimum distance

of the whole code.

For simplicity we will explain how the theory from before generalizes in the case of

generator matrices whose rational canonical form has two blocks that are companion

matrices of primitive polynomials. The generalization to an arbitrary number of blocks

and general irreducible polynomials is then straightforward.
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Assume our generator matrix Mp is of the type

Mp “

ˆ

P1 0

0 P2

˙

where P1, P2 are companion matrices of the primitive polynomials p1pxq, p2pxq P Fqrxs

with degpp1q “ n1, degpp2q “ n2, respectively. Furthermore let

U “
“

U1 U2

‰

be the matrix representation of the starting point U P Gqpk, nq such that U1 P Fkˆn1

q , U2 P

Fkˆn2

q . Then

UM i
p “ rs

“

U1P
i
1 U2P

i
2

‰

.

The algorithm for computing the minimum distance of the orbit code is analogous

to Algorithm 2.1, but it is now set in Fqn1 ˆ Fqn2 .

Theorem 2.100: Let α1, α2 be primitive elements of Fqn1 ,Fqn2 , respectively.

φpn1,n2q : Fnq ÝÑ Fqn1 ˆ Fqn2

pu1, . . . , unq ÞÝÑ pφpn1qpu1, . . . , un1
q, φpn2qpun1`1, . . . , unqq

is a vector space isomorphism. Moreover, u “ vM i
p for some u, v P F

n
q if and only if

1. φpn1qpu1, . . . , un1
q “ φpn1qpv1, . . . , vn1

qαi1 and

2. φpn2qpun1`1, . . . , unq “ φpn2qpvn1`1, . . . , vnqαi2.

PROOF: φpn1,n2q is a vector space isomorphism because φpn1q and φpn2q are. The second

statement follows since

u “ vM i
p ðñ φpn1,n2qpuq “ φpn1,n2qpvM i

pq

ðñ φpn1qppu1, . . . , un1
qq “ φpn1qppv1, . . . , vn1

qP i
1q and

φpn2qppun1`1, . . . , unqq “ φpn2qppvn1`1, . . . , vnqP i
2q. ˝

Thus, if φpn1qpuiq ‰ 0 and φpn2qpuiq ‰ 0 for all non-zero elements ui of a given vector

space U P Gqpk, nq, in the algorithm we have to create the difference set of all 2-tuples

corresponding to the powers of α1 and α2 and proceed as usual.

Proposition 2.101: Assume U “ t0, u1, . . . , uqk´1u P Gqpk, nq, and for all ui there

exist bi, b
1
i such that

φpn1,n2qpuiq “ pαbi1 , α
b1
i

2 q @i “ 1, . . . , qk ´ 1.

Let d be minimal such that any element of the multiset

D :“
  

pbm ´ bℓ mod pqn1 ´ 1q, b1
m ´ b1

ℓ mod pqn2 ´ 1qq | ℓ,m P Zqk´1, ℓ ‰ m
((

has multiplicity less than or equal to qd´1. If d ă k then the orbit of the group generated

by Mp on U is an orbit code of cardinality ordpMpq “ lcmpqn1 ´1, qn2 ´1q and minimum

injection distance k ´ d.
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Since it is possible that u “ pu1, . . . , unq P Fnq is non-zero but all u1 “ ¨ ¨ ¨ “ un1
“ 0

(or the second part of the coefficients), we have to take the zero element into account

when counting intersection elements:

Theorem 2.102: Assume U “ t0, u1, . . . , uqk´1u P Gqpk, nq, and for all ui either

1. φpn1,n2qpuiq “ pαbi1 , α
b1
i

2 q ,

2. φpn1,n2qpuiq “ pαbi1 , 0q or

3. φpn1,n2qpuiq “ p0, α
b1
i

2 q.

Denote by S1, S2, S3 the sets of all elements of the first, second and third type, respec-

tively, and construct the difference sets

D1 :“ ttpbm ´ bℓ mod pqn1 ´ 1q, b1
m ´ b1

ℓ mod pqn2 ´ 1qq | uℓ, um P S1, ℓ ‰ muu ,

D2 :“ ttpbm ´ bℓ mod pqn1 ´ 1q, jq | uℓ, um P S2, ℓ ‰ m, j “ 1, . . . , qn2 ´ 1uu ,

D3 :“ ttpj, b1
m ´ b1

ℓ mod pqn2 ´ 1qq | uℓ, um P S3, ℓ ‰ m, j “ 1, . . . , qn1 ´ 1uu

and

D :“ D1 Y D2 Y D3.

Let d be minimal such that any element of D has multiplicity less than or equal to qd´1.

If d ă k then the orbit of the group generated by Mp on U is an orbit code of cardinality

ordpMpq “ lcmpqn1 ´ 1, qn2 ´ 1q and minimum injection distance k ´ d.

PROOF: Like in the irreducible case we want to count the number of intersecting

elements and use the fact that xP1y and xP2y act transitively on Fn1

q zt0u and Fn2

q zt0u,

respectively. Let π1 : Fnq Ñ Fn1

q , pu1, . . . , unq ÞÑ pu1, . . . , un1
q and π2 : Fnq Ñ Fn2

q ,

pu1, . . . , unq ÞÑ pun1`1, . . . , un2
q.

1. Assume u P S3, i.e. π1puq “ 0. Then

π1puM i
pq “ π1puqP i

1 “ 0 @ i “ 1, . . . , ordpMpq.

Thus, uM j
p ‰ v for all v P S1 Y S2 and j “ 1, . . . , ordpMpq, i.e. intersection with

u can only happen inside S3. On the other hand, if π2puq “ π2puqP j
2 for some j,

then also u “ uM j
p , which is why the second entry of the tuple can run over all

possible values.

2. For u P S2 the analog holds.

3. For u P S1 we can use Proposition 2.101.

Since we have to check if some of the intersections inside the sets S1, S2, S3 occur at

the same element of the orbit we have to count the intersection inside the union of the

difference sets. ˝

Remark 2.103: Like in the irreducible case, if d “ k, one gets orbit elements with

full intersection. Let D1 :“ Dztta “ pa1, a2q P D | mDpaq “ qk ´ 1uu and d1 :“

logqpmaxtmD1paq | a P D1u ` 1q. Then the minimum distance of the code is k ´ d1.

Moreover, let m :“ mintlcmpa1, a2q | a “ pa1, a2q P D,mDpaq “ qk ´ 1u. Then the
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cardinality of the code is m ´ 1.

Non-completely reducible codes

If a matrix has a rational canonical form with blocks that are companion matrices of

non-irreducible polynomials, the group generated by it is not completely reducible. In

this subsection we will explain how the theory from the previous subsections has to be

changed to be used for cyclic orbit codes arising from these non-completely reducible

matrices. For simplicity we will describe the case of matrices whose characteristic

polynomials are squares of an irreducible polynomial. This can easily be generalized to

higher exponents. Along the lines of the previous subsection one can then translate the

theory to more than one irreducible factor block-wise.

Let ppxq P Fqrxs be irreducible of degree n
2

and fpxq “ p2pxq. Denote by Mf the

companion matrix of fpxq. Since a root of fpxq is also a root of ppxq we cannot use

it to represent Fqrxsăn – Fnq . Therefore we will now use polynomials in the variable x

and the vector space isomorphism

φ : Fnq ÝÑ Fqrxsăn

pu1, . . . , unq ÞÝÑ
n
ÿ

i“1

uix
i´1.

Then the following analogy to Theorem 1.29 still holds:
Proposition 2.104:

φpuMfq “ φpuqx mod fpxq.

Hence, one can still translate the question of finding the intersection number into

the polynomial setting by finding the respective xi that maps one element to another

element of the initial point U P Gqpk, nq. The difference to the cases before is that we

do not have a field structure anymore, thus in general we cannot divide one element by

the other modulo fpxq to find the corresponding xi. More precisely, we can only divide

by the units of Fqrxs{fpxq. In the other cases we can find the xi by brute force.

Theorem 2.105: Assume U “ t0, u1, . . . , uqk´1u P Gqpk, nq,

φpuiq “ φpujqx
bij

for all φpuiq, φpujq that lie on the same orbit of xxy and d be minimal such that any

element of the multiset

D :“ ttbij mod pqn ´ 1q | i, j P Zqk´1, i ‰ juu

has multiplicity less than or equal to qd´1. If d ă k then the orbit of the group generated

by Mf on U is an orbit code of cardinality q
n
2 ´1 and minimum injection distance k´d.
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2.5.4 Constructing Cyclic Orbit Codes

In this subsection we show that cyclic orbit codes contain some of the best known

subspace codes. The following spread construction was given by Trautmann and Rosen-

thal in [56].

Theorem 2.106: Assume k|n and c :“ qn´1

qk´1
. Naturally, the subfield Fqk Ď Fqn is also

an Fq-subspace of Fqn. If α P Fqn is primitive, i.e. a generator of Fˆ
qn, then it holds that

Fqk “ tαic | i “ 0, . . . , qk ´ 2u Y t0u and the set

S “
 

αi ¨ Fqk | i “ 0, . . . , c´ 1
(

is a spread of Fqn and thus defines a spread code in Gqpk, nq.

PROOF: From Theorem 1.21 we know that Fqk is unique. From Lemma 1.25 we know

that F
ˆ
qk

is a cyclic subgroup of F
ˆ
qn “ xαy of order qk ´ 1, which includes 1 “ α0.

Together, this implies that Fqk “ tαic | i “ 0, . . . , qk ´ 2u Y t0u. It follows, that any

element of S is indeed a vector space. Furthermore, it is easy to see that any two

elements of S intersect only in 0. A simple counting argument then proves that it is a

spread. ˝

Example 2.107: Over the binary field let ppxq “ x6 ` x` 1 be primitive, α a root of

ppxq and Mp its companion matrix.

1. For the 3-dimensional spread compute c “ 63
7

“ 9 and construct a basis for the

starting point of the orbit:

u1 “ φ´1pα0q “ φ´1p1q “ p100000q

u2 “ φ´1pαcq “ φ´1pα9q “ φ´1pα4 ` α3q “ p000110q

u3 “ φ´1pα2cq “ φ´1pα18q “ φ´1pα3 ` α2 ` α ` 1q “ p111100q

The starting point is

U “ rs

»

–

1 0 0 0 0 0

0 0 0 1 1 0

1 1 1 1 0 0

fi

fl

and the orbit of the group generated by Mp of U has cardinality 9 and minimum

injection distance 3, i.e. it is a spread code.

2. For the 2-dimensional spread compute c “ 63
3

“ 21 and construct a basis for the

starting point of the orbit:

u1 “ φ´1pα0q “ φ´1p1q “ p100000q

u2 “ φ´1pαcq “ φ´1pα21q “ φ´1pα2 ` α ` 1q “ p111000q

The starting point is

U “ rs

„

1 0 0 0 0 0

1 1 1 0 0 0


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and the orbit of the group generated by Mp of U has cardinality 21 and minimum

injection distance 2, i.e. it is a spread code.

Therefore, irreducible cyclic orbit codes include this family of optimal codes. But

what about irreducible cyclic orbit codes for minimum injection distance other than

k? By computer search we found codes of length qn´1

q´1
and minimum distance k ´ 1

for some randomly chosen sets of q P t2, 3u, k P t1, . . . , 10u, n P t4, . . . , 100u. By the

Singleton-type bound (Proposition 1.16) a cyclic orbit code cannot be better, i.e. for

the given cardinality the minimum distance has to be less than or equal to k´1 (under

the assumption that k ě 2).

To sum up, we can construct the following irreducible cyclic orbit codes:

1. If k|n we can construct optimal codes with minimum injection distance k and

cardinality qn´1

qk´1
for any q (spread codes).

2. We conjecture that for any k, n, q P N we can construct codes of minimum distance

k ´ 1 and cardinality qn´1

q´1
.

Since any irreducible cyclic orbit code in Gqpk, nq has cardinality less than or equal

to qn´1

q´1
, one of the few cases left to study for optimization is non-irreducible cyclic orbit

codes with minimum distance k in the case that k ffl n.

The following proposition from [53] gives us some insight on this matter.

Proposition 2.108: Let p1pxq, . . . , ptpxq P Fqrxs be monic irreducible polynomials and

e1, . . . , et P N. Denote ni “ degppeii pxqq for i “ 1, . . . , t and let Mi P GLni
be the

respective companion matrix of peii pxq. Moreover, let ki ď ni, Ui P Fkiˆni
q be matrices of

full rank, and define Ci :“ rspUiqxMiy. Furthermore, let M :“ diagpM1, . . . ,Mtq P GLn

be a block diagonal matrix, U :“ diagpU1, . . . , Utq, U “ rspUq P Gqpk, nq and C “ UxMy.

It holds that C P Gqpk, nq where k “
řt
i“1 ki, n “

řt
i“1 ni and

|C| “ lcm
`

|Ci| | i P t1, . . . , tu
˘

and

dIpCq ě min
iPt1,...,tu

tdIpCiqu .

Moreover, we can distinguish the following cases:

• If gcdp|Ci|, |Cj |q “ 1 for all i ‰ j, then

dIpCq “ min
iPt1,...,tu

tdIpCiqu .

• If J “
 

i P t1, . . . , tu | |Ci| “ |C|
(

‰ H, then

dIpCq ě
ÿ

jPt1,...,tuzJ

dIpCjq.

PROOF: 1. We first derive the cardinality of C. Let j :“ minti P N | U “ UM iu.

