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dato, vi porterò sempre con me.

ii



Abstract

In this work, we analyze the geometric structure of field theories on manifolds
with boundary and manifolds with corners with codimension-1 and codimension-2
strata. We focus on gravity in the coframe formalism coupled with scalar, gauge,
and spinor fields, including their mutual interactions, where the vielbein and the
connection form are treated as dynamical fields.

We show that the action functional in the bulk induces a pre-symplectic struc-
ture on the boundary, which can be reduced to a symplectic manifold via sym-
plectic reduction. Non-dynamical field equations, when restricted to the boundary,
are treated as constraints—local functionals—on the space of boundary fields. The
constraint algebra is also studied for the aforementioned interactions.

No further assumptions on the boundary metric are made; in particular, we
consider the possibility of a null-boundary where the induced metric is degenerate.
However, when the boundary metric is non-degenerate, the vanishing locus of
the constraint functionals defines a coisotropic submanifold, and its Marsden–
Weinstein reduction yields the reduced phase space of the theory.

Finally, we study the codimension-2 structure of gravity, showing that the
resulting geometric setup is that of a Courant algebroid. In this context, the Dorf-
man/Courant algebraic structure of vector fields and 1-forms—the ones induced
from the codimension-1 boundary—over the space of fields on the codimension-2
corner is shown to be isotropic and involutive.
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Chapter 1

Introduction

Given a globally hyperbolic space-time and a Cauchy surface Σ within it, the re-
duced phase space of a theory characterizes the set of admissible initial conditions
on Σ. That is, not all possible fields on the Cauchy surface evolve in time into a
solution of the field equations on space-time; only those satisfying certain condi-
tions do. The reduced phase space corresponds to this subset quotiented by the
minimal relations that are needed to restore a symplectic structure.

In order to build the reduced phase space, the boundary structure is recovered
by applying the method developed by Kijowski and Tulczijew (KT) in [KT79]. This
approach defines the reduced phase space as a reduction—that is, a quotient—of
the space of boundary fields, rather than following the framework introduced by
Dirac in [Dir58]. The KT method offers several mathematical advantages, such as
a more transparent formulation of constraints and natural compatibility with the
BV-BFV formalism, as detailed in [CMR14] (for gravity, see [CS19], [CCS21a],
and [CCS21b]). Moreover, the KT method works on more general space-times
than hyperbolic ones.

The KT procedure goes as follows. One begins by varying the action of the
theory, from which one can isolate the Euler–Lagrange equations and a boundary
term arising from integrations by parts. This boundary term can then be reinter-
preted as a 1-form on the space of pre-boundary fields. Taking the variation of
this 1-form yields a closed 2-form. If this 2-form is non-degenerate, it defines the
symplectic form on the space given by the restriction of the fields to the boundary.
If instead the 2-form is degenerate but has a regular kernel, the geometric phase
space is obtained as the quotient by this kernel.

Next, the Euler–Lagrange equations are restricted to the boundary, allowing
one to distinguish between evolution equations—those involving derivatives normal
to the boundary—and constraints. One then seeks structural conditions on the
geometric phase space such that these constraints can be expressed in terms of
the reduced boundary variables (i.e., after the aforementioned reduction). Finally,
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2 CHAPTER 1. INTRODUCTION

the reduced phase space is defined as the further reduction of the geometric phase
space that restores the symplectic structure.

In Chapters 2 to 4, we recall the fundamental geometric framework that serves
as the basis for our analysis, along with the main results for gravity in the coframe
formulation on manifolds with boundary. We then move on to analyzing the
boundary structure of gravity coupled to scalar, SU(n), and spinor fields (Chap-
ter 5, Sections 5.1 to 5.3), also allowing for the case in which the boundary is
null—that is, where the boundary metric is degenerate. Our analysis builds upon
the results of [CCF22], where the geometric structures of gravity coupled to scalar,
SU(n), and spinor fields were studied under the assumption of a non-degenerate
boundary metric. The first goal here is thus to extend those results to the most
general case, including degenerate boundaries. From a different perspective, this
work generalizes the analysis carried out in [CCT21], which addressed the degen-
erate boundary structure of the Palatini–Cartan theory by incorporating gravity
coupled to matter and gauge fields.

The second step consists in analyzing their mutual interactions. In Chapter 5,
Sections 5.4 to 5.6, we carry out the boundary constraint analysis for gravity cou-
pled to Yang–Mills–spinor, Yang–Mills-Higgs, and Yukawa fields. Also in this case,
the study of the constraint algebra is performed without imposing any additional
assumptions on the boundary metric, thus allowing for the possibility of a null-
boundary. As such, the results displayed in these first chapters provide a stepping
stone toward a formulation of the Standard Model on manifolds with boundary,
presented in [Can+23], where also the BV-BFV approach is carried out.

