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Motivation for the Project

To model extremes, we often use the distributions
GEV(u,0,8) GP(0,¢)

The parameters can be estimated with:
Maximum likelihood (ML):
can be generalized, seasonality in parameters,
dependence structure, well established theory,
non-regular setting, ...

Probability weighted moments (PWM):
used in hydrology, simple and works well for small n,
not well elaborated theory, ...

What if the data are dependent?

Description of the Project

We consider PWM estimators as U-statistics.

Then we proceed:
e familiarize with U-statistics

e use existing literature to derive
— asymptotic properties in iid case
— asymptotic properties in stationary case

e develop theory to ‘extreme’ context

Outline of the Talk

U-statistics
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Fundamental Questions

Consider a functional 0 defined on a set F of distributions:
0=0(F), FeF.

Suppose we wish to estimate 6 based on a random sample
X1,...,Xp iid F, with F unknown, but F known.

1. Does there exist an unbiased estimator of 6, indepen-
dent of the distribution F7?
Can we characterize the sets F and the functionals 6
for which the answer is yes?

2. If such an estimator exists, what is it?
If several exist, which is the best?




Surprising Answers

Theorem
A functional ¢ admits an unbiased estimator if and only if
there exists a function v of k variables such that

0(F) = [+ [ (a1, ) dP(21) - dF ()

Theorem
There exists an unique symmetric unbiased estimator 1/;["].

Theorem
For any other unbiased estimator ¢, Var(¢) > Var(y[nl).

Definition of a U-Statistic

Suppose there exists a function (z1,...,z;), called kernel
of degree k.
The estimate
(n—k)!
Py, ) = T%:w(mi17 C T ),
is unbiased and essentially unique.
Symmetrize the kernel ¢Fl(xy, ... 2) = S (ay,,. .., 5,),
then the unique unbiased symmetric estimators of 6 are

~ ny—1

~»  U-statistics

Examples 123: Mean

The functional
O(F) = /:tf(x) dz

suggests the kernel ¥(z) = z.

We note that

é=(:)71;¢(xz-)=lzxi by

n

Examples 123: Variance

We can define the variance by
1
[ ] 5(e1—22)2dF (@1) dF (2)
which is estimated by

ny —1 1
Un = (2) > 5(X1 - X2)?
1<i<j<n

No surprises: Uy, = s2.

Examples 3: PWM
The density of max(Xy,...,X,41) is (r+1)F(z)"f(x), thus
By = E(XF(X)) = /zF(a:)Tf(x) dz

= LE( max(Xy,..., Xr+1))

r+1
And we have the U-statistic
Un=fr = ( noyt max(X, X;)
n — MPr — Q10 Ny
T AT

Variance of an U-Statistic

Define
Ye(zy,. .., ze) = E(q/)(xl,...,a:c,Xc_H,...,Xk)) c=1,...,k
02 = Var(¢e(Xy, ..., Xc))
Theorem X
-1 kv on—k
Var(Uyp) = (Z) Cgl (C) (: B C)UCQ.

e Proof is based on enumeration techniques
e Same techniques to calculate covariances
e Upper bounds for higher moments




Examples 12: Variance

1
Recall that 9 (z1,20) = 5(ggl —2)2.

v1Ge) = 5(0? + (o1~ 1)

1
2 _ - _ 4
‘71—%(#4 o)
o‘% = E(;M + 0%

which leads to

n

2

_E_(n—3)a4

Var(s2) = ( )_1(2(n —2)of +0§> = a1

Examples 12: PWM

1
Recall that ¥(zq,z0) = 5max(xl,acz),

P1(z1) = %(xlF(wl) + /: T2 dF($2)> = %<$1F(w1) + 9(551))
Then
07 = %Var(XF(X) +9(X))

Many distributions do not have an analytic form for g(-).
For the GPD we have

[T vare) =2E2

(1-F@)

o
1-¢

H-Decomposition 12: Definition

Define recursively the kernels
R (1) = 1 (21) — 0
c—1

WOy, me) = telwr, ) = Y 3 D (@, i) =0
=1 (c5)

To each kernel h(®) we let Hy(f) be the associated U-statistic.

Theorem

H-Decomposition 12: Properties

e Is a representation of a U-statistic of degree k in terms
of uncorrelated U-statistics of degree 1,...,k

e The terms have variances of decreasing order in n.
o Defining 62 = Var(h(j)(Xl,...,Xj)) =0, we have
k

varwn) = > (%)

j=1J J

()72

e oZ are a linear combination of &7.

Example: Variance

1
Recall that 1/)(221,$2) = E(atl — a:2)2.

PO G) = va(er) ~ 0= (02 + (a1~ w)?) — 0?
= (-~
W2 (a1, 20) = (@1, 22) — Y1(21) — Y1(a2) + 0
= —(z1 —p)(x2 — 1)

Thus
R=0+ ([ L)+ () S )

i<j

Asymptotics 12: iid Case

Theorem
Let 02 > 0. Then va(Un — 0) 222 N (0, k202).

e The proof is based on the H-decomposition:
Vi(Un — 0) = Va(kHSY + Ry)

= = 3 D) + Vi,
i=1

e Multivariate version exists.




Asymptotics 12ab: Stationary Case
We need to characterize the type of stationarity.

For example absolutely regular processes:

The stationary process is said to be absolutely regular if
B)=E sup  |P{AIM(—o0,t)} — P{A}| === 0
AeM(t+n,00)
with M(a,b) the o-field generated by events of the form
{w : (th(w),...,th(w)) € B}, where a <t; < -~ <tp =0
for k=1,...,14+b—a and B is a k-dimensional Borel set.

Further Research

e Apply asymptotics to PWM

e Rewrite theorem for D(u) and D'(u)

e Lets get started ...

Asymptotics 12ab: Stationary Case

Theorem

Let X; be a stationary process satisfying p(n) =
O(n=2+9/€) >0, and let U, be a U-statistic based on a

kernel of degree 2 satisfying
246
sup Elp (X, X[ < oo 5o

[ [ er,a T ar @) dr@s) < oo

Then /n(Un — 0)/(20) tends asymptotically to a standard
normal distribution.

e The proof is based on the H-decomposition.
e Can be extended to strong mixing processes.




