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Some Definitions

" Stochastic process: {X(t),t €[0,o)} and discrete State Space: {1,2,3,...}
" Markovian Property (for continuous time):
P(X(t+s)=7]|X(s)=1, {X(u), 0<u<s})=P(X(t+s)=7]|X(s)=1i)=:pij(s,t+5)
If this is fulfilled, then X(t) is called a Continuous Time Markov Chain (CTMC).
" We also assume time stationary transition probabilities (p,(t) only depends on t):
" This implies: P;(t) = P(X(t) = j|X(0) = 17)
" In the discrete setting we had:

P(Xn—|—1 :j ’ Xn = iTLaXTL—l = Z-n—la SR ,X() = i()) = P(Xn—l—l = .7 ’ Xn = @n)

pij(n) =P(Xpy1=J| Xn=19) —— pij =P(Xps1=J| X5, =1)
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The P Matrix

" P(t) = (pij(t)) € REXE inthe discrete setting we had: ~ P(n) = (pij(n)) € RE*K
" We also have: P(0) =1
" Therow vectors are: p(t) =

1( ) 7pK(t))
) =

" Reasonable assumption: z Dij
P(s+

(1) =150 py;(0) = 3,
" Chapman-Kolmogorov: t) = p( )P(¢). | ii in the discrete set prn — pkpn—=F
p11(t) p2(t) ... pu(t)]
pa1(t) pa2(t) ... pa(t)
P(t) =
| Dr1 (t) Dr2 (t) cvo Drr (t) i
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The P Matrix

" Let {X(t),t=0} be a CTMC, then we have:

pi(t) = P(X(t) =) is called the absolute state probability at time ¢.
{p;i(t),i € S} is called the absolute probability distribution of the Markov chain at time ¢.

{pi(0),i € S} is the initial probability distribution of the Markov chain. &
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Discrete vs Continuous Time Markov Processes

" DTMC: Initial Distribution and Transition Matrix (where we go)
" CTMC: Initial Distribution and Transition Matrix (where we go and when we change state)
" To describe this when we use Holding Times, but how can we describe them?

Embedded DTMC cCTMC
_| = Birth _| = Birth

* Immigration * Immigration

¢ Death ¢ Death
_| * Emigration _| = Emigration
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Holding times

. @ @

*’:—*rf‘“"rl__
® e

e =

e vany

P(x©=3 | x(@)=1) =F
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Holding times

" H. has to fulfill the memoryless property: P(H>a+b|h>a)=P(h>Db), where a>b are € te[0,),
= Only continuous distribution that fulfills the memoryless property is the exponential distribution
= In a CTMC, the holding times H. are exponentially distributed H. ~ Exp(q,).
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P(t) matrix: A simple example (from: probabilitycourse.com) 1

We have holding time parameters = A, = A, > 0 and since H. ~ exp(A) the transitions occur according to

We have a Transition Matrix (Jump Chain)

poisson process:

Py(t) = P(X(t) = 0|X(0) = 0) = i oM

n=>0

()\t)Qn
(2n)!
1 1

Py (t) = 1— Py(t)= 5~ 56—2,\15

Because of symmetry we have:
and

Pi1(t) = Poo(t) Py (t) = Poi(t)

04/30/2021 Continuous Time Markov Chains, Frederick Geiger
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The Generator Matrix

— Often it is very complicated to calculate P(t)....
— Other way to describe a CTMC using the Generator Matrix, based on exponential holding times:

H; ~ exp(q)
— We define:
1 — py(h) A (h)
= lim ;i = lim 24
4 h—0 h T =050 T h

The parameters g, are the unconditional transition rates of leaving state i for any other state and the
parameters g; are the conditional transition rates of making a transition from state i to state j.

These transition rates define the Generator matrix.

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 11



University of
Zurich™

STA 381

Some more Generator Matrix properties (all from last week)

. K
4 = ijl,j L 9id and thus ¢; = —gi

G =

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 12
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The Embedded Markov Chain (DTMC) (Jump Chain)

P( transition from ¢ to j in [t,t + h] | transition occurred ) =

pij(h) _

1 — pii

9ij

qi

" Fora CTMC with generator matrix G, we define p; = g;/q;. The DTMC with transition matrix P = (p,) is the

associated embedded DTMC
= we directly have p, = 0, no self-transition

CTMC 1 l, 1 Time
— :
h hy
| | | | | | | | | Time
| | | | | | | I T
| 2 3
Embedded DTMC
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Classification of CTMC

" Very similar to the DTMC for the CTMC we use the embedded DTMC and we can say:

" The accessibility relation divides states into different classes

" ACTMC isirreducible if and only if its embedded chain is irreducible

" Astate is recurrent/transient for a CTMC if and only if it is recurrent/transient for its embedded chain
= CTMC with transition probabilities p,(t), a state i is recurrent or transient if:

/ pm(t) dt = o0 or / pm(t) di < o0,
0 0

" Compared to the discrete case: . recurrent state S (P™)y = 0o

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 14
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Classification of CTMC (Ergodic Chains)

" Definition: An irreducible aperiodic positive chain is called ergodic.
" We well see later that these have some handy properties later....