Finally, in Chapter 6, we analyze the geometric structure of gravity on mani-
folds with codimension-2 corners. The problem of gravity on manifolds with cor-
ners has been addressed in [CC24], where the goal was to characterize the Poisson
structure—defined up to homotopy—that arises on codimension-2 corners in four-
dimensional gravity within the coframe formalism. This analysis was carried out
by means of the BFV formalism, which replaces a (possibly singular) symplectic
quotient with a cohomological resolution. Notice that, in the framework of the
BFV formalism, the space of boundary fields is extended to a superspace endowed
with a symplectic form and a Hamiltonian vector field whose square vanishes.

In this work, we do not attempt to extend the boundary theory within a BFV
setting. Instead, we observe that, in the presence of a corner, the variation of the
constraints naturally gives rise to a linear structure of the form T ⊕ T ∗ on the
space of fields at the corner. From this starting point, our analysis shows that
the structure inherited from the codimension-1 stratum (the boundary) forms a
subspace of a Courant algebroid, which is both closed under the Dorfman bracket
and isotropic.



Chapter 2

The geometric framework

2.1 Coframe formalism
A modern approach to the theory of gravity is by means of the coframe formalism.
The general set-up of the theory will consist of:

– An N -dimensional smooth oriented1 pseudo-riemannian manifold M with
boundary Σ;

– A principal GL(N,R)-bundle LM called the frame bundle, which can be
reduced to a principal SO(N − 1, 1)-bundle P ;

– An associated vector bundle V := P×ρV called the Minkowski bundle, where
V is an N -dimensional real pseudo-riemannian vector space with reference
metric η =diag(1, ...,−1) and ρ : SO(N − 1, 1) →Aut(V ) is the fundamental
representation of SO(N − 1, 1).

In the following, we will build the aforementioned geometrical set-up for a theory
of gravity in the coframe formalism. We start by giving some definitions.2

Definition 2.1.1 (Smooth fiber bundle). A fiber bundle is a structure (E,M, π, F ),
where E, M , and F are topological spaces,3 and π : E → M is a smooth surjective
function such that for every x ∈ M , there exists an open neighborhood U ⊆ M of
x and a diffeomorphism

φ : π−1(U) → U × F

1Orientability is not necessary (see, e.g., [CCS21a, Section 2.1]), but we assume it here for
simplicity of notations.

2We refer to [Tec19b] and references therein
3We will also assume M to be connected.

3



4 CHAPTER 2. THE GEOMETRIC FRAMEWORK

such that the following diagram commutes:

π−1(U) φ−→ U × F
π ↓ ↓ p1
U = U

where p1 : U × F → U is the projection onto the first factor. Because of this last
property, a fiber bundle is said to be locally trivial and the object (U,φ) is called
a local trivialization.

Definition 2.1.2 (Principal G-bundle). Let M be a smooth manifold and G be
a Lie group. A principal G-bundle P is a fiber bundle π : P → M together with a
smooth right action R : G×P → P such that R acts freely and transitively on the
fibers4 of P and such that π(Rg(p)) = π(p) for all g ∈ G and p ∈ P . Moreover,
for a local trivialization (U,φ), it holds

φ(Rg(p)) = φ(p)g = (u, g′)g = (u, g′g). (2.1)

Remark 2.1.3. Notice that the requirement for the right action of the principal
bundle to be smooth is, in general, not required for the definition of such a bundle.
It is our intention, nonetheless, to strengthen this definition for later purposes.

Here, we recall the similarity with a differentiable manifold. For a manifold,
when we change charts, we have an induced diffeomorphism between the neigh-
borhoods of the two charts, given by the composition of the two maps.

Thus, having two charts (Ui, ϕi) and (Uj, ϕj), we define the following:

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj). (2.2)

At a level up, we have an analogous thing when we change trivialization. Of course,
here, we have one more element: the element of fiber.

Taking two local trivializations (Ui, φi) and (Uj, φj) and given a smooth left
action T : G → Diffeo(F ) of G on F , we then have

(φj ◦ φ−1
i )(x, f) =

(
x, T (gij(x))(f)

)
∀x ∈ Ui ∩ Uj, f ∈ F, (2.3)

where the maps gij : Ui∩Uj → G are called the transition functions for this change
of trivialization and G is called the structure group.

Such functions obey the following transition functions conditions for all x ∈
Ui ∩ Uj:

– gii(x) = id

4The space π−1(x) for x ∈ M is called the fiber over x.



2.1. COFRAME FORMALISM 5

– gij(x) = (gji(x))−1

– gij(x) = gik(x)gkj(x) for all x ∈ Ui ∩ Uk ∩ Uj.

The last condition is called the cocycle condition.

Theorem 2.1.4 (Fiber bundle construction theorem5). Let M be a smooth man-
ifold, F be a space, and G be a Lie group with faithful smooth left action T : G →
Diffeo(F ) of G on F .

