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Abstract

Let γ be a pseudo-Anosov homeomorphism of a compact orientable surface and let
X be an element of the Teichmüller space of the same surface. In this paper, we find
asymptotics for the number of pseudo-Anosov homeomorphisms that are conjugate
to γ and the axis of their action on Teichmüller space intersects the ball of radius R
centered at X, as R tends to infinity.

1 Introduction

1.1 Statement of results

Let M be a compact manifold of variable negative curvature, and x, y belong to the uni-
versal cover of M . In [Mar04], Margulis obtained asymptotics for the number of elements
in the π1(M) orbit of y that lie in a ball of large radius centered at x. As a consequence, he
was able to compute assymptotics for the Riemannian volume of such balls. In [ABEM12],
these results were extended to the setting of Teichmüller theory. Let us introduce some
notation before stating the results of [ABEM12].

Fix Sg to be a compact surface of genus g ≥ 2. We denote the Teichmüller space,
moduli space, and the mapping class group (or modular group) of Sg by Tg, Mg and Γ
respectively. For a point X ∈ Tg, let B(X,R) denote the ball of radius R centered at X,
where the distance is measured with respect to the Teichmüller metric. We denote the
orbit of X under the action of Γ by Γ ·X. It is proved in [ABEM12] that, given X,Y ∈ Tg,
as R→∞,

|Γ · Y ∩B(X,R)| ∼ Λ2

hVol(Mg)
ehR, and

Vol(B(X,R)) ∼ Λ2

h
ehR.

Here, h = 6g − 6 is the entropy of Teichmüller geodesic flow with respect to Masur-Veech
measure, and Λ is the Hubbard-Masur constant [ABEM12, Dum15]. Mg is equipped with
the push-forward of the normalized Masur-Veech measure on the moduli space of unit area
quadratic differentials, and Vol(Mg) stands for the total mass ofMg with respect to this
measure. (See Section 2.3 of [ABEM12].) The cardinality of a finite set S is denoted by
|S|, and A(R) is said to be asymptotic to B(R), written A(R) ∼ B(R), if A(R)/B(R)→ 1
as R→∞.
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The goal of this paper is to prove asymptotics similar to ones mentioned above for
large balls in a quotient of the Teichmüller space. To state our results, we need a few
definitions first. Fix γ ∈ Γ to be a pseudo-Anosov homeomorphism and let Lγ be the axis
of its action on Teichmüller space, namely, the unique geodesic that is kept fixed by γ. The
cyclic group generated by γ, denoted by 〈γ〉, acts on Tg properly discontinuously, hence
we can form the quotient to be the cylinder Cγ = 〈γ〉\Tg. The corresponding covering map
is denoted by Πγ . Since the action of γ on Lγ is by translation, the quotient Lγ = 〈γ〉\Lγ
is a closed geodesic in Cγ . Define the ball of radius R in Cγ around Lγ to be

B(Lγ , R) = {Y ∈ Cγ : d(Y ,Lγ) ≤ R},

where the distance in Cγ is the one induced by the Teichmüller distance on its cover Tg.
Let MF denote the space of measured foliations, and for ζ ∈ MF and X ∈ Tg, denote
the extremal length of ζ in X by Ext(ζ,X). Define the unit extremal ball around Lγ by

BExt(Lγ) = {ζ ∈MF : inf
X∈Lγ

Ext(ζ,X) ≤ 1}.

This set is fixed by γ, and the action of 〈γ〉 on it is proper and discontinuous once we
remove the two rays inMF , denoted by [γ±], that are fixed by this action. Hence we can
form the quotient

CExt,γ = 〈γ〉\
(
BExt

(
Lγ)r[γ±]

)
.

The Thurston measure ν on MF induces a measure on CExt,γ , which we denote by ν as
well. The orbit counting asymptotics is given by the following theorem.

Theorem A. Let γ and Lγ be as above and X ∈ Tg. Then as R→∞,

|Πγ(Γ ·X) ∩B(Lγ , R)| ∼ Λ

hVol(Mg)
ν(CExt,γ)ehR. (1)

The volume asymptotics is given by the following theorem.

Theorem B. Let γ and Lγ be as above. Then as R→∞,

Vol
(
B(Lγ , R)

)
∼ Λ

h
ν(CExt,γ)ehR.

Given X ∈ Tg, the following sets are in one-to-one correspondence.

•Πγ(Γ ·X) ∩B(Lγ , R)

• {g.Lγ : g ∈ Γ, and B(X,R) ∩ g.Lγ 6= ∅}

For an element g ∈ Γ we denote the conjugacy class of g by Conj(g) = {g′ ∈ Γ :
g′ is conjugate to g}. If g is pseudo-Anosov, we denote the axis of g by Lg. We say that
g is primitive if for every h ∈ Γ such that g = hn, we have n = 1. If γ is a primitive
pseudo-Anosov, then the above two sets are in one-to-one correspondence with

•{g ∈ Γ : g ∈ Conj(γ), and B(X,R) ∩ Lg 6= ∅}

Therefore we have the following corollary.
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Corollary C. Let γ ∈ Γ be a primitive pseudo-Anosov, and X ∈ Tg. Then as R→∞,

|{g ∈ Γ : g ∈ Conj(γ), and B(X,R) ∩ Lg 6= ∅}| ∼ Λ

hVol(Mg)
ν(CExt,γ)ehR.

Note that when γ is replaced by γk for an integer k ∈ Z, the left hand side of the
above equation remains fixed, while the right hand side gets multiplied by |k|.

1.2 Remarks and the relation to other works

Before explaining the idea of the proof, let us mention the history of the problem and
make a few remarks.

• Theorem A and Theorem B were proved in the setting of hyperbolic surfaces in
[EM93]. To explain this, let Σ be a compact surface of constant negative curvature −1,
and let Γ be its fundamental group. Fixing γ ∈ Γ, let `γ be the axis of its action on

Σ̃ ' D. Define Cγ = 〈γ〉\Σ̃, let πγ : D→ Cγ be the corresponding covering map, and set

`γ = πγ(`γ). For a given x ∈ Σ̃ Theorem 2.5 of [EM93] gives

|πγ(Γ · x) ∩B(`γ , R)| ∼ Length(`γ)

Area(Σ)
eR, as R→∞,

where B(`γ , R) is defined as before. A calculation in hyperbolic metric shows Theorem B
in this setting, namely, as R→∞,

Area
(
B(`γ , R)

)
∼ Length(`γ)eR.

• In the setting of manifolds of variable negative curvature, Theorem A can be ob-
tained as a special case of common perpendicular counting, proved in [PP17]. To explain

this, let M be a compact manifold of (variable) negative curvature, and π : M̃ →M be its
covering map. Let Γ, γ , `γ , πγ , `γ be as above, and note that π(`γ) is a closed geodesic in
M . Then πγ(Γ·x)∩B(`γ , R) is in one-to-one correspondence with Perp(π(x), π(`γ), R), the
perpendiculars from π(x) to π(`γ) of length less than or equal R, where such a perpendic-
ular is defined as a locally geodesic path that starts from π(x) and arrives perpendicularly
at π(`γ). It follwos from Theorem 1 of [PP17] that for some constant cγ > 0,

|πγ(Γ · x) ∩B(`γ , R)| ∼ cγeδR, as R→∞.

Here, δ is the topological entropy of the geodesic flow on T 1M , the unit tangent bundle
of M . Under some additional conditions (for example, if M is a surface of variable negative
curvature), an exponentially small error term is obtained for the above asymptotics in
Theorem 3 of the same paper.

1.3 The outline of the proof

Theorem B, proved at the end of Section 5.1, follows by integrating the counting function
of Theorem A over the moduli space Mg. This is in fact how volume asymptotics are
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usually obtained from counting asymptotics. Hence the main task is to prove Theorem A.
We adapt the notation introduced in Section 1.1. Define

B(Lγ , R) = {X ∈ Tg : d(X,Lγ) ≤ R}.

Fix a point P ∈ Tg, and note that Πγ(Γ · P ) ∩B(Lγ , R) is in one-to-one correspondence
with

〈γ〉\
(
Γ · P ∩B(Lγ , R)

)
= {〈γ〉 · (g.P ) : d(g.P,Lγ) ≤ R}. (2)

Note that since Γ · P ∩B(Lγ , R) is 〈γ〉–invariant, taking its quotient by 〈γ〉 is justified.
Fix a point O ∈ Lγ , and for an ε > 0 let O = X0, X1, ..., XN = γ.O be a sequence

of consecutive points on the geodesic segment [O, γ.O] such that d(Xi, Xi+1) < ε, for
0 ≤ i < N . This is called an ε–net in [O, γ.O]. Translating this net by the powers γ, we
obtain a γ–invariant ε–net (..., X−1, X0, X1, ...) of Lγ . Define the map P : PMF → Z
by

P[ζ] = i if Ext(ζ,Xi) = inf
j∈Z

Ext(ζ,Xj).

For i ∈ Z, define [Ai] = P−1(i), and note that these sets form a γ–invariant partition of
PMF . Let S(Xi, [Ai], R) denote the sector of radius R centered at Xi and observing [Ai],
namely, all the points Y ∈ Tg such that d(Xi, Y ) ≤ R and the geodesic connecting Xi to
Y hits the boundary at an element of [Ai]. (see 5.1 for a precise definition.)

The main geometric idea of this paper is that the sets S(Xi, [Ai], R) are almost dis-
joint and they almost cover all of B(Lγ , R). This, and the fact that γ.S(Xi, [Ai], R) =
S(Xi+N ,Ai+N , R) implies that

N−1∑
i=0

|Γ · P ∩ S(Xi, [Ai], R)|

gives a good approximation for |〈γ〉\(Γ · P ∩ B(Lγ , R))|. The asymptotics of |Γ · P ∩
S(Xi, [Ai], R)| as R → ∞ is given in [ABEM12]. Summing up these asymptotics as the
ε–net (Xi)i∈Z in Lγ gets finer, namely, as ε→ 0, we obtain the right hand side of (1).

For technical reasons, we need the boundary of the sets [Ai] to be of measure 0. This is
a consequence of Proposition 3.1, proved in Section 3. Assuming this proposition, the rest
of the paper can be read independently of Section 3. Section 4 is devoted to the statement
and proof of Proposition 4.13, which is the main tool we use to compare extremal and
Teichmüller lengths. In Section 5, we carry out the sector approximation scheme that we
mentioned earlier. Both facts that the sets S(Xi, [Ai], R) are almost disjoint, and that
they almost cover B(Lγ , R) are applications of Proposition 4.13.

