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Introduction

Let R be a 3-dimensional regular local ring and p be a prime ideal of height two in R. We
denote by Rs(p) =

⊕∞
n=0 p

(n)tn, the symbolic Rees algebra of p. Here p(n) = pnRp ∩ R
is the nth symbolic power of p. The problem when Rs(p) is Noetherian was raised by
Cowsik [1]. He showed a relationship between set-theoretic complete intersection and
Noetherian propery of Rs(p). He showed that p is a set-theoretic complete intersection
in a Noetherian local ring R if dim (R/p) = 1 and if Rs(p) is Noetherian. Thus it became
important to know when Rs(p) is Noetherian.

Many researchers proved the conjecture for special cases. In [6, 7] Roberts gave coun-
terexamples to Cowsik’s conjecture. Later Goto, Nishida and Shimoda [2] constructed
infinitely many examples of the defining primes of monomial space curves, whose Sym-
bolic Rees algebra is not Noetherian.

The main aim of this project is to study Huneke’s criterion of Rs(p) to be Noetherian
for a height two prime ideal p in 3-dimensional regular local ring. This report is divided
into three chapters.

In Chapter 1, we provide a quick introduction to the theory of reductions of ideals
and superficial elements. We also study stability of Ass (R/In) and Burch’s inequality.

Chapter 2 discusses Hilbert-Samuel polynomial of an m-primary ideal in a Cohen-
Macaulay local ring. Using superficial sequences and reductions, we prove a result by
Huneke [4], which states that if (R,m) is a d-dimensional Cohen-Macaulay ring and I is
an m-primary ideal, then e0(I)− e1(I) = λ (R/I) if and only if r(I) ≤ 1 (This was also
proved independently by A. Ooishi). Here r(I) is the reduction number of I.

In Chapter 3, we study Huneke’s criterion for Rs(p) to be Noetherian for height two
primes in a 3-dimensional regular local ring. As a consequence, we show that if p is a
height two prime in a 3-dimensional regular local ring and e(R/p) = 3, then Rs(p) is
Noetherian. We also discuss an example of a height two prime ideal p in a 3-dimensional
regular local ring with e(R/p) = 6, for which Rs(p) is Noetherian.
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1. Preliminaries

1.1 Reductions of ideals

Let R be a Noetherian ring. Let I be an ideal of R. An ideal J ⊆ I is called a reduction
of I if JIn = In+1 for some n. If J does not properly contain a reduction of I, then it
is called a minimal reduction of I.

The reduction number of I with respect to J , denoted by rJ(I), is the least non-
negative integer n such that In+1 = JIn. The reduction number of I is the minimum
of the reduction numbers rJ(I) where J varies over all minimal reductions of I.

Let R be a ring and F = {I}∞n=0 be a filtration of ideals, i.e. I0 = R and IiIj ⊆ Ii+j .
Then the Rees ring of R with respect to F is

R[Ft] = I0 ⊕ I1t⊕ I2t
2 ⊕ · · ·

Proposition 1.1. Let J ⊆ I be ideals of a Noetherian ring R. Then J is a reduction
of I if and only if R[It] =

⊕∞
n=0 I

ntn is a finite R[Jt]-module.

Proof. Let J be a reduction of I. Then for some positive integer r, JIr = Ir+1. Thus
for all k ≥ 1 and n ≥ r,

(Jktk)(Intn) = Jk−1In+1tn+k

= In+ktn+k.

Hence

R[It] = R⊕ It⊕ I2t2 ⊕ · · · ⊕ Irtr ⊕ (Jt)Irtr ⊕ (J2t2)Irtr ⊕ · · ·
= R⊕ It⊕ · · · ⊕R[Jt]Irtr

= R[Jt]⊕R[Jt]It⊕ · · · ⊕R[Jt]Irtr

Hence R[It] is a finite R[Jt]-module.
Conversely, Let R[It] be a finite R[Jt]-module. Since R[It] is a graded R[Jt]-module,

there is a finite set of homogeneous generators of R[It] as an R[Jt]-module. We write
R[It] = R[Jt]⊕R[Jt]It⊕ · · · ⊕R[Jt]Irtr for some r. Now equate homogeneous compo-
nents of degree r + 1 on both the sides,

Ir+1tr+1 = Jr+1tr+1 + JrItr+1 + · · ·+ JIrtr+1.

Thus Ir+1 = JIr. Hence J is a reduction of I.

Corollary 1.2. Let K ⊆ J ⊆ I be ideals of a Noetherian ring R. Then K is a reduction
of I if and only if K is a reduction of J and J is a reduction of I.
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1. PRELIMINARIES 4

Proof. Let K be a reduction of I. Then R[It] is a finite R[Kt]-module. Hence R[Jt] is
a finite R[Kt]-module and R[It] is a finite R[Jt]-module. Therefore K is a reduction of
J and J is a reduction of I.

Conversely, let K be a reduction of J and J be a reduction of I. Then R[Jt] is a finite
R[Kt]-module and R[It] is a finite R[Jt]-module. Hence R[It] is a finite R[Kt]-module.
Therefore K is a reduction of I.

Let (R,m) be a local ring and I be an ideal of R. The fiber cone of I, denoted by
F (I), is the graded algebra R[It]/mR[It] =

⊕∞
n=0 I

n/mIn. The analytic spread of I,
denoted by l(I), is the Krull dimension of F (I).

Proposition 1.3. Let I be an ideal of a local ring (R,m). For x ∈ I, put xo = x+mI ∈
I/mI. Let J = (x1, . . . , xs) ⊆ I. Then J is a reduction of I if and only if (xo1, . . . , x

o
s)

is primary for the maximal homogeneous ideal F (I)+. In particular, l(I) ≤ µ(J).

Proof. Let J be a reduction of I. Then for some positive integer r, JIr = Ir+1. Note
that (xo1, . . . , x

o
s) = (J +mI)/mI is a graded ideal of F (I). So (xo1, . . . , x

o
s)n = (JIn−1 +

mIn)/mIn for all n ≥ 1. Hence for n ≥ r + 1,

(xo1, . . . , x
o
s)n = In/mIn = F (I)n.

Thus (xo1, . . . , x
o
s) is F (I)+-primary.

Conversely, Let (xo1, . . . , x
o
s) be F (I)+-primary. Then there is a positive integer r

such that (xo1, . . . , x
o
s)n = F (I)n for n ≥ r. Hence JIr−1 + mIr = Ir. This implies

Ir/JIr−1 = m
(
Ir/JIr−1

)
. So, by Nakayama’s Lemma, Ir = JIr−1. Hence J is a

reduction of I. Since (xo1, . . . , x
o
s) is F (I)+-primary, l(I) ≤ µ(J).

Proposition 1.4. Let J ⊆ I be a reduction of an ideal I in a local ring (R,m). Then
J contains a minimal reduction of I. Let x1, . . . , xs ∈ J be such that xo1, x

o
2, . . . , x

o
s ∈

I/mI are linearly independent and s is minimal with respect to the property that K =
(x1, . . . , xs) is a reduction of I contained in J . Then K is a minimal reduction of I
contained in J .

Proof. Let K ′ ⊆ K be a reduction of I. Let f : K/mK −→ I/mI be the natural
map of k := R/m-vector spaces. Since xo1, x

o
2, . . . , x

o
s ∈ I/mI are linearly independent,

x1 + mK,x2 + mK, . . . , xs + mK are linearly independent on K/mK. Hence ker (f) =
(K ∩mI)/mK = 0. Thus K ∩mI = mK.

We claim that K + mI = K ′ + mI. Suppose K ′ + mI ( K + mI. Then (K ′ +
mI)/mI is a proper subspace of (K + mI)/mI. Let t = dim ((K ′ +mI)/mI) and
b1, . . . , bt ∈ K be such that bo1, . . . , b

o
t ∈ I/mI are linearly independent. Note that

t < dim ((K +mI)/mI) = s. Since K ′ is a reduction of I, dim(F (I)/(bo1, . . . , b
o
t )) = 0.

