Algebraic Geometry 4-Homework 2

1. Representation theory and vector bundles. We fix a base-field k. The group scheme GL_r/k represents the functor from k-algebras to groups: $A \mapsto \operatorname{GL}_r(A)$, where $\operatorname{GL}_r(A)$ is the multiplicative group of units in the ring of $n \times n$ matrices $M_{n \times n}(A)$ with coefficients in A. As a scheme GL_r/k is the open subscheme $\det(X_{ij}) \neq 0$ of $\mathbb{A}_k^{n^2} := \operatorname{Spec} k[\{X_{ij} \mid 1 \leq i, j \leq n\};$ the usual matrix multiplication and inverse define the group structure on $\operatorname{GL}_r/k(A)$. A rational representation is a morphism of k-schemes $\rho: \operatorname{GL}_r/k \to \operatorname{GL}_N/k$ such that $\rho(A): \operatorname{GL}_r/k(A) \to \operatorname{GL}_N/k(A)$ is a group homomorphism for all k-algebras A.

For a k-scheme X, a rank r vector bundle $E \to X$ is defined by an open cover $\{U_i\}$ of X and a cocycle $\{\xi_{ij} \in \operatorname{GL}_r(\mathcal{O}_X(U_i \cap U_j))\}$, $\xi_{ij}\xi_{jk} = \xi_{ik}$ after passing to $\operatorname{GL}_r(\mathcal{O}_X(U_i \cap U_j \cap U_k))$. Given a rational representation $\rho: \operatorname{GL}_r/k \to \operatorname{GL}_N/k$, one has the cocycle $\{\rho(\xi_{ij}) \in \operatorname{GL}_N(\mathcal{O}_X(U_i \cap U_j))\}$, satisfying the cocycle condition, and thus defining a rank N vector bundle $\rho(E) \to X$.

For example, we have the determinant representation det : $\operatorname{GL}_r/\to \operatorname{GL}_1/k$, so for every vector bundle $E\to X$, we have the determinant line bundle det $E\to X$.

- a) Let $E \to X$ be a vector bundle, isomorphic to a direct sum of line bundles $E \cong \bigoplus_{i=1}^r L_i$. Show that det $E \cong L_1 \otimes_{\mathcal{O}_X} \ldots \otimes_{\mathcal{O}_X} L_r$.
- b) Let $0 \to E' \to E \to E'' \to 0$ be an exact sequence of vector bundles on X. Define an isomorphism det $E \cong \det E' \otimes_{\mathcal{O}_X} \det E''$.
- c) Let $E \to X$ be a vector bundle. Show that $\tilde{c}_1(E) = \tilde{c}_1(\det E)$.

Other examples of representations include

i) the *n*th tensor power $(-)^{\otimes n}: \operatorname{GL}_r \to \operatorname{GL}_{r^n}$: For an *A*-linear automorphism $g: A^r \to A^r$ we have the *A*-linear automorphism $g^{\otimes n}: (A^r)^{\otimes_A n} \to (A^r)^{\otimes_A n}$, $g(v_1 \otimes \ldots \otimes v_n) := g(v_1) \otimes \ldots \otimes g(v_n)$. For e_1, \ldots, e_r the standard basis of A^r , we have the standard basis of $(A^r)^{\otimes_A n}$, $e_{i_1} \otimes \ldots \otimes e_{i_n}$, $1 \leq i_1, \ldots, i_n \leq r$. Using this basis for $(A^r)^{\otimes_A n}$, sending g to $g^{\otimes n}$ gives the rational representation

$$(-)^{\otimes n}: \operatorname{GL}_r/k \to \operatorname{GL}_{r^n}/k$$

ii) the *n*th exterior power: $g(v_1 \wedge \ldots \wedge v_n) := g(v_1) \wedge \ldots \wedge g(v_n)$. Using the basis $e_{i_1} \wedge \ldots \wedge e_{i_n}$, $1 \leq i_1 < \ldots < i_n \leq r$ gives the rational representation

$$\Lambda^n: \operatorname{GL}_r/k \to \operatorname{GL}_{\binom{n}{r}}/k.$$

ii) the *n*th symmetric power: $g(v_1 \wedge \ldots \wedge v_n) := g(v_1) \cdot \ldots \cdot g(v_n)$. Using the basis $e_{i_1} \cdot \ldots \cdot e_{i_n}$, $1 \leq i_1 lei_2 \leq \ldots \leq i_n \leq r$ gives the rational representation

$$\operatorname{Sym}^n: \operatorname{GL}_r/k \to \operatorname{GL}_{\binom{n+r-1}{r-1}}/k.$$

