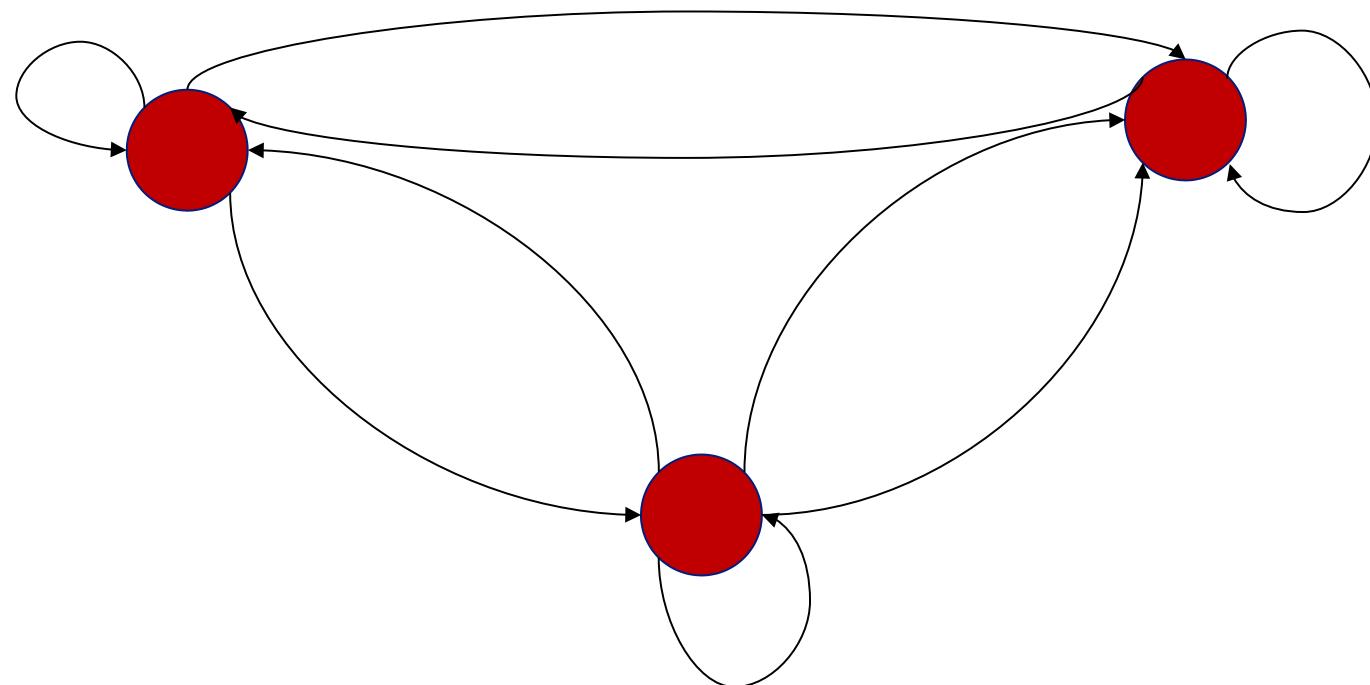
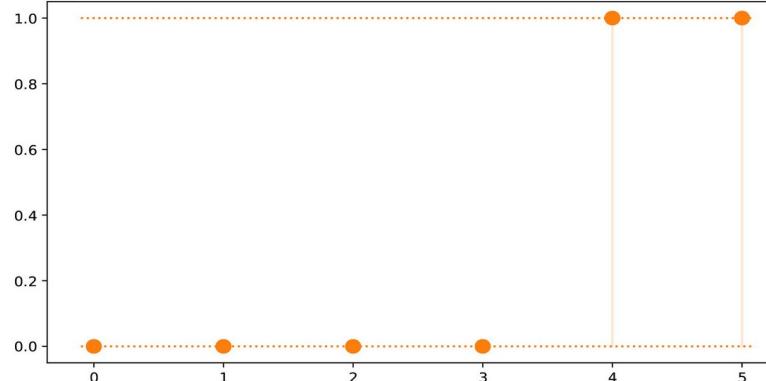