This contradicts the minimality of s.
Thus K ⊆ (K ′ + mI) ∩K = K ′ + (mI ∩K) = K ′ + mK. By Nakayama’s Lemma,

K = K ′. Therefore K is a minimal reduction of I.

Proposition 1.5. Let (R,m) be a local ring with infinite residue field. Let I be an ideal
of R and x1, . . . , xs ∈ I. Then J = (x1, . . . , xs) is a minimal reduction of I if and only
if xo1, . . . , x

o
s is a homogeneous system of parameters of F (I).
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Proof. Let J be a minimal reduction of I. Let l = l(I). We claim that s = l. Since s is
smallest with respect to the property that dim (F (I)/(xo1, . . . , x

o
s)) = 0, s ≥ l. Suppose

s > l. Since k := R/m is infinite, by Noether Normalization Lemma, there exists
y1, . . . , yl ∈ I such that F (I) is integral over the polynomial ring k[yo1, . . . , y

o
l ]. Hence

F (I)/(yo1, . . . , y
o
l ) is zero-dimensional. This is a contradiction to the minimality of s.

Hence s = l.
Conversely, let x1, . . . , xs ∈ I such that xo1, . . . , x

o
s is a homogeneous system of pa-

rameters of F (I). Then J = (x1, . . . , xs) is a reduction of I. By the above proposition
it is a minimal reduction of I.

Let I be an ideal of a local ring (R,m). Then the altitude of I is

alt (I) = sup {ht (p) : p is a minimal prime of I}.

Corollary 1.6. Let I be an ideal of a local ring (R,m). Then

alt (I) ≤ l(I) ≤ dim (R).

Proof. We may assume that R/m is infinite. Let J be a minimal reduction of I.
Then there is a positive integer n such that In+1 = JIn. Hence V (I) = V (J). For
any minimal prime p of J , ht (p) ≤ µ(J) = l(I). Hence alt (I) = alt (J) ≤ l(I).
Since λ

(
In/mIn+1

)
≤ λ

(
In/In+1

)
for all n, dim (F (I)) ≤ dim (G(I)). Hence l(I) =

dim (F (I)) ≤ dim (G(I)) = dim (R).

1.2 Stability of Ass (R/In) and Burch’s inequality

Lemma 1.7. Let R =
⊕∞

n=0Rn be a Noetherian graded ring. Let I be a homogeneous
ideal and x be a homogeneous element. Let (I : x) ∩ S = ∅ for a multiplicative set
S of R0. Then there is a homogeneous element y such that (I : xy) is a prime and
(I : xy) ∩ S = ∅.

Proof. Let P = {(I : xy′) : (I : xy′) is prime for some y′ ∈ R and (I : xy′) ∩ S = ∅}.
Then P has a maximal element, say (I : xy). We show that (I : xy) is a prime and
(I : xy) ∩ S = ∅. Let ab be homogeneous elements of R such that a, b /∈ (I : xy) and
suppose ab ∈ (I : xy). Then a ∈ (I : xyb) \ (I : xy). Thus (I : xyb) ∩ S ̸= ∅, say
s ∈ (I : xyb) ∩ S. Similarly t ∈ (I : xya) ∩ S. Hence st ∈ (I : xy) ∩ S, which is a
contradiction. Hence ab /∈ (I : xy) and thus (I : xy) is prime.

Theorem 1.8. Let I be an ideal of a Noetherian ring R. Then the sequence Ass (R/In)
stabilizes.

Proof. Let Ass∗ (I) = {p ∈ Spec (R) : p ∈ Ass (In/In+1) for some n}. We show that
Ass∗ (I) is a finite set. Let p ∈ Ass∗ (I). Then p = (0 : c∗)R for some c ∈ Ik \ Ik+1. Let
G =

⊕∞
n=0 I

n/In+1 and let Gn = In/In+1. Then p = (0 : c)G∩R. By Lemma 1.7, there
is homogeneous d∗ ∈ G such that p′ = (0 : cd)G is a prime in G and p = p′ ∩ R. Note
that p′ ∈ Ass (G). Since Ass (G) is finite, Ass∗ (I) is a finite set.

Next, we show that Ass (In−1/In) ⊆ Ass (In/In+1) for large n. Let (0 : G1)G =
(a∗1, a

∗
2, . . . , a

∗
s) and l = 1+max (deg (a∗i )). Then we get Gn∩ (0 : G1)G = 0 for all n ≥ l.

Let p = (0 : c∗)R for some c∗ ∈ Gn and n ≥ l. Then p = (0 : c∗G1)R. But c
∗G1 ⊆ Gn+1,

hence p ∈ Ass (Gn+1). Thus Ass (In−1/In) ⊆ Ass (In/In+1) for large n. Since Ass∗ (I)
is a finite set, Ass (In−1/In) = Ass (In/In+1) for large n.
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From the exact sequence

0 −→ In/In+1 −→ R/In+1 −→ R/In −→ 0,

we get
Ass (R/In+1) ⊆ Ass (R/In) ∪Ass (In/In+1).

But Ass (In−1/In) = Ass (In/In+1) ⊆ Ass (R/In) for large n. Hence Ass (R/In) =
Ass (R/In+1) for large n.

Let I be an ideal of a local ring (R,m). We denote A∗(I) by the stable value of
Ass (R/In). Then the depth (R/In) also stabilizes to a value β(I).

Theorem 1.9 (Burch’s Inequality). Let I be an ideal of a local ring (R,m). Then

l(I) ≤ dim (R)− β(I).

Proof. Apply induction on β(I). If β(I) = 0, then the inequality follows from Corollary
1.6. Let β(I) ≥ 1. Then there is an r such that m /∈ Ass(R/Ir) for all n ≥ r. Let

x ∈ m \

( ∪
p∈A∗(I)

p

)
. Then β((I, x)/(x)) = β(I)− 1. By induction hypothesis,

l((I, x)/(x)) ≤ dim (R/(x))− β((I, x)/(x)).

Then by the choice of x, (In : x) = In for large all n ≥ r. We claim that l((I, x)/(x)) =
l(I). Consider the nth graded component of F ((I, x)/(x)),

(In, x)

(mIn, x)
≃ In

In ∩ (mIn + (x))
=

In

mIn + In ∩ (x)
.

Since (In : x) = In for large n, we get In ∩ (x) ⊆ xIn ⊆ mIn. Thus F ((I, x)/(x)) and
F (I) has same Hilbert polynomial, hence equal dimension. Hence

l(I) = l((I, x)/(x)) ≤ dim (R/(x))− β((I, x)/(x))

= dim (R)− β(I).

1.3 Superficial elements

Let I be an ideal of a local ring (R,m). We say x ∈ I is superficial for I if there is a
non-negative integer c such that for all n > c,

(In : x) ∩ Ic = In−1.

Proposition 1.10. Let I be an ideal of a local ring (R,m).

(i) If I is nilpotent, then every x ∈ I is superficial for I.

(ii) If I is not nilpotent, then a superficial element x of I satisfies x ∈ I \ I2.

Proof. (i) Let Ir = 0 for some r. Then for c = r and n > c, (In : x) ∩ Ic = 0 = In−1

for any x ∈ I. Thus every x ∈ I is superficial element.
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(ii) Suppose I is not nilpotent and let x be a superficial element for I. Then there is a
non-negative integer c such that (In : x)∩ Ic = In−1 for all n > c. Suppose x ∈ I2.
Then xIc ⊆ (Ic+2) and for n = c+ 2,

(Ic+2 : x) ∩ Ic = Ic+1.

Hence Ic = Ic+1. By Nakayama’s Lemma, Ic = 0, which is a contradiction as I is
not nilpotent. Hence x /∈ I2.

Proposition 1.11. Let I be an ideal of a local ring (R,m). Let x ∈ I\I2 and x∗ = x+I2.
Then x is superficial for I if and only if the multiplication map x∗ : In/In+1 −→
In+1/In+2 is injective for large n.

Proof. Let x be a superficial element for I. Then there is a non-negative integer c such
that (In : x) ∩ Ic = In−1 for all n > c. Suppose n > c and b ∈ In and b∗x∗ = 0. Then
b ∈ (In+2 : x) ∩ Ic = In+1. Thus b∗ = 0. Hence the map x∗ is injective for large n.

