Algebraic Geometry 4-Homework 3

We use the methods developed so far to count the number of conics in \mathbb{P}^{2} tangent to 5 lines in general position.

0 (warm-up exercise). a) Let $E \rightarrow X$ be a vector bundle, $E^{\vee} \rightarrow X$ the dual bundle. Show that $\tilde{c}_{i}\left(E^{\vee}\right)=(-1)^{i} \tilde{c}(E)$.
b) Let $E \rightarrow X$ be a rank n vector bundle, $L \rightarrow X$ a line bundle. Show that $\tilde{c}_{n}(E \otimes L)=\sum_{j=0}^{i} \tilde{c}_{j}(E) \circ \tilde{c}_{1}(L)^{i-j}$. For extra credit, find a formula for $\tilde{c}_{i}(E \otimes L)$ in terms of the $\tilde{c}_{j}(E)$ and $\tilde{c}_{1}(L)$.
Hint: for both, use the splitting principle.

1. Tangent bundles of \mathbb{P}^{n}. Let $E \rightarrow X$ be a rank $n+1$ vector bundle, $\mathbb{P}(E):=\operatorname{Proj}_{\mathcal{O}_{X}}\left(\mathrm{Sym}^{*} E\right)$ with structure morphism $q: \mathbb{P}(E) \rightarrow X$ and tautological surjection $q^{*} E \rightarrow \mathcal{O}_{E}(1)$. Twisting this by $\mathcal{O}_{E}(-1)$ gives the exact sequence describing $\Omega_{\mathbb{P}(E) / X}$:

$$
0 \rightarrow \Omega_{\mathbb{P}(E) / X} \rightarrow q^{*} E(-1) \rightarrow \mathcal{O}_{\mathbb{P}(E)} \rightarrow 0
$$

Let $\tilde{h}=\tilde{c}_{1}\left(\mathcal{O}_{E}(1)\right)$, and let $T_{\mathbb{P}(E) / X}$ be the relative tangent bundle (the dual of $\Omega_{\mathbb{P}(E) / X}$. Conclude that $\tilde{c}\left(\Omega_{\mathbb{P}(E) / X}\right)=\tilde{c}\left(q^{*} E(-1)\right)$, and $\tilde{c}\left(T_{\mathbb{P}(E) / X}\right)=$ $\tilde{c}\left(q^{*} E^{\vee}(1)\right)$. Taking $E=\mathcal{O}_{X}^{n+1}$, conclude that

$$
\tilde{c}\left(T_{\mathbb{P}_{X}^{n} / X}\right)=(1+\tilde{h})^{n+1}
$$

2. Tangent bundles of hypersurfaces. For simplicity, we take as base-scheme Spec k, k a field. For X a smooth finite type k-scheme, write T_{X} for $T_{X / \text { Spec } k}$. Let $X \subset \mathbb{P}^{n}$ be a smooth degree d hypersurface, defined by a section $s \in$ $H^{0}\left(\mathbb{P}_{k}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d)\right)$, let $i: X \rightarrow \mathbb{P}_{k}^{n}$ be the inclusion. Since X is smooth, we use Chern classes instead of Chern class operators. Show that

$$
c\left(T_{X}\right)=i^{*}\left(\frac{(1+h)^{n+1}}{(1+d h)}\right)
$$

where $h=c_{1}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$. Hint: Show that $N_{i}=i^{*} \mathcal{O}_{\mathbb{P}^{n}}(d)$ and use the exact sequence

$$
0 \rightarrow T_{X} \rightarrow i^{*} T_{\mathbb{P} n} \rightarrow N_{i} \rightarrow 0
$$