Remark 1.1. Using the same method, Theorem A can be proved for an arbitrary compact
set Kγ ⊂ Cγ replacing Lγ . In this case CExt,γ should be replaced by a similarly defined
subset of 〈γ〉\MF . The only change in the proof would be to replace the ε–net in Lγ by
a γ–invariant ε–net in Π−1

γ (Kγ). This is defined as Π−1
γ (Sε), where the finite set Sε ⊂ Kγ

is such that the balls of radius ε around its elements cover Kγ .
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1.4 A formula for the derivative of extremal length

We end this introduction by stating a formula that we obtained in Section 3 in the course
of proving Proposition 3.1. For X ∈ Tg, let Q(X) denote the space of marked quadratic
differentials based at X, and define the homeomorphism VX : Q(X) → MF by sending
a quadratic differential to its vertical measured foliation. Fixing ζ ∈ MF , we can define
Extζ : Tg → R by Extζ(X) = Ext(ζ,X). This function is differentiable, and its derivative
is given by the Gardiner’s formula ([Gar84]) to be

dX Extζ(µ) = 2<〈V−1
X (ζ), µ〉.

Here, µ ∈ TX(Tg), the tangent space to Tg at X, is a Beltrami differential, and

〈V−1
X (ζ), µ〉 =

∫
X
µ.V−1

X (ζ)

is the usual inner product between a quadratic differential and a Beltrami differential.
If, instead of fixing a measured foliation, we fix an element X of the Teichmüller space,

we can define ExtX : MF → R by

ExtX(ζ) = Ext(ζ,X).

In order to compute the derivative of ExtX , we need a differential structure on MF .
However, MF , equipped with train-track charts, is only piecewise linear. Despite this, if
ζ is generic, meaning that it does not have a leaf connecting any two of its singularities
and all of its singularities are simple, then MF is smooth at ζ (in the sense of Definition
3.3). For such a ζ, we denote the tangent space to MF at ζ by TζMF , and we denote
the Thurston symplectic form on TζMF by ωTh. The derivative of ExtX at the generic
points of MF is given by the following theorem.

Theorem D. Fix X ∈ Tg, and let ζ ∈ MF be generic. Then ExtX is smooth at ζ, and
there exists an element α ∈ TζMF such that

dζ ExtX(�) = ωTh(α, �)

This is proved as Theorem 3.10. This theorem, moreover, gives an explicit construction
of α in certain train-track charts around ζ.

Notation. Throughout this paper, for real numbers a, b, c, we write a 'c b if |a−b| < c.

Acknowledgements. I would like to thank my advisor, Kasra Rafi, for suggesting
the problem and his constant support during the writing of this paper.

2 Background on Teichmüller space

Teichmüller space. Let Sg be a compact oriented topological surface of genus g ≥
2. The genus g and the surface Sg are fixed throughout the paper. For a Riemann
surface X, an orientation preserving homeomorphism f : Sg → X is called a marking. Let
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fi : Sg → Xi, i = 1, 2 be two markings. f1 and f2 are called equivalent, if there exists a
biholomorphism h : X1 → X2 such that h ◦ f1 is isotope to f2. The Teichmüller space of
Sg, denoted by Tg, is defined as the space of all markings up to the equivalence mentioned
above. For two elements [fi : Sg → Xi], i = 1, 2 of Tg, the change of marking from [f1] to
[f2] is defined to be the isotopy class of f2 ◦ f−1

1 : X1 → X2. From now on, we denote an
element [f : Sg → X] of Tg by X, and keep the marking in the back of our mind.

The mapping class group (or modular group) of Sg is denoted by Γ, and is defined to
be the group of orientation preserving homeomorphisms of Sg up to isotopy. An element
g = [ϕ : Sg → Sg] of the mapping class group acts on [f : Sg → X] ∈ Tg by change of
marking, namely, g.[f ] = [f ◦ ϕ−1]. Note that we defined the action in a way that for all
X ∈ Tg and g,h ∈ Γ we have (g.h).X = g.(h.X). Taking the quotient of Tg by Γ, we
obtain the moduli space Mg = Γ\Tg, hence the elements of Mg are of the form Γ ·X for
X ∈ Tg.

Quadratic differentials. For a Riemann surface X, we denote the space of holo-
morphic quadratic differentials (or quadratic differentials for short) on X by Q(X). For a
quadratic differential q ∈ Q(X), define the norm of q to be

|q| =
∫
X
|q(z)||dz|2.

We define QTg to be the space of marked quadratic differentials, more precisely, this is the
space of equivalence classes [f : Sg → X, q ∈ Q(X)], where the equivalence relation is the
natural one. We denote [f ] by (X, q), or sometimes only by q. Sending (X, q) to X gives
a projection map π : QTg → Tg. The principal stratum is defined to be the subset of QTg
consisting of quadratic differentials with only simple zeros, and is denoted by QTg(1).

Let q ∈ Q(X) be a quadratic differential. A flat chart for q is a holomorphic chart from
the complex plane C to X, on which the pullback of q is dz2. The change of coordinates
between two flat charts is of the form z → ±z + c for some c ∈ C. Denoting the zeros of
q by Σq, we can cover XrΣq by flat charts, giving X the structure of a flat surface (or
a half-translation surface). Note that q ∈ QTg(1) if and only if the angle around every
element of Σq is 3π.

The group SL2(R) acts onQTg by acting by matrix multiplication on the corresponding
flat charts. More precisely, let q ∈ QTg and A ∈ SL2(R). Then q gives an atlas of flat
charts, ϕi : Ui → Vi, i ∈ I, from C to Sg. A.q is defined to be the quadratic differential
given by the charts ϕi ◦ A−1 : A.Ui → Vi. Note that we defined this action in a way
that A.(B.q) = (A.B).q for A,B ∈ SL2(R). With this definition, the Teichmüller flow
gt : QTg → QTg is given by

gt =

(
et 0
0 e−t

)
.

For every X ∈ Tg, the cotangent space to Tg at X is naturally identified with Q(X),
hence the norm on Q(X) induces a norm on the tangent space to Tg at X, denoted by
TX Tg. This is proved to be a Finsler metric on Tg, and the resulting distance is called the
Teichmüller distance. We denote the distance between two points X,Y ∈ Tg by d(X,Y ),
and show the geodesic connecting X to Y by [X,Y ]. Given X ∈ Tg and ζ ∈ MF , by
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[HM79] there exists a unique q ∈ Q(X) such that q has ζ as its vertical measured foliation.
We define the geodesic ray connecting X to ζ by

[X, ζ) = {π(gt.q), 0 ≤ t <∞}.

Extremal length. Given X ∈ Tg, let VX : Q(X)r{0} → MF be the function that
sends a nonzero quadratic differential to its vertical measured foliation. By [HM79], VX
is a homeomorphism. We can define the extremal length of ζ ∈MF at X ∈ Tg by

Ext(ζ,X) = |V−1
X (ζ)|. (3)

To see that this coincides with the usual definition of extremal length, see [Ker80].
Let X,Y ∈ Tg and ζ ∈MF . The Busemann functions are defined by

β(ζ,X) =
1

2
log Ext(ζ,X);

β(ζ,X, Y ) = β(ζ, Y )− β(ζ,X).

For a measured foliation ζ, we denote the projective class of ζ by [ζ] ∈ PMF . Since for
λ > 0 we have β(λ.ζ,X) = β(ζ,X) + log λ, the value of β(ζ,X, Y ) only depends on the
projective class of ζ. This common value is denoted by β([ζ], X, Y ).

For X, Y and ζ as before, Kerschoff inequality ([Ker80]) states that

Ext(ζ, Y )

Ext(ζ,X)
≤ e2d(X,Y ).

Taking logarithms, we obtain

β(ζ, Y ) ≤ β(ζ,X) + d(X,Y ).

The equality holds if and only if Y, X and ζ appear in this order on a geodesic line, or
equivalently, X ∈ [Y, ζ) . If we think of β(ζ,X) as the ”length at infinity” of [X, ζ), the
above can be thought of as the triangle inequality in ∆(ζ,X, Y ). (note that, unlike the
usual length, β(ζ,X) can be negative.)

3 Equidistant measured foliations are negligible

Given X,Y ∈ Tg, define EX,Y ⊂MF by

EX,Y = {ζ ∈MF : Ext(ζ,X) = Ext(ζ, Y )}.

The goal of this section is to prove the following.

Proposition 3.1. Let X,Y ∈ Tg be distinct. Then EX,Y is of Thurston measure zero.

In Section 3.1 we recall some background on train tracks. Train tracks are important
for us since they give nice charts on MF . In Section 3.2 we compute the derivative of
Ext(�, X) : MF → R in certain train track charts. Finally, we prove Proposition 3.1 at
the end of Section 3.3.
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3.1 Background on train tracks

3.1.1 Definitions and notation

A train track on Sg is an embedded 3–regular graph in Sg such that its vertices are locally
modeled on Figure 1. The vertices of this graph are called switches and the edges are
called branches of the train track. In the same figure, the branch a is called an outgoing
branch and b, c are called incoming branches. A branch is said to be large if it is the
outgoing branch for both of its endpoints. A train track τ is said to be complete if all the
components of Sg − τ are cusped triangles.

a

c

b

Figure 1: A switch

a

c1

b1

c2

b2

c′1

b′1

c′2

b′2

a′

Figure 2: A splitting along the branch a, when µ(c2) > µ(c1).

We denote the set of vertices of a train track τ by V (τ), and the set of edges of
this train track by E(τ). A function w : E(τ) → R is called a weight on τ , if we have
w(a) = w(b) +w(c) for every switch as in Figure 1. Let W (τ) denote the set of all weights
on τ . This is a linear subspace of RE(τ), cut out by #V (τ) equations. A weight w ∈W (τ)
is said to be positive, or a measure on the train track τ , if w(e) > 0 for all the branches e
of τ . We denote the set of all measures on τ by W+(τ). A train track τ with a measure
µ on it is denoted by the pair (τ, µ), and is called a measured train track.

For a measured train track (τ, µ), a splitting along a large branch a is shown in Figure
2 . Note that the branch a splits differently according to whether µ(c1) is greater, less
than, or equal to µ(c2). A collision is the reverse of a splitting, i.e., going from the right
hand side of Figure 2 to the left hand side.

Given a measured train track (τ, µ), we can foliate a rectangular neighborhood of τ ,
and define a transverse measure on it according to µ. Shrinking the components of the
complement of this neighborhood, we get a measured foliation, denoted by Fτ (µ). A
measured foliation ζ is said to be carried by (τ, µ) if ζ = Fτ (µ). ζ is said to be carried by
τ if there exists a measure µ ∈W+(τ) such that ζ is carried by (τ, µ). We denote the set
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of all measured foliations carried by τ by U(τ). If τ is bi-recurrent, then

Fτ : W+(τ)→ U(τ)

is a homeomorphism ([PH92] Theorem 1.7.12). If τ is bi-recurrent and complete, then
W+(τ) is of full dimension 6g − 6, then U(τ) is an open subset of MF , and Fτ is called
a train track chart.

For a measured foliation ζ ∈MF the following are equivalent:

• All the leaves of ζ are dense.

• ζ has only simple singularities and does not have a leaf connecting any two of its
singularities. (or a leaf connecting a singularity to itself)

• Every train track carrying ζ is complete.

