

EBPI Epidemiology, Biostatistics and Prevention Institute

Smooth Transformation Models for Dependent Censoring

Sandra Siegfried and Torsten Hothorn

ICSDS 2024, Nice

Motivation

Independent censoring is a common assumption in survival analysis.

What to do if survival time $T \in \mathbb{R}^+$ and censoring time $C \in \mathbb{R}^+$ are dependent?

Proc. Nat. Acad. Sci. USA Vol. 72, No. 1, pp. 20-22, January 1975

A Nonidentifiability Aspect of the Problem of Competing Risks

(crude survival probabilities/net survival probabilities)

ANASTASIOS TSIATIS*

Motivation

What to do if survival time $T \in \mathbb{R}^+$ and censoring time $C \in \mathbb{R}^+$ are dependent?

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2022, VOL. 00, NO. 0, 1–11: Theory and Methods https://doi.org/10.1080/01621459.2022.2161387

Check for updates

Copula Based Cox Proportional Hazards Models for Dependent Censoring

Negera Wakgari Deresa () and Ingrid Van Keilegom ()

$$\begin{split} \mathbb{P}(T \leq t, \mathsf{C} \leq c \mid \mathbf{X} = \mathbf{x}) = \\ \Phi_{0,\mathbf{R}(\lambda)} \left\{ \Phi^{-1} \left[\mathbb{P}(T \leq t \mid \mathbf{X} = \mathbf{x}) \right], \Phi^{-1} \left[\mathbb{P}(\mathsf{C} \leq c \mid \mathbf{X} = \mathbf{x}) \right] \right\} \end{split}$$

Follicular Cell Lymphoma Data

- N = 541 patients with early disease stage (I or II) and treated with Radiation Alone ("RT") or with Radiation and Chemotherapy ("CMT + RT").
- Time to relapse or death in remission.

	RT	CMTRT
Administrative censoring	131	62
Death	66	40

Follicular Cell Lymphoma Competing Risks

10.32614/CRAN.package.SemiPar.depCens 10.32614/CRAN.package.tram

		SemiPar.depCens	tram
Disease relapse	chCMTRT	-0.352 (0.162)	-0.300 (0.154)
	age	0.418 (0.116)	0.435 (0.065)
	hgb	0.040 (0.069)	0.033 (0.058)
	clinstgl	-0.643 (0.127)	-0.575 (0.122)
Death in remission	(Intercept)	2.241 (1.058)	3.052
	chCMTRT	0.296 (0.303)	0.292
	age	-0.663 (0.112)	-0.829
	hgb	-0.030 (0.109)	-0.042
	clinstgl	0.635 (0.395)	0.684
	σ	0.955 (0.147)	0.871
Dependence	au	0.769 (0.809)	0.774
	λ		-2.693 (1.089)
Computation Time		312.973 (50 Cores)	17.391 (1 Core)

World of Transformations

We want to invite you to

- understand (Gaussian) copula models for dependent censoring as nonparanormal models featuring marginal transformation models,
- stop the mistreatment of baseline cumulative hazards as "nuisance",
- accept smooth and parsimonously parameterised baseline cumulative hazards and other transformation functions,
- enjoy full likelihood estimation and inference,
- transfer core ideas to other domains (> 2 competing events, non-proportional hazards, prognostic biomarkers, etc).

Smooth Transformation Models for Dependent Censoring

1) Smooth Parametrisation

$$\begin{split} \mathbb{P}(T \leq t \mid \mathbf{X} = \mathbf{x}) &= \operatorname{cloglog}^{-1}\left(h(t \mid \vartheta) - \mathbf{x}^{\top} \boldsymbol{\beta}\right), \\ \mathbb{P}(C \leq c \mid \mathbf{X} = \mathbf{x}) &= \operatorname{cloglog}^{-1}\left(\vartheta_1 + \vartheta_2 \log(c) - \mathbf{x}^{\top} \boldsymbol{\beta}_C\right). \end{split}$$

with polynomial $h(t \mid \vartheta)$ in Bernstein form (e.g. 10.1111/sjos.12291)

