Coding with Cyclic PAM and Vector Quantization for the RLWE/MLWE Channel

Irina E. Bocharova, Henk D.L. Hollmann, **Karan Khathuria**, Boris D. Kudryashov, Vitaly Skachek

University of Tartu, Estonia

IEEE International Symposium on Information Theory (ISIT) Aalto University, Espoo, Finland

June 27, 2022

Outline

RLWE/MLWE Based Cryptography

RLWE Channel

Previous Coding Schemes

New Coding Scheme Example using BCH codes

Numerical Results and Comparisons

RLWE/MLWE Based Cryptography

Kyber public-key encryption scheme

Setup:

q	prime number
n, k, ℓ	integers
\mathcal{R}_q	$\mathbb{Z}_q[X]/(X^n+1)$
β	distribution on \mathcal{R}_q
$\phi: \mathbb{Z}_2^k \to \mathcal{R}_q$	Encoder

Key generation:

- Sample $A \in \mathcal{R}_q^{\ell imes \ell}$ randomly
- Sample $\mathbf{e}, \mathbf{s} \in \mathcal{R}_q^{\ell}$ w.r.t. β Public Key: $(A, \mathbf{b} = A\mathbf{s} + \mathbf{e})$ Secret Key: \mathbf{s}

Encryption: Message = $\mathbf{m} \in \mathbb{Z}_2^k$

- Sample $\mathbf{s}', \mathbf{e}' \in \mathcal{R}^\ell_q$ w.r.t. eta
- Sample $e'' \in \mathcal{R}_q$ w.r.t β

-
$$u := A^{T}s' + e'$$

-
$$v \coloneqq \mathbf{b}^{\mathsf{T}}\mathbf{s}' + e'' + \phi(\mathbf{m})$$

- $\mathbf{c} \coloneqq (\mathbf{u}, v) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q$

Decryption:

- Compute
$$v - \mathbf{s}^{\top} \mathbf{u}$$

= $\mathbf{b}^{\top} \mathbf{s}' + \mathbf{e}'' + \phi(\mathbf{m}) - \mathbf{s}^{\top} (\mathbf{A}^{\top} \mathbf{s}' + \mathbf{e}')$
= $\phi(\mathbf{m}) + \mathbf{e}^{\top} \mathbf{s}' - \mathbf{s}^{\top} \mathbf{e}' + \mathbf{e}''$

- Remove the noise using a decoder
$$\mathcal{D}$$
, and restore $\overline{\mathbf{m}}$.

RLWE Channel

Lemma (Noise distribution of MLWE¹)

The distribution of one coefficient of the MLWE noise element $\mathbf{e}^{\mathsf{T}}\mathbf{s}' - \mathbf{s}^{\mathsf{T}}\mathbf{e}' + \mathbf{e}''$ is given by

 $\psi = \circledast_{\ell-1}(\circledast_{n-1}\xi) * \circledast_{\ell-1}(\circledast_{n-1}\xi) * \beta,$

where \circledast denoted the convolution of distributions.

(1)

¹ Georg Maringer, Sven Puchinger, and Antonia Wachter-Zeh. "Higher Rates and Information-Theoretic Analysis for the RLWE Channel". In: 2020 IEEE Information Theory Workshop (ITW). 2021, pp. 1–5. DOI: 10.1109/ITW46852.2021.9457596

Previous Coding Schemes

- $\ensuremath{\mathcal{C}}$ is a linear code,
- Map : $\mathbb{Z}_2^n \to \mathcal{R}_q$ is defined coordinate-wise:

$$\begin{array}{l} 0 \mapsto 0 \\ 1 \mapsto \lfloor q/2 \rfloor \end{array}$$

$$\phi(\mathbf{m}) + \text{noise} \longrightarrow \mathbf{Decoder} \longrightarrow \mathbf{\overline{m}}$$

$$\in \mathcal{R}_q \longrightarrow \mathcal{D} \longrightarrow \in \mathbb{Z}_2^k$$

$$\mathcal{R}_q \longrightarrow \mathbb{Z}_2^n \longrightarrow \mathbb{Z}_2^k$$

- Demap: $\mathcal{R}_q \to \mathbb{Z}_2^n$ is defined coordinate-wise:

$$y \mapsto egin{cases} 0 & ext{if } |y| < \lfloor q/4
floor \ 1 & ext{otherwise} \end{cases}$$

- Dec refers to decoding of the code $\ensuremath{\mathcal{C}}.$

Advantages of Coding schemes

• Lower decryption failure rate (DFR):

 $\mathfrak p$ = probability that the magnitude of noise is < q/4

Uncoded	Coded	
$DFR \leq 1 - \mathfrak{p}^n$	$DFR \le 1 - \sum_{i=0}^{t} {n \choose i} \mathfrak{p}^{i} (1-\mathfrak{p})^{n-i}$	

Figure: \mathbb{Z}_q

• Equivalently, we can have **lower communication rate**.