Given an open cover {Ui} of M and a set of smooth maps,

tij : Ui ∩ Uj → G (2.4)

defined on each nonempty overlap, satisfying the transition function conditions.
Then, there exists a fiber bundle π : E → M such that

– π−1(x) ≃ F for all x ∈ M

– its structure group is G, and

– it is trivializable over {Ui} with transition functions given by tij.

It is clear now that having E as a fiber bundle over M with fibers isomorphic
to F and F ′ as a space equipped with the smooth action T ′ of G, implies the
possibility of building a bundle E ′ associated to E, which shares the same structure
group and the same transition functions gij. By the fiber bundle construction
theorem, we have a new bundle E ′ over M with fibers isomorphic to F ′. This
bundle is called the associated bundle to E.

Depending on the nature of the associated bundle,6 we have the following two
definitions.

Definition 2.1.5 (Associated principal G-bundle). Let π : E → M be a fiber
bundle over a smooth manifold M , G be a Lie group, F ′ be a topological space,
and R be a smooth right action of G on F ′. Let also E ′ be the associated bundle
to E with fibers isomorphic to F ′.

If F ′ is the principal homogeneous space7 for R, namely R acts freely and
transitively on F ′, then E ′ is called the principal G-bundle associated to E.

5A proof of the theorem can be found in [Sha97].
6We will be dealing with two particular types of associated bundles: a principal bundle

associated to a vector bundle and a vector bundle associated to a principal bundle.
7The space where the orbits of G span all the space.
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Definition 2.1.6 (Associated bundle to a principal G-bundle). Let P be a prin-
cipal G-bundle over M, F ′ be a space, and ρ : → Diffeo(F ′) be a smooth effective
left action of the group G on F ′. We then have an induced right action of the
group G over P × F ′ given by

(p, f ′) ∗ g = (Rg(p), ρ(g−1)(f ′)). (2.5)

We define the associated bundle E to the principal bundle P , as an equivalence
relation:

E := P ×ρ F
′ = P × F ′

∼
, (2.6)

where (p, f ′) ∼ (Rg(p), ρ(g−1)(f ′)), p ∈ P , and f ′ ∈ F ′ with projection πρ : E → M
s.t. πρ([p, f ′]) = π(p) = x ∈ M .

Therefore, πρ : E → M is a fiber bundle over M with π−1
ρ (x) ≃ F ′ for all

x ∈ M .
Remark 2.1.7. The new bundle, given by the latter definition, is what we expected
from a general associated bundle: a bundle with the same base space, different
fibers, and the same structure group.

The idea would be therefore to take a principal G-bundle P as an associated
bundle to TM , and we build a vector bundle associated to P with a fiber-wise
metric η. We shall call this associated bundle V .

First of all, we display the principal G-bundle as the principal G-bundle asso-
ciated to TM .
Definition 2.1.8 (Orthonormal coframe). Let (M, g) be a pseudo-Riemannian N -
dimensional smooth manifold and (V, η) be an N -dimensional vector space with
Minkowskian metric η.

A coframe at x ∈ M is the linear isometry.

xe :=
{
xe : TxM → V

∣∣∣ xe∗η := ηab xe
a
xe
b = g

}
, (2.7)

equivalently xe
a forms an ordered orthonormal basis in T ∗

xM .
On the other hand, an orthonormal frame is defined as the dual of a coframe.

Remark 2.1.9. Locally, coframes can be identified with local covector fields. A
necessary and sufficient condition for identifying them with global covector fields
(namely a coframe for each point of the manifold) is to have a parallelizable man-
ifold, namely a trivial tangent bundle.
Definition 2.1.10 (Orthonormal coframe bundle). Let (M, g) be a smooth N -
dimensional manifold with pseudo-riemannian metric g and T ∗M be its cotangent
bundle (real vector bundle of rank N). Then, we call the coframe bundle LM∗ the
principal G-bundle where the fiber at x ∈ M is the set of all orthonormal coframes
at x and where the group G = O(N − 1, 1) acts freely and transitively on them.
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The dual bundle of this is the orthonormal frame bundle, and it is denoted by
LM , made up of orthonormal frames (dual of orthonormal coframes).
Remark 2.1.11.

– The orthonormal frame bundle is an associated principal G-bundle to TM .

– We will usually require the orientability ofM (namely, the first Stiefel–Whitney
class to be vanishing). This induces a further SO(N − 1, 1) reduction of the
frame bundle.

– In contrast to the case of a Riemannian manifold, we stress that the bundle
V is not canonically isomorphic to TM . This is equivalent to saying that
there exists no canonical soldering form θ : TM → V , as is the case in the
Riemannian setting. The obstruction comes from the topological structure
of the group O(N − 1, 1). In fact, O(N − 1, 1) has four connected compo-
nents, and SO(N − 1, 1) has two, only one of which — the time-oriented
component — is connected to the identity. This component is usually de-
noted by SO+(N − 1, 1). As a consequence, a partition of unity cannot be
used to canonically define a global soldering form, since the local 1-forms
may belong to different connected components of SO(N−1, 1). To overcome
this obstruction, one must require an additional topological property of the
spacetime: time-orientability.8

– If the manifold is parallelizable, we have the bundle isomorphism e : TM →
V , which is given by the identity map over M and xe : TxM → V ∀x ∈ M .
It can be regarded as a V-valued 1-form e ∈ Ω1(M,V). We can identify
e with an element of Ω1(M,V ), thus with global sections of the cotangent
bundle such that, at each point in M , the corresponding covectors xe

a obey
ηab xe

a
xe
b = g.