2) Parametrisation of correlation matrix as

$$oldsymbol{R}(\lambda) \;\;=\;\; \left(egin{array}{cc} 1 & -\lambda/\sqrt{1+\lambda^2} \ -\lambda/\sqrt{1+\lambda^2} & 1 \end{array}
ight), \qquad \lambda \in (-\infty,\infty)$$

Smooth Transformation Models for Dependent Censoring

3) Formulate the joint distribution by a nonparanormal model

$$\begin{split} \mathbb{P}(T \leq t, C \leq c \mid \textbf{X} = \textbf{x}) = \\ \Phi_{0,\textbf{R}(\lambda)} \left\{ \Phi^{-1} \left[\mathbb{P}(T \leq t \mid \textbf{X} = \textbf{x}) \right], \Phi^{-1} \left[\mathbb{P}(C \leq c \mid \textbf{X} = \textbf{x}) \right] \right\}, \end{split}$$

4) Evaluate likelihood

 $\begin{array}{lll} \text{Event at} & t: & f_T(t|C>t, \textbf{X}=\textbf{x}) \times \mathbb{P}(C>t \mid \textbf{X}=\textbf{x}) \\ \text{Censored at} & t: & f_C(t|T>t, \textbf{X}=\textbf{x}) \times \mathbb{P}(T>t \mid \textbf{X}=\textbf{x}) \\ \text{End of study at} & t: & \mathbb{P}(T>t \wedge C>t \mid \textbf{X}=\textbf{x}) \end{array}$

5) Optimise jointly wrt ϑ , ϑ_1 , ϑ_2 , β , β_c , λ and perform standard ML inference

Cox Regression under Dependent Censoring

Coefficient	Estimate	Std. Error	95%-Wald CI
$eta_{ ext{chcMTRT}} eta_{ ext{age}} \ eta_{ ext{hgb}} \ eta_{ ext{hgb}} \ eta_{ ext{clinstgl}}$	-0.300 0.435 0.033 -0.575	0.154 0.065 0.058 0.122	$\begin{array}{rrrr} -0.602 \ to & 0.002 \\ 0.307 \ to & 0.563 \\ -0.080 \ to & 0.146 \\ -0.814 \ to -0.336 \end{array}$
Log-Likelihood			
-1'346.61			

arXiv.2402.06428

University of Zurich, EBPI Smooth Transformation Models for Dependent Censoring

Simulation Complex Baseline Eol

Deresa & Van Keilegom (2024) simulation, but with non-Weibull time-to-event of interest margin:

$$\mathbb{P}(T \leq t \mid \textbf{X} = \textbf{x}) = \text{cloglog}^{-1}\left(\text{cloglog}(F_{\chi_3^2}(t)) + x_1\beta_1 + x_2\beta_2\right)$$

Extension I: More than 2 Competing Events

Observe only one of T_1, \ldots, T_J , likelihood for $T_j = t$

$$f_j(t \mid \boldsymbol{X} = \boldsymbol{x}) imes \mathbb{P}\left(igcap_{j
eq j} T_j > t \mid T_j = t, \boldsymbol{X} = \boldsymbol{x}
ight)$$

Marginal Cox model for one event of interest; Weibull for the remaining events

$$\begin{split} \mathbb{P}(T_1 \leq t \mid \boldsymbol{X} = \boldsymbol{x}) &= \operatorname{cloglog}^{-1} \left(h(t \mid \vartheta) - \boldsymbol{x}^\top \boldsymbol{\beta}_1 \right), \\ \mathbb{P}(T_j \leq t \mid \boldsymbol{X} = \boldsymbol{x}) &= \operatorname{cloglog}^{-1} \left(\vartheta_{j1} + \vartheta_{j2} \log(t) - \boldsymbol{x}^\top \boldsymbol{\beta}_j \right) \\ & j = 2, \dots, J \end{split}$$

