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Abstract

In this dissertation, we apply various algebraic techniques to: develop some code-

based cryptosystems; break some noncommutative cryptographic protocols; and the-

oretically analyze some multivariate cryptosystems.

Code-based encryption schemes, such as the McEliece cryptosystem, face a prob-

lem of having large key sizes. In the first part of the thesis, we propose new cryp-

tosystems that aim to reduce the key sizes. We present two new variants of the

McEliece cryptosystem: the first one is based on using shortened expanded Reed–

Solomon codes, and the second one is based on using Reed-Solomon codes masked

by constant row weight two matrix. Both the proposed cryptosystems show remark-

able improvements on the key sizes and at the same time counter all the existing

algebraic attacks.

In the second part, we cryptanalyze the protocols based on the noncommutative

ring of matrices E(m)
p . In particular, we study the intrinsic Z/pmZ-module struc-

ture of the ring E(m)
p . Using this intrinsic structure, solving a linear system over

E
(m)
p becomes computationally equivalent to solving a linear system over Z/pmZ.

As an application, we efficiently break all the cryptographic protocols based on the

semigroup action problem and the Diffie–Hellman decomposition problem over E(m)
p .

Currently, most of the multivariate schemes are based on systems of quadratic

polynomials, mainly because they are smaller compared to higher degree construc-

tions and hence more efficient. In quadratic constructions, one of the most successful

family of attacks is the MinRank attack. It exploits the existence of a low-rank linear

combination of the matrices representing the quadratic forms of the public polyno-

mials. A natural way to avoid this attack is to use cubic polynomials. This leads

to several questions: Is there a notion of rank for cubic forms? Can we extend

the MinRank attack to cubic constructions? What are the implications of low-rank

cubic constructions? In the last part of the thesis, we address all these questions by

taking a general perspective of cubic multivariate schemes.
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Chapter 1

Introduction

In the modern era, cryptography refers to the study of techniques for secure commu-

nication, identity authentication, data confidentiality, digital signatures, interactive

proofs, secure computation, etc. In this thesis we focus on the most common form of

modern cryptography that concerns with secure communication between two parties

assuming the presence of third parties called adversaries.

A general protocol for secure communication involves two steps: encryption and

decryption. During encryption the secret message, called plaintext, is transformed

into an incomprehensible form, called ciphertext. On the other hand, decryption is

the process of converting the ciphertext back to the original plaintext. Both the

encryption and decryption processes are operated by using a key. The protocols for

secure communication can be divided into two categories: symmetric and asymmet-

ric. Symmetric cryptosystems use the same secret key for encrypting and decrypting

a message. Whereas, in asymmetric cryptosystems (or public-key cryptosystems) a

message is encrypted using a publicly known key and it is decrypted using a private

key.

Symmetric cryptosystems are widely used for secure communication, mainly be-

cause of their efficiency and enhanced security. The famous AES (Advanced Encryp-

tion Standard) is an example of a symmetric cryptosystem. One main disadvantage

of symmetric algorithms is that it requires both the parties to have the same se-

cret key. Before the arrival of asymmetric cryptosystems in 1976, the shared secret

key was communicated via a physically secure channel. However, physically com-

municatig the secret key is not always possible. Moreover, the key management

becomes a nightmare if many parties are involved in the communication. In 1976,

Diffie and Hellman [56] proposed the notion of public-key cryptography, by present-

ing the Diffie–Hellman key exchange protocol, which is now widely used to securely
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communicate the shared secret key.

The Diffie–Hellman key exchange protocol showed that public-key cryptogra-

phy is indeed possible. As a consequence, in 1978, Rivest, Shamir and Adleman

[140] developed one of the first public-key cryptosystems, commonly known as RSA

cryptosystem. Other notable public-key cryptosystems include the ElGamal cryp-

tosystem [61], Cramer–Shoup cryptosystem [53], elliptic curve based cryptosystems

[99, 121].

Besides secure communication and key exchange, public-key cryptography has

been applied for many other purposes. For example:

• Digital signatures: to verify the authenticity of digital documents.

• Identification systems: that allows one party to prove its identity to another

party.

• Non-repudiation systems: assures that someone cannot deny having performed

a particular action.

• Digital currencies: which insures anonymity of the users.

• Electronic voting : to ensure confidentiality and correctness of votes.

The security of public-key cryptosystems is often based on the computational

complexity of hard problems arising from different fields of mathematics. For ex-

ample, the security of RSA is connected to the problem of factoring large integers,

Diffie–Hellman and ElGamal are connected to the discrete logarithm problem over

the underlying group, and elliptic curve cryptography (ECC) is connected to elliptic

curve discrete logarithm problem.

The research field of cryptography took a sharp turn in 1994 when Shor [147] pre-

sented a polynomial-time algorithm for factoring integers on a hypothetical quantum

computer. Shor’s algorithm can be trivially generalized for the discrete logarithm

problem over an arbitrary finite cyclic group. Moreover, the algorithm was later

extended to solve also the elliptic curve discrete logarithm problem. This means

that the commonly used public-key cryptosystems such as RSA, Diffie–Hellman and

ECC can efficiently be broken, assuming a sufficiently large quantum computer is

built. As a consequence, the cryptographers have shifted their focus on design-

ing quantum secure cryptographic primitives, the area is more commonly known as

post-quantum cryptography. The threat of quantum computers are mostly towards
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public-key protocols, as symmetric cryptosystems are considered to be relatively

safe against quantum attacks.

Over the past ten years, significant efforts have been put in developing post-

quantum public-key protocols. Consequently, in December 2016, National Institute

of Standards and Technology (NIST) initiated the ongoing process of standardiza-

tion of quantum-resistant public-key cryptographic algorithms. The standardization

process is currently in its second phase, which involves 17 candidates for public-key

encryption schemes and 9 candidates for digital signature schemes. All these candi-

dates can be categorized into five categories, where category relies on the computa-

tional complexity of distinct hard problems:

• Code-based cryptography : relies on the hardness of decoding a random linear

code.

- Protocols from NIST standardization process: classical McEliece cryptosys-

tem [30], BIKE (Bit flipping key encapsulation) [7], ROLLO [116] (Rank-

Ouruboros, LAKE and LOCKER), RQC [1] (Rank quasi-cyclic), HQC [1]

(Hamming quasi-cyclic), LEDAcrypt [14] and NTS-KEM [3].

- Advantages: classical McEliece scheme resisted cryptanalysis since 1978; fast

encryption and decryption.

- Disadvantages: large key sizes (but significant improvements have been made

in the last decade); no secure signature schemes.

• Hash-based cryptography : relies on the security of the underlying hash func-

tions.

- Protocols from NIST standardization process: SPHINCS+ [29] signature

scheme.

- Advantages: security is well understood, very efficient.

- Disadvantages: only signature schemes; large signatures.

• Lattice-based cryptography : relies on certain computationally hard lattice prob-

lems, such as finding a short vector in a lattice of high dimension.

- Protocols from NIST standardization process: FrodoKEM [37], NTRU [83],

NTRU Prime [28], NewHope [5], Round5 [12] based on the general learning

with rounding (GLWR) problem, SABER based on learning with round-

ing (LWR) problem, ThreeBears [78] based on module learning with error
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(MLWE) problem, CRYSTALS-Kyber [11] based on MLWE problem, FAL-

CON [71] (fast-Fourier lattice-based compact signatures over NTRU) and

qTESLA [35] signature scheme.

- Advantages: various applications: encryption, digital signatures, key ex-

change, fully homomorphic encryption; many schemes are proven secure

under worst-case hardness assumptions.

- Disadvantages: the overall security provided by shortest vector problems is

not completely understood, as some theoretical attacks have significantly

weakened the security.

• Multivariate cryptography : relies on the difficulty of solving a system of mul-

tivariate polynomial equations.

- Protocols from NIST standardization process: GeMSS [41] (Great multivari-

ate short signature) scheme, LUOV [34] (Lifted Unbalanced oil and vinegar)

signature scheme, Rainbow [59, 137] signature scheme, and MQDSS [43]

signature scheme.

- Advantages: short signatures; very efficient.

- Disadvantages: large key sizes; no secure encryption schemes.

• Super-singular elliptic curve isogeny-based cryptography : relies on the problem

of finding the isogeny map between two super-singular elliptic curves.

- Protocols from NIST standardization process: SIKE [89] (supersingular

isogeny key encapsulation); based on SIDH [54] (super-singular isogeny Diffie–

Hellman) key exchange,

- Advantages: SIDH provides perfect forward secrecy; small key sizes.

- Disadvantages: relatively slow speed.

1.1 Overview of the Thesis

This thesis covers three different areas of cryptography, namely code-based cryp-

tography, noncommutative cryptography and multivariate cryptography. Each of

these areas can be seen as an application of distinct algebraic structures to cryp-

tography. Code-based cryptography can be viewed as application of linear algebra,

as the primary object involved here is a linear code over a finite field Fq, which
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are linear subspaces of Fnq . Noncommutative cryptography, as the name suggests, is

based on the noncommutative algebraic structures such as semigroups, groups and

rings. Multivariate cryptography involves, as the main object, a system of non-linear

polynomials in multiple variables.

Code-Based Cryptography

Code-based cryptography dates back to 1978 when McEliece [114] presented an

encryption scheme based on the hardness of decoding a linear error-correcting code.

A generic design of a code-based asymmetric encryption scheme uses linear codes

for public and private keys. The private key is a linear code having a specific

structure that is endowed with efficient decoding capabilities. The corresponding

public key is a disguised form of the private code, so that the public code behaves

like a random linear code. The encryption is done by first encoding the plaintext

into a codeword of the public code and then adding to it certain amount of errors.

During the decryption these errors are removed using the decoding capability of the

private code, and the plaintext is recovered.

While the public-key encryption scheme is the most common form of code-based

cryptography, other primitives of code-based cryptography include: signature and

identification schemes [48, 8, 55], random number generators [70, 72], cryptographic

hash functions [10].

In Chapter 2, we present two new code-based encryption schemes. The schemes

are two distinct variants of the McEliece cryptosystem based on two distinct ways of

hiding the structure of Reed–Solomon (RS) codes. In the past many cryptographers

have proposed to use RS codes in the McEliece’s setting, but most of them failed

to hide the underlying algebraic structure of RS codes. In the two proposed cryp-

tosystems, we show that the new approaches of hiding the structure of RS codes are

immune against all the existing algebraic attacks. Moreover, we obtain much lower

key sizes compared to the original McEliece scheme.

Noncommutative Cryptography

Noncommutative cryptography is a broad field of research that aims to develop

new cryptosystems and key exchange protocols based on noncommutative algebraic

structures.
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Most of the attempts in developing noncommutative cryptographic primitives

can be seen as a generalization of the Diffie–Hellman key exchange and the ElGamal

protocol that are based on the following underlying problems:

• Conjugacy search problem: Given two elements x, y in a group G, find an

element z ∈ G such that x = z−1yz.

• Decomposition problem: Given two elements x, y in a semigroupG, find z1, z2 ∈
G such that x = z1yz2.

• Semi-group action problem: Let G be a finite semigroup acting on a set S.

Given a, b ∈ S such that b = x · a for some x ∈ G, find x′ ∈ G such that

b = x′ · a.

Some examples of nonabelian groups which are considered: braid groups [6, 97,

96], matrix groups [157], Thompson’s group [148], Solvable groups [149].

Chapter 3 is devoted to the cryptanalysis of certain cryptographic schemes based

on the semigroup action problem and the decomposition problem. In [47], Climent

and López-Ramos proposed three protocols using a special noncommutative ring of

matrices, called E(m)
p . We present an algebraic technique to break all three protocols

in polynomial-time.

Multivariate Cryptography

Multivariate cryptography is the study of public-key cryptosystems based on the

difficulty of solving a system of multivariate polynomials over a finite field.

A generic design of a multivariate public-key scheme uses systems of multivariate

polynomials for public and private keys. The private key is a system of polynomials

that is easy to invert. The corresponding public key is obtained by disguising the

private polynomials using some affine transformations. The encryption is done by

simply evaluating the public polynomials in the plaintext. Whereas the decryp-

tion uses the knowledge of private polynomials to invert the ciphertext back to the

plaintext.

Historically, multivariate cryptography have been more promising in developing

signature schemes than encryption schemes. This is mainly because an encryption

scheme requires the public key map to be injective, whereas signature schemes re-

quires surjectivity. Some of the most famous examples of multivariate signature
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schemes include: Matsumoto–Imai (MI) cryptosystem [110], Hidden Field Equa-

tions (HFE) [132], Unbalanced Oil and Vinegar (UOV) signature scheme [133, 94],

Rainbow signature scheme [59].

Chapter 4 presents a foundation theory for the analysis of multivariate cryp-

tosystems that are based on cubic polynomials. Currently, most of the multivariate

schemes are constructed using quadratic polynomials, and their security is based

on the multivariate quadratic problem (to solve a system of multivariate quadratic

polynomials). However, by relating quadratic forms with matrices, many of the mul-

tivariate quadratic schemes have been attacked using the MinRank attack. Hence,

a natural countermeasure is to use cubic polynomials. In this thesis, we extend the

notion of the MinRank attack to the cubic polynomial setting. In particular, we

gather appropriate literature to frame the discussion of rank of cubic forms.
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Chapter 2

Code-Based Public-Key

Encryption Schemes

This chapter concerns the area of code-based cryptography. It is an area of cryp-

tology that deals with cryptographic primitives based on the hardness of decoding

a random linear code. In this chapter, we will deal with code-based public-key

encryption schemes.

The chapter is based on the following two papers:

• Karan Khathuria, Joachim Rosenthal, and Violetta Weger. “Weight Two

Masking of the Reed-Solomon Structure in Conjugation with List Decoding”.

In: Proceedings of the 23rd International Symposium on Mathematical Theory

of Networks and Systems – MTNS. 2018. doi: 10.5167/uzh-168132

This paper proposes a variant of the McEliece cryptosystem which uses, as a

secret code, a Reed–Solomon code masked by a constant row weight two ma-

trix. The cryptosystem also uses the technique of list decoding for decryption

to obtain lower key sizes.

• Karan Khathuria, Joachim Rosenthal, and Violetta Weger. “Encryption Scheme

Based on Expanded Reed-Solomon Codes”. In: Advances in Mathematics of

Communications (2019). issn: 1930-5346. doi: 10.3934/amc.2020053

This paper proposes a variant of the McEliece cryptosystem which uses short-

ened expanded Reed–Solomon codes. The cryptosystem can also be viewed as

a generalization of the classical McEliece cryptosystem.

https://doi.org/10.5167/uzh-168132
https://doi.org/10.3934/amc.2020053
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2.1 Introduction

In 1978 McEliece [114] presented the first code-based public-key cryptosystem. It

belongs to the family of a very few public-key cryptosystems which are unbroken

since decades. The hard problem the McEliece system relies on, is the difficulty

of decoding a random (-like) linear code having no visible structure. The famous

cryptosystem RSA [140] was also introduced in the same year, which is based on

the difficulty of factoring integers. However, due to large key sizes the McEliece

cryptosystem never gained much traction.

The motivation to study code-based cryptography is due to the advent of quan-

tum computers. In 1994, Peter Shor [146] developed a polynomial time quantum

algorithm for factoring integers and solving discrete logarithm problems. This means

that most of the currently popular cryptosystems, such as RSA and ECC, will be

broken in an era of quantum computers. In the ongoing process of the standard-

ization of quantum-resistant public-key cryptographic algorithms by the National

Institute of Standards and Technology (NIST) [2], code-based cryptosystems are

one of the most promising candidates. At the time of this writing there are seven

code-based cryptosystems included in NIST’s standardization process: BIKE [7]

based on quasi-cyclic MDPC codes, classic McEliece [30] based on binary Goppa

codes, ROLLO [116] based on quasi-cyclic LRPC codes, RQC [1] based on rank

metric quasi-cyclic codes, HQC [1] based on Hamming metric quasi-cyclic codes,

LEDAcrypt [14] based on quasi-cyclic LDPC codes and NTS-KEM [3] based on

binary Goppa codes.

As mentioned before, code-based cryptography relies on the hardness of decoding

a random (-like) linear code. In 1978, Berlekamp, McEliece and van Tilborg [25]

showed that decoding a random linear binary code is an NP-complete problem. Until

today two main methods for solving this problem have been proposed: information

set decoding (ISD) and the generalized birthday algorithm (GBA). The ISD is more

efficient if the decoding problem has only a small number of solutions, whereas GBA

is efficient when there are many solutions. In code-based cryptography, we mainly

encounter the case of having a unique solution and hence ISD algorithms act as a

tool to determine the parameters of the cryptosystem for a given security level.

A Brief History of Code-Based Public-Key Cryptography: McEliece origi-

nally proposed to use binary Goppa codes for the encryption scheme, which resisted
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cryptanalysis so far. However, due to the low error-correcting capacity of Goppa

codes, the cryptosystem results in large public key sizes. Many variants of the

McEliece scheme have been proposed in order to reduce the key sizes. These vari-

ants can be divided in two categories: one is based on changing the underlying code,

and the other is based on changing the metric.

Several variants have been proposed that uses alternative families of codes. The

most famous family of codes considered is the Reed–Solomon codes. In 1985, Nieder-

reiter [128] proposed an equivalent dual version of the McEliece cryptosystem and

replaced the underlying code by a Reed–Solomon code. This improved the key sizes,

however in 1992 Sidelnikov and Shestakov [152] provided a polynomial time key re-

covery attack. Since then many researchers have tried to hide the algebraic structure

of Reed–Solomon codes [15, 16, 18, 23, 36, 93], but most of them were unsuccessful

due to the square code based key recovery attacks [49, 52, 162]. Other families of

codes that were proposed are: non-binary Goppa codes [32], algebraic geometric

codes [88], LDPC and MDPC codes [17, 123], Reed-Muller codes [150] and convo-

lutional codes [106]. Yet again the codes having algebraicc structures were mostly

unsuccessful in hiding the structure of the private code [50, 51, 101, 122, 129].

The second category of McEliece variants is based on replacing the Hamming

metric by other metrics, like the rank metric and the Lee metric. In the ongoing

NIST’s standardization there are two schemes based on rank metric codes: ROLLO

[116] and RQC [1]. The schemes based on rank metric codes delivers the lowest key

sizes for a given security level. However, schemes using rank metric codes have not

been cryptanalyzed as rigorously as in the Hamming metric case. Recently, [84, 160,

161] presented the potential of using the Lee metric as an alternative.

Overview of the Chapter: In this chapter we present two variants of the McEliece

cryptosystem by using two distinct ways of hiding the algebraic structure of Reed–

Solomon codes. The proposed variants aim to improve the key sizes and at the

same time counter the existing algebraic attacks. Both the methods used to hide

the Reed–Solomon codes can also be applied to other algebraic codes that have been

attacked using the square code technique.

• The first variant uses expanded Reed–Solomon (RS) codes. A linear [n, k]

code defined over an extension field Fqm can be expanded, over the base field

Fq, to an [mn,mk] linear code by expanding each codeword with respect to a
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fixed Fq-linear isomorphism from Fqm to Fmq . In the proposed cryptosystem

we hide the structure of an expanded RS code by puncturing and permuting

the columns of its parity check matrix and multiplying by an invertible block

diagonal matrix. In order to decode a large number of non-codewords, we use a

burst of errors during the encryption step, i.e., we consider error vectors having

support in sub-vectors of size λ. This error pattern comes with a disadvantage:

it can be used to speed up the ISD algorithms. However, for a small degree of

extension m, the key sizes turn out to be remarkably competitive.

• In the second variant we use Reed–Solomon codes as secret codes and hide

their structure using a matrix of constant row weight two. In addition, we

use list decoding in the decryption process, in order to allow more errors and

subsequently improve the key sizes. The idea of using a weight-two masking

on Reed–Solomon codes was first introduced in [36], but without a thorough

security analysis. In this work, we provide some theoretical and experimental

evidence for the security of the cryptosystem against some known attacks.

The chapter is organized as follows. In Section 2.2, we give the preliminaries

regarding coding theory and code-based cryptography. In Section 2.3, we describe

and cryptanalyze the first proposed cryptosystem which is based on the shortening

of an expanded generalized Reed–Solomon code. In Section 2.4, we describe and

cryptanalyze the second proposed cryptosystem which is based on the weight two

masking of generalized Reed–Solomon codes. Section 2.5 compares the performance

of the two proposed cryptosystems with other variants of the McEliece system ,

including the classical McEliece scheme.

2.2 Background

2.2.1 Coding Theory

In this thesis, we deal with linear codes with particular interest in their application

to cryptography.

Let Fq be a finite field with q elements. For the vectors x = (x1, . . . , xn) and

y = (y1, . . . , yn), the Hamming distance between x and y is defined to be the number

of coordinates where x and y differ, i.e., d(x, y) := |{1 ≤ i ≤ n : xi 6= yi}|. The
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Hamming weight of x is defined as the number of non-zero coordinates in x, i.e.,

wt(x) := d(x, 0).

The Hamming distance is a metric on Fnq , as one can verify easily.

Definition 2.1. Let Fq be a finite field with q elements. An [n, k, d]q linear code

C is a k dimensional Fq-linear subspace of Fnq having minimum distance d, i.e.,

d := min{d(x, y) : x, y ∈ C with x 6= y}.

The minimum distance of a code C is related to the error detection and correction

capability of the code C, i.e., the number of errors that the code is able to detect

and correct. In particular, an [n, k, d]q code can detect up to d − 1 errors and can

correct up to
⌊
d−1
2

⌋
errors.

A generator matrix of an [n, k, d]q code C is a k × n matrix over Fq whose rows

span C, i.e., C = {xG : x ∈ Fkq}. A parity-check matrix of C is an (n− k)×n matrix

over Fq such that C is the right kernel of H, i.e., C = ker(H) = {c ∈ Fnq : Hcᵀ = 0}.

Definition 2.2. Let C be an [n, k] linear code over Fq. Then the dual code of C,
denoted by C⊥, is defined as the code generated by the rows of a parity-check matrix

H of C.

It follows immediately from the rank-nullity theorem that C⊥ is an [n, n − k]

code, and
(
C⊥
)⊥

= C.
One of the important problems in coding theory is to construct codes whose

dimension and minimum distance are large, for a given length and alphabet Fq.

However, the following relation between the dimension and the minimum distance

imposes some restrictions.