Then, we define the vielbein via a reduction of the frame bundle.
Definition 2.1.12 (Vielbein). We define the vielbein ẽ : P → LM as the principal
bundle isomorphism such that the following diagram commutes

P LM

V TM

ẽ

p′ π′

e

8We have the presence of a Lorentzian metric, which induces a reduction of the structure
group to O(1, N − 1). Then, assuming that the manifold M is orientable, one can further reduce
the structure group to SO(1, N − 1) in order to perform integration on the manifold. This
reduction becomes canonical once an orientation is chosen. Potentially, one could also introduce
a time-orientation, which allows for a further canonical reduction to SO+(1, N − 1), provided
that a time-orientation is selected.
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where e : TM → V is the vector bundle isomorphism induced by ẽ : P → LM
and p′, π′ the corresponding associated bundle maps. This means that the vielbein
consists of the elements in Ω1(M,V) possessing smooth inverse. We can call this
space Ω̃1(M,V).

Remark 2.1.13.

– Given i : SO(N − 1, 1) → GL(N,R) as the canonical embedding, we recall
that, in order for ẽ to be a principal bundle isomorphism, it must be an
isomorphism of fiber bundles and also satisfy the equivariance condition

Ri(g) ◦ ẽ = ẽ ◦ Rg for all g ∈ G. (2.8)

This is equivalent to asking that the following diagram commutes

P LM

P LM

ẽ

Rg Ri(g)

ẽ

– The existence and uniqueness of the map can be guaranteed through the
use of the universal property of the quotient for the bundle isomorphism
π′ ◦ ẽ : P → TM . This is possible thanks to the equivariance condition of ẽ.
The isomorphism property of the map e : TM → V is simply inherited from
ẽ by passing to the quotient.

– Since the map e : TM → V is an isomorphism of vector bundles, it acts like a
linear isomorphism on the fibers. It means it can be written in the following
way:

xe : TxM → V (2.9)
v 7→ va = vµeaµ,

where v = vµ∂µ ∈ TxM . Consider now the dual basis {dxµ}. We can collect
the components of the isomorphism into the covector eaνdxν(∂µ) = eaµ, since
a covector is a linear map over the tangent space. Given that a basis of
the cotangent space can be seen as a family of N covectors eaµdxµ and also
that an isomorphism sends a basis to another basis, on a chart over U ∈ M ,
we can identify the map e : TM → V with a family of N covector fields
or directly with a V -valued covector field in Ω1(U, V ). Therefore, if M is
parallelizable, we can identify the whole map e with a V -valued covector
field e ∈ Ω1(M,V ).
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– The name coframe formalism comes from the fact that e not only defines an
isomorphism, but, thanks to the fact that it is obtained from the reduction
of the structure group of the frame bundle to the pseudo-orthogonal group
SO(N − 1, 1), it is also a linear isometry on the fibers. In fact, the reduction
to SO(N − 1, 1) means by definition that the frames of the frame bundle
are orthonormal, namely we have on the fibers gµνeµaeνb = ηab. On the other
hand, in terms of their dual basis (coframes) {ea}, we have gµν = ηabe

a
µe
b
ν ,

which can be written as

g = e∗η. (2.10)

This means that e is a linear isometry.

In the ordinary formulation of General Relativity (as in the original Einstein’s
work, for instance), we have objects called Γs, which are coefficients of a linear
connection ∇ and thus determined by a parallel transport of tangent vectors.

The biggest advantage of treating O(3, 1) as an “explicit symmetry” of the
theory is that we have obtained the possibility of defining a principal connection
form, which is the same kind of entity we have in a Yang–Mills gauge theory.

If we consider a smooth fiber bundle π : E → M , where fibers are smooth
manifolds, we can of course take tangent spaces at points e ∈ E. Having the
tangent bundle TE, we may wonder if it is possible to separate the contributions
coming from M to the ones from the fibers.

This cannot be done just by stating TE = TM ⊕ TF , unless E = M × F is
the trivial bundle. Namely, we cannot split directly vector fields on M from vector
fields on the fibers F .

We can formalize this idea: use our projection π for constructing a tangent
map π∗ = dπ : TE → TM , and consider its kernel.

Definition 2.1.14 (Vertical bundle). Let M be a smooth manifold and π : E → M
be a smooth fiber bundle.

We call the sub-bundle V E = Ker(π∗ : TE → TM) the vertical bundle.

