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Some Definitions

 Stochastic process: {X(t),t∈[0,∞)}  and discrete State Space: {1,2,3,…}

 Markovian Property (for continuous time): 

If this is fulfilled, then X(t) is called a Continuous Time Markov Chain (CTMC).

 We also assume time stationary transition probabilities (pij(t) only depends on t):

 This implies:

 In the discrete setting we had:
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The P Matrix

                                                  in the discrete setting we had:

 We also have: 

 The row vectors are:

 Reasonable assumption:                          ,so no

 Chapman-Kolmogorov:                                        I ii in the discrete setting:  
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The P Matrix

 Let {X(t), t ≥ 0} be a CTMC, then we have:
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Discrete vs Continuous Time Markov Processes

 DTMC: Initial Distribution and Transition Matrix (where we go)

 CTMC: Initial Distribution and Transition Matrix (where we go and when we change state)

 To describe this when we use Holding Times, but how can we describe them?
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Holding times
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Holding times

 Hi has to fulfill the memoryless property: P( H > a + b | h > a ) = P ( h > b ), where a >b are  t∈ ∈[0,∞), 

 Only continuous distribution that fulfills the memoryless property is the exponential distribution

 In a CTMC, the holding times Hi are exponentially distributed Hi  Exp(q∼ i).
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P(t) matrix: A simple example (from: probabilitycourse.com)

We have a Transition Matrix (Jump Chain) 

We have holding time parameters = λ0 = λ1 > 0 and since Hi ∼ exp(λ) the transitions occur according to 
poisson process:

Because of symmetry we have:

                        and
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The Generator Matrix

– Often it is very complicated to calculate P(t)…. 

– Other way to describe a CTMC using the Generator Matrix, based on exponential holding times:               
   Hi ∼ exp(qi) 

– We define:

The parameters qi are the unconditional transition rates of leaving state i for any other state and the 
parameters gij are the conditional transition rates of making a transition from state i to state j.

These transition rates define the Generator matrix.
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Some more Generator Matrix properties (all from last week)
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  

  

  
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The Embedded Markov Chain (DTMC) (Jump Chain)
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 For a CTMC with generator matrix G, we define pij = gij/qi. The DTMC with transition matrix P = (pij) is the 
associated embedded DTMC

 we directly have pii = 0, no self-transition
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Classification of CTMC

 Very similar to the DTMC for the CTMC we use the embedded DTMC and we can say:

 The accessibility relation divides states into different classes

 A CTMC is irreducible if and only if its embedded chain is irreducible

 A state is recurrent/transient for a CTMC if and only if it is recurrent/transient for its embedded chain

 CTMC with transition probabilities pij(t), a state i is recurrent or transient if:

 Compared to the discrete case:
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Classification of CTMC (Ergodic Chains)

 Definition: An irreducible aperiodic positive chain is called ergodic.

 We well see later that these have some handy properties later….
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Stationarity of a CMTC
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Stationarity of a CTMC the limiting Distribution
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 for ergodic (aperiodic, irreducible) MC the limiting and the stationary distribution is the same.

 And we also have 0 = πG
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Stationarity of a CTMC: Using the embedded Chain
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Example with pi = pi * P(t) (using P(t) from before)
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Example using the embedded chain
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–  Using                            we arrive at

– By plugging in λ and : 
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Estimating the Generator Matrix Theory

 Often very difficult to find P(t) 

 Using the Generator matrix (G)

 Estimate with real world data 

 To find G we have to estimate qi and gij, but how…?

 Since the holding times are exponential, it is possible to setup a likelihood function.

 Likelihood function based on the number of jumps, the holding times and the jump chain (this information 
provides a sufficient statistic)

 v = {n, x0, t1, x1, t2, x2, . . . , tn, xn} represent the observed chain
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Estimating the Generator Matrix: Likelihood Function Intuition

 Likelihood Function of Form:

 Holding Time tr+1- tr, t element [0,infinity]

 t0 = 0 and tn+1 = T

 We assume Fisher Regularity Condition
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Estimating the Generator Matrix: Likelihood Function 

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 23



STA 381

Estimating the Generator Matrix: Likelihood Function and Results
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 Finding The ML Estimators through the normal likelihood approach:

 Also it can be shown that:
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Estimating the Generator Matrix: Ergodic Chains
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 A(i) = Total time spent in state i
 N(i,j) Number of transitions from state i to j
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Example: Baboons in R

 Using Real World Data

 Overview 

 Find Generator (G) matrix using Likelihood approach

 Stationary distribtion (= limiting Distribution)

 Find the embedded markov chain

 Try to find the P(t) Matrix

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 26

Picture from: www.smithsonianmag.com
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Example: Baboon discussion

 What are some of the problems with the approach that we did?
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DTMC on continuous state space: Theory (based on Quan Lin Li)

 A Markov chain is a sequence of random variables X1,X2, … ,Xn , taking values in state space Ω

 Markovian Property.

 We have discrete time: T = (1,2,3,…) and state space is Ω  continuous with values from (a,b)

 transition kernel K(x,A)
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More Theory
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Stationarity
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Stationarity

For the DTMC we still have that:

 Every aperiodic, irreducible stochastic matrix has a stationary distribution [Perron-Frobenius Theorem] 

 Irreducibility definition:

 Aperiodic definition:

      aperiodicity means that there exist no subsets of the state space Ω that can only be periodically                
                      

      visited by the Markov chain
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Example

 Consider a DTMC with continuous State Space (0,1) and continuous Time = [0,1,2,…]

 If the chain is at x, it picks one of the two intervals (0, x) or (x, 1) with equal probability 1/2, and then 
moves to a random y in the chosen interval. 
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Example: Transition density derivation
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 Hence the kernel is :
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Example stationary distribution derivation
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 Use the stationarity definition from before:
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Example stationary distribution derivation

Fundamental Theorem of Calculus:
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Example stationary distribution derivation
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 For first order homogeneous linear differential equation we can do the following:

–                                                  use this for our function

– We arrive at: 

c = 1/π
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Example task c) : Arcsine Distribution

 CDF:

 PDF:

 Derivation:
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Discussion and Questions
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