Proposition 2.3 (Singleton bound). Let C be an [n, k, d]q code over Fq. Then

d ≤ n− k + 1.

Proof. Let E be the linear subspace of Fnq given by

E = {(a1, . . . , an) : ai = 0 for all i ≥ d} .
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Then E ∩ C = {0}, as wt(a) ≤ d − 1 for all a ∈ E . Now, since the dim(E) = d − 1,

we obtain

k + d− 1 = dim(C) + dim(E)

= dim(C + E) ≤ n.

Codes that achieve the Singleton bound, i.e., satisfy d = n − k + 1, are called

maximum distance separable (MDS) codes.

In the following, we introduce some important classes of codes and some coding

theory concepts that will be used in this thesis.

Generalized Reed–Solomon Codes

Definition 2.4. Let Fq be a finite field and let 1 ≤ k < n ≤ q be integers. Let

α = (α1, . . . , αn) ∈ Fnq be an n-tuple of distinct elements and β = (β1, . . . , βn) ∈ Fnq
be an n-tuple of nonzero elements, then the generalized Reed–Solomon (GRS) code

GRSn,k(α, β) of dimension k is the set of vectors (β1p(α1), . . . , βnp(αn)), where p

ranges over all polynomials of degree less than k, having coefficients in Fq. Thus

GRSn,k(α, β) =
{

(β1p(α1), . . . , βnp(αn))
∣∣ p ∈ Fq[x], deg(p) < k

}
.

The GRS code has the minimum distance d = n− k+ 1, i.e., it is an MDS code.

As a consequence, GRS codes can uniquely correct upto d/2 errors, using efficient

algorithms such as the Berlekamp–Massey algorithm [26, 109].

The GRS codes have the following properties:

• GRSn,k(α, β)⊥ = GRSn,n−k(α, β′) for a certain β′ ∈ Fnq .

• A generator matrix of GRSn,k(α, β) can be described in the following form:

Vk(α, β) :=


β1 β2 · · · βn

β1α1 β2α2 · · · βnαn
...

...
. . .

...

β1α
k−1
1 β2α

k−1
2 · · · βnα

k−1
n

 .
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Alternant Codes

Definition 2.5. Let C be an [n, k] code over Fqm . Then the subfield subcode C|Fq of
C over Fq is a linear code over Fq defined as C ∩ Fq.

Let H be an (n − k) × n parity-check matrix of an [n, k] code C over Fqm . Let

γ be a primitive element in Fqm over Fq, associated with the Fq-linear isomorphism

φ : Fqm → Fmq given by
∑m−1

i=0 aiγ
i 7→ (a0, . . . , am−1). Then a parity-check matrix

of C|Fq can be obtained by replacing each entry β of H by the column vector φ(β)ᵀ.

This also implies that C|Fq is an [n, k′, d′] code with k′ ≥ n−m(n− k) and d′ ≥ d.

Definition 2.6. Let GRSn,k(α, β) be a GRS code over Fqm . The subfield subcode

of GRSn,k(α, β) over Fq is the alternant code An,k(α, β).

A subclass of alternant codes, having cryptographic importance, is the classical

Goppa codes.

Definition 2.7. Let g(x) be a polynomial in Fqm [x] of degree r ≤ n, and α =

(α1, . . . , αn) ∈ Fnqm be a tuple of n distinct elements such that g(αi) 6= 0 for all

i ∈ {1, . . . , n}. The Goppa code G(g, α) with Goppa polynomial g(x) and support α

is the alternant code An,r(α, β), where β =
(
g−1(α1), . . . , g

−1(αn)
)
.

Using the bounds on the dimension and the minimum distance of subfield sub-

codes, we infer that the dimension of G(g, α) is k ≥ n − mr, and the minimum

distance d ≥ r + 1. In the special case of binary Goppa codes, i.e., q = 2, the

minimum distance is d ≥ 2r + 1.

Expanded Codes

Let q be a prime power and let m be an integer. Let γ be a primitive element of the

field Fqm , i.e., Fqm ∼= Fq(γ). The field Fqm can also be seen as an Fq-vector space of

dimension m via the following Fq-linear isomorphism

φ : Fqm −→ Fmq ,

a0 + a1γ + · · ·+ am−1γ
m−1 7−→ (a0, a1, . . . , am−1).
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We extend this isomorphism for vectors over Fqm in the following way:

φn : Fnqm −→ Fmnq ,

(α1, α2, . . . , αn) 7−→ (φ(α1), φ(α2), . . . , φ(αn)) .

This is clearly an Fq-linear isomorphism. Hence this gives us a way to obtain a

linear code over Fq from a linear code over Fqm .

Definition 2.8. Let C be an [n, k] linear code over Fqm . The expanded code of C
with respect to a primitive element γ ∈ Fqm is a linear code over the base field Fq
defined as

Ĉ := {φn(c) : c ∈ C},

where φn is the Fq-linear isomorphism defined by γ as above.

Remark 2.9. It is easy to see that the expanded code Ĉ is a linear code of length

mn and dimension mk, because φn is an Fq-linear isomorphism and

|Ĉ| = |C| = (qm)k = qmk.

Given a code C with its generator matrix and parity-check matrix, the following

lemma gives a way to construct a generator matrix and a parity-check matrix of the

expanded code Ĉ.

Lemma 2.10. Let C be a linear code in Fnqm .

1. Let C have a generator matrix G = [g1, g2, . . . , gk]
ᵀ, where g1, g2, . . . , gk are

vectors in Fnqm . Then the expanded code of C over Fq with respect to a primitive

element γ ∈ Fqm has the expanded generator matrix

Ĝ := [φn(g1), φn(γg1), . . . , φn(γm−1g1),φn(g2), φn(γg2), . . . , φn(γm−1g2), . . . ,

φn(gk), φn(γgk) . . . , φn(γm−1gk)]
ᵀ.

2. Let C have a parity-check matrix H = [hᵀ1, h
ᵀ
2, . . . , h

ᵀ
n], where h1, h2, . . . , hn

are vectors in Fn−kqm . Then the expanded code of C over Fq with respect to a

primitive element γ ∈ Fqm has the expanded parity-check matrix

Ĥ := [φn−k(h1)
ᵀ, φn−k(γh1)

ᵀ, . . . , φn−k(γ
m−1h1)

ᵀ, φn−k(h2)
ᵀ, φn−k(γh2)

ᵀ,

. . . , φn−k(γ
m−1h2)

ᵀ, . . . , φn−k(hn)ᵀ, φn−k(γhn)ᵀ . . . , φn−k(γ
m−1hn)ᵀ].
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Proof. 1. Let B = {φn(γigj) : 0 ≤ i ≤ m−1, 1 ≤ j ≤ k}. Then, by the definition

of the expanded code Ĉ, we have that SpanFq(B) ⊆ Ĉ.

Now let φn(c) be an arbitrary element in Ĉ, for some c ∈ C. Since G is a

generator matrix of C, there exists λ1, . . . , λk ∈ Fqm such that

c =
k∑
j=1

λjgj .

Moreover, as γ is a primitive element of Fqm over Fq, for each j we can write

λj =
∑m−1

i=0 λ
(i)
j γ

i for some λ(0)j , . . . , λ
(m−1)
j ∈ Fq. Putting all together, we

obtain

φn(c) =
k∑
j=1

φn (λjgj)

=
k∑
j=1

m−1∑
i=0

φn

(
λ
(i)
j γ

igj

)

=
k∑
j=1

m−1∑
i=0

λ
(i)
j φn

(
γigj

)
∈ SpanFq(B).

2. Let h(`) = (h1`, h2`, . . . , hn`) be the `-th row of H and c = (c1, c2, . . . , cn) be a

codeword in C. Then observe that

h(`)cᵀ =

n∑
j=1

hj`cj

=
n∑
j=1

hj`

m−1∑
i=0

c
(i)
j γ

i

=
n∑
j=1

m−1∑
i=0

c
(i)
j γ

ihj`,

where
(
c
(0)
j , c

(1)
j , . . . , c

(m−1)
j

)
= φ(cj) for all j ∈ {1, . . . , n}. Applying φ to

above equation we get

φ(h(`)cᵀ) = φ

 n∑
j=1

m−1∑
i=0

c
(i)
j γ

ihj`

 =

n∑
j=1

m−1∑
i=0

c
(i)
j φ(γihj`).
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Now since h(`)cᵀ = 0, it follows that

[
φ(h1`)

ᵀ, φ(γh1`)
ᵀ, . . . , φ(γm−1h1`)

ᵀ, . . . ,

φ(hn`)
ᵀ, φ(γhn`)

ᵀ, . . . , φ(γm−1hn`)
ᵀ]φ(c)ᵀ = 0.

Proposition 2.11. Let C be a linear code in Fnqm having a generator matrix G =

[g1, g2, . . . , gk]
ᵀ and a parity-check matrix H = [hᵀ1, h

ᵀ
2, . . . , h

ᵀ
n]. Let Ĝ and Ĥ be

the expanded generator matrix and expanded parity-check matrix of Ĉ, respectively.
Then

1. φn(xG) = φk(x)Ĝ for all x ∈ Fkqm ,

2. φn−k(Hyᵀ) = Ĥ(φn(y))ᵀ for all y ∈ Fnqm .

Proof. Let x = (x1, x2, . . . , xk) ∈ Fkqm and let xi =
∑m−1

j=0 xijγ
j for all

i ∈ {1, 2, . . . , k}. Then

φk(x)Ĝ =
k∑
i=1

m−1∑
j=0

xijφn(γjgi)

=
k∑
i=1

φn

m−1∑
j=0

xijγ
jgi


= φn

(
k∑
i=1

xigi

)
= φn(xG).

Similarly, φn−k(Hyᵀ) = Ĥ(φn(y))ᵀ for all y ∈ Fnqm .

Remark 2.12. Ĉ can also be determined by the commutativity of the following

diagram (as Fq-linear maps):

0 Fkqm Fnqm Fn−kqm 0

0 Fmkq Fmnq Fm(n−k)
q 0

G

φk φn

Hᵀ

φn−k

Ĝ Ĥᵀ
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Schur Product and Square Codes

Definition 2.13. Let x, y ∈ Fnq . We denote by the Schur product of x and y their

component-wise product

x ? y = (x1y1, . . . , xnyn).

Remark 2.14. The Schur product is symmetric and bilinear.

Definition 2.15. Let A,B be two codes of length n. The Schur product of two

codes is the vector space spanned by all a ? b with a ∈ A and b ∈ B:

〈A ? B〉 = 〈{a ? b
∣∣ a ∈ A, b ∈ B}〉.

If A = B, then we call 〈A ?A〉 the square code of A and denote it by 〈A2〉.

Definition 2.16. Let G be a k× n matrix, with rows (gi)1≤i≤k. The Schur matrix

of G, denoted by S(G), consists of the rows gi ? gj for 1 ≤ i ≤ j ≤ k.

We observe by Remark 2.14, that if G is a generator matrix of a code C then

its Schur matrix S(G) is a generator matrix of the square code of C. Let s be the

following map

s : N→ N,

k 7→ 1

2

(
k2 + k

)
.

For a k × n matrix A, we observe that S(A) has the size s(k)× n.
The dimension of the square code of a code C provides information about how

much Reed–Solomon type algebraic structure is present in C. It is easy to see that

for an [n, k] code C having large enough length,

2k − 1 ≤ dim 〈C〉2 ≤ s(k).

The lower bound is attained by GRS codes, since

〈GRSn,k(α, β)〉2 = GRSn,2k−1(α, β ? β).

In contrast to GRS codes, for a randomly chosen [n, k] linear code C having length

n ≥ s(k) the dimension of 〈C〉2 is s(k), with high probability (see [42]).
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List Decoding

In 1999, Guruswami and Sudan [77] published a polynomial time list decoding

algorithm for Reed–Solomon codes that can correct errors beyond the d/2 error-

correcting bound.

The Guruswami–Sudan (GS) decoding algorithm has an internal parameter m,

called the interpolation multiplicity. The bound on the number of errors the GS

algorithm can correct is associated to m, which is given by

tm = n

(
1−

√
R

(
m+ 1

m

))
,

where n is the length of the Reed–Solomon code and R is its rate (the rate of a

linear code is given by R = k/n, where k is the dimension of the code).

Let C be a Reed–Solomon code RSn,k(α) of length n and dimension k over a

finite field Fq. Given z = (z1, . . . , zn) a word over Fq, the GS algorithm finds all the

polynomials p(x) of degree less than k such that the codeword (p(α1), . . . , p(αn))

has Hamming distance is less than or equal to tm from z. The GS algorithm involves

two major steps:

1. (Interpolation step) Construct a bivariate polynomial Q(x, y) =
∑

i,j ai,jx
iyj

such that Q has a zero of multiplicity m at each of the points (αi, zi), and the

(1, k − 1)-weighted degree of Q(x, y) is minimal.

2. (Factorization step) Compute the factors of Q(x, y) of the form y− p(x) with

degree of p(x) less than k.

The output of the algorithm is a list Lm of codewords of C, which includes all the

codewords with Hamming distance is less than or equal to tm from z. The size of

the list is bounded above by

`m =

(
m+

1

2

)√
n

k − 1
.

In [77], the main aim of Guruswami and Sudan was to show the existence of

a polynomial-time list decoding algorithm, and not the efficiency of the algorithm.

However, several authors have contributed to improve the efficiency of the key steps

in the GS algorithm. Some noteworthy contributions are by Kötter, described by

McEliece in [115], for the interpolation step and by Roth–Ruckenstein [141] for the
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factorization step. Using Kötter’s improvement, inspired by the Feng–Tzeng algo-

rithm [68], the interpolation algorithm takes O(n2m4) field operations. Whereas the

factorization algorithm, using the Roth–Ruckenstein improvement, takes O(n2m2)

field operations. Hence the overall complexity of the GS algorithm is O(n2m4) field

operations. For more details on the GS algorithm and improvements by Kötter and

Roth–Ruckenstein we refer the reader to [115].

2.2.2 McEliece Cryptosystem and Variants

Code-based cryptography first came up with the McEliece cryptosystem, which dates

back to 1978. The original cryptosystem uses binary Goppa codes. However, the

protocol can be generalized to make use of an arbitrary linear code. The security of

the cryptosystem heavily relies of the choice of this linear code.

The McEliece Cryptosystem

We describe the general structure of the McEliece public-key crypotsystem, which

involves three algorithms:

• Key generation: Let G be a generator matrix of an [n, k]q linear code C
which can efficiently correct up to t errors. Choose a random k × k invertible

matrix S and a random n× n permutation matrix P .

The private key is then (S,G, P ) and the public key is (G′ := SGP−1, t).

• Encryption: Let y ∈ Fkq be a message that we want to encrypt. The cipher

text is given by c = yG′ + e, where e ∈ Fnq is a random error vector with

Hamming weight wt(e) ≤ t.

• Decryption: For the decryption we first multiply the cipher text by P , i.e.,

cP = yG′P + eP = ySG+ eP.

Since wt(eP ) = wt(e) ≤ t, we decode cP to obtain yS, and then multiply by

S−1 to retrieve the original message y.

The security of a McEliece cryptosystem is based on two types of attacks:

1. Key recovery attack: given the public key (G′, t) recover the private key

(S,G, P ). These attacks exploit the algebraic structure of the hidden private

code.
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2. Ciphertext attack: given a cipher text c recover the original message y. The

difficulty of this attack is related to the general decoding problem. We will

discuss more about general decoding problem later in this section.

If a McEliece cryptosystem resists both these types of attacks, one can use general

procedure to obtain a CCA2 (adaptive chosen-ciphertext attack) secure cryptosys-

tem (see for example [98]). Note that in the CCA2 secure variants of the McEliece

encryption schemes the public key G′ can be represented in the systematic form

(row reduced echelon form), which reduces the public key size.

The Niederreiter Cryptosystem

In 1985, Niederreiter presented a version of the McEliece cryptosystem that uses the

parity-check matrix instead of the generator matrix. The Niederreiter version has

been proved to be completely equivalent in terms of security [104].

• Key generation: Let H be a parity-check matrix of an [n, k]q linear code C
which can efficiently correct up to t errors. Choose a random (n−k)× (n−k)

invertible matrix S and a random n× n permutation matrix P .

The private key is then (S,H, P ) and the public key is (H ′ := SHP, t).

• Encryption: Let y ∈ Fnq be a message such that its Hamming weight wt(y) ≤
t. The cipher text is given by the syndrome of y, i.e., c = H ′yᵀ.

• Decryption: For the decryption we first multiply the cipher text by S−1, i.e.,

S−1c = S−1H ′yᵀ = HPyᵀ.

Since wt(yP ᵀ) = wt(y) ≤ t, we decode S−1c to obtain yP ᵀ, and then multiply

by (P ᵀ)−1 to retrieve the original message y.

Variants and Vulnerabilities

Since the origin of the McEliece cryptosystem, many variants have been proposed

using different codes or different ways of hiding the private code. We present some

those variants and their vulnerabilities.

• Neiderreiter, in the same article [128] as the famous Niederreiter cryptosystem,

proposed to use the generalised Reed–Solomon codes instead of Goppa codes.
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This proposal was then attacked by Sidelnikov and Shestakov in [153], where

they used the fact, that the public matrix is still a generator matrix of a GRS

code and they were able to recover the evaluation points and hence the GRS

structure of the public matrix.

• Various McEliece cryptosystems based on modifications of GRS codes have

been proposed [15, 16, 18, 23, 36, 128]. Most of them have been proved to

be fully (or partially) insecure due to the infamous distinguisher attack [49,

52, 73]. The distinguisher attack exploits the fact that the dimension of the

square code of GRS codes is very low compared to a random linear code of

the same dimension.

• Moreover, other families of codes have also been shown to be vulnerable against

the distinguisher attack. In [50], Couvreur et al. presented a general attack

against cryptosystems based on algebraic geometric codes and their subcodes.

In [66] Faugère et al. showed that high rate binary Goppa codes can be distin-

guished from a random code. In [51], Couvreur et al. presented a polynomial

time attack against cryptosystems based on non-binary Goppa codes defined

over quadratic extensions.

• At the time of this writing there are seven code-based cryptosystems included

in NIST’s standardization process: BIKE [7] based on quasi-cyclic MDPC

codes, classic McEliece [30] based on binary Goppa codes, ROLLO [116] based

on quasi-cyclic LRPC codes, RQC [1] based on rank metric quasi-cyclic codes,

HQC [1] based on Hamming metric quasi-cyclic codes, LEDAcrypt [14] based

on quasi-cyclic LDPC codes and NTS-KEM [3] based on binary Goppa codes.

Information Set Decoding

The overall security of a McEliece cryptosystem is related to the general decoding

problem.

Definition 2.17 (General decoding problem). Given an [n, k] linear code C over Fq
and x ∈ Fnq , find c ∈ C such that d(x, c) is minimum.

Note that if d(x, c) ≤
⌊
d−1
2

⌋
, then this problem has a unique solution. Here

d is the minimum distance of C. This problem, over the binary field, was proved

to be NP-complete by Berlekamp, McEliece and van Tilborg in [25]. An equivalent
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formulation of this problem is using a parity-check matrix, and is called the syndrome

decoding problem.

Definition 2.18 (Syndrome decoding problem). Given a parity-check matrix H for

an [n, k] linear code C over Fq, a vector s ∈ Fn−kq and a positive integer w. Then

find e ∈ Fnq such that eHᵀ = s and wt(e) ≤ w.

Using the following Gilbert–Varshamov distance d0, we notice that the syndrome

decoding problem has a unique solution if w < d0.

Definition 2.19. Let q be a prime power and 0 ≤ k ≤ n be integers. Then the

Gilbert–Varshamov distance is the largest integer d0(n, k) such that

d0(n,k)−1∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k.

In cryptographic schemes, the weight of an error is much smaller than the

Gilbert–Varshamov distance as it is within the error-correction capacity. In the

case of w < d0(n, k), information set decoding (ISD) algorithms are the best known

algorithms for decoding a general linear code. ISD algorithms were introduced by

Prange [139] in 1962, it is also known as the plain ISD algorithm.

Plain ISD Algorithm: The plain ISD algorithm first chooses an information set

I, which is a size k subset of {1, 2, . . . , n} such that the restriction of the generator

matrix on the columns indexed by the set I is non-singular. Then Gaussian elimi-

nation brings the generator matrix in a standard form and assuming that the errors

are outside of the information set, these row operations will exploit the correspond-

ing error vector. The algorithm terminates when the weight of the corresponding

error vector does not exceed the given error correction capacity. See Algorithm 1

for details.

Notations used in Algorithm 1: Let x ∈ Fnq , G be a k × n matrix over Fq, and

I ⊆ {1, . . . , n} be a subset of size k. Then xI denotes the subvector of x with entries

indexed by I, and GI denotes the k× k submatrix of G with columns indexed by I.
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Algorithm 1 Plain ISD algorithm over Fq

Input: a vector x ∈ Fnq , a generator matrix G of an [n, k] linear code C, a positive
integer w.
Output: e ∈ Fnq such that x+ e ∈ C and wt(e) = w.

1: Choose an information set I.
2: Compute x′ = x− xIG−1I G.
3: if wt(x′) = w then
4: output e := x′

5: else
6: go to Step 1.

The running time of the plain ISD algorithm can be given by the product of the

cost of one iteration and the expected number of iterations, which is

Cost of the plain ISD = O

k3 ·((n−kw )(
n
w

) )−1
 .

A Brief History of ISD Improvements: Even though the cost of one iteration

of Prange’s plain ISD algorithm is very low, the algorithm is still coming with

a huge complexity due to the number of iterations needed. In order to improve

the time complexity, many improvements have been suggested to Prange’s simplest

form of ISD. All the improvements focus on a more elaborate and more likely weight

distribution of the error vector, which results in a higher cost of one iteration, but

less iterations have to be performed. The improvements were splitting from an early

time on into two directions:

The first direction is following the splitting of Lee and Brickell [102] into the

information set and the redundant set, i.e., they ask for v errors in the information

set and t − v outside. In 1988, the same year as Lee and Brickell proposed their

algorithm, Leon [103] introduced a zero window inside the redundant set of size `,

where no error are allowed. In 1993 Stern [156] kept this zero window and proposed

to partition the information set into two sets and asks for v errors in each part and

t − 2v errors outside the information set. The generalization of both Lee–Brickell

and Stern’s algorithm to a general finite field Fq were performed by Peters [135]

in 2010. In 2011 Bernstein, Lange and Peters proposed the ball-collision algorithm

[31], where they keep the partitioning of the information set but they reintroduce

errors in the zero window, in fact they partition the zero window into two sets and
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ask for w errors in both and hence for t− 2v− 2w errors outside. The ball-collision

algorithm was recently generalized to an arbitrary finite field Fq, in [87]. In 2016,

Hirose [81] generalized the nearest neighbor algorithm over Fq and applied it to the

generalized Stern algorithm.

