
EBPI Epidemiology, Biostatistics and Prevention Institute

Smooth Transformation Models
for Dependent Censoring
Sandra Siegfried and Torsten Hothorn

ICSDS 2024, Nice

m
od

el
s

transformation
co

nd
iti

on
al

re
gr

es
si

on

fu
nc

tio
ns

estimation

di
st

rib
ut

io
n

sc
or

e
co

m
pl

ex

tr
ee

s

statisticalnovel

boosting

lego

pr
oj

ec
t

lin
ea

r

corresponding
simple

based

forests tests

observations

research

inference

re
sp

on
se

s

procedures

loglikelihood

ra
nd

om

sh
ift

variables

parameter

su
rv

iv
aldata

different

odds

parametersadditive

pa
ck

ag
e

procedure

sc
or

es



University of Zurich, EBPI Smooth Transformation Models for Dependent Censoring Page 2



Motivation

Independent censoring is a common assumption in survival
analysis.

What to do if survival time T ∈ R+ and censoring time C ∈ R+

are dependent?

Proc. Nat. Acad. Sci. USA
Vol. 72, No. 1, pp. 20-22, January 1975

A Nonidentifiability Aspect of the Problem of Competing Risks
(crude survival probabilities/net survival probabilities)

ANASTASIOS TSIATIS*

Department of Statistics, University of California, Berkeley, Calif. 94720

Communicated by Jerzy Neyman, October 17, 1974

ABSTRACT For an experimental animal exposed to
k > 1 possible risks of death R1, R2, -*, Rk, the term i-th
potential survival time designates a random variable Yi
supposed to represent the age at death of the animal in
hypothetical conditions in which Ri is the only possible
risk. The probability that Yi will exceed a preassigned t is
called the i-th net survival probability. The results of a
survival experiment are represented by kI "crude" survival
functions, empirical counterparts of the probabilities Qi(t)
that an animal will survive at least up to the age t and
eventually die from Ri.Theanalysis of a survival experiment
aims at estimating the k net survival probabilities using
the empirical data on those termed crude. Theorems 1 and
2 establish the relationship between the net and the crude
probabilities of survival. In particular, Theorem 2 shows
that, without the not directly verifiable assumption that
in their joint distribution the variables Y1, Y2, **, kare
mutually independent, a given set of crude survival prob-
abilities Qi(t) does not identify the corresponding net
probabilities. An example shows that the results of a
customary method of analysis, based on the assumption
that Yi, Y2, ., Ykare independent, may have no resem-
blance to reality.

As recently summarized by David (1), the customary treat-
ment Qf competing risks is based on the model that we shall
term the model of potential survival times. Consider an in-
dividual living organism born at time t 0, and assume that
through its lifetime it is exposed to k > 1 different "risks" or
possible causes of death RI, R2, * , Rk. For i = 1, 2, ... , k let
Yi denote a random variable described as the "potential
survival time" of the individual in hypothetical conditions in
which Ri is the only risk of death, and let Hi(t) = P { Yf > t }.
The function Hi is described as the i-th net survival proba-
bility or the i-th net "decrement" function. The potential
survival times Y, are contrasted with the actual survival time,
say X, when the individual in question is exposed to all the
k > 1 competing risks, so that X = min (Y,, Y2, - * *, Yk). The
function Qi(t), described as the i-th crude survival function, is
defined as the probability that the individual considered will
survive up to age t and then die from cause Ri. Obviously, for

21,2, * k and t > 0,

Qi(t) = P{(Yi > t) n (Yj > Yi)1. [1]
joi

Ordinarily, the studies of competing risks are based on
empirical counterparts of the crude survival functions Qi(t),
perhaps derived from observations of a cohort of experimental
animals. The purpose of such studies is to estimate the net
survival probabilities and to predict the patterns of mortality
to be expected in hypothetical conditions when certain causes

of death are either eliminated or modified in their importance.
Here the joint distribution of potential survival times Yi is of
great importance. As summarized by David (1), recent studies
are based either on assumptions specifying the functional form
of this joint distribution with a few adjustable parameters or,
predominantly, on the qualitative hypothesis, say A, that the
potential survival times Y1, Y2, * , Ye are mutually indepen-
dent.
The purpose of the present paper is to show that without the

hypothesis A, the model of potential survival times is uniden-
tifiable: the set of crude survival functions Qi(t) is consistent
with an infinity of joint distributions of potential survival
times. Thus, a fully realistic treatment of the problem of
competing risks depends on properly validated detailed hy-
potheses on the joint distribution of the Y's or, indeed, on a
straight stochastic model of competition of risks in the spirit
of the following quotation from Chiang (ref. 2, p. 242), "Are
people suffering from arteriosclerotic heart disease more likely
to die from pneumonia than people without a heart condi-
tion?" Naturally, the details of such an approach must be
properly validated.
Without the assumption A of independence of the Y's, their

joint distribution may be characterized by the function

H(k)(t,, t2, . ., tk) = P n (Yi > ti) )
i=

[2]

to be described as the multiple decrement function. We as-
sume that this function has continuous partial derivatives
with respect to all of its arguments. Obviously, the i-th net
probability of surviving up to age t is obtained from [21 by
substituting t1 = t and tj = 0 for all j $ i. We now establish
the relationship between [2 ] and the i-th crude survival func-
tion Q1(t).