Then

rank

ˆ

U

UM j

˙

“ rank

ˆ

diagpU1, . . . ,Utq

diagpU1M
j
1, . . . ,UtM

j
tq

˙

“
t
ÿ

i“1

rank

ˆ

Ui

UiM
j
i

˙

“ k.
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Since the i-th summand is greater or equal to ki and we know that k “
řt
i“1 ki,

it follows that the i-th summand is equal to ki, for i “ 1, . . . , k. Hence, rspUiq “

rspUiqM
j
i , which implies that |Ci| divides j for all i P t1, . . . , tu. By minimality we

obtain the formula of the cardinality.

2. To show the bound on the minimum distance, assume without loss of generality

that dIpC1q ď dIpCiq for i P t1, . . . , tu. Define

di :“ max
1ďjă|C1|

 

dimprspUiq X rspUiqM
j
i q
(

i P t1, . . . , tu. For 1 ď j ă |C|, it holds that

rank

ˆ

U

UM j

˙

“
t
ÿ

i“1

rank

ˆ

Ui

UiM
j
i

˙

ě 2k1 ´ d1 `
t
ÿ

i“2

ki “ k ` k1 ´ d1.

It follows that

dIpCq “ 2 min
1ďjă|C|

"

rank

ˆ

U

UM j

˙*

´ 2k

ě 2pk ` k1 ´ d1q ´ 2k “ 2k1 ´ 2d1 “ dIpC1q.

The inequality becomes an equality if gcdp|Ci|, |Cj |q “ 1 for any i ‰ j, since then

for every 0 ď h ă |C1| there exists a 1 ď g ă |C| such that for 1 ă i ď t

g ” h mod |C1| and g ” 0 mod |Ci|,

i.e. U1 ‰ U1M
g
1 “ U1M

h
1 and Ui “ UiM

g. It follows that dIpU ,UM
gq “ dIpC1q.

If instead J :“ ti P t1, . . . , tu | |Ci| “ |C|u is non-empty, then for any 1 ď j ă |C|

it holds that

rank

ˆ

U

UM j

˙

ě
ÿ

iPJ

ki `
ÿ

iRJ

p2ki ´ diq “ k `
ÿ

iRJ

pki ´ diq.

This implies that

dIpCq ě
ÿ

jRJ

dIpCjq.
˝

It follows that a completely reducible code of the above described form cannot have

larger cardinality for the same parameters q, k, n and minimum distance δ compared

to an irreducible cyclic orbit code. This becomes clear by looking at the cardinalities,

where it always holds that

t
ź

i“1

pqni ´ 1q ď q
řt

i“1
ni ´ 1.

Thus, it seems that, besides the spread codes, cyclic orbit codes are much smaller than

other known code constructions for the same parameters. To tackle this problem one

can consider unions of cyclic orbit codes. This idea for primitive cyclic orbit codes of

constant dimension 3 and minimum subspace distance 4 was already pursued in [17, 33].

In these papers, the respective authors found such codes for n P t6, . . . , 14u that are

larger than the corresponding lifted rank-metric codes from Section 2.1.
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Chapter 3

Decoding Subspace Codes

This chapter is devoted to decoding algorithms for subspace codes. There are several

types of decoders, as explained in Section 1.2. In this chapter we first illustrate a

minimum distance decoder for spread codes, and then a syndrome type decoder for

orbit codes. Furthermore, we will study the Plücker embedding and its use for list

decoding constant dimension codes. In the end we will come up with a complete list

decoder for lifted MRD codes.

3.1 Spread Decoding in Extension Fields

Recall the construction of a spread code as a multicomponent lifted MRD code from

Section 2.1. Instead of using Gabidulin’s construction for MRD codes one can use the

Fq-algebra of a companion matrix of an irreducible polynomial as follows.

Theorem 3.1 ([39]): Let ppxq P Fqrxs be a monic irreducible polynomial of degree

k and Mp P Fkˆk
q its companion matrix. Then the following set is a spread code in

Gqpk, nq:

 

rs
“

B0 B1 . . . Bℓ´1

‰

| Bi P FqrMps
(

For normalization purposes we represent a subspace from above by the matrix represen-

tation such that the first non-zero block is the identity.

Example 3.2: Let ppxq “ x2 ` x` 1 and hence Mp “

ˆ

0 1

1 1

˙

. Then

F2rMps “

"ˆ

0 0

0 0

˙

,

ˆ

0 1

1 1

˙

,

ˆ

1 1

1 0

˙

,

ˆ

1 0

0 1

˙*

and the following set is a spread code in G2p2, 6q:

trsrI2ˆ2 B1 B2s | B1, B2 P F2rMpsuYtrsr02ˆ2 I2ˆ2 B2s | B2 P F2rMpsuYrsr02ˆ2 02ˆ2 I2ˆ2s.

We can now translate this construction from the companion matrix to an exten-

sion field setting and use it for developing a decoding algorithm. These results were

55
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published by Manganiello and Trautmann in [40]. Since they exist for any degree over

Fq, we choose primitive polynomials and their companion matrices for the spread code

constructions.

For the remainder of this section assume that k|n and let ℓ “ n
k
. Moreover, let

α P Fqk be a primitive element of Fqk and β P Fqn a primitive element of Fqn as an

extension field of Fqk . The polynomial ppxq P Fqrxs denotes the primitive polynomial

of degree k such that ppαq “ 0 and Mp P Fkˆk
q its companion matrix. We know from

Lemma 1.26 that ordpαq “ ordpMpq “ qk ´ 1.

Proposition 3.3: Let e1, . . . , en be the unit vectors of Fnq . Then

ℓ´1
ď

i“0

tβi, αβi, . . . , αk´1βiu

is a basis of Fqn over Fq and

ψ : Fnq ÝÑ Fqn

ei ÞÝÑ αpi´1 mod kqβt i´1

k
u for i “ 1, . . . , n

is a vector space isomorphism.

PROOF: Let φplq, φpkq be like in Theorem 1.27 and define φ̃pkq : Fnq Ñ Fℓ
qk

,

φ̃pkqpv1, . . . , vnq :“
`

φpkqpv1, . . . , vkq, . . . , φpkqpvn´k`1, . . . , vnq
˘

.

Then φplq, φ̃pkq are vector space isomorphisms and ψ “ φplq ˝ φ̃pkq satisfies the following

diagram

Fnq

φ̃pkq
��❄

❄❄
❄❄

❄❄
❄

ψ
// Fqn

Fℓ
qk

φplq

>>⑥⑥⑥⑥⑥⑥⑥⑥

.

˝

Lemma 3.4: Denote by Mpris the i-th row vector of Mp. Then

φpkqpMh
p risq “ αh`i´1

for i “ 1, . . . , k and h “ 1, . . . , qk ´ 1.

PROOF: It is easy to see that φpkqpMprisq “ αi for i P t1, . . . , ku. Moreover, φpkq is

commutative with the multiplication with Mp and α for all u “ pu1, . . . , ukq P Fkq (see

Theorem 1.29),

ùñ φpkqpMh
p risq “ φpkqpMprisM

h´1
p q “ φpkqpMprisqα

h´1 “ αh`i´1. ˝
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Theorem 3.5: In the setting of Theorem 3.1, define

γj :“

"

0 if Bj “ 0

αh if Bj “ Mh
p

P Fqk .

Then it holds that φ̃pkq
`

rs
“

B0 B1 . . . Bℓ´1

‰˘

“ Fqk ¨ pγ0, . . . , γℓ´1q and

ψ
`

rs
“

B0 B1 . . . Bℓ´1

‰˘

“ Fqk ¨
ℓ´1
ÿ

j“0

γjβ
j.

Hence, we can uniquely identify each spread code element by the respective normalized

γ “ pγ0, . . . , γℓ´1q P Fℓ
qk

.

PROOF: Denote by Bjris the i-th row vector of the block Bj. From Lemma 3.4 we

know that φpkqpBjrisq “ αi´1γj. As α is a primitive element of Fqk , the set of all elements

of the vector space is mapped to Fqk ¨ pγ0, . . . , γℓ´1q.

The second statement follows since the power of β corresponds to the position of

the block Bj . Thus, ψ maps the i-th row of the whole matrix to

ℓ´1
ÿ

j“0

αi´1γjβ
j “ αi´1

ℓ´1
ÿ

j“0

γjβ
j @i “ 1, . . . , k.

˝

Example 3.6: Consider the spread code in G2p2, 6q from Example 3.2. Let α be a root

of ppxq “ x2 ` x` 1 (hence F4 – F2rαs) and β P F64 be such that F64 – F4rβs. It holds

that

ψprs

„

1 0 0 0 0 1

0 1 0 0 1 1



q “ F4 ¨ p1 ` αβ2q,

i.e. the respective (normalized) element from F3
4 is γ “ p1, 0, αq.

Corollary 3.7: A spread code C Ď Gqpk, nq constructed according to Theorem 3.1 is

isomorphic to Gqkp1, ℓq.

PROOF: Since a spread code covers the whole space and φ̃pkq maps a codeword to an

Fqk-linear subspace with basis vector γ, the statement holds. ˝

Remark 3.8: Since Gqkp1, ℓq is isomorphic to the projective space Pℓ´1pFqkq of dimen-

sion ℓ ´ 1 over Fqk , spreads of this type are also known as Fq-linear representations of

Pℓ´1pFqkq or Desarguesian pk ´ 1q-spreads [3].

3.1.1 The Decoding Algorithm

One can now use the Fq-linear representation of Pℓ´1pFqkq for the decoding procedure

of this type of spread codes. Recall from Proposition 1.12 that instead of a minimum
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injection distance decoder we can equivalently use a minimum subspace distance de-

coder. In this case the latter turns out to be the easier description, which is why we use

the subspace distance in this section. Thus, our spread codes have minimum subspace

distance 2δ “ 2k.

First, assume only erasures and no errors happened during transmission. Then

any received vector space R P Pqpnq with dimpRq ě 1 can be decoded to its closest

codeword, since the number of errors and erasures is less than or equal to k ´ 1 “
2δ´2
2

. For decoding choose an element of the received space r P R and compute γ “

pγ0, . . . , γℓ´1q P F
ℓ
qk

such that

ψprq “ αi´1

ℓ´1
ÿ

j“0

γjβ
j

for some i. For this, divide r into ℓ blocks of size k, r1, . . . , rℓ, and find the first non-zero

block, denoted by rs. It holds that rs “ φpkq´1
pαi´1q, since the first non-zero block is

the identity matrix in the construction. Then γ can be computed by ℓ divisions in Fqk

of the image under φpkq of each block by rs, i.e.

γ “ pφpkqpr1qφ
pkqprsq

´1, . . . , φpkqprℓqφ
pkqprsq

´1q.

Example 3.9: Let q “ 2, ppxq “ x3 ` x` 1 and C be the corresponding binary spread

code in G2p3, 6q, according to Theorem 3.1. Moreover, let α be a root of ppxq (hence

F8 – F2rαs) and β P F64 such that F64 – F8rβs. Let r “ p110|101q be a received vector.

It holds that ψprq “ p1 ` αq ` p1 ` α2qβ. The first three entries of r indicate that you

have to divide by 1 ` α to compute the normalized γ:

p1 ` α` p1 ` α2qβqp1 ` αq´1 “ 1 ` p1 ` αqβ

Hence, γ “ p1, 1 ` αq “ p1, α3q, which identifies the codeword

rs
“

I I ` Mp

‰

“ rs
“

I M3
p

‰

“ rs

»

–

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 1 1

fi

fl .

But what if errors were inserted during transmission? Let U P C be the sent code-

word and denote by k1 the dimension of the received vector space R P Pqpnq.

Lemma 3.10: For correct decoding it has to hold that

dSpU ,Rq ď t2δ´1
2

u

ðñ k ` k1 ´ 2 dimpU X Rq ď k ´ 1

ðñ dimpU X Rq ě k1`1
2
.

Therefore, one needs to find rk
1`1
2

s linearly independent elements of R with the same

respective γ, called γmax, to uniquely decode to the codeword

ψ´1

˜

Fqk ¨
ℓ´1
ÿ

j“0

γmaxjβ
j

¸

.
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Remark 3.11: Since we do not know if any or which of the elements of R are erroneous,

it is in general not enough to examine only a basis of R. Instead one needs to examine

possibly all elements of the vector space R.

A first basic decoding algorithm in this extension field representation is given in

Algorithm 3.1. All field operations are done over Fqk .

Algorithm 3.1 Basic decoding algorithm for Desarguesian spread codes.

Require: the received vector space R P Pqpnq, k1 “ dimpRq

for each v P R do

divide v into blocks v0, . . . , vℓ´1 of length k

vs :“ the first block from the left with non-zero entries

a :“ pφpkqpvsqq´1

store γv :“ pφpkqpv0q ¨ a, . . . , φpkqpvℓ´1q ¨ aq

end for

γmax :“ the element of highest multiplicity in tγv|v P Ru

if there are ě rk
1`1
2

s linearly independent v P R such that γv “ γmax then

return φ´1pFqk ¨
řℓ´1

j“0 γmaxjβ
jq

else

return “not decodable”

end if

We improve the algorithm by systematically choosing the linear combinations of the

basis vectors of the received space to work with. For it, note that errors are canceled

out in some linear combinations of elements, as illustrated in the following example.

Example 3.12: Assume U P C was sent and consider two elements of the received

space r1, r2 P R containing the same error e P Fnq , i.e.

r1 “
ÿ

uPU

λuu` e , r2 “
ÿ

uPU

µuu ` e.

Then

r1 ` pq ´ 1qr2 “
ÿ

uPU

λuu ` e´
ÿ

uPU

λuu ´ e “
ÿ

uPU

pλu ´ µuqu P U .