Following this definition, we have the natural extension to the complementary
bundle of the vertical bundle, which is somehow the formalization of the idea we
had of a bundle that takes care of tangent vector fields on M .

Definition 2.1.15 (Ehresmann connection). Let M be a smooth manifold and
π : E → M be a smooth fiber bundle.

Consider a complementary bundle HE such that TE = HE ⊕ V E. We call
this smooth sub-bundle HE the horizontal bundle or Ehresmann connection.

Remark 2.1.16. Thus, vector fields will be called vertical or horizontal depending
on whether they belong to Γ(V E) or Γ(HE), respectively.
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Remark 2.1.17. In the case where the fiber bundle is a principal bundle, HE is
called principal (Ehresmann) connection.
Remark 2.1.18. We recall the case of the linear connection ∇; it was uniquely
determined by a parallel transport procedure.

Here, we have an analogy.

Definition 2.1.19 (Lift). Let π : E → M be a fiber bundle, M be a smooth
manifold, x ∈ M and e ∈ E such that π(e) = x.

Given a smooth curve γ : R → M such that γ(0) = x, we define a lift of γ
through e as the curve γ̃, satisfying

γ̃(0) = e and π(γ̃(t)) = γ(t) ∀t. (2.11)

If E is smooth, then a lift is horizontal if every tangent to γ̃ lies in a fiber of HE,
namely

˙̃γ(t) ∈ HEγ̃(t) ∀t. (2.12)

Remark 2.1.20. It can be shown that an Ehresmann connection uniquely deter-
mines a horizontal lift. Here, it is the analogy with parallel transport.

We now focus on the case where the smooth fiber bundle is a principal G-
bundle with smooth action R. Here, we need a group G, that we generally take to
be a matrix Lie group. We then have the corresponding algebra g, a matrix vector
space in the present case.

Definition 2.1.21. The action R defines a map σ : g → Γ(V E) called the funda-
mental map,9 where at p ∈ P , for an element ξ ∈ g, it is given via the exponential
map Exp : g → G.

σp(ξ) = d

dt
Retξ(p)

∣∣∣
t=0
. (2.13)

The map is vertical because

π∗σp(ξ) = d

dt
π(Retξ(p))

∣∣∣
t=0

= d

dt
π(p) = 0, (2.14)

and, for this reason, the vector σp(ξ) is vertical and it is called the fundamental
vector associated to ξ.

Before proceeding, we need some Lie group theory.

Definition 2.1.22. Let G be a Lie group (a smooth manifold) with g as its Lie
algebra and ∀g, h ∈ G. We define:

9It turns out that it is an isomorphism, since R is regular.
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– Lg : G → G and Rg : G → G, such that Lgh = gh and Rgh = hg are the left
and right actions, respectively;

– The adjoint map Adg : G → G via such left and right actions is Adg :=
Lg ◦ Rg−1 , namely Adgh = ghg−1. It also acts on elements of the algebra
ξ ∈ g as Adg : g → g via the exponential map10

Adgξ = d

dt

(
(Lg ◦Rg−1)(etξ)

)∣∣∣
t=0

= d

dt
(getξg−1)

∣∣∣
t=0

= gξg−1 ∈ g,

(2.15)

where the last two equalities hold in the present case of matrix Lie groups.
This is not to be confused with the adjoint action ad: g × g → g, which is
generated by the derivative of the adjoint map with g = etχ and χ ∈ g, such
that adχξ = [χ, ξ];

– The left invariant vector fields v ∈ Γ(TG) as Lg∗ ◦ v = v, namely v(g) =
Lg∗v(e);

– The Maurer–Cartan form is the left invariant g-valued 1-form θ ∈ Ω1(G, g)
defined by its values at g.

θg := Lg−1∗ : TgG → TeG ∼= g. (2.16)

Remark 2.1.23. Since for any left invariant vector field v, it holds ∀g ∈ G that
θg(v(g)) = v(e), we have that left invariant vector fields are identified by their
values over the identity thanks to the Maurer–Cartan form θ. So we can state
([Fec11]) that this identification v(e) 7→ v defines an isomorphism between the
space of left invariant vector fields on G and the space of vectors in TeG, thus, the
Lie algebra g. For matrix Lie groups, it holds that θg = g−1dg.