Continuous Time Markov Chains

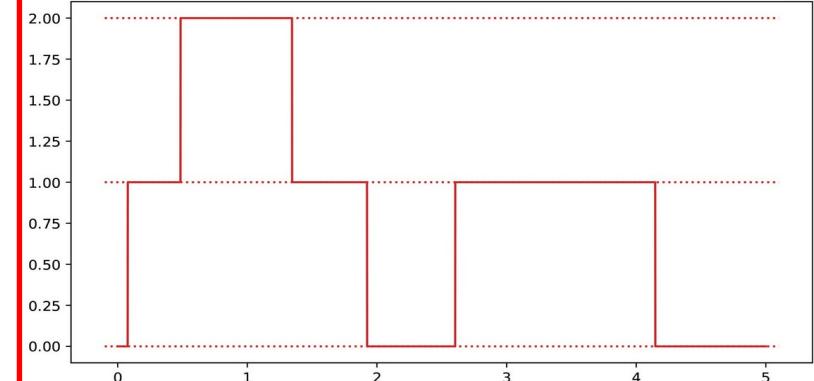


Markov Chains: Time and State Space Continuity

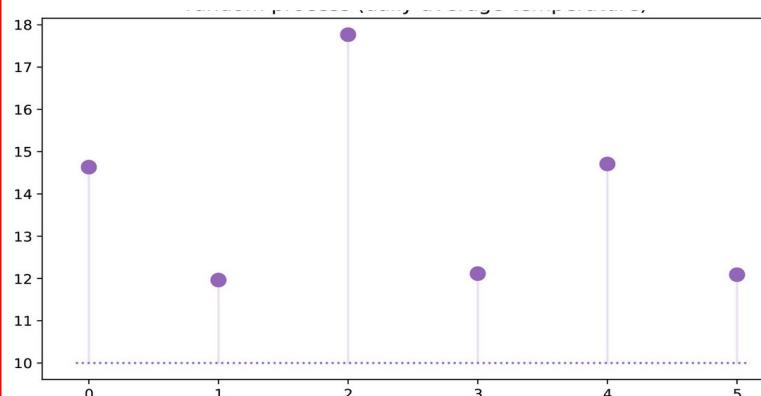
Discrete Time and Discrete State Space



Continuous Time and Discrete State Space



Discrete Time and Continuous State Space



Continuous Time and Continuous State Space

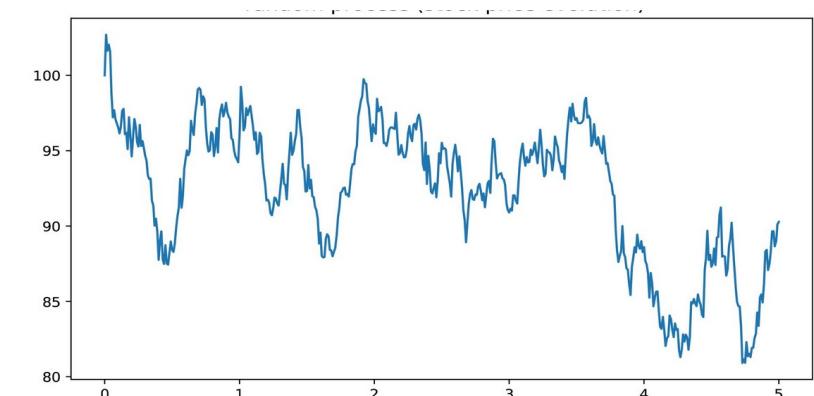


Table of Contents

- **Continuous Time Markov Chain:**
 - Some Definitions and Properties
 - The Generator Matrix and Embedded Markov Chain
 - Classification and Stationarity
 - Estimation of the Generator Matrix
 - Example of Baboon Data Set
- **DTMC on Continuous State Space**
 - Some Definitions and Properties
 - Example
- **Discussion**

Some Definitions

- Stochastic process: $\{X(t), t \in [0, \infty)\}$ and discrete State Space: $\{1, 2, 3, \dots\}$
- Markovian Property (for continuous time):

$$P(X(t+s) = j \mid X(s) = i, \{X(u), 0 \leq u \leq s\}) = P(X(t+s) = j \mid X(s) = i) =: p_{ij}(s, t+s)$$

If this is fulfilled, then $X(t)$ is called a Continuous Time Markov Chain (CTMC).

- We also assume time stationary transition probabilities ($p_{ij}(t)$ only depends on t):
- This implies: $P_{ij}(t) = P(X(t) = j \mid X(0) = i)$
- In the discrete setting we had:

$$P(X_{n+1} = j \mid X_n = i_n, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = P(X_{n+1} = j \mid X_n = i_n)$$

$$p_{ij}(n) := P(X_{n+1} = j \mid X_n = i) \longrightarrow p_{ij} := P(X_{n+1} = j \mid X_n = i)$$