A measured foliation is called generic if it satisfies one (and hence all) of the above
conditions. The set of all generic measured foliations is denoted by Gen(Sg). Observe
that in each train track chart, the nongeneric measured foliations are cut out by the
union of countably many linear subspaces of codimension one. Since we can cover MF
by finitely many train track charts, we deduce that nongeneric measured foliations are
of Thurston measure 0, or in other words, Gen(Sg) has full measure. Note that despite
being measure 0, nongeneric measured foliations form a dense subset of MF . (consider
the rational multiples of simple closed multicurves.)

For two train track charts Fτi : W+(τi)→ U(τi), i = 1, 2, define

Fτ2τ1 = F−1
τ2 ◦ Fτ1 ,

and denote the domain of Fτ2τ1 by W+(τ1, τ2). This is a subset of W+(τ1). The set
W+(τ2, τ1) ⊂ W+(τ2) can be defined similarly. By [PH92] Theorem 3.1.4, the change of
coordinates map

Fτ2τ1 : W+(τ1, τ2)→W+(τ2, τ1)

is piecewise linear. This means that there exists an integer N = N(τ1, τ2), and a pair
of partitions P1 of W+(τ1, τ2) and P2 of W (τ2, τ1) into polytopes, both of cardinality N ,
such that the restriction of Fτ2τ1 to each of the polytopes in P1 is a linear isomorphism to
a polytope in P2. Note that by a polytope in a linear space V , we mean the intersection of
finitely many half-spaces in V . It follows from the proof of Theorem 3.1.4 of [PH92] that
the faces of the polytopes in P1 lie in F−1

τ1 (MFrGen(Sg)). Hence we have the following
lemma.

Lemma 3.2. Let τ1 and τ2 be bi-recurrent complete train tracks, and assume that ζ ∈
U(τ1)∩ U(τ2) is a generic measured foliation. Then F−1

τ2 ◦ Fτ1 is linear in a neighborhood
of F−1

τ1 (ζ).

Inspired by this lemma, we make the following definition.
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Definition 3.3. Let M be a topological manifold given by the charts

ϕi : Ui → Vi, Ui ⊂ Rn, Vi ⊂M,

for i belonging to some index set I. M is said to be smooth at a point x ∈ M if the
transition maps are smooth near x. This means that for all indices i, j ∈ I such that
x ∈ Vi ∩ Vj , the change of coordinates map

ϕji = ϕ−1
j ◦ ϕi : Uij → Uji

is smooth on a neighbourhood of ϕ−1
i (x), where Uij is the domain of definition of ϕji.

If a manifold M is smooth at x, the tangent space to M at x, denoted by TxM , can
be defined in the usual way. We can define a manifold to be linear or analytic at a point
in a similar way. With these definitions, we have the following corollary of Lemma 3.2.

Corollary 3.4. The train track charts on MF give it the structure of a topological man-
ifold that is linear at all the points in Gen(Sg).

Fix a train track τ , and for w1, w2 ∈W (τ) define

ωτ (w1, w2) =
1

2

∑
v∈V (τ)

det

(
w1(bv) w1(cv)
w2(bv) w2(cv)

)
, (4)

where at each switch v of τ , the outgoing branch is labeled by av, and the incoming
branches are labeled by bv, cv, in a way that avbvcv is counter-clockwise. (see Figure 1.)
With this definition, ωτ gives a nondegenarate antisymmetric bilinear pairing on W (τ).
Since W (τ) is a vector space, TµW

+(τ) is naturally identified with W (τ) for µ ∈W+(τ),
hence (4) gives an antisymmetric form on W+(τ), denoted by ωτ as well.

Let τ1 and τ2 be complete bi-recurrent train tracks. Adapting the notation introduced
in the discussion before Lemma 3.2, it can be proved that the restriction of Fτ2τ1 to the
interior of each polytope in P1 sends ωτ1 to ωτ2 . (See [PH92] Theorem 3.2.4.) Hence,
gluing together the forms ωτ for different train tracks τ , we obtain a bilinear pairing on
TζMF for ζ ∈ Gen(Sg). This is called the Thurston symplectic form, and is denoted by
ωTh.

3.1.2 Train tracks and flat structures

Let X be a Riemann surface and q a quadratic differential on X. Denoting the set of
zeros of q by Σq, we define a saddle triangulation (or a triangulation for short) of q to
be a triangulation ∆ of X such that the vertices of the triangles belong to Σq, and the
edges are straight lines in the flat metric induced by q. Such a triangluation always exists
by [MS91]. For a triangle ABC ∈ ∆, a comparison triangle is defined as a flat model
of ABC, namely, this is a Euclidean triangle A′B′C ′ in the plane, together with a flat
chart ϕ : A′B′C ′ → ABC that sends A′ to A, B′ to B and C ′ to C. (note that ϕ has a
continuous extension to the edges of A′B′C ′.) The comparison triangle for a given triangle
in ∆ is unique up to translation and reflection from the origin.
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We say that a triangluation ∆ of q is non-vertical if none of the triangles in ∆ have
a vertical side. Given a non-vertical triangulation ∆ of q, we can turn the dual graph of
∆ into a measured train track in the following way. Let ABC be a triangle in ∆, and
let A′B′C ′ be its comparison triangle. Since A′B′C ′ does not have a vertical side, up to
relabeling the vertices, we may assume

<(
−−→
B′C ′), <(

−−→
B′A′), <(

−−→
A′C ′) > 0.

Denoting the edges dual to the sides BC,AC,AB of the triangle ABC by a, b, c respec-
tively, we announce a to be the outgoing edge, and b, c to be incoming edges, and define

µ(a) = <(
−−→
B′C ′), µ(c) = <(

−−→
B′A′), µ(c) = <(

−−→
A′C ′).

(τ, µ) constructed in this way is a measured train track that carries V(q). This is called
the train track dual to ∆. In the case that ∆ contains triangles with vertical sides, the
dual measured train track can be defined by first removing those edges of the dual graph
that are dual to the vertical sides, and then defining the measure on the remaining edges
as before.

Let ∆ be an arbitrary triangluation of q, and assume that BC is the common side of
two triangles ABC, DBC ∈ ∆. We define a flip along BC in ∆ to be a triangulation ∆′

obtained from ∆ by replacing the triangles {ABC,DBC} by {ABD,ACD}. Let (τ, µ)
and (τ ′, µ′) be the train tracks dual to ∆ and ∆′, respectively. Denoting the branch of τ
that is dual to BC by e, we can see that (τ ′, µ′) is obtained from (τ, µ) by either a split,
collision or shift along e. (see [PH92] Section 2.1 for the definition of shift.) The situation
where a splitting (or collision) happens is shown in Figure 3. The converse to this is also
true, namely, we have the following lemma.

Lemma 3.5. Let q be a quadratic differential, ∆ a triangulation of q, and (τ, µ) the train
track that is dual to ∆. Then every split, collision or shift in (τ, µ) corresponds to a flip
in ∆, and vice versa.

Recall that, starting with a Riemann surface X, a quadratic differential q on X, and
a triangulation ∆ of q, we arrived at (τ, µ), the dual of ∆, which is a train track on X. If
in addition to this data, we have a marking f : Sg → X as well, then pulling back (τ, µ)
by this marking, we obtain a train track on the topological surface Sg, which is also called
the train track dual to ∆. Note that if f changes in its isotopy class, the pull-back of (τ, µ)
also changes by isotopy. Thus, for a (equivalence class of) marked quadratic differential
[f : Sg → X, q ∈ Q(X)], and a triangluation ∆ of q, we can think of the dual of ∆ as an
isotopy class of train tracks on Sg.

3.2 A formula for the derivative of ExtX

In this section, given X ∈ Tg, we compute the derivative of Ext(X, ζ) considered as a
function of ζ ∈ MF . (see theorem 3.10.) To simplify the notation, we denote Ext(ζ,X)
by ExtX(ζ) throughout this section and Section 3.3. Define

NX : Q(X)→ R, by NX(q) = |q|.

11



A′

B′ C ′

D′

e

A′

B′ C ′

D′

Figure 3: If e is large, then a flip along BC corresponds
to a splitting along e.

The idea behind computing the derivative of ExtX is to write Equation (3) as

ExtX = NX ◦ V−1
X .

The derivative of NX is given in [Roy71], and the derivative of VX can be computed as
a consequence of Douady-Hubbard formula (see Lemma 3.9). The chain rule then gives
a formula for the derivative of ExtX . Using the results of Section 5 of [Dum15], we can
write this derivative in a more compact form (see Equation 6).

Note thatMF , equipped with train track charts, is not a smooth manifold, however, by
Corollary 3.4, it is smooth on its full measure subset Gen(Sg). Hence, in order to compute
the derivative of ExtX , it makes sense to restrict ourselves to these points. Inspired by
this situation, we make the following definition:

Definition 3.6. Let M and ϕi, i ∈ I, be as in Definition 3.3. A function f : M → R
is said to be smooth at a smooth point x ∈ M , if f ◦ ϕi is smooth in a neighborhood of
ϕ−1
i (x) for a chart ϕi that covers x.

A linear (analytic) function at a linear (analytic) point can also be defined in a similar
way. If f is smooth at x, we can define the derivative of f at x, dx f : TxM → R, in the
usual way.

Fix X ∈ Tg, and define
Q1(X) = Q(X) ∩QTg(1)

to be the quadratic differentials on X that have only simple zeros. For q ∈ Q1(X), and
φ, ψ ∈ Q(X) define

ωq(φ, ψ) =
1

4
=
(∫

X

φψ̄

|q|

)
.

For q ∈ Q1(X), identifying TqQ(X) with Q(X), ωq gives an antisymmetric pairing on
TqQ(X). Varying q in Q1(X), we obtain a 2–from on Q1(X), which we denote by ωX .
By [Dum15] Theorem 5.3, ωX is symplectic. Moreover, we have the following theorem,
which is a consequence of [Dum15] Theorem 5.8.
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Theorem 3.7. VX gives a symplectomorphism from (Q(X), ωX) to (MF , ωTh), at the
points where both of these forms are defined.

Lemma 3.8. The function NX restricted to Q1(X) is smooth, and its derivative at a
point q ∈ Q1(X) is given by

dqNX(�) = 4ωq(iq, �).

Proof. The fact that NX is smooth on Q1(X) follows from the proof of Theorem 5.3
of [Dum15]. In that proof, in a neighborhood of q ∈ Q1(X), N = NX is written as
N = N ε

0 +N ε
1, and it is proved that both N ε

0 and N ε
1 are smooth on this neighborhood.

The derivative of NX is computed in [Roy71] Lemma 1.