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 15
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Stationarity of a CMTC

Let X(t) be a continuous-time Markov chain with transition matrix P(¢) and state
space S = {0,1,2,---}. A probability distribution 7 on S, i.e, a vector
7w = |mg, T, ™, |, where m; € [0, 1] and

Z?TZ' — 1,

is said to be a stationary distribution for X (¢) if

= nP(t), forallt> 0.

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 16
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Stationarity of a CTMC the limiting Distribution

The probability distribution w = [my, 7y, ma,--+] is called the limiting
distribution of the continuous-time Markov chain X(t) if

7; = lim P(X(t) = j|X(0) = i)

t—o0

for all 2,57 € S, and we have
Zﬂ'j = 1.
jes

" for ergodic (aperiodic, irreducible) MC the limiting and the stationary distribution is the same.

" And we also have 0 = G

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 17
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Let {X(¢),t > 0} be a continuous-time Markov chain with an irreducible positive
recurrent jump chain. Suppose that the unique stationary distribution of the jump

chain is given by
o= |fo, 71, T2y |

Further assume that
T
0 <) +— < oo
s Mk
Then,
ﬁ
>\.
.= lim P(X(t) = 7| X(0) =1) = ———.
7 = Jim POX(0) =31X0) =) =
keS X\,
forall¢,j € S. Thatis, # = [my, 71,72, -] is the limiting distribution of X(¢).
Page 18
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Example with p. = p. * P(t) (using P(t) from before)

%+ %€—2At %_ %6—2)\t
P(t) =
1 1,-2x 1 1 -2x
2 — 3¢ ; T3¢
For m = |mp, 1], we obtain
L lp-2x L 1,-2x
2 2 2 2
wP(t) = |mg, m ] (70, 1]
L lp-2x L, 1.-2x
2 2 2 2
We also need
o + m = 1.
Solving the above equations, we obtain
1
Ty — 7T — —.
2
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Example using the embedded chain

holding time parameters are given by A = 2, Ao = 1, and A3 = 3

M
I

Using 7 P — 7 wearrive at —[1, 2, 2]

7Tj = —.
)
ZkeS Ak
— BY plugging In A and :

we conclude that m = %9[3, 12, 4] is the limiting distribution of X(¢).

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 20
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Estimating the Generator Matrix Theory

" Often very difficult to find P(t)

" Using the Generator matrix (G)

" Estimate with real world data

" To find G we have to estimate g, and g;, but how...?

" Since the holding times are exponential, it is possible to setup a likelihood function.

" Likelihood function based on the number of jumps, the holding times and the jump chain (this information
provides a sufficient statistic)

" v={n,x0,tl, x1,1t2, x2,...,tn, xn} represent the observed chain

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 21
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Estimating the Generator Matrix: Likelihood Function Intuition

Likelihood Function of Form:

Holding Time t .- t, t element [O,infinity]

r+1

t,=0andt, =T

" We assume Fisher Regularity Condition

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 22
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Estimating the Generator Matrix: Likelihood Function

gﬂ? 4 L4 n—1,Ln
L(G;v) = pag(0) X Gy €XP(—Gaot1) X H = eXp(—Q:cj (tj+1 — tj)) g 'eXp(—Qa;j(T — tn))

qu 1 qmn—l

pzj(h) - Yij
— Pii q;

P( transition from i to j in [t,¢ + h] | transition occurred ) =

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 23
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Estimating the Generator Matrix: Likelihood Function and Results

= Dz (0 (H gz, ;cj) X Hexp —Qa; (L1 — ¢ ))

= pwo <H 9; j( ])) exp( E A (h) , where N (4, 7) is the number of transitions from ¢ to j and A(?) is the total time spend in state i.

1753
" FInding The ML Estimators through the normal likelihood approach:

~ :N(Zvj) A'_Zj%iN(ivj)
gij A(Z) q; = A(4)

= AISO IT Can pe SrmowrT uidat.

A@VGi; (Gij — i) —=% N(0,1)  in distribution.

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 24
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Estimating the Generator Matrix: Ergodic Chains

If we have an ergodic chain, it is possible to show that

A(Z)_At(z) t—o0
t ot

N . . N * y
(Z,j) t(’ta ]) t—>oo> TiGij 1n probabilit}f-

" in probability,

~

t t

" A(i) = Total time spent in state i
" N(i,J)) Number of transitions from state i to |

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 25
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Example: Baboons in R

" Using Real World Data

" Overview

" Find Generator (G) matrix using Likelihood approach
" Stationary distribtion (= limiting Distribution)

" Find the embedded markov chain

" Try to find the P(t) Matrix

04/30/2021 Continuous Time Markov Chains, Frederick Geiger
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Example: Baboon discussion

" What are some of the problems with the approach that we did?