The P Matrix

- $\mathbf{P}(t) = (p_{ij}(t)) \in \mathbb{R}^{K \times K}$ in the discrete setting we had: $\mathbf{P}(n) = (p_{ij}(n)) \in \mathbb{R}^{K \times K}$
- We also have: $\mathbf{P}(0) = \mathbf{I}$
- The row vectors are: $\mathbf{p}(t) = (p_1(t), \dots, p_K(t))$
- Reasonable assumption: $\sum_j p_{ij}(t) = 1$, so no $p_{ij}(0) = \delta_{ij}$
- Chapman-Kolmogorov: $P(s+t) = P(s)P(t)$. I ii in the discrete set $\mathbf{P}^n = \mathbf{P}^k \mathbf{P}^{n-k}$

$$P(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \dots & p_{1r}(t) \\ p_{21}(t) & p_{22}(t) & \dots & p_{2r}(t) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ p_{r1}(t) & p_{r2}(t) & \dots & p_{rr}(t) \end{bmatrix}$$

The P Matrix

- Let $\{X(t), t \geq 0\}$ be a CTMC, then we have:

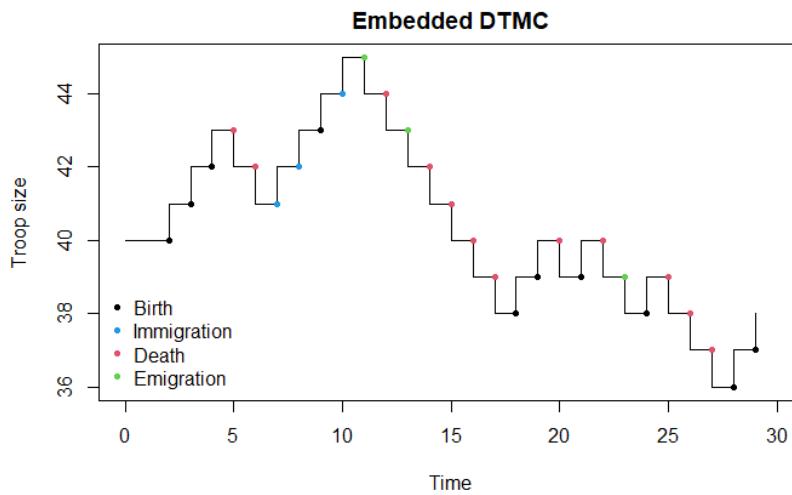
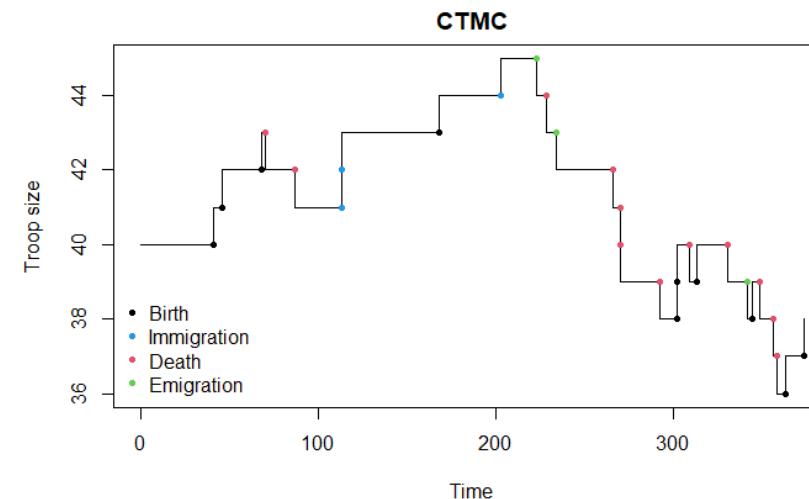
$p_i(t) = P(X(t) = i)$ is called the absolute state probability at time t .

$\{p_i(t), i \in S\}$ is called the absolute probability distribution of the Markov chain at time t .