Let us generalize this idea to arbitrary numbers of errors.

Theorem 3.13: Let u1, . . . , uk P F
n
q be a basis of the sent codeword U P Gqpk, nq and

r1, . . . , rk1 P Fnq a basis of the received space R. Assume f ă k1 linearly independent

error vectors were inserted during transmission, i.e. R “ Ū ‘ E , where Ū is a vector

subspace of U and E is the vector space of dimension f spanned by the error vectors.

Then the set
#

ÿ

iPI

λiri | λi P Fq, I Ă t1, . . . , k1u, |I| “ f ` 1

+

contains k1 ´ f linearly independent elements of U .
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PROOF: Inductively on f :

1. If f “ 0, then r1, . . . , rk1 P U .

2. If f “ 1, assume r1, . . . , rℓ R Ū and rℓ`1, . . . , rk1 P Ū . Then there exist λi P Fq, µi P

Fqzt0u such that

ri “
k
ÿ

j“1

λijuj ` µie @ i “ 1, . . . , ℓ

where e P E denotes the error vector. Hence @ i, h “ 1, . . . , ℓ

ri ` rh “
k
ÿ

j“1

pλij ` λhjquj ` pµi ` µhqe

ùñ ri ` p´µiµ
´1
h qrh “

k
ÿ

j“1

pλij ´ µiµ
´1
h λhjquj P Ū .

Then the elements rℓ`1, . . . , rk1, r1 ` p´µ1µ
´1
2 qr2, . . . , r1 ` p´µ1µ

´1
ℓ qrℓ are k1 ´ 1

linearly independent elements without errors.

3. If more errors, say e1, . . . , ef , were inserted, then one can inductively “erase”

f ´ 1 errors in the linear combinations of at most f elements. Write the received

elements as

ri “
k
ÿ

j“1

λijuj `
f
ÿ

j“1

µijej @ i “ 1, . . . , k1

with λij , µij P Fq. Assume µ1f , . . . , µℓf ‰ 0 and µpl`1qf , . . . , µk1f “ 0, i.e. the first

ℓ elements involve ef and the others do not.

From above we know that the linear combinations of any two elements of r1, . . . , rℓ
include ℓ´1 linearly independent elements without ef . Denote them bym1, . . . , mℓ´1.

Naturally these elements are also linearly independent from rℓ`1, . . . , rk1. Use the

induction step on m1, . . . , mℓ´1, rℓ`1, . . . , rk1 to get k1 ´1´pf´1q “ k1 ´f linearly

independent elements without errors. ˝

Corollary 3.14: In the setting of Theorem 3.13 assume that R is decodable, i.e.

dSpR,Uq ď t2δ´1
2

u “ k ´ 1. Then there are at least rk
1`1
2

s linearly independent ele-

ments of U in the set

L :“

#

ÿ

iPI

λiri | λi P Fq, I Ă t1, . . . , k1u, |I| “ f ` 1

+

.

PROOF: Let f̄ denote the number of erasures. Then dSpR,Uq “ f ` f̄ and f̄ “

f ` k ´ k1. Thus,

f ` f̄ ď k ´ 1 ðñ 2f ` k ´ k1 ď k ´ 1 ðñ f ď
k1 ´ 1

2
.
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With Theorem 3.13 it follows that L contains k1 ´f ě k1`1
2

linearly independent vectors

of the sent vector space. ˝

We use this fact to modify Algorithm 3.1 as follows: We choose a basis r1, . . . , rk1

of the received space R P Pqpnq and compute γri for i “ 1, . . . , k1. Then we compute

the respective γ of all linear combinations of two basis elements, then of three elements

etc. As before we can stop the process and decode to a codeword as soon as we have

more than or equal to rk
1`1
2

s linearly independent elements with the same γ. This way,

if f errors occurred, we do not have to consider all elements of R but only the linear

combinations of at most f of the basis vectors.

We illustrate the improvement obtained by Corollary 3.14 in Figures 3.1 and 3.2,

which compare the numbers qk ´ 1 (red graph) and
řf`1

i“1

`

k

i

˘

pq ´ 1qi (blue graph) for

different values of q and f . For the labeling of the axes we use the notation e5 :“ 105

and e6 :“ 106.
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Figure 3.1: Improvement of Cor. 3.14 for q “ 2, f “ tk
2

u and q “ 2, f “ tk
2

u ´ 2.
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Figure 3.2: Improvement of Cor. 3.14 for q “ 4, f “ tk
2

u and q “ 4, f “ tk
2

u ´ 2.

Remark 3.15: Moreover, note that a linear combination of elements with the same γ

is always another element with γ. Since we need to find linearly independent elements,

it is therefore enough to check only combinations of elements with different respective

γ’s.
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Complexity of the Algorithm

For a better understanding of the complexity of the algorithm we first consider

binary spread codes and then generalize it. Note that the algorithm works for received

spaces of arbitrary dimension.

Consider a spread code C Ď G2pk, nq and a code word U P C. Let R “ Ū ‘ E be

the received word, such that Ū is a subspace of U . If dimpRq “ k1 and dimpEq “ f ,

then the algorithm computes the sums of at most f ` 1 basis vectors, which are
`

k1

f`1

˘

many. For each sum it proceeds with an inversion and at most n
k

´ 1 multiplications

over F2k . The complexity of inverting is upper-bounded by Opk2q over F2 and the one

of multiplying by Opk log kq over F2 using the fast Fourier transform [21, Chapter 8.2].

Using the approximation
`

k1

f`1

˘

« k1f`1

pf`1q!
, the overall complexity is upper-bounded by

Opnkk1f`1q operations over F2.

Over Fq one needs to consider not only sums but Fq-linear combinations of the basis

vectors of R. Thus we get an upper bound of
`

qk1

f`1

˘

combinations to check, which

implies the following.

Theorem 3.16: The overall complexity of Algorithm 3.1 is upper-bounded by

Opnkpqk1qf`1q operations over Fq.

The complexity reduces when some of the generators of the sent codeword are not

influenced by the errors since in this case the algorithm has to check only linear com-

binations of a smaller amount of basis vectors of the received space.

In the following we compare this complexity with the one of the spread decoding

algorithm shown in [22] and the decoding algorithms for Reed-Solomon like codes from

[34, 48] in the case of q “ 2 and k “ k1. In [22] the authors present a minimum

distance decoder for their spread code construction. The complexity of their algorithm

is Oppn´ kqk3q. If the dimension of the error space is minimal the two algorithms have

similar performance. When applied to spread codes the complexities of the algorithms

presented in [34] and [48] are Opn2pn ´ kq2q and Opkpn ´ kq3q, respectively. The

algorithm proposed in this section performs better if the dimension of the codewords,

of the received space and of the error space are small.
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3.2 Syndrome Decoding of Orbit Codes

As already mentioned in Section 2.5.2 one can define a syndrome decoder for orbit

codes, in analogy to syndrome decoding of linear block codes. In this section we will

first describe the general decoding idea for general orbit codes and then give an explicit

syndrome decoding algorithm for irreducible cyclic orbit codes. To do so we must

assume that the received word R P Pqpnq has the same dimension as the code C Ď

Gqpk, nq, i.e. dimpRq “ k. The results of this section were first published by Trautmann,

Manganiello, Braun and Rosenthal in [53].

Recall the syndrome (or coset leader) decoder for linear block codes [38, Chapter 1]:

Proposition 3.17: The following algorithm is a minimum distance decoder for a linear

block code C Ď Fnq :

1. The code C is the orbit of the additive group C of the zero-point (see Section 2.5).

The other orbits of C on Fnq are given by Oi “ vi ` C for some non-zero vi P Fnq ,

i “ 1, . . . , m.

2. Choose one lowest-weight vectors ℓi for each orbit Oi as the coset leaders for

i “ 1, . . . , m. The coset leader s0 for C is the zero-vector.

3. The syndromes si are defined as si “ ℓiH
T , where H is the parity check matrix

of the code C.

4. For a received vector r P Fnq , compute rHT and compare with the syndromes to

decide which orbit, say Oj, r is on.

5. Output the codeword c “ r ´ ℓj.

To generalize the ideas of this decoding algorithm we need the following mapping.

Definition 3.18: Like in Definition 2.74, let G be a group acting on some finite set X

and T :“ T pX{Gq be a transversal of the different orbits. Then the canonizing mapping

γT is defined as:

γT : X ÝÑ G

x ÞÝÑ g such that xg P T.

Remark 3.19: In Propositions 3.17, the map γjprq :“ r´ℓj functions as the canonizing

mapping of the transversal T “ tℓ0, . . . , ℓmu.

In analogy to Propositions 3.17, the following theorem describes a coset leader min-

imum distance decoder for subspace orbit codes. The interested reader can find an

abstract description of such a decoder for general codes defined as orbits under some

group action on a metric set in [53].

Theorem 3.20: Let U0 P Gqpk, nq, G be a subgroup of GLn and U0G an orbit code.

Moreover, let T “ T pGqpk, nq{Gq “ tU0,U1, . . . ,Umu be a transversal of the orbits, such
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that for i “ 1, . . . , m it holds that dIpU0,Uiq ď dIpU0,Vq for all V P UiG. Then

decC : Gqpk, nq ÝÑ C

R ÞÝÑ UγTpRq´1

yields a minimum distance decoder, i. e. UγTpRq´1 P C is the closest codeword to

R P Gqpk, nq.

PROOF: Assume that R is in the orbit of Uj . The aim is to find a codeword Ū P C “

U0G, such that dIpŪ0,Rq is minimal. Let A :“ γTpRq be the group element of G that

maps R onto the orbit representative Uj , i. e. Uj “ RA. Then we obtain

dIpU0,Ujq “ dIpU0,RAq “ dIpU0A
´1,Rq “ dIpU0γTpRq´1,Rq.

Since we know that dIpU0,Uiq is minimal between elements of C “ U0G and UiG we get

that dIpU0γTpRq´1,Rq is also minimal. Hence Ū :“ U0γTpRq´1 is the closest codeword

to R. ˝

We illustrate the subspace syndrome decoder in Figure 3.3.

U0G : U0OO

dI pU0,Uiq
��

γTpRq´1

))
ŪOO

dI pU0γTpRq´1,Rq
��

UiG : Ui R
γTpRq

ii

Figure 3.3: Visualization of the coset leader minimum distance decoder.

Thus, we have a general description for a syndrome or coset leader decoder for

subspace orbit codes. The crucial point now is to find suitable and efficient canonizing

mappings for a given subgroup of GLn. In the next subsection we will derive such a

canonizing mapping for the family of irreducible cyclic orbit codes.

3.2.1 A Decoder for Irreducible Cyclic Orbit Codes

Recall, that irreducible cyclic orbit codes are defined as orbits in the Grassmannian

under the action of a cyclic and irreducible subgroup of GLn. As representatives of each

conjugacy class it is sufficient to investigate groups generated by companion matrices

of irreducible polynomials, as explained in Section 2.5.

The main idea is that the pairwise quotients of the extension field representation

of the elements of a subspace are invariant for all elements of the same orbit. On the

other hand the set of all these quotients is necessarily different for subspaces of different
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orbits. Hence, these can function as syndromes to determine which orbit the received

word is on. For the special case of k “ 3 and δ “ 2 this idea was already pursued in

[12].

Algorithm 3.2 describes a syndrome decoder for an orbit code C “ U0xMpy, where

U0 P Gqpk, nq and Mp is the companion matrix of an irreducible monic polynomial

ppxq P Fqrxs of degree n, and a received word R P Gqpk, nq.

Algorithm 3.2 Syndrome decoding algorithm for irreducible cyclic orbit codes.

Require: For each orbit store the initial points Ui and the syndromes for each orbit

Si “ tuℓ{um | uℓ, um P Uizt0u, uℓ ‰ umu in extension field representation for i “

0, . . . , m.

for each u P Rzt0u do

for each v P Rzt0, uu do

store the quotient bu,v :“ u{v in extension field representation in the list L

i :“ i` 1

end for

end for

find the syndrome set Sj that contains all bu,v P L

find γpαq such that @bu,v P L D xi, yi P Uj : xibu,v “ yi and xiγpαq “ u

return U0γ
´1pMpq

Remark 3.21: Usually one needs only a subset of all quotients to uniquely determine

the orbit, as can be seen in the following examples.

Example 3.22: Consider G2p2, 4q and the primitive polynomial ppxq “ x4 ` x ` 1 P

F2rxs. Let α be a root of ppxq and Mp the companion matrix of ppxq. The three distinct

orbits of xMpy are given by the initial points

U0 “ rs

„

1 0 0 0

0 1 1 0



– t0, 1, α` α2, 1 ` α ` α2u,

U1 “ rs

„

1 0 0 0

0 1 0 0



– t0, 1, α, 1 ` αu,

U2 “ rs

„

1 0 0 0

0 0 1 0



– t0, 1, α2, 1 ` α2u.

The orbit on the first initial point is the spread code that we want to consider. The

quotient sets for the three orbits are

S0 : tpα ` α2q˘1u.

S1 : tα˘1, α˘3, p1 ` αq˘1u

S2 : tα˘2, pα2 ` α3q˘1, p1 ` α2q˘1u
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Since these sets are pairwise distinct, it is enough to compute the quotient of only

one pair of the received vectors to uniquely decide on the orbit. Assume e.g. that we

received

R “ rs

„

1 0 1 1

0 1 0 1



– t0, 1 ` α2 ` α3, α ` α3, 1 ` α ` α2u,

then we compute

pα ` α3q{p1 ` α2 ` α3q “ α ` α2 ` α3 “ p1 ` αq´1

hence R is on the orbit of U1. Then we find the canonizing mapping

γpαq “ 1{p1 ` αq “ p1 ` αq´1.