Extension I: More than 2 Competing Events

Parameterise correlation by scaled inverse Cholesky factor

$$\begin{split} \boldsymbol{R}(\lambda) &= \boldsymbol{\Omega}(\lambda)^{-1}\boldsymbol{\Omega}(\lambda)^{-\top} \\ \boldsymbol{\Omega}(\lambda) &= \boldsymbol{\Lambda}(\lambda) \operatorname{diag}(\boldsymbol{\Lambda}^{-1}(\lambda)\boldsymbol{\Lambda}^{-\top}(\lambda))^{1/2} \\ \boldsymbol{\Lambda} &= \boldsymbol{\Lambda}(\lambda) = \begin{pmatrix} 1 & & & \\ \lambda_{21} & 1 & 0 & \\ \lambda_{31} & \lambda_{32} & 1 & \\ \vdots & \vdots & \ddots & \\ \lambda_{J1} & \lambda_{J2} & \dots & \lambda_{J,J-1} & 1 \end{pmatrix} \end{split}$$

featuring $\boldsymbol{\lambda} = (\lambda_{21}, \dots, \lambda_{J,J-1})^{\top} \in \mathbb{R}^{J(J-1)/2}$ unconstraint parameters (10.1111/sjos.12291). Log-likelihood + scores: 10.32614/CRAN.package.mvtnorm

Simulation Competing Risk with J = 3

λ1

Extension II: Interval Censoring

We observe T_i in interval $(\underline{t}, \overline{t}]$, the likelihood is then

$$\mathbb{P}\left(\underline{t} < T_j \leq \overline{t}, \bigcap_{j \neq j}^J T_j > \overline{t} \mid \boldsymbol{X} = \boldsymbol{x}\right)$$

Smooth parameterisation of baseline log-cumulative hazard $h(t \mid \vartheta)$ and application of Genz' algorithm allows evaluation and optimisation of corresponding log-likelihood

Extension III: Non-proportional Hazards

Replace marginal Cox proportional hazards model

$$\mathbb{P}(au \leq t \mid m{X} = m{x}) = \operatorname{cloglog}^{-1}\left(h(t \mid artheta) - m{x}^{ op}m{eta}
ight)$$

with a location-scale transformation model

$$\mathbb{P}(T \leq t \mid \boldsymbol{X} = \boldsymbol{x}) = \operatorname{cloglog}^{-1}\left(h(t \mid \boldsymbol{\vartheta}) \exp(\boldsymbol{x}^{\top} \boldsymbol{\gamma}) - \boldsymbol{x}^{\top} \boldsymbol{\beta}\right)$$

allowing crossing hazards.

10.1080/00031305.2023.2203177

Extension IV: Prognostic Biomarkers

With $X \in \mathbb{R}$ denoting a prognostic biomarker, the model

$$\mathbb{P}(T \leq t, C \leq c, X \leq x) = \Phi_{0,\boldsymbol{R}(\boldsymbol{\lambda})} \left\{ \Phi^{-1} \left[\mathbb{P}(T \leq t) \right], \Phi^{-1} \left[\mathbb{P}(C \leq c) \right], \Phi^{-1} \left[\mathbb{P}(X \leq x) \right] \right\}$$

can be used to derive and evaluate time-dependent ROC curves under dependent censoring.

Estimation and Inference

- Negative log-likelihood in general non-convex
- In many cases relevant here, it is bi-convex in the marginal vs. λ parameters
- Nonparanormal models contain all special cases discussed in this presentation

arXiv.2408.17346

- Continuous, discrete, and mixed Gaussian copula log-likelihood (mvtnorm::ldpmvnorm()) and score (mvtnorm::sldpmvnorm()) functions available
- Nonparanormal model estimation and ML inference implemented in tram::Mmlt()
- tram::Coxph() and tram::Compris() user interfaces

10.32614/CRAN.package.mvtnorm, 10.32614/CRAN.package.tram

https://ctm.R-forge.R-project.org/

Answer to Standard Question