Lemma 3.9 computes the derivative of VX in certain train track charts on MF . For
this computation we need the following construction:

Construction. Fix X ∈ Tg, a quadratic differntial q ∈ Q(X), and a non-vertical
triangulation ∆ of q. Let (τ, µ) be the train track dual to ∆. For every φ ∈ Q(X), define

w∆(φ) : E(τ)→ R

as follows. If the branch e of τ is dual to the side AB of a triangle in ∆, set

w∆(φ)(e) =
1

2
<
(∫ B

A

φ
√
q

)
, (5)

where the integral is taken over the saddle connection AB, and we use the branch of
√
q

that makes <(
∫ B
A

√
q) positive. It can be checked that w∆(φ) is a weight on τ , hence w∆

is a linear function from Q(X) to W (τ). For the next lemma, recall the definition of train
track charts Fτ : W+(τ)→MF , given in Section 3.1.

Lemma 3.9. Fix X ∈ Tg and a quadratic differntial q ∈ Q(X) such that VX(q) is generic.
Let ∆ be a triangulation of q, and let (τ, µ) be the train track dual to ∆. Then F−1

τ ◦ VX
is real analytic in a neighborhood of q, and its derivative at q,

Dq(F−1
τ ◦ VX) : TqQ(X)→ TµW

+(τ),

is given by w∆. (Note that we identified TqQ(X) and TµW
+(τ) with Q(X) and W (τ)

respectively).

Proof. Note that since VX(q) is generic, q ∈ Q1(X) and ∆ is non-vertical (i.e., none of the
triangles in ∆ have a vertical side). First, we give a description of the function F−1

τ ◦ VX
in a neighborhood of q. If q′ ∈ Q(X) is near q, the zero set of q′ is near the zero set of q,
hence we can choose a triangulation of q′, denoted by ∆(q′), that is close to ∆ = ∆(q).
Let (τ(q′), µ(q′)) be the measured train track dual to ∆(q′), hence VX(q′) is carried by
(τ(q′), µ(q′)). Since ∆ = ∆(q) is non-vertical, τ(q′) can be moved slightly to coincide with
τ = τ(q). As a result, µ(q′) can be conisdered as a measure on τ , i.e., an element of
W+(τ). Since (τ, µ(q′)) carries VX(q′), we have Fτ (µ(q′)) = VX(q′), or

F−1
τ ◦ VX(q′) = µ(q′).

13



MF Q(X) R TζMF TqQ(X) R

ζ q NX(q) = ExtX(ζ) β ψ = Dζ(V−1
X )(β) 4ωq(iq, ψ)

Diagram (1a) Diagram (1b)

V−1
X NX

ExtX

Dζ(V−1
X ) dqNX

DζExtX

U ⊂ Q(X) W+(τ) MF TqQ(X) TµW
+(τ) TζMF

q µ ζ iq w∆(iq) DµFτ (w∆(iq)) = α

Diagram (2a) Diagram (2b)

F−1
τ ◦VX Fτ Dq(F−1

τ ◦VX) DµFτ

VX DqVX

Figure 4: Diagrams for Theorem 3.10.

Now, let A and B be two of the zeros of q such that AB is the side of a triangle in ∆,
and assume e is the branch of τ that is dual to AB. For q′ near q, denote the zeros of q′

that are close to A and B by A(q′) and B(q′) respectively. Then, by the definition of dual
train track, we have

µ(q′)(e) = <
(∫ B(q′)

A(q′)

√
q′
)
,

where, as before, the integral is taken over the saddle connection in q′ that connects A(q′)

to B(q′), and the sign for
√
q′ is chosen so that <

(∫ B(q′)
A(q′)

√
q′
)
> 0.

Recall that for a small enough neighborhood U of q, PAB : U → C given by

PAB(q′) =

∫ B(q′)

A(q′)

√
q′

is called a period function, and its derivative at q ∈ U is given by Douady-Hubbard formula
([DH75], Proposition 1) to be

dq PAB(φ) =
1

2

∫ B

A

φ
√
q
, for φ ∈ TqQ(X).

This completes the proof of the lemma.

Theorem 3.10. Fix X ∈ Tg, and let ζ ∈ MF be a generic measured foliation. Then
ExtX is real analytic at ζ, and there exists α = α(X, ζ) ∈ TζMF such that

dζ ExtX(�) = 4ωTh(α, �). (6)
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To find a formula for α, let q = V−1
X (ζ), fix an arbitrary triangulation ∆ of q, and let

(τ, µ) be the train track dual to ∆. then α can be computed in the train track chart Fτ to
be w∆(iq). More precisely, we have

α = DµFτ
(
w∆(iq)

)
. (7)

Proof. In Diagram (1a), ExtX = NX ◦V−1
X because of Equation (3). Taking the derivative

of Diagram (1a), we obtain Diagram (1b). The upper row in Diagram (1b) commutes
by chain rule, and the lower right arrow is by Lemma 3.8. In the same diagram, β is an
arbitrary element of TζMF , and ψ is defined to be Dζ(V−1

X )(β). by Theorem 3.7, VX is
a symplectomorphism from (Q(X), ωX) to (MF , ωTh), hence we have

ωq(iq, ψ) = ωTh

(
Dq VX(iq),Dq VX(ψ)

)
.

Set α = Dq VX(iq), and note that, by the definition of ψ we have β = Dq VX(ψ), hence we
have

ωq(iq, ψ) = ωTh(α, β).

Since the upper row of Diagram (1b) commutes, we have

Dζ ExtX(β) = 4ωq(iq, ψ).

This proves the first statement of the theorem.
Now we use Diagrams (2a) and (2b) to find the stated formula for α. Let ∆ and its

dual train track (τ, µ) be as in the statement of the theorem. The lower row of Diagram
(2a) holds since (τ, µ) carries ζ = VX(q). Taking the derivative of this diagram, we obtain
Diagram (2b). The lower left arrow in this diagram is by Lemma 3.9. The upper row of
this diagram commutes by chain rule, hence we have

α = Dq VX(iq) = DµFτ
(
w∆(iq)

)
,

which is what we wanted.

3.3 Proof of Proposition 3.1

To prove Proposition 3.1, we need three preliminary lemmas. The proof of the proposition
is given at the end of this section. The first lemma is an immediate consequence of the
defining equation for w∆ (Equation 5).

Lemma 3.11. Let X ∈ Tg, q ∈ Q(X), and ∆ be a non-vertical triangluation of q. Denote
the train track dual to ∆ by (τ, µ). For an arbitrary triangle ABC in ∆, let A′B′C ′ be its
flat comparison triangle, and e be the branch of τ that is dual to AB. By reflecting A′B′C ′

through the origin if necessary, we can assume <(
−−→
A′B′) > 0. Under this assumption, we

have

w∆(iq)(e) = −1

2
=(
−−→
A′B′).
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By the discussion at the end of Section 3.1.2, the dual train track to a triangluation of
a marked quadratic differential can be treated as an isotopy class of measured train tracks
on the topological surface Sg. This is how we treat the dual train track in the following
lemma.

Lemma 3.12. Let X, q, ∆, τ, µ be as in Lemma 3.11, then (X, q) is uniquely determined
by the data (τ, µ, w∆(iq)). More precisely, the following holds. For j = 1, 2, let Xj ∈ Tg
and qj ∈ Q(Xj). Let ∆j be a non-vertical triangulation of qj, with dual train track
(τj , µj), and set wj = w∆(iqj). Furthermore, assume that there exists an isotopy of Sg
that superimposes τ2 on τ1 in such a way that the corresponding measures µ1, µ2 and the
corresponding weights w1, w2 coincide. Then the change of marking from X1 to X2 is
isotopic to a biholomorphism that sends q1 to q2.

Proof. We will only use this lemma under the additional assumption that q ∈ Q1(X) (see
the proof of Proposition 3.1, given at the end of this section), hence we give the proof only
in this case. The general case can be proved in a similar way.

Let A denote the set of triples (X, q,∆) where X ∈ Tg, q ∈ Q1(X), and ∆ is a non-
vertical triangulation of q, up to the following equivalence relation. We say (X, q,∆) ∼
(X ′, q′,∆′) if the change of marking from X to X ′ is isotopic to a biholomorphism that
sends q to q′ and ∆ to ∆′. Let B denote the set of triples (τ, µ, w), where τ is a complete
train track in Sg, µ is a measure on τ , and w is a weight on this train track, up to the
following equivalence relation. We say (τ, µ, w) ∼ (τ ′, µ′, w′) if they are the same up to
isotopy. We claim that the function

F : A→ B, given by F[(X, q,∆)] = [(τ, µ, w∆(iq))],

has an inverse, where (τ, µ) is the train track dual to ∆, and [�] denotes the equivalence
class of �. The lemma follows from this claim.

To prove the claim, let (τ, µ) be a complete train track, and w ∈W (τ) a weight on τ .
Then at each switch as in Figure 1, we can construct a Euclidean triangle A′B′C ′ such
that

−−→
B′C ′ =

(
µ(a),−w(a)

)
,
−−→
B′A′ =

(
µ(c),−w(c)

)
,
−−→
A′C ′ =

(
µ(b),−w(b)

)
,

where ~v = (x, y) means that the vector ~v ∈ R2 has coordinates (x, y). Gluing these
triangles along the edges according to τ , we obtain flat charts on Sg. These charts turn
Sg into a marked Riemann surface X, where the marking is given by the identity map
from Sg to itself. Since the charts constructed above are flat, they also give a quadratic
differential q ∈ Q(X). This quadratic differential belongs to Q1(X) because τ is complete.

Denoting the dual to the underlying graph of τ by ∆, we see that ∆ is realized as
a saddle triangluation in the flat structure considered above, and ∆ is non-vertical since
µ > 0. Thus we have arrived at an element of A. Checking that this element does not
depend on the equivalence class of (τ, µ, w), and that the map obtain in this way is in fact
the inverse of F are left to the reader.

16



Lemma 3.13. Let X,X ′ ∈ Tg, and let ζ ∈ Gen(Sg) be a generic measrued foliation. By
Theorem 3.10 there are α, α′ ∈ TζMF such that

dζ ExtX = 4ωTh(α, �), and dζ ExtX′ = 4ωTh(α′, �).

Then α = α′ implies X = X ′.

Proof. Let q ∈ Q(X) be such that VX(q) = ζ. Choose an arbitrary triangulation ∆ of q,
and let (τ, µ) be the train track that is dual to ∆. Note that since ζ is generic, q ∈ Q1(X)
and ∆ is non-vertical. Define q′ ∈ Q(X ′), ∆′, (τ ′, µ′) in a similar way. Since both (τ, µ)
and (τ ′, µ′) carry ζ, Theorem 2.8.5 of [PH92] implies that they are equivalent, i.e., there
exists a sequence of shifts, splits and collapses that take one to the other. Hence we can
find a positive integer n, and a sequence of train tracks (τi, µi), 1 ≤ i ≤ n such that

(τ, µ) = (τ1, µ1) ⇀ (τ2, µ2) ⇀ ... ⇀ (τn, µn) = (τ ′, µ′),

where (τi, µi) ⇀ (τi+1, µi+1) means that (τi+1, µi+1) is obtained from (τi, µi) by a shift, a
split, or a collapse.