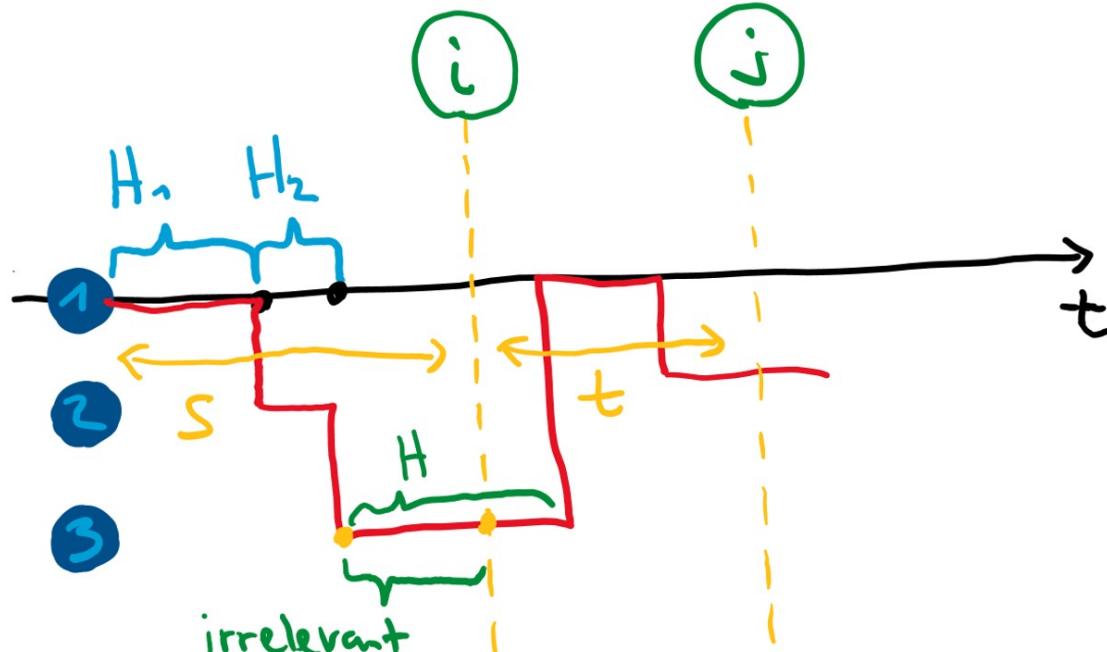
$\{p_i(0), i \in S\}$ is the initial probability distribution of the Markov chain.

Discrete vs Continuous Time Markov Processes

- DTMC: Initial Distribution and Transition Matrix (where we go)
- CTMC: Initial Distribution and Transition Matrix (where we go and **when we change state**)
- To describe this when we use **Holding Times**, but how can we describe them?



Holding times



$$P(X(t)=j \mid X(0)=i) = p_{ij}(t)$$

Holding times

- H_i has to fulfill the memoryless property: $P(H > a + b | h > a) = P(h > b)$, where $a > b$ are $t \in [0, \infty)$,
→ Only continuous distribution that fulfills the memoryless property is the exponential distribution
→ **In a CTMC, the holding times H_i are exponentially distributed $H_i \sim \text{Exp}(q_i)$.**

P(t) matrix: A simple example (from: probabilitycourse.com)

We have a Transition Matrix (Jump Chain)

We have holding time parameters = $\lambda_0 = \lambda_1 > 0$ and since $H_i \sim \exp(\lambda)$ the transitions occur according to poisson process:

$$P_{00}(t) = P(X(t) = 0 | X(0) = 0) = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{2n}}{(2n)!} = \frac{1}{2} + \frac{1}{2} e^{-2\lambda t}$$

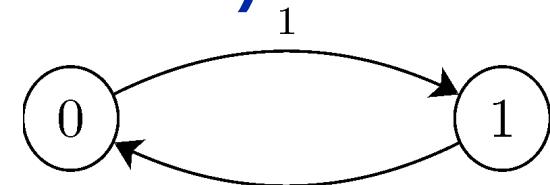
$$P_{01}(t) = 1 - P_{00}(t) = \frac{1}{2} - \frac{1}{2} e^{-2\lambda t}$$

Because of symmetry we have:

and

$$P_{11}(t) = P_{00}(t) \quad P_{10}(t) = P_{01}(t)$$

$$P(t) = \left[\begin{array}{cc} \frac{1}{2} + \frac{1}{2} e^{-2\lambda t} & \frac{1}{2} - \frac{1}{2} e^{-2\lambda t} \\ \frac{1}{2} - \frac{1}{2} e^{-2\lambda t} & \frac{1}{2} + \frac{1}{2} e^{-2\lambda t} \end{array} \right]$$



The Generator Matrix

- Often it is very complicated to calculate $P(t)$
- Other way to describe a CTMC using the Generator Matrix, based on exponential holding times:
 $H_i \sim \exp(q_i)$
- We define:

$$q_i = \lim_{h \rightarrow 0} \frac{1 - p_{ii}(h)}{h}$$

$$g_{ij} = \lim_{h \rightarrow 0} \frac{p_{ij}(h)}{h}$$

The parameters q_i are the unconditional transition rates of leaving state i for any other state and the parameters g_{ij} are the conditional transition rates of making a transition from state i to state j .

These **transition rates** define the Generator matrix.