Lemma 2.1.24. Given the group action Rg : P → P and the associated tangent
map Rg∗: TP → TP for an element g ∈ G, we have

Rg∗ ◦ σ(ξ) = σ(Adg−1ξ) (2.17)

for all elements g ∈ G.
10We stress that the exponential map is not an isomorphism for all Lie groups; thus, the

elements generated by the exponential map belong, in general, to a connected subgroup of the
total group. More in general, the isomorphism is between a subset of the algebra containing
0 and a subset of the group containing the identity. Moreover, for a compact, connected, and
simply connected Lie group, the algebra always generates the whole group via the exponential
map. See [Fig06] for more details about this an other parts of this section.
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Proof. At p ∈ P

Rg∗σp(ξ) = d

dt

(
(Rg ◦ Retξ)(p)

)∣∣∣
t=0

= d

dt

(
(Rg ◦ Retξ ◦ Rg−1 ◦ Rg)(p)

)∣∣∣
t=0

, (2.18)

we then use the fact that Rg ◦ Retξ ◦ Rg−1 = Rg−1etξg = RAdg−1e
tξ and the identity

for matrix groups Adgetξ = etAdgξ to get the following:

Rg∗σp(ξ) = d

dt

(
R
e
t(Ad

g−1ξ)(Rg(p))
)∣∣∣
t=0

= σRg(p)(Adg−1ξ). (2.19)

It is time to define what we were aiming to construct at the beginning of the
section.

Definition 2.1.25 (Connection form). Let P be a smooth principal G-bundle and
HE ⊂ TP be an Ehresmann connection.
We call the g-valued 1-form ω ∈ Ω1(P, g), satisfying

ω(v) =
ξ if v = σ(ξ), ξ ∈ C∞(P, g)

0 if v horizontal,
(2.20)

the connection 1-form. We will refer to the space of connection forms on P as
A(P ).

Remark 2.1.26. Notice that, in what follows, the terms “connection”, “connection
form”, and “principal connection” will be used interchangeably. This abuse of
terminology should not lead to confusion, as the context and notation will always
make the intended meaning clear.

Theorem 2.1.27. Given the quantities defined as above, we have

R∗
gω = Adg−1 ◦ ω. (2.21)

Proof. Suppose v = σ(ξ), since the other case left is trivial.
We can carry out some calculations on the left-hand side, and, following from

Lemma 2.1.24, we have(
R∗
gω
)(
σ(ξ)

)
= ω

(
Rg∗ ◦ σ(ξ)

)
= ω

(
σ(Adg−1(ξ)

)
= Adg−1(ξ). (2.22)

Then, we only need to manipulate the right-hand side as

Adg−1

(
ω(σ(ξ))

)
= Adg−1(ξ). (2.23)

Both times, we used the definition of connection 1-form (i.e. Eq. (2.20)).
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Remark 2.1.28. This last theorem is called G-equivariance. It can be imposed
instead of by assuming that HE is an Ehresmann connection, and then HE can
be shown to be such an Ehresmann connection.

Definition 2.1.29 (Tensorial form). Let ρ : G → Aut(V ) be a representation over
a vector space V and α ∈ Ωk(P, V ) be a vector valued differential form.

We call α a tensorial form if it is the following:

– horizontal, i.e., α(v1, ..., vk) = 0 if at least one vi is a vertical vector field,
and

– equivariant, i.e., for all g ∈ G, R∗
gα = ρ(g−1) ◦ α.

We define horizontal and equivariant forms as maps belonging to Ωk
G(P, V ).

Remark 2.1.30. The connection form ω is not, in general, horizontal; thus, it is
not a tensorial form, ω /∈ Ω1

G(P, g).

Given our connection 1-form ω, we can proceed in two ways: the first consists
in taking a map called the horizontal projection and in defining the curvature as
this projection applied on the exterior derivative of ω. In this way, we naturally
see that curvature measures the displacement of the commutator of two vectors
from being horizontal.

We will proceed in a different way though. We will define the curvature through
a structure equation.

Definition 2.1.31. Given ω ∈ Ω1(P, g), a principal connection 1-form, the 2-form
Ω ∈ Ω2

G(P, g) satisfies the following:

Ω = dω + 1
2[ω ∧ ω], (2.24)

which is called curvature 2-form. Here, [ω ∧ ω] denotes the bilinear operation on
the Lie algebra g called differential Lie bracket, defined as

[ω ∧ η](u, v) = 1
2
(
[ω(u), η(v)] − [ω(v), η(u)]

)
, (2.25)

where u and v are vector fields.

Remark 2.1.32. It the following sections, we will usually omit the wedge symbols.
The bracket we will use will be of the form of the one in Definition 2.1.53, and we
will generalize the meaning of the notation case by case.
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Remark 2.1.33. It follows straightforwardly that, if we take two general horizontal
vector fields u, v ∈ Γ(HE) and we use the ordinary formula11 for the exterior
derivative of a 1-form dω(u, v) = uω(v) −vω(u) −ω([u, v]), since ω(u) = ω(v) = 0,
we get

Ω(u, v) = −ω([u, v]). (2.26)

We see that Ω measures how the commutator of two horizontal vector fields is far
from being horizontal as well.

Remark 2.1.34. Ωk
G(P, V ) is not closed under the ordinary exterior derivative. In

that sense, if α ∈ Ωk
G(P, V ), then dα /∈ Ωk+1

G (P, V ). This is what a covariant
differentiation will do instead.

