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The combinatorial zeta map ζHL
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Diagonal Harmonics

Fix n ∈ N. Let R := C[x1, . . . , xn, y1, . . . , yn].

Definition

The space of Diagonal Harmonics is

DH := {f ∈ R :
n∑

i=1

∂k

∂xi

∂l

∂yi
f = 0 for k + l > 0}.

The symmetric group Sn acts on it by permuting the x1, . . . , xn
and the y1, . . . , yn simultaneously.
DHε = {f ∈ DHn : σ · f = sgn(σ)f for all σ ∈ Sn}.
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The Hilbert series of Diagonal Harmonics

Let DHij be the homogeneous part of DH that has degree i in the
x-variables and degree j in the y -variables. Let
DHn(q, t) :=

∑
i ,j dim(DHij)q

i t j . Define DHεn(q, t) similarly.
Combinatorial models for these (Dn := {Dyck paths of length n})
Haglund: DHεn(q, t) =

∑
P∈Dn

qarea(P)tbounce(P)

Haiman: DHεn(q, t) =
∑

P∈Dn
qdinv(P)tarea(P)

Theorem (Haglund, Haiman 2002)

There is a bijection

ζH : Dn → Dn

(dinv, area)→ (area, bounce)
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The combinatorial zeta map ζH

Theorem (Haglund, Haiman 2002)

There is a bijection

ζH : Dn → Dn

(dinv, area)→ (area, bounce)

Marko Thiel From Anderson to Zeta



The combinatorial Hilbert series

We have

DHεn(q, t) =
∑

P∈Dn

qdinv(P)tarea(P)

=
∑

P∈Dn

qarea(P)tbounce(P).

Similarly,

DHn(q, t) =
∑

(P,σ)∈PFn

qdinv’(P,σ)tarea(P,σ)

=
∑

(w ,D)∈Dn

qarea’(w ,D)tbounce(w ,D).
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Vertically labelled Dyck paths

PFn is the set of vertically labelled Dyck paths,

pairs (P, σ) of a
Dyck path P and a permutation σ ∈ Sn that labels the North steps
of P such that the labels are increasing in columns.

2

4

5

1

3
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Diagonally labelled Dyck paths

Dn is the set of diagonally labelled Dyck paths,

pairs (w ,D) of a
Dyck path D and a permutation w ∈ Sn that labels the diagonal of
D such that every time an East step is followed by a North step,
the label below the East step is less than the label to the right of
the North step.

2

4

1

5

3

•

•
•
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The combinatorial zeta map ζHL

Theorem (Haglund, Loehr 2005)

There is a bijection

ζHL : PFn → Dn

(dinv’, area)→ (area’, bounce)

2

4

5

1

3

2

4

1

5

3

•

•
•

Marko Thiel From Anderson to Zeta



The combinatorial zeta map ζHL

Theorem (Haglund, Loehr 2005)

There is a bijection

ζHL : PFn → Dn

(dinv’, area)→ (area’, bounce)

2

4

5

1

3

2

4

1

5

3

•

•
•

Marko Thiel From Anderson to Zeta



The combinatorial zeta map ζHL
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•
•

A rise of (P, σ) is a pair of consecutive North steps.
A valley of (w ,D) is an East step followed by a North step.
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The combinatorial zeta map ζHL
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•
•

A rise of (P, σ) is a pair of consecutive North steps.
A valley of (w ,D) is an East step followed by a North step.

ζHL maps rises to valleys, preserving labels!
We can define natural Sn-actions on PFn and Dn such that this is
equivalent to ζHL being Sn-equivariant.
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The uniform zeta map ζ
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Root systems

A (crystallographic) root system is a finite subset Φ of a Euclidean
space V such that:

– RΦ = V ,

– Φ ∩ Rα = {α,−α} for α ∈ Φ,

– sα(β) = β − 2〈β,α〉
〈α,α〉 α ∈ Φ for α, β ∈ Φ,

– 2〈β,α〉
〈α,α〉 ∈ Z for α, β ∈ Φ.

A2 B2
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Root systems

A2 B2
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Root systems

A2 B2
Φ+

Φ+−Φ+

−Φ+

Set of positive roots Φ+ such that Φ = Φ+ t −Φ+.

Marko Thiel From Anderson to Zeta



The Coxeter arrangement

Hyperplane arrangement with hyperplanes
H0
α := {x ∈ V | 〈x , α〉 = 0} for α ∈ Φ.

H0
α1

H0
α2

H0
α1+α2

A2 B2

H0
α2

H0
α1

H0
α1+α2

H0
α1+2α2

They divide the ambient space V into chambers.
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C C
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The chamber C = {x ∈ V : 〈x , α〉 > 0 for all α ∈ Φ+} is called
dominant.

Marko Thiel From Anderson to Zeta



The Coxeter arrangement

H0
α1

H0
α2

C

H0
α1+α2

A2 B2

H0
α2

C

H0
α1

H0
α1+α2

H0
α1+2α2

C C

They divide the ambient space V into chambers.
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The Weyl group W := 〈{sα : α ∈ Φ}〉 acts simply transitively on
the chambers

, so we can write each chamber as wC for a unique
w ∈W .
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The Coxeter arrangement

H0
α1

H0
α2

C

s1C

s1s2C

s1s2s1C

s2s1C

s2C

H0
α1+α2

A2 B2

H0
α2

C

H0
α1

s1C
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α1+α2

s2Cs2s1C

s2s1s2C
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C C

They divide the ambient space V into chambers.
The chamber C = {x ∈ V : 〈x , α〉 > 0 for all α ∈ Φ+} is called
dominant.
The Weyl group W := 〈{sα : α ∈ Φ}〉 acts simply transitively on
the chambers, so we can write each chamber as wC for a unique
w ∈W .