Thus, U1pI ` Mpq
´1 “ U1pMp ` M3

p q “ R, and we decode to the codeword

U0pMp ` M3
p q “ rs

„

1 0 0 1

0 1 0 1



,

which is one of the closest codewords to R.

The following example considers the ternary case. For simplicity we will use the

logarithmic notation of the polynomials. Nonetheless, one could do everything also in

polynomial form.

Example 3.23: Consider G3p2, 4q and the primitive polynomial ppxq “ x4 ` x3 ` 1 P

F3rxs. Let α be a root of ppxq and Mp the companion matrix of ppxq. The four distinct

orbits of xMpy are given by the initial points

U0 “ rs

„

1 0 0 0

0 0 1 1



– t0, 1, α10, α20, α30, α40, α50, α60, α70u,

U1 “ rs

„

1 0 0 0

0 1 0 0



– t0, 1, α, α28, α37, α40, α41, α68, α77u,

U2 “ rs

„

1 0 0 0

0 0 1 0



– t0, 1, α2, α18, α25, α40, α42, α58, α65u,

U3 “ rs

„

1 0 0 0

0 1 0 1



– t0, 1, α5, α11, α19, α40, α45, α51, α59u.

The orbit on the first initial point is the spread code that we want to consider. Note

that the respective quotient sets S0, . . . , S3 are again distinct. Assume that you received

R “ rs

„

1 0 0 1

0 1 0 0



– t0, α, α4, α5, α32, α41, α44, α45, α72u.

Then we compute e.g.

α4{α “ α40{α37 “ α3
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i.e. R is on the orbit of U1 and the inverse of the canonizing mapping is

γ´1pαq “ α4{α40 “ α{α37 “ α44.

Hence, we decode to

U0M
44
p “ U0M

4
p “ rs

„

1 0 0 0

0 0 0 1



.

Note that for any U P G3p2, 4q it holds that UM i
p “ UM i`40

p .

In the same manner one can syndrome decode in Gqpk, nq for larger parameters. If

k ě 3 though, one needs more than just one quotient to uniquely determine the orbit

and respective canonizer mapping for the received space.

Remark 3.24: The complexity of Algorithm 3.2, together with Remark 3.21, depends

mainly on the number of quotients one has to compute to uniquely determine the orbit.

Denote this number by ρ. The algorithm performs ρ many divisions and then k many

multiplications over Fqn for decoding. Moreover, the costs for looking up the orbit needs

to be taken into account, which depends on the number of orbits there are in Gqpk, nq

under the action of the corresponding irreducible cyclic group.

For the cases where ρ and the number of orbits are small (like in the examples

before), the algorithm presented here has a better complexity than the other known

algorithms, mentioned at the end of Section 3.1. The trade-off here is that the algorithm

needs a lot of storage for the quotient sets of all orbits.
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3.3 List Decoding in the Plücker Embedding

In this section we investigate the Plücker embedding of the Grassmannian and how

it can be used for list decoding of constant dimension codes. Moreover, we give an

explicit list decoding algorithm for lifted rank-metric codes that works by solving a

system of linear bilinear equations in the Plücker embedding. The main results of this

section were published by Rosenthal and Trautmann in [43, 44, 51] and by Trautmann,

Rosenthal and Silberstein in [57].

3.3.1 The Plücker Embedding of Gqpk, nq

To introduce the Plücker embedding we need the following notations.
ˆ

rns

k

˙

:“ tpi1, . . . , ikq | iℓ P t1, . . . , nu@ℓ, i1 ă ¨ ¨ ¨ ă iku

is the set of ordered monomials of length k with integer values up to n. If U P Fkˆn
q and

pi1, . . . , ikq P
`

rns
k

˘

, then we denote by Mi1,...,ikpUq the determinant of the submatrix of

U , consisting of all columns of U indexed by i1, . . . , ik. A determinant of a submatrix

is also called a minor of the matrix. We need the following orders on
`

rns
k

˘

:

Definition 3.25: Let pi1, . . . , ikq, pj1, . . . , jkq P
`

rns
k

˘

. We define

pi1, . . . , ikq ă pj1, . . . , jkq : ðñ DN P N : iℓ “ jℓ @ℓ ă N and iN ă jN ,

pi1, . . . , ikq ĺ pj1, . . . , jkq : ðñ iℓ ď jℓ @ℓ P t1, . . . , ku.

Naturally, for both orders it holds that

pi1, . . . , ikq “ pj1, . . . , jkq : ðñ iℓ “ jℓ @ℓ P t1, . . . , ku.

The total order ă is called the lexicographic order. The partial order ă is also known

as the Bruhat order.

The finite projective space of dimension n ´ 1, denoted by Pn´1
q (or Pn´1 if the

underlying field is clear from the context), is the set of all 1-dimensional subspaces

through the origin of Fnq . To distinguish them from non-projective coordinates, we

denote the projective coordinates of a point in Pn´1 by rx1 : x2 : . . . : xns. It is

well-known that one can embed the Grassmannian into projective space as follows.

Theorem 3.26 ([29, 49]): The map

ϕ : Gqpk, nq Ñ Ppnkq´1

rspUq ÞÑ rM1,2,...,k´1,kpUq :M1,2,...,k´1,k`1pUq : . . . :Mn´k`1,...,npUqs
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is injective. The image is called the Plücker or Grassmann embedding of Gqpk, nq. For

U P Gqpk, nq, ϕpUq constitutes the Plücker coordinates of U . Note that, by convention,

we order the determinants on the right side according to the respective column indices

in lexicographic order.

The Plücker-embedded Grassmannian forms a variety in the projective space:

Theorem 3.27 ([49, 50]): Let n ě 2k and pi1, . . . , ik`1q P
`

rns
k`1

˘

, pik`2, . . . , i2kq P
`

rns
k´1

˘

. For 1 ď ℓ ď k ` 1 denote by σiℓ the permutation such that σiℓpi1, . . . , ik`1q “

pi1, . . . , iℓ´1, iℓ`1, . . . , ik`1, iℓq. The equation

ÿ

jPti1,...,ik`1u

sgnpσjqxi1,...,ik`1zjxj,ik`2,...,i2k “ 0

is called a shuffle relation or straightening syzygy of Gqpk, nq. The set of all shuffle

relations completely describes ϕpGqpk, nqq in the projective space of dimension
`

n

k

˘

´ 1.

I.e. rx1,...,k : . . . : xn´k`1,...,ns P Ppn
kq´1 describes the Plücker coordinates of an element

of Gqpk, nq if and only if x1,...,k, . . . , xn´k`1,...,n fulfill all the shuffle relations.

Note that in the shuffle relation above the index pi1, . . . , ik`1ziℓq denotes the index

pi1, . . . , iℓ´1, iℓ`1, . . . , ik`1q of length k.

Example 3.28: The shuffle relations of Gqp2, 5q are given by

x12x34 ´ x13x24 ` x14x23 “ 0,

x12x35 ´ x13x25 ` x15x23 “ 0,

x12x45 ´ x14x25 ` x15x24 “ 0,

x13x45 ´ x14x35 ` x15x34 “ 0,

x23x45 ´ x24x35 ` x25x34 “ 0.

The projective vector r1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0s fulfills all the equations, hence

it constitutes the Plücker coordinates of some element of Gqp2, 5q. On the other hand,

r1 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0s does not fulfill the first equation since x12 “ x34 “ 1,

hence there is no vector space in Gqp2, 5q with this vector as its Plücker coordinates.

Proposition 3.29: One can easily verify that there are at most
`

n

k`1

˘`

n

k´1

˘

many dif-

ferent shuffle relations describing Gqpk, nq.

One of the great advantages of Plücker-embedding the Grassmannian is that the

balls of a given radius t (with respect to the injection distance) form a variety in the

Plücker embedding. I.e. we can give explicit equations that define all elements of such

a ball. It is easy to compute the balls in the following special case. This fact is again

well-known but we want to give our own version of the proof here.
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Theorem 3.30: Define U0 :“ rsr Ikˆk 0kˆpn´kq s. Then

Bk
t pU0q “ tV P Gqpk, nq | Mi1,...,ikpV q “ 0 @pi1, . . . , ikq ł pt` 1, . . . , k, n´ t` 1, . . . , nqu

“ tV P Gqpk, nq | Mi1,...,ikpV q “ 0 @pi1, . . . , ikq : ik´t ě k ` 1u

where V P Fkˆn
q such that V “ rspV q.

PROOF: We want to find all V “ rspV q P Gqpk, nq, such that

dIpU0,Vq ď t

ðñ rank

„

Ikˆk 0kˆpn´kq

V



ď t` k,

i.e. at least k ´ t many linearly independent elements of V have to be in U0. Thus, we

can choose the matrix representation

V “

«

˚ 0pk´tqˆpn´kq

˚ ˚

ff

.

This implies that all minors of V that contain at least t ` 1 of the n ´ k rightmost

columns are zero (since the column rank is equal to the row rank). At the same time

this is also a sufficient condition, since the ˚-blocks can be filled with anything (such

that the whole matrix has rank k) and the row space will always be in the ball. Since

the monomials are ordered, the condition that t` 1 many coordinates of pi1, . . . , ikq are

in tn ´ k ` 1, . . . , nu is equivalent to

iℓ ě k ` 1 for some ℓ P t1, . . . , k ´ tu

ðñ ik´t ě k ` 1

which is in turn equivalent to

pi1, . . . , ikq ł pt` 1, . . . , k, n´ t` 1, . . . , nq. ˝

With the knowledge of Bk
t pU0q we can also express Bk

t pUq for any U P Gqpk, nq.

For this, note that for any U P Gqpk, nq there exists an A P GLn such that U0A “ U .

Moreover,

Bk
t pU0Aq “ Bk

t pU0qA.

Definition 3.31: For simplicity we denote by Ai1,...,ikrj1, . . . , jks the submatrix of A

with columns indexed by i1, . . . , ik and rows indexed by j1, . . . , jk, and define

ϕ̄ : GLn ÝÑ GLpn
kq
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A ÞÝÑ

¨

˚

˝

detpA1,...,kr1, . . . , ksq . . . detpAn´k`1,...,nr1, . . . , ksq
...

...

detpA1,...,krn´ k ` 1, . . . , nsq . . . detpAn´k`1,...,nrn´ k ` 1, . . . , nsq

˛

‹

‚
.

Remark 3.32: It is easy to see that ϕ̄pAq has to be invertible, since any set of k rows of

A span a different k-dimensional space and the rows of ϕ̄pAq correspond to the Plücker

embedding of all those spaces. Since the Plücker embedding is injective we know that

all rows of ϕ̄pAq are different and since they are projective coordinates, it follows that

all these rows are actually linearly independent.

Lemma 3.33: Let U P Gqpk, nq and A P GLn. It holds that

ϕpUAq “ ϕpUqϕ̄pAq.

PROOF: Let U P Fkˆn
q such that rspUq “ U . Let V :“ UA and denote by uij, aij , vij

the entry in the i-th row and j-th column of U,A, V , respectively. Then it holds that

vij “
řn

ℓ“1 uiℓaℓj and hence Vi1,...,ik “ UAi1,...,ik . This implies that

ϕpUAq “ rM1,2,...,k´1,kpUAq :M1,2,...,k´1,k`1pUAq : . . . :Mn´k`1,...,npUAqs

“ rdetpV1,...,kq : detpV1,2,...,k´1,k`1q : . . . : detpVn´k`1,...,nqs

“ rdetpUA1,...,kq : detpUA1,2,...,k´1,k`1q : . . . : detpUAn´k`1,...,nqs.

With the Cauchy-Binet formula we know that

detpUAi1,...,ikq “
ÿ

pℓ1,...,ℓkqPprns
k q

detpUℓ1,...,ℓkq detpAi1,...,ikrℓ1, . . . , ℓksq

and hence

ϕpUAq “ rdetpUA1,...,kq : detpUA1,2,...,k´1,k`1q : . . . : detpUAn´k`1,...,nqs

“ ϕpUqϕ̄pAq. ˝

Theorem 3.34: Let U “ U0A P Gqpk, nq. Denote a matrix representation of V P

Gqpk, nq by V P Fkˆn
q . Then

Bk
t pUq “ Bk

t pU0Aq “ tV P Gqpk, nq | Mi1,...,ikpV ϕ̄pA´1qq “ 0@pi1, . . . , ikq : ik´t ą ku.

There are always several choices for A P GLn such that U0A “ U . Since GLpn
kq

is

very large we try to choose A as simple as possible. We explain one such construction

and the computation of its inverse in Algorithms 3.3 and 3.4.

It is easy to see that Algorithm 3.3 works, i.e. that it computes an invertible matrix

A such that U “ U0A.
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Algorithm 3.3 Construction of A such that U “ U0A P Gqpk, nq.

• The first k rows of A are equal to the matrix representation U of U .

• Find the pivot columns of U (assume that U is in RREF).

• Fill up the respective columns of A with zeros in the lower n ´ k rows.

• Fill up the remaining submatrix of size pn´ kq ˆ pn´ kq with an identity matrix.

Algorithm 3.4 Computing A´1 for a given A from Algorithm 3.3.

• Find a permutation σ on t1, . . . , nu that permutes the columns of A such that

σpAq “

ˆ

Ikˆk U2

0 Ipn´kqˆpn´kq

˙

.

• Then the inverse of that matrix is

σpAq´1 “

ˆ

Ikˆk ´U2

0 Ipn´kqˆpn´kq

˙

.