Some more Generator Matrix properties (all from last week)

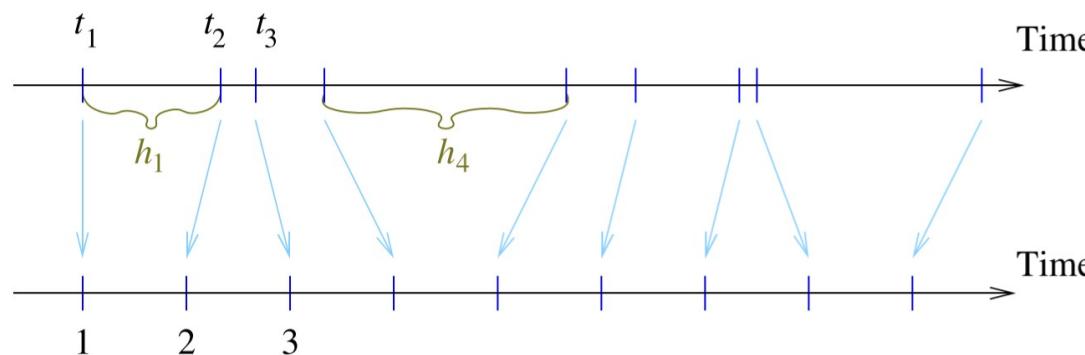
- $$\mathbf{P}(t) = \exp(-t\mathbf{G}) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbf{G}^k$$
- $$q_i = \sum_{j=1, j \neq i}^K g_{ij} \text{ and thus } q_i = -g_{ii}$$
- $$\pi \mathbf{G} = 0$$

The Embedded Markov Chain (DTMC) (Jump Chain)

$$P(\text{ transition from } i \text{ to } j \text{ in } [t, t+h] \mid \text{ transition occurred }) = \frac{p_{ij}(h)}{1 - p_{ii}} \approx \frac{g_{ij}}{q_i}$$

- For a CTMC with generator matrix G , we define $p_{ij} = g_{ij}/q_i$. The DTMC with transition matrix $P = (p_{ij})$ is the associated embedded DTMC
- we directly have $p_{ii} = 0$, no self-transition

CTMC



Embedded DTMC

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

Classification of CTMC

- Very similar to the DTMC for the CTMC we use the embedded DTMC and we can say:
- The accessibility relation divides states into different classes
- A CTMC is irreducible if and only if its embedded chain is irreducible
- A state is recurrent/transient for a CTMC if and only if it is recurrent/transient for its embedded chain
- CTMC with transition probabilities $p_{ij}(t)$, a state i is recurrent or transient if:

$$\int_0^\infty p_{ii}(t) dt = \infty \quad \text{or} \quad \int_0^\infty p_{ii}(t) dt < \infty,$$

- Compared to the discrete case: a recurrent state $\sum_{n=1}^\infty (\mathbf{P}^n)_{ii} = \infty$

Classification of CTMC (Ergodic Chains)

- **Definition:** An **irreducible aperiodic** positive chain is called **ergodic**.
- We well see later that these have some handy properties later....

Stationarity of a CMTC

Let $X(t)$ be a continuous-time Markov chain with transition matrix $P(t)$ and state space $S = \{0, 1, 2, \dots\}$. A probability distribution π on S , i.e., a vector $\pi = [\pi_0, \pi_1, \pi_2, \dots]$, where $\pi_i \in [0, 1]$ and

$$\sum_{i \in S} \pi_i = 1,$$

is said to be a **stationary distribution** for $X(t)$ if

$$\pi = \pi P(t), \quad \text{for all } t \geq 0.$$

Stationarity of a CTMC the limiting Distribution

The probability distribution $\pi = [\pi_0, \pi_1, \pi_2, \dots]$ is called the **limiting distribution** of the continuous-time Markov chain $X(t)$ if

$$\pi_j = \lim_{t \rightarrow \infty} P(X(t) = j | X(0) = i)$$

for all $i, j \in S$, and we have

$$\sum_{j \in S} \pi_j = 1.$$

- for ergodic (aperiodic, irreducible) MC the limiting and the stationary distribution is the same.
- And we also have $0 = \pi G$

Stationarity of a CTMC: Using the embedded Chain

Let $\{X(t), t \geq 0\}$ be a continuous-time Markov chain with an irreducible positive recurrent jump chain. Suppose that the unique stationary distribution of the jump chain is given by

$$\tilde{\pi} = [\tilde{\pi}_0, \tilde{\pi}_1, \tilde{\pi}_2, \dots].$$

Further assume that

$$0 < \sum_{k \in S} \frac{\tilde{\pi}_k}{\lambda_k} < \infty.$$

Then,

$$\pi_j = \lim_{t \rightarrow \infty} P(X(t) = j | X(0) = i) = \frac{\frac{\tilde{\pi}_j}{\lambda_j}}{\sum_{k \in S} \frac{\tilde{\pi}_k}{\lambda_k}}.$$

for all $i, j \in S$. That is, $\pi = [\pi_0, \pi_1, \pi_2, \dots]$ is the limiting distribution of $X(t)$.