New Coding Scheme

Using PAM and vector quantization

Encoding: Fix $Q = 2^L$, N = nL and $h = \lfloor q/Q \rfloor$ (here we assume L = 2)

$$\mathbf{m}\longmapsto \mathbf{c}\coloneqq \mathbf{m} G\longmapsto \mathbf{b}\longmapsto \mathbf{a}\longmapsto h\mathbf{a}$$

- ▶ C is a linear code, generated by $G \in \mathbb{F}_2^{k \times N}$.
- ► Lift: $\mathbb{Z}_2^{2n} \to \mathbb{Z}_4^n$ given by $(c_1, \ldots, c_n, c_{n+1}, \ldots, c_{2n}) \mapsto (2c_1 + c_{n+1}, \ldots, 2c_n + c_{2n})$
- ▶ Gray: $\mathbb{Z}_4^n \to \mathbb{Z}_4^n$ is defined coordinate-wise: $2b_2 + b_1 \mapsto 2b_2 + (b_1 \oplus b_2)$
- ▶ $h: \mathbb{Z}_4^n \to \mathbb{Z}_q^n$ is scalar multiplication by *h*, i.e., **a** \mapsto *h***a**.

New Coding Scheme

Using PAM and vector quantization

Decoding: Let $\mathbf{y} = \mathbf{x} + \mathbf{z} \in \mathbb{Z}_q^n$ be the received vector, where \mathbf{z} is the noise from RLWE Channel.

Vector quantization = Maximum-likelihood demodulation + HDD/SDD

For each code-symbol c₁,..., c_{2n}, compute the log-likelihood ratios (LLRs)
 w = (w₁,..., w_{2n}):

$$w_{i+jn} \coloneqq \log \frac{\sum_{\mathbf{c} \in \mathbb{Z}_2^2: c_j=1} \psi\left(y_i - x_{\mathbf{c}} \mod q\right)}{\sum_{\mathbf{c} \in \mathbb{Z}_2^2: c_j=0} \psi\left(y_i - x_{\mathbf{c}} \mod q\right)},\tag{2}$$

for each i = 1, ..., n and j = 0, 1.

2. Use the LLRs to perform hard-decision decoding (HDD) or soft-decision decoding (SDD).

Example

Using BCH codes and soft-decision decoding

Kyber-512 parameters: $n = 256, \ell = 2, q = 3329$

Let C be the primitive binary [512, 256, 62] BCH code.

Encoding: Message $\mathbf{m} \in \mathbb{Z}_2^{256}$

 $\mathbf{m} \stackrel{\mathcal{C}}{\mapsto} \mathbf{c} := \mathbf{m} G \mapsto \mathbf{x} := h \operatorname{Gray}(2c_1 + c_{n+1}, \dots, 2c_n + c_{2n})$

Decoding: Received vector $\mathbf{y} = \mathbf{x} + \mathbf{z} \in \mathbb{Z}_q^n$

- **1.** Compute the LLR's $\mathbf{w} = (w_1, \ldots, w_{2n})$
- 2. Perform either HDD or SDD:
 - ► HDD: Berlekamp-Massey algorithm
 - SDD: Ordered statistic decoding (OSD)

Figure: Gray coded 4-PAM symbols

Numerical Results and Comparisons

Comparisons for Kyber-512 scheme with fixed communication rate

Coding scheme	d_{\min}	DFR
Uncoded ⁴	1	2 ⁻¹⁷⁴
Ternary BCH code ⁵	26	2^{-989}
Binary BCH code with HDD	62	2^{-1325}
Binary BCH code with OSD-8	62	2^{-1414}

⁴ Joppe Bos et al. "CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM". In: *IEEE European Symposium on Security and Privacy (EuroS&P)*. 2018, pp. 353–367.

⁵ Georg Maringer, Sven Puchinger, and Antonia Wachter-Zeh. "Higher Rates and Information-Theoretic Analysis for the RLWE Channel". In: 2020 IEEE Information Theory Workshop (ITW). 2021, pp. 1–5. DOI: 10.1109/ITW46852.2021.9457596.

Conclusion

- ► New coding scheme for RLWE channel:
 - Encoding: Linear code + pulse amplitude modulation (PAM)
 - Decoding: Vector quantization + error correction using hard/soft decisions.
- Advantages: Error-correction codes reduces communication rate and/or DFR in the RLWE-based encryption schemes.

Potential future work

- Comparing the performance of other codes, e.g. LDPC codes, Turbo codes
- Constant-time decoding?
- Coding scheme for other LWE-based cryptosystems, e.g. homomorphic encryption schemes, PIR schemes.

Thank you