Algebraic Geometry 4-Homework 2

1. Representation theory and vector bundles. We fix a base-field k. The
group scheme GL, /k represents the functor from k-algebras to groups:
A GL,(A), where GL,(A) is the multiplicative group of units in the ring
of n x n matrices M,,x,(A) with coefficients in A. As a scheme GL, /k is the
open subscheme det(X;;) # 0 of A;f = Speck[{X;; | 1 <1i,j < n}; the usual
matrix multiplication and inverse define the group structure on GL, /k(A).
A rational representation is a morphism of k-schemes p : GL, /k — GLy /k
such that p(A) : GL, /k(A) — GLy /k(A) is a group homomorphism for all
k-algebras A.

For a k-scheme X, a rank r vector bundle F — X is defined by an open
cover {U;} of X and a cocycle {&; € GL,.(Ox(U; N Uj))}, &&= &k
after passing to GL,(Ox(U; N U; NUyg)). Given a rational representation
p : GL, /k — GLy /k, one has the cocycle {p(&;) € GLy(Ox(U; NU;))},
satsifying the cocycle condition, and thus defining a rank N vector bundle
p(E) — X.

For example, we have the determinant representation det : GL,/ —
GL; /k, so for every vector bundle E — X, we have the determinant line
bundle det & — X.

a) Let F — X be a vector bundle, isomorphic to a direct sum of line bundles
FE= ;-n:lLl'. Show that det £ = L4 Royx -+ ROy L,.

b) Let 0 - E' — E — E” — 0 be an exact sequence of vector bundles on
X. Define an isomorphism det E = det E' ®¢, det E”.

c) Let E — X be a vector bundle. Show that ¢;(E) = ¢;(det E).

Other examples of representations include

i) the nth tensor power (—)®" : GL, — GL,n: For an A-linear automorphism
g: A" — A" we have the A-linear automorphism g&" : (A7)®A" — (A™)®an
g1 ®...Qv,) :=g(v1) ® ... g(v,). For ey,...,e, the standard basis of
A", we have the standard basis of (A")®A" ¢;, ®@...®e; , 1 <i1,... 0, <7
Using this basis for (A")®4" sending g to ¢g®™ gives the rational represen-
tation

(=)®": GL, /k — GLyn /k

ii) the nth exterior power: g(vi A...Avy) :=g(vi) A...Ag(v,). Using the
basis e;; A...Ae;, 1 <41 <... <14, <r gives the rational representation

A" GL, [k — GL(:) k.

ii) the nth symmetric power: g(vi A...Avy) :=g(v1) ... g(v,). Using the
basis €;, - ... e;,, 1 <i1leig < ... <14, < r gives the rational representation
Sym" : GL, /k — GL(nﬂfl) k.

2. Symmetric functions and Chern classes. Consider the sequence of poly-

onomial rings Z[¢1,...,&,], with homomorphisms m, : Z[¢1,. .., n+1] —
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Z[&, ..., &) sending &,4+1 to 0 and &; to & for ¢ < n. Define
Z[&la&?? .- ] = h(LHZ[é-lv R 7§n]

n

An element of Z[£;, &, .. .] is thus a sequence of polynomials f,,(&1,...,&)

with fr+1(&1,--+,6n,0) = fu(&1,...,&) for all n > 0. Call f = (fu)n
homogeneous of degree d if each f,, is homogeneous of degree d.
We have the formal product

oo

[[a+&D) =1+01(6,8,.. )T +... + om(é1, &, )T + ...

n=1
with each oy, a well-defined element of Z[¢1, &s, . . ], called the mth elemen-
tary symmetric function in &1, &, . . .. The truncated version o, (&1, &2, ..., &n)
is the classical mth elementary symmetric function in &1,&o,...,&,.

The nth symmetric group %, acts on Z[{;, &2, . . .] by permuting &1, ..., &,
and leaving &, fixed for all m > n:

fa(€17 oo 7§n7§n+17 e ) = f(€U(1)7§U(2)7 s ?€U(H)7€n+1?’ : )

The ring of symmetric functions in &1, &, .. ., Z[€1, &2, .. .7, is by definition
the subring of Z[¢1, &2, . . .] of elements invariant under ¥, for all n. Clearly
om(&1,...) isin Z[¢y, &, . . |7 for each m; we let Z[oy (&1, ...), 02(&1,...), . . ]
be the subring of Z[£1, &2, . . .] generated by the elements o/, (&1, &2, - . .) for all

m. An element f(o1,09,...) € Z[o1(&1,...),02(&1,- ), .. .] is homogeneous
of degree d in &1, &9, ... if and only if f is homogeneous of weighted degree
d in 01,09, ..., where we give o, degree m.

A basic theorem of symmetric functions is

Theorem 1. Z[¢y, &, .. .7 = Z[oy(&1,...),02(€1,...),...]. Each subring

Zlo1(&1y .. .), 0281, 2)s -y om(&1, &2, - - )] is a polynomial ring in the gener-
ators o1(&1,...),02(&1, ),y om(&1, 82, .. .), and Zlo1 (&1, - . ), 02(&1, - 2), - - ]

is the limit of polynomial rings
Zloi(&1,...),02(81, ), = lgnZ[al(fl, ce)y02(Exy )y ey om(&1, 62, )]

Furthermore, the restriction map

Z[O’l(ﬁl, .. .),0'2(51, .. .), .. } — Z[O’l(gl, e 7571), e 7O-n(£1a e ,fn)]

is an isomorphism when restricted to the respective subgroups of homoge-
neous elements of degree d for allm > d.

a) Suppose that £ = @_,L;, L1, ..., L, line bundles. Show that
E®" 2 @1y, in<rLiy ® ... © Ly,

A'E = @1§i1<...<in§7”Li1 ®...0 L’ln
Sym”E = @lﬁhg...ﬁingrl/il Q... L

in
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b) Show there are universal polynomials T} (X7, . .., X;), L} (X1, ..., X;) and
Sy (X1,...,X;), of weighted degree i (with deg X; = j) such that for each
vector bundle £ — X, we have

Ty (e (E),...,&(E)) = &(E®™),
Ly(@(E), ..., &(E)) = &(A"E)
T, (e (E),...,&(E))

Hint: use (a), theorem [l{ and the splitting principle. .
c) Let E — X be a rank 2 vector bundle. Find a formula for ¢ (Sym'FE),
i =2,3.

Ei(Sym”E).

3. Let i : Z — X be a codimension c regular embedding, let 7 : X — X be
the blow-up BlzX and E C X the exceptional divisor 7=!(Z), giving the

cartesian diagram
E X

Z*>X

SEZEN

We have E = Projo, (Sym*Zz/ZI%); let Op(1) be the corresponding tauto-
logical line bundle with surjection 7*(Zz/Z%) — 7*Og(1). Show that
(ZZJE) =& (0p(1) " o,

Hint: Use HW1, 5(a): N, Op(1)~!