Example with $p_i = p_i * P(t)$ (using $P(t)$ from before)

$$P(t) = \begin{bmatrix} \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} \\ \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} \end{bmatrix}$$

For $\pi = [\pi_0, \pi_1]$, we obtain

$$\pi P(t) = [\pi_0, \pi_1] \begin{bmatrix} \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} \\ \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} \end{bmatrix} = [\pi_0, \pi_1].$$

We also need

$$\pi_0 + \pi_1 = 1.$$

Solving the above equations, we obtain

$$\pi_0 = \pi_1 = \frac{1}{2}.$$

Example using the embedded chain

holding time parameters are given by $\lambda_1 = 2$, $\lambda_2 = 1$, and $\lambda_3 = 3$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \text{ Using } \tilde{\pi}P = \tilde{\pi}, \text{ we arrive at } \tilde{\pi} = \frac{1}{5}[1, 2, 2]$$

$$\pi_j = \frac{\frac{\tilde{\pi}_j}{\lambda_j}}{\sum_{k \in S} \frac{\tilde{\pi}_k}{\lambda_k}}.$$

– By plugging in λ and :

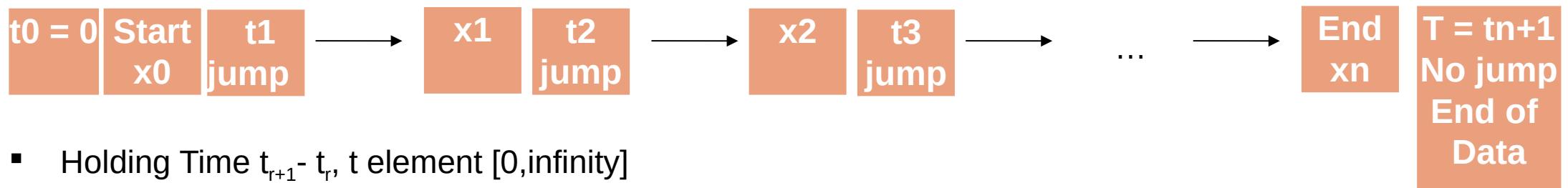
we conclude that $\pi = \frac{1}{19}[3, 12, 4]$ is the limiting distribution of $X(t)$.

Estimating the Generator Matrix Theory

- Often very difficult to find $P(t)$
- Using the Generator matrix (G)
- Estimate with real world data
- To find G we have to estimate q_i and g_{ij} , but how...?
- Since the holding times are exponential, it is possible to setup a likelihood function.
- Likelihood function based on the number of jumps, the holding times and the jump chain (this information provides a sufficient statistic)
- $v = \{n, x_0, t_1, x_1, t_2, x_2, \dots, t_n, x_n\}$ represent the observed chain

Estimating the Generator Matrix: Likelihood Function Intuition

- Likelihood Function of Form:



- Holding Time $t_{r+1} - t_r$, t element $[0, \infty]$
- $t_0 = 0$ and $t_{n+1} = T$
- We assume Fisher Regularity Condition

Estimating the Generator Matrix: Likelihood Function

$$L(\mathbf{G}; v) = p_{x_0}(0) \times q_{x_0} \exp(-q_{x_0} t_1) \times \prod_{j=1}^{n-1} \frac{g_{x_{j-1}, x_j}}{q_{x_{j-1}}} \cdot q_{x_j} \exp(-q_{x_j} (t_{j+1} - t_j)) \times \frac{g_{x_{n-1}, x_n}}{q_{x_{n-1}}} \cdot \exp(-q_{x_j} (T - t_n))$$

$$\boxed{\text{P(transition from } i \text{ to } j \text{ in } [t, t+h] \mid \text{ transition occurred }) = \frac{p_{ij}(h)}{1 - p_{ii}} \approx \frac{g_{ij}}{q_i}}$$

Estimating the Generator Matrix: Likelihood Function and Results

$$= p_{x_0}(0) \times \left(\prod_{j=1}^n g_{x_{j-1}, x_j} \right) \times \prod_{j=0}^n \exp(-q_{x_j}(t_{j+1} - t_j))$$

$$= p_{x_0}(0) \left(\prod_{\substack{i,j \\ i \neq j}}^K g_{i,j}^{N(i,j)} \right) \exp\left(- \sum_{i=1}^K A(i)q_i\right), \text{ where } N(i, j) \text{ is the number of transitions from } i \text{ to } j \text{ and } A(i) \text{ is the total time spent in state } i.$$

- Finding The ML Estimators through the normal likelihood approach:

$$\hat{g}_{ij} = \frac{N(i, j)}{A(i)}$$

$$\hat{q}_i = \frac{\sum_{j \neq i} N(i, j)}{A(i)}$$

■ ALSO it can be shown that.