Conversely, let the multiplication map x∗ : In/In+1 −→ In+1/In+2 be injective for
n > c. We show that (In : x) ∩ Ic = In−1 for all n > c. Let b ∈ (In : x) ∩ Ic and let
b ∈ Im \ Im+1 for some m > c. Since b∗ ̸= 0, b∗x∗ ̸= 0. Thus xb /∈ Im+2. But xb ∈ In,
so n < m+ 2. So b ∈ Im ⊆ In−1. Hence (In : x) ∩ Ic = In−1.

Existence of superficial element

Proposition 1.12. Let (R,m) be a local ring with infinite residue field . Let M be an
R-module. If N1, . . . , Nt are proper submodules of M , then N1 ∪N2 ∪ · · · ∪Nt ( M .

Proof. Apply induction on t. For t = 1, it is trivial. Let t ≥ 2. Suppose M =
N1 ∪N2 ∪ · · · ∪Nt. We may assume that N1 * (N2 ∪ · · · ∪Nt) and (N2 ∪ · · · ∪Nt) * N1.
Let a ∈ N1 \ (N2 ∪ · · · ∪Nt) and b ∈ (N2 ∪ · · · ∪Nt) \N1. Since there are infinitely many
units in R, by Pigeon-Hole Principle, there exist distinct units u,w ∈ R such that for
some j

a+ ub, a+ wb ∈ Nj

Since (w−u)b ∈ Nj and (w−u) is a unit, b ∈ Nj and thus j ̸= 1. Similarly (w−u)a ∈ Nj .
Hence a ∈ Nj , which is a contradiction as j ̸= 1. Thus N1 ∪N2 ∪ · · · ∪Nt ( M .

Theorem 1.13. Let (R,m) be a local ring with infinite residue field. Let I, J1, . . . , Jt
be ideals of R such that I * J1 ∪ . . . ∪ Jt. Then there exist x ∈ I \ (J1 ∪ . . . ∪ Jt) such
that x is superficial for I.

Proof. Consider the R-modules M = I/I2 and Ni =
(Ji ∩ I) + I2

I2
for i = 1, . . . , t. Note

that (Ji∩I)+I2 ( I, because if (Ji∩I)+I2 = I, then by Nakayama’s Lemma Ji∩I = I,
which is a contradiction as I * Ji. Thus each Ni is a proper submodule of M .
Let G(I) denote the associated gradation of I and let GN = IN/IN+1. Let

(0) = Q1 ∩ · · · ∩Qs ∩Qs+1 ∩ · · · ∩Qg

be the reduced primary decomposition of (0) in G(I), where each Qi is a Pi-primary
ideal of G(I). Suppose G1 * Pi for i = 1, . . . , s and G1 ⊆ Pj for j = s+ 1, . . . , g. Then
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G1 ∩ P1, . . . , G1 ∩ Ps are proper G0-submodules of G1. By previous proposition, there
exists x ∈ I \ I2 such that

x∗ ∈ G1 \
(
{∪s

i=1Pi} ∪ {∪t
i=1Ni}

)
.

We show that x is superficial for I. By Proposition 1.11, it is enough to show (0 :
x∗)∩Gn = 0 for large n. Suppose b∗x∗ = 0. Since x∗ /∈ (P1∩· · ·∩Ps), b

∗ ∈ (Q1∩· · ·∩Qs).
Since each Qj is Pj-primary, for some large N , PN

j ⊆ Qj for all j. Hence GN
1 = GN ⊆ Qj

for each j = s+ 1, . . . , g. Thus

GN ∩ (0 : x∗) ⊆ Q1 ∩ · · · ∩Qs ∩Qs+1 ∩ · · · ∩Qg = 0.

Hence x is superficial for I.



2. Hilbert-Samuel polynomial

Let (R,m) be a d-dimensional Noetherian local ring and let q be an m-primary ideal
of R. Let M be a finitely generated R-module. The Hilbert-Samuel function of M
with respect to q is defined as the numerical function Hq,M (n) = λ (M/qnM). For large
n, Hq,M (n) is given by a polynomial Pq,M ∈ Q[x], called Hilbert-Samuel polynomial
of M with respect to q, with deg (Pq,M (n)) = d. It is written in terms of binomial
coefficients as

Pq,M (x) = e0(q,M)

(
x+ d− 1

d

)
− e1(q,M)

(
x+ d− 2

d− 1

)
+ · · ·+ (−1)ded(q,M).

where ei(q,M) for i = 0, . . . , d are integers. The leading coefficient e0(q,M), denoted
by e(q,M), is called the multiplicity of M with respect to q.

Let I be an m-primary ideal of R. The Hilbert function HI(n) of I is defined as
HI(n) = λ (R/In). For large n, HI(n) is a polynomial function of n of degree d. In other
words, there is a polynomial PI(x) ∈ Q[x], called the Hilbert polynomial of I, such
that HI(n) = PI(n) for all large n. It is written in terms of the binomial coefficients as:

PI(x) = e0(I)

(
x+ d− 1

d

)
− e1(I)

(
x+ d− 2

d− 1

)
+ · · ·+ (−1)ded(I).

where ei(I) for i = 0, 1, . . . , d are integers, called the Hilbert coefficients of I. The
leading coefficient e0(I), called the multiplicity of I.

2.1 Hilbert polynomial of one dimensional Cohen-Macaulay
local rings

Let (R,m) be a one dimensional Cohen-Macaulay local ring. Let I be an m-primary
ideal. The Hilbert polynomial of I, PI(n) has degree 1. Write

PI(n) = e0n− e1.

The postulation number of I is defined to be

n(I) = max {n|HI(n) ̸= PI(n)}.

Theorem 2.1. Let I be an m-primary ideal of a 1-dimensional Cohen-Macaulay local
ring (R,m). Then

(i) PI(n+ 1)−HI(n+ 1) ≥ PI(n)−HI(n) for all n ≥ 0

(ii) e0 − e1 ≤ λ (R/I)

9
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(iii) e1 ≥ 0 and e1 = 0 if and only if I is principal.

Proof. (i) Since ht (I) = dim (R) = 1, l(I) = 1. Since the residue field is infinite,
there exists x ∈ I such that (x) is a reduction of I. Thus xIn−1 = In for all large
n. Hence for large n, λ (R/In) = λ

(
R/xIn−1

)
= λ (R/(x)) + λ

(
R/In−1

)
. Thus

e0 = λ (R/(x)). Now note for all n ≥ 0,

PI(n+ 1)−HI(n+ 1) = e0(n+ 1)− e1 − λ
(
R/In+1

)
= ne0 − e1 + λ (R/(x))− λ

(
R/In+1

)
= ne0 − e1 + λ ((x)/xIn) + λ

(
In+1/xIn

)
= PI(n)−HI(n) + λ

(
In+1/xIn

)
.

Hence PI(n+ 1)−HI(n+ 1) ≥ PI(n)−HI(n).

(ii) For large n, HI(n) = PI(n). Thus for n ≥ 0, HI(n) ≥ PI(n). In particular, for
n = 1, e0 − e1 ≤ λ (R/I).

(iii) From (ii) it follows that e1 ≥ e0 − λ (R/I) = λ (R/(x))− λ (R/I) = λ (I/(x)) ≥ 0.
Clearly if e1 = 0, I = (x). Conversely, if I = (x), then for all n ≥ 1,

λ (R/(x)n) = λ (R/(x)) + λ
(
(x)/(x)2

)
+ · · ·+ λ

(
(x)n−1/(x)n

)
.

= ne0.

Hence e1 = 0.

Proposition 2.2. Let I be an m-primary ideal of a 1-dimensional Cohen-Macaulay local
ring (R,m). Let (x) be a minimal reduction of I. Then

r(x)(I) = n(I) + 1.

Proof. By previous theorem, for all n ≥ 0

HI(n+ 1)− PI(n+ 1) = HI(n)− PI(n)− λ
(
In+1/xIn

)
.