The second direction is following Dumer’s splitting approach [60], which is asking

for v errors in k + ` bits, which are containing an information set, and t− v in the

remaining n− k− ` bits. The second direction has resulted in many improvements,

for example in 2009 Finiasz and Sendrier [69] have built two intersecting subsets of

the k+ ` bits, which contain an information set, and ask for v disjoint errors in both

sets and t−2v in the remaining n−k− ` bits. Niebuhr, Persichetti, Cayrel, Bulygin
and Buchmann [127] in 2010 improved the performance of ISD algorithms over Fq
based on the idea of Finiasz and Sendrier [69]. In 2011 May, Meurer and Thomae

[111] proposed an improvement using the representation technique introduced by

Howgrave-Graham and Joux [86]. To this algorithm Becker, Joux, May and Meurer

[22] (BJMM) in 2012 introduced further improvements. In the same year Meurer

in his dissertation [118] proposed a new generalized ISD algorithm based on these

two papers. In 2015, May and Ozerov [112] used the nearest neighbor algorithm to

improve the BJMM version of ISD. Later in 2017, the nearest neighbor algorithm

over Fq was applied to generalized BJMM algorithm by Gueye, Klamti and Hirose

[75].

It is important to remark (see [118]) that the BJMM algorithm, even if having

the smallest complexity, comes with a different cost: memory. In order to achieve

a complexity of 128 bits, BJMM needs about 109 terabytes of memory. In fact,

Meurer observed, that if one restricts the memory to 240, BJMM and the ball-

collision algorithm are performing almost the same.

Apart from improvements regarding the success probability, one can also improve

the cost of one iteration: Canteaut and Chabaud [40] have provided a speed up for

finding information sets. They show that the information set should not be taken at

random after one unsuccessful iteration, but rather a part of the previous information

set should be reused and therefore a part of the Gaussian elimination step is already

performed. In the following we describe Stern’s ISD algorithm, a modification of

which we will be using to discuss the security of one of the proposed cryptosystems

in this thesis.
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Algorithm 2 Stern’s ISD algorithm over Fq

Input: a vector x ∈ Fnq , a generator matrix G of an [n, k] linear code C, a positive
integer w. For simplicity we assume k is even.
Output: e ∈ Fnq such that x+ e ∈ C and wt(e) = w.

1: Choose an information set I and a uniform random partition of I into disjoint
sets X and Y , each of size k/2.

2: Choose a random subset Z ⊆ {1, . . . , n} \ I of size `.
3: Compute x′ = x− xIG−1I G.
4: For each size v subset U = {u1, . . . , uv} ⊂ X, compute the set

SU =

{(
s := x′ −

v∑
i=1

yigui , sZ

)
: (y1, . . . , yv) ∈ (F∗q)v

}

5: For each size v subset W = {w1, . . . , wv} ⊂ Y , compute the set

TW =

{(
t :=

v∑
i=1

yigwi , tZ

)
: (y1, . . . , yv) ∈ (F∗q)v

}

6: for all pairs (U,W ) do
7: for ((s, y), (t, y)) ∈ SU × TW do
8: if wt(s− t) = w then
9: output e = s− t

10: else
11: go to Step 1.

Stern’s ISD Algorithm: Stern’s modification uses two parameters v and `. It

allows a fixed number of errors in the information set I. Stern’s algorithm partitions

the information set I into two equal-sized subsets X and Y , and chooses uniformly

at random a subset Z of size ` outside of I. Then it looks for vectors having exactly

weight v among the columns indexed by X, exactly weight v among the columns

indexed by Y , and exactly weight 0 in columns indexed by Z and the missing weight

t− 2v in the remaining indices. See Algorithm 2 for details.

Additional notations used in Algorithm 2: For an information set I, let gu denote

the unique row of G−1I G having 1 at the u-th position.

2.3 McEliece Variant Based on Expanded GRS Codes

In this section, we present our first variant of the McEliece cryptosystem which uses

an expanded GRS code as the hidden private code. The expanded GRS codes have
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a lot of algebraic structure that can be exploited if used directly as an replacement

of Goppa codes. In this proposal, we first destroy the algebraic structure present in

the expanded GRS codes and then use it in the McEliece-type cryptosystem.

2.3.1 Protocol

We will present the proposed cryptosystem in the Niederreiter version.

In a nutshell, we consider a GRS code over Fqm and expand it over Fq. Recall

from Lemma 2.10 that a parity-check matrix of the expanded code can be viewed as

n blocks, where each block consist of m columns. In order to destroy the algebraic

structure of the expanded code, we shorten the code, i.e., we delete some number

of randomly chosen columns from each block. We then hide the shortened code by

multiplying it with an invertible matrix which preserves the weight of a vector over

the extension field Fqm .

The full description of the cryptosystem is as follows:

• Key generation: Let q be a prime power, 2 ≤ λ < m be positive integers and

k < n ≤ qm be positive integers, satisfying R := k/n > (1−λ/m). Consider a

GRS code C = GRSn,k(α, β) of dimension k and length n over the finite field

Fqm and choose a parity-check matrix H of C. Let t be the error correction

capacity of C, i.e., t = bn−k2 c.

Let Ĥ be the expanded parity-check matrix of the expanded code Ĉ of C with

respect to a primitive element γ ∈ Fqm . We use Lemma 2.10 to obtain Ĥ,

which is an m(n−k)×mn matrix over Fq. We destroy the algebraic structure

of Ĥ using the following two steps:

1. Shortening Ĉ

– For each 1 ≤ i ≤ n, let Si be a randomly chosen subset of

{(i−1)m+1, (i−1)m+2, . . . , im} of sizem−λ and define S =
n⋃
i=1

Si.

– We puncture Ĥ on columns indexed by S. Let ĤS be the resulting

m(n−k)×λn parity-check matrix and let ĈS be the shortened code.

2. Hiding ĈS

– Choose n random λ × λ invertible matrices T1, T2, . . . , Tn over Fq.

Define T to be the block diagonal matrix having T1, T2, . . . , Tn as

diagonal blocks.
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
T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 T4


(a) Matrix T


0 1λ 0 0
0 0 0 1λ
1λ 0 0 0
0 0 1λ 0


(b) Matrix Pσ


0 T1 0 0
0 0 0 T2
T3 0 0 0
0 0 T4 0


(c) Matrix Q = TPσ

Figure 2.1: Illustration of matrices involved in the key generation
process (an example with n = 4, where 1λ is the identity matrix of

size λ).

1 2 · · · λ λ+ 1 λ+ 2 · · · 2λ · · · (n− 1)λ+ 1 (n− 1)λ+ 2 · · · nλ

1 2 · · · n

Figure 2.2: Illustration of error vectors involved in the encryption
step. Support of an error vector lies inside randomly chosen t out of

the n blocks.

– Now choose a random permutation σ of length n and define Pσ to be

the block permutation matrix of size λn× λn. It can also be seen as

Kronecker product of the n × n permutation matrix corresponding

to σ and the identity matrix of size λ.

– Define Q := TPσ and compute H ′ = ĤSQ. See Figure 2.1 for an

illustration of the matrices T, Pσ and Q.

The private key is then (H,Q, γ) and the public key is (H ′, t, λ).

• Encryption: Let y ∈ Fλnq be a message having support in t sub-vectors each

of length λ, in particular

support(y) ⊆ {λ(i1 − 1) + 1, λ(i1 − 1) + 2, . . . , λ(i1),

λ(i2 − 1) + 1, λ(i2 − 1) + 2, . . . , λ(i2),

. . . , λ(it − 1) + 1, λ(it − 1) + 2, . . . , λ(it)} ,

(2.1)

for some distinct i1, i2, . . . , it ∈ {1, 2, . . . , n}. See Figure 2.2 for an illustration

of an error vector. Then compute the cipher text

c = H ′yᵀ.
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• Decryption: For the decryption we apply φ−1n−k on c, i.e.,

φ−1n−k(c) = φ−1n−k

(
ĤSQy

ᵀ
)
.

This is a vector in Fn−kqm , which corresponds to the syndrome of Qyᵀ with

respect to the parent GRS code C. We syndrome decode φ−1n−k(c) and delete

the coordinates in S to obtain Qyᵀ. Finally, we multiply Q−1 and recover the

message y. Proposition 2.20 proves the correctness of the decryption process.

Proposition 2.20. The decryption process is correct.

Proof. Observe that ĤSQy
ᵀ = Ĥȳᵀ, where ȳ is the embedding of yQᵀ in to Fmnq ,

by introducing zeros on the positions indexed by S.

From Proposition 2.11 we get

φ−1n−k

(
Ĥȳᵀ

)
= H

(
φ−1n (ȳ)

)ᵀ
.

Due to the block structure of the matrix Q, the vector of Qyᵀ has support in t

sub-vectors each of length λ, thus ȳ has support in t sub-vectors each of length m.

Henceforth wt(φ−1n (ȳ)) ≤ t, and we can decode φ−1n−k(c) to get φ−1n (ȳ).

By applying φn we get ȳ and by projecting on positions not indexed by S, we

get Qyᵀ and thereafter multiplying by Q−1, we recover the message y.

Remark 2.21. For low key sizes it is desirable to use a small degree of extension m

and small λ. In the case of quadratic extension and in the case of λ = 1, puncturing

all but one column from each block results in an alternant code (subfield subcode

of a GRS code). Alternant codes are known to be vulnerable to square code attacks

[51, 66]. Hence, we do not propose to use quadratic extensions or λ = 1. We

therefore propose to use m = 3 and m = 4 with λ = 2.

2.3.2 Security Agianst Known Attacks

In this section we discuss the security of the proposed cryptosystem. We first focus

on the two main structural attacks on cryptosystems based on GRS codes, namely

the Sidelnikov–Shestakov attack and the distinguisher attack based on the Schur

product of the public code. Later we discuss a non-structural (or plaintext) attack,

which is an adaptation of Stern’s ISD algorithm to our cryptosystem.
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Sidelnikov and Shestakov attack

Directly using GRS codes as secret codes makes the cryptosystem vulnerable against

the attack by Sidelnikov and Shestakov in [153]. The attack uses the fact that the

public matrix is permutation equivalent to a generator matrix of the secret GRS

code. This helps the attack in recovering the evaluation points of the public matrix

in polynomial time.

In the proposed cryptosystem, the secret GRS parity-check matrix H over Fqm

is hidden in two ways: first by puncturing its expanded parity-check matrix Ĥ

over Fq and then by scrambling the columns of the punctured matrix ĤS . Due to

multiplying ĤS with a block diagonal matrix it is clear that the resulting code is

no more equivalent to an evaluation code (or an expanded evaluation code). Hence

evaluations (or expanded evaluation column vectors) can not be exploited using the

Sidelnikov–Shestakov attack.

Distinguisher Attack Based on the Schur Product

Various McEliece cryptosystems based on modifications of GRS codes have been

proved to be insecure [49, 52, 73]. This is because the dimension of the square code

of GRS codes is very low compared to a random linear code of the same dimension.

The class of such attacks, based on the low dimensional square code of the public

code (or of the shortened public code), is known as distinguisher attacks.

In the following, based on experimental observations, we infer that the public

code of the proposed cryptosystem cannot be distinguished using square code tech-

niques. We also provide theoretical arguments on the behavior of the square code

dimension of the public code.

Let ĈS be the public code of the proposed cryptosystem. Note that ĈS is a

shortening of an expanded GRS code Ĉ.

1. Squares of expanded GRS codes: Like in the case of Reed–Solomon codes

and their subfield subcodes, the expanded GRS codes also have low square code

dimension. To see this, we visualize expanded GRS codes as subfield subcodes

of GRS-like codes. Let C be a GRS code of length n and dimension k over
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Fqm having the following parity-check matrix

H = Vr(x, y) :=


y1 y2 · · · yn

y1x1 y2x2 · · · ynxn
...

...
. . .

...

y1x
r−1
1 y2x

r−1
2 · · · ynx

r−1
n

 ,

where x = (x1, . . . , xn) is a vector of distinct elements in Fqm , y = (y1, . . . , yn)

is a vector over F∗qm and r := n− k. Let γ be a primitive element in Fqm . We

define a new code B of length mn over Fqm given by the kernel of the following

parity-check matrix

H ′ =
(
Vr(x, y) | Vr(x, γy) | · · · | Vr(x, γ

m−1y)
)
.

Using Lemma 2.10, it is easy to observe, that the expanded code Ĉ of C with

respect to γ is permutation equivalent to the Fq-kernel of H ′. In other words,

Ĉ is permutation equivalent to the subfield subcode of B over Fq. Observe that

a generator matrix G′ of B is given by

Vk(x, y
′) 0 . . . 0 0

0 Vk(x, γ
−1y′) . . . 0 0

...
...

. . .
...

...

0 0 . . . Vk(x, γ
−(m−2)y′) 0

0 0 . . . 0 Vk(x, γ
−(m−1)y′)

Vr(x, y
′′) 0 . . . 0 −Vr(x, γ−(m−1)y′′)

0 Vr(x, γ
−1y′′) . . . 0 −Vr(x, γ1−(m−1)y′′)

...
...

. . .
...

...

0 0 . . . Vr(x, γ
−(m−2)y′′) −Vr(x, γ(m−2)−(m−1)y′′)



,

where y′ is such that Vk(x, y′)Vr(x, y)ᵀ = 0, and y′′ = (xk1, x
k
2, . . . , x

k
n) ? y′.

One can verify that G′(H ′)ᵀ = 0. Observe that a generator matrix of Ĉ is
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permutation equivalent to

Ĝ =



G1 0 . . . 0

0 G2 . . . 0
...

...
. . .

...

0 0 . . . Gm

Ggv


,

where Gi is a generator matrix of the subfield subcode of Vk(x, γ−(i−1)y′) over

Fq, and Ggv is a generator matrix of the Fq-subfield subcode of the bottom

(m−1)r rows of G′. The matrix Ggv is also known as the glue-vector generator

matrix, as in [158]. Due to the block structure of Ĝ the Schur matrix of Ĝ will

have many zero rows. As a result, the dimension of the square code is not full,

given large enough n. This may lead to vulnerabilities when using expanded

GRS codes directly in the cryptosystem.

2. Effect of Shortening: Consider the parity-check matrix Ĥ of an expanded

GRS code as shown in Lemma 2.10, i.e.,

Ĥ := [φn−k(h1)
ᵀ, φn−k(γh1)

ᵀ, . . . , φn−k(γ
m−1h1)

ᵀ | φn−k(h2)ᵀ, φn−k(γh2)ᵀ,

. . . , φn−k(γ
m−1h2)

ᵀ | . . . | φn−k(hn)ᵀ, φn−k(γhn)ᵀ, . . . , φn−k(γ
m−1hn)ᵀ].

We partition the columns of Ĥ into n blocks, each of size m, as shown above.

By the definition of Ĥ, each of these blocks corresponds to a unique column

vector of the parity-check matrix of the parent GRS code. In order words, the

first block of m columns corresponds to the column hᵀ1, the second block of m

columns correspond to the column hᵀ2, and so on.

In order to weaken this correspondence, we puncture (randomly chosen) m−λ
of the columns from each block of Ĥ. As a result the correspondence of each

block to the parent column vector is inconsistent. Note that the correspon-

dence still exists but the way ith block corresponds to hᵀi is now different from

the way jth block corresponds to hᵀj .

In addition, we multiply the punctured parity-check matrix by an invertible

block diagonal matrix T . This further destroys the algebraic structure inher-

ited from the parent GRS code. This was evident in our computations of the
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square code dimension of such shortened codes. Even in the case of m = 3 we

observed that puncturing one column from each block of Ĥ results in a full

square code dimension.

Information Set Decoding

Information set decoding (ISD) algorithms are best known algorithms for decoding a

general linear code. Hence, they are the best known ciphertext attacks for McEliece-

like cryptosystems. We modify one of the ISD algorithms according to the error

pattern we use in our cryptosystem.

ISD for the Proposed Cryptosystem: In the proposed cryptosystem we intro-

duce a burst pattern in the error vector, in particular the error vector has support

in t sub-vectors each of length λ. Henceforth, we modify Stern’s ISD algorithm to

incorporate such pattern in the error vector.

We first recall Stern’s algorithm. The algorithm partitions the information set

I into two equal-sized subsets X and Y , and chooses uniformly at random a subset

Z of size ` outside of I. Then it looks for vectors having exactly weight v among

the columns indexed by X, exactly weight v among the columns indexed by Y , and

exactly weight 0 in columns indexed by Z and the missing weight t − 2v in the

remaining indices. See Algorithm 2 for a detailed description of the Stern’s ISD

algorithms over an arbitrary finite field.

In the proposed cryptosystem we have been given a public code ĈS of length λn

and dimension k′ := mk − (m − λ)n over Fq. We also know that the error vector

(the plaintext y in (2.1)) has support in t sub-vectors of length λ. Hence we use

Stern’s algorithm on the blocks of size λ. We consider the information set I to have

bk′/λc blocks. We partition I into two equal-sized subsets X and Y , and choose

uniformly at random a subset Z of ` blocks outside of I. Then we look for vectors

having support in exactly v blocks in X, exactly v blocks in Y , exactly 0 blocks in

Z, and the remaining t − 2v blocks outside I ∪ Z. For calculation of cost of this

modified ISD algorithm, we follow the same approach as in [136].

In the next section, we compute the key sizes of the proposed cryptosystem

having 128-bit and 256-bit security against this modified ISD algorithm.
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2.3.3 Parameters

In this section we find the best set of parameters that minimizes the public key

size of the proposed cryptosystem, fixing 128-bit and 256-bit security against the

modified ISD algorithm discussed in previous section. Later, in Section 2.5, we

compare these key sizes with the key sizes of the classical McEliece cryptosystem

and some other variants.

In the proposed cryptosystem, the public key is a parity-check matrix of a linear

code over Fq having length λn and dimension mk− (m−λ)n. Hence the public key

size is

(λn−m(n− k)) ·m(n− k) · log2(q)

bits. For a degree of extension m, let Cm be the public code.

In Table 2.1 and Table 2.2, we provide the key sizes for different rates of the

public code C3 achieving a 128-bit and 256-bit security level, respectively, against

the modified ISD algorithm discussed in Section 2.3.2. Observe that the smallest

key size is achieved at rate 0.80 and 0.82, respectively.

Rate q n k t Key Size (bits)
0.60 9 639 383 128 1241596
0.65 9 587 381 103 1089212
0.70 9 557 389 84 974562
0.75 9 557 417 70 923970
0.80 9 577 461 58 889125
0.85 9 635 539 48 896506
0.90 11 755 679 38 1011178

Table 2.1: Comparing key sizes of the proposed cryptosystem with
m = 3 and λ = 2 reaching a 128-bit security level against the modi-

fied ISD algorithm.

In Table 2.3 and Table 2.4, we provide the key sizes for different rates of the

public code C4 achieving a 128-bit and 256-bit security level, respectively, against

the modified ISD algorithm discussed in Section 2.3.2. In this case the smallest key

size is achieved at rate 0.87 and 0.89, respectively.
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Rate q n k t Key Size (bits)
0.60 13 1382 829 277 6783627
0.65 13 1270 825 223 5952804
0.70 13 1207 844 182 5339456
0.75 13 1192 894 149 4929077
0.80 13 1230 984 123 4702652
0.82 13 1258 1031 114 4624198
0.85 13 1340 1139 101 4634545
0.87 13 1420 1235 93 4692805
0.90 13 1602 1441 81 4863276

Table 2.2: Comparing key sizes of the proposed cryptosystem with
m = 3 and λ = 2 reaching a 256-bit security level against the modi-

fied ISD algorithm.

Rate q n k t Key Size (bits)
0.60 7 1489 893 298 3975484
0.65 7 1082 703 189 2757856
0.70 7 892 624 134 2142753
0.75 7 798 598 100 1787724
0.80 7 766 612 77 1584067
0.85 7 794 674 60 1498454
0.87 7 824 716 54 1474737
0.90 7 911 819 46 1502137

Table 2.3: Comparing key sizes of the proposed cryptosystem with
m = 4 and λ = 2 reaching a 128-bit security level against the modi-

fied ISD algorithm.

Rate q n k t Key Size (bits)
0.65 7 2360 1534 413 13134108
0.70 7 1945 1361 292 10191102
0.75 7 1738 1303 218 8480009
0.80 7 1662 1329 167 7448878
0.85 7 1700 1445 128 6815134
0.87 7 1770 1539 116 6785893
0.89 7 1872 1666 103 6754721
0.91 7 2024 1841 92 6814326

Table 2.4: Comparing key sizes of the proposed cryptosystem with
m = 4 and λ = 2 reaching a 256-bit security level against the modi-

fied ISD algorithm.
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2.4 McEliece Variant Based on Weight Two Masking of

GRS Codes in Conjunction with List Decoding

In this section, we present our second variant of the McEliece cryptosystem which

uses a weight two masking on GRS codes. In addition, we use list decoding to

increase on number of errors we can correct and as a consequence improve on the

key sizes. As per the security point of view, we hide the algebraic structure of the

GRS code by masking it with a constant row and column weight two matrix. We

will see in Section 2.4.3 how this masking affects the dimension of the square code.

2.4.1 Protocol

In the following cryptosystem we use the Guruswami–Sudan (GS) list decoding

algorithm for decryption with an aim to reduce the size of the keys. Although the

running time of the GS list decoding algorithm is high, the trade-off between the

running time and the key size can easily be achieved. In the following proposed

cryptosystem we use the interpolation multiplicity m = bn1/2c.
In this section we will present the proposed cryptosystem in the Niederreiter

version.

• Key generation: Consider a GRS code C = GRSn,k(α, β) of dimension k

and length n over the finite field Fq and choose a parity-check matrix H of C.

Choose a random (n−k)× (n−k) invertible matrix S and an invertible n×n
matrix Q of constant row weight two, both over Fq. Then we compute

H ′ = SHQ.