$$\sqrt{A(i)\hat{g}_{ij}} (\hat{g}_{ij} - g_{ij}) \xrightarrow{t \rightarrow \infty} \mathcal{N}(0, 1) \quad \text{in distribution.}$$

Estimating the Generator Matrix: Ergodic Chains

If we have an ergodic chain, it is possible to show that

$$\frac{A(i)}{t} = \frac{A_t(i)}{t} \xrightarrow{t \rightarrow \infty} \pi_i \quad \text{in probability,}$$

$$\frac{N(i, j)}{t} = \frac{N_t(i, j)}{t} \xrightarrow{t \rightarrow \infty} \pi_i g_{ij} \quad \text{in probability.}$$

- $A(i)$ = Total time spent in state i
- $N(i, j)$ Number of transitions from state i to j

Example: Baboons in R

- Using Real World Data
- Overview
- Find Generator (G) matrix using Likelihood approach
- Stationary distribution (= limiting Distribution)
- Find the embedded markov chain
- Try to find the $P(t)$ Matrix

Picture from: www.smithsonianmag.com

Example: Baboon discussion

- What are some of the problems with the approach that we did?

DTMC on continuous state space: Theory (based on Quan Lin Li)

- A Markov chain is a sequence of random variables X_1, X_2, \dots, X_n , taking values in state space Ω
- Markovian Property.
- We have discrete time: $T = (1, 2, 3, \dots)$ and state space is Ω continuous with values from (a, b)
- transition kernel $K(x, A)$

$$P\{X_{k+1} \in A \mid X_k, X_{k-1}, \dots, X_0\} = K(X_k, A).$$

It is clear that $K(x, A)$ denotes the probability to move in one step from the state x into the state set A . The transition kernel $K(x, A)$ has two main properties as follows:

- (1) $K(x, \cdot)$ is a probability measure for each $x \in \Omega$, and
- (2) $K(\cdot, A)$ is measurable for each $A \subset \Omega$.

More Theory

If there exists a function $K(x, y)$ such that for all $x \in \Omega$ and $A \subset \Omega$,

$$K(x, A) = \int_A K(x, y) dy$$

then $K(x, y)$ is said to be a density of the transition kernel $K(x, A)$. We write

Stationarity

If the kernel $K(x, A)$ is well behaved, then the Markov chain will have a stationary distribution $\pi(x)$ such that

$$\pi(y) = \int_{\Omega} \pi(x)K(x, y)dx, \quad y \in \Omega, \quad (5.1)$$

or

$$\pi(A) = \int_{\Omega} \pi(x)K(x, A)dx, \quad A \in \Omega. \quad (5.2)$$

It is clear that $\pi(y)$ is a density of the stationary probability $\pi(A)$.

Stationarity

For the DTMC we still have that:

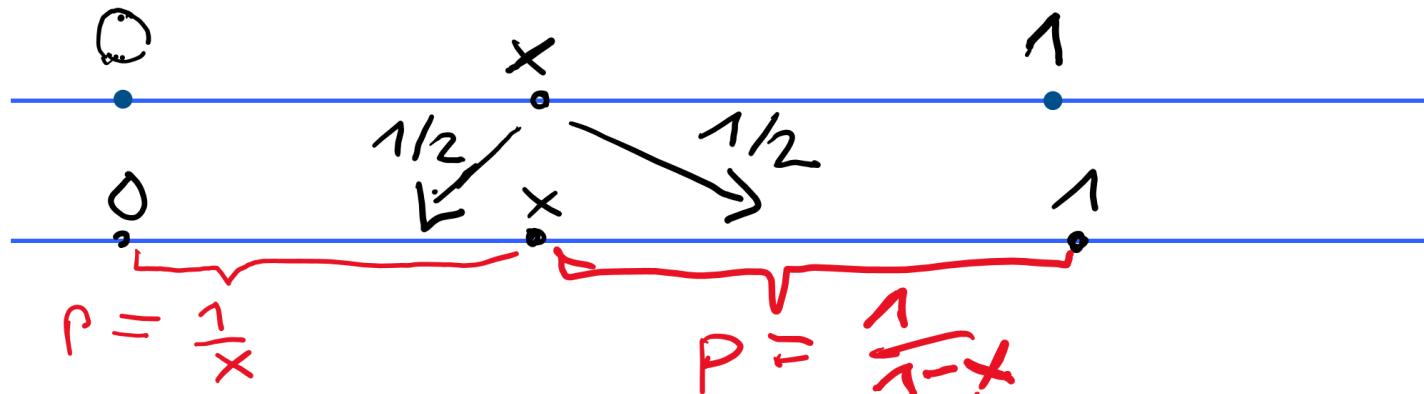
- Every aperiodic, irreducible stochastic matrix has a stationary distribution [Perron-Frobenius Theorem]
- **Irreducibility** definition:
for any $x, y \in \Omega$, there always exists a positive integer n such that $K^n(x, y) > 0$
- **Aperiodic** definition:
aperiodicity means that there exist no subsets of the state space Ω that can only be periodically visited by the Markov chain