By Lemma 3.5, a sequence

∆ = ∆1 ⇀ ∆2 ⇀ ... ⇀ ∆n

of triangulations of q can be constructed in a way that (τj , µj) is the dual train track to
∆j . Indeed, each ∆j+1 is obtained from ∆j by a flip.

To summarize, we obtained a triangulation ∆n of q such that its dual measured train
track (τn, µn) is isotope to (τ ′, µ′). Theorem 3.10 applied to the Riemann surface X,
quadratic differential q, and the triangulation ∆n of q gives

Dζ F−1
τ ′ (α) = Dζ F−1

τn (α) = w∆n(iq).

The same theorem applied to X ′, q′, ∆′ gives

Dζ F−1
τ ′ (α′) = w∆′(iq

′).

If α = α′ then w∆n(iq) = w∆′(iq
′), hence (τn, µn, w∆n(iq)) is isotopic to (τ ′, µ′, w∆′(iq

′)),
thus Lemma 3.12 implies X = X ′.

Proof of Proposition 3.1. Define the function EX,Y : MF → R by

EX,Y (ζ) = ExtX(ζ)− ExtY (ζ),

and note that we have EX,Y = E−1
X,Y (0). We claim that for every ζ ∈ EX,Y ∩Gen(Sg) there

exists an open neighborhood Uζ of ζ such that ν(EX,Y ∩ Uζ) = 0. To prove this claim, fix
such a ζ, and note that by Theorem 3.10 there are αX , αY ∈ TζMF such that

dζ ExtX = 4ωTh(αX , �), and dζ ExtY = 4ωTh(αY , �), hence

dζ EX,Y = 4ωTh(αX − αY , �)
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Since X 6= Y , Lemma 3.13 implies αX−αY 6= 0. Non-degeneracy of the Thurston form
([PH92] Theorem 3.2.4) then implies that dζ EX,Y 6= 0. Since ζ ∈ Gen(Sg), Theorem 3.10
implies that EX,Y is smooth at ζ, hence the set EX,Y = E−1

X,Y (0) is locally a submanifold
of codimension 1 around ζ. This proves the claim.

Since Gen(Sg) is of full measure, to prove ν(EX,Y ) = 0, it is enough to show that
ν(EX,Y ∩ Gen(Sg)) = 0. Since ν is (a multiple of) the Lebesgue measure on train track
charts, it is a Radon measure, that is, for every measurable subset A ⊂MF , we have

ν(A) = sup{ν(K) : K ⊂ A is compact}

As a result, to prove that ν(EX,Y ∩Gen(Sg)) = 0, it is enough to prove ν(K) = 0 for every
compact set K ⊂ EX,Y ∩Gen(Sg). Fix K to be such a set. As a consequence of the above
claim, we can cover K by finitely many sets Uζ with ν(K ∩ Uζ) = 0. This proves that
ν(K) = 0, and hence completes the proof of the proposition.

4 Comparing Teichmüller and extremal lengths

4.1 Projection to a thick geodesic

In this section, we state a few general facts about those geodesics in the Teichmüller space
that lie completely in the thick part, where by a geodesic we always mean a bi-infinite
geodesic, unless otherwise stated. We denote the covering map from Teichmüller space to
the moduli space by Π: Tg →Mg.

Definition 4.1. Let K ⊂Mg be compact. A Teichmüller geodesic G is said to be K–thick
if G ⊂ Π−1(K).

Recall that we denote the projective class of ζ ∈ MF by [ζ] ∈ PMF . Assume G
is a K–thick geodesic for some compact set K ⊂ Mg, and let X ∈ Tg and ζ ∈ MF be
arbitrary. Define

proj(X,G) = {Y ∈ G : d(X,Y ) = d(X,G)};
proj([ζ],G) = proj(ζ,G) = {Y ∈ G : Ext(ζ, Y ) = Ext(ζ,G)},

where

d(X,G) = inf{d(X,Y ) : Y ∈ G}, and Ext(ζ,G) = inf{Ext(ζ, Y ) : Y ∈ G}.

Both diam
(

proj(X,G)
)

and diam
(

proj(ζ,G)
)

are bounded by constants depending only
on K, where diam stands for the diameter of a set. The boundedness of diam

(
proj(X,G)

)
is a consequence of the contraction theorem of [Min96], and the boundedness of
diam

(
proj(ζ,G)

)
is also standard and follows, say, from Proposition 4.5.

The following theorem roughly says that the Teichmüller metric behaves like a δ–
hyperbolic (Gromov hyperbolic) metric in the thick part.
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Theorem 4.2. ([Raf14] Theorem 8.1) Let K ⊂ Mg be compact and X,Y, Z ∈ Tg.
Then there are constants C and D, only depending on K, such that the following holds. If
U, V ∈ [X,Y ] are such that [U, V ] ⊂ Π−1(K) and d(U, V ) > C, then for every W ∈ [U, V ]
we have

min
{
d(W, [Z,X]), d(W, [Z, Y ])

}
< D.

Recall the definition of the geodesic connecting a point in the Teichmüller space to
a (projective) measrued foliation, given in Section 2, and note that the above theorem
remains true if one (or several) of X,Y, Z is replaced by a measured foliation. The following
is a consequence of Theorem 4.2.

Proposition 4.3. Let K ⊂ Mg be compact and G be a K–thick geodesic. Then there
exists a constant C = C(K) such that for every X ∈ Tg, H ∈ proj(X,G), and Y ∈ G the
geodesic connecting X to Y passes through B(H,C), the ball of radius C centered at H.

Proof. Let X,H, Y be as in the proposition. Applying Theorem 4.2 to the triangle
∆(X,H, Y ), we obtain C ′ = C ′(K) such that for every Z ∈ [H,Y ] there is W ∈ [X,H] ∪
[X,Y ] such that d(Z,W ) < C ′. We claim that C = 3C ′+ 1 statisfies the statement of the
proposition.

If d(H,Y ) ≤ 2C ′+1 then we are done, otherwise let Z ∈ [H,Y ] be such that d(H,Z) =
2C ′ + 1. By the choice of C ′, we can find W ∈ [X,H]∪ [X,Y ] such that d(Z,W ) < C ′. If
W ∈ [X,H], then by triangle inequality in ∆(W,H,Z) we obtain d(W,H) > C ′+ 1, hence

d(X,Z) ≤ d(X,W ) + d(W,Z) = d(X,H)− d(H,W ) + d(W,Z) < d(X,H)− 1,

which contradicts the choice of H. This contradiction implies W ∈ [X,Y ]. Triangle
inequality in ∆(H,Z,W ) then implies d(H,W ) < 3C ′ + 1, proving the claim.

Corollary 4.4. Let K ⊂Mg be compact and G be a K–thick geodesic. Then there exists
C = C(K) such that for every X ∈ Tg, H ∈ proj(X,G) and Y ∈ G, we have

d(X,Y ) 'C d(X,H) + d(H,Y ).

Proof. Let G, X and H be as in the corollary, and let C ′ = C ′(K) be the constant given
by Proposition 4.3. If [X,Y ] intersects B(H,C ′) at Z, then

d(X,Z) 'C′ d(X,H), and d(Z, Y ) 'C′ d(H,Y ).

The corollary follows from summing up these two estimates.

Proposition 4.3 remains true if X in its statement is replaced by a measured foliation
ζ ∈ MF , and the proof parallels the one given above. In fact, replacing the symbol X
by ζ throughout this proof, replacing d(X, �) by β(ζ, �), and using Kerschoff inequality
instead of triangle inequality for triangles with a vertex at infinity, we obtain a proof for
the version of this proposition in which ζ replaces X. (see the discussion at the end of
Section 2.) Corollary 4.4 can be proved in this setting as well, hence we have the following.

Proposition 4.5. Let K ⊂ Mg be compact and G be a K–thick geodesic. Then there
exists a constant C = C(K) such that for every ζ ∈ MF , H ∈ proj(ζ,G) and Y ∈ G, we
have

β(ζ, Y ) 'C β(ζ,H) + d(H,Y ).

Moreover, the geodesic connecting ζ to Y passes through B(H,C).
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4.2 Busemann approximation

The goal of this section is to prove Proposition 4.13, which plays a major role in Section
5. We start with the following definition.

Definition 4.6. Let K ⊂ Mg be compact. The geodesic segment [X,Y ] connecting two
points X,Y ∈ Tg is called K–typical if it spends at least half of its time in Π−1(K).

A typical geodesic segment remains typical if its endpoints are moved by a bounded
distance. This is the content of Corollary 4.8, which itself is a direct consequence of
Theorem 4.7. Before stating this theorem, recall that we say two geodesics G1 : [0, a]→ Tg
and G2 : [0, b] → Tg, parametrized with respect to arc length, D–fellow travel for some
D > 0, if |a− b| < D and for all 0 ≤ t ≤ min{a, b} we have d

(
G1(t), G2(t)

)
< D.

Theorem 4.7. ([Raf14] Theorem 7.1) For every compact set K ⊂ Mg and constant
C > 0, there exists D = D(K, C) such that the following holds. For every X,Y ∈ Π−1(K)
and X̄, Ȳ ∈ Tg such that d(X, X̄) and d(Y, Ȳ ) are both less than C, the geodesics [X,Y ]
and [X̄, Ȳ ] D–fellow travel.

Corollary 4.8. For every compact set K ⊂ Mg and constant C > 0, there exists an
enlargement K′ ⊃ K such that the following holds. Let X,Y ∈ Π−1(K) be such that [X,Y ]
is K–typical, and assume X̄, Ȳ ∈ Tg are such that d(X, X̄) and d(Y, Ȳ ) are both less than
C, then [X̄, Ȳ ] is K′–typical.

Proof. Let D be the constant given by Theorem 4.7, and set K′ = B(K, D + 2C).

Remark 4.9. Note that the conclusion of Theorem 4.7 remains valid if X and X̄ are both
replaced by the same measured foliation ζ ∈ MF ([Raf14] Remark 7.2). In this case, we
should allow a = b = +∞ in the definition of fellow traveling. We will use this version of
the theorem later.

In general, two geodesic rays going to the same point in the boundary of Teichmüller
space can stay a bounded distance apart (see [Mas75]). However, they do get exponentially
close to each other during the times that they are both in the thick part of Teichmüller
space. This is the content of the following theorem.

Theorem 4.10. ([EMR21]) For every compact set K ⊂ Mg and constant C > 0,
there are positive numbers α = α(K) and D = D(K, C) such that the following holds. If
X,Y ∈ Π−1(K) and ζ ∈MF are such that

d(X,Y ) < C, and Ext(ζ,X) = Ext(ζ, Y );

and
Z1 ∈ [X, ζ) ∩Π−1(K) and Z2 ∈ [Y, ζ) ∩Π−1(K)

are such that d(X,Z1) = d(Y, Z2); and the geodesic segment [X,Z1] is K–typical, then

d(Z1, Z2) < De−αd(X,Z1).
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Remark 4.11. We can define several norms on the tangent space to the principal stratum
of quadratic differentials. (See [ABEM12] for Euclidean and Hodge norms, and [AGY06]
for the AGY norm.) The proof of the above theorem uses the relation between these
norms, and also Theorem 1.1 of [Fra18]. Theorem 4.10 enables us to avoid arguments
involving the above mentioned norms altogether, hence simplifying the proof of our main
theorem (Theorem A).