Let r = r(x)(I) and k = n(I). Then λ
(
In+1/xIn

)
= 0 for all n ≥ r. So by previous

theorem, HI(n) − PI(n) = HI(r) − PI(r) for all n ≥ r. But HI(n) = PI(n) for large
n. This implies HI(r) = PI(r) and hence r ≥ k + 1. Now for n = k + 1, by previous
theorem,

HI(k + 2)− PI(k + 2) = HI(k + 1)− PI(k + 1)− λ
(
Ik+2/xIk+1

)
.

Hence λ
(
Ik+2/xIk+1

)
= 0. Thus Ik+2 = xIk+1 and hence r ≤ k + 1.

Proposition 2.3. Let I be an m-primary ideal of a 1-dimensional Cohen-Macaulay local
ring (R,m). Let (x) be a minimal reduction of I. Then e0 − e1 = λ (R/I) if and only if
r(x)(I) ≤ 1.

Proof. Let e0−e1 = λ (R/I). Then by Theorem 2.1, PI(1)−HI(1) = e0−e1−λ (R/I) =
0. Hence n(I) ≤ 0. By previous proposition. r(x)(I) ≤ 1.

Conversely, let r(x)(I) ≤ 1. Then n(I) ≤ 0. Hence HI(1) = PI(1). Thus e0 − e1 =
λ (R/I).
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2.2 Superficial sequence and Hilbert polynomial

Let (R,m) be a local ring, and let I be an ideal of R. A sequence x1, . . . , xs ∈ I is called
a superficial sequence for I if xi is superficial for I/(x1, . . . , xi−1) for i = 1, 2, . . . , s.

Lemma 2.4. Let x1, . . . , xs be a superficial sequence for I. Then for n >> 0,

In ∩ (x1, . . . , xs) = (x1, . . . , xs)I
n−1.

Proof. Clearly, (x1, . . . , xs)I
n−1 ⊆ In ∩ (x1, . . . , xs). We prove the forward implication

by applying induction on s. Let s = 1 and put x1 = x. Then there is a positive integer
c such that for n > c, (In : x) ∩ Ic = In−1. By Artin-Rees Lemma, there is a positive
integer p such that for all n ≥ p,

In ∩ (x) = In−p(Ip ∩ (x)) ⊆ (x)In−p.

We show that In ∩ (x) ⊆ xIn−1 for all n > p+ c. Let y ∈ In ∩ (x), say y = bx for some
b ∈ R. Then y ∈ xIn−p, so that y = dx for some d ∈ In−p ⊆ Ic. Thus (b − d)x = 0.
Hence (b−d) ∈ (0 : x) ⊆ (In : x). So d ∈ (In : x). Since d ∈ Ic, d ∈ Ic∩ (In : x) = In−1.
Thus d ∈ In−1 and y = dx ∈ xIn−1.

Now let s ≥ 2 and assume that for large n, In ∩ (x1, . . . , xs−1) = (x1, . . . , xs−1)I
n−1.

Since xs is superficial for I/(x1, . . . , xs−1), by induction, for large n,

(xs) ∩ [I/(x1, . . . , xs−1)]
n = (xs) [I/(x1, . . . , xs−1)]

n−1.

Hence for large n,

xsI
n−1 + (x1, . . . , xs−1) = (x1, . . . , xs) ∩ [In + (x1, . . . , xs−1)]

= In ∩ (x1, . . . , xs) + (x1, . . . , xs−1).

Therefore,

In(x1, . . . , xs) ⊆ xsI
n−1 + (x1, . . . , xs−1) ∩ In

= xsI
n−1 + (x1, . . . , xs−1)I

n−1

= (x1, . . . , xs)I
n−1.

Lemma 2.5. Let J ⊆ I be ideal of local ring (R,m). Let x ∈ J be superficial for I. If
J/(x) is reduction of I/(x), then J is a reduction of I.

Proof. Since x is superficial for I, for all large n

In ∩ (x) = xIn−1.

As J/(x) is reduction of I/(x), for all large n

(J/(x))(I/(x))n−1 = (I/(x))n.

Equivalently, JIn−1 + (x) = In + (x). Hence

In ⊆ JIn−1 + (x) ∩ In−1 = JIn−1 + (x)In−1 = JIn−1.

Thus In = JIn. Hence J is a reduction of I.
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Theorem 2.6. Let (R,m) be a d-dimensional local ring and let I be an m-primary ideal
of R. Let x1, . . . , xd be a superficial sequence for I. Then J = (x1, . . . , xd) is a minimal
reduction for I.

Proof. We prove by induction on d. Let d = 1. Then dim (R/(x1)) = 0. Hence (x1)
is m-primary. Therefore In ⊆ (x1) for large n. By Lemma 2.4, In ∩ (x1) = x1I

n−1 for
large n. Hence In = x1I

n−1 for large n. Thus (x1) is a reduction of I.
Let d ≥ 2. Since x2, . . . , xd is a superficial sequence for I/(x1) in the d−1-dimensional

local ring, a2, . . . , ad is a reduction of I/(x1). By previous lemma, J is a reduction of
I.

Theorem 2.7. Let I be an m-primary ideal of a d-dimensional local ring (R,m). Let x
be a superficial element for I. Let R = R/(x) and I = I/(x). Then

(i) PI(n) = ∆PI(n) + λ (0 : x). Hence dim (R/(x)) = d− 1.

(ii) For i = 0, 1, . . . , d− 2, ei(I) = ei(I) and ed−1(I) = ed−1(I) + λ (0 : x).

Proof. (i) Consider the following exact sequence

0 −→ (In : x)

In−1
−→ R

In−1
−→ R

In
−→ R

(In, x)
−→ 0.

We get λ (R/(x, In)) = λ (R/In)− λ (R/In−1) + λ ((In : x)/In−1). Thus for large n,

PI(n) = ∆PI(n) + λ
(
(In : x)/In−1

)
.

So we need to show that λ
(
(In : x)/In−1

)
= λ (0 : x). Since x is a superficial element

for I, there exists a positive integer c such that for all n > c,

(In : x) ∩ Ic = In−1.

Equivalently, the map
(In : x)

In−1
−→ R

Ic
, defined by b 7→ b+ Ic, is injective for all n > c.

Hence for n > c, λ
(
(In : x)/In−1

)
≤ λ (R/Ic). Now consider the exact sequence

0 −→ R

Ic ∩ (In : x)
−→ R

Ic
⊕ R

(In : x)
−→ R

Ic + (In : x)
−→ 0.

Then for all n > c we get λ (R/Ic)+λ (R/(In : x)) = λ
(
R/In−1

)
+λ (R/(Ic + (In : x))).

Hence
λ
(
R/In−1

)
− λ (R/(In : x)) = λ (R/Ic)− λ (R/ (Ic + (In : x))).

This implies

λ

(
(In : x)

In−1

)
= λ

(
Ic + (In : x)

Ic

)
. (2.1)

Next we claim that Ic + (In : x) = (0 : x) + Ic for all n > c. Clearly (0 : x) ⊆ (In : x).
So let b ∈ (In : x). By Artin Rees Lemma, there is a positive integer p such that for all
n ≥ p

In ∩ (x) = In−p(Ip ∩ (x)).

So bx ∈ In ∩ (x) = In−p(Ip ∩ (x)) ⊆ xIn−p. Hence bx = xy for some y ∈ In−p. So
b − y ∈ (0 : x) and hence b ∈ (0 : x) + In−p ⊆ (0 : x) + Ic for all large n, which proves
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the claim.
By (2.1) and claim,

λ

(
(In : x)

In−1

)
= λ

(
(0 : x) + Ic

Ic

)
= λ

(
(0 : x)

Ic ∩ (0 : x)

)
.

Note that Ic ∩ (0 : x) ⊆ Ic ∩ (In : x) = In−1 for all large n. Hence, by Krull intersection
theorem, Ic ∩ (0 : x) = 0. Thus we have proved that λ

(
(In : x)/In−1

)
= λ (0 : x) and

hence
PI(n) = ∆PI(n) + λ (0 : x). (2.2)

(ii) The above equation gives deg (PI(n)) = deg (PI(n))−1. Hence dim (R/(x)) = d−1
and x is a parameter forR. For d = 1, e0(I) = e0(I)+λ (0 : x). Furthermore for d ≥ 2, by
comparing the coefficients of the polynomials in (2.2), ei(I) = ei(I) for i = 0, 1, . . . , d−2
and ed−1(I) = ed−1(I) + λ (0 : x).