3. Conics and tangent lines.
a) A conic in \mathbb{P}_{k}^{2} is a closed subscheme of \mathbb{P}_{k}^{2} defined by a section $s \in$ $H^{0}\left(\mathbb{P}_{k}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(2)\right)$; there are three types: smooth curves of degree 2 , the union of 2 lines, and a double line (i.e., $s=L^{2}$ for some $L \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(1)\right)$). Show that the linear system of conics is isomorphic to a projective space \mathbb{P}_{k}^{5} by sending a section $s=\sum_{0 \leq i \leq j \leq 2} a_{i j} X_{i} X_{j}$ to the point

$$
\left(a_{00}: a_{01}: a_{02}: a_{11}: a_{12}: a_{22}\right)
$$

b) Let $\ell \subset \mathbb{P}_{k}^{2}$ be a line and let C be a conic (not necessarily smooth). Note that the intersection product $[\ell] \cdot[C]$ in $\mathrm{CH}_{0}\left(\mathbb{P}_{k}^{2}\right)$ is equivalent to $2 \cdot[(0: 0: 1)]$, so has degree 2 . We say that C is tangent to ℓ if either $\ell \subset C$ or $\ell \cap C$
is a single point. Now fix a line ℓ and let $Q_{\ell} \subset \mathbb{P}_{k}^{5}$ be the subscheme defined by the condition $C \in Q_{\ell}$ iff ℓ is tangent to C. Show that Q_{ℓ} is a degree 2 hypersurface in \mathbb{P}^{5}. Hint: by change of coordinates you may assume that ℓ is the line $X_{0}=0$, and write down the condition for a section $s=\sum_{0 \leq i<j \leq 2} a_{i j} X_{i} X_{j}$ of $H^{0}\left(\mathbb{P}_{k}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(2)\right)$ to define a conic $C=C_{s}$ which is tangent to ℓ. Show that, if $s=L^{2}$, then the conic $C=C_{s}$ is tangent to ℓ for any line ℓ.
c) We now assume k has characteristic $\neq 2$. Show that the set of conics C of the form $C_{s}, s=L^{2}, L \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(1)\right)$, is equal to the image of \mathbb{P}^{2} under the Veronese embedding

$$
v: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}
$$

$v\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{0}^{2}: 2 x_{0} x_{1}: 2 x_{0} x_{2}: x_{1}^{2}: 2 x_{1} x_{2}: x_{2}^{2}\right) ;$ we let $V e r \subset \mathbb{P}^{5}$ denote the image of v. Note that $v^{*} \mathcal{O}_{\mathbb{P}^{5}}(1) \cong \mathcal{O}_{\mathbb{P}^{2}}(2)$.
c) Take $\ell_{1}, \ldots, \ell_{5}$ five lines in \mathbb{P}^{2} in general position. Here is a result which is true, but you do not need to prove: Let $Q_{i} \subset \mathbb{P}^{5}$ be the quadric corresponding to $\ell_{i}, i=1, \ldots, 5$. Then the scheme-theoretic intersection $Q_{1} \cap \ldots \cap Q_{5}$ is the disjoint union of $V e r$ with finitely many points:

$$
Q_{1} \cap \ldots \cap Q_{5}=\operatorname{Ver} \amalg R .
$$

The set R correponds to the conics C which are not double lines, and are tangent to all five lines ℓ_{i}. Show that, if $\ell_{i_{1}} \cap \ell_{i_{2}} \cap \ell_{i_{3}}=\emptyset$ for all $i_{1}<i_{2}<i_{3}$, then each $C \in R$ is smooth. Thus, the question of counting the number of smooth conics tangent to five general lines is to find how many distinct points are in R.
d) Let $\pi: \mathbb{P}_{k}^{n} \rightarrow$ Spec k be the projection. Show that $\pi_{*}: \mathrm{CH}_{0}\left(\mathbb{P}_{k}^{n}\right) \rightarrow$ $\mathrm{CH}_{0}(\operatorname{Spec} k)=\mathbb{Z} \cdot[\operatorname{Spec} k]$ is an isomorphism; for $x \in \mathrm{CH}_{0}\left(\mathbb{P}_{k}^{n}\right)$, we define the integer $\operatorname{deg}_{k}(x)$ by

$$
\pi_{*}(x)=\operatorname{deg}_{k}(x) \cdot[\operatorname{Spec} k] .
$$

The intersection product $\left[Q_{1}\right] \cdots\left[Q_{5}\right]$ is an element of $\mathrm{CH}_{0}\left(\mathbb{P}_{k}^{5}\right)$; show that

