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Summary

Example 1 Example 1

Inverse Problem: drop size retrievals Inverse Problem: drop size retrievals
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Example 2 Example 3

Ensemble Kalman filter: Weather forecasting Optimal prediction: climate projection
A numerical model is used to make short-range forecasts, Preciptiation or temperature fields are decomposed into
with new observations contributing to data history as they a large scale trend and a small scale variation.

become available.

Surface (towers, ships)
Altitude (planes, ballons)
Radar

Satellites




Statistical Model Method of Moments

Common notation of the three examples: Objective:
y; = F(m) +¢; a parametric description of X with 3;; = Cov(e(xi),e(xj)).
y=F(X)+e
Y (x;) = f(x;) +e(x;) ) o ) .
Without distributional assumptions, analysis is usually based on
Assumptions on the error process: the variogram:
E(e)=0 and Cov(e) =X 2y(x; — x4;0) = Var(e(xi) - s(xj))

With sample measurement errors a sample variogram is obtained.
e~N(0,X) or e~G, G symmetric

~» Characterize the “error” process ¢

Variogram Fitting (Dis)Advantages

We fit a parametric model 2~v(-; 6): classical geostatistical approach

éMoM minimizes Z(Qﬁ(h) — 2’y(h;9)) no distributional assumptions on the error required

highly robust versions exist
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© - difficult to describe uncertainty
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Test of Independence Test of Independence
Do we have spatial dependence? Variogram of white noise € ~ N(0O, 02) is e
L:K; 2y(x; — x;;0) = Var(s(xi) - s(xj)) =202 -
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7.4 MODIS and simulated data (same variability as MODIS)
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Maximum Likelihood (Dis)Advantages

We assume a distribution for our model: one-step procedure
y=FX)+e e /\/'(07 E(49)) straight-forward inference on parameters
can be extended with parameterized large scale structures
p(y; 0) x ‘2(0)‘*1/2 exp<f%(y - F(x))TE(H)*l(y - F(x))) —  distributional assumptions on the error required
- computationally expensive

OmLe maximizes log p(y; 6)

Large Systems Large Systems

Maximum Likelihood is computationally expensive. Maximum Likelihood is computationally expensive.

(Motivated from a prediction point of view) we approximate X. (Motivated from a prediction point of view) we approximate X.

. Let T be a “sparse” positive definite matrix.
—— Exponential

Taper Base likelihood on £ = ¥ o T and use sparse matrix techniques.
—— Exponential * Taper

T T T - T T T T

covariance

0.0 0.2 0.4 ?-6 0.8 1.0 12 Consistency and optimality are preserved.
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Summary

Characterisation of correlated processes (spatial processes)

Geostatistics traditionally deals with correlated processes

Efficient methods for describing the process, but ...

Enough gaps for further research ...