The following lemma is used in the proof of Proposition 4.13.

Lemma 4.12. ([Min96] Corollary 4.1) Let K ⊂ Mg be compact and G be a K–thick
geodesic. Then there exists a constant C = C(K) such that for every X,Y ∈ Tg we have

diam
(

proj(X,G) ∪ proj(Y,G)
)
< d(X,Y ) + C.

We are now ready to prove the main proposition of this section:

Proposition 4.13. Let K ⊂Mg be compact and G be a K–thick geodesic. Then for every
ε > 0 there exists a constant C = C(K, ε) such that the following holds. If ζ ∈ MF ;
X,Y ∈ G; Z ∈ [X, ζ) ∩ Π−1(K), and H ∈ proj(Z,G) are such that the goedesic segment
[Z,H] is K–typical and of length greater than C, then

d(Z, Y )− d(Z,X) 'ε β(ζ, Y )− β(ζ,X) = β([ζ], X, Y ).

Proof. Recall the definition of proj(ζ,G) given at the beginning of this section. Let Hζ ∈
proj(ζ,G) and assume C ′ = C ′(K) is the constant given by Proposition 4.5, so there is
X ′ ∈ (ζ,X] such that d(X ′, Hζ) < C ′. By Theorem 4.7 there is a constant D, depending
only on C ′ and K, such that (ζ,X ′] and (ζ,Hζ ] D–fellow travel (see Remark 4.9). As a
result, we can find Zζ ∈ (ζ,Hζ ] with d(Z,Zζ) < D. Since Hζ ∈ proj(Zζ ,G), by Lemma
4.12 there exists D′ depending on D and K such that d(H,Hζ) < D′. Triangle inequality
then implies d(X ′, H) < D′ + C ′, hence [Z,H] and [Z,X ′] fellow travel, so [Z,X ′] is K′–
typical for some enlargement K′ of K (Corollary 4.8), and since the constants C ′, D,D′

depend on K, the enlargement K′ only depends on K as well.
Applying Proposition 4.5 once again gives Y ′ ∈ (ζ, Y ] with d(Y ′, Hζ) < C ′, hence

d(X ′, Y ′) ≤ d(X ′, Hζ) + d(Hζ , Y
′) < 2C ′.

Using Kerckhoff inequality we get

|β(ζ,X ′, Y ′)| ≤ d(X ′, Y ′) < 2C ′,

thus by moving Y ′ along (ζ, Y ] by at most 2C ′ we may obtain Y ′′ ∈ [Y, ζ) such that
β(ζ,X ′) = β(ζ, Y ′′). Let Z ′ be the point obtained by flowing Y ′′ along [Y ′′, ζ) by time
t = d(X ′, Z). Since [X ′, Z] is K′–typical and d(X ′, Y ′′) < 4C ′ , Theorem 4.10 implies
that there exists C ′′ = C ′′(K′, C ′, ε) such that if d(X ′, Z) > C ′′, we have d(Z,Z ′) < ε.
Set C = C ′′ + D′ + C ′. We claim that C satisfies the conclusion of the proposition. If
d(Z,H) > C, we have

d(X ′, Z) ≥ d(Z,H)− d(H,X ′) ≥ d(Z,H)− (D′ + C ′) > C ′′.
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By the choice of C ′′ we have d(Z,Z ′) < ε, hence

d(Z, Y )− d(Z,X) 'ε d(Z ′, Y )− d(Z,X).

Since d(X ′, Z) = d(Y ′′, Z ′), we get

d(Z ′, Y )− d(Z,X) = d(Y ′′, Y )− d(X ′, X)

=
(
β(ζ, Y )− β(ζ, Y ′′)

)
−
(
β(ζ,X)− β(ζ,X ′)

)
= β(ζ, Y )− β(ζ,X).

This concludes the proof of the proposition.

5 Proof of the main theorem

The goal of this section is to give the proof of Theorem A. In Section 5.1 we set up the
notation and introduce the two main ingredients of the proof. We also show how to derive
Theorem B from Theorem A at the end of this section. Section 5.2 contains the proof of
Theorem A, and starts with a summary of the steps involved in this proof.

5.1 Preliminary discussion

Given X ∈ Tg, and a compact set K ⊂Mg, define

Typ(X,K) = {Y ∈ Tg : [X,Y ] is K–typical}.

The following is a direct consequence of Theorem 1.7 of [EMR19]:

Theorem 5.1. There exist a constant κ1 > 0 and a compact set K1 ⊂Mg, both of which
only depend on the genus g of the surface, such that the following holds. For every compact
set K ⊂Mg, there exist a constant C = C(K) such that for all X,Y ∈ Π−1(K) we have

|Γ · Y ∩B(X,R)rTyp(X,K1)| ≤ Ce(h−κ1)R.

Proof. Fix σ to be the principal stratum of quadratic differentials, and recall the definitions
of Qj,ε and G : Tg → R+, given in the introduction of [EMR19]. Applying Theorem 1.7 of
the same paper to j = 1, θ = 1

2 and δ = 1
4 , we obtain an ε > 0 such that for all R large

enough and X,Y ∈ Tg we have

N 1
2
(Q1,ε, X, Y,R) ≤ G(X)G(Y )e(h− 1

4
)R,

where N 1
2
(Q1,ε, X, Y,R) denotes the number of elements g ∈ Γ such that g.Y ∈ B(X,R)

and the geodesic segment connecting X to g.Y spends at least half of its time in Q1,ε.
(here, a geodesic is considered as a subset of QTg.) By the definition of Q1,ε, if X belongs
to the ε–thin part of the Teichmüller space (i.e., X has a curve with extremal length
less than ε), then every q ∈ Q1(X) lies in Q1,ε. Thus, setting K1 to be the ε–thick
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part of the moduli space, each element of Γ · Y ∩ B(X,R)rTyp(X,K1) contributes to
N 1

2
(Q1,ε, X, Y,R), hence

|Γ · Y ∩B(X,R)rTyp(X,K1)| ≤ N 1
2
(Q1,ε, X, Y,R).

The function G descends to a continuous function fromMg to R+, hence it is bounded
by some constant C ′ on Π−1(K). The current theorem then follows for C = C ′2 and κ1 = 1

4 .

For a measured foliation ζ ∈ MF , denote the projective class of ζ by [ζ] ∈ PMF ,
and for U ⊂ MF , define [U ] = {[ζ] : ζ ∈ U}. Recall that, for X ∈ Tg and q ∈ Q(X), the
vertical measured foliation of q is denoted by VX(q). Given [U ] ⊂ PMF , define

S(X, [U ], R) =
{
π(gt.q) : q ∈ Q(X), [VX(q)] ∈ [U ], and 0 ≤ t ≤ R

}
;

SExt(X, [U ]) = {ζ ∈MF : [ζ] ∈ [U ], and Ext(ζ,X) ≤ 1}.

For U ⊂ MF , we define S(X,U , R) = S(X, [U ], R). The following is an equivalent form
of [ABEM12] Theorem 2.9.

Theorem 5.2. Let X,Y ∈ Tg and let [U ] be an open subset of PMF with negligible
boundary. Then, as R→∞,

|Γ · Y ∩ S(X, [U ], R)| ∼ Λ

hVol(Mg)
ν
(
SExt(X, [U ])

)
ehR. (8)

Proof. Given X ∈ Tg, let Q1(X) ⊂ Q(X) be the set of quadratic differentials of unit norm
on X. Define

S1
Ext(X) = {ζ ∈MF : Ext(ζ,X) = 1},

and let V1
X : Q1(X)→ S1

Ext(X) be the restriction of VX to Q1(X). Let ν̄ be the measure
on S1

Ext(X) obtained by coning off the Thurston measure, that is, for E ⊂ S1
Ext(X) set

ν̄(E) = ν
(
{λ.ζ : ζ ∈ E, and 0 < λ ≤ 1}

)
.

Let µ denote the Masur-Veech measure on Q1Tg, the space of unit norm quadratic differ-
entials, and let sX denote the conditional of µ on Q1(X). For q ∈ Q1(X), define λ−(q)
by the following Radon-Nikodym derivative:

λ−(q) =
d(V1

X)∗ν̄

dsX
(q). (9)

Theorem 2.9 of [ABEM12] states that, as R→∞,

|Γ · Y ∩ S(X, [U ], R)| ∼ Λ

hVol(Mg)

( ∫
U
λ−(q)dsX(q)

)
ehR,

where U = {q ∈ Q1(X) : [VX(q)] ∈ [U ]}. By (9) we have∫
U
λ−(q)dsX(q) = ν̄(V1

X(U)) = ν(SExt(X, [U ])).

This concludes the proof of the theorem.
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Now we show how to deduce Theorem B from Theorem A. The argument is parallel
to the one given at the beginning of Section 5 of [ABEM12]. The key in both arguments
is Theorem 5.1 of [ABEM12].

Proof of Theorem B assuming Theorem A.. Fix an element O ∈ Lγ , and let L be the
translation length of γ, that is, L = d(O, γ.O). Given X ∈ Tg and R > 0, we can define a
function

h : 〈γ〉\
(
Γ ·X ∩B(Lγ , R)

)
→ Γ ·X ∩B(O,R+ L) (10)

as follows. Given an element a in the domain of h, fix a representative g.X of a, i.e., fix
an element g ∈ Γ such that a = 〈γ〉 · (g.X). Choose an element H ∈ proj(g.X,Lγ), and
let k ∈ Z be such that d(O, γk.H) < L. We then define

h(a) = γkg.X.

Since h is an injection, we have

|〈γ〉\
(
Γ ·X ∩B(Lγ , R)

)
| ≤ |Γ ·X ∩B(O,R+ L)|. (11)

Since X and R were arbitrary, the above inequality is true for every X ∈ Tg and R > 0.
By [ABEM12] Theorem 5.1, there exists a constant C, only depending on the base

point O, such that for all X ∈ Tg and R > 0 we have

|Γ ·X ∩B(O,R)| < CehR.

This, combined with (11), implies that for C ′ = CehL and every X ∈ Tg we have

|〈γ〉\
(
Γ ·X ∩B(Lγ , R)

)
| < C ′ehR. (12)

Recall the definitions of the covering maps Π: Tg →Mg and Πγ : Tg → Cγ from the
introduction, and define the covering map

Πγ,Γ : Cγ →Mg by 〈γ〉 ·X 7→ Γ ·X.