Let R = k
n be the rate of the code C and m be the interpolation multiplicity

(refer Section 2.2.1). The amount of errors which we can correct for the GRS

code using the Guruswami–Sudan list decoding algorithm is then given by

t =

⌊
tm
2

⌋
=

⌊
n

2

(
1−

√
R

(
m+ 1

m

))⌋
.

The Guruswami–Sudan algorithm gives us a list of possible messages, to re-

cover the sent message we also send hash of the message in the cipher. Let

H be a fixed hash function, globally known, with output size of h bits. The
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value of h depends on the list size `m in such a way that we do not encounter

second pre-images in the list of hash values of possible messages.

The private key is given by (S,H,Q) and the public key is given by (H ′, t).

• Encryption: Let y ∈ Fnq be a message having Hamming weight wt(y) ≤ t.

Then compute

c = H ′yᵀ.

The cipher text is then given by (c,H(y)).

• Decryption: For the decryption we first multiple the ciphertext by S−1, i.e.,

c′ := S−1c = HQyᵀ.

Since wt(yQᵀ) ≤ 2t ≤ tm, we list decode c′ to get a list Lm of size `m of

possible messages, say

Lm = {z1, . . . , z`m}.

In order to recover the original message y from the list, we computeH(zi(Q
ᵀ)−1)

for all i ∈ {1, . . . , `m} and compare it with H(y). The sent message y is

given by the zj(Qᵀ)−1, which is such that H(zj(Q
ᵀ)−1) = H(y), for some

j ∈ {1, . . . , `m}.

The output size h of the hash function should be chosen in such a way that the

probability of finding a second pre-image of H(y) in the list {H(z(Qᵀ)−1)|z ∈ Lm}
is negligible. Let z ∈ Lm with z 6= y. With an ideal hash function, the probability

thatH(z(Qᵀ)−1) = H(y) is 2−h. Hence the probability of finding a second pre-image

of H(y) is 1 −
(
1− 2−h

)(`m−1). From Section 2.2.1 we know that `m = O(n1/2).

In particular, `m ≤ 2bn1/2c + 1, assuming that the rate R > 1/4. In practice, if

n = 210, then h = 20 should be sufficient. In this case, the probability of finding a

second pre-image is less than 10−4.

Since we are taking m = bn1/2c, we get the decryption complexity to be O(n4)

field operations.

Remark 2.22. The Guruswami–Sudan error correction capacity bound can be im-

proved, for example with the Parvaresh–Vardy [130] or the Guruswami–Rudra algo-

rithm [76], when using folded Reed–Solomon codes. A folded Reed–Solomon code is

a Reed–Solomon code viewed over an extension field. We observed, that the folded



2.4. McEliece Variant Based on Weight Two Masking of GRS Codes 39

Reed–Solomon code cannot be used directly in the key generation, since it is a non-

linear code. Nevertheless, one can use a Reed–Solomon code during encryption and

fold the received cipher with a folding parameter m. To get a better error correc-

tion bound, one needs to bundle the error positions in the encryption step, and in

order not to destroy this bundling, one should also use a weight two matrix of block

diagonal form. We noted, that the public key is then vulnerable to ISD attack on

the smaller subcodes.

2.4.2 Security Against Known Attacks

In this section we will discuss the security of the proposed cryptosystem. Similar to

the security analysis of our first proposal, this cryptosystem is potentially vulnerable

to the following two structural attacks: Sidelnikov–Sheshtakov attack [153] and the

distinguisher attack.

Clearly the attack of Sidelnikov and Shestakov can not be applied, since the

public code is not permutation equivalent to the secret GRS code.

The security of the weight two masking is already discussed in [15], a scheme

of which the weight two masking is a special case of. The only vulnerability to the

scheme of [15] are the attacks based on the Schur product.

2.4.3 Distinguisher Attack Based on the Schur Product

For the definitions and notations of the Schur product and square codes we refer the

reader to Section 2.2.1.

In [15], Baldi et al. proposed the BBCRS scheme which uses GRS codes as secret

codes and as scrambling matrix the sum T +R, where T is a matrix of average row

weight m and R is a matrix of rank z, i.e., the public key is

SH(T +R),

where H is a parity-check matrix of the secret GRS code, and S is an (n−k)×(n−k)

invertible matrix.

In [73], Gauthier-Umaña et al. were able to attack this proposal for m = 1,

z = 1 and k < n−2
2 or k > n+2

2 . This attack is based on the fact that the square

code of a GRS code has small dimension. Even after the scrambling with T +R, the
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square code dimension is still low, whereas for a random secret code, the dimension

is with high probability maximal (see [42], [66], [134]). With this they can construct

a subcode of the public code, which is also a subcode of a permutation equivalent

GRS code to the secret code.

In [52] Couvreur et al. were able to extend this attack for m ≤ 1 + k/n < 2. In

this extended attack it is observed that in the Niederreiter version of the BBCRS

scheme puncturing the public code gives a small square code dimension. This helps

to detect the weights of the rows of T and reduce to the case z = 1 and m = 1.

Altough these attacks are only for certain parameters of the BBCRS scheme, it

is not excluded that the whole scheme is vulnerable to the Schur product attacks.

The purpose of the weight two masking is to be a countermeasure to these attacks.

More precisely, we claim that raising m to 2 is enough for the Schur product attacks

to fail, which aims in proving that under the weight two masking the square code of

the public code has maximal dimension and thus it behaves like a random code. We

provide experimental results, which give evidence that this is indeed the case with

high probability.

The security of the proposed cryptosystem against the attack based on the Schur

product relies on the following: for a parity-check matrix H of any GRS code, and a

random matrix Q of constant row weight two, the Schur matrix of HQ has with high

probability maximal rank. Moreover, if an attacker tries to puncture, like in [52], the

parity-check matrix of the public code, then the shortened code again corresponds

to a weight two masked GRS code. As a result, even after puncturing the attacker

will be left with a code having maximal square code dimension.

In the experiments, for sufficiently large n the Schur matrix of HQ always had

maximal rank. As a consequence, we conjecture the following statement.

Conjecture 2.23. Let H be a parity-check matrix of a random GRS code of length

n and dimension k over a finite field Fq. Let Q represent a weight two matrix having

variables x1, . . . , xn, y1, . . . , yn as the nonzero entries. Then, with probability close to

1, the Schur matrix S(HQ) ∈ Fq[x1, . . . , xn, y1, . . . , yn]s(n−k)×n has maximal rank,

i.e., there exists a nontrivial u× u minor of S(HQ), where u = min {s(n− k), n}.

Note that each entry in the ith column of S(HQ) is a homogeneous polynomial

of degree 2 in the variables xi and yi. Since the variables y1, . . . , yn are representing
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nonzero elements of Fq, we can normalize yi in each column. Hence we can assume

that S(HQ) ∈ Fq[x1, . . . , xn]s(n−k)×n.

If Conjecture 2.23 holds, we can assume that the nontrivial u × u minor is the

leading u × u minor, let p(x1, . . . , xu) be this nontrivial u × u minor. The total

degree of p is at most 2u and each individual degree degxi(p) is at most 2. We use

the Schwartz–Zippel lemma to get a bound on the number of points in
(
F×q
)u where

p is non-zero.

Theorem 2.24 (Schwartz–Zippel lemma [143, 165]). Let f ∈ Fq[x1, x2, . . . , xn] be

a nontrivial polynomial of total degree d over a finite field Fq. Let S be a subset of

Fq. Then f is nonzero on at least a fraction
(

1− d

|S|

)
of points in S.

We apply the Schwartz–Zippel lemma iteratively on each variable of p with

S = F×q , to get the following corollary.

Corollary 2.25. Let p(x1, . . . , xu) be the nontrivial u× u minor of S(HQ). Then

p is nonzero on at least a fraction
(

1− 2

q − 1

)u
of points in

(
F×q
)u.

We performed several experiments for small values of n on different field sizes,

and observed that the exact number of weight two matrices giving maximal S(HQ)

rank is invariant of the choice of the GRS code. Let P (q, n) denote the fraction of

weight two matrices giving maximal S(HQ) rank. For example, let H be a parity-

check matrix of a random GRS code of length n = 8 and dimension 4 over the field

F9. Then the Corollary 2.25 says that P (9, 8) ≥ (1 − 2/8)8 = 0.1001. However we

computed the exact value of P (9, 8) ≈ 0.988, which is much higher than the bound

given by Corollary 2.25.

In Section 2.4.4, we see that for fixed field size q and length of the code n,

the smallest key size is achieved at the rate 1/2. Thus for any n ≥ 8, we have

u = min {s(n− k), n} = n. The lower bound on P (q, n) is then (1− 2/(q − 1))n.

This implies that for a fixed n, the lower bound tends to 1 as q increases. For fixed

n = 8 and n = 9 respectively, we performed Monte-Carlo experiments to get an

estimate on the fraction P (q, n) for increasing q. These tests were made with Sage

[155] taking 107 random constant row weight two matrices Q. In Figure 2.3 and

Figure 2.4, corresponding to n = 8 and n = 9 respectively, we observe that the

estimated value of P (q, n) tends to 1 much faster than the Schwartz-Zippel lower

bound.
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Figure 2.3: Estimate of P (q, 8) obtained from Monte-Carlo tests
on 107 weight two matrices

Figure 2.4: Estimate of P (q, 9) obtained from Monte-Carlo tests
on 107 weight two matrices

In further experiments for n ≥ 12, we noticed the rank of the Schur matrix

S(HQ) for a randomly chosen weight two matrixQ is always maximal. Experimental

and therotical ananlysis on the rank of Schur matrix is also presented in detail

by Weger in [159]. As a conclusion, these experiments tend to imply that our

cryptosystem is not vulnerable to the attacks based on Schur product of the public

matrix.
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2.4.4 Parameters

In this section we find the best set of parameters that minimizes the public key

size of the proposed cryptosystem with or without using list decoding, for fixed

security against ISD attacks. In particular, we compute the parameters following

the complexity of the generalized ball-collision ISD algorithm presented in [87]. The

ISD attack takes as input q, n, k, t, where t is the weight of the error vector. In the

case of the weight two masking with list decoding we introduce the rate R = k
n and

the interpolation multiplicity m = bn1/2c and we have

t =

⌊
n

2

(
1−

√
R

(
m+ 1

m

))⌋
.

In the case of the weight two masking without list decoding we have

t =

⌊
n− k

2

⌋
/2.

In both the cases, the public key is a parity-check matrix of a linear code over

Fq having length n and dimension k. Hence the public key size is

k(n− k) log2(q) bits.

In Table 2.5, we provide the key sizes for different rates of the public code of the

proposed cryptosystem with list decoding, achieving a 128-bit security level against

the ISD algorithm. Observe that the smallest key size is achieved at rate 0.5. In

Table 2.6, we do the same for the proposed cryptosystem without using list decoding.

In this case, t = bn−k2 c/2 and the smallest key size is achieved at rate 0.7.

In Table 2.7, we provide the key sizes for different rates of the public code of the

proposed cryptosystem with list decoding, achieving a 256-bit security level against

the ISD algorithm. Observe that the smallest key size is achieved at rate 0.6. In

Table 2.8, we do the same for the proposed cryptosystem without using list decoding.

In this case, t = bn−k2 c/2 and the smallest key size is achieved at rate 0.75.

In the next section, we compare these optimized key sizes with different cryp-

tosystems.
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Rate q n k t Key Size (bits)
0.30 821 818 245 181 1359101
0.35 769 765 267 152 1274724
0.40 733 732 292 130 1222830
0.45 709 708 318 112 1174425
0.50 709 702 351 98 1166660
0.55 709 708 389 86 1175097
0.60 727 726 435 76 1203293
0.65 751 750 487 67 1223515
0.70 797 796 557 59 1283098

Table 2.5: Comparing key sizes of the proposed cryptosystem using
list decoding for different rates having 128-bit security against ISD

attack

Rate q n k t Key Size (bits)
0.30 1061 1056 316 185 2350375
0.40 877 875 350 131 1796420
0.50 797 791 395 99 1507644
0.60 769 759 455 76 1326052
0.65 769 767 498 67 1284272
0.70 787 785 549 59 1246434
0.75 839 829 621 52 1254548
0.80 919 916 732 46 1325858
0.85 1039 1034 878 39 1372554

Table 2.6: Comparing key sizes of the proposed cryptosystem with-
out using list decoding for different rates having 128-bit security

against ISD attack

Rate q n k t Key Size (bits)
0.30 1801 1800 540 401 7358242
0.35 1693 1680 588 336 6886719
0.40 1601 1600 640 287 6540139
0.45 1553 1550 697 248 6302635
0.50 1523 1516 760 215 6074693
0.55 1523 1520 836 189 6045724
0.60 1543 1541 924 166 6038312
0.65 1601 1595 1036 146 6164635
0.70 1693 1685 1179 129 6398475

Table 2.7: Comparing key sizes of the proposed cryptosystem using
list decoding for different rates having 256-bit security against ISD

attack
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Rate q n k t Key Size (bits)
0.30 2467 2359 707 413 13161251
0.40 1949 1948 779 292 9952066
0.50 1747 1744 872 218 8189841
0.60 1669 1668 1000 167 7150785
0.65 1693 1678 1090 147 6874102
0.70 1721 1717 1201 129 6661347
0.75 1811 1805 1353 113 6618608
0.80 1973 1957 1565 98 6715260
0.85 2237 2234 1898 84 7096222

Table 2.8: Comparing key sizes of the proposed cryptosystem with-
out using list decoding for different rates having 256-bit security

against ISD attack

2.5 Comparison

In this section we compare the two cryptosystem proposed in this chapter with two

other McEliece based cryptosystems. The first one is the classical McEliece cryp-

tosystem, which is one of the most promising candidates in the ongoing competition

of post-quantum cryptosystems organized by NIST. The second one is the BBCRS

cryptosystem [15, 16].

The BBCRS cryptosystem is also a variant of McEliece cryptosystem, where the

authors proposed to hide the structure of the secret GRS code using as transfor-

mation matrix the sum of a rank z matrix and a weight w matrix. The proposed

parameters in [15, 16] with z = 1 and w ≤ 1 + R were broken by the square code

attack [49, 52], where R denotes the rate of the code. Two countermeasures were

recently proposed in [18, 93]. In order to hide the structure of the Reed–Solomon

code the authors of [18] use w > 1 +R and z = 1 or w < 1 +R and z > 1.

In Table 2.9 and Table 2.10 we do the comparison for fixed 128-bit and 256-bit

security level, respectively. For the proposed variant based on expanded GRS codes,

we provide two sets of parameter, namely Type I and Type II. For the proposed

variant based on weight two masking of GRS codes, we provide two kinds: with list

decoding and without list decoding.

Compared to the classical McEliece cryptosystem, the proposal based on ex-

panded GRS codes with Type I set of parameters reduces the key size by 42.17%

for 128-bit security level and by 44.8% for 256-bit security level. On the other hand,

weight two masking with list decoding improves the key size by 24.1% for 128-bit
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q m n k Key Size (in bits)

Expanded GRS Type I 9 3 577 461 889125

Expanded GRS Type II 7 4 824 716 1474737

Weight-two masking with list de-
coding

709 1 702 351 1166669

Weight-two masking without list
decoding

787 1 785 549 1246434

classical McEliece 2 12 2960 2288 1537536

BBCRS [18] (w = 1.7 and z = 1) 653 1 652 357 990900

BBCRS [18] (w = 1.2 and z = 10) 563 1 562 438 548512

Table 2.9: Comparing the key sizes of different McEliece-based
cryptosystems having 128-bit security.

q m n k Key Size (in bits)

Expanded GRS Type I 13 3 1258 1031 4624198

Expanded GRS Type II 7 4 1872 1666 6754721

Weight-two masking with list de-
coding

1543 1 1541 924 6038312

Weight-two masking without list
decoding

1811 1 1805 1353 6618608

classical McEliece 2 13 6960 5413 8373911

BBCRS [18] (w = 1.708 and z =
1)

1423 1 1422 786 5251176

BBCRS [18] (w = 1.2 and z = 10) 1163 1 1162 928 2330748

Table 2.10: Comparing the key sizes of different McEliece-based
cryptosystems having 256-bit security.

security level and by 27.9% for 256-bit security level.

2.6 Conclusion

In this chapter we presented two code-based cryptosystem, using two different ways

of disguising a Reed–Solomon codes.
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In the first cryptosystem, we used shortened expanded Reed–Solomon codes

as the secret codes. We observed that shortening an expanded Reed–Solomon on

random indices destroys the algebraic structure present in expanded Reed–Solomon

codes. We allowed errors in burst pattern, this increases the error-correction capacity

of the secret code. As a consequence, we achieved better key sizes than the classical

McEliece cryptosystem. In particular, for 128-bit security level against modified

ISD attack we improved the key sizes by 42% compared to the classical McEliece

cryptosystem. Also notice that, the classical McEliece cryptosystem can be thought

of as a special case of this construction: binary Goppa codes are subfield subcodes

of a GRS code and hence a shortening of an expanded GRS code with λ = 1. This

leads us to ask a question about an optimum trade-off between algebraic security

and key size.

The second cryptosystem uses a Reed–Solomon code as the secret code and an

invertible matrix of constant row weight two for masking. This masking appears

to be hiding the algebraic structure of the private Reed–Solomon code against all

known attacks. In particular, we analyzed the effect of the weight two masking on

the security against the attack based on the Schur product, which has become an

enormous threat to code-based cryptosystems. Furthermore, with a view to reduce

the key size, we used the Guruswami–Sudan list decoding algorithm in the decryp-

tion step. We recovered the original message from the list by marking the message

using its hash value. List decoding allowed us to correct more errors compared to

unique decoding and hence results in smaller key sizes. For example, for 128-bit se-

curity level against ISD attack, the key size of the proposed cryptosystem is 1166669

bits, which is 24% less than the key size of the standard McEliece cryptosystem pro-

posed by Bernstein et al. in [30]. On mathematical side, an open problem would be

to prove Conjecture 2.23, which states that weight-two masking of Reed–Solomon

codes have full square code dimension with high probability.
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Chapter 3

Cryptanalysis of Noncommutative

Cryptographic Protocols

In this chapter, we shift our focus to group based cryptography. It is the area of

cryptology, where the cryptographic protocols are based on algebraic structures like

semigroups, groups and rings, mostly noncommutative.

This chapter is based on the following paper:

• Karan Khathuria, Giacomo Micheli, and Violetta Weger. “On the Algebraic

Structure of E(m)
p and Applications to Cryptography”. In: Applicable Alge-

bra in Engineering, Communication and Computing (2019). issn: 1432-0622.

doi: https://doi.org/10.1007/s00200-019-00410-1

The paper presents a polynomial time attack on the protocol based on the

Diffie–Hellman decomposition problem and the ElGamal decomposition prob-

lem over the noncommutative ring E(m)
p .

In this thesis, using the techniques presented in the above paper, we also break

the protocol based on the semigroup action problem (SAP) over E(m)
p in cubic time.

Moreover, we present an algorithm to solve a linear system over the ring E(m)
p . These

two results, presented in Section 3.5 and 3.6, are original and do not appear in any

research articles.

3.1 Introduction

Public-key cryptosystems are often based on number theoretical problems, such

as integer factorization as in RSA [140] or the discrete logarithm problem over

finite fields or over elliptic curves. The latter is the base for well known protocols,

https://doi.org/https://doi.org/10.1007/s00200-019-00410-1
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such as the ElGamal protocol [61] or the Diffie–Hellman key exchange protocol [56].

Increasing computing powers threaten these classical cryptographic schemes and new

ambient spaces are demanded, for example involving noncommutative structures (see

[6, 96, 97, 142, 151]).

In this chapter we will deal with cryptographic schemes that are based on the fol-

lowing two problems over nonabelian groups: the semigroup action problem (SAP),

and the decomposition problem (DP). For an overview see Section 3.2.2.

Based on these two problems, J.J. Climent and J.A. López-Ramos proposed three

protocols in [47] over a special ring of matrices, called E(m)
p . It involves operations

modulo different powers of the same prime. Similar cryptosystems can be found in

[107, Example 4.3.c]. The ring E(m)
p is a generalization of the ring Ep, that Climent,

Navarro and Tartosa introduced in [46]. The first cryptographic scheme based on

Ep [45], was broken in [90]. This attack can be prevented by admitting only few

invertible elements, as it is the case in the ring E(m)
p [44, Corollary 1]. In addition,

another nice property of such rings is that they do not admit embeddings into

matrix rings over a field (see [24]). This is often the main problem of cryptographic

schemes over matrix rings (see for example [119]) and it prevents a reduction to

small extensions of finite fields as in [117].

The first protocol proposed in [47] by Climent and López-Ramos is based on the

semigroup action problem over the ring E(m)
p . It was broken by Micheli and Weger in

[120] using a solution sieve argument. The remaining two protocols proposed in [47]

are based on the decomposition problem over E(m)
p and hence are equivalent with

respect to security. They will be referred to as the Diffie–Hellman Decomposition

Problem (DHDP) and the ElGamal Decomposition Problem (EGDP), respectively.

A cryptanalysis of these two protocols was considered by Zhang in [164], where the

Cayley–Hamilton Theorem is used to derive a linear system over E(m)
p . However,

even though the main idea is correct, the system over E(m)
p is then directly considered

over Z/pmZ, where the system does not necessarily admits a solution, as we will

show in an example in Section 3.7.1. The running time of the claimed attack is

O(m7) Z/pmZ-operations.

In this chapter, we introduce a new approach for solving linear systems over

E
(m)
p , where we consider an auxilary Z/pmZ-module that is isomorphic to E(m)

p . As

an application, we efficiently break all the protocols proposed in [47]. In particular,

this new approach solves the semigroup action problem in O(m3) Z/pmZ-operations,



3.2. Preliminaries 51

and the decomposition problem in O(m6) Z/pmZ-operations.

3.2 Preliminaries

In the first part of this section, we recall some notions of noncommutative rings

and modules that we will be using in this chapter. Later in the second part, we

define some generic problems based on semigroups that have applications in the

construction of different cryptographic protocols.

3.2.1 Semigroups, Rings and Modules

A semigroup G is a set equipped with an associative binary operation · : (x, y) 7→ x·y.
Thus, semigroups can be considered as generalizations of groups, by dropping the

existence of an identity element and inverses. Similarly, we can generalize group

actions to define semigroup actions: let G be a semigroup and S be a set. Then we

say G acts on S if there exists a map φ : G× S → S, such that for all x, y ∈ G and

s ∈ S, φ(x · y, s) = φ(x, φ(y, s)).

