Algebraic Geometry 4 - Homework 5

Problem 1: Let \mathcal{E} be a trivial vector bundle of rank $r+1$ on a quasicompact scheme X. (Thus in particular $\mathbb{P E} \approx \mathbb{P}_{X}^{r}$.)
(a) Show that for any vector bundle \mathcal{F} on $\mathbb{P E}$ we have $\sum_{i=0}^{r+1}(-1)^{i}\binom{r+1}{i}[\mathcal{F}(i)]=$ $0 \in K_{0}(\mathbb{P} \mathcal{E})$.
(b) Deduce that as a ring, $K_{0}(\mathbb{P} \mathcal{E}) \approx K_{0}(X)[z] / z^{r+1}$, for a well-chosen $z \in$ $K_{0}(\mathbb{P} \mathcal{E})$.
(c) Given an example of a scheme X and a (non-trivial) vector bundle \mathcal{E} such that the analog of (b) fails.

Problem 2: Let A be a Dedekind domain. Recalling the classification of finitely generated projective modules if necessary, show that the homomorphism (rank, det) : $K_{0}(A) \rightarrow \mathbb{Z} \oplus \operatorname{Pic}(A)$ (from Problem 3 of the previous sheet) is an isomorphism.

Problem 3: Let X be a non-singular connected curve over a field k which has a rational point. We wish to show that $K_{0}(X)=\mathbb{Z} \oplus \operatorname{Pic}(X)$.
(a) Show that for any scheme Y, there is a ring homomorphism (rank, det) : $K_{0}(Y) \rightarrow \mathbb{Z} \oplus \operatorname{Pic}(Y)$.
(b) Let $P \in X(k)$ and $i:\{P\} \rightarrow X$ the inclusion. Show that $\left[i_{*} \mathcal{O}_{P}\right]=$ $[\mathcal{O}]-[\mathcal{O}(P)]$.
(c) Show that $K_{0}(X)$ is generated by line bundles.
(d) Let L_{1}, L_{2} be line bundles on X. Show that $\left[L_{1}\right]+\left[L_{2}\right]=\left[L_{1} \otimes L_{2}\right]+1$. [Hint: Recall that if \bar{X} is a smooth proper curve, then the complement of any finite non-empty set of rational points is affine.]
(e) Conclude that (rank, det) is an isomorphism.

