Algebraic Geometry 4-Homework 1

1) Let $L \rightarrow X$ be a line bundle on some finite type k-scheme X and let $s: X \rightarrow L$ be the 0 -section. Show that the operator $\tilde{c}_{1}(L)$ is equal to $s^{*} s_{*}: \mathrm{CH}_{n}(X) \rightarrow \mathrm{CH}_{n-1}(X)$.
2) Let $L \rightarrow X$ be a line bundle on some smooth integral finite type k scheme X. Recall that the Chern class $c_{1}(L) \in \mathrm{CH}^{1}(X)$ is defined as $c_{1}(L):=\tilde{c}_{1}(L)([X])$, where $[X] \in \mathrm{CH}_{\operatorname{dim}_{k} X}(X)$ is the fundamental class $1 \cdot X$. Show that for line bundles L and M on X,

$$
c_{1}(L) \cdot c_{1}(M)=\tilde{c}_{1}(L)\left(\tilde{c}_{1}(M)([X])\right)
$$

3) a) Show that the ring $\mathrm{CH}^{*}\left(\mathbb{P}_{k}^{n}\right)$ is isomorphic to $\mathbb{Z}[t] / t^{n+1}$, with t mapping to $c_{1}(\mathcal{O}(1))$.
4) Let $i: X \rightarrow Y$ be a regular embedding of codimension c (in $\mathbf{S c h} / k$), let $f: V \rightarrow Y$ be a morphism with V an integral finite type k-scheme of dimension d, and form the Cartesian diagram

a) Show that each integral component of the cone $C_{W / V}$ has dimension d over k. Hint First show that $\operatorname{Def}\left(i^{\prime}\right)$ is integral and has dimension $d+1$ over k.
b) Suppose that W is irreducible and has dimension $d-c$. Show that the closed immersion $C_{W / V} \rightarrow f^{\prime *}\left(N_{i}\right)$ induces an isomorphism on the underlying reduced subschemes.
c) With the assumptions as in (b), show $C_{W / V}$ is irreducible. Letting $C=C_{W / V \mathrm{red}}$, write $\operatorname{cyc}_{C}\left(C_{W / V}\right)=m \cdot C$. Show that $\left(i, i^{\prime}\right)^{!}([V])=m \cdot[W]$. d) With the assumptions and notations as in (b) and (c),

$$
0<m \leq \ln g_{\mathcal{O}_{Y, W}} \mathcal{O}_{X, W} \otimes_{\mathcal{O}_{Y, W}} \mathcal{O}_{V, W}
$$

(you can assume that f is a closed immersion, if you wish).
e) With the assumptions as in (b), show that if $\ln g_{\mathcal{O}_{Y, W}} \mathcal{O}_{X, W} \otimes_{\mathcal{O}_{Y, W}} \mathcal{O}_{V, W}=$ 1 , then $\mathcal{O}_{V, W}$ and $\mathcal{O}_{X, W}$ are regular local rings and the multiplicity m is one.
5) Let X be a smooth k-scheme and let $F \subset X$ be a smooth closed subscheme of codimension $c+1$. Let $q: \tilde{X} \rightarrow X$ be the blowup of X along F and let $E \subset \tilde{X}$ be the exceptional divisor $q^{-1}(F)$, giving the Cartesian
diagram

a) Recall that

$$
E=\operatorname{Proj}_{\mathcal{O}_{F}}\left(\oplus_{n \geq 0} \mathcal{I}_{F}^{n} / \mathcal{I}_{F}^{n+1}\right) \cong \operatorname{Proj}_{\mathcal{O}_{F}}\left(\operatorname{Sym}_{\mathcal{O}_{F}}^{*}\left(\mathcal{I}_{F} / \mathcal{I}_{F}^{2}\right)\right) \cong \mathbb{P}\left(N_{i}\right) ;
$$

and

$$
\tilde{X}=\operatorname{Proj}_{\mathcal{O}_{X}}\left(\oplus_{n \geq 0} \mathcal{I}_{F}^{n}\right)
$$

This gives the invertible sheaf $\mathcal{O}(1)$ on \tilde{X} with restriction $\mathcal{O}_{E}(1)$ on E and its dual $\mathcal{O}_{E}(-1)$. Show that the invertible sheaf $\mathcal{O}_{\tilde{X}}(E) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{E}$ is isomorphic to $\mathcal{O}_{E}(-1)$. Hint: Reduce to the case $X=\operatorname{Spec} A, I_{F}=\left(a_{0}, \ldots, a_{c}\right)$. Let $T_{i} \in H^{0}(\tilde{X}, \mathcal{O}(1))$ be the element corresponding to $a_{i} \in I_{F}$ and let $U_{i} \subset \tilde{X}$ be the open subscheme defined by $T_{i} \neq 0$. Show that the U_{i} cover \tilde{X} and that $E \cap U_{i}$ is defined by a_{i}. Use this to show define $\mathcal{O}_{\tilde{X}}(E) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_{E}$ and $\mathcal{O}_{E}(-1)$ by cocycles.
b) Use the projective bundle formula to compute $\mathrm{CH}^{*}(E)$ in terms of $\mathrm{CH}^{*}(F)$ and show that q_{*}^{\prime} induces an isomorphism

$$
\operatorname{ker}\left(i_{*}^{\prime}\right) \rightarrow \operatorname{ker}\left(i_{*}\right)
$$

Hint: if $i_{*}^{\prime}(x)=0$, then $c_{1}\left(\mathcal{O}_{E}(1)\right) \cdot x=-i_{E}^{*}\left(i_{*}^{\prime}(x)\right)=0$. Then show that

$$
q_{*}^{\prime}\left(c_{1}\left(O_{E}(1)^{c} \cdot q^{\prime *}(x)\right)\right)=x
$$

for $x \in \mathrm{CH}^{*}(F)$ (Hint: Reduce to the case $F=\operatorname{Spec} K, K$ a field by a dimension count.
c) Show that $\mathrm{CH}^{*}(\tilde{X}) \cong \mathrm{CH}^{*}(X) \oplus \oplus_{i=0}^{c-1} \mathrm{CH}^{*-i-1}(F)$.