Let R be a (possibly noncommutative) ring, and let T be a subset of R. We

define the centralizer of T as the set of elements in R that commutes with the

elements of T , i.e.,

Cen(T ) = {r ∈ R | rt = tr ∀ t ∈ T}.

Notice that Cen(T ) is a subring of R. When T = R, then Cen(R) is said to be the

center of R and will be denoted by Z(R).

Let N denote the natural numbers, i.e., N = {1, 2, . . .} and N0 = N ∪ {0}. For

any commutative ring R, and any two positive integers k,m ∈ N we will denote by

Matk×m(R) the set of k ×m matrices with coefficients in R.

IfM is an abelian group and R is a ring acting onM , we denote by EndR(M) the

set of endomorphisms of M as an R-module. Notice that EndR(M) has a natural

ring structure, which contains R as a subring. Let φ ∈ EndR(M), we denote by

R[φ] the smallest subring of EndR(M) which contains R and φ.

One of the main result that we will be using in our cryptanalysis is the Cayley–

Hamilton theorem over a ring R.
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Theorem 3.1. [9, Proposition 2.4] Let R be a ring, let M be a finitely generated

R-module, let φ : M → M be a module morphism and let I ⊂ R be an ideal of R,

such that φ(M) ⊆ IM . Let n ∈ N be the number of elements needed to generate M .

Then there exist an−1, . . . , a0 ∈ I, such that

φn + an−1φ
n−1 + · · ·+ a0 = 0.

Proof. Let {x1, . . . , xn} be a set of generators of M . Since φ(M) ⊆ IM , for each

1 ≤ i ≤ n we have

φ(xi) =
n∑
j=1

ai,jxj

for some ai,j ∈ I. This implies

n∑
j=1

(δi,jφ− ai,j)xj = 0,

where δi,j is the Kronecker delta. Now, by left multiplication with the adjoint of the

matrix [δi,jφ−ai,j ]i,j , we deduce that det ([δi,jφ− ai,j ]i,j)·xk = 0 for each 1 ≤ k ≤ n.
But since det ([δi,jφ− ai,j ]i,j) is a degree n monic polynomial in φ with coefficients

in I, we have the desired form.

3.2.2 The Semigroup Action Problem and the Decomposition Prob-

lem

Many cryptographic protocols are based on nonabelian algebraic structures, such

as groups, semigroups and rings. A subclass of such protocols are based on the

difficulty of solving the following two problems:

Definition 3.2 (Semigroup Action Problem (SAP)). Let G be a finite semigroup

acting on a set S. Given a, b ∈ S such that b = g · a for some g ∈ G, find g′ ∈ G
such that b = g′ · a.

Definition 3.3 (Decomposition Problem (DP)). Let G be a semigroup, A,B ⊆ G

be two subsemigroups such that a · b = b · a for every a ∈ A and b ∈ B. Given two

elements a1 · x · a2 and b1 · x · b2, with x ∈ G, a1, a2 ∈ A and b1, b2 ∈ B, find the

element a1 · b1 · x · b2 · a2.
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Cryptographic Protocols Based on SAP: In [113], Maze et al. introduced the

SAP and generalized the Diffie–Hellman key exchange protocol and the ElGamal

protocol.

Protocol 3.4 (Diffie–Hellman protocol using semigroup action). Let G be a semi-

group acting on a set S via φ. Let G,S and s ∈ S be publicly known.

1. Alice chooses x ∈ G, computes x · s and sends it to Bob.

2. Bob chooses y ∈ G, computes y · s and sends it to Alice.

3. The exchanged key is then

x · (y · s) = (xy) · s = (yx) · s = y · (x · s).

Note that x, y ∈ G are chosen, such that they commute with each other. In practice,

this is achieved by choosing x, y from a publicly known subsemigroup H ≤ G, where
the elements commute with each other.

Protocol 3.5 (ElGamal protocol using semigroup action). Let G be a semigroup

acting on a set S via φ. Let G,S and s ∈ S be publicly known. Let m ∈ S be the

message that Bob wants to send to Alice.

1. Alice chooses x ∈ G, computes t = x · s. She publishes y and keeps x private.

2. Bob chooses randomly y ∈ G, and computes

c1 = y · s, c2 = m+ y · t

3. Bob sends (c1, c2) to Alice.

4. Alice recovers the message m by computing

c2 − x · c1 = m+ y · (x · s)− x · (y · s) = m

Note that x, y ∈ G are chosen, such that they commute with each other. Similar to

Protocol 3.4 this is achieved by choosing x, y from a publicly known subsemigroup

H ≤ G, where the elements commute with each other.
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Cryptographic Protocols Based on DP: In [149], Shpilrain–Zapata presented

the Commuting Action Key Exchange (CAKE) protocol based on the decomposition

problem over a semigroup G.

Protocol 3.6 (CAKE protocol). Let G be a semigroup, A,B ⊆ G be two subsemi-

groups such that a · b = b · a for every a ∈ A and b ∈ B and assume that x ∈ G.
Here G,A,B and x are publicly known.

1. Alice chooses a1, a2 ∈ A and sends a1 · x · a2 to Bob.

2. Bob chooses b1, b2 ∈ B and sends b1 · x · b2 to Alice.

3. The exchanged key is then

a1 · b1 · x · b2 · a2 = a1 · (b1 · x · b2) · a2 = b1 · (a1 · x · a2) · b2.

3.3 The Ring E
(m)
p

In this section we introduce the ring E(m)
p and discuss some properties of it. Let

p be a prime integer and m be a positive integer, then the definition of the matrix

ring E(m)
p is as follows:

Definition 3.7. Let E(m)
p be the following set of matrices.

E(m)
p =

{
(ai,j)i,j∈{1,...,m} | ai,j ∈ Z/piZ if i ≤ j, and ai,j ∈ pi−jZ/piZ if i > j

}
.

See Figure 3.1 for an illustration of the structure of a matrix in E(m)
p . To shorten

the notation we will write [ai,j ] = (ai,j)i,j∈{1,...,m}. This set forms a ring with the

addition and multiplication defined, respectively, as follows

[ai,j ] + [bi,j ] =
[
(ai,j + bi,j) mod pi

]
,

[ai,j ] · [bi,j ] =

[(
m∑
k=1

aikbkj

)
mod pi

]
.

We clearly see that E(m)
p cannot be embedded in the matrix ring over any com-

mutative ring. However, if one considers V = Z/pZ× · · · × Z/pmZ as a Z-module,

then E(m)
p is isomorphic to EndZ(V ) as rings. The case of m = 2 was proved in [46,

Theorem 3], which can be directly generalized to any m.
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Figure 3.1: Illustration of the structure of a matrix in E(m)
p .

The cardinality of the ring E(m)
p is p(2m3+3m2+m)/6, which can be proved using

induction on m (see [44, Theorem 2]). The invertible elements in E
(m)
p can be

characterized as follows:

Theorem 3.8. [44, Theorem 3, Corollary 1] Let A = [ai,j ] ∈ E
(m)
p . Then A is

invertible if and only if ai,i mod p 6= 0 for all i ∈ {1, . . . ,m}. The number of

invertible elements in E(m)
p is p(2m3+3m2−5m)/6.

This shows that the fraction of invertible elements in E
(m)
p is

(
p−1
p

)m
. With

security point of view, having a low number of invertible elements is a desirable

feature of the cryptographic protocols presented in [44, 47].

Theorem 3.9. [47, Theorem 2] The center of E(m)
p is given by the set

Z
(
E(m)
p

)
=

[ai,j ] ∈ E(m)
p

∣∣ ai,i =
i−1∑
j=0

pjuj with uj ∈ Zp, and ai,j = 0 if i 6= j

 .

As a corollary of this theorem we see that Z
(
E

(m)
p

)
is isomorphic to Z/pmZ as

rings.

Corollary 3.10. The center of the ring E(m)
p is isomorphic to Z/pmZ as rings.

Proof. It is easy to see that the following map is a ring isomorphism

ψ : Z/pmZ → Z(E(m)
p ),

z 7→ [ai,j ],

where ai,i = z mod pi and ai,j = 0 for i 6= j.
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For M ∈ E(m)
p , let us denote by Cen(M) the centralizer of M , i.e., the set of

elements X ∈ E(m)
p , such that XM = MX. It is not easy to characterize all the

elements in Cen(M), but using the center of E(m)
p we obtain the following subring

of Cen(M),

H(M) =

{
k∑
i=0

CiM
i
∣∣ Ci ∈ Z(E(m)

p ), k ∈ N

}
.

Using the fact that E(m)
p is isomorphic to the ring EndZ(Z/pZ× · · · × Z/pmZ),

and the Cayley–Hamilton Theorem (see Theorem 3.1), we can prove that the subring

generated by a matrix in E(m)
p is a finite dimensional Z-module.

Lemma 3.11. For every A ∈ E(m)
p , there exists a0, . . . , am−1 ∈ Z, such that

Am = a0 + a1A+ · · · am−1Am−1.

Proof. In Theorem 3.1, set I = R = Z and M = Z/pZ× · · · ×Z/pmZ, hence n = m

and φ is a matrix in E(m)
p . It follows now immediately that Z[φ] has dimension less

than or equal to m (as a Z-module).

Remark 3.12. Notice that in the statement and the proof of Lemma 3.11, Z could

as well be replaced by Z/pmZ since any element in pmZ acts as the zero morphism

over M .

Proposition 3.13. Let M ∈ E(m)
p . Then the map ψ : (Z/pmZ) [x]→ H(M) given

by ψ(f(x)) = f(M) is a surjective Z/pmZ-algebra homomorphism.

Proof. First, using Corollary 3.10 one can identify the center of E(m)
p with Z/pmZ,

from which follows that the map is well defined. It is easy to check that ψ is a

Z/pmZ-algebra homomorphism.

Finally, the map ψ is surjective because H(M) ∼= (Z/pmZ)[M ]: in fact, using

Corollary 3.10, for
∑k

i=0CiM
i ∈ H(M) there exist u0, . . . , uk ∈ Z/pmZ such that

each Ci is the diagonal matrix with entries (ui mod p, ui mod p2, . . . , ui mod pm).

3.4 Cryptographic Protocols from the Ring E
(m)
p

In [47], Climent and López-Ramos proposed three protocols over the ring E(m)
p . The

first one is a public-key cryptosystem based on the semigroup action problem over
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E
(m)
p . The other two are based on the decomposition problem over E(m)

p , a Diffie–

Hellman key exchange protocol and an ElGamal protocol, both analogous to the

Diffie–Hellman key exchange [56] and the ElGamal cryptosystem [61], respectively.

3.4.1 A Public-Key Cryptosystem Based on the Semigroup Action

Problem

The first protocol, a public-key cryptosystem, is based on the action of E(m)
p over

the set V = Z/pZ× · · · × Z/pmZ, given by the usual matrix-vector multiplication.

Protocol 3.14 (SAP protocol). Let M ∈ E(m)
p be a publicly known, and S ∈ V be

a message that Bob wants to send to Alice.

1. Alice chooses F ∈ Cen(M) and R ∈ V , and computes T = F ·R.

2. Alice publishes (R, T ) and keeps private F .

3. Bob chooses randomly G ∈ H(M), and computes

H = G ·R, D = S +G · T.

4. Bob send (H,D) to Alice.

5. Alice recovers the message S by computing

D − F ·H = S +G · F ·R− F ·G ·R = S.

Note that as F,G ∈ Cen(M), they commute with each other.

The basis for the security of the protocol is the difficulty of solving the SAP

for the action of E(m)
p over the set V , i.e., given R ∈ V and T = F · R ∈ V , find

X ∈ E(m)
p such that T = X · R. Note that in Protocol 3.14 we are also given that

F ∈ Cen(M) and M is publicly known. Hence this reduces to solving the following

system of linear equations

X ·M = M ·X,

X ·R = T,
(3.1)

where X,M ∈ E
(m)
p and R, T ∈ V . The system (3.1) breaks down to solving m

systems of linear congruences moduli pi for each i ∈ {1, 2, . . . ,m}. In [120], Micheli



58 Chapter 3. Cryptanalysis of Noncommutative Cryptographic Protocols

and Weger used this observation to break the SAP protocol using O(m9) Z/pmZ

operations. The main idea in [120] is to iteratively compute the solution space of

the system of linear congruences modulo pi and adjoining them with the system of

linear congruences modulo pi−1.

Synopsis of the Micheli–Weger Attack on the SAP Protocol

To attack the SAP protocol we are looking for X ∈ E(m)
p that satisfies (3.1). Let

the entries of X = [xi,j ] be the unknowns, represented by the vector x = (xi,j).

Then (3.1) breaks down into m systems of linear congruences modulo pi for each

i ∈ {1, 2, . . . ,m}. Let these system be represented by the equations

A(i)x = bi mod pi, (3.2)

for all i ∈ {1, . . . ,m}, for some A(i) ∈ Mat(2m−i+1)×m2(Z) and bi ∈ Z2m−i+1. The

equations in the system (3.2) are constructed in the following way: for each i ∈
{1, . . . ,m}, the i-th row of XM = MX gives rise to m equations modulo pi, the i-

th entry ofXR = T gives one additional equation, and the remainingm−i equations
are coming from the condition xs+i,s ≡ 0 mod pi for each s ∈ {1, . . . ,m− i}.

A common solution to the congruence systems in (3.2) is obtained by solving

them iteratively in backward direction. So, we start by solving them-th system, i.e.,

A(m)x = bm mod pm, to obtain the solution space Vm. Now, in the next step, while

solving the (m − 1)-th system, we impose the condition on x to lie in the previous

step’s solution space Vm. As a result we obtain a solution space Vm−1, which solves

both the systems m and m − 1. We carry on in the similar way until we obtain a

common solution to all the m systems. For more details we refer the reader to [120,

Proposition 15].

The i-th step of this attack involves solving a system of linear equations in m2

unknowns over Z/pm−iZ. In [120, Lemma 13], Micheli and Weger provide a method

to solve such a system by computing the Smith normal form of the corresponding

rectangular matrix over Z/pm−iZ, which has a complexity of O((m2)4) Z/pm−iZ

operations. Hence, the overall complexity of the attack is O(m9) Z/pmZ operations.
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3.4.2 A Key-Exchange and a Public-Key Cryptosystem Based on

the Decomposition Problem

In the same paper of the SAP protocol, Climen and López-Ramos presented two

more protocols based on the decomposition problem over E(m)
p . The first one is a key

exchange protocol based on the idea of Commuting Action Key Exchange (CAKE)

from [149]. The second one is a public-key protocol analogues to the ElGamal

cryptosystem [61].

Protocol 3.15 (DHDP protocol). Alice and Bob agree on two public elements

M,X ∈ E(m)
p , such that M /∈ Cen(X).

1. Alice chooses A1, A2 ∈ H(M) and sends GA = A1XA2 to Bob.

2. Bob chooses B1, B2 ∈ Cen(M) such that B1X 6= XB2 and sends GB = B1XB2

to Alice.

3. Alice computes A1GBA2.

4. Bob computes B1GAB2.

Since Ai and Bi commute for all i ∈ {1, 2}, it is clear that Alice and Bob share a

common value.

The basis for the security of the DHDP protocol is the difficulty of solving the

decomposition problem (DP) for the ring E(m)
p and subrings Cen(M) and H(M),

i.e., given A1XA2 and B1XB2 ∈ E
(m)
p for some X ∈ E

(m)
p , A1, A2 ∈ H(M) and

B1, B2 ∈ Cen(M), find A1B1XB2A2 or B1A1XA2B2.

Protocol 3.16 (EGDP protocol). Alice and Bob agree on a public element M ∈
E

(m)
p . Let S ∈ E(m)

p be the secret that Bob wants to send Alice.

1. Alice chooses N ∈ E(m)
p , such that NM 6= MN and two elements A1, A2 ∈

H(M) and publishes her public key (N,A1NA2).

2. Bob chooses randomly two elements B1, B2 ∈ Cen(M) and sends (F,D) =

(B1NB2, S +B1A1NA2B2) to Alice.

3. Alice recovers S by computing D −A1FA2.
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Since Ai and Bi commute for all i ∈ {1, 2}, we have that

D −A1FA2 = S +B1A1NA2B2 −A1B1NB2A2 = S.

The security of the EGDP protocol also relies on the DP problem over E(m)
p .

Proposition 3.17. [47, Theorem 4] Breaking the EGDP protocol is equivalent to

solving the decompostion problem (DP).

Proof. Consider M,N,B1, B2, A1, A2 as given in the EGDP protocol. Let the ci-

phertext be given by

(F,D) = (B1NB2, S +B1A1NA2B2),

where S is the message that an attacker wants to recover. Assume that the attacker

can solve the DP. The attacker knows the public key A1NA2 and the first part of the

ciphertext F = B1NB2, hence by solving the DP with these inputs she computes

B1A1NA2B2. By simply subtracting this from D, she recovers the sent message S.

Now assume the attacker can break the EGDP protocol, and given B1NB2,

A1NA2 she wants to compute B1A1NA2B2. She intercepts a random ciphertext

(F,D) of the EGDP protocol. Then she attacks the protocol to obtain the plaintext

S and subtracts it from D to obtain B1A1NA2B2.

3.5 Solving a System of Linear Equations over E
(m)
p

As observed by Micheli and Weger in [120], a crucial step in cryptanalyzing the

protocols based on E
(m)
p is solving a system of linear congruences over different

moduli. In particular, solving the system (3.1) efficiently would break the SAP

protocol. Moreover, in Section 3.7 we will see that the decomposition problem also

reduces to solving a system of linear congruences over different moduli.

In this section, we provide a new way of solving a linear system over E(m)
p ,

without going through different moduli. To do this, we define a Z/pmZ-submodule

of the matrix ring Matm×m(Z/pmZ), which will be used to translate the equations

over E(m)
p to equations over this new Z/pmZ-module.

Definition 3.18. Let F (m)
p ⊆ Matm×m(Z/pmZ) be the following set of matrices.

F (m)
p =

{
(ai,j)i,j∈{1,...,m} | ai,j ∈ p`Z/pmZ where ` = max(m− i,m− j)

}
.



3.5. Solving a System of Linear Equations over E(m)
p 61



/Z
pZ

/Z
pZ · · ·

/Z
pZ

/Z
pZ/pZ

p2Z
/Z
p2Z · · ·

/Z
p2Z

/Z
p2Z

...
. . .

.../
pm−2Z

pm−1Z
/

pm−3Z
pm−1Z · · ·

/Z
pm−1Z

/Z
pm−1Z/

pm−1Z
pmZ

/
pm−2Z

pmZ · · ·
/pZ
pmZ

/Z
pmZ


(a) Structure of a matrix in E

(m)
p

/
pm−1Z

pmZ
/

pm−1Z
pmZ · · ·

/
pm−1Z

pmZ
/

pm−1Z
pmZ/

pm−1Z
pmZ

/
pm−2Z

pmZ · · ·
/

pm−2Z
pmZ

/
pm−2Z

pmZ
...

. . .
.../

pm−1Z
pmZ

/
pm−2Z

pmZ · · ·
/pZ
pmZ

/pZ
pmZ/

pm−1Z
pmZ

/
pm−2Z

pmZ · · ·
/pZ
pmZ

/Z
pmZ


(b) Structure of a matrix in F

(m)
p

Figure 3.2: Illustration of the structure of a matrix in E
(m)
p and

F
(m)
p .

It is easy to check that F (m)
p is a Z/pmZ-submodule of Matm×m(Z/pmZ). More-

over the following proposition shows that F (m)
p is isomorphic to E(m)

p as Z/pmZ-

modules, where the scalar multiplication in E(m)
p is as follows: for r ∈ Z/pmZ and

[ai,j ] ∈ E(m)
p we have that

r[ai,j ] = [rai,j ] =
(
rai,j mod pi

)
i,j∈{1,...,m} .

Proposition 3.19. E(m)
p is isomorphic to F (m)

p as Z/pmZ-modules.

Proof. One can easily check that the following map is an isomorphism between E(m)
p

and F (m)
p

δ : E(m)
p → F (m)

p ,

(ai,j)i,j∈{1,...,m} 7→
(
ai,jp

m−i)
i,j∈{1,...,m} .

(3.3)
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Solving a Linear System over E(m)
p : Let A ∈ E(m)

p and B ∈ V = Z/pZ×· · ·×
Z/pmZ, and we want to find X ∈ V , such that

A ·X = B. (3.4)

The system (3.4) can be seen as an action of E(m)
p on V , i.e.,

φ : E(m)
p × V → V,

(A,X) 7→ A ·X.
(3.5)

The main idea is to translate the system (3.4) to a system of linear equation over

F
(m)
p . In order to do that, we first obtain the natural action of F (m)

p on (Z/pmZ)m,

i.e.,

ψ : F (m)
p × (Z/pmZ)m −→ (Z/pmZ)m ,

(M,Y ) 7−→M · Y.
(3.6)

Let W = pm−1Z/pmZ × pm−2Z/pmZ × · · · × Z/pmZ. Then, we observe that the

image of ψ is contained inW . Also, we have the following Z/pmZ-linear isomorphism

between V and W

χ : V →W,

(ai)i∈{1,...,m} 7→ (pm−iai)i∈{1,...,m}.
(3.7)

In this chapter, we use the notation (xi)i∈{1,...,n} to denote the vector (x1, . . . , xn).

Proposition 3.20. Let δ, φ, ψ and χ as in (3.3), (3.5), (3.6) and (3.7), respectively.

Then the following diagram of Z/pmZ-linear and Z/pmZ-bilinear maps commutes

E
(m)
p × V V

F
(m)
p × (Z/pmZ)m (Z/pmZ)m

φ

δ×η χ

ψ

(3.8)

where η : V → (Z/pmZ)m is an arbitrary lift.
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Proof. Let A = [ai,j ]i,j∈{1,...,m} ∈ E
(m)
p and X = (xi)i∈{1,...,m} ∈ V . Then

χ (φ(A,X)) = χ


∑

j

ai,jxj mod pi


i∈{1,...,m}


=

pm−i∑
j

ai,jxj


i∈{1,...,m}

=

∑
j

pm−iai,jxj


i∈{1,...,m}

= δ(A) · η(X)

= ψ ((δ × η)(A,X))) .