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 27
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DTMC on continuous state space: Theory (based on Quan Lin Li)

" A Markov chain is a sequence of random variables X ,X,, ... , X, , taking values in state space Q

" Markovian Property.
" We have discrete time: T = (1,2,3,...) and state space is Q continuous with values from (a,b)
" transition kernel K(x,A)

PX €Al X, X_,,...,X,} =K(X,, A).

It is clear that K(x, 4) denotes the probability to move in one step from the
state x 1into the state set 4. The transition kernel K(x, 4) has two main properties
as follows:

(1) K(x,-) is a probability measure for each x € £2, and

(2) K(-, A) 1s measurable for each 4 c— (2.

04/30/2021 Continuous Time Markov Chains, Frederick Geiger
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More Theory

[f there exists a function K(x,y) such that for all xe 2 and 4 c Q,

K(x,A4)= J‘A K(x,y)dy

then K(x,y) is said to be a density of the transition kernel K(x, A) . We write

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 29



STA 381

Stationarity

If the kernel K(x, 4) 1s well behaved, then the Markov chain will have a
stationary distribution m(x) such that

w(y)= _[Q r(x)K(x,y)dx, yel, (5.1)

or

1(A) = [Q 1(x)K (x, A)dx, Ae . (5.2)

It 1s clear that 7 (y) is a density of the stationary probability m(A).

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 30
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Stationarity

For the DTMC we still have that:

" Every aperiodic, irreducible stochastic matrix has a stationary distribution [Perron-Frobenius Theorem]
" Irreducibility definition:

for any x, y € €2, there always exists a positive integer » such that K" (x,y) >0
" Aperiodic definition:
aperiodicity means that there exist no subsets of the state space Q that can only be periodically

visited by the Markov chain

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 31
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Example

" Consider a DTMC with continuous State Space (0,1) and continuous Time =[0,1,2,...]

" If the chainis at x, it picks one of the two intervals (0, x) or (x, 1) with equal probability 1/2, and then
moves to a random y in the chosen interval.

(a) Show that the transition kernel is

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 32
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Example: Transition density derivation

® v A
. /]/2/‘\/1/2.. @
0 Z % D) A
o‘*‘\/ ,au V °
/‘.-
" Hence the kernel is :
11 1 1
k(z,y) == =10 - —— 1
(@,9) =5~ Lo + 5 7= L)

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 33
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Example stationary distribution derivation

(b) Show that f(y) =1/ (m/y(l — y)) satisfies f(y) = fol k(z,y)f(x)dz and hence is a stationary distribution

of the process.

" Use the stationarity definition from before: () = -[Q T(x)K(x,y)dx, yel,

K ) = (1(0,:1:)(9) 2 1(:;:,1)(9)) /2.

15 1l —=x

Use 1(0’:0)(?;) — 1(%1)(33) to get

10)= [ Haa)f@de =5 [ Lo 2+ 100wt

U
L[ s [ 21

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 34
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Example stationary distribution derivation

Fundamental Theorem of Calculus: F(x) = }??;(tjx)d[ _, dF _ A(x)
' b de 7
1 , Y 1
_1 U f@ g [ S dm] ) = & [_f(y) N f(y)]
2idy @ 0o 1—=x 2 Y 11—y

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 35
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Example stationary distribution derivation

" For first order homogeneous linear differential equation we can do the following:

o (z) = 1/$ L, 1 d¢
/leJ:/—p(t)dt use this for our fun¢ '\ T CFP 5 T ¢
X I
In|y| = P(t)+ C = cexp{—§ (log || +10g|1—:1:\)}
y:ieP(tH—C -
y:AeP(t), = C(‘aj| |1_$|) 5 CcC = 1/"'[

— We arrive at:

fly) =1/ (W\/y(l — y))

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 36



A A
A Az
S M i

7 il %) University of
g ° UZH
s Lurich

STA 381

Example task c) : Arcsine Distribution

(¢) Use R to simulate from the stationary density of the process, once using an iterative approach and once using
F(z) = [ f(y)dy = X arcsin /2. Verify empirically that the distributions are equal.

* CDF:  F(z) = = arcsin(y/7)
1
PDF: f(z) = o)
" Derivation:

using the substitution © = /%, t = u?, dt = 2udu:

% 1 v B 2 . F 2
G(z) = [ —dt= / ————du = —arcsin(t) | = —arcsin(,/x)
0 wy/t(l —1t) 0 m/1—u? T o

04/30/2021 Continuous Time Markov Chains, Frederick Geiger Page 37
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Discussion and Questions
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