Proposition 2.8. Let I be an ideal of a local ring (R,m). Let x be a superficial element
for I and let x = x+ I2. Then for large n,(

G(I)

(x)

)
n

≃ G(I/(x))n.

Proof. For sufficiently large n, we have(
G(I)

(x)

)
n

=
In/In+1

(xIn−1 + In+1)/In+1
≃ In

xIn−1 + In+1
.

On the other hand for large n

G(I/(x))n =
In + (x)

In+1 + (x)
≃ In

In+1 + (x) ∩ In
=

In

In+1 + xIn−1
.

Theorem 2.9 (Sally-Machine). Let I be an ideal of a local ring (R,m). Let x be a
superficial element for I. Suppose depthG(I/(x)) > 0. Then x∗ is G(I)-regular.

Proof. (B. Singh) Let G(I) =
⊕∞

n=0Gn, where Gn = In/In+1. We will show that (x∗)s

is G(I)-regular for all s. For each s we need to show that Gn ∩ (0 : (x∗)s) = 0 for all
n ≥ 0. Let f : G(I) −→ G(I/(x)) be the natural map.

We claim that f((0 : (x∗)s)) = 0. Since x is a superficial element for I, the multipli-
cation map (x∗)s : Gn −→ Gn+1 is injective for large n and s ≥ 1. Hence (0 : (x∗)s)Gn ⊆
(0 : (x∗)s) ∩Gn = 0 for large n. This implies, f(Gn)f(0 : (x∗)s) = f(Gn(0 : (x∗)s)) = 0
for large n. Since depth (G(I/(x)) > 0, f(Gn) = G(I/(x))n has an G(I/(x))-regular
element for large n. Thus, f(0 : (x∗)s) = 0.

Apply induction on n. For n = 0. Let a ∈ G0 ∩ (0 : (x∗)s). Note that f(G0) =
G(I/(x))0 = R/I = G0. Hence f(a) = a ∈ f(0 : (x∗)s). Thus a = 0. Now, let n ≥ 1.
Let b ∈ In \ In+1 and b∗ ∈ Gn ∩ (0 : (x∗)s). Then bxs ∈ In+s+1. Since f(b∗) = 0,
b ∈ In+1 + (x). Let b = c + dx for some c ∈ In+1 and d ∈ R. If d ∈ It \ It+1 for some
t < n, then cxs = bxs − dxs+1 ∈ In+s+1. This implies dxs+1 ∈ In+s+1 ⊆ It+s+1. Hence
d∗(x∗)s+1 = 0. By induction, d∗ = 0, which is a contradiction. Hence d ∈ In and thus
b∗ = 0.
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Proposition 2.10. Let I be an m-primary ideal of a d-dimensional local ring (R,m). Let
x1, . . . , xr be a superficial sequence for I. Suppose that depth (R) ≥ r. Then x1, . . . , xr
is an R-regular sequence.

Proof. We prove by induction on r. Let r = 1 and put x1 = x. Then there exists a
positive integer c such that for n > c,

(In : x) ∩ Ic = In−1.

Hence for all large n, (0 : x)∩Ic ⊆ In−1. By Krull Intersection Theorem, (0 : x)∩Ic = 0.
Since depth (R) = depthI (R) > 0, Ic has a regular element, say a. Then (0 : x)a ⊆ (0 :
x) ∩ Ic = 0. Hence (0 : x) = 0, and thus x is an R-regular element.

Let r ≥ 2 and let x1, . . . , xr be a superficial sequence for I. Then x2, . . . , xr is a
superficial sequence for I/(x1). By induction, x2, . . . , xr is an R/(x1)-regular sequence.
Hence x1, . . . , xr is an R-regular sequence.

Theorem 2.11. Let I be an ideal of a local ring (R,m). Let x1, x2, . . . , xs ∈ I/I2.
Then x∗1, x

∗
2, . . . , x

∗
s is a G(I)-regular sequence if and only if x1, x2, . . . , xs is an R-regular

sequence and for all n ≥ 1

(x1 . . . , xs) ∩ In = (x1, . . . , xs)I
n−1.

Proof. Apply induction on s. Let s = 1 and put x1 = x. Let x∗ be G(I)-regular. Let
a ∈ R such that ax = 0. If a ̸= 0, then by Krull intersection theorem there is m such
that a ∈ Im \ Im+1. Then a∗x∗ = 0 and thus a∗ = 0, which is a contradiction as x∗ is
nonzerdivisor. Therefore a = 0, and hence x is R-regular. Now let b ∈ Im \ Im+1 and
bx ∈ In. Then b∗x∗ ∈ Im+1/Im+2 and b∗x∗ ̸= 0. As bx /∈ Im+2, n ≤ m + 1. Hence
b ∈ In−1.
Conversely, let x be R-regular and (x) ∩ In = xIn−1 for all n ≥ 1. Let b∗ ∈ Im/Im+1

and b∗x∗ = 0. Then bx ∈ Im+2 ∩ (x) = xIm+1. As x id R-regular, b ∈ Im+1. Hence
b∗ = 0.

Inductive step: Let s ≥ 2 and assume the result for s − 1. Let x∗1, . . . , x
∗
s be a

G(I)-regular sequence. Let S = R/(x1) and J = I/(x1). Since x∗1 is G(I)-regular,
G(I/(x1)) ≃ G(I)/(x∗1). This implies x∗2, . . . , x

∗
s is a G(I/(x1))-regular sequence. By

induction hypothesis, x2, . . . , xs is R/(x1)-regular sequence and Jn ∩ (x2, . . . , xs) =
(x2, . . . , xs)J

n−1 for all n ≥ 1. Since x∗1 is G(I)-regular, x1 is R-regular. Hence x1, . . . , xs
is an R-regular sequence. It remain to show that for n ≥ 1

In ∩ (x1, . . . , xs) = (x1, . . . , xs)I
n−1.

Let r1x1 + · · · + rsxs ∈ In for some r1, . . . , rs ∈ R. Then r2x2 + · · · + rsxs ∈ Jn ∩
(x2, . . . , xs) = Jn−1(x2, . . . , xs). Hence r2x2 + · · · + rsxs = t2x2 + · · · + tsxs for some
t2, . . . , ts ∈ In−1. So for some t1 ∈ R,

(r2 − t2)x2 + · · ·+ (rs − ts)xs = t1x1.

This implies,

(r1 + t1)x1 = (r1x1 + · · ·+ rsxs)− (t2x2 + · · ·+ tsxs) ∈ In.

Therefore, (r1 + t1) ∈ In−1. Thus,

r1x1 + · · ·+ rsxs = (r1 + t1)x1 + t2x2 + · · ·+ tsxs ∈ (x1, . . . , xs)I
n−1.
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Conversely, Let x1, . . . , xs be an R-regular sequence and for n ≥ 1

In ∩ (x1, . . . , xs) = (x1, . . . , xs)I
n−1.

We claim that In ∩ (x1, . . . , xs−1) = (x1, . . . , xs−1)I
n−1 for n ≥ 1. We prove the claim

by induction on n. For n = 1, I ∩ (x1, . . . , xs−1) = (x1, . . . , xs−1). Let n ≥ 2 and let
r1x1 + · · ·+ rs−1xs−1 ∈ In for some r1, . . . , rs−1 ∈ R. Then

r1s1 + · · ·+ rs−1xs−1 ∈ In ∩ (x1, . . . , xs) = (x1, . . . , xs)I
n−1.