Since Πγ,Γ is a local diffeomorphism, we have

Vol
(
B(Lγ , R)

)
=

∫
Mg

|Π−1
γ,Γ(X) ∩B(Lγ , R)| dVol(X)

We multiply both sides of this equation by e−hR and take the limit as R →∞. Since C ′

in (12) does not depend on X, we can apply Lebesgue’s dominated convergence theorem
to take the limit inside the integral, obtaining

lim
R→∞

e−hR Vol
(
B(Lγ , R)

)
=

∫
Mg

lim
R→∞

e−hR|Π−1
γ,Γ(X) ∩B(Lγ , R)| dVol(X)

Theorem A then concludes the proof.
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5.2 Proof of Theorem A

Fix a pseudo-Anosov homeomorphism γ, and fix two points P ∈ Tg and O ∈ Lγ for the
rest of this section. Let κ1 and K1 be as in Theorem 5.1, and let C1 be the constant C
given by the same theorem for K = Π(Lγ) ∪ Π(P ). To lighten the notation, we will not
show the dependance of constants on γ, O, P, K1. For example, we will write C = C(K)
instead of C = C(γ,O,K). Recall the definitions of Πγ and CExt,γ from the introduction.
The goal of this section is to prove

|Πγ

(
Γ · P ∩B(Lγ , R)

)
| ∼ Λ

hVol(Mg)
ν(CExt,γ)ehR, as R→∞. (13)

The proof is given in two parts: Lemma 5.6 and Lemma 5.9.

Definition 5.3. Given ε > 0, a sequence of points X = (Xi)i∈Z ⊂ Lγ is called an ε–net
in Lγ (or an ε–net for short) if the following holds.

• X0 = O.

• d(Xi, Xi+1) < ε, for i ∈ Z.

• The geodesic segments [Xi−1, Xi] and [Xi, Xi+1] intersect only at Xi, for every i ∈ Z.

• There exists N = N(X ) ∈ N such that XN = γ.O.

• Xi+N = γ.Xi for every i ∈ Z.

For an ε–net X in Lγ , and for all i ∈ Z, define

Ai(X ) = {ζ ∈MF : Ext(ζ,Xi) ≤ 1 and β(ζ,Xi) = inf
j∈Z

β(ζ,Xj)}.

Since X is γ–invariant, the sets Ai(X ) are γ–equivariant, meaning that for all i ∈ Z,
γ.Ai(X ) = Ai+N(X )(X ).

We need to introduce some notation before stating the next lemma. Let [γ±] be the
set containing the two elements of PMF that are fixed by γ. [γ±] can be considered as
a subset of MF , namely, the union of the two rays that are fixed by γ. Define the unit
extremal ball around Lγ by

BExt(Lγ) = {ζ ∈MF : Ext(ζ,Lγ) ≤ 1}r[γ±],

where Ext(ζ,Lγ) is as defined in Section 4.1. By Theorem 6.9 of [MP89], 〈γ〉 acts totally
discontinuously on PMFr[γ±], hence it also acts totally discontinuously on MFr[γ±].
Let ΠExt,γ denote the covering map of the latter action. Since BExt(Lγ) is γ–invariant,
we can form the quotient

CExt,γ = 〈γ〉\BExt(Lγ).

Note that the Thurston measure ν on MF descends to a measure on CExt,γ , which we
denote by ν as well.
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Lemma 5.4. Let X be an ε–net in Lγ, then we have

1

eε(6g−6)
ν(CExt,γ) ≤

N(X )−1∑
i=0

ν(Ai(X )) ≤ ν(CExt,γ).

Proof. Set Ai = Ai(X ) and N = N(X ).
Right hand inequality. Given i ∈ Z, define

A<i = {ζ ∈ Ai : β(ζ,Xi) < inf
j 6=i

β(ζ,Xj)};

A=
i = AirA<i .

Thus A=
i consists of those ζ ∈ Ai such that β(ζ,Xi) = β(ζ,Xj) for some j 6= i. Recall

that given X,Y ∈ Tg, EX,Y is defined by

EX,Y = {ζ ∈MF : Ext(ζ,X) = Ext(ζ, Y )}.

By Proposition 3.1, EX,Y has Thurston measure zero, and by the definition of A=
i , we have

A=
i ⊂

⋃
j 6=i
E(Xi, Xj),

hence

ν(A=
i ) = 0. (14)

Note that the image of Ai under the covering map ΠExt,γ lies in CExt,γ . We make the
following claims:

1. For all i ∈ Z, ΠExt,γ : A<i → CExt,γ is an injection.

2. The sets ΠExt,γ(A<i ) are pairwise disjoint for 0 ≤ i < N .

To prove the first claim, fix i ∈ Z and assume that ζ1, ζ2 ∈ A<i have the same image
under ΠExt,γ . This means that ζ2 lies in the 〈γ〉–orbit of ζ1, i.e., there is k ∈ Z such that
γk.ζ1 = ζ2. Hence ζ2 belongs to the intersection of A<i and γk.A<i = A<i+kN . However, by
definition we have

A<i ∩ A
<
j = ∅, for i 6= j.

This means that we should have k = 0, hence ζ1 = ζ2. This proves the first claim. The
second claim follows by a similar argument.

The above claims imply that

N−1∑
i=0

ν(A<i ) ≤ ν(CExt,γ).

Since ν(A=
i ) = 0, we have ν(A<i ) = ν(Ai). This proves the right hand inequality of the

lemma.
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Left hand inequality. Given ζ ∈ BExt(Lγ), let Hζ ∈ proj(ζ,Lγ). (see Section 4.1 for
the definition of proj.) By the definition of BExt(Lγ) we have Ext(ζ,Hζ) ≤ 1, and since X
is an ε–net, if Xi0 is the element of the net that is closest to Hζ , we have d(Hζ , Xi0) < ε.
Kerckhoff inequality in ∆(ζ,Hζ , Xi0) then implies

Ext(ζ,Xi0) ≤ e2d(Hζ ,Xi0 ) Ext(ζ,Hζ) < e2ε.

Hence

inf
i∈Z

Ext(ζ,Xi) < e2ε. (15)

By Proposition 4.5 the infimum above is attained at some i = i1. Then we have
ζ/eε ∈ Ai1 , hence ζ ∈ eεAi1 , where eεAi1 = {eεζ : ζ ∈ Ai1}. Since ζ ∈ BExt(Lγ) was
arbitrary, this means that

BExt(Lγ) ⊂
⋃
i∈Z

eεAi =⇒ CExt,γ ⊂
N−1⋃
i=0

ΠExt,γ(eεAi).

Since Thurston measure is the 6g− 6 dimensional Lebesgue measure in train track charts,
we have ν(eεAi) = eε(6g−6)ν(Ai), hence

ν(CExt,γ) ≤
N−1∑
i=0

eε(6g−6)ν(Ai).

which is equivalent to the left hand inequality of the lemma.

Given an ε–net X , for δ > 0 and i ∈ Z define

A−δi (X ) = {ζ ∈MF : Ext(ζ,Xi) ≤ 1, and β(ζ,Xi) < inf
j 6=i

β(ζ,Xj)− δ};

A+δ
i (X ) = {ζ ∈MF : Ext(ζ,Xi) ≤ 1, and β(ζ,Xi) < inf

j 6=i
β(ζ,Xj) + δ}.

These sets enjoy the following properties:

• They are open and γ–eqivariant,i.e., γ.A±δi = A±δi+N(X ).

• A−δi (X ) ⊂ Ai(X ) ⊂ A+δ
i (X ).

• A−δi (X ) ↑ A<i (X ) as δ ↓ 0, i.e., the following holds. For 0 < δ1 < δ2, A−δ2i ⊂ A−δ1i ;
and ∪δ>0A−δi = A<i (X ).

• A+δ
i (X ) ↓ Ai(X ) as δ ↓ 0.

Since the boundary of A±δi (X ) has nonzero measure for at most countably many pairs
(i, δ), we can (and will) work under the additional assumption that A±δi (X ) has negligible
boundary. The following lemma contains the main observation about the sets A−δi (X ).
(comapre with Lemma 5.8.)
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Lemma 5.5. Let X = (Xi)i∈Z be an ε–net, K ⊂ Mg be compact and δ > 0. Then there
exists a constant C = C(ε, δ,K) such that the sets

Γ · P ∩ S(Xi,A−δi (X ),+∞) ∩ Typ(Xi,K)rB(Xi, C), i ∈ Z

are mutually disjoint.

Proof. Let

Y ∈ Γ · P ∩ S(Xi,A−δi (X ),+∞) ∩ Typ(Xi,K)rB(Xi, C), (16)

for a constant C to be determined below, and let H ∈ proj(Y,Lγ). We make the following
claim.

Claim. There exists a compact set K′, only depending on K, such that [Y,H] is K′–
typical.

To prove the claim, let ζ ∈ A−δi (X ) be such that Y lies on [Xi, ζ). Since X is an ε–net,
we have

β(ζ,Xi) = inf
k∈Z

β(ζ,Xk) 'ε inf
Y ∈Lγ

β(ζ, Y ).

Because of the shape of β(ζ,X) as a function of X ∈ Lγ , described in Proposition 4.5, the
latter infimum should be attained near Xi, namely, there exists C ′ = C ′(K) such that if
Hζ ∈ proj(ζ,Lγ), then d(Xi, Hζ) < C ′. Thus, by Theorem 4.7, (ζ,Xi] and (ζ,Hζ ] D–fellow
travel for some D = D(K, C ′). As a result, if Zζ ∈ (ζ,Hζ ] is such that d(Y,Xi) = d(Zζ , Hζ)
then d(Y,Zζ) < D. Since Hζ = proj(Zζ ,Lγ), Lemma 4.12 implies d(Hζ , H) < D′ for some
D′ = D′(K, D). Setting C ′′ = C ′+D′, triangle inequality then implies d(Xi, H) < C ′′, and
since [Y,Xi] is K–typical, Corollary 4.8 implies that [Y,H] is K′–typical for an enlargement
K′ ⊃ K that only depends on K and C ′′. This proves the claim.

By Proposition 4.13, we can find C(3) = C(3)(K′, δ) such that if d(Y,Lγ) = d(Y,H) >
C(3), then for all j ∈ Z we have

d(Y,Xi)− d(Y,Xj) 'δ/2 β(ζ,Xi)− β(ζ,Xj). (17)

Note that by triangle inequality in ∆(Y,H,Xi),

d(Y,H) ≥ d(Y,Xi)− d(Xi, H) > d(Y,Xi)− C ′′,

Hence, letting C = C ′′ + C(3) in (16), we get d(Y,H) > C(3), hence (17) holds. Let
j 6= i. Since ζ ∈ A−δi (X ), we have β(ζ,Xi)−β(ζ,Xj) < −δ, hence (17) implies d(Y,Xi) <
d(Y,Xj). If

Y ∈ Γ · P ∩ S(Xj ,A−δj (X ),+∞) ∩ Typ(Xj ,K)rB(Xj , C)

as well, then by changing the role of Xi and Xj in the argument above we obtain d(Y,Xj) <
d(Y,Xi). This contradiction shows that the two sets mentioned in the lemma are disjoint.