The idea of a covariant exterior derivative for a connection HE is, given such an
Ehresmann connection HE, the one of projecting vector fields onto this horizontal
bundle and then feed our ordinary exterior derivative with such horizontal vector
fields. First of all, we define a map acting as a pull-back. Namely, given a map
h : TP → HE (called the horizontal projection) such that, for all vertical vector
fields v, we get h ◦ v := hv = 0, we define the dual map h∗ : T ∗P → HE∗ such
that, for α ∈ Ω1(P, V ) and V a vector space, we have h∗ ◦ α := h∗α = α ◦ h.

Definition 2.1.35 (dh). Let P be a principal G-bundle, V be a vector space, and
α ∈ Ωk(P, V ) be an equivariant form. We define the exterior covariant derivative
dh as a map dh : Ωk(P, V ) → Ωk+1

G (P, V ) such that

dhα(v0, ..., vk) := h∗dα(v0, ..., vk) = dα(hv0, ..., hvk), (2.27)

where v0, ..., vk are vector fields.

Remark 2.1.36. Such object depends on the choice of our Ehresmann connection
HE, which reflects onto the horizontal projection h; that is the reason why the
index h is adopted.

Remark 2.1.37. We can make our covariant derivative depend only on ω, if we
restrict it to only forms in Ωk

G(P, V ) and if we consider the representation of the
algebra induced by the derivative of ρ that we denote dρ : g → End(V ). Then, we
have dρ ◦ ω ∈ Ωk

(
P,End(V )

)
.

Definition 2.1.38 (dω). Let P be a principal G-bundle, V a vector space, ω ∈
A(P ) a connection form, and α ∈ Ωk

G(P, V ) a tensorial form.

11Here, we regard ω(u) as a function ω(u) : P → g belonging to the algebra of smooth functions
to g, C∞(P, g).
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We define the exterior covariant derivative dω : Ωk
G(P, V ) → Ωk+1

G (P, V ) as12

dωα := dα + ω ∧dρ α, (2.28)

where ω ∧dρ α := dα + dρ ◦ ω ∧ α.
Remark 2.1.39.

– We observe that d2
ωα ̸= 0 for a general α ∈ Ωk

G(P, V ), but it is easy to show
that it holds

d2
ωα = Ω ∧dρ α. (2.29)

Thus, for a flat connection such that Ω = 0, we have d2
ωα = d2α = 0.

– We have observed that ω /∈ Ω1
G(P, g). Therefore, dωω is not well defined.

However, we can consider dhω ∈ Ω2
G(P, g), and this is precisely our curvature

Ω = dω + 1
2 [ω ∧ ω], where the anomalous 1

2 factor comes from the ”non-
tensoriality” of ω. As a matter of fact, there is no representation that would
make the 1

2 term arise if we considered dωω instead.

– The fact that dω is not well defined for non-tensorial forms does not mean
that ω defines a less general derivative than what dh does. As a matter of
fact, HE could be defined starting from ω, as we mentioned above, since
HE = Kerω.

Definition 2.1.40 (Gauge field). Let P → M be a principal G-bundle, G be a
Lie group with g as the respective Lie algebra, {Uβ} be an open cover of M , and
sβ : Uβ → P be a section.

We define the gauge field as the pull-back of the connection form ω ∈ Ω1(P, g),
i.e. as

Aβ = s∗
βω ∈ Ω1(Uβ, g). (2.30)

Remark 2.1.41. Notice that, under a change of trivialization, the gauge field
changes via the action of the adjoint map.

In fact, we have the following:
Lemma 2.1.42. The restriction of ω to π−1(Uβ) agrees with

ωβ = Adg−1
β

◦ π∗Aβ + g∗
βθ, (2.31)

where gβ : π−1(Uβ) → G is the map induced by the trivialization map φβ and where
Adg−1

β
is adjoint map at the group element given by gβ(p)−1 at a point p ∈ π−1(Uβ).

12For a general k-form:

(ω ∧dρ α)(v1, ..., vk+1) = 1
(1 + k)!

∑
σ

sign(σ)dρ
(
ω(vσ(1))

)(
α(vσ(2), ..., vσ(k+1)

)
.
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The proof comes from the observation that Eqs. (2.20) and (2.31) coincide in
the open set π−1(Uβ) for both a horizontal (for which they are zero) and a vertical
vector field.

Thanks to this, we easily have the following result:

Theorem 2.1.43. Let G be a matrix Lie group. Then it holds the following
transformation for a gauge field:

Aβ = gβγAγg
−1
βγ − dgβγg

−1
βγ . (2.32)

Proof. Using Eq. (2.30) and Eq. (2.31) for all x ∈ Uβ ∩ Uγ,

Aβ = s∗
βω

= s∗
βωβ = s∗

βωγ

= s∗
β

(
Adg−1

γ
◦ π∗Aγ + g∗

γθ
)

= Adg−1
βγ

◦ Aγ + g∗
γβθ (using gγ ◦ sβ := gβγ : Uβ ∩ Uγ → G)

= Adgβγ ◦
(
Aγ − g∗

βγθ
)

(Adgβγ ◦ g∗
βγθ = −g∗

γβθ),

(2.33)

which reduces to the assert for matrix Lie groups.

