Correlated Errors in Geophysical Applications

Reinhard Furrer

CSM/GSP-NCAR, June 2005

Outline

Motivation

Statistical Model

Parameter estimation

Method of Moments

Test of Independence

Likelihood Methods

Estimation in Large Systems

Summary

Example 1

Inverse Problem: drop size retrievals

Example 1

Inverse Problem: drop size retrievals

77777777777

Example 2

Ensemble Kalman filter: Weather forecasting

A numerical model is used to make short-range forecasts, with new observations contributing to data history as they become available.

- Surface (towers, ships)
- Altitude (planes, ballons)
- Radar
- Satellites

Example 3

Optimal prediction: climate projection

Precipitation or temperature fields are decomposed into a large scale trend and a small scale variation.

Statistical Model

Common notation of the three examples:

$$y_i = F(m) + \varepsilon_i$$

$$\mathbf{y} = F(\mathbf{x}) + \varepsilon$$

$$Y(\mathbf{x}_i) = f(\mathbf{x}_i) + \varepsilon(\mathbf{x}_i)$$

Assumptions on the error process:

$$\mathsf{E}(\varepsilon) = \mathbf{0}$$

$$\mathsf{Cov}(arepsilon) = \Sigma$$

$$arepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

$$\boldsymbol{\varepsilon} \sim \mathcal{G}, \quad \mathcal{G} \text{ symmetric}$$

 \rightsquigarrow Characterize the "error" process ε

Method of Moments

Objective:

a parametric description of Σ with $\Sigma_{ij} = \text{Cov}(\varepsilon(\mathbf{x}_i), \varepsilon(\mathbf{x}_j))$.

Without distributional assumptions, analysis is usually based on the variogram:

$$2\gamma(\mathbf{x}_i - \mathbf{x}_j; \boldsymbol{\theta}) = \text{Var}(\varepsilon(\mathbf{x}_i) - \varepsilon(\mathbf{x}_j))$$

With sample measurement errors a sample variogram is obtained.

Variogram Fitting

We fit a parametric model $2\gamma(\cdot; \theta)$:

$$\hat{\theta}_{\mathsf{MoM}}$$
 minimizes $\ell \Big(2 \hat{\gamma}(\mathbf{h}) - 2 \gamma(\mathbf{h}; \boldsymbol{\theta}) \Big)$

(Dis)Advantages

- classical geostatistical approach
- no distributional assumptions on the error required
- highly robust versions exist
- difficult to describe uncertainty
- two-step procedure with many "hidden parameters"

Test of Independence

Do we have spatial dependence?

Test of Independence

Variogram of white noise $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is

$$2\gamma(\mathbf{x}_i - \mathbf{x}_j; \boldsymbol{\theta}) = \text{Var}(\varepsilon(\mathbf{x}_i) - \varepsilon(\mathbf{x}_j)) \equiv 2\sigma^2$$

MODIS and simulated data (same variability as MODIS)

Maximum Likelihood

We assume a distribution for our model:

$$\mathbf{y} = F(\mathbf{x}) + \varepsilon$$
 $\varepsilon \sim \mathcal{N}(\mathbf{0}, \Sigma(\theta))$

$$p(\mathbf{y}; \boldsymbol{\theta}) \propto \left| \boldsymbol{\Sigma}(\boldsymbol{\theta}) \right|^{-1/2} \exp \! \left(-\frac{1}{2} \! \left(\mathbf{y} - \boldsymbol{F}(\mathbf{x}) \right)^T \! \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \! \left(\mathbf{y} - \boldsymbol{F}(\mathbf{x}) \right) \right)$$

 $\hat{\theta}_{\mathsf{MLE}}$ maximizes $\log p(\mathbf{y}; \boldsymbol{\theta})$

(Dis)Advantages

- one-step procedure
- + straight-forward inference on parameters
- + can be extended with parameterized large scale structures
- distributional assumptions on the error required
- computationally expensive

12

Large Systems

Maximum Likelihood is computationally expensive.

(Motivated from a prediction point of view) we approximate Σ .

Large Systems

Maximum Likelihood is computationally expensive.

(Motivated from a prediction point of view) we approximate Σ .

Let T be a "sparse" positive definite matrix.

Base likelihood on $\tilde{\Sigma} = \Sigma \circ \mathbf{T}$ and use sparse matrix techniques.

Consistency and optimality are preserved.

Summary

Characterisation of correlated processes (spatial processes)

Geostatistics traditionally deals with correlated processes

Efficient methods for describing the process, but ...

Enough gaps for further research ...

1