Remark 3.21. The ring E(m)
p and the ring F (m)

p are not isomorphic as rings. They

are only isomorphic as Z/pmZ-module via the map δ in (3.3). Hence the horizontal

maps φ and ψ in (3.8) cannot be treated as semigroup actions, but rather as Z/pmZ-

bilinear maps. Eventually, this is enough to satisfy our purpose of solving a linear

system over E(m)
p via F (m)

p .

Finally, the following theorem gives a way to solve the system (3.4).

Theorem 3.22. Let A ∈ E(m)
p and B ∈ V . Then X0 ∈ V is a solution of A ·X = B

if and only if η(X0) is a solution of δ(A) · Y = χ(B), where η : V → (Z/pmZ)m is

an arbitrary lift.

Proof. Using the commutativity of (3.8), we clearly see that if A · X0 = B, then

δ(A)η(X0) = χ(A ·X0) = χ(B).

Conversely, let Y ∈ (Z/pmZ)m be a solution of δ(A) · Y = χ(B), and let ε :

(Z/pmZ)m → V be the natural surjection. Then for X0 = ε(Y0), we have that

η(X0) = Y0. Moreover, the commutativity of (3.8) implies that

χ(A ·X0) = ψ ((δ × η)(A,X0))

= δ(A) · Y0

= χ(B).

Now since χ is injective, we have A ·X0 = B.
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As a direct application of this result, we obtain an algorithm to solve a linear

system over E(m)
p , see Algorithm 3. The most expensive step in Algorithm 3 is

solving a system of m linear equations over Z/pmZ. Thus the running time of the

algorithm is O(m3)Z/pmZ operations or O(m5 log(p)2) bit operations.

Algorithm 3 Solving a linear system over E(m)
p

Input: A ∈ E(m)
p , B ∈ V , such that there exists X ∈ V such that A ·X = B.

Output: X0 ∈ V , such that A ·X0 = B.

1: Compute δ(A) ∈ F (m)
p using (3.5).

2: Compute χ(B) ∈ (Z/pmZ)m using (3.7).
3: Solve the system δ(A) · Y = χ(B) for Y over Z/pmZ. By Theorem 3.22, such a

solution exists.
4: Return ε(Y ), where ε : (Z/pmZ)m → V denotes the natural surjection.

In the next two sections, we will use the correspondence between E(m)
p and F (m)

p

to efficiently solve the semigroup action problem and the decomposition problem

over E(m)
p . As a consequence, we break all three cryptographic protocols defined in

Section 3.4.

3.6 Solving the Semigroup Action Problem over E
(m)
p

In this section, we shift our focus on breaking the Protocol 3.14 that is based on

solving the following semigroup action problem. Given H,R ∈ V and M ∈ E(m)
p ,

find G ∈ H(M) such that H = G ·R.
First, we recall from Proposition 3.13 that H(M) ∼= Z/pmZ[M ]. Hence,

G =

m−1∑
i=0

aiM
i,

for some a0, a1, . . . , am−1 ∈ Z/pmZ. Thus, H = G · R gives us a linear system over

E
(m)
p with unknowns a0, . . . , am−1.

Again, the idea is to translate the system H = G ·R to F (m)
p . Using Proposition

3.20, we obtain χ(H) = δ(G) · η(R), where χ, δ and η are maps used in (3.8). Since

δ is a Z/pmZ-linear map (see Proposition 3.19),

δ(G) =
m−1∑
i=0

aiδ(M
i).
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Hence, the system is now over Z/pmZ and can easily be solved using O(m3)Z/pmZ

operations. See Algorithm 4 for details. Notice that this attack is 6 orders faster

than the previous attack by Micheli and Weger in [120].

Algorithm 4 Break protocol based on SAP over E(m)
p

Input: M ∈ E(m)
p , H,R ∈ V , such that H = G ·R for some G ∈ H(M).

Output: G0 ∈ H(M), such that H = G0 ·R.

1: Compute δ(M i) ∈ F (m)
p for each i ∈ {0, . . . ,m− 1}, using (3.3)

2: Compute χ(H), η(R) ∈ (Z/pmZ)m, where χ is defined in (3.7) and η is an
arbitrary lift.

3: Solve the system of m linear equations in m unknowns a0, a1, . . . , am−1 ∈
(Z/pmZ)m arising from (

m−1∑
i=0

aiδ(M
i)

)
· η(R) = χ(H).

4: Return
∑m−1

i=0 aiM
i ∈ H(M).

3.6.1 Toy Example

We use a toy example to illustrate Algorithm 4. Let m = 2 and p = 3. The attacker

sees

M =

1 1

3 4

 , R =

1

5

 , H =

1

1

 ,

and wants to find G ∈ H(M), such that G ·R = H.

In Step 1 of Algorithm 4, the attacker computes

δ(M0) =

3 0

0 1

 , δ(M) =

3 3

3 4

 ∈ F (m)
p .

In the second step the attackers compute

χ(H) =

3

1

 , η(R) =

1

5

 .
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From a0δ(M
0)η(R)+a1δ(M)η(R) = χ(H), the attacker obtains the following system

of m linear equations in m unknowns a0, . . . , am−1:

3a0 + 0a1 = 3,

5a0 + 5a1 = 1.

The solution of this system over Z/pmZ is (a0, a1) = (1, 1). Finally, the attacker

computes

G =
m=1∑
i=0

aiM
i = M0 +M =

2 1

3 5

 .

One can directly check that G ·R =

2 1

3 5

 ·
1

5

 =

1

1

 = H.

3.7 Solving the Decomposition Problem over E
(m)
p

In this section we provide an algorithm to solve the decomposition problem over

E
(m)
p and therefore to break the DHDP and EGDP protocols.

It is worth mentioning that in [164] the author claims to have an attack on

DHDP and EGDP protocols, which runs with O(m7) Z/pmZ-operations. Even

though the main idea of the attack is correct (i.e., reducing the problem to solving a

system of linear equations over E(m)
p ), it presents an issue when building the actual

linear equations. In fact, the equations have different moduli, depending on which

row is considered, so the claim that it is enough to solve the system over Z/pmZ

is incorrect (we provide an explicit example where the attack fails in Subsection

3.7.1). Moreover, the aforementioned attack would run in O(m7) Z/pmZ-operations,

instead our attack runs in O(m6) Z/pmZ-operations, reducing the complexity of the

DHDP.

As mentioned in Protocol 3.15 and Protocol 3.16, the two subgroups used are

H(M) and Cen(M) for a publicly known M ∈ E
(m)
p . Then the decomposition

problem is as follows: given GA = A1XA2, GBB1XB2 ∈ E(m)
p for some X ∈ E(m)

p ,

A1, A2 ∈ H(M) and B1, B2 ∈ Cen(M), find A1B1XB2A2.

Our strategy is to first obtain a system of linear equations over E(m)
p that solves

the decomposition problem, and then translates it over F (m)
p and solve over Z/pmZ.
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In the first step, the crucial point is to use the Cayley-Hamilton theorem, as shown

in the following proposition.

Proposition 3.23. Let M,X ∈ E(m)
p and GA = A1XA2 for some A1, A2 ∈ H(M).

Then there exists λ1,1, λ1,2, . . . , λm,m ∈ Z/pmZ such that GA =
∑m−1

i,j=0 λi,jM
iXM j.

Proof. Combining Lemma 3.11 and Proposition 3.13, we can write A1 =
∑m−1

i=0 uiM
i

and A2 =
∑m−1

i=0 viM
i, for some u0, . . . , um−1, v0, . . . , vm−1 ∈ Z/pmZ. Then

GA = A1XA2

=

(
m−1∑
i=0

uiM
i

)
X

m−1∑
j=0

vjM
j


=

m−1∑
i=0

m−1∑
j=0

uivjM
iXM j

=
m−1∑
i=0

m−1∑
j=0

λi,jM
iXM j ,

for λi,j = uivj .

Now, we translate our problem to F (m)
p by using Proposition 3.19.

Lemma 3.24. Let M1,M2, . . . ,Mk, G ∈ E
(m)
p . Then (λ1, λ2, . . . , λk) ∈ (Z/pmZ)k

is a solution for
∑k

i=1 λiMi = G if and only if
∑k

i=1 λiδ(Mi) = δ(G).

Proof. The proof follows directly by applying the isomorphism δ, defined in (3.3),

to both sides of the equation
∑k

i=1 λiMi = G.

Now we are ready for the main result.

Theorem 3.25. The decomposition problem over E(m)
p can be solved in polynomial

time.

Proof. Let M,X ∈ E
(m)
p such that MX 6= XM , and let A1, A2 ∈ H(M) and

B1, B2 ∈ Cen(M). Given M,X,GA = A1XA2 and GB = B1XB2, we want to find

A1GBA2.

Using Proposition 3.23, we know that there exist λ1,1, . . . , λm,m ∈ Z/pmZ, such

that GA =
∑m−1

i,j=0 λi,jM
iXM j . We use Lemma 3.24 to solve this system of linear
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equations for λ1,1, λ1,2 . . . , λm,m. Then the exchanged secret is given by

m−1∑
i,j=0

λi,jM
iGBM

j =
m−1∑
i,j=0

λi,jM
iB1XB2M

j

=

m−1∑
i,j=0

λi,jB1M
iXM jB2

= B1

m−1∑
i,j=0

λi,jM
iXM j

B2

= B1GAB2 = A1GBA2.

Algorithm 5 provides a formal way to solve the DHDP protocol over E(m)
p .

Algorithm 5 Break protocol based on DHDP over E(m)
p using pseudo-E(m)

p

Input: M,X,GA, GB ∈ E(m)
p .

Output: the exchanged secret A1GBA2 ∈ E(m)
p .

1: Construct the matrix of linear equations arising from A1XA2 = GA using Propo-
sition 3.23, given by

GA =
m−1∑
i,j=0

λi,jM
iXM j ,

where λi,j ’s are unknown.
2: Apply the Z/pmZ-module isomorphism δ mentioned in Lemma 3.19 to the above

equation

δ(GA) =
m−1∑
i,j=0

λi,jδ(M
iXM j).

3: Solve the system of m2 linear equations in m2 unknowns over Z/pmZ, gener-
ated by equating entries of the above matrix equality. By Proposition 3.23 and
Lemma 3.24, such a solution exists.

4: Return
∑m−1

i,j=0 λi,jM
iGBM

j .

Running time. The running time of Algorithm 5 is given by solving m2 linear

equations in m2 unkowns over Z/pmZ, which costs O((m2)3) Z/pmZ-operations, or

O(m8 log(p)2) bit operations. In [44], Climent et. al. proposed to use the DHDP

protocol and the EGDP protocol for the parameters p = 2 and m = 128. In our

implementation, Algorithm 5 took 23.1 days to break these parameters. The results
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were obtained by a MAGMA [38] implementation using a personal computer with

processor Intel Core 6C i7-8700K at 3.7 GHz and 64 GB RAM (see www.math.uzh.

ch/aa/uploads/media/attack_CLR.txt).

3.7.1 Toy Example

In the following we provide an example, which serves two purposes, first it shows

the Algorithm 5 in practice and second it provides an example where the claimed

attack in [164] does not work.

Let m = 2, p = 5 and let M =

 4 3

15 20

 and X =

 0 4

15 4

 be public elements.

Alice chooses

A1 =

 1 3

15 17

 A2 =

 0 3

15 11



and publishes GA =

 0 1

20 23

. Bob chooses

B1 =

 3 3

15 9

 B2 =

3 0

0 18



and publishes GB =

0 2

5 3

. The shared secret is then

A1GBA2 = B1GAB2 =

 0 1

15 21

 .

The attacker sees only M,X,GA, GB and wants to find A1GBA2 ∈ E(2)
5 .

In Step 1 of Algorithm 5, the attacker constructs

GA =

2−1∑
i,j=0

λi,jM
iXM j

= λ00

 0 4

15 4

+ λ01

10 5

20 0

+ λ10

20 3

0 15

+ λ11

0 20

0 0

 . (3.9)

www.math.uzh.ch/aa/uploads/media/attack_CLR.txt
www.math.uzh.ch/aa/uploads/media/attack_CLR.txt
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In the second step the attacker applies δ getting

δ(GA) =

 0 5

20 23

 = λ0,0

 0 20

15 4

+λ0,1

 0 0

20 0

+λ1,0

0 15

0 15

+λ1,1

0 0

0 0

 .

From this we get the system of 22 linear equations in 22 unknowns λi,j , but since

we applied δ these are now equations over Z/52Z:

0λ0,0 + 0λ0,1 + 0λ1,0 + 0λ1,1 = 0,

20λ0,0 + 0λ0,1 + 15λ1,0 + 0λ1,1 = 5,

15λ0,0 + 20λ0,1 + 0λ1,0 + 0λ1,1 = 20,

4λ0,0 + 0λ0,1 + 15λ1,0 + 0λ1,1 = 23.

One particular solution of this system over Z/52Z is given by

(λ0,0, λ0,1, λ1,0, λ1,1) = (2, 22, 1, 0) .

The attacker now computes

m−1∑
i,j=0

λi,jM
iGBM

j = 2GB + 22GBM + 1MGB + 0MGBM

=

 0 1

15 21

 = A1GBA2.

Compared to our attack, the approach presented in [164] does not make use of

Corollary 3.10, Proposition 3.13 and Lemma 3.24. Instead the elements of Z(E
(2)
5 )

are seen as diagonal matrices having entries

(a0, a0 + pa1, . . . , a0 + pa1 + · · ·+ pm−1am−1),

where 0 ≤ a0, a1, . . . , am−1 ≤ p − 1. Using this representation and the Cayley-

Hamilton theorem results in a linear system over E(m)
p of m2 equations in m3 un-

knowns, as mentioned in Theorem 2 of [164]. One should observe that this system

does not necessarily admit a solution over Z/pmZ, which is the approach used in

[164]. The above mentioned example provides an instance where this approach fails.
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Using the approach in [164], the analogue of equation (3.9) is

GA =

m−1∑
i,j=0

Wi,jM
iXM j ,

where Wi,j =

ai,j0 0

0 ai,j0 + 5ai,j1

 ∈ Z(E
(2)
5 ). This results in the following system

of linear equations:

0a000 + 0a001 + 0a010 + 0a011 + 0a100 + 0a101 + 0a110 + 0a111 = 0 mod 5,

4a000 + 0a001 + 0a010 + 0a011 + 15a100 + 0a101 + 0a110 + 0a111 = 5 mod 5,

15a000 + 0a001 + 20a010 + 0a011 + 0a100 + 0a101 + 0a110 + 0a111 = 20 mod 25,

4a000 + 20a001 + 0a010 + 0a011 + 15a100 + 5a101 + 0a110 + 0a111 = 23 mod 25.

In Section 4 of [164], the author claims that it is enough to consider this system

over Z/25Z. However in this example the claim does not hold and shows that the

approach used in [164] to solve a linear system over E(m)
p is incorrect.
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Chapter 4

Rank Analysis of Cubic

Multivariate Schemes

In this chapter, we deal with multivariate cryptography. It is the area of cryptology

where the cryptographic protocols are based on the hardness of solving a system of

multivariate polynomial equations over a finite field.

This chapter is based on the following paper:

• John Baena, Daniel Cabarcas, Daniel Escudero, Karan Khathuria, and Javier

Verbel. “Rank Analysis of Cubic Multivariate Cryptosystems”. In: Post-

Quantum Cryptography. PQCrypto 2018. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2018, pp. 355–374. doi: 10.1007/978-3-319-79063-3_17

The paper analyzes the security of cubic multivariate cryptosystems with re-

spect to rank weakness. It provides a framework for the study of the rank of

multivariate cubic polynomials.

4.1 Introduction

Given k m × n matrices and a target rank r, the MinRank problem (MR) is to

determine whether there exists a linear combination of the matrices of rank less or

equal to r. Although NP-complete in its general setting, there are efficient algo-

rithms to solve it for certain parameters. Indeed, Kipnis and Shamir [95] modeled

an attack on the hidden field equation (HFE) system as an MR problem and were

able to break it. Since then, other multivariate public-key schemes (MPK) have

been subject to similar attacks. Rank defects also lead to other weakness such as a

fixed degree of regularity in the algebraic attack on HFE [57].

https://doi.org/10.1007/978-3-319-79063-3_17
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The importance of the rank itself, and the prevalence of MR as an attack tech-

nique in MPK suggest a more central role as the underlying problem that supports

security. For example, we can think of HFE as a way to construct low rank quadratic

polynomials, where rank of a quadratic polynomial is given by the rank of the sym-

metric matrix representing its homogeneous quadratic part. Their low rank allows

inversion, but it is insecure because the same low rank is preserved as a linear com-

bination of the public key which can be efficiently solved through the Kipnis–Shamir

modeling (KS) of MR.

Although the MR problem is stated for two-dimensional matrices, it can be nat-

urally extended to d-dimensional matrices. It is particularly interesting to analyze it

for three-dimensional matrices, since rank problems become much harder there. For

example, simply determining the rank of a matrix is difficult for three-dimensional

matrices, and it is not even known the maximum possible rank a matrix may have

(see e.g. [80]).

Three-dimensional matrices lead to cubic polynomials. They are less common

than quadratic polynomials in MPKs for two reasons. First, they are larger thus less

efficient than quadratics. But more important, if f is cubic, its differentialDfa(x) :=

f(x + a)− f(x)− f(a) is a quadratic map that preserves some of the properties of

f . Thus, it is possible to extend rank analysis techniques from quadratics to cubics

targeting the differential, c.f. [126]. Yet one important question remains open: Is

this a general property of any cubic map that dooms any such construction? In this

chapter we address this question, by taking a general perspective not focused on a

particular construction.

In order to close the knowledge gap, we gather the appropriate literature to frame

the discussion of the rank of cubic polynomials. We use the language of tensors

that allows for very natural extensions of key concepts from two to d-dimensional

matrices.

We extend the MR problem to three-dimensional matrices and we propose two

ways to solve it, which naturally extend the KS modeling. Interestingly, if the rank

is small, the complexity is even lower than for the quadratic case. However, the

rank of a cubic polynomial in n variables can be larger than n, and in this case the

attack is very inefficient.

We also discuss the relevance of two other typical lines of attack for MPK in the

context of cubic low rank polynomials, namely the algebraic and differential attacks.
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We show that the rank of the differential is not necessarily much smaller than the

rank of the cubic polynomial, rendering this line of attack inefficient if the rank is

large enough. Similarly, the algebraic attack is exponential in the rank, thus useless

for high rank.

Although our approach is general, we provide a detailed example. We show

how to efficiently construct cubic polynomials over a finite field from a weight three

polynomial over a field extension, extending the so called big field idea. And then,

we show that the rank is preserved by this construction in the sense that, a low

rank core polynomial leads to a set of cubic polynomials with a low rank linear

combination.

4.2 Preliminaries

This section is divided in three parts. In the first part, we extend the notion of rank

to three-dimensional matrices and trilinear forms. In the second part, we describe

the general construction of multivariate cryptosystems based on the big fields idea.

In the third part, we introduce the MinRank attack, one of the most famous attack

on quadratic multivariate schemes.

Notation

Given a natural number n, the set {1, . . . , n} is denoted by [n]. Let F be a finite

field of order q which, unless explicitly stated, has characteristic different from 2

or 3.

Vectors are denoted by bold letters, e.g. u,v, and they are treated as column

vectors by default unless stated otherwise. The vector ei denotes the i-th canonical

vector, i.e. the vector whose only non-zero entry is the i-th one, which is equal

to 1. The i-th entry of a vector u is denoted by u[i], but sometimes we also use the

non-bold version of the corresponding letter with subscript i: ui.

The space of all n ×m matrices is denoted by Fn×m. The entry of a matrix A

indexed by (i, j) is denoted by A[i, j]. We use the notation A[i, ·] to refer to the i-th

row of a matrix A (as a row vector), and A[·, j] to refer to the j-th column of A (as

a column vector).

A three dimensional matrix of dimensions n ×m × ` is an array of elements in

F indexed by tuples (i, j, k), where 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ `. The
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vector space of these three-dimensional matrices is denoted by Fn×m×`, and the

entry indexed by (i, j, k) in a matrix A ∈ Fn×m×` will be denoted by A[i, j, k]. We

denote by A[i, ·, ·] the two-dimensional matrix whose entry (j, k) is given by A[i, j, k],

and similarly for A[·, j, ·] and A[·, ·, k].

For u ∈ Fn and v ∈ Fm, u⊗ v denotes the Kronecker product which we usually

see as the matrix uvᵀ.

4.2.1 Rank and Trilinear Forms

Let n,m, ` be positive integers and let U , V andW be the vector spaces Fn, Fm and

Fl, respectively. The rank of a matrix A ∈ Fn×m can be defined as the minimum

number of summands r required to write A as

A =

r∑
i=1

ui ⊗ vi,

where ui ∈ U and vi ∈ V for all i = 1, . . . , r. This definition of rank is more flexible

than other definitions as it is independent of the number of dimensions so it can be

extended to three-dimensional matrices as follows.

Definition 4.1. Let A ∈ Fn×m×` be a three-dimensional matrix, we define the rank

of A as the minimum number of summands r required to write A as

A =

r∑
i=1

ui ⊗ vi ⊗wi,

where ui ∈ U , vi ∈ V and wi ∈ W for all i = 1, . . . , r. We denote this number by

Rank(A).

Let A ∈ Fn×m×` be a three-dimensional matrix. Then clearly, Rank(A) = 0

if and only if A is zero (empty sum). For an arbitrary A ∈ Fn×n×n, the maximal

value that Rank(A) can attain is unknown. To our knowledge, the best known upper

bound for the maximal value of Rank(A) is d(3/4)n2e (see [85, Theorem 7]).

A bilinear map B : U × U → F is a map that is linear in each argument, so it

can be written as

B(x,y) = xᵀAy (4.1)

where A ∈ Fn×n is the matrix such that A[i, j] = B(ei, ej).
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A bilinear map B is symmetric if for all a,b ∈ U it holds that B(a,b) = B(b,a),

which is equivalent to A being symmetric.

Given a bilinear map B we can obtain a quadratic homogeneous polynomial

f(x) ∈ F[x] by defining f(x) := B(x,x). Different bilinear maps can yield the

same quadratic polynomial. However, symmetric bilinear maps are in bijection with

the set of quadratic homogeneous polynomials. Given a quadratic homogeneous

polynomial f , its corresponding symmetric bilinear map can be computed as

B(x,y) :=
1

2
(f(x + y)− f(x)− f(y))

.