• Apply σ´1 on the rows of σpAq´1. The result is A´1.

Proposition 3.35: Algorithm 3.4 computes the inverse of the input A.

PROOF: Represent the column permutation σ by a permutation matrix S P GLn

(acting from the left on A). It holds that S represents the inverse permutation σ´1 on

the rows of A when applied from the right. Then one gets pSAq´1S “ A´1S´1S “ A´1.˝

Example 3.36: In G2p2, 4q we want to find

B2
1 pUq “ tV P G2p2, 4q | dimpV X Uq “ 1u

for

U “ rspUq “ rs

„

1 0 0 0

0 0 1 1



.

We find the pivot columns U1, U3 and build

A “

¨

˚

˚

˚

˝

1 0 0 0

0 0 1 1

0 1 0 0

0 0 0 1

˛

‹

‹

‹

‚

.

Then we find the column permutation σ “ p23q such that

σpAq “

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

.
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Now we can easily invert as described in Algorithm 3.4 and see that σpAq´1 “ σpAq.

We apply σ´1 “ σ on the rows and get

A´1 “

¨

˚

˚

˚

˝

1 0 0 0

0 0 1 0

0 1 0 1

0 0 0 1

˛

‹

‹

‹

‚

.

Then

ϕpA´1q “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0

1 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 0 1

0 0 0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

We denote a matrix representation of V P Gqpk, nq by V P Fkˆn
q . From Theorem 3.34

we know that

B2
1pUq “ tV P G2p2, 4q | Mi1,i2pV qϕ̄pA´1q “ 0 @pi1, i2q ł p2, 4qu

“ tV P G2p2, 4q | M3,4pV qϕ̄pA´1q “ 0u.

It holds that ϕpVqϕ̄pA´1q “ rM1,3pV q : M1,2pV q : M1,3pV q ` M1,4pV q : M2,3pV q :

M3,4pV q :M2,3pV q ` M2,4pV qs and hence

B2
1pUq “tV P G2p2, 4q | M2,3pV q ` M2,4pV q “ 0u

“tV P G2p2, 4q | M2,3pV q “ M2,4pV qu.

Note that we do not even have to compute the whole matrix ϕpA´1q since in this case

we only need the last column of it to find the equations that define B2
1pUq.

Proposition 3.37: The number of equations describing Bk
t pUq around some U P Gqpk, nq

is

τ “
k´t´1
ÿ

ℓ“0

ˆ

n´ k

k ´ ℓ

˙ˆ

k

ℓ

˙

“

ˆ

n

k

˙

´
k
ÿ

ℓ“k´t

ˆ

n´ k

k ´ ℓ

˙ˆ

k

ℓ

˙

.

PROOF: It follows from Theorem 3.34 that the number of equations is equal for any

U P Gqpk, nq. Hence, we can count them in the description of Bk
t pU0q from Theorem

3.30. The condition that pi1, . . . , ikq ł pt ` 1, . . . , k, n´ t` 1, . . . , nq is equivalent to

Dℓ P t1, . . . , k ´ eu : iℓ ą k.

For such an ℓ there are k ´ ℓ ` 1 entries chosen freely from tk ` 1, . . . , nu and ℓ ´ 1

entries from t1, . . . , ku. Hence there are

k´t
ÿ

ℓ“1

ˆ

n ´ k

k ´ ℓ ` 1

˙ˆ

k

ℓ ´ 1

˙

“
k´t´1
ÿ

ℓ“0

ˆ

n´ k

k ´ ℓ

˙ˆ

k

ℓ

˙

many elements in
`

rns
k

˘

that are ł pt ` 1, . . . , k, n´ t ` 1, . . . , nq, which is equal to the

number of equations defining Bk
t pUq. ˝
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Remark 3.38: We can generalize all the previous results to received spaces R P Pqpnq

with dimpRq ‰ k. I.e. we can describe the ball inside the Grassmannian Gqpk, nq around

a subspace of a different dimension Bk
t pRq by linear equations in the Plücker embedding.

For this, one only needs to adjust the conditions for the zero-minors in Theorem 3.30.

Then Proposition 3.37 changes analogously. All other results, in particular Theorem

3.34, still hold without any changes.

Example 3.39: We want to describe the ball of radius 1 in Gqp2, 4q around the received

word R “ rsp1 0 0 0q. We know that dIpR,Uq ď t ðñ dimpR X Uq ě 2 ´ t for any

U P Gqp2, 4q. For t “ 1 we get that the dimension of the intersection has to be at least

1. Thus we can choose a matrix representation of the form

V “

«

1 0 0 0

˚ ˚ ˚ ˚

ff

for each vector space in the ball. Hence, the minors not containing the first column

have to be zero:

B2
1pRq “ tV “ rspV q P Gqp2, 4q | M2,3pV q “ M2,4pV q “ M3,4pV q “ 0u.

To sum up, we have an efficient way to describe the balls in the Grassmannian

Gqpk, nq around an arbitrary element of Pqpnq by linear equations in the Plücker em-

bedding. If in addition one can describe a constant dimension code in the Plücker

embedding and efficiently decide if some Plücker coordinates describe a codeword, one

has a list decoder for this code. In the next subsection we describe such a list decoder

in the Plücker embedding for lifted rank-metric codes.

3.3.2 List Decoding of Lifted Rank-Metric Codes

We will now show how a complete list decoding algorithm in the Plücker embedding

can be defined for lifted rank-metric codes. The main idea here is that a subset of the

Plücker coordinates of lifted rank-metric codes constitutes a linear block code and can

hence be described as a the kernel of a parity check matrix.

Let C Ď F
kˆpn´kq
q be an MRD code with minimum rank distance δ. Then by

Lemma 2.7 its lifting is a code C of cardinality qpn´kqpk´δ`1q in the Grassmannian

Gqpk, nq. Let

xA “ rxA1,...,k : . . . : x
A

n´k`1,...,ns P Ppn
kq´1

be a vector which represents the Plücker coordinates of a subspace A P Gqpk, nq.

Lemma 3.40: If xA is normalized (i.e. the first non-zero entry is equal to one), then

xA1,...,k “ 1 for any A P C.

PROOF: Follows from the fact that each element of a lifted rank-metric code has an

identity in the first k columns of its reduced row echelon form. ˝
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Let rks “ t1, 2, . . . , ku, and let i “ ti1, i2, . . . , iku be a set of indices such that

|iX rks| “ k ´ 1. Let t P i, such that t ą k, and s “ rkszi.

Lemma 3.41: Consider A P C and A “ rsr Ik A s. If xA is normalized, then xAi “

p´1qk´sAs,t´k.

PROOF: It holds that xA is normalized if its entries are the minors of the reduced

row echelon form of A, which is r Ik A s. Because of the identity matrix in the first k

columns, the statement follows directly from the definition of the Plücker coordinates.˝

Note that we do not have to worry about the normalization since xA is projective.

In the following we will always assume that any element from Ppnkq´1 is normalized.

With Lemma 3.41 one can easily show, that a subset of the Plücker coordinates of

a lifted Gabidulin code forms a linear code over Fq:

Theorem 3.42: The restriction of the set of Plücker coordinates of an

pn, qpn´kqpk´δ`1q, δ, kqq-lifted MRD code C to the set ti : |i| “ k, |i X rks| “ k ´ 1u forms

a linear code Cp over Fq of length kpn´kq, dimension pn´kqpk´ δ` 1q and minimum

Hamming distance dmin ě δ.

PROOF: Since C is linear, it holds that for every A,B P C we have A ` B P C.

Together with Lemma 3.41 we have the same property when we consider the restriction

of the set of Plücker coordinates of a lifted MRD code to the set ti : |i| “ k, |iX rks| “

k ´ 1u. This set is of size kpn´ kq, and therefore we obtain a linear code Cp of length

kpn ´ kq and the same dimension as C, i.e. pn´ kqpk ´ δ ` 1q. Since the rank of each

non-zero A P C is greater or equal to δ, also the number of non-zero entries of A has

to be greater or equal to δ, hence the minimum Hamming distance dmin of Cp satisfies

dmin ě δ. ˝

Example 3.43: Let α P F22 be a primitive element, fulfilling α2 “ α`1. Let C Ď F
2ˆ2
2

be a Gabidulin MRD code with minimum rank distance δ “ 2, whose generator matrix

is G “ pα 1q. Hence,

C “ tpbα, bq | b P F22u.

The codewords of C, their representation as 2ˆ 2 matrices, their lifting to G2p2, 4q and

the respective Plücker coordinates are given in the following table.

vector representation matrix representation lifting Plücker coordinates

p0, 0q

ˆ

0 0

0 0

˙ ˆ

1 0 0 0

0 1 0 0

˙

r1 : 0 : 0 : 0 : 0 : 0s

pα, 1q

ˆ

0 1

1 0

˙ ˆ

1 0 0 1

0 1 1 0

˙

r1 : 1 : 0 : 0 : 1 : 1s

pα2, αq

ˆ

1 0

1 1

˙ ˆ

1 0 1 0

0 1 1 1

˙

r1 : 1 : 1 : 1 : 0 : 1s

p1, α2q

ˆ

1 1

0 1

˙ ˆ

1 0 1 1

0 1 0 1

˙

r1 : 0 : 1 : 1 : 1 : 1s
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In this example the second to fifth Plücker coordinates form the linear code Cp “

tp0000q, p1001q, p1110q, p0111qu of length 4 and dimension 2 in the Hamming space. Its

parity-check matrix is

Hp “

ˆ

1 0 1 1

0 1 1 0

˙

.

In other words, a Plücker coordinate vector rx12 : x13 : x14 : x23 : x24 : x34s of a vector

space from G2p2, 4q represents a codeword of the lifted Gabidulin code from above if

and only if x12 “ 1, x14 ` x23 “ 0, and x13 ` x23 ` x24 “ 0.

If one chooses Gabidulin’s construction for a lifted MRD code and δ “ k, then

one can find a general description for the parity check matrix of the linear code Cp as

follows.

Proposition 3.44: Let ppxq P Fqrxs be a monic primitive polynomial of degree n ´ k.

Let α be a root of ppxq and Mp the companion matrix of ppxq. If k “ δ and the generator

matrix of the respective Gabidulin code is G “ pαk´1 αk´2 . . . α 1q, then the parity

check matrix Hp is a pk ´ 1qpn´ kq ˆ kpn´ kq-matrix of the form

Hp “

¨

˚

˚

˚

˚

˝

Ipn´kqˆpn´kq 0 . . . 0 p´1qk´2pM´k`1
p q

T

0 Ipn´kqˆpn´kq . . . 0 p´1qk´3pM´k`2
p q

T

...
. . .

...

0 0 . . . Ipn´kqˆpn´kq pM´1
p q

T

˛

‹

‹

‹

‹

‚

.

PROOF: For simplicity we denote the vector space isomorphism φpn´kq by φ. With

the given generator matrix G, the non-zero codewords of the Gabidulin code are

pφpαi`k´1q φpαi`k´2q . . . φpαi`1q φpαiqqT for i “ 0, . . . , qpn´kq ´ 2. Hence, the

non-zero codewords of Cp are of the form pφpαiq | ´ φpαi`1q | . . . | p´1qk´2φpαi`k´2q |

p´1qk´1φpαi`k´1qq (follows from Lemma 3.41). Then it holds that

pφpαiq | ´ φpαi`1q | . . . | p´1qk´1φpαi`k´1qq
´

I 0 . . . 0 p´1qk´2pM´k`1
p q

T
¯T

“ φpαiq ` p´1qk´1`k´2φpαi`k´1qM´k`1
p

“ φpαiq ´ φpαi`k´1qM´k`1
p

“ φpαiq ´ φpαiq “ 0,

which means that the multiplication of any codeword of Cp with the first block row of

Hp results in 0. Analogously one can show the same for the other block rows. Since

the matrix Hp has full rank, it follows that this is a parity check matrix of the code. ˝

Example 3.45: Consider again Example 3.43. It holds that Hp “ r I2ˆ2 pM´1
p qT s.

The List Decoding Algorithm

We now have all the machinery needed to describe a list decoding algorithm for lifted

rank-metric codes in the Plücker coordinates under the assumption that the received
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word has the same dimension as the codewords. Consider a lifted rank-metric code

C Ď Gqpk, nq with minimum rank distance δ and denote its corresponding linear block

code over Fq (of length kpn ´ kq and dimension pn ´ kqpk ´ δ ` 1q) by Cp. The

corresponding parity check matrix is denoted by Hp. Let R “ rspRq P Gqpk, nq be the

received word and let t be the decoding radius.

We just showed how a subset of the Plücker coordinates of an LG code forms a

linear block code that is defined through the parity check matrix Hp. Since we want to

describe a list decoding algorithm inside the whole set of Plücker coordinates, we define

an extension of Hp as follows:

H̄p “
`

0pδ´1qpn´kqˆ1 Hp 0pδ´1qpn´kqˆℓ

˘

where ℓ “
`

n

k

˘

´ kpn ´ kq ´ 1. Then rx1...k : . . . : xn´k`1...nsH̄pT “ 0 gives rise to the

same equations as rxi1 : . . . : xikpn´kq
sHpT “ 0, for i1, . . . , ikpn´kq P i. For simplicity we

will sometimes write x̄ for rx1...k : . . . : xn´k`1...ns in the following.

Algorithm 3.5 states a complete list decoding algorithm for a lifted MRD code

C Ď Gqpk, nq and a received word R P Pqpnq.

Algorithm 3.5 Basic list decoding algorithm.

Require: received word R, decoding radius t, parity check matrix H̄p

Find the equations defining BtpRq in the Plücker coordinates (cf. Section 3.3.1).