Net and crude survival probabilities

THEOREM 1. Whatever be the joint distribution of potential
survival times, characterized by the multiple decrement function
[2], the derivative Q '(t) of the i-th crude survivalfunction is equal
to the partial derivative of [2] with respect to ti evaluated at
tl = t2 = ... = tk = t-

Proof. Because the numbering of the k competing risks is
arbitrary, it will be sufficient to prove the theorem assuming
i = 1, which will simplify the notation somewhat. Let t and
h* be arbitrary positive numbers and 0 < h < h*. The defini-
tion of Qi(t) implies that the difference

Q,(t) - QI(t + h)
= Pt (t < Y1 < t + h) n (Yi > Y1)} [3]

j>1

20

* Present address: Department of Statistics, University of Wis-
consin, Madison, Wise. 53706.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
A

E
T

 Z
U

E
R

IC
H

 H
A

U
PT

B
IB

L
IO

T
H

E
K

 N
A

T
U

R
W

IS
SE

N
SC

H
A

FT
E

N
 o

n 
Se

pt
em

be
r 

26
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
0.

60
.7

1.
27

.

University of Zurich, EBPI Smooth Transformation Models for Dependent Censoring Page 3



Motivation

What to do if survival time T ∈ R+ and censoring time C ∈ R+

are dependent?

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2022, VOL. 00, NO. 0, 1–11: Theory and Methods
https://doi.org/10.1080/01621459.2022.2161387

Copula Based Cox Proportional Hazards Models for Dependent Censoring

Negera Wakgari Deresa and Ingrid Van Keilegom

ORSTAT, KU Leuven, Leuven, Belgium

ABSTRACT
Most existing copula models for dependent censoring in the literature assume that the parameter defining
the copula is known. However, prior knowledge on this dependence parameter is often unavailable. In this
article we propose a novelmodel underwhich the copula parameter does not need to be known. Themodel
is based on a parametric copulamodel for the relation between the survival time (T) and the censoring time
(C), whereas the marginal distributions of T and C follow a semiparametric Cox proportional hazards model
and a parametric model, respectively. We show that this model is identified, and propose estimators of the
nonparametric cumulative hazard and the finite-dimensional parameters. It is shown that the estimators of
the model parameters and the cumulative hazard function are consistent and asymptotically normal. We
also investigate the performance of the proposedmethod using finite-sample simulations. Finally, we apply
our model and estimation procedure to a follicular cell lymphoma dataset. Supplementarymaterials for this
article are available online.
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1. Introduction

When studying the effect of some covariates X on a survival
time T, a popular model in the literature is a semiparametric
proportional hazards model (or Cox model), which is defined
by the following conditional survival function:

ST|X(t|x) = exp{−�(t)ex
�β}, (1.1)

where β is a vector of regression parameters and � belongs
to a space G of cumulative hazard functions; we refer to the
seminal paper by Cox (1972) for details. In the presence of
random right censoring, the latter paper proposed an elegant
estimation procedure provided that the survival time T and the
(right) censoring time C are stochastically independent given
covariates. This assumption holds in many situations, mainly
when censoring occurs at the end of the study (administrative
censoring). However, there are also numerous contexts where
the independent censoring assumption does not hold. For exam-
ple, in medical studies, patients may withdraw from treatment
when their prognosis is poor, and hence the reason for with-
drawal may be linked to the expected event of interest, which
induces dependent censoring; see Deresa and Van Keilegom
(2021) for more examples. In the case where the independence
assumption is doubtful, the event time analysis based on the Cox
model may lead to serious estimation bias (Huang and Zhang
2008).