$$
\operatorname{deg}_{k}\left(\left[Q_{1}\right] \cdots\left[Q_{5}\right]\right)=32 .
$$

e) Let $i_{j}: Q_{j} \rightarrow \mathbb{P}^{5}$ be the inclusion, $\Delta: \mathbb{P}^{5} \rightarrow\left(\mathbb{P}^{5}\right)^{5}$ the diagonal embedding, $i_{V e r}:$ Ver $\rightarrow \mathbb{P}^{5}, i_{R}: R \rightarrow \mathbb{P}^{5}$ the inclusions. Using the cartesian diagram

note that $\left(\Delta, \Delta^{\prime}\right)^{!}\left(\left[\prod_{j=1}^{5} Q_{j}\right]\right)$ is an element of $\mathrm{CH}_{0}(\operatorname{Ver} \amalg R)=\mathrm{CH}_{0}($ Ver $) \times$ $\mathrm{CH}_{0}(R)$, which we write as

$$
\left(\Delta, \Delta^{\prime}\right)^{!}\left(\left[\prod_{j=1}^{5} Q_{j}\right]\right)=\left(x_{V e r}, x_{R}\right)
$$

Show that the 0-cycle $x:=g_{*}^{\prime}\left(\left(\Delta, \Delta^{\prime}\right)^{!}\left(\left[\prod_{j=1}^{5} Q_{j}\right]\right)\right)=i_{V e r *}\left(x_{V e r}\right)+i_{R *}\left(x_{R}\right)$ has $\operatorname{deg}_{k}(x)=32$, so

$$
\operatorname{deg}_{k}\left(i_{R *}\left(x_{R}\right)\right)=32-\operatorname{deg}_{k}\left(x_{V e r}\right) .
$$

f) Let $\Delta_{V e r}^{\prime}: V e r \rightarrow \prod_{j=1}^{5} Q_{j}$ be the restriction of Δ^{\prime}. We have the vector bundle $\mathcal{E}:=i_{V e r}^{*} N_{\Delta} / N_{\Delta_{\text {Ver }}^{\prime}}^{\prime}$ on Ver. Show that

$$
x_{V e r}=c_{2}(\mathcal{E}) .
$$

Hint: Consider the refined Gysin map after removing R from \mathbb{P}^{5}.
g) We identify $V e r$ with \mathbb{P}^{2} via the map v; let $\alpha_{j}: \mathbb{P}^{2} \rightarrow Q_{i}$ be the resulting inclusion and consider \mathcal{E} and $N_{\Delta_{\text {Ver }}^{\prime}}^{\prime}$ as bundles on \mathbb{P}^{2}. Let $\bar{h}=c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)$. Show that

$$
\begin{aligned}
& v^{*} c\left(T_{\mathbb{P}^{5}}\right)=(1+2 \bar{h})^{6} \\
& \alpha_{j}^{*} c\left(T_{Q_{j}}\right)=\frac{(1+2 \bar{h})^{6}}{(1+4 \bar{h})} \\
& c\left(N_{\Delta_{\text {Ver }}^{\prime}}\right)=\frac{(1+2 \bar{h})^{30}}{(1+4 \bar{h})^{5}(1+\bar{h})^{3}} \\
& c\left(v^{*} N_{\Delta}\right)=(1+2 \bar{h})^{24} \\
& c(\mathcal{E})=\frac{c\left(v^{*} N_{\Delta}\right)}{c\left(N_{\Delta_{\text {Ver }}^{\prime}}^{\prime}\right)}=\frac{(1+4 \bar{h})^{5}(1+\bar{h})^{3}}{(1+2 \bar{h})^{6}}
\end{aligned}
$$

Noting that $\bar{h}^{3}=0$, compute $c_{2}(\mathcal{E})$ and find out how many conics are tangent to 5 lines. Hint: $\operatorname{deg} c_{2}(\mathcal{E})$ is a prime number.