Solve the system of equations, that arise from x̄H̄p “ 0, together with the equations

of BtpRq, the shuffle relations for G and the equation x1,...,k “ 1.

return the solutions x̄ “ rx1...k : . . . : xn´k`1...ns of this system of equations

Theorem 3.46: Algorithm 3.5 outputs the complete list L of codewords (in Plücker

coordinate representation), such that for each element x̄ P L, dIpϕ
´1px̄q,Rq ď t.

PROOF: The solution set to the shuffle relations is exactly ϕpGqpk, nqq, i.e. all the

elements of Ppn
kq´1 that are Plücker coordinates of a k-dimensional vector space in Fnq

(see Theorem 3.27). The subset of this set with the condition x1,...,k “ 1 is exactly

the set of Plücker coordinates of elements in Gqpk, nq whose reduced row echelon form

has Ikˆk as the left-most columns. Intersecting this with the solution set of the equa-

tions given by H̄p achieves the Plücker coordinates of the lifted MRD code C. The

intersection with Bk
t pRq is then given by the additional equations from the first step of

the algorithm. Thus the solution set to the whole system of equations consists of the

Plücker coordinates of the elements of C X Bk
t pRq. ˝

Example 3.47: We consider the p4, 4, 2, 2q2-code from Example 3.43. Assume we re-

ceived

R1 “ rs

ˆ

1 0 1 0

0 0 0 1

˙

.
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We would like to find all words within injection radius 1. Thus we first find the equations

for the ball of injection radius 1:

B2
1pU0q “ tV “ rspV q P G2p2, 4q | M3,4pV q “ 0u

We construct A´1
1 according to Algorithms 3.3 and 3.4

A´1
1 “

¨

˚

˚

˚

˝

1 0 0 1

0 0 1 0

0 0 0 1

0 1 0 0

˛

‹

‹

‹

‚

and compute the last column of ϕ̄pA´1
1 q:

r1 : 0 : 0 : 1 : 0 : 0sT .

Thus, we get that

B2
1pR1q “ tV “ rspV q P G2p2, 4q | M1,4pV q ` M2,3pV q “ 0u.

Then combining with the parity check equations from Example 3.43 we obtain the

following system of linear equations to solve

x13 ` x14 ` x24 “ 0, x14 ` x23 “ 0

x12 ` x23 “ 0, x12 “ 1

where the upper two equations arise from H̄p, the third from B2
1pR1q and the last one

is the always given one. This system has the two solutions p1, 1, 1, 1, 0q and p1, 0, 1, 1, 1q

for px12, x13, x14, x23, x24q. Since we used all the equations defining the ball in the system

of equations, we know that the two codewords corresponding to these two solutions (i.e.

the third and fourth in Example 3.43) are the ones with distance 1 from the received

space, and we do not have to solve x34 at all. The corresponding codewords are

ˆ

1 0 1 0

0 1 1 1

˙

,

ˆ

1 0 1 1

0 1 0 1

˙

.

Example 3.48: Consider the same code, but now assume we received

R2 “ rs

ˆ

1 0 0 1

0 1 1 1

˙

.

As previously, we construct A´1
2 according to Algorithms 3.3 and 3.4

A´1
2 “

¨

˚

˚

˚

˝

1 0 0 1

0 1 1 1

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚
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and compute the last column of ϕ̄pA´1
2 q:

r1 : 1 : 0 : 1 : 1 : 1sT .

Thus, we get that

B2
1pR2q “ tV “ rspV q P G2p2, 4q | M1,2pV q`M1,3pV q`M2,3pV q`M2,4pV q`M3,4pV q “ 0u.

Then combining with the parity check equations from Example 3.43 and the shuffle

relation x12x34 ` x13x24 ` x14x23 “ 0 we obtain the following system of linear and

bilinear equations

x13 ` x14 ` x24 “ 0, x14 ` x23 “ 0

x12 ` x13 ` x23 ` x24 ` x34 “ 0, x12 “ 1

x12x34 ` x13x24 ` x14x23 “ 0

We rewrite these equations in terms of the variables, that describe the linear code Cp,

x13, x14, x23, x24:

x13 ` x14 ` x24 “ 0

x14 ` x23 “ 0

x13 ` x23 ` x24 ` x13x24 ` x14x23 “ 1

This system has three solutions p1, 0, 0, 1q, p0, 1, 1, 1q, and p1, 1, 1, 0q for px13, x14, x23, x24q.

The corresponding codewords are

rs

ˆ

1 0 0 1

0 1 1 0

˙

, rs

ˆ

1 0 1 1

0 1 0 1

˙

, rs

ˆ

1 0 1 0

0 1 1 1

˙

.

Remark 3.49: One can easily extend this algorithm to multi-component lifted rank-

metric codes. Then one needs to add the following step in the beginning of Algorithm

3.5: Find the possible component codes that the elements of the ball can be in.

To find all possible component codes one can use the following fact.

Theorem 3.50: Let R “ rsr R1 R2 R3 s P Pqpnq with dimpRq “ k1 and R1 P

Fk
1ˆj
q , R2 P Fk

1ˆk
q , R3 P F

k1ˆpn´k´jq
q . Moreover, let A P F

kˆpn´k´jq
q . If it holds that

dIprsr 0kˆj Ikˆk A s,Rq ď t, then the rank of R2 is at least maxtk, k1u ´ t.

PROOF: It holds that

dIprsr 0kˆj Ikˆk A s, rspRqq ď t

ðñ rank

ˆ

0kˆj Ikˆk A

R1 R2 R3

˙

´ pk ` k1q ` maxtk, k1u ď t

ðñ rank

ˆ

Ikˆk 0kˆj A

R2 R1 R3

˙

ď t` pk ` k1q ´ maxtk, k1u.
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Since any of the lower k1 vectors of the matrix on the left side can only be linearly

dependent on the upper k rows if not all of the first k entries are zero, it holds that

the left side of the inequality is greater than or equal to k ` pk1 ´ dimpR2qq. Thus, if

dIprsr 0kˆj Ikˆk A s,Rq ď t, then

k ` pk1 ´ dimpR2qq ď t ` pk ` k1q ´ maxtk, k1u

ðñ dimpR2q ě maxtk, k1u ´ t. ˝

Corollary 3.51: Consider the setting of Theorem 3.50 and a multi-component code

C Ď Gqpk, nq as defined in Theorem 2.9. All component codes, that elements of the ball

Bk
t pRq could possibly be in, must fulfill the following: If the leading identity block of the

component code is in columns j` 1, . . . , j`k for some j P t0, . . . , n´ku, then the rank

of the submatrix Rj,...,j`k of R is at least maxtk, k1u ´ t.

Therefore, we need to run Algorithm 3.5 for each component code that fulfills the

condition of Corollary 3.51 separately to find all codewords of a multicomponent code

inside the ball Bk
t pRq.

Complexity of the Algorithm

For the analysis of the complexity of Algorithm 3.5 denote by τ the number of

equations that define Bk
t pUq from Proposition 3.37.

Lemma 3.52: Let A´1 P GLn be the matrix computed according to Algorithm 3.4, such

that U0A “ R. Then each column of ϕ̄pA´1q has at most
`

2k

k

˘

non-zero elements.

PROOF: Consider the notation of Algorithm 3.4. Since σpAq´1 and A´1 only differ

in a row permutation, it is clear that also ϕ̄pσpAq´1q and ϕ̄pA´1q only differ in a row

permutation. Thus, we want to count the non-zero minors of

σpAq´1 “

ˆ

Ik ´U2

0 In´k

˙

.

Because of the identity blocks it is easy to see that each set of k columns has at least

n ´ 2k zero rows. Since any minor containing one of these zero rows is zero, it follows

that at most
`

2k

k

˘

of the
`

n

k

˘

minors can be non-zero. Then the statement follows. ˝

Theorem 3.53: The complexity of Algorithm 3.5 is dominated by solving the system

of τ ` 1 ` pδ ´ 1qpn´ kq `
`

n

2k

˘

linear and bilinear equations in
`

n

k

˘

variables. This has

a complexity that is polynomial in n and exponential in k.

In most of the examples we computed though, we only needed a subset of all equa-

tions to get the solutions. For this, note that the actual information is encoded in

the rank-metric code part of the matrix representation of the vector space, i.e. in the

Plücker coordinates corresponding to Cp. Hence, one does not need the k ˆ n-matrix
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representation of the solutions from an application point of view, since the informa-

tion can be extracted directly from the Plücker coordinate representation of the vector

spaces. On the other hand, because of this structure it is also straight-forward to con-

struct the matrix representation by using Lemma 3.41 (i.e. without any computation

needed). So, the number of variables in the system could be reduced to kpn ´ kq, and

this can decrease the complexity of the algorithm. One can find this illustrated in

Examples 3.47 and 3.48.

Bounds on the list size

A question that always arises when thinking about list decoding is how many code-

words one has in a ball of a given radius, i.e. the list size of the decoder. Bounds for

the list size for classical Gabidulin list decoding have already been derived and can be

found e.g. in [60]. We can use these bounds for deriving bounds for the list size of lifted

Gabidulin codes. To do so we must again assume that the received word has the same

dimension as the codewords.

Theorem 3.54: The list size of a list decoder for a lifted Gabidulin code C Ď Gqpk, nq

is less than or equal the list size of a list decoder for the corresponding Gabidulin code

C Ď F
kˆpn´kq
q , with equality when the received word is of the type R “ rsr Ikˆk A s P

Gqpk, nq for some A P F
kˆpn´kq
q .

PROOF: Assume R “ rsr Ik A s P Gqpk, nq. Then dIpR, rsr Ik B sq “ rankpA ´ Bq,

for any B P F
kˆpn´kq
q , hence the list sizes of both decoders are equal.

For the general case, i.e. when R has arbitrary shape, we prove that |Bk
t pRq X C| ď

|Bk
t prsr Ik R̄ sq X C| for some R̄ P F

kˆpn´kq
q . For this let R be the reduced row echelon

form of R. We can write R as follows

R “

˜

Jℓˆk R1

0pk´ℓqˆk R2

¸

,

such that rank pJℓˆkq “ ℓ. If some codeword U “ rsr Ik B s of the lifted Gabidulin code

is in the ball Bk
t pRq, then dimpU X Rq ě k ´ t and this intersection can only happen

in the row space of r Jℓˆk R1 s. It follows that U is also in the ball of radius t around

the row space of

R˚ “

˜

Jℓˆk R1

JC R2

¸

,

where JC P F
pk´ℓqˆk
q such that the first k columns of R˚ form a matrix of rank k. It

holds that rspR˚q “ rsr Ik R̄ s for some R̄ P F
kˆpn´kq
q and thus the statement follows. ˝

Corollary 3.55: Consider a lifted Gabidulin code C Ď Gqpk, nq with minimum injection

distance δ. Denote by ℓ the list size of a list decoding algorithm which decodes up to
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injection radius t. Then

ℓ ď
t
ÿ

i“t δ´1

2
u`1

„

k

2i` 1 ´ δ



q
„

i

2i` 1 ´ δ



q

.

PROOF: It follows from Theorem 3.54 that the upper bound for the list size of a list

decoder for classical Gabidulin codes is also an upper bound for the list size of a list

decoder for lifted Gabidulin codes with the corresponding parameters. In this case we

used the bound for classical Gabidulin codes from [60]. ˝



Chapter 4

Isometry Classes and Automorphism

Groups

In this chapter we investigate the isometry classes and automorphism groups of

subspace codes in general and of constant dimension codes in particular. The results

of this chapter were published by Trautmann in [52].

One needs to define isometry classes of subspace codes and a canonical representative

of each class to compare codes among each other. On the other hand, a canonical form

and automorphism groups are important for the theory of orbit codes, as discussed in

Section 2.5, since different subgroups can possibly generate the same orbit. Hence, one

needs a canonical way to compare orbit codes among each other. This can be done via

the automorphism groups of the codes, since these are the maximal generating groups

for a given orbit code and they contain all other generating subgroups of it.

We first need some additional preliminary knowledge for our investigations.

Definition 4.1: The general semilinear group ΓLnpqq is defined as the semidirect prod-

uct of the general linear group and the automorphism group of Fq, i.e.

ΓLnpqq :“ GLnpqq ¸ AutpFqq.

The multiplication of two elements of ΓLnpqq is given by

pA,ϕqpB,ϕ1q :“ pA ϕ´1pBq, ϕϕ1q.

If the underlying field is clear from the context we abbreviate ΓLnpqq by ΓLn.

Lemma 4.2: The ΓLn-multiplication

Gqpk, nq ˆ ΓLn ÝÑ Gqpk, nq

pU , pA,ϕqq ÞÝÑ UpA,ϕq :“ ϕpUAq

defines a group action from the right on Gqpk, nq (for any k ď n) and hence on Pqpnq

as well.

83
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PROOF: This is indeed a group action, since

`

UpA,ϕq
˘

pB,ϕ1q “
`

ϕpUAq
˘

pB,ϕ1q “ ϕ1
`

ϕpUAqB
˘

“ ϕ1ϕ
`

pUAqϕ´1pBq
˘

“ ϕϕ1
`

UpAϕ´1pBqq
˘

“ U
`

Aϕ´1pBq, ϕϕ1
˘

“ U
`

pA,ϕqpB,ϕ1q
˘

. ˝

This action respects the distances dS, dI and therefore may be used to define equiv-

alence for subspace codes. In Section 4.1 we will show that this equivalence is the most

general one may demand if one also wants to preserve some other elementary properties

of subspace codes.