A convenient way to deal with dependent censoring is to
use a copula model for the joint distribution of T and C.
However, since the copula between T and C is not identifiable
in a fully nonparametric setting (Tsiatis 1975), some authors
work with a known copula model, which completely specifies
the association between the two variables. The first paper in that

CONTACT Negera Wakgari Deresa negerawakgari.deresa@kuleuven.be ORSTAT, KU Leuven, Naamsestraat 69, B-3000 Leuven, Belgium.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

line was Zheng and Klein (1995), who proposed a consistent
nonparametric estimator for the marginal distributions of T
and C. This estimator generalizes the Kaplan and Meier (1958)
estimator to the case of dependent censoring. Rivest and Wells
(2001) further studied the proposal of Zheng and Klein (1995)
for the particular case of an Archimedean copula. For the
case with covariates, Huang and Zhang (2008) modeled the
marginal distributions of both T and C using the Cox model
under a known copula and demonstrated the nice performance
of their model through simulations. Later on, Chen (2010)
extended this copula approach to semiparametric transfor-
mation models, which include the Cox model as a special
case.

A known copula approach has the advantage of not mak-
ing strict model assumptions about the marginal distributions,
but it has the disadvantage of assuming that the dependence
structure is known. Supposing the copula to be known is often
an unrealistic assumption, but as shown in Crowder (1991),
identification is impossible if the copula is entirely unknown.
It is therefore essential to check identifiability within certain
parametric copulas, where the copula structure is specified up
to a finite-dimensional parameter.

Other approaches not based on copulas have also been pro-
posed to handle dependent censoring. In this regard, the inverse
probability of censoring weighted (IPCW) method (see, Robins
and Finkelstein 2000; Scharfstein and Robins 2002; Collett 2015,
among others), where the weight is obtained from a censoring
time model using the auxiliary variables as covariates, and the
multiple imputation method of Jackson et al. (2014), where
the censored times are imputed under user-specified devia-
tions from independent censoring, are also helpful to adjust for
dependent censoring in the Cox model. These methods either

© 2022 American Statistical Association

P(T ≤ t, C ≤ c | X = x) =
Φ0,R(λ)

{
Φ−1 [P(T ≤ t | X = x)] ,Φ−1 [P(C ≤ c | X = x)]

}
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Follicular Cell Lymphoma Data

– N = 541 patients with early disease stage (I or II) and
treated with Radiation Alone (“RT”) or with Radiation and
Chemotherapy (“CMT + RT”).

– Time to relapse or death in remission.

RT CMTRT

Administrative censoring 131 62
Relapse 226 46
Death 66 10
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Follicular Cell Lymphoma Competing Risks

10.32614/CRAN.package.SemiPar.depCens
10.32614/CRAN.package.tram

SemiPar.depCens tram

Disease relapse chCMTRT −0.352 (0.162) −0.300 (0.154)
age 0.418 (0.116) 0.435 (0.065)
hgb 0.040 (0.069) 0.033 (0.058)
clinstgI −0.643 (0.127) −0.575 (0.122)

Death in remission (Intercept) 2.241 (1.058) 3.052
chCMTRT 0.296 (0.303) 0.292
age −0.663 (0.112) −0.829
hgb −0.030 (0.109) −0.042
clinstgI 0.635 (0.395) 0.684
σ 0.955 (0.147) 0.871

Dependence τ 0.769 (0.809) 0.774
λ −2.693 (1.089)

Computation Time 312.973 (50 Cores) 17.391 (1 Core)
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World of Transformations

We want to invite you to
– understand (Gaussian) copula models for dependent

censoring as nonparanormal models featuring marginal
transformation models,

– stop the mistreatment of baseline cumulative hazards as
“nuisance”,

– accept smooth and parsimonously parameterised baseline
cumulative hazards and other transformation functions,

– enjoy full likelihood estimation and inference,
– transfer core ideas to other domains (> 2 competing

events, non-proportional hazards, prognostic biomarkers,
etc).
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Smooth Transformation Models for Dependent
Censoring

1) Smooth Parametrisation

P(T ≤ t | X = x) = cloglog−1
(
h(t | ϑ)− x⊤β

)
,

P(C ≤ c | X = x) = cloglog−1
(
ϑ1 + ϑ2 log(c)− x⊤βC

)
.

with polynomial h(t | ϑ) in Bernstein form
(e.g. 10.1111/sjos.12291)

2) Parametrisation of correlation matrix as

R(λ) =

(
1 −λ/

√
1+λ2

−λ/
√

1+λ2 1

)
, λ ∈ (−∞,∞)

University of Zurich, EBPI Smooth Transformation Models for Dependent Censoring Page 8
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Smooth Transformation Models for Dependent
Censoring

3) Formulate the joint distribution by a nonparanormal model

P(T ≤ t, C ≤ c | X = x) =
Φ0,R(λ)

{
Φ−1 [P(T ≤ t | X = x)] ,Φ−1 [P(C ≤ c | X = x)]

}
,

4) Evaluate likelihood

Event at t : fT(t|C > t, X = x)× P(C > t | X = x)
Censored at t : fC(t|T > t, X = x)× P(T > t | X = x)

End of study at t : P(T > t ∧ C > t | X = x)