Lemma 5.6. With the same notation as before, we have

Λ

hVol(Mg)
ν(CExt,γ) ≤ lim inf

R→∞
e−hR|〈γ〉\

(
Γ · P ∩B(Lγ , R)

)
|.
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Proof. Recall that K1 is the compact set given by Theorem 5.1. Fix ε, δ > 0 for now, and
let X be an arbitrary ε–net in Lγ . Let C = C(ε, δ,K1) be the constant given by Lemma
5.5. This means that the sets A−δi (X , R;C), defined by

A−δi (X , R;C) = Γ · P ∩ S(Xi,A−δi (X ), R) ∩ Typ(Xi,K1)rB(Xi, C),

are mutually disjoint. Recall that Πγ is the covering map from Tg to 〈γ〉\Tg. We claim
that for every i ∈ Z,

Πγ : A−δi (X , R;C)→ 〈γ〉\Tg
is an injection. (compare with the first claim in the proof of Lemma 5.4.)

To prove this claim, assume that Πγ(X) = Πγ(Y ) for X,Y ∈ A−δi (X , R;C). This
implies that there exists k ∈ Z such that γk.X = Y , so Y belongs to the intersection
of A−δi (X , R;C) with γk.A−δi (X , R;C) = A−δi+kN(X )(X , R;C). By the choice of C we have
k = 0, hence X = Y . This proves the claim.

A similar argument implies that the sets Πγ

(
A−δi (X , R;C)

)
are disjoint for 0 ≤ i <

N(X ), so

N(X )−1∑
i=0

|A−δi (X , R;C)| ≤ |〈γ〉\
(
Γ · P ∩B(Lγ , R)

)
|.

Multiplying both sides by e−hR and taking lim inf as R→∞, we obtain

N(X )−1∑
i=0

lim inf
R→∞

e−hR|A−δi (X , R;C)| ≤ lim inf
R→∞

e−hR|〈γ〉\
(
Γ · P ∩B(Lγ , R)

)
|. (18)

Since |Γ · P ∩B(Xi, C)| is bounded by a constant that only depends on C, we have

lim inf
R→∞

e−hR|A−δi (X , R;C)| = lim inf
R→∞

e−hR|Γ · P ∩ S(Xi,A−δi , R) ∩ Typ(Xi,K1)|

By Theorem 5.1, the number of Y ∈ Γ · P ∩B(Xi, R) such that [Xi, Y ] is not K1–typical
is of order e(h−κ1)R, hence

lim inf
R→∞

e−hR|Γ · P ∩ S(Xi,A−δi , R) ∩ Typ(Xi,K1)|

= lim inf
R→∞

e−hR|Γ · P ∩ S(Xi,A−δi , R)| = Λ

hVol(Mg)
ν(A−δi (X )),

where the last equality is by Theorem 5.2. The above equalities and (18) shows that

Λ

hVol(Mg)

N(X )−1∑
i=0

ν(A−δi (X )) ≤ lim inf
R→∞

e−hR|〈γ〉\
(
Γ · P ∩B(Lγ , R)

)
|.

Note that the above is valid for every ε > 0, ε–net X , and δ > 0. Keeping ε and the
ε–net X fixed in the above expression, we let δ ↓ 0. Recall that as δ ↓ 0, A−δi (X ) ↑ A<i (X )
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(see the discussion before Lemma 5.5), hence ν(A−δi (X )) ↑ ν(A<i (X )). Equation (14)
implies that ν(A<i (X )) = ν(Ai(X )), thus

Λ

hVol(Mg)

N(X )−1∑
i=0

ν(Ai(X )) ≤ lim inf
R→∞

e−hR|〈γ〉\
(
Γ · P ∩B(Lγ , R)

)
|.

Now, using Lemma 5.4 and making the ε–net X finer, i.e., letting ε → 0, proves the
lemma.

The above lemma proves ”half” of Theorem A, the other half is proved as Lemma 5.9.
The proof of Lemma 5.9 parallels the proof of the above lemma, this time we use Lemma
5.8 instead of Lemma 5.5. For a compact set K ⊂Mg, define

Typ(Lγ ,K) = {Y ∈ Tg : [Y,H] is K–typical for some H ∈ proj(Y,Lγ)}.

We need the following consequence of Theorem 5.1.

Lemma 5.7. There exists a constant C2 and a compact set K2 ⊂ Mg such that for all
R > 0,

|〈γ〉\
(
Γ.P ∩B(Lγ , R)rTyp(Lγ ,K2)

)
| < C2e

(h−κ1)R.

Proof. Note that Typ(Lγ ,K2) is γ–invariant, hence taking the quotient by 〈γ〉 above is
justified. Let L be the translation length of γ, and let

h : 〈γ〉\
(
Γ · P ∩B(Lγ , R)

)
→ Γ · P ∩B(O,R+ L)

be the map defined in the proof of Theorem B, given at the end of Section 5.1.
Let a be an arbitrary element in the domain of h. It follows from the definition of

this function that if h(a) = g.P , then d(O,H) < L for some H ∈ proj(g.P,Lγ). By
Corollary 4.8, there exists an enlargement K2 ⊃ K1, only depending on K1 and L, such
that if [g.P,O] is K1–typical, then [g.P,H] has to be K2–typical. Hence h sends

〈γ〉\
(
Γ · P ∩B(Lγ , R)rTyp(Lγ ,K2)

)
to Γ · P ∩B(O,R+ L)rTyp(O,K1).

By the choice of C1 (see the beginning of this section),

|Γ · P ∩B(O,R+ L)rTyp(O,K1)| ≤ C2e
(h−κ1)R.

for C2 = C1e
hL. The injectivity of h then concludes the proof.

Lemma 5.8. For every ε > 0; ε–net X = (Xi)i∈Z; δ > 0, and compact set K ⊂Mg there
exists C = C(ε, δ,K) such that the following holds. If

Y ∈ Γ · P ∩B(Lγ , R) ∩ Typ(Lγ ,K)rB(Lγ , C),

and i0 ∈ Z is such that d(Y,Xi0) = infi∈Z d(Y,Xi), then

Y ∈ S(Xi0 ,A+δ
i0

(X ), R+ ε).
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Proof. Let C be a constant to be determined later, and fix

Y ∈ Γ · P ∩B(Lγ , R) ∩ Typ(Lγ ,K)rB(Lγ , C). (19)

Note that by Corollary 4.4, infi∈Z d(Y,Xi) is attained for some i0 ∈ Z. Let the geodesic
ray connecting Xi0 to Y hit the boundary at [ζ], i.e., ζ is such that Y ∈ [Xi0 , ζ). By
Proposition 4.13 there is a constant C = C(K, δ) such that if d(Y,Lγ) > C, then for all
i ∈ Z,

β(ζ,Xi)− β(ζ,Xi0) 'δ d(Y,Xi)− d(Y,Xi0).

We choose C in (19) to be the same constant, hence the above holds for Y . Let i ∈ Z be
arbitrary. By the choice of i0 we have d(Y,Xi)− d(Y,Xi0) ≥ 0, hence

β(ζ,Xi)− β(ζ,Xi0) > −δ =⇒ β(ζ,Xi0) < β(ζ,Xi) + δ.

Since i was arbitrary, we conclude that ζ ∈ A+δ
i0

(X ). The only thing left to show is that
d(Xi0 , Y ) ≤ R+ ε.

To show this, (compare with the proof of left hand inequality in Lemma 5.4) let
H ∈ proj(Y,Lγ) and note that since Y ∈ B(Lγ , R), we have d(Y,H) ≤ R. Choose Xi1

to be the point of X that is closest to H. Since the mesh of X is less than ε we have
d(H,Xi1) < ε, hence by triangle inequality we get d(Y,Xi1) < R+ ε. So

d(Y,Xi0) = inf
j∈Z

d(Y,Xi) < R+ ε.

This proves the lemma.

Lemma 5.9. With the same notation as before, we have

lim sup
R→∞

e−hR|〈γ〉\Γ · P ∩B(Lγ , R)| ≤ Λ

hVol(Mg)
ν(CExt,γ).

Proof. Let the compact set K2 be as in Lemma 5.7. Fix ε, δ > 0 for now, and let X =
(Xi)i∈Z be an arbitrary ε–net in Lγ . Let C = C(ε, δ,K2) be the constant given by Lemma
5.8 for the ε–net X , δ, and the compact set K2. For R > 0 write

Γ · P ∩B(Lγ , R) = B1(R;C) ∪ B2(R) ∪ B3(C),

where

B1(R;C) = Γ · P ∩B(Lγ , R) ∩ Typ(Lγ ,K2)rB(Lγ , C);

B2(R) = Γ · P ∩B(Lγ , R)rTyp(Lγ ,K2);

B3(C) = Γ · P ∩B(Lγ , C).

Note that all the three sets above are γ–invariant, hence we can form the quotients

B1(R;C) = 〈γ〉\B1(R,C), B2(R) = 〈γ〉\B2(R), B3(C) = 〈γ〉\B3(C),
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and obtain

|〈γ〉\
(
Γ · P ∩B(Lγ , R)

)
| ≤ |B1(R;C)|+ |B2(R)|+ |B3(C)| =⇒

lim sup
R→∞

e−hR|〈γ〉\
(
Γ · P ∩B(Lγ , R)

)
| ≤

lim sup
R→∞

e−hR|B1(R;C)|+ lim sup
R→∞

e−hR|B2(R)|+ lim sup
R→∞

e−hR|B3(C)| (20)

Since |B3(C)| is a constant only depending on C, the third term in (20) is zero. By Lemma
5.7, the middle term of (20) is zero as well. Thus

lim sup
R→∞

e−hR|〈γ〉\Γ · P ∩B(Lγ , R)| ≤ lim sup
R→∞

e−hR|B1(R;C)|

To find an upper bound for |B1(R;C)|, note that by Lemma 5.8 and the choice of C,

B1(R;C) ⊂
⋃
i∈Z

(Γ · P ∩ S(Xi,A+δ
i (X ), R+ ε)) =⇒

|B1(R;C)| ≤
N(X )−1∑
i=0

|Γ · P ∩ S(Xi,A+δ
i (X ), R+ ε)| =⇒

lim sup
R→∞

e−hR|B1(R;C)| ≤
N(X )−1∑
i=0

lim sup
R→∞

e−hR|Γ · P ∩ S(Xi,A+δ
i (X ), R+ ε)|

=

N(X )−1∑
i=0

Λ

hVol(Mg)
ehεν(A+δ

i (X )). (by Theorem 5.2)

Using the above upper bound for the first term of (20), and recalling that the second and
third terms of (20) are zero, we obtain

lim sup
R→∞

e−hR|〈γ〉\Γ · P ∩B(Lγ , R)| ≤ Λ

hVol(Mg)
ehε

N(X )−1∑
i=0

ν(A+δ
i (X )).

As in the proof of the lower bound, we first let δ ↓ 0 and use
⋂
A+δ
i (X ) = Ai(X ), then let

ε ↓ 0 and use Lemma 5.4 to conclude the proof.
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