Algebraic Geometry 4-Homework 1

1) Let $L \to X$ be a line bundle on some finite type k-scheme X and let $s: X \to L$ be the 0-section. Show that the operator $\tilde{c}_1(L)$ is equal to $s^*s_*: \operatorname{CH}_n(X) \to \operatorname{CH}_{n-1}(X)$.

2) Let $L \to X$ be a line bundle on some smooth integral finite type kscheme X. Recall that the Chern class $c_1(L) \in \operatorname{CH}^1(X)$ is defined as $c_1(L) := \tilde{c}_1(L)([X])$, where $[X] \in \operatorname{CH}_{\dim_k X}(X)$ is the fundamental class $1 \cdot X$. Show that for line bundles L and M on X,

$$c_1(L) \cdot c_1(M) = \tilde{c}_1(L)(\tilde{c}_1(M)([X])).$$

3) a) Show that the ring $CH^*(\mathbb{P}^n_k)$ is isomorphic to $\mathbb{Z}[t]/t^{n+1}$, with t mapping to $c_1(\mathcal{O}(1))$.

4) Let $i : X \to Y$ be a regular embedding of codimension c (in \mathbf{Sch}/k), let $f : V \to Y$ be a morphism with V an integral finite type k-scheme of dimension d, and form the Cartesian diagram

a) Show that each integral component of the cone $C_{W/V}$ has dimension d over k. Hint First show that Def(i') is integral and has dimension d + 1 over k.

b) Suppose that W is irreducible and has dimension d - c. Show that the closed immersion $C_{W/V} \to f'^*(N_i)$ induces an isomorphism on the underlying reduced subschemes.

c) With the assumptions as in (b), show $C_{W/V}$ is irreducible. Letting $C = C_{W/Vred}$, write $\operatorname{cyc}_C(C_{W/V}) = m \cdot C$. Show that $(i, i')!([V]) = m \cdot [W]$. d) With the assumptions and notations as in (b) and (c),

$$0 < m \leq lng_{\mathcal{O}_{Y,W}}\mathcal{O}_{X,W} \otimes_{\mathcal{O}_{Y,W}} \mathcal{O}_{V,W}$$

(you can assume that f is a closed immersion, if you wish).

e) With the assumptions as in (b), show that if $lng_{\mathcal{O}_{Y,W}}\mathcal{O}_{X,W}\otimes_{\mathcal{O}_{Y,W}}\mathcal{O}_{V,W} = 1$, then $\mathcal{O}_{V,W}$ and $\mathcal{O}_{X,W}$ are regular local rings and the multiplicity *m* is one.

5) Let X be a smooth k-scheme and let $F \subset X$ be a smooth closed subscheme of codimension c + 1. Let $q : \tilde{X} \to X$ be the blowup of X along F and let $E \subset \tilde{X}$ be the exceptional divisor $q^{-1}(F)$, giving the Cartesian diagram

$$\begin{array}{cccc}
E & \stackrel{i'}{\longrightarrow} \tilde{X} \\
 q' & & & \downarrow^{q} \\
 F & \stackrel{i'}{\longrightarrow} X \\
\end{array}$$

a) Recall that

$$E = \operatorname{Proj}_{\mathcal{O}_F}(\bigoplus_{n \ge 0} \mathcal{I}_F^n / \mathcal{I}_F^{n+1}) \cong \operatorname{Proj}_{\mathcal{O}_F}(\operatorname{Sym}^*_{\mathcal{O}_F}(\mathcal{I}_F / \mathcal{I}_F^2)) \cong \mathbb{P}(N_i);$$

and

$$X = \operatorname{Proj}_{\mathcal{O}_X}(\bigoplus_{n \ge 0} \mathcal{I}_F^n).$$

This gives the invertible sheaf $\mathcal{O}(1)$ on \tilde{X} with restriction $\mathcal{O}_E(1)$ on E and its dual $\mathcal{O}_E(-1)$. Show that the invertible sheaf $\mathcal{O}_{\tilde{X}}(E) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_E$ is isomorphic to $\mathcal{O}_E(-1)$. *Hint*: Reduce to the case $X = \operatorname{Spec} A$, $I_F = (a_0, \ldots, a_c)$. Let $T_i \in H^0(\tilde{X}, \mathcal{O}(1))$ be the element corresponding to $a_i \in I_F$ and let $U_i \subset \tilde{X}$ be the open subscheme defined by $T_i \neq 0$. Show that the U_i cover \tilde{X} and that $E \cap U_i$ is defined by a_i . Use this to show define $\mathcal{O}_{\tilde{X}}(E) \otimes_{\mathcal{O}_{\tilde{X}}} \mathcal{O}_E$ and $\mathcal{O}_E(-1)$ by cocycles.

b) Use the projective bundle formula to compute $CH^*(E)$ in terms of $CH^*(F)$ and show that q'_* induces an isomorphism

$$\ker(i'_{*}) \to \ker(i_{*}).$$
Hint: if $i'_{*}(x) = 0$, then $c_{1}(\mathcal{O}_{E}(1)) \cdot x = -i^{*}_{E}(i'_{*}(x)) = 0$. Then show that $q'_{*}(c_{1}(O_{E}(1)^{c} \cdot q'^{*}(x))) = x$

for $x \in CH^*(F)$ (*Hint*: Reduce to the case $F = \operatorname{Spec} K$, K a field by a dimension count.

c) Show that $\operatorname{CH}^*(\tilde{X}) \cong \operatorname{CH}^*(X) \oplus \oplus_{i=0}^{c-1} \operatorname{CH}^{*-i-1}(F).$