So r1x1 + · · · + rs−1xs−1 = t1x1 + · · · + tsxs for some t1, . . . , ts ∈ In−1. Hence tsxs ∈
(x1, . . . , xs−1). Since x1, . . . , xs is an R-regular sequence, ts ∈ (x1, . . . , xs−1) ∩ In−1 =
(x1, . . . , xs−1)I

n−2. Hence tsxs ∈ In−1(x1, . . . , xs−1). Hence r1x1 + · · · + rs−1xs−1 ∈
In−1(x1, . . . , xs−1), which proves the claim.
By inductive hypothesis, x∗1, · · · , x∗s−1 is a G(I)-regular sequence. Thus

G(I)/(x∗1, . . . , x
∗
s−1) ≃ G(I/(x1, . . . , xs−1)).

By s = 1 case of induction, x∗s is G(I)/(x∗1, . . . , x
∗
s−1) regular. Hence x∗1, . . . , x

∗
s is G(I)-

regular sequence.

Theorem 2.12 (D.G. Northcott). Let (R,m) be a Cohen-Macaulay local ring of di-
mension d > 0 with infinite residue field and let I be an m-primary ideal. Then
e0(I)− e1(I) ≤ λ (R/I).

Proof. Apply induction on d. The case d = 1 is proved in Theorem 2.1.
Let d ≥ 2. Let x be a superficial for I. Since depth (R) > 1, x is R-regular. Set

S = R/(x) and J = I/(x). Then S is Cohen-Macaulay and dim (S) = d − 1. By
Theorem 2.7, e0(I) = e0(J) and e1(I) = e1(J) (because λ (0 : x) = 0). By induction
hypothesis, e0(J)− e1(J) ≤ λ (S/J). Therefore

e0(I)− e1(I) = e0(J)− e1(J) ≤ λ (S/J) ≤ λ (R/I).

Theorem 2.13 (Huneke-Ooishi). Let (R,m) be a d-dimensional Cohen-Macaulay local
ring with infinite residue field. Let I be an m-primary ideal. Then e0(I)−e1(I) = λ (R/I)
if and only if r(I) ≤ 1. In this case G(I) is Cohen-Macaulay and for all n ≥ 1,

λ (R/In) = e0(I)

(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2

d− 1

)
.

Proof. We prove this by induction on d. The d = 1 case is proved in Theorem 2.3.
Now let d ≥ 2. Let J = (x1, . . . , xd) be a minimal reduction of I, where x1, . . . , xd is

a superficial sequence for I. Assume e0(I)−e1(I) = λ (R/I). We want to show I2 = JI.
Let “–” denote images in R = R/(x1). By Theorem 2.7, since x1 is a superficial element
for I, e0(I) = e0(I) and e1(I) = e1(I). This implies

λ
(
R/I

)
= λ (R/I) = e0(I)− e1(I) = e0(I)− e1(I).
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By induction hypothesis, I
2
= J I and G(I) is Cohen-Macaulay. This implies

I2 + (x1) = JI + (x1). (2.3)

Since x1 is a superficial element for I and G(I) is Cohen-Macaulay, by Sally-Machine
Theorem, x∗1 is G(I)-regular. By Theorem 2.11, (x1) ∩ In = (x1)I

n−1 for all n ≥ 1. In
particular, (x1)I = (x1) ∩ I2. Therefore, from (2.3)

I2 ⊆ JI + (x1) ∩ I2 = JI + (x1)I = JI.

Hence I2 = JI.
Conversely, let I2 = JI. Then I

2
= J I. By induction hypothesis, e0(I) − e1(I) =

λ (R/I) = λ (R/I). Since e0(I) = e0(I) and e1(I) = e1(I), e0(I)− e1(I) = λ (R/I).
We next show that G(I) is Cohen-Macaulay. Since x∗1 is G(I)-regular, G(I) ≃

G(I)/(x∗1). Since G(I) is Cohen-Macaulay, x2
∗, . . . , xd

∗ is a G(I)/(x∗1)-regular sequence.
Therefore G(I) is Cohen-Macaulay. Furthermore, x∗1, . . . , x

∗
d is a G(I)-regular sequence.

Hence

G(I)/(x∗1, . . . , x
∗
d) ≃ G(I/J) =

∞⊕
n=0

In + J

In+1 + J

=
R

I
⊕ I

I2 + J
⊕ I2 + J

I3 + J
⊕ · · ·

=
R

I
⊕ I

J
. (since I2 ⊆ J)

Therefore

HG(I)(t) =

∞⊕
n=0

λ (In/In+1)tn =
h0 + h1t+ · · ·+ hst

s

(1− t)d

=
HG(I/J)(t)

(1− t)d

=
λ (R/I) + λ (I/J)t

(1− t)d
.

Therefore h(t) = λ (R/I) + (e0 − λ (R/I)) t. Thus e1(I) = e0(I)− λ (R/I) and e2(I) =
e3(I) = · · · = ed(I) = 0.

Now we find λ (R/In+1).( ∞∑
n=0

λ (R/In+1)tn

)
(1− t) =

∞∑
n=0

λ (R/In+1)tn −
∞∑
n=0

λ (R/In+1)tn+1

=
∞∑
n=0

λ (In/In+1)tn.

Hence

∞∑
n=0

λ (R/In+1)tn =
λ (R/I) + (e0(I)− λ (R/I)) t

(1− t)d+1

= [λ (R/I) + (e0(I)− λ (R/I)) t]
∞∑
n=0

(
n+ d

d

)
tn.
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Equating the coefficients of tn for n ≥ 0, we get

λ (R/In+1) = λ (R/I)

(
n+ d

d

)
+ (e0(I)− λ (R/I))

(
n− 1 + d

d

)
= e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d

)
.



3. Solution of Cowsik’s conjecture for cer-
tain primes

3.1 Symbolic Rees algebras

Veronese algebra

Let S be a Noetherian ring. Let {Ij}∞j=0 be a family of graded ideals of S with I0 = S
and IjIk ⊆ Ij+k for all j and k. Consider the Rees ring of S with respect to family
{Ij}∞j=0,

A :=

∞⊕
j=0

Ijt
j .

For any positive integer d we denote by A(k) =
⊕∞

n=0Akn the kth Veronese subsalge-
bra of A.

Theorem 3.1. Let the notations be as above. Then A is a finitely generated S-algebra
if and only if there exists a positive integer k such that Akn = An

k for all n ≥ 1.

Proof. Let A be finitely generated S-algebra, i.e., A = S[f1t
r1 , f2t

r2 , . . . , fst
rs ] with

homogeneous fi ∈ Iri for i = 1, . . . , s. Let r = lcm (r1, r2, . . . , rs) and set k = rs. We
show that Akn = An

k for all n ≥ 1.
Let x ∈ Am. Then x is an S-linear combination of monomials of the form fu1

1 · · · fus
s

where u1r1 + · · · + usrs ≥ m. If m ≥ rs, then uiri ≥ r for some i = 1, . . . , s. Let
v = r/ri. Then fu1

1 · · · fus
s = (fu1

1 · · · fui−v
i · · · fus

s )fv
i . Since f

u1
1 · · · fui−v

i · · · fus
s ∈ Am−r

and avi ∈ Ar, x ∈ Am−rAr. Hence we showed that Am ⊆ Am−rAr for m ≥ k. Therefore,
for all l ≥ 1

Ak+rl ⊆ AkArl.

Hence for all n ≥ 1, Ank ⊆ An
k . Since the reverse inclusion always holds, the assertion

follows.
Conversely, let k be a positive integer such that Akn = An

k for all n ≥ 1. Then A(k) =⊕∞
n=0A

n
k t

n = S[Akt] is finitely generated S-algebra. Note that A(k;j) :=
⊕∞

n=0Ank+j

is an A(k)-module of rank 1. Then A(k;j) is a finitely generated A(k)-module. Since
A =

⊕k−1
j=0 A

(k;j), it follows that A is a finitely generated A(k)-module. Hence A is
finitely generated S-algebra.

Symbolic Rees algebra

Let R be a Noetherian ring and p be a prime ideal of R. For a positive integer n,

18
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the nth symbolic power of p, denoted by p(n), is defined as

p(n) := pnRp ∩R = {x ∈ R : xs ∈ pn for some s /∈ p}.

The graded ring
⊕∞

n=0 p
(n)tn, denoted by Rs(p), is called the symbolic Rees algebra

of p.