We can now define linear and semilinear automorphisms of subspace codes.

Definition 4.3: The set

SAutpCq :“ StabΓLn
pCq :“

 

pA,ϕq P ΓLn | CpA,ϕq “ C
(

is called the semi-linear automorphism group of the subspace code C. The (linear)

automorphism group of C is defined as

AutpCq :“ StabGLn
pCq :“ tA P GLn | CA “ Cu.

Proposition 4.4: SAutpCq is a subgroup of ΓLn and AutpCq is a subgroup of SAutpCq.

PROOF: It holds that SAutpCq is closed under multiplication, i.e. for pA,ϕq, pB,ϕ1q P

SAutpCq it holds that

CppA,ϕqpB,ϕ1qq “ pCpA,ϕqqpB,ϕ1q “ CpB,ϕ1q “ C.

Hence, SAutpCq is a subgroup of ΓLn. Since AutpCq consists of the elements of SAutpCq

with ϕ “ id, the second statement follows. ˝

Lemma 4.5: For a given subspace code C Ď Pqpnq it holds that

λIn P AutpCq for all λ P F
ˆ
q .

PROOF: One can easily see that λIn P AutpUq for all U P Pqpnq and λ P Fˆ
q . Then the

statement follows from the fact that the pointwise stabilizer group is always a subset

of the setwise stabilizer group. ˝

4.1 Isometry of Subspace Codes

An open question is how to define equivalence of subspace codes. Naturally, equiva-

lent codes should have the same ambient space, cardinality, error-correction capability

(i.e. minimum distance) and transmission rate (for a fixed ambient space this is given

by the maximal dimension of the codewords). Moreover, the distance distribution and
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the dimension distribution should be the same. Clearly, these last two conditions imply

the minimum distance and maximum dimension.

This work engages in the equivalence maps of subspace codes that, in addition,

preserve the dimensions of the codewords. In the following we characterize all such

maps.

Definition 4.6: Let d be a metric function on Pqpnq. A distance-preserving map

ι : Pqpnq Ñ Pqpnq , i.e. fulfilling

dpU ,Vq “ dpιpUq, ιpVqq @ U ,V P Pqpnq.

is called an isometry on Pqpnq.

Lemma 4.7: Any isometry ι is injective and hence, if the domain is equal to the co-

domain, bijective. The inverse map ι´1 is an isometry as well.

PROOF:

U ‰ V ðñ dpU ,Vq ‰ 0 ðñ dpιpUq, ιpVqq ‰ 0 ðñ ιpUq ‰ ιpVq ˝

From now on we consider the injection and subspace distance as metric functions

on Pqpnq for the investigation of isometries.

Lemma 4.8: If ι : Pqpnq Ñ Pqpnq is an isometry, then ιpt0uq P
 

t0u,Fnq
(

.

PROOF: We will prove it using the injection distance. The proof for the subspace

distance is analogous and can be found in [52].

Assume U :“ ιpt0uq R
 

t0u,Fnq
(

and let V :“ ιpFnq q. It holds that

dI
`

t0u,Fnq
˘

“ dI
`

ιpt0uq, ιpFnq q
˘

ðñ n “ dIpU ,Vq

ðñ n “ maxtdimpUq, dimpVqu ´ dimpU X Vq.

This implies that maxtdimpUq, dimpVqu “ Fnq and U X V “ t0u. Therefore, either

U “ Fnq and V “ t0u or V “ Fnq and U “ t0u, which contradicts the assumption. ˝

We can use this fact to show that any isometry on Pqpnq is either dimension-

preserving or dimension-inverting, as shown in the following lemma.

Lemma 4.9: Let ι be as before and U P Pqpnq arbitrary. Then

ιpt0uq “ t0u ùñ dimpUq “ dIpt0u,Uq “ dIpt0u, ιpUqq “ dimpιpUqq

and on the other hand

ιpt0uq “ F
n
q ùñ dimpUq “ dIpt0u,Uq “ dIpF

n
q , ιpUqq “ n´ dimpιpUqq.

The same holds for the subspace distance.
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In the following, we restrict ourselves to the isometries with ιpt0uq “ t0u because

these are exactly the isometries that keep the dimension of a codeword. Now we want

to characterize all these isometries on Pqpnq with ιpt0uq “ t0u. For it we need the

Fundamental Theorem of Projective Geometry :

Theorem 4.10 ([2, 4]): Let Zn :“ tµIn | µ P F
ˆ
q u be the set of scalar transformations.

Then every order-preserving bijection (with respect to the subset relation) f : Pqpnq Ñ

Pqpnq, where n ą 2, is induced by a semilinear transformation pA,ϕq from

PΓLn :“ pGLn{Znq ¸ AutpFqq.

Theorem 4.11: For n ą 2, a map ι : Pqpnq Ñ Pqpnq is an order-preserving bijection

(with respect to the subset relation) of Pqpnq if and only if it is an isometry with ιpt0uq “

t0u.

PROOF: We will again prove the statement using the injection distance, where an

analogous proof holds for the subspace distance and can be found in [52].

1. “ðù”

Let ι be an isometry with ιpt0uq “ t0u. We have to show that for any U ,V P Pqpnq

it holds that

U Ď V ðñ ιpUq Ď ιpVq.

From Lemma 4.9 one knows that dimpUq “ dimpιpUqq. Assume that there are

U ,V P Pqpnq with U Ď V and ιpUq Ę ιpVq. This leads to the following contradic-

tion:

dI
`

ιpUq, ιpVq
˘

“ maxtdimpιpUqq, dimpιpVqqu ´ dim
`

ιpUq X ιpVq
˘

ą maxtdimpιpUqq, dimpιpVqqu ´ dimpιpUqq

“ maxtdimpUq, dimpVqu ´ dimpUq

“ maxtdimpUq, dimpVqu ´ dimpU X Vq

“ dIpU ,Vq

Hence, U Ď V ùñ ιpUq Ď ιpVq. Since ι´1 is an isometry as well, the converse also

holds. Thus, ι is an order-preserving bijection.

2. “ùñ”

According to Theorem 4.10 any order-preserving bijection ι of the projective ge-

ometry can be expressed by a pair pA,ϕq P PΓLn. Then

dI
`

ιpUq, ιpVq
˘

“ dI
`

ϕpUAq, ϕpVAq
˘

“ maxtdimpϕpUAqq, dimpϕpVAqqu ´ dim
`

ϕpUAq X ϕpVAq
˘

“ maxtdimpUq, dimpVqu ´ dim
`

ϕppU X VqAq
˘
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“ dIpU ,Vq

thus ι is an isometry with ιpt0uq “ t0u. ˝

Corollary 4.12: Every isometry ι on Pqpnq, where n ą 2, with dimpUq “ dimpιpUqq

for any U P Pqpnq, is induced by a semilinear transformation pA,ϕq P PΓLn.

From now on assume that n ą 2. This is no real restriction, because subspace

codes in an ambient space of dimension 2 are not interesting for application, since

the only non-trivial subspaces are the one-dimensional ones. In that case neither the

transmission rate is improved compared to forwarding, nor is error-correction possible.

Definition 4.13: 1. Two codes C1, C2 Ď Pqpnq are linearly isometric if there exists

A P PGLn :“ GLn{Zn such that C1 “ C2A. Since it is the orbit of PGLn on the

code, the set of all linearly isometric codes is denoted by C1PGLn.

2. We call C1 and C2 semilinearly isometric if there exists pA,ϕq P PΓLn such that

C1 “ C2pA,ϕq. The set of all semilinearly isometric codes is denoted by C1PΓLn.

Clearly linear and semilinear isometry are equivalence relations, so it makes sense

to speak of classes of (semi-)linearly isometric codes. Note that the isometries are

independent of the underlying metric (dS or dI). Note furthermore, that one can replace

the projective groups with GLn and ΓLn, respectively, when computing the isometry

classes of subspace codes (this follows from Lemma 4.5).

The interested reader can find a lattice point-of-view of the isometries of subspace

codes in [53].
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4.2 Isometry and Automorphisms of Known

Code Constructions

In this section we examine the isometries and automorphism groups of some known

classes of constant dimension codes, namely spread codes, orbit codes and lifted rank-

metric codes. All of these constructions were explained in Chapter 2.

4.2.1 Spread Codes

Different constructions for spread codes are known, some of them were explained

in Sections 2.1, 2.5 and 3.1, where the latter was the Desarguesian spread construction

(or Fq-linear representations of Pℓ´1pFqkq).

Theorem 4.14: All Desarguesian spread codes are linearly isometric.

PROOF: Since there is only one spread of lines in Fℓ
qk

, different Desarguesian spreads

of Fnq can only arise from the different isomorphisms between Fqk and Fkq . As the

isomorphisms are linear maps, there exists a linear map between the different spreads

arising from them. ˝

In general, not all spreads are linearly isometric but in the special case of q “ 2, k “

2, n “ 4 they actually are:

Proposition 4.15: All spread codes in G2p2, 4q are linearly isometric.

PROOF: To prove the statement we need the following definitions from [25]: A transver-

sal of U P Gqp2, 4q is an element V P Gqp2, 4q such that dimpU X Vq “ 1. The set of

transversals of three elements of Gqp2, 4q is called a regulus. A spread S Ă Gqp2, 4q is

called regular if, when U1,U2,U3 P S, then the regulus of U1,U2,U3 is contained in S.

From [25, Lemma 17.1.3] we know that every spread in Gqp2, 4q is regular. Since in

G2pk, 2kq a spread is Desarguesian if and only if it is regular [27, p. 207], we know that

every spread is Desarguesian. Hence all spreads in G2p2, 4q are linearly isometric. ˝

We will now investigate the automorphism groups of Desarguesian spreads.

Theorem 4.16: The linear automorphism group of a Desarguesian spread code C Ď

Gqpk, nq is isomorphic to GLn
k

pqkq ˆ GalpFqk ,Fqq.

PROOF: Let ℓ :“ n
k
. We want to find all Fq-linear bijections of Pℓ´1pFqkq. We know

that PGLℓpq
kq is the group of all Fqk-linear bijections of Pℓ´1pFqkq. Thus, PGLℓpq

kq ˆ

GalpFqk ,Fqq is the set of all Fq-linear bijections of Pℓ´1pFqkq. It follows that non-

projectively the linear automorphism group of such a spread is isomorphic to GLℓpq
kqˆ

GalpFqk ,Fqq. ˝
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Corollary 4.17: Let S be a Desarguesian spread code in Gqpk, nq. Then

|AutpSq| “ k

n
k

´1
ź

i“0

`

qn ´ qki
˘

.

PROOF: The statement follows from the fact that |GalpFqk ,Fqq| “ k and |GLn
k

pqkq| “
ś

n
k

´1

i“0

´

pqkq
n
k ´ pqkq

i
¯

. ˝

Remark 4.18: It was shown in [27, Theorem 25.6.7] that all regular spreads in Gqpk, 2kq

are isometric and that the automorphism group of such a regular spread has cardinality

kqkpqk ´ 1qpq2k ´ 1q. This formula coincides with the one from our Corollary 4.17 for

n “ 2k. Since we know that in G2pk, 2kq a spread is Desarguesian if and only if it is

regular [27, p. 207], for q “ 2 our corollary proves the same statement as [27, Theorem

25.6.7].

Since we would like to represent the finite field automorphisms as invertible matrices

we need the following lemma:

Lemma 4.19: Let φpkq : Fkq Ñ Fqk be the canonical vector space isomorphism and

ϕ P GalpFqk ,Fqq. Then there exists a matrix A P GLk such that

φpkqpvAq “ ϕpvq.

I.e. there is a matrix-representation in GLk for every element of GalpFqk ,Fqq.

PROOF: The statement follows from the fact that ϕ is linear and that Fkq is isomorphic

to Fqk . ˝

We can now translate the result of Theorem 4.16 to a matrix setting. Since Fqk is

isomorphic to Fqrαs where α is a root of a monic irreducible polynomial ppxq P Fqrxs of

degree k but also to FqrMps, where Mp is the companion matrix of ppxq, we get:

Corollary 4.20: The automorphism group of a Desarguesian spread code in Gqpk, nq

is generated by all elements in GLn where the k ˆ k-blocks are elements of FqrMps and

block diagonal matrices where the blocks represent an element of GalpFqk ,Fqq.

In Section 3.1 it was shown that the generator matrices of the code words of Desar-

guesian spreads are of the type

U “
“

B1 B2 . . . Bℓ

‰

where the blocks Bi are elements of FqrMps and Mp is the companion matrix of an

irreducible polynomial ppxq P Fqrxs of degree k. To stay inside this structure (i.e. to

apply an automorphism) we can permute the blocks, do block-wise multiplications or

do block-wise additions with elements from FqrMps. This coincides with the structure

of the automorphism groups from before.

This result is depicted in the following Examples.
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Example 4.21: Consider G2p2, 4q. The only binary irreducible polynomial of degree 2

is ppxq “ x2 ` x ` 1, i.e. the corresponding companion matrix is

Mp “

ˆ

0 1

1 1

˙

.

The respective spread code is

C “
 

rs
“

I 0
‰

, rs
“

I I
‰

, rs
“

I Mp

‰

, rs
“

I M2
p

‰

, rs
“

0 I
‰ (

,

(where 0 “ 02ˆ2 and I “ I2ˆ2) and its automorphism group has 360 elements:

AutpCq “

Bˆ

I

I

˙

,

ˆ

I

Mp

˙

,

ˆ

I Mp

I

˙

,

ˆ

Q

Q

˙F

,

where Q “

ˆ

1 0

1 1

˙

P GL2 represents the only non-trivial automorphism of F22 , i.e.

x ÞÑ x2.