Similarly, a trilinear map T : U × U × U → F is a map that is linear in each

argument. It can be written as

T (x,y, z) =
∑

i,j,k∈[n]

xiyjzk · αi,j,k

where αi,j,k := T (ei, ej , ek). Let A ∈ Fn×n×n be such that A[i, j, k] = αi,j,k. We say

that T is symmetric if for all a,b, c ∈ U , it is invariant under any permutation of

the indices, i.e.

T (a,b, c) = T (a, c,b) = T (b,a, c) = T (c,a,b) = T (b, c,a) = T (c,b,a),

or equivalently, the three-dimensional matrix A is symmetric. Given a trilinear form

T (symmetric or not) we can obtain the homogeneous cubic polynomial f(x) ∈ F[x]

defined as f(x) := T (x,x,x), and given a homogeneous polynomial f of degree 3

we can obtain the corresponding symmetric trilinear form as

T (x,y, z) =
1

3!
(f(x + y + z)− f(y + z)− f(x + z)

− f(x + y) + f(x) + f(y) + f(z)). (4.2)

For a cubic homogeneous polynomial f ∈ F[x], we define its rank, denoted by

Rank(f), as the rank of the corresponding three-dimensional symmetric matrix.
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Fn Fn Fm Fm

w x y z

P

S F T

Figure 4.1: Outline of a general multivariate cryptosystem

4.2.2 Multivariate Cryptosystems Using Big Field Idea

Multivariate cryptography is the study of public-key cryptosystems based on diffi-

culty of solving a system of multivariate polynomials over a finite field. In multivari-

ate public-key cryptosystems (MPKC) the private and public keys are multivariate

polynomials over a finite field Fq. The generic structure of a multivariate scheme is

as follows:

• Key generation: The private key consists of two random invertible affine

transformations S : Fn → Fn, T : Fm → Fm, and an easy to invert system of

multivariate polynomials F : Fn → Fm, called the central map. The public

key is the composition P = T ◦ F ◦ S, see Figure 4.1.

• Encryption: Given a message w ∈ Fn, to encrypt one simply computes the

ciphertext z = P (w).

• Decryption: To decrypt, one computes y = T−1(z), x = F−1(y) and w =

S−1(x) in turn.

Since 1980’s, many multivariate cryptosystems have been proposed and crypt-

analysed. Most famous among them are Matsumoto–Imai (MI) cryptosystem [110],

Hidden Field Equations (HFE) [132], Unbalanced Oil and Vinegar (UOV) signa-

ture scheme [133, 94], Rainbow signature scheme [59]. About the current state of

research in multivariate cryptography, various multivariate cryptosystems are in-

cluded in the ongoing process of standardization of post-quantum cryptography by

NIST. Namely, GeMSS (Great Multivariate Signature Scheme), LUOV (Lifted Un-

balanced Oil and Vinegar) signature scheme [34], Rainbow signature scheme [59,

137] and Gui signature scheme [138].

The cryptosystems MI, HFE, GeMSS and Gui are based on the so called “Big

Field" construction, where the central map F is constructed by a univariate polyno-

mial over an extension field (Big Field). Let g(y) = yn+an−1y
n−1+ · · ·+a1y+a0 be
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an irreducible polynomial of degree n over F. Consider the degree n field extension

K = F[y]/ (g(y)). Notice that K can be seen as a vector space over F of dimension

n, so K ∼= Fn through the usual vector space isomorphism φ : K→ Fn given by

φ(u1 + u2y + · · ·+ uny
n−1) = (u1, u2, . . . , un).

Let ∆ be the matrix given by

∆ :=


y0 y1 · · · yn−1

(y0)q (y1)q · · · (yn−1)q

...
...

. . .
...

(y0)q
n−1

(y1)q
n−1 · · · (yn−1)q

n−1

 . (4.3)

The matrix ∆, whose transpose is known as a Moore matrix, is invertible because{
y0, y1, . . . , yn−1

}
is a basis of K over F [105, Page 109].

For β ∈ K let Fr(β) denote the vector (β, βq
1
, . . . , βq

n−1
) ∈ Kn. If α ∈ K, then

it is easy to see that Fr(α) = ∆ · φ(α).

We refer to a polynomial in K[X] of the form

F(X) =
∑

0≤i1≤···≤id≤n−1
αi1,...,idX

qi1+···+qid , (4.4)

where αi1,...,id ∈ K, as a homogeneous weight d polynomial. Notice that a homo-

geneous weight 0 polynomial is simply a constant polynomial, i.e. an element

of K. A weight d polynomial F ∈ K[X] is a polynomial that can be written as

F = F0 + · · ·+ Fd where each Fj ∈ K[X] is a homogeneous weight j polynomial.

The main property of this type of polynomials is that if F ∈ K[X] is homogeneous

of weight d then the map F = φ◦F ◦φ−1 : Fn → Fn can be represented as evaluation

of n homogeneous multivariate polynomials in F[x1, . . . , xn] of degree d. We state

this formally in the following theorem.

Theorem 4.2. Let F ∈ K[X] be a homogeneous weight d polynomial. There exist

homogeneous degree d polynomials f1, . . . , fn ∈ F[x1, . . . , xn] such that for all a ∈ Fn

it holds that F (a) = (f1(a), . . . , fn(a))ᵀ where F is the composition φ ◦ F ◦ φ−1.

Proof. Note that it is enough to prove the theorem for monomial functions, i.e. we

may assume that F(X) = αXqa1+···+qad for some α ∈ K and non-negative integers

a1, . . . , ad. Now, we prove it by applying induction on d.
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K K

Fn Fn Fn Fn

F

φ

S

P

F

φ−1

T

Figure 4.2: Outline of a Big Field Construction

Base case d = 1: Since F : X 7→ αXqa is an F-linear map over K, it follows that

F = φ ◦ F ◦ φ−1 is also an F-linear map and hence each component of F is a degree

1 multivariate polynomial over F.

Now let d > 1 and assume that the theorem holds for d− 1. We write F(X) =

αXqa1+···+qad = G(X)H(X) with G(X) = αXqa1+···+qad−1 and H(X) = Xqad . By

induction hypothesis, there exist homogeneous degree d−1 polynomials g1, . . . , gn ∈
F[x1, . . . , xn] and homogeneous degree 1 polynomials h1, . . . , hn ∈ F[x1, . . . , xn] such

that G = φ ◦ G ◦ φ−1 and H = φ ◦ H ◦ φ−1 where G = (g1, . . . , gn)ᵀ and H =

(h1, . . . , hn)ᵀ. Thus

F
(
φ−1(x)

)
= G

(
φ−1(x)

)
· H
(
φ−1(x)

)
= φ−1 (G(x)) · φ−1 (H(x))

=
(
g1(x) + g2(x)y + · · ·+ gn(x)yn−1

) (
h1(x) + h2(x)y + · · ·+ hn(x)yn−1

)
= f1(x) + f2(x)y + · · ·+ fn(x)yn−1,

where f1, . . . , fn ∈ F[x1, . . . , xn] such that each fi is a linear combination of the

terms gjhk. Hence each fi is a homogeneous polynomial of degree d.

The previous property has been used extensively in order to construct the central

map F of a multivariate scheme. This construction can be observed in Figure 4.2.

In the MI cryptosystem, we have F(X) = X1+qi =: Y , for some i ≥ 1. MI was

broken by Patarin [131] using the relation XY qi = Xq2iY . On the other hand, the

HFE cryptosystem is a generalization of MI, where F(X) is a weight 2 polynomial

as in (4.4) with indices i1, i2 bounded above by a parameter r, i.e.

F(X) =
∑

0≤i1≤i2<r
αi1,i2X

qi1+qi2 +
∑

0≤i1<r
βi1X

qi1 + γ. (4.5)
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Notice that the degree of the homogeneous quadratic part is bounded by D =

2qr. To invert F one uses the Berlekamp algorithm [27] which has complexity

O(D3+nD2 log q). HFE with a high degree D is unbroken, although it can be really

slow to decrypt/invert. Whereas small value of D (or r) leads to vulnerabilities like

MinRank attacks, discussed in Section 4.2.3. Hence, it is difficult to obtain a good

trade-off between efficiency and security in HFE cryptosystem.

An important remark is that the polynomials representing the map F can be

efficiently computed from the coefficients of the polynomial F . The construction for

d = 2 can be found in [62, Section 6.3]. We will show the construction for d = 3 in

Section 4.4.

4.2.3 Two-Dimensional MinRank Attack

Buss et al. [39] introduced the MinRank problem (MR) in the context of linear

algebra and proved its NP-completeness.

Definition 4.3 (MinRank Problem). Given positive integersm,n, r, k, and matrices

M0, . . . ,Mk ∈ Fm×n, determine whether there exist λ1, . . . , λk ∈ F such that the

rank of
∑k

i=1 λiMi −M0 is less or equal to r.

MinRank Attack on the HFE Cryptosystem

In the context of cryptography, MR first appeared as part of an attack against the

HFE cryptosystem by Kipnis and Shamir [95]. Kipnis and Shamir showed that

an attack on HFE can be reduced to an instance of MR with a small rank r. In

particular, if M1, . . . ,Mn ∈ Fn×n are the symmetric matrices representing public

polynomials, then there exists a linear combination
∑n

i=1 λiMi having rank at most

the rank of F . Moreover, these coefficients can be used to construct an equivalent

secret key. Since we generalize this attack to the cubic case in Section 4.4.1, it is

worth to describe the main idea here.

Let F be the central map of the HFE cryptosystem, which is a weight two

polynomial as in (4.5). Since it is enough to consider only the homogeneous weight

two part of F , we assume that F is homogeneous of weight two, i.e.

F(X) =
∑

1≤i,j≤r
αi,jX

qi−1+qj−1
.
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Hence we can write F as

F(X) =
(
Xq0 Xq1 · · · Xqn−1

)


∗ · · · ∗ 0 · · · 0
...

. . .
...

...
. . .

...

∗ · · · ∗ 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0




Xq0

Xq1

...

Xqn−1

 ,

where the r × r square on the top left is non-zero. We represent the map F as

F(X) = BF (X,X) where X = (Xq0 , . . . , Xqn−1
)ᵀ and BF : Kn × Kn → K is the

bilinear form given by

BF (β,γ) =
∑

1≤i,j≤n
αi,j · βiγj ,

where αi,j = 0 when i > r or j > r. Now, we lift also the linear maps S, T : Fn → Fn

to the extension field K using the following proposition:

Proposition 4.4. Let A : Fn → Fn be a linear map. Then there exists a homoge-

neous weight one polynomial A ∈ K[X] such that φ◦A◦φ−1 = A, where φ : K→ Fn

is an F-linear isomorphism.

Proof. Using Theorem 4.2, we know that for every homogeneous weight one polyno-

mial A there exists a linear transformation A : Fn → Fn such that φ ◦A ◦ φ−1 = A.

Now, by using counting argument, it is easy to see that the converse also holds. The

number of linear maps A is equal to the number of n× n matrices over F, which is

qn
2 . And, the number of homogeneous weight one polynomials in K[X] is also equal

to (qn)n = qn
2 .

Let S, T : K → K be the univariate homogeneous weight one polynomials ob-

tained by lifting S and T , respectively.

Recall that the public key is given by P = T ◦ F ◦ S. Let P : K→ K be the lift

of the system of public polynomials P , note that P = T ◦F ◦S and we represent P
as P(X) = BP(X,X) for some bilinear map BP : Kn ×Kn → K given by

BP(β,γ) =
∑

1≤i,j≤n
δi,j · βiγj .
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In order to show that there exists low rank linear combination of some bilinear

maps corresponding to the public known BP , we compute the bilinear representa-

tions of the composite maps F ◦ S and T −1 ◦ P, which are the equal maps.

First we compute the bilinear representation of F ◦ S. Let β ∈ K and let

γ = φ−1(S(φ(β))), then recall from (4.3) that Fr(γ) = ∆ · φ(γ) = ∆S · φ(β). Thus

(F ◦ S)(β) = F(γ) = BF (Fr(γ),Fr(γ))

= BF (∆S · φ(β),∆S · φ(β))

= B′F (Fr(β),Fr(β)),

where B′F : Kn ×Kn → K is the bilinear map given by

B′F (β,γ) = BF (∆S∆−1 · β,∆S∆−1 · γ).

Notice that ∆S∆−1 represents the change of basis on Kn and hence Rank(B′F ) =

Rank(BF ) = r.

Now, we can compute the bilinear representation of T −1 ◦ P. Let T −1 be given

by T −1(X) =
∑n

i=1 τiX
qi−1 . Then

(T −1 ◦ P)(β) = T −1 (BP(Fr(β),Fr(β)))

= T −1
 ∑

1≤i,j≤n
δi,j · βq

i−1+qj−1


=

n∑
k=1

τk

 ∑
1≤i,j≤n

δq
k−1

i,j · βqi−1+k−1+qj−1+k−1


=

n∑
k=1

τk B
(k)
P (Fr(β),Fr(β)),

where B(k)P : Kn ×Kn → K is the bilinear map given by

B(k)P (β,γ) =
∑

1≤i,j≤n
δq
k−1

ik,jk
· βiγj ,

here ik denotes i− k mod n and jk denotes j − k mod n.
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Since F ◦ S = T −1 ◦ P, we obtain the following relation

B′F =

n∑
k=1

τkB
(k)
P .

And since Rank(B′F ) = Rank(BF ) = r, we obtain an instance of the MinRank

problem.

Next we discuss some of the most common approaches to solve the MinRank

problem.

Solving the Two-Dimensional MinRank Problem

Kipnis–Shamir Modeling: Kipnis and Shamir [95] attacked the HFE scheme by

reducing to an instance of the MinRank problem having small rank r. In the same

paper, they described the following approach to solve the MinRank problem.

Let A =
∑k

i=1 tiMi − M0 be the matrix with entries in the polynomial ring

F[t1, . . . , tk]. The Kipnis–Shamir modeling is based on the following characterization

of the rank of a matrix:

Theorem 4.5 (Rank-Nullity Theorem). The rank of a matrix A ∈ Fn×n equals r if

and only if the dimension of its kernel is n− r.

Therefore, the matrix A has rank at most r if and only if the dimension of its

right kernel is at least n−r. Hence, we construct (n−r) linearly independent vectors

in the right kernel of A. Notice that with high probability there exists kernel vectors

of the following form:

A ·



1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

v1,1 v1,2 · · · v1,n−r

v2,1 v2,2 · · · v2,n−r
...

. . .
...

vr,1 vr,2 · · · vr,n−r



= 0n×(n−r). (4.6)

This relation produces a system of n(n − r) bi-homogeneous polynomials in

F[t1, . . . , tk, v1,1, . . . , vr,n−r] of bi-degree (1,1) in k + r(n − r) variables. Clearly, if
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(t1, . . . , tk, v1,1, . . . , vr,n−r) is a solution of the system, then the evaluation of the

matrix A at the point (t1, . . . , tk) has rank at most r.

Unfortunately, this again reduces to solve a system of multivariate quadratic

equations. However, in this case we obtain an overdefined system of about n2

homogeneous bilinear equations in about nr variables. Moreover, if r � n, then one

could use linearlization or relinearization techniques to solve the system without

using Gröbner basis techniques.

Guessing Kernel Vectors: As with any system of equations, it is possible to

guess some variables in (4.6) and solve for the others. Because of the structure of

this system, it is particularly appealing to guess kernel vectors (i.e. the vi,j variables)

and solve the resulting linear system in the ti variables, as proposed in [74] (in fact,

if the linear system is very overdetermined, it is enough to guess k/n kernel vectors).

The complexity of such attack is dominated by the guessing part and depends on the

probability of a correct guess. A tight bound on this probability can be significantly

improved by understanding the structure of the solution space, e.g. by exploiting

the interlinked kernel structure [163] or by using the subspace differential invariant

structure [124].

Minors Modeling: In [67], Faugère et al. introduced the minors approach to

solve the MinRank problem and in [33] they improved the MinRank attack on HFE

using this modeling.

LetA =
∑k

i=1 tiMi be the matrix with entries in the polynomial ring F[t1, . . . , tk].

The minors modeling is based on the following characterization of the rank:

Theorem 4.6. The rank of a matrix A ∈ Fn×n is at most r if and only if every

minor of A of size r + 1 is zero.

Let I be the ideal in F[t1, . . . , tk] generated by all the (r+ 1)× (r+ 1) minors of

A. Let V (I) be the zero locus of I.

If (λ1, . . . , λk) ∈ V (I)∩Fk, then all the (r+ 1)× (r+ 1) minors of the matrix A

evaluated at (λ1, . . . , λk) are zero. As a result the rank of the matrix A evaluated

at (λ1, . . . , λk) is at most r.

Each (r+ 1)-minor is a homogeneous polynomial in F[t1, . . . , tk] of degree r+ 1,

and the number of (r + 1)-minors in A is
(
n
r+1

)2.
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Support Minors Modeling: Recently, in [19], Bardet et al. introduced a new

modeling of MR with an aim to solve rank syndrome decoding problem as an ap-

plication of MR. This modeling is based on the following simple characterization of

the rank:

Theorem 4.7. Let M be a m× n matrix over F having rank at least r. Then there

exist two matrices S ∈ Fm×r and C ∈ Fr×n such that SC = M.

LetA =
∑k

i=1 tiMi be the matrix with entries in the polynomial ring F[t1, . . . , tk].

Using the above theorem, there exist two matrices S ∈ Fm×r and C ∈ Fr×n such

that

SC =
k∑
i=1

tiMi. (4.7)

Define m matrices C1, . . . , Cm by stacking a row of A on top of C, i.e.

Cj =

rj

C

 ,

where rj is the j-th row of A. Since each row of A is in the span of the rows of C, it

follows that the row rank of Cj is at most r. Hence each (r+1)×(r+1) minor of Cj
is zero, which is referred to as the support minors modeling. The m

(
n
r+1

)
equations

arising from the minors of Cj , can be seen as bilinear equations in variables ti and

the r × r minors of C. As a result, the system can be expected to be solved by

linearization technique whenever

m

(
n

r + 1

)
≥ k

(
n

r

)
− 1.

4.3 Rank Analysis of Cubic Polynomials

Despite the disadvantages in terms of efficiency of considering cubic polynomials,

one possible advantage would be avoiding the MinRank attack on the quadratic case.

This might be expected since the MinRank attack relies on the fact that the degree

is 2. For instance, this allows us to represent the polynomials as xᵀAx, which is

crucial as the attack performs matrix operations and properties of such. Therefore,

a natural question is whether or not the MinRank attack applies in a cubic setting.

Let us start by defining the MinRank problem in this context.
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Definition 4.8 (Cubic MinRank Problem). Given positive integers `,m, n, r, k,

and three-dimensional matrices M0, . . . ,Mk ∈ Fn×m×`, determine whether there

exist λ1, . . . , λk ∈ F such that the rank of
∑k

i=1 λiMi −M0 is less or equal to r.

In this section we show that if there is a low-rank linear combination of the cubic

polynomials of the public key then the resulting instance of the MinRank problem

can be solved with an extension of the Kipnis–Shamir modeling. This is by itself a

weakness on the scheme as it allows an adversary to distinguish between a public key

and a random polynomial system of equivalent size. Thereafter, we discuss other

consequences of the low-rank for the differentials and for the direct algebraic attack.

4.3.1 Solving the Three-Dimensional MinRank Problem

The following characterization of rank for cubic matrices leads to a generalization

of the Kipnis–Shamir modeling for the MinRank problem.

Theorem 4.9. Given a three-dimensional matrix A ∈ Fn×m×`, the rank of A is the

minimal number r of rank one matrices S1, . . . , Sr ∈ Fm×`, such that, for all slices

A[i, ·, ·] of A, A[i, ·, ·] ∈ Span(S1, . . . , Sr).

Proof. Suppose A =
∑r

j=1 uj ⊗ vj ⊗wj . Then

A[i, ·, ·] =
r∑
j=1

uj [i] · (vj ⊗wj).

Hence, for Sj := vj ⊗wj , A[i, ·, ·] ∈ Span(S1, . . . , Sr).

Conversely, letA[i, ·, ·] ∈ Span(S1, . . . , Sr) for some rank one matrices S1, . . . , Sr ∈
Fm×`, i.e. A[i, ·, ·] =

∑r
j=1 ui,jSj . Then for uj := (u1,j , . . . , un,j), A =

∑r
j=1 uj ⊗

Sj .

Let M0, . . . ,Mk ∈ Fn×n×n. Then, A =
∑k

i=1 λiMi −M0 is of rank r, if and

only if, there exist rank one matrices S1, . . . , Sr ∈ Fn×n, such that, for i = 1, . . . , n,

A[i, ·, ·] ∈ Span(S1, . . . , Sr). Since each Si matrix is of rank one, we can write it as

Si = uiv
T
i for some vectors ui,vi ∈ Fn. Considering the entries of the ui’s, vi’s,

and the linear combination coefficients as variables, we obtain a system of n3 cubic

polynomials in 3rn+ k (= r(2n) + rn+ k) variables

r∑
j=1

αijujv
T
j = A[i, ·, ·], for i = 1, . . . , n. (4.8)
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If r � n we can do much better. In that case, for most such rank r matrices

A, the first r slices A[1, ·, ·], . . . , A[r, ·, ·] are linearly independent. In this case,

Span(S1, . . . , Sr) = Span(A[1, ·, ·], . . . , A[r, ·, ·]). Then, for i = r+1, . . . , n, A[i, ·, ·] ∈
Span(A[1, ·, ·], . . . , A[r, ·, ·]). Considering the coefficients of the linear combinations

as variables yields a system of n2(n−r) quadratic equations in (n−r)r+k variables

r∑
j=1

αijA[j, ·, ·] = A[i, ·, ·], for i = r + 1, . . . , n. (4.9)

Notice that the converse is not necessarily true. A solution to the system in (4.9)

does not necessarily implies the existence of the rank one Si matrices, neither that

A has rank r. However, this is a very overdetermined system, hence a solution is

very unlikely, unless indeed A has rank r.

Another approach in the r < n case is to take differentials (or slices) and reduce

the problem to a two-dimensional MR problem. If A ∈ Fn×n×n has rank r, the

corresponding symmetric trilinear map is likely to have rank r as well. Then, the

differentials of this map will have rank less or equal to r. Since the differential

operator is lineal, we have an MR problem among the differentials of the symmetric

trilinear maps corresponding to M0, . . . ,Mk. In the next section we discuss the

relation between the rank of a cubic and its differential in more detail.