Proposition 3.2. Let (R,m) be a Noethrian local ring and p be a prime ideal of R.
Then Rs(p) is Noetherian if and only if there exists k ≥ 1 such that p(k)n = p(kn) for all
n ≥ 1.

Proof. Immediate from Theorem 3.1 for A = Rs(p).

Theorem 3.3 (Cowsik, Vasconcelos). Let (R,m) be a Noetherian local ring with in-
finite residue field and dimension d. Let p be a nonmaximal prime ideal of R. If
Rs(p) is Noetherian, then there exists d − 1 elements f1, f2, . . . , fd−1 ∈ p such that
p =

√
(f1 . . . , fd−1).

Proof. Since Rs(p) is Noetherian, there exists a positive integer k such that for all n ≥ 1,
p(nk) = p(k)n. Let I = p(k). Then depth (R/In) ≥ 1 for all n ≥ 1. By applying Burch’s
inequality, we get l(I) ≤ dim (R)−β(I) = d−1. Let J = (f1, f2, . . . , fd−1) be a reduction
of I. Then

√
J =

√
I = p, i.e. p =

√
(f1 . . . , fd−1).

3.2 Associativity formula for multiplicities

Lemma 3.4. Let (R,m) be a local ring, and let q be an m-primary ideal of R. Let
0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence of R-modules. Then e(q,M) =
e(q,M ′) + e(q,M ′′).

Proof. We assume that M ′ is a submodule of M . Then we obtain the exact sequence
0 −→ M ′/(qnM ∩M ′) −→ M/qnM −→ M ′′/qnM ′′ −→ 0 and

λ (M/qnM) = λ
(
M ′/(qnM ∩M ′)

)
+ λ

(
M ′′/qnM ′′). (3.1)

By Artin-Rees Lemma, there is a positive integer r such that for all n ≥ r, qnM ∩M ′ =
qn−r(qrM ∩M ′). This implies qnM ′ ⊆ M ′ ∩ qnM ⊆ qn−rM ′ and hence

λ
(
M ′/qn−rM ′) ≤ λ

(
M ′/(M ′ ∩ qnM)

)
≤ λ

(
M ′/qnM ′).

So that for sufficiently large n, Pq(M
′, n− r) ≤ λ (M ′/(M ′ ∩ qnM)) ≤ Pq(M

′, n). Hence

lim
n−→∞

(
d!

nd

)
λ
(
M ′/(M ′ ∩ qnM)

)
= e(q,M ′).

Now multiply (3.1) by d!/nd and take limit of n to infinity to get the result.

Theorem 3.5 (Associativity formula). Let (R,m) be a local ring, q be an m-primary
ideal. Let p1, . . . , pr be all minimal primes of R such that dim (R) = d = dim (R/pi) for
all i. Then for any finitely generated R-module M

e(q,M) =

r∑
i=1

e(q,R/pi)λ (Mpi).
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Proof. Choose a filtration M = M0 ⊇ M1 ⊇ · · · ⊇ Mk = 0 such that Mi/Mi+1 ≃ R/Qi

for each i = 0, . . . , k − 1 and Qi ∈ Spec (R). Then by the previous lemma,

e(q,M) =

k−1∑
i=0

dim (R/Qi)=d

e(q,R/Qi).

Let p ∈ Spec (R). Then Mp ⊇ (M1)p ⊇ (M2)p ⊇ · · · ⊇ (Mk)p = 0 and

(Mi/Mi+1)p ≃ (R/Qi)p =

{
0, if p ̸= Qi

Rp/Qip, if p = Qi

Therefore,

e(q,M) =

r∑
i=1

e(q,R/pi)λ (Mpi).

3.3 Huneke’s criterion for Noetherian symbolic Rees alge-
bra for certain primes

Theorem 3.6 (Huneke). Let (R,m) be a 3-dimensional regular local ring with R/m
infinite. Let p be a height two prime ideal of R. Then the following are equivalent:

(i) Rs(p) is Noetherian

(ii) there exist elements f ∈ p(k), g ∈ p(l) and x ∈ m \ p such that

λ (R/(f, g, x) = kl · λ (R/(p, x)

Proof. Let Rs(p) be a Noetherian ring. Then, by Proposition 3.2, there exists a positive
integer k such that for every positive integer n, p(k)n = p(kn). Let I = p(k). As p(n) is
p-primary ideal, depth (R/p(n)) = 1 for all n ≥ 1. In particular, depth (R/In) = 1 for all
n ≥ 1. Thus the stable value of depth (R/In) = β(I) = 1. Hence by Burch’s inequality,
l(I) ≤ dim (R) − β(I) = 2. Also l(I) ≥ ht (I) = 2. Thus l(I) = 2. Let J = (f, g) be a
reduction of I. Let x ∈ m \ p. Now, since R/(f, g) is Cohen-Macaulay of dimension 1,

e(x,R/(f, g)) = λ (R/(f, g, x)) = e(J,R/(x)).

Further, as J is a reduction of I, e(J,R/(x)) = e(I,R/(x)). So, to find e(I,R/(x))
we look at λ (R/(In, x)) = e(x,R/In) since R/In is Cohen-Macaulay for all n. Let S
denote the ring R/xR. Then by associativity formula,

λ (S/InS) = e(x,R/In) = e(x,R/p)λ(Rp/p
nkRp) = e(x,R/p)

(
nk + 1

2

)
.

The coefficient of n2/2 gives us,

e(I, S) = k2e(x,R/p),

which implies λ (R/(f, g, x) = k2e(x,R/p).
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Conversely, suppose f ∈ p(k), g ∈ p(l), x /∈ p, and λ (R/(f, g, x)) = kl λ (R/(p, x)).
Then f l, gk ∈ p(kl) and λ (R/(f l, gk, x)) = kl λ (R/(f, g, x)) = (kl)2 λ (R/(p, x)). Thus
we may assume that k = l.
Let I =

(
p(k) + (x)

)
/(x). As dim (R/(x)) = 2, we write

PI(n) = e0

(
n+ 1

2

)
− e1n+ e2.

So that PI(n) = λ (S/In) for large n. We claim that e0 − e1 = λ (S/I). Set Jn =(
p(kn) + (x)

)
/(x). Then, by using associativity formula,

λ (S/Jn) = λ
(
R/(p(kn), x)

)
= e(x,R/p(kn))

= e(x,R/p) · λ
(
Rp/p

knRp

)
= e ·

(
kn+ 1

2

)
λ (S/Jn) = ek2

(
n+ 1

2

)
− e ·

(
k

2

)
n (3.2)

where e = λ (R/(p, x)). By our assumption, λ
(
S/(f, g)

)
= λ (R/(f, g, x)) = ek2. Since

(f, g) ⊆ I, e(I) ≤ e(f, g) = λ
(
S/(f, g)

)
= ek2. Hence

e0 ≤ ek2. (3.3)

Since p(k)n ⊆ p(kn) for all n ≥ 1, λ (S/In) ≥ λ (S/Jn) for all n ≥ 1. For large n,

e0

(
n+ 1

2

)
− e1n+ e2 ≥ ek2

(
n+ 1

2

)
− e ·

(
k

2

)
n.

Hence

e0 ≥ ek2 and e

(
k

2

)
≥ e1. (3.4)

From (3.3) and (3.4), e0 = ek2 and

e0 − e1 = ek2 − e1 ≥ ek2 − e

(
k

2

)
= e ·

(
k + 1

2

)
= e(x,R/p) · λ

(
Rp/p

kRp

)
= λ (S/I).

So e0 − e1 ≥ λ (S/I). By Theorem 2.12, e0 − e1 ≤ λ (S/I). Hence e0 − e1 = λ (S/I).
Now by Theorem 2.13, e2 = 0 and PI(n) = λ (S/In) for all n ≥ 1. So for n ≥ 1,

λ (S/In) = e0

(
n+ 1

2

)
− e1n

= ek2
(
n+ 1

2

)
− (e0 − λ (S/I))n

= ek2
(
n+ 1

2

)
−
(
ek2 − e ·

(
k + 1

2

))
n

= ek2
(
n+ 1

2

)
− e ·

(
k

2

)
n

= λ (S/Jn).
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Since In ⊆ Jn, we get In = Jn for all n ≥ 1. Hence
(
p(k)n, x

)
=
(
p(kn), x

)
for all n ≥ 1.