A different approach of finding the automorphism group of a spread in G2p2, 4q can

also be found in [25, Corollary 2].

Example 4.22: Consider G3p2, 4q and the irreducible polynomial ppxq “ x2 ` x ` 2,

i.e. the corresponding companion matrix is

Mp “

ˆ

0 1

1 2

˙

.

We use again the notation 0 “ 02ˆ2 and I “ I2ˆ2. The spread code is defined as

C “ rs
“

I 0
‰

Y
 

rs
“

I M i
p

‰

| i “ 0, . . . , 7
(

Y rs
“

0 I
‰

and its automorphism group is given by

AutpCq “

Bˆ

I

I

˙

,

ˆ

I

Mp

˙

,

ˆ

I Mp

I

˙

,

ˆ

Q

Q

˙F

,

where Q “

ˆ

1 0

2 2

˙

P GL2. Here Q represents the only non-trivial automorphism of

F32 that fixes F3, i.e. x ÞÑ x3. It holds that AutpCq has 11520 elements.

Note that in both examples the first element of the generator sets corresponds to

swapping the blocks, the second corresponds to multiplication by Mp and the third

element to adding Mp in the second block of the code word generator matrices.

To conclude this subsection we want to give an example of a non-Desarguesian

spread and show that its automorphism group has a different cardinality than the ones

of a Desarguesian spread of the same parameters.

Example 4.23: In the setting of Example 4.22, one can construct a non-Desarguesian

spread as follows:

C1 “
 

rsr I M i
p s | i P t0, 2, 3, 4, 6, 7u

(

Y
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rs

„

1 0 0 0

0 0 0 1



Y rs

„

0 1 0 0

0 0 1 2



Y rs

„

1 1 0 0

0 0 1 0



Y rs

„

1 2 0 0

0 0 1 1



.

We used the algorithm of [18] to compute its automorphism group, and got a group of

size

|AutpC1q| “ 3840

which is a third of the size of the automorphism group of the Desarguesian spread in

Example 4.22. This implies that C and C1 are not linearly isometric.

4.2.2 Orbit Codes

In this subsection we will investigate the isometries and automorphism groups of

subspace orbit codes. For a more general description of isometries of general codes

defined as orbits under some action on a metric set, the interested reader is referred to

[53].

Theorem 4.24: Let C1 “ U1G Ď Gqpk, nq be a subspace orbit code. Then C2 is lin-

early (respectively semilinearly) isometric to C1 if and only if there exists S P GLn

(respectively S P PGLn) such that

C2 “ U1SpS´1GSq,

i.e. S´1GS is a generating group of C2. Hence, the isometry classes of orbit codes in

Gqpk, nq correspond to the conjugacy classes of the subgroups of GLn.

One natural question that arises when studying orbit codes is if there is a canonical

representative of all the possible generating groups for a given orbit code. The following

proposition shows that the automorphism groups can function as such representatives,

since they are always the largest generating group of a given code.

Proposition 4.25: 1. Every generating group of an orbit code is a subgroup of the

automorphism group.

2. Every subgroup of the automorphism group containing a generating group is a

generating group. Hence, the automorphism group is a generating group of the

orbit code.

PROOF: 1. If C “ UG, then CG “ UGG “ UG.

2. Let G be a generating group of C and H a supergroup of G, such that H is a

subgroup of AutpCq. Hence, C “ UG and CH “ C. This implies that UH “

UGH “ CH “ C, since G is a subgroup of H . ˝

The question of finding elements of the automorphism group can be translated into

a stabilizer condition of the initial point of the orbit.
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Theorem 4.26: A P GLn is in the automorphism group of C “ UG if and only if for

every B1 P G there exists a B2 P G such that

B1AB2 P StabGLn
pUq.

PROOF: It holds that

A P AutpCq ðñ CA “ C

ðñ @B1 P G DB˚ P G : UB1A “ UB˚

ðñ @B1 P G DB˚ P G : UB1AB˚´1 “ U .

The statement follows with B2 :“ B˚´1 P G. ˝

4.2.3 Lifted Rank-Metric Codes

In this subsection we study the isometries and automorphisms of lifted rank-metric

codes. To do so we first repeat some known results about the isometries of classical

rank-metric codes. Then we use these results to investigate the isometries of lifted rank-

metric codes. Moreover, we show the connection between the automorphism groups of

rank-metric and lifted rank-metric codes.

Rank-metric codes are matrix codes, i.e. subsets of Fkˆm
q (in this work we restrict

ourselves to the case k ď m) equipped with the rank distance

dRpU, V q :“ rankpU ´ V q for U, V P F
kˆm
q .

Such a matrix code can also be seen as a block code in Fkqm, where the code words are

column vectors of length k. As before we denote rank-metric codes by C and lifted

rank-metric codes by C.

The isometry of rank-metric codes (as block codes over Fkqm) has already been studied

by Berger in [5]. One of his main results is the following:

Lemma 4.27 ([5]): 1. The set of Fqm-linear isometries on F
k
qm equipped with the

rank metric is

RlinpFkqmq :“ GLkpqq ˆ F
ˆ
qm.

2. The set of Fqm-semilinear isometries on Fkqm equipped with the rank metric is

RsemipFkqmq :“
`

GLkpqq ˆ F
ˆ
qm

˘

¸ AutpFqmq.

Since we are interested in the matrix representation of these codes and hence also their

isometries, let us now translate the previous result to a matrix setting:



4 Isometry Classes and Automorphism Groups 93

Corollary 4.28: Let ppxq “
řm
i“0 pix

i P Fqrxs be monic and irreducible of degree m

and Mp P GLmpqq its companion matrix. Let α P Fqm be a root of ppxq. Thus, Fqm –

Fqrαs. Denote by GalMpFqmq ď GLmpqq the matrix representation of GalpFqm ,Fqq (as

illustrated in Lemma 4.19 and Examples 4.21 and 4.22). Then the following holds:

1. The set of Fqm-linear isometries on Fkˆm
q equipped with the rank metric is GLkpqqˆ

Fˆ
q rMps.

2. The set of Fqm-semilinear isometries on Fkˆm
q equipped with the rank metric is

`

GLkpqq ˆ Fˆ
q rMps

˘

¸
`

GalMpFqmq ˆ AutpFqq
˘

.

Here GLk always acts from the left and F
ˆ
q rMps as well as GalMpFqmq always act from

the right when applied to an element of Fkˆm
q .

PROOF: From Theorem 1.29 we know that for any v P Fmq it holds that

φpmqpvMpq “ φpmqpvqα.

Since Fqrαs is isomorphic to FqrMps, we get that multiplying an element of Fkqm by
řm´1

i“0 βiα
i P Fqrαs is isomorphic to multiplying the respective element of Fkˆm

q with
řm´1

i“0 βiM
i
p P FqrMps. Then, together with Lemma 4.27, the first statement follows.

The second statement is implied by the fact that AutpFqmq “ GalpFqm ,Fqq ˆAutpFqq.˝

Note that an Fqm-linear map is also Fq-linear. On the other hand, there are other

Fq-(semi-)linear isometries than the ones mentioned before. E.g. all elements of GLm

are Fq-linear isometries on Fkˆm
q , since they are rank-preserving.

We will now show the connection between the isometries of rank-metric codes and

their lifted subspace codes.

Theorem 4.29: If two rank-metric codes in F
kˆpn´kq
q are Fqn´k-linearly (respectively

Fqn´k-semilinearly) isometric in the rank-metric space, their lifted codes are linearly

(respectively semilinearly) isometric in the Grassmannian Gqpk, nq.

PROOF: For simplicity we will first prove the statement for linearly isometric codes:

Let CR and C1
R be two Fqn´k-linearly isometric rank-metric codes, i.e. C1

R “ ACRM
1
p with

A P GLk and M 1
p P FqrMps, where Mp is the companion matrix of a monic irreducible

polynomial in Fqrxs of degree n´ k. Then the lifted code of C1
R is

C1 “
 

rs
“

Ikˆk R1
‰

| R1 P C1
R

(

“
 

rs
“

Ikˆk ARM 1
p

‰

| R P CR
(

“
 

rs
“

A´1 R
‰

| R P CR
(

ˆ

Ikˆk

M 1
p

˙

“
 

rs
“

Ikˆk R
‰

| R P CR
(

ˆ

A´1

M 1
p

˙
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“ C

ˆ

A´1

M 1
p

˙

where C is the lifted code of CR. Hence, the lifted codes are linearly isometric.

The semi-linear case then follows together with Corollary 4.28, since an element

from GalMpFqn´kq behaves analogously to M 1
p in the proof. ˝

One can easily see, that there are codes that are linearly isometric to a lifted rank-

metric code but are not a lifted rank-metric code itself:

Example 4.30: Consider the binary lifted rank-metric code

C “

"

rs

„

1 0 0 0

0 1 0 0



, rs

„

1 0 1 0

0 1 0 1

*

.

Permute the second and third column of both codewords to get

C1 “

"

rs

„

1 0 0 0

0 0 1 0



, rs

„

1 1 0 0

0 0 1 1

*

.

Then C and C1 are linearly isometric but C1 is not a lifted rank-metric code.

We now want to investigate which isometries map a lifted rank-metric code to an-

other lifted rank-metric code of the same parameters. Note that it does not make sense

to think of Fqn´k-linear isometry for the lifted codes, which is why we only study the

Fq-linear isometries.

Theorem 4.31: Let C Ď F
kˆpn´kq
q be an arbitrary rank-metric code with minimum

distance δ. The following elements map C to another lifted rank-metric code in F
kˆpn´kq
q

with the same minimum distance δ and are semilinear isometries:
"

p

ˆ

A B

C

˙

, ϕq | A P GLk, C P GLn´k, B P F
kˆpn´kq
q , ϕ P AutpFqq

*

For ϕ “ id they are linear isometries.

PROOF: Consider R,R1 P C. With the block matrix multiplication rules it follows

that

rs
“

Ikˆk R
‰

ˆ

A B

C

˙

“ rs
“

A B ` RC
‰

“ rs
“

Ikˆk A´1pB ` RCq
‰

.

From Corollary 4.28 we know that A´1 is a rank-metric isometry. Moreover,

rank
`

pB ` RCq ´ pB ` R1Cq
˘

“ rank
`

pR ´ R1qC
˘

“ rankpR ´ R1q

thus tA´1pB`RCq | R P Cu Ď F
kˆpn´kq
q is a rank-metric code with the same minimum

distance as C. As A and C are invertible, the whole matrix

ˆ

A B

C

˙

is in GLn and

the statement follows. ˝
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Remark 4.32: With the notation from Theorem 4.31 the map

F
kˆm
q ÝÑ F

kˆm
q

R ÞÝÑ A´1pB ` RCq

is indeed an isometry but it is not linear, except for the case when A´1B “ 0kˆpn´kq,

which is equivalent to B “ 0kˆpn´kq, since A P GLk. Thus, the elements that map

a lifted linear rank-metric code to another lifted linear rank-metric code of the same

parameters have to fulfill B “ 0kˆpn´kq, in addition.

In the following we will focus on automorphisms of lifted rank-metric codes. We can

again use the knowledge of the automorphism group of a rank-metric code for finding

the automorphism group of the respective lifted rank-metric code. For this denote by

AutR the automorphism group of the rank-metric code.

Proposition 4.33: Let CR Ď F
kˆpn´kq
q be a rank-metric code and C its lifted code. Then

"ˆ

Ikˆk

R

˙

| R P AutRpCRq

*

Ď AutpCq.

PROOF: It holds that

 “

Ikˆk B
‰

| B P CR
(

ˆ

Ikˆk

R

˙

“
 “

Ikˆk BR
‰

| B P CR
(

.

Since R P AutRpCRq, this set is equal to the original one. ˝

Theorem 4.34: Let CR Ď F
kˆpn´kq
q be a rank-metric code and C its lifted code. Then

"ˆ

Ikˆk

A

˙

| A P GLn´k

*

X AutpCq “

"ˆ

Ikˆk

R

˙

| R P AutRpCRq

*

.

PROOF: From Proposition 4.33 we know that the right side is included in the left.

Furthermore,

rs
“

Ikˆk B1

‰

ˆ

Ikˆk

A

˙

“ rs
“

Ikˆk B2

‰

ðñ DC1, C2 P GLk :
“

C1 C1B1

‰

ˆ

Ikˆk

A

˙

“
“

C2 C2B2

‰

ðñ C1 “ C2 and B1A “ B2

i.e. if

ˆ

Ikˆk

A

˙

P AutpCq, then A P AutRpCRq. ˝

Hence, if we know the automorphism group of a lifted rank-metric code, we also know

the automorphism group of the rank-metric code itself.
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Example 4.35: Consider the (non-linear) rank-metric code

C “

"ˆ

1 0

0 1

˙

,

ˆ

1 1

0 1

˙

,

ˆ

0 1

0 1

˙

,

ˆ

0 0

0 1

˙*

with four elements and minimum rank distance 1 over F2. Its automorphism group is

AutRpCq “

"ˆ

1 b

0 1

˙

| b P F2

*

.

Let C be the lifted code of C in G2p2, 4q. Then

AutpCq “

C

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 1

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1 1 0 0

0 1 0 0

0 1 1 0

0 0 0 1

˛

‹

‹

‹

‚

G

with |AutpCq| “ 192. The second generator and the identity matrix are the correspond-

ing elements described in Theorem 4.34.

Note that AutRpCq can easily be found since |GL2| “ 6, while AutpCq was found by

computer search, using the algorithm of [18].
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