2. Symmetric functions and Chern classes. Consider the sequence of polyonomial rings $\mathbb{Z}[\xi_1,\ldots,\xi_n]$, with homomorphisms $\pi_n:\mathbb{Z}[\xi_1,\ldots,\xi_{n+1}]\to$ $\mathbb{Z}[\xi_1,\ldots,\xi_n]$ sending ξ_{n+1} to 0 and ξ_i to ξ_i for $i\leq n$. Define

$$\mathbb{Z}[\xi_1, \xi_2, \ldots] := \lim_{\substack{\leftarrow \\ n}} \mathbb{Z}[\xi_1, \ldots, \xi_n]$$

An element of $\mathbb{Z}[\xi_1, \xi_2, \ldots]$ is thus a sequence of polynomials $f_n(\xi_1, \ldots, \xi_n)$ with $f_{n+1}(\xi_1, \ldots, \xi_n, 0) = f_n(\xi_1, \ldots, \xi_n)$ for all $n \geq 0$. Call $f = (f_n)_n$ homogeneous of degree d if each f_n is homogeneous of degree d.

We have the formal product

$$\prod_{n=1}^{\infty} (1 + \xi_n T) = 1 + \sigma_1(\xi_1, \xi_2, \dots) T + \dots + \sigma_m(\xi_1, \xi_2, \dots) T^m + \dots$$

with each σ_m a well-defined element of $\mathbb{Z}[\xi_1, \xi_2, \ldots]$, called the *m*th elementary symmetric function in ξ_1, ξ_2, \ldots . The truncated version $\sigma_m(\xi_1, \xi_2, \ldots, \xi_n)$ is the classical *m*th elementary symmetric function in $\xi_1, \xi_2, \ldots, \xi_n$.

The *n*th symmetric group Σ_n acts on $\mathbb{Z}[\xi_1, \xi_2, \ldots]$ by permuting ξ_1, \ldots, ξ_n and leaving ξ_m fixed for all m > n:

$$f^{\sigma}(\xi_1,\ldots,\xi_n,\xi_{n+1},\ldots) = f(\xi_{\sigma(1)},\xi_{\sigma(2)},\ldots,\xi_{\sigma(n)},\xi_{n+1},\ldots).$$

The ring of symmetric functions in $\xi_1, \xi_2, \ldots, \mathbb{Z}[\xi_1, \xi_2, \ldots]^{\Sigma_{\infty}}$, is by definition the subring of $\mathbb{Z}[\xi_1, \xi_2, \ldots]$ of elements invariant under Σ_n for all n. Clearly $\sigma_m(\xi_1, \ldots)$ is in $\mathbb{Z}[\xi_1, \xi_2, \ldots]^{\Sigma_{\infty}}$ for each m; we let $\mathbb{Z}[\sigma_1(\xi_1, \ldots), \sigma_2(\xi_1, \ldots), \ldots]$ be the subring of $\mathbb{Z}[\xi_1, \xi_2, \ldots]$ generated by the elements $\sigma_m(\xi_1, \xi_2, \ldots)$ for all m. An element $f(\sigma_1, \sigma_2, \ldots) \in \mathbb{Z}[\sigma_1(\xi_1, \ldots), \sigma_2(\xi_1, \ldots), \ldots]$ is homogeneous of degree d in ξ_1, ξ_2, \ldots if and only if f is homogeneous of weighted degree d in $\sigma_1, \sigma_2, \ldots$, where we give σ_m degree m.