Thus

p(kn) ⊆ p(k)n + (x) ∩ p(kn)

= p(k)n + x(p(kn) : x)

= p(k)n + xp(kn).

By Nakayama’s Lemma, p(k)n = p(kn) for all n ≥ 1. Therefore Rs(p) is Noetherian.

Corollary 3.7. Let (R,m) be a 3-dimensional regular local ring with R/m infinite. Let
p be a height two prime ideal with e(R/p) = 3. Then Rs(p) is Noetherian.

Proof. We may choose x ∈ m \ m2 such that e(x,R/p) = 3. Since ht (p) = 2, R/p is
Cohen-Macaulay and hence e(x,R/p) = λ (R/(p, x)) = 3.

If p * m2, then A/At is a regular local ring of dimension 2, where t ∈ p and t /∈ m2.
Also ht (p/At) = 1. Let a ∈ p/At. Since every regular local ring is a U.F.D., we write
a = b1 · · · br with each bi prime in A/At. Thus for some i, 0 ( bi(A/At) ⊆ p/At. But
ht (p/At) = 1, hence p/At = bi(A/At). Thus p = (t, bi) is a complete intersection and
so pn has only one primary component. Thus pn = p(n) for all n ≥ 1. Hence Rs(p) is
Noetherian.

Let p ⊆ m2. Let S be the ring R/(x) and n be the maximal ideal m/(x) of S. Then
λ (R/(m2, x)) = λ (S/n2) = 3. As λ (R/(p, x)) = 3 and p ⊆ m2, (p, x) = (m2, x).

Since R/p(2) is Cohen-Macaulay, λ
(
R/(x, p(2))

)
= e

(
x,R/p(2)

)
. Using Associativity

formula, we have

λ
(
R/(x, p(2))

)
= e

(
x,R/p(2)

)
= e(x,R/p)λ

(
Rp/p

2Rp

)
= 3 · 3 = 9.

On the other hand, λ(R/(x,m4)) = λ(S/n4) = 10. Comparing the lengths of R/(x, p(2))
and R/(x,m4), there exists f ∈ m3 ∩ p(2) such that (p(2), x) = (x, f,m4).

Let “–” denote images in S and ∗ denote the leading coefficients in grn(S). Then
deg (f

∗
) = 3. Choose g∗ ∈ grn(S) with deg (g∗) = 4 such that g ∈ p(2). Thus for

f, g ∈ p(2),

λ (R/(f, g, x)) = λ (S/(f, g)) = deg (f∗) deg (g∗) = 12 = 22 · e(x,R/p)

Hence, by Theorem 3.6, Rs(p) is Noetherian.

Example 3.8. Let R = C[[X,Y, Z]] and ϕ : C[[X,Y, Z]] −→ C[[t]] be the homomor-
phism which sends X to t6, Y to t7 + t10 and Z to t8. Let p = ker (ϕ). Then p is a
height 2 prime ideal in R and e(R/p) = 6. Consider the following elements in R,

a = 2xz3 − 3x2yz − 2x4 + y3 − xyz

b = x3z − 2yz2 + xy2 − x2z

c = x2z2 − 2x3y + y2z − xz2

d = x4 − z3.

Then

ϕ(a) = 2t6(t8)3 − 3(t6)2(t7 + t10)t8 − 2(t6)4 + (t7 + t10)3 − t6(t7 + t10)t8

= 2t30 − 3t27 − 3t30 − 2t24 + t21 + 3t24 + 3t27 + t30 − t21 − t24

= 0.
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ϕ(b) = (t6)3t8 − 2(t7 + t10)(t8)2 + t6(t7 + t10)2 − (t6)2t8

= t26 − 2t23 − 2t26 + t20 + 2t23 + t26 − t20

= 0.

ϕ(c) = (t6)2(t8)2 − 2(t6)3(t7 + t10) + (t7 + t10)2t8 − t6(t8)2

= t28 − 2t25 − 2t28 + t22 + 2t25 + t28 − t22

= 0.

ϕ(d) = (t6)4 − (t8)3 = 0

Thus (a, b, c, d) ⊆ p. We claim that p = (a, b, c, d). Let I = (a, b, c, d). Consider the
following matrix

M =

x −y −2z 2x
z −2x2 −y 2xz
0 −z x 2y


We look at all the 3× 3 minors of M ,

2y3 + 2x2yz − 8x2yz + 4xz3 − 4x4 − 2xyz = 2a

−2x3z + 2x2z − 2xy2 + 4yz2 = −2b

2x2z2 − 2xz2 − 4x3y + 2y2z = 2c

−2x4 − xyz + xyz + 2z3 = −2d.

Thus we observe that, upto unit, I is generated by 3× 3 minors of the matrix M .
Now, consider (I, x) = (a, b, c, d, x) = (y3, yz2, y2z, z3, x). So λ (R/(I, x)) = 6.

To find e(x,R/I), we find λ
(
R/(I, x2)

)
. Now (I, x2) = (y3 − xyz, xy2 − 2yz2, y2z −

xz2, z3, x2). We get λ
(
R/(I, x2)

)
= 12. Since dim (R/I) = 1, we find e(x,R/I) = 6,

which implies R/I is Cohen-Macaulay. By associativity formula,

e(x,R/I) =
∑

q∈Spec (R/I)
ht (q)=2

e(x,R/q)λ (Rq/Iq).

Since we have p ∈ Spec (R/I),ht (p) = 2 and e(x,R/p) = 6, it follows that λ (Rp/Ip) = 1
and I is p-primary. Therefore Ip = pRp and hence I = p.

Now we calculate p(2). It is easy to check that there exists e, f, g such that

xe = 2ad− bc+ 4d2x,

xf = 2c2 + ab+ 2bdx, and

xg = b2 + 4cd.

These equations show that e, f, g ∈ p(2) and

e ≡ −y4z mod (x),

f ≡ y5 − 2y2z3 mod (x), and

g ≡ 4z5 − 4y3z2 mod (x),

Let J = (m6, x, y4z, y5 − 2y2z3, 4z5 − 4y3z2). From above equations we obtain J ⊆
(p(2), x). We claim that J = (p(2), x). Considering lexicographical ordering we have
λ (R/J) = λ

(
R/(m6, x, y4z, y5, y3z2)

)
= λ

(
C[y, z]/

(
(y, z)6, y4z, y5, y3z2

))
. Using the
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Figure 3.1: The staircase diagram for the ideal
(
(y, z)6, y4z, y5, y3z2

)
staircase diagram (Figure 3.1), we see that λ

(
C[y, z]/

(
(y, z)6, y4z, y5, y3z2

))
= 18 (num-

ber of red nodes).
On the other hand, by associativity formula,

λ
(
R/(p(2), x)

)
= e(x,R/p(2)) = e(x,R/p)λ (Rp/p

2Rp) = 6 · 3 = 18.

Thus (p(2), x) = J .
Now one checks that there exists and element h such that

xh = bf2 + 2ae2 + geb.

So that h ∈ p(5) and h ≡ y12−36y8z5+72y5z8 mod (x). Let g and h be the images of g
and h respectively, in R/(x). The leading coefficient g∗ of g in grm/(x)(R/(x)) = C[y, z]
is 4z5− 4y3z2 and the leading coefficient h

∗
of h is y12− 36y8z5+72y5z8. Hence g∗ and

h
∗
are relatively prime. So that (g5)∗ = (g∗)5 and (h

2
)∗ = (h

∗
)2 are relatively prime.

Thus for g5, h2 ∈ p(10),

λ
(
R/(g5, h2, x)

)
= λ

(
R/(x)

(g5, h
2
)

)
= deg

((
g5
)∗) · deg ((h2)∗)

= 25 · 24 = 102 · 6 = 102 · e(x,R/p).

By Theorem 3.6, Rs(p) is Noetherian and the proof shows that p =
√

(g, h).
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