Marko Thiel From Anderson to Zeta



The affine Coxeter arrangement

Hyperplane arrangement with hyperplanes
Hk
α := {x ∈ V | 〈x , α〉 = k} for α ∈ Φ and k ∈ Z.

H0
α1+α2 H0

α2

H0
α1

They divide the affine space V into alcoves.
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The affine Coxeter arrangement

H0
α1+α2 H0

α2

H0
α1

A◦

They divide the affine space V into alcoves. The alcove
A◦ = {x ∈ V : 0 < 〈x , α〉 < 1 for all α ∈ Φ+} is called the
fundamental alcove.
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The affine Coxeter arrangement

H0
α1+α2 H0

α2

H0
α1

A◦

Define the affine Weyl group W̃ as the group generated by all
affine reflections through the hyperplanes of the affine Coxeter
arrangement.
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The affine Coxeter arrangement

H0
α1+α2 H0

α2

H0
α1

A◦

w̃A◦

Define the affine Weyl group W̃ as the group generated by all
affine reflections through the hyperplanes of the affine Coxeter
arrangement.
It acts simply transitively on the set of alcoves, so any alcove may
be written as w̃A◦ for a unique w̃ ∈ W̃ .
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The Shi arrangement

Hyperplane arrangement with hyperplanes
Hk
α := {x ∈ V | 〈x , α〉 = k} for α ∈ Φ+ and k ∈ {0, 1}.

H0
α1

H0
α2

H1
α2

H1
α2

H0
α1+α2

H1
α1+α2

A◦
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The m-Shi arrangement

Fix m ∈ N. Hyperplane arrangement with hyperplanes
Hk
α := {x ∈ V | 〈x , α〉 = k} for α ∈ Φ+ and −m < k ≤ m.

A◦ H0
α1

H1
α1

H2
α1

H−1
α1

H2
α2

H1
α2

H0
α2

H−1
α2

H−1
α1+α2

H0
α1+α2

H1
α1+α2

H2
α1+α2

R
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Minimal alcoves of the m-Shi arrangement

Every m-Shi region R contains a unique alcove closest to the origin
called its minimal alcove w̃RA◦.

A◦ H0
α1

H1
α1

H2
α1

H−1
α1

H2
α2

H1
α2

H0
α2

H−1
α2

H−1
α1+α2

H0
α1+α2

H1
α1+α2

H2
α1+α2

R

A◦

H2
α2

H1
α2

H0
α2

H−1
α2

H−1
α1+α2

H0
α1+α2

H1
α1+α2

H2
α1+α2

w̃RA◦
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The Sommers region

The inverses of the minimal alcoves coalesce into a simplex called
the Sommers region: w̃RA◦ 7→ w̃−1R A◦

A◦ H0
α1

H1
α1

H2
α1

H−1
α1

H2
α2

H1
α2

H0
α2

H−1
α2

H−1
α1+α2

H0
α1+α2

H1
α1+α2

H2
α1+α2

w̃RA◦

A◦

H3
α1+α2

H−2
α2

H−2
α1 w̃−1

R A◦
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The dilated fundamental alcove

There is an element w̃f ∈ W̃ that maps the Sommers region to
(mh + 1)A◦. Here h is the Coxeter number of the root system.

A◦

H3
α1+α2

H−2
α2

H−2
α1 w̃−1

R A◦

H7
α1+α2

H0
α2

H0
α1 w̃f w̃

−1
R A◦

A◦

7A◦

w̃f
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The finite torus

Apply the inverses to 0.

Get a set of points in the coroot lattice Q̌.
They are a set of representatives for the finite torus Q̌/(mh + 1)Q̌.

H7
α1+α2

H0
α2

H0
α1

w̃f w̃
−1
R A◦

A◦

7A◦

A◦

H0
α1+α2

H0
α2

H0
α1

w̃Rw̃
−1
f · 0

Marko Thiel From Anderson to Zeta



The finite torus

Apply the inverses to 0. Get a set of points in the coroot lattice Q̌.

They are a set of representatives for the finite torus Q̌/(mh + 1)Q̌.

H7
α1+α2

H0
α2

H0
α1

w̃f w̃
−1
R A◦

A◦

7A◦

A◦

H0
α1+α2

H0
α2

H0
α1

w̃Rw̃
−1
f · 0

Marko Thiel From Anderson to Zeta



The finite torus

Apply the inverses to 0. Get a set of points in the coroot lattice Q̌.
They are a set of representatives for the finite torus Q̌/(mh + 1)Q̌.

H7
α1+α2

H0
α2

H0
α1

w̃f w̃
−1
R A◦

A◦

7A◦

A◦

H0
α1+α2

H0
α2

H0
α1

w̃Rw̃
−1
f · 0
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The uniform zeta map

Theorem (P. Cellini and P. Papi ’00, E. Sommers ’03, C.
Athanasiadis ’05, B. Rhoades ’12, M. Thiel ’16)

There is a natural bijection ζ−1 from the set of m-Shi regions to
the finite torus Q̌/(mh + 1)Q̌.

m-Shi regions m-Shi alcoves Sommers region (mh + 1)A◦ Q̌/(mh + 1)Q̌

R w̃RA◦ w̃−1
R A◦ w̃f w̃

−1
R A◦ w̃Rw̃

−1
f · 0

One can define natural actions of the Weyl group W on m-Shi
regions and on Q̌/(mh + 1)Q̌ that make ζ−1 equivariant.
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How ζ specializes to ζHL
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How ζ specializes to ζHL

Take m = 1 and Φ of type An−1. The following square commutes:

Shi regions Q̌/(n + 1)Q̌

Dn

ζ−1

PFn

ζHL

Every arrow is an Sn-equivariant bijection.
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Thanks for your attention!
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