Algebraic Geometry 4 - Homework 4

Note that the first two problems are those from last week.

Problem 1:

- (a) Let fgAb be the abelian category of finitely generated abelian groups. Show that $K_0(fgAb) \cong \mathbb{Z}$, the isomorphism being induced by the rank $\operatorname{rk}(A) := \dim_{\mathbb{Q}}(A \otimes_{\mathbb{Z}} \mathbb{Q})$ of the abelian group A.
- (b) Let finAb be the abelian category of finite abelian groups. Show that $K_0(\text{finAb}) \cong \mathbb{Q}_+^{\times}$ (the group of positive rationals under multiplication).
- (c) Let countAb be the abelian category of abelian groups generated by at most countably many elements. Show that $K_0(\text{countAb}) \cong 0$. Hint: $\infty + 1 = \infty$.

Problem 2: Let A_{\bullet} be a bounded complex

$$0 \longrightarrow A_m \longrightarrow A_{m+1} \longrightarrow \cdots \longrightarrow A_n \longrightarrow 0$$

in a small abelian category \mathcal{A} (if you are not familiar with abelian categories: let $\mathcal{A} = \operatorname{Coh}(X)$, X a noetherian scheme). We define its *Euler characteristic* as

$$\chi(A_{\bullet}) := \sum_{i=m}^{n} (-1)^{i} [A_{i}] \in \mathcal{K}_{0}(\mathcal{A}).$$

(a) Show that

$$\chi(A_{\bullet}) = \sum_{i=m}^{n} (-1)^{i} [\mathrm{H}^{i}(A_{\bullet})].$$

(b) Let $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ be a short exact sequence of bounded complexes in \mathcal{A} . Show that $\chi(B_{\bullet}) = \chi(A_{\bullet}) + \chi(C_{\bullet})$.

Problem 3: Let R be an integral domain and let \mathbb{P} be the category of finitely generated projective R-modules. Recall that for $P \in \mathbb{P}$ we have the rank defined as $\operatorname{rank}(P) = \dim_{\operatorname{Quot}(R)}(P \otimes_R \operatorname{Quot}(R))$ and the determinant $\det(P) := \Lambda_R^{\operatorname{rank}(P)} P$, i.e. the highest non-trivial exterior power of P. Note that the latter is automatically a line bundle on $\operatorname{Spec}(R)$.

- (a) Show that rank: $\mathbb{P} \to \mathbb{N}_0$ induces a well-defined surjective morphism $K_0(\operatorname{Spec}(R)) \to \mathbb{Z}$ of rings.
- (b) Show that det: $\mathbb{P} \to \operatorname{Pic}(\operatorname{Spec}(R))$ induces a well-defined surjective morphism $\operatorname{K}_0(\operatorname{Spec}(R)) \to \operatorname{Pic}(\operatorname{Spec}(R))$ of abelian groups.

- (c) If A is any abelian group, check that $\mathbb{Z} \oplus A$ becomes a ring by $(m, a) \cdot (n, b) := (mn, na + mb)$ for all $m, n \in \mathbb{Z}$ and $a, b \in A$.
- (d) Show that $(\operatorname{rank}, \operatorname{det}) : \mathbb{P} \to \mathbb{N}_0 \oplus \operatorname{Pic}(\operatorname{Spec}(R))$ induces a well-defined surjective morphism $\operatorname{K}_0(\operatorname{Spec}(R)) \to \mathbb{Z} \oplus \operatorname{Pic}(\operatorname{Spec}(R))$ of rings, where the multiplication on the second ring is defined as in the previous part.

Problem 4: We want to show the *Devissage Theorem*, which states: Let \mathcal{A} be an abelian subcategory of the category of coherent \mathcal{O}_X -modules (or any other small abelian category), X a scheme. Let \mathcal{B} be a subcategory of \mathcal{A} such that

- \mathcal{B} is closed under subobjects in \mathcal{A} , i.e. if $A \hookrightarrow B$ is a monomorphism in \mathcal{A} with $B \in \mathcal{B}$, then $A \in \mathcal{B}$.
- \mathcal{B} is closed under quotients in \mathcal{A} , i.e. if $B \to A$ is an epimorphism in \mathcal{A} with $B \in \mathcal{B}$, then $A \in \mathcal{B}$.
- \mathcal{B} is an abelian category with kernels, cokernels and sums being those of \mathcal{A} .
- Every element of \mathcal{A} has a *suitable* filtration

$$A = A_0 \supseteq A_1 \supseteq \ldots \supseteq A_n = 0$$

where each quotient A_i/A_{i+1} is in \mathcal{B} .

Then the inclusion induces an isomorphism $K_0(\mathcal{B}) \cong K_0(\mathcal{A})$.

- (a) Show that the inclusion defines a well-defined morphism $i: K_0(\mathcal{B}) \to K_0(\mathcal{A})$ of abelian groups.
- (b) Show that *i* is surjective, a preimage of $[A] \in K_0(\mathcal{A})$, where $A \in \mathcal{A}$, being given by $f(A) := \sum_{i=0}^{\infty} [A_i/A_{i+1}] \in K_0(\mathcal{B})$, where A_{\bullet} is a suitable filtration on A.
- (c) Schreier Refinement Theorem: Let A_{\bullet} and A'_{\bullet} be two filtrations of $A \in \mathcal{A}$. Define $A_{i,j} := (A_i \cap A'_j) + A_{i+1}$ and $A'_{j,i} := (A_i \cap A'_j) + A'_{j+1}$. Show that the lexicographic ordering of the pairs (x, y) turns $A_{i,j}$ into a refinement of A_{\bullet} and $A'_{j,i}$ into a refinement of A'_{\bullet} . Here we say that B_{\bullet} refines A_{\bullet} as filtrations on $A \in \mathcal{A}$ if there are integers $n_0 = 0, n_1, \ldots$ such that $B_{n_i} = A_i$.
- (d) Show that f(A) does, as an element of $K_0(\mathcal{B})$, not depend on the choice of the filtration used to define it. Hint: With the notation as above recall (without proof) Zassenhaus' Lemma: $A_{i,j}/A_{i,j+1} \cong A'_{j,i}/A'_{i,i+1}$.
- (e) Let $0 \to A \to B \to C \to 0$ be an exact sequence in \mathcal{B} . Use appropriate filtrations to show that f(A) f(B) + f(C) = 0 in $K_0(\mathcal{B})$.
- (f) Prove the theorem.

Problem 5: Use the Devissage Theorem, or mimic its proof for those special cases, to show the following two results:

- (a) Let R be a noetherian ring and let I be a nilpotent ideal of R. Then $G_0(\operatorname{Spec}(R)) \cong G_0(\operatorname{Spec}(R/I))$. Similarly, if X is a noetherian scheme, then $G_0(X) \cong G_0(X^{\operatorname{red}})$.
- (b) Let $Z \hookrightarrow X$ be a closed immersion of noetherian schemes. Let S_Z be the subcategory of $\operatorname{Coh}(X)$ of sheaves with support in Z. Then $\operatorname{G}_0(Z) \cong \operatorname{K}_0(S_Z)$.