Example

- Consider a DTMC with continuous State Space $(0,1)$ and continuous Time $= [0,1,2,\dots]$
- If the chain is at x , it picks one of the two intervals $(0, x)$ or $(x, 1)$ with equal probability $1/2$, and then moves to a random y in the chosen interval.
 - (a) Show that the transition kernel is

$$k(x, y) = \left(\frac{\mathbf{1}_{(0,x)}(y)}{x} + \frac{\mathbf{1}_{(x,1)}(y)}{1-x} \right) / 2.$$

Example: Transition density derivation



- Hence the kernel is :

$$k(x, y) = \frac{1}{2} \frac{1}{x} 1_{(0,x)}(y) + \frac{1}{2} \frac{1}{1-x} 1_{(x,1)}(y)$$

Example stationary distribution derivation

(b) Show that $f(y) = 1/(\pi\sqrt{y(1-y)})$ satisfies $f(y) = \int_0^1 k(x, y)f(x) dx$ and hence is a stationary distribution of the process.

- Use the stationarity definition from before: $\pi(y) = \int_{\Omega} \pi(x)K(x, y)dx, \quad y \in \Omega,$

$$k(x, y) = \left(\frac{\mathbf{1}_{(0,x)}(y)}{x} + \frac{\mathbf{1}_{(x,1)}(y)}{1-x} \right) / 2.$$

Use $\mathbf{1}_{(0,x)}(y) = \mathbf{1}_{(y,1)}(x)$ to get

$$\begin{aligned} f(y) &= \int_0^1 k(x, y)f(x)dx = \frac{1}{2} \int_0^1 \mathbf{1}_{(0,x)}(y) \frac{f(x)}{x} + \mathbf{1}_{(x,1)}(y) \frac{f(x)}{1-x} dx \\ &= \frac{1}{2} \left[\int_y^1 \frac{f(x)}{x} dx + \int_0^y \frac{f(x)}{1-x} dx \right] \end{aligned}$$

Example stationary distribution derivation

Fundamental Theorem of Calculus:

$$F(x) = \int_a^x f(t) dt \xrightarrow{\text{from a to x}} \frac{dF}{dx} = f(x)$$

$$= \frac{1}{2} \left[\int_y^1 \frac{f(x)}{x} dx + \int_0^y \frac{f(x)}{1-x} dx \right] \longrightarrow f'(y) = \frac{1}{2} \left[-\frac{f(y)}{y} + \frac{f(y)}{1-y} \right]$$

Example stationary distribution derivation

- For ***first order homogeneous linear differential equation*** we can do the following:

$$\begin{aligned} y' &= -p(t)y \\ \int \frac{1}{y} dy &= \int -p(t) dt \\ \ln |y| &= P(t) + C \\ y &= \pm e^{P(t)+C} \\ y &= Ae^{P(t)}, \end{aligned}$$

use this for our function

$$\begin{aligned} y(x) &= c \exp \left\{ \frac{1}{2} \int^x -\frac{1}{\zeta} + \frac{1}{1-\zeta} d\zeta \right\} \\ &= c \exp \left\{ -\frac{1}{2} (\log |x| + \log |1-x|) \right\} \\ &= c (|x| |1-x|)^{-\frac{1}{2}} \quad c = 1/\pi \end{aligned}$$

- We arrive at:

$$f(y) = 1 / \left(\pi \sqrt{y(1-y)} \right)$$

Example task c) : Arcsine Distribution

(c) Use R to simulate from the stationary density of the process, once using an iterative approach and once using $F(z) = \int_0^z f(y) dy = \frac{1}{\pi} \arcsin \sqrt{z}$. Verify empirically that the distributions are equal.

- CDF:
$$F(x) = \frac{2}{\pi} \arcsin(\sqrt{x})$$
- PDF:
$$f(x) = \frac{1}{\pi \sqrt{x(1-x)}}$$
- Derivation: using the substitution $u = \sqrt{t}, t = u^2, dt = 2u du$:

$$G(x) = \int_0^x \frac{1}{\pi \sqrt{t(1-t)}} dt = \int_0^{\sqrt{x}} \frac{2}{\pi \sqrt{1-u^2}} du = \frac{2}{\pi} \arcsin(t) \Big|_0^{\sqrt{x}} = \frac{2}{\pi} \arcsin(\sqrt{x})$$

Discussion and Questions