5) Optimise jointly wrt ϑ, ϑ1, ϑ2, β, βC, λ and perform standard
ML inference
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Cox Regression under Dependent Censoring

library("tram")
...
Coxph( ### marginal Cox + Weibull, Gaussian copula

Surv(time, event = status) ~ ### censored, relapse,
### or death

ch + age + hgb + clinstg, ### covariates
data = follic)

Coefficient Estimate Std. Error 95%-Wald CI

βchCMTRT −0.300 0.154 −0.602 to 0.002
βage 0.435 0.065 0.307 to 0.563
βhgb 0.033 0.058 −0.080 to 0.146

βclinstgI −0.575 0.122 −0.814 to −0.336

Log-Likelihood

−1’346.61

arXiv.2402.06428
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Simulation Complex Baseline EoI

Deresa & Van Keilegom (2024) simulation, but with non-Weibull
time-to-event of interest margin:

P(T ≤ t | X = x) = cloglog−1
(
cloglog(Fχ2

3
(t)) + x1β1 + x2β2

)

Kendall's τ

V
al

ue

0.
0

0.
5

1.
0

Estimate
β 1

0.
0

0.
2

0.
4

SE

0.
5

1.
0

1.
5

β 2

0.
0

0.
2

0.
4

−
6

−
2

0
2

λ

0.
5

1.
0

−
0.

5
0.

5

0 0.2 0.4 0.8

τ

0.
0

0.
2

0.
4

0 0.2 0.4 0.8

University of Zurich, EBPI Smooth Transformation Models for Dependent Censoring Page 11



Extension I: More than 2 Competing Events

Observe only one of T1, . . . , TJ, likelihood for Tj = t

fj(t | X = x)× P

⋂
ȷ̸=j

Tȷ > t | Tj = t, X = x


Marginal Cox model for one event of interest; Weibull for the
remaining events

P(T1 ≤ t | X = x) = cloglog−1
(
h(t | ϑ)− x⊤β1

)
,

P(Tj ≤ t | X = x) = cloglog−1
(
ϑj1 + ϑj2 log(t)− x⊤βj

)
j = 2, . . . , J
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Extension I: More than 2 Competing Events

Parameterise correlation by scaled inverse Cholesky factor

R(λ) = Ω(λ)−1Ω(λ)−⊤

Ω(λ) = Λ(λ) diag(Λ−1(λ)Λ−⊤(λ))1/2

Λ = Λ(λ) =


1
λ21 1 0
λ31 λ32 1

...
... . . .

λJ1 λJ2 . . . λJ,J−1 1


featuring λ = (λ21, . . . , λJ,J−1)

⊤ ∈ RJ(J−1)/2 unconstraint
parameters (10.1111/sjos.12291).
Log-likelihood + scores: 10.32614/CRAN.package.mvtnorm
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Simulation Competing Risk with J = 3
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Extension II: Interval Censoring

We observe Tj in interval
(̄
t, t̄

]
, the likelihood is then

P

̄t < Tj ≤ t̄,
J⋂

ȷ̸=j

Tȷ > t̄ | X = x



Smooth parameterisation of baseline log-cumulative hazard
h(t | ϑ) and application of Genz’ algorithm allows evaluation
and optimisation of corresponding log-likelihood
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Extension III: Non-proportional Hazards

Replace marginal Cox proportional hazards model

P(T ≤ t | X = x) = cloglog−1
(
h(t | ϑ)− x⊤β

)
with a location-scale transformation model

P(T ≤ t | X = x) = cloglog−1
(
h(t | ϑ) exp(x⊤γ)− x⊤β

)
allowing crossing hazards.

10.1080/00031305.2023.2203177
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Extension IV: Prognostic Biomarkers

With X ∈ R denoting a prognostic biomarker, the model

P(T ≤ t, C ≤ c, X ≤ x) =
Φ0,R(λ)

{
Φ−1 [P(T ≤ t)] ,Φ−1 [P(C ≤ c)] ,Φ−1 [P(X ≤ x)]

}
can be used to derive and evaluate time-dependent ROC curves
under dependent censoring.
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Estimation and Inference

– Negative log-likelihood in general non-convex
– In many cases relevant here, it is bi-convex in the marginal

vs. λ parameters
– Nonparanormal models contain all special cases discussed

in this presentation
arXiv.2408.17346

– Continuous, discrete, and mixed Gaussian copula
log-likelihood (mvtnorm::ldpmvnorm()) and score
(mvtnorm::sldpmvnorm()) functions available

– Nonparanormal model estimation and ML inference
implemented in tram::Mmlt()

– tram::Coxph() and tram::Compris() user interfaces
10.32614/CRAN.package.mvtnorm,
10.32614/CRAN.package.tram
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Answer to Standard Question
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