A basic theorem of symmetric functions is

Theorem 1. $\mathbb{Z}[\xi_1, \xi_2, \ldots]^{\Sigma_{\infty}} = \mathbb{Z}[\sigma_1(\xi_1, \ldots), \sigma_2(\xi_1, \ldots), \ldots]$. Each subring $\mathbb{Z}[\sigma_1(\xi_1, \ldots), \sigma_2(\xi_1, \ldots), \ldots, \sigma_m(\xi_1, \xi_2, \ldots)]$ is a polynomial ring in the generators $\sigma_1(\xi_1, \ldots), \sigma_2(\xi_1, \ldots), \ldots, \sigma_m(\xi_1, \xi_2, \ldots)$, and $\mathbb{Z}[\sigma_1(\xi_1, \ldots), \sigma_2(\xi_1, \ldots), \ldots]$ is the limit of polynomial rings

$$\mathbb{Z}[\sigma_1(\xi_1,\ldots),\sigma_2(\xi_1,\ldots),\ldots] = \lim_{\substack{\longleftarrow \\ m}} \mathbb{Z}[\sigma_1(\xi_1,\ldots),\sigma_2(\xi_1,\ldots),\ldots,\sigma_m(\xi_1,\xi_2,\ldots)].$$

Furthermore, the restriction map

$$\mathbb{Z}[\sigma_1(\xi_1,\ldots),\sigma_2(\xi_1,\ldots),\ldots] \to \mathbb{Z}[\sigma_1(\xi_1,\ldots,\xi_n),\ldots,\sigma_n(\xi_1,\ldots,\xi_n)]$$

is an isomorphism when restricted to the respective subgroups of homogeneous elements of degree d for all $n \geq d$.

a) Suppose that $E = \bigoplus_{i=1}^r L_i, L_1, \ldots, L_r$ line bundles. Show that

$$E^{\otimes n} \cong \bigoplus_{1 \leq i_1, \dots, i_n \leq r} L_{i_1} \otimes \dots \otimes L_{i_n}$$

$$\Lambda^n E \cong \bigoplus_{1 \leq i_1 < \dots < i_n \leq r} L_{i_1} \otimes \dots \otimes L_{i_n}$$

$$\operatorname{Sym}^n E \cong \bigoplus_{1 \leq i_1 \leq \dots \leq i_n \leq r} L_{i_1} \otimes \dots \otimes L_{i_n}$$

b) Show there are universal polynomials $T_n^i(X_1,\ldots,X_i)$, $L_n^i(X_1,\ldots,X_i)$ and $S_n^i(X_1,\ldots,X_i)$, of weighted degree i (with $\deg X_j=j$) such that for each vector bundle $E\to X$, we have

$$T_n^i(\tilde{c}_1(E), \dots, \tilde{c}_i(E)) = \tilde{c}_i(E^{\otimes n}),$$

$$L_n^i(\tilde{c}_1(E), \dots, \tilde{c}_i(E)) = \tilde{c}_i(\Lambda^n E)$$

$$T_n^i(\tilde{c}_1(E), \dots, \tilde{c}_i(E)) = \tilde{c}_i(\operatorname{Sym}^n E).$$

Hint: use (a), theorem 1 and the splitting principle. c) Let $E \to X$ be a rank 2 vector bundle. Find a formula for $\tilde{c}_i(\operatorname{Sym}^i E)$, i = 2, 3.

3. Let $i: Z \to X$ be a codimension c regular embedding, let $\pi: \tilde{X} \to X$ be the blow-up Bl_ZX and $E \subset \tilde{X}$ the exceptional divisor $\pi^{-1}(Z)$, giving the cartesian diagram

$$E \xrightarrow{i_E} \tilde{X} \\ \bar{\pi} \downarrow \qquad \qquad \downarrow \pi \\ Z \xrightarrow{i_Z} X$$

We have $E = \operatorname{Proj}_{\mathcal{O}_Z}(\operatorname{Sym}^* \mathcal{I}_Z/\mathcal{I}_Z^2)$; let $\mathcal{O}_E(1)$ be the corresponding tautological line bundle with surjection $\bar{\pi}^*(\mathcal{I}_Z/\mathcal{I}_Z^2) \to \bar{\pi}^*\mathcal{O}_E(1)$. Show that

$$(i_Z, i_E)^! = \tilde{c}_1(\mathcal{O}_E(1))^{c-1} \circ i_E^*.$$

Hint: Use HW1, 5(a): $N_{E/\tilde{X}} = \mathcal{O}_E(1)^{-1}$.