To the best of our knowledge, the complexity of solving a system such as (4.8)

has not been studied. It can be seen as a multi-homogeneous system of multi-degree

(1, 1, 1, 1), i.e. a tetra-linear system, and assuming some notion of tetra-regularity,

analyze it using the techniques in [65]. It should be noticed that the techniques in

[65] do not address the semi-regularity inherent to such an overdetermined system.

Alternatively, the techniques in [20] could be used to establish the asymptotic be-

havior of an upper bound of the degree of regularity based on the semi-regularity

assumption. Although a complete asymptotic analysis is outside the scope of this

thesis, Table 4.1 shows the growth of such bound for selected parameters.

In the case r � n, the system in (4.9) has O(n3) quadratic equations in O(n)

variables. Since the number of degree two monomials is O(n2) the system can be

solved by relinearization at degree 2, which reduces to solving aO(n2) square matrix.

Notice that this is much faster than the KS approach in the two-dimensional case.
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n r vars # equations d-reg complexity
10 10 310 1000 67 699
11 11 374 1331 74 798
12 12 444 1728 81 899
13 13 520 2197 89 1010
14 14 602 2744 97 1123
15 15 690 3375 105 1240

Table 4.1: Complexity of MR by KS modeling for cubic system.
For different values of n, KS yields a cubic system of n3 equations
in (3r + 1)n variables (assuming k = n). The d-reg column gives
the degree of regularity for such a semi-regular system without field
equations. The vars column gives the number of variables. The

complexity column, gives the log base 2 of
(
vars+d−1

d

)2.8
.

4.3.2 Differentials

Given an instance of the cubic MinRank problem, one can always obtain a quadratic

instance by taking the differential (defined below) of the associated polynomials. For

example, it is known ([79]) that computing the differential of the public polynomi-

als of a cubic HFE instance yields an instance of the quadratic HFE scheme, and

therefore we can perform a quadratic MinRank attack. In this section we explore

the relation between the rank of a cubic polynomial and the rank of its differ-

ential. More precisely, given a random homogeneous cubic polynomial f ∈ F[x]

of rank r, we want to estimate the rank of the quadratic part of its differential

Daf(x) = f(x + a)− f(x)− f(a), with respect to some fixed a ∈ Fn.

The first and principal problem that we face in our analysis is: given an integer

r, how can we generate random homogeneous cubic polynomials of rank r? Or

equivalently, how can we generate random symmetric three-dimensional matrices of

rank r? To address these questions, we introduce the concept of symmetric rank.

We then choose random polynomials and use Kruskal’s theorem to guarantee that

those polynomials have certain symmetric rank.

Definition 4.10. Let S ∈ Fn×n×n be a three-dimensional symmetric matrix. We

define the symmetric rank of S as the minimum number of summands s required to

write S as

S =

s∑
i=1

tiui ⊗ ui ⊗ ui,

where ui ∈ Fn, ti ∈ F. If such decomposition does not exist, this number is defined

to be ∞. We denote this number by SRank(S).
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The following proposition gives us a sufficient condition over F to guarantee that

for all matrices in Fn×n×n the symmetric rank is finite. A more general result is

shown in [145, Proposition 7.2].

Proposition 4.11. Let F be a finite field with |F| ≥ 3. Then each three-dimensional

symmetric matrix S ∈ Fn×n×n can be written as S =
∑s

i=1 tiui ⊗ ui ⊗ ui, where

ui ∈ Fn and ti ∈ F.

By the previous proposition, if |F| ≥ 3, any homogeneous cubic polynomial f

can be written as
∑k

i=1 tiui(x)ui(x)ui(x), where each ui(x) is a homogeneous linear

polynomial and k depends on f . Furthermore, the symmetric rank of a homogeneous

cubic f ∈ F[x], denoted by SRank(f) and defined as the symmetric rank of its

symmetric matrix representation, does exist.

The symmetric rank is a good parameter to consider because it is a bound of

the rank of the differential.

Proposition 4.12. Let f ∈ F[x] be a homogeneous cubic polynomial. If g is the

quadratic homogeneous part of Dfa(x), then Rank(g) ≤ SRank(f).

Proof. If f can be written as f(x) =
∑r

i=1 tiui(x)ui(x)ui(x), then for any a ∈ Fn

the quadratic part of Dfa(x) is
∑r

i=1 3tiui(a)ui(x)ui(x).

Let U = Fn. Clearly, each symmetric matrix A ∈ Fn×n×n with symmetric rank r

can be written as a sum of exactly r terms of the form tu⊗u⊗u, where t ∈ F−{0}
and u ∈ U .

Let Sr be the function which outputs A =
∑r

i=1 tiui⊗ui⊗ui, for ti ∈ F−{0} and
ui ∈ U . By Proposition 4.11, if |F| ≥ 3, then each symmetric matrix A ∈ Fn×n×n

with symmetric rank equal to r is in the codomain of Sr. But some symmetric

matrices having symmetric rank less than r can also be there.

The following theorem is a particular case of the known Kruskal’s theorem [100,

144]. We use it to argue that if ti ∈ F − {0} and ui ∈ U are chosen uniformly at

random, then with high probability the corresponding output A of Sr has symmetric

rank equal to r. Moreover, by Kruskal’s theorem with high probability Rank(A) =

SRank(A). The Kruskal rank of a matrix with columns u1, . . . ,um, denoted by

KRank(u1, . . . ,um), is defined as the maximum integer k such that any subset of

{u1, . . . ,um} of size k is linearly independent.
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Theorem 4.13. Let F be a finite field, u1, . . . ,ur ∈ U and t1, . . . , tr ∈ F. Sup-

pose that A =
∑r

i=1 tiui ⊗ ui ⊗ ui and that 2r + 2 ≤ KRank(t1u1, . . . , trur) + 2 ·
KRank(u1, . . . ,ur). Then Rank(A) = r.

Suppose 2 ≤ r ≤ n. If u1, . . . ,ur ∈ U are taken uniformly at random, then

with high probability a matrix with columns u1, . . . ,ur has full rank. If a ma-

trix with columns u1, . . . ,ur ∈ U is full rank, then KRank(u1, . . . ,ur) = r and

KRank(t1u1, . . . , trur) = r, for any t1, . . . , tr ∈ F − {0}. In this case, by Theorem

4.13 the corresponding output A of Sr is such that Rank(A) = SRank(A) = r.

We experimentally analyze the behavior of the rank of the differential of a poly-

nomial that is the output of Sr2 . The experimental results are shown in Figure 4.3,

where each curve represents the percentage of times that a rank is obtained, over

100,000 iterations.

4.3.3 Direct Algebraic Attack

The direct algebraic attack, or simply the direct attack, refers to the case when an

attacker aims to find the plaintext associated with a ciphertext (c1, . . . , cn) directly

from the public multivariate equations p1 = c1, . . . , pn = cn, without the knowledge

of any other information of the system. In almost all the cases, the most efficient

way to perform this attack is to compute a Gröbner basis of the ideal I generated

by the multivariate polynomials p1 − c1, . . . , pn − cn.
Gröbner bases have played an important role not only in multivariate cryptog-

raphy, but also in coding theory and lattices [21, 4]. There is a general consensus

that when computing a Gröbner basis over a finite field, one of the most efficient

ways to do it is to use the F4 or F5 algorithms [63, 64]. In a recent work [108],

the authors used their M4GB algorithm to solve some of Fukuoka’s MQ challenges

within 11 days. The complexity of all these algorithms depends on the degree of

regularity of the system. Since the degree of regularity is hard to determine, it is

usually approximated by its first fall degree, defined as the first degree at which

non-trivial relations between the polynomials p1, . . . , pn occur.

Let p be a linear combination of the polynomials p1, . . . , pn. We now want to

derive an upper bound for the first fall degree Dff(p1, . . . , pn) of the system that

depends on Rank(p). Before we do that, we need the following definition.
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Figure 4.3: For different values of q, CubicRank, and n a polyno-
mial f is chosen according SCubicRank, the Rank(Dfa) is computed
for a random a ∈ U . Each graph represents the percentage of times
that a particular value Rank(Dfa) is obtained over 100,000 itera-

tions.

Definition 4.14. The LRank of a homogeneous λ ∈ F[x1, . . . , xn] is the smallest

integer s such that there exist linear homogeneous µ1, . . . , µs ∈ F[x1, . . . , xn] with λ

contained in the algebra F[µ1, . . . , µs].

Hodges et al. [82] proved that Dff(p1, . . . , pn) is bounded by

Dff(p1, . . . , pn) ≤ Dff(p) ≤ LRank(p)(q − 1) + 5

2
.

Also, since LRank(p) ≤ 3 · Rank(p) then

Dff(p1, . . . , pn) ≤ 3 · Rank(p)(q − 1) + 5

2
. (4.10)
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On the other hand, the complexity of finding a Gröbner basis G for the ideal I

is bounded by

O
((

n+Dff

Dff

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant. When n grows to infinity, the

complexity 1 becomes O
(
nωDff

)
. Therefore, according to the bound in (4.10), the

complexity of finding G is bounded by

O
(
nω

3·Rank(p)(q−1)+5
2

)
.

Thus, if q and Rank(p) are constant, then the complexity of finding G is polynomial

in the number of variables n. We also observe that the complexity is exponential in

Rank(p).

4.3.4 Previous Related Work

In [126] and [125], Moody, Perlner, and Smith-Tone do a rank analysis of the cubic

ABC scheme [58]. They expose a subspace differential invariant extending the ideas

used in the quadratic case [124]. They show that the MR attack used in [124] can

be adapted to this cubic case.

Their work avoids discussing the rank of cubic polynomials by focusing on the

differentials. This is rewarding in the ABC case because of the band structure of

the scheme. There are linear combinations of the public polynomials with a band

structure (they show it for the second differential) whose rank is bounded (possibly

by a factor of s2). The rank of some of their slices (or the second differential

evaluated at some vectors as they show) drops by a square root factor to 2s. This

allows an attack on cubic ABC even more efficient than on its quadratic counterpart.

For a good reason, they approach the MR problem by guessing kernel vectors

instead of using the Kipnis-Shamir or minors modeling (see Section 4.2.3 for a discus-

sion of these techniques). The subspace differential invariant allows a tight analysis

of the efficiency of this approach.
1Notice that we are using an upper bound to estimate the complexity. This is a customary

usage for this kind of attacks. In practice, it has been observed [154] that, on average, this bound
is not too far from the actual complexity.
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4.4 Rank Analysis for Cubic Big Field Constructions

As we pointed out in Section 4.2.2, the big field idea has been a basis to propose

quadratic multivariate encryption schemes for decades. Nevertheless, Theorem 4.2

is not restricted to any particular degree, which means that this approach works to

generate polynomials of any degree, in particular degree 3. In this section we show

that if the central map is a low rank cubic polynomial, then, as in the quadratic case,

there must exists a low-rank linear combination of the polynomials of the public key.

In particular, we obtain an instance of the cubic MinRank problem which can be

solved using the techniques presented in Section 4.3. Thereafter, we discuss the

direct algebraic attack on cubic big field schemes having low rank central map.

4.4.1 Big Field Idea for Cubic Polynomials

Let F ∈ K[X] be a homogeneous weight 3 polynomial given by

F(X) =
∑

1≤i,j,k≤n
αi,j,kX

qi−1+qj−1+qk−1

and S, T ∈ Fn×n invertible matrices. Our first goal is to give an explicit expression

for the multivariate cubic polynomials of the composition T ◦φ◦F◦φ−1◦S. We begin

by representing the map F as F(X) = T (X,X,X) where X = (Xq0 , . . . , Xqn−1
)ᵀ

and T : Kn ×Kn ×Kn → K is the trilinear form given by

T (β, δ,γ) =
∑

1≤i,j,k≤n
αi,j,k · (βiδjγk).

Let A be the three-dimensional matrix whose entry (i, j, k) is given by αi,j,k, and

assume without loss of generality that the matrix A is symmetric (otherwise we can

take the matrix whose (i, j, k) entry is given by 1
3! · (A[i, j, k] +A[i, k, j] +A[j, i, k] +

A[j, k, i] +A[k, i, j] +A[k, j, i]), which represents the same trilinear form T ).
Let T ′ : Kn × Kn × Kn → K be the trilinear form given by T ′(β, δ,γ) =

T (∆Sβ,∆Sδ,∆Sγ), we can write this trilinear form as

T ′(β, δ,γ) =
∑

1≤i,j,k≤n
α′i,j,k · (βiδjγk)

where α′i,j,k = T ′(ei, ej , ek) = T (∆Sei,∆Sej ,∆Sek).
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Let A′ be the three-dimensional matrix whose entry (i, j, k) is given by α′i,j,k.

Notice that this is the cubic version of the matrix (∆S)ᵀA(∆S) from Section 4.2.2.

It is easy to see that the matrix A′ is symmetric since the matrix A is.

Let a ∈ Fn and let α = φ−1(Sa), we know that Fr(α) = ∆ · φ(α) = ∆S · a and

therefore

F ◦ φ−1(Sa) = F(α) = T (Fr(α),Fr(α),Fr(α)) = T (∆S · a,∆S · a,∆S · a)

= T ′(a,a,a) =
∑

1≤i,j,k≤n
α′i,j,k · (aiajak).

Let R1, . . . , Rn ∈ Fn×n×n be three-dimensional symmetric matrices such that

A′ = y0 ·R1 + y1 ·R2 + · · ·+ yn−1 ·Rn, where y0, y1 . . . yn−1 is the basis of K over

F, as explained in Section 4.2.2. Then

F ◦ φ−1 ◦ S(a) =
∑

1≤i,j,k≤n
α′i,j,k · (aiajak)

=
∑

1≤i,j,k≤n

(
n∑
`=1

y`−1R`[i, j, k]

)
· (aiajak)

=

n∑
`=1

y`−1

 ∑
1≤i,j,k≤n

R`[i, j, k] · (aiajak)


︸ ︷︷ ︸

t`

.

Since t` ∈ F, we obtain that φ◦F◦φ−1◦S(a) = (t1, . . . , t`)
ᵀ, therefore, each cubic

polynomial in the composition φ◦F◦φ−1◦S is given by f`(x) =
∑

1≤i,j,k≤nR`[i, j, k]·
(xixjxk). Finally, when we apply the transformation T we obtain that each cubic

polynomial in the composition P = T ◦ φ ◦ F ◦ φ−1 ◦ S is given by

p`(x) =
∑

1≤i,j,k≤n

(
n∑
t=1

T [`, t] ·Rt[i, j, k]

)
· (xixjxk).

As a conclusion, if we let A` be the matrix whose entry (i, j, k) is given by∑n
t=1 T [`, t] ·Rt[i, j, k] then we obtain that this is the symmetric matrix correspond-

ing to the `-th polynomial in P . In particular, this shows we can compute efficiently

the composition T ◦ φ ◦ F ◦ φ−1 ◦ S from S, T and F .
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4.4.2 Existence of Low Rank Linear Combination

Let us continue with the same setting as before, and let r be the rank of A, which

in particular means that A can be written as
∑r

`=1 u` ⊗ v` ⊗ w`. Suppose that r

is small. In this section we prove that there exists a low-rank linear combination of

the three-dimensional matrices representing the composition P , and in Section 4.3.1

we showed how to find such combination.

Recall that the matrix A′ was defined as A′[i, j, k] = T (∆Sei,∆Sej ,∆Sek),

we claim that the rank of this matrix is at most the rank of A. We show this by

exhibiting vectors u′`,v
′
`,w

′
` ∈ Kn such that A′ =

∑r
`=1 u

′
` ⊗ v′` ⊗ w′`. Let M be

the matrix ∆S, we define u′` =
∑n

i=1 u`[i] · M [i, ·], v′` =
∑n

i=1 v`[i] · M [i, ·] and

w′` =
∑n

i=1w`[i] ·M [i, ·], then

A′[i′, j′, k′]

= T ′(Mei′ ,Mej′ ,Mek′)

=
∑

1≤i,j,k≤n
A[i, j, k] ·

(
(Mei′)[i] · (Mej′)[j] · (Mek′)[k]

)
=

∑
1≤i,j,k≤n

(
r∑
`=1

u`[i] · v`[j] ·w`[k]

)(
(M [i, ·]ei′) · (M [j, ·]ej′) · (M [k, ·]ek′)

)
=

r∑
`=1

∑
1≤i,j,k≤n

(
u`[i]M [i, ·]ei′

)(
v`[j]M [j, ·]ej′

)(
w`[k]M [k, ·]ek′

)

=
r∑
`=1

(
n∑
i=1

u`[i]M [i, ·]ei′
) n∑

j=1

v`[j]M [j, ·]ej′

( n∑
k=1

w`[k]M [k, ·]ek′
)

=
r∑
`=1

[(
u′`
)
ei′
] [(

v′`
)
ej′
] [(

w′`
)
ek′
]

=
r∑
`=1

u′`[i
′] · v′`[j′] ·w′`[k′].

From this we conclude that A′ =
∑r

`=1 u
′
` ⊗ v′` ⊗w′` and hence Rank(A′) ≤ r.

Now let (λ1, . . . , λn) = (y0, . . . , yn−1) · T−1, then

n∑
i=1

λiAi =
n∑
i=1

λi

 n∑
j=1

T [i, j] ·Rj

 =
n∑
j=1

Rj

n∑
i=1

T [i, j] · λi =
n∑
j=1

Rj · yj−1 = A′.

This shows that there is a linear combination of the matrices representing the

public key whose result is a low rank three-dimensional matrix. This yields directly
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an instance of the cubic MinRank problem which can be solved with the extension

of the Kipnis–Shamir modeling presented in Section 4.3. As we mentioned before,

this is by itself a weakness of the scheme, as it allows distinguishing public keys from

random polynomial systems and also have implications on the degree of regularity

of the system, as stated in Section 4.3.3. Moreover, the coefficients we have ob-

tained here carry the same information about the secret key as those in the original

(quadratic) MinRank attack, and this can be used in a similar way to construct

equivalent keys.

4.4.3 Algebraic Attack for Cubic Big Field Constructions

As a complement of Section 4.3.3, we now consider the case when the polynomials

p1, . . . , pn are constructed using the big field idea for cubic polynomials. Hodges

et al. [82] proved that for a scheme with core polynomial of weight 3, its first fall

degree Dff(p1, . . . , pn) is bounded by

Dff(p1, . . . , pn) ≤ LRank(P0)(q − 1) + 5

2
.

Here P0 is the homogeneous part of highest degree of the core polynomial F seen

as an element of the graded algebra K[X0, . . . , Xn−1]/
(
Xq

0 , . . . , X
q
n−1
)
, where Xi

corresponds to Xqi , for i = 0, . . . , n− 1. In our case

P0 =
∑

1≤i,j,k≤n
αi,j,kXi−1Xj−1Xk−1.

If we take αijk uniformly at random, then with high probability LRank(P0) ≤
Rank(P0), so

Dff(p1, . . . , pn) ≤ Rank(F)(q − 1) + 5

2
, (4.11)

since Rank(P0) = Rank(F).

In [82] the authors show that if degF = D, then LRank(F) ≤ blogq(D− 2)c+ 1,

and hence

Dff(p1, . . . , pn) ≤
(q − 1)blogq(D − 2)c+ 4 + q

2
. (4.12)

We now want to experimentally study the tightness of the bound (4.12), as they
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q t n B Dff
5 3 8 8 8
5 3 9 8 8
5 3 10 8 8
5 4 8 10 9
5 4 9 10 9
5 4 10 10 10
5 5 8 12 9
5 5 9 12 9
5 5 10 12 10

q t n B Dff
7 3 8 11 10
7 3 9 11 10
7 3 10 11 10
7 4 8 14 10
7 4 9 14 11
7 4 10 14 12
7 5 8 17 10
7 5 9 17 11
7 5 10 17 12

q t n B Dff
11 3 8 17 13
11 3 9 17 14
11 3 10 17 15
11 4 8 22 13
11 4 9 22 14
11 4 10 22 15
11 5 8 27 13
11 5 9 27 14
11 5 10 27 15

q t n B Dff
17 3 8 26 17
17 3 9 26 18
17 3 10 26 18
17 4 8 34 17
17 4 9 34 18
17 4 10 34 18
17 5 8 42 17
17 5 9 42 18
17 5 10 42 18

Table 4.2: Experimental results to study the tightness of the bound
for Dff given by (4.12), for different choices of the parameters q, t

and n. The value of Dff is read from Magma’s verbose output.

did in [82] for different parameters2. In Table 4.2 we present some of the results

obtained for different values of the parameters q, n and t, where t is the smallest

integer such that D ≤ qt − 1. The value B corresponds to the bound given by

equation (4.12), and Dff is the first fall degree of the system for each choice of the

parameters, which is read from Magma’s verbose output. All the polynomials used

in the attack were built as explained in Section 4.4.1, and for all cases we have

included the field equations, i.e., xqi − xi for i = 1, . . . , n.

We notice that the bound given by (4.12) is very tight for small values of q and

t, and that it starts to widen considerably as q increases, and with a smaller pace

as t increases. We also observe that for fixed q and t, the bound gets tighter as n

increases. It is very clear that the bound needs to be improved for larger values of

q.

4.5 Conclusions and Future Work

The minimum rank of a linear combination of the public polynomials is an important

property of multivariate schemes. We have shown that this is still true for cubic

schemes. The rank for cubic maps can be directly studied and exploited.

Many attacks have shown that it is hard to escape a low-rank when constructing

quadratic encryption schemes. A high rank defect is necessary to allow decryption,

leaving a low rank map exposed. Our rank analysis of cubic cryptosystems shows

that low, fixed rank constructions have no chance of being secure. On the other
2Table 1 in [82] do not include the values for the parameters we are interested in, so we con-

structed our own version of it.
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hand, we are convinced that cubic polynomials allow more versatile constructions

than quadratic, where a rank defect can help decryption but leave a rank large

enough so that it does not necessarily represent a weakness.

This work is preliminary in the sense that it opens new questions. Can we

construct cubic maps with a rank defect that allows decryption but leave a rank

large enough for security? Other algorithms to solve the cubic-MinRank problem

are likely, for example based on the minors modeling or on guessing kernel vectors.

The complexity of each of these approaches needs to be studied more carefully (even

in the quadratic case). These attacks could also be extendable to the cases where

the field has characteristic 2 or 3. Finally, the hardness of rank problems for three-

dimensional matrices can be further harvest as a security assumption.
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