Remark 2.1.44.

– We observe that a local gauge transformation of the gauge field corresponds
to a change of trivialization chart.

– Non-tensoriality of ω was given by the fact that it is, in general, not hor-
izontal. For the gauge field A, we can generalize to forms on M the con-
cept of tensoriality/non-tensoriality by noticing that a form obtained by the
pull-back of a tensorial form, denoted with t ∈ Ω1

G(P, V ), would transform
differently compared to A, namely as

tβ := s∗
βt = gβγtγg

−1
βγ . (2.34)

The Maurer–Cartan form θ reflects the non-horizontality of ω to the gauge
field, from Eq. (2.31).

– A difference of two gauge fields like A−A′ transforms as Eq. (2.34). In fact,
the transformation rule is one of a tensorial form, since the Maurer–Cartan
forms simplify.
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– We notice that (iii) is a particular case of a more general one. Indeed,
it is possible to show with proof in [KN69] (Chapter 5) that Ωk

G(P, V ) ∼=
Ωk(M,P ×ρ V ). This is essentially due to the fact that, thanks to the equiv-
alence relation of the associated bundle and the gluing condition of sections
on overlaps, the pull-backs by sections sβ : Uβ → P give a one-to-one corre-
spondence between these two spaces. Therefore, we can obtain forms with a
tensorial transformation like Eq. (2.34) just by taking the pull-back of ten-
sorial forms on P ; these will be forms on M with values into the associated
bundle P ×ρ V .

– Our construction ensures that an object built with gauge fields Aβ ∈
Ω1(Uβ, g) (which transform on overlaps by Eq. (2.32)) will be in Ω2(M,P×Ad
g).

Definition 2.1.45 (Field strength). Let P → M be a principal G-bundle, G be a
Lie group with g as the respective Lie algebra, {Uβ} be an open cover of M , and
sβ : Uβ → P be a section.

We define the field strength as the pull-back of the curvature form Ω ∈ Ω2
G(P, g)

as
Fβ = s∗

βΩ ∈ Ω2
G(Uβ, g), (2.35)

which, by definition of Ω, is

Fβ = dAβ + 1
2[Aβ ∧ Aβ]. (2.36)

Remark 2.1.46. Similarly to what we have done for the gauge field, we can show13

that the field strength transforms as

Fβ = Adgβγ ◦ Fγ = gβγFγg
−1
βγ , (2.37)

where the last equality holds for matrix Lie groups with g and g−1 in G. This is
indeed the transformation of a tensorial form, as in Eq. (2.34).
Remark 2.1.47. Since, as already pointed out, is a canonical isomorphism be-
tween Ωk

G(P, V ) and Ωk(M,P ×ρ V ), we can relate Ω and Fβ with a form14

FA ∈ Ω2(M, adP ). Namely, there is a canonical isomorphism sending Ω ∈ Ω2
G(P, g)

to FA ∈ Ω2(M, adP ). Indeed, given the transformation law for the field strength
(through the adjoint representation) in Eq. (2.37), we see that {Fβ} are horizontal
and equivariant and, thus, form a global section belonging to Ω2(M, adP ), which
is usually denoted as FA.
The notation FA stresses that it is obtained from gauge fields in Ω1(Uβ, g).

13Using the Cartan structure equation for θ, dθ = − 1
2 [θ, θ].

14Where we have introduced the notation Ωk(M, P ×Ad g) := Ωk(M, adP ).
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In the case of a trivial bundle, it is also possible to define a global gauge field
A ∈ Ω1(M, g).

Definition 2.1.48. The collection of gauge fields defines an exterior covariant
derivative for P ×ρ V -valued forms on M . We denote such a map with

dA : Ωk(M,P ×ρ V ) → Ωk+1(M,P ×ρ V ). (2.38)

Consider dA : Ωk(M,P ×ρ V ) → Ωk+1(M,P ×ρ V ) as the exterior covariant
derivative and FA ∈ Ω2(M, adP ) as the field strength.

Then, we have the following result, called the second Bianchi identity.

Theorem 2.1.49. Given the quantities defined as above, we have

dAFA = 0. (2.39)

Proof. Given
FA = dA+ 1

2[A ∧ A], (2.40)

then

dAFA = dFA + [A ∧ FA]

= d2A+ 1
2d[A ∧ A] + [A ∧ dA] + 1

2[A ∧ [A ∧ A]]

= 1
2[A ∧ [A ∧ A]] (d2A = 0 and 1

2d[A ∧ A] = −[A ∧ dA])

= 0. (because of the Jacobi identity)

(2.41)

Theorem 2.1.50. The inner product on V allows the identification so(N−1, 1) ∼=∧2V .

Because of this theorem, we can identify so(N−1, 1)-valued forms15 with ∧2V-
valued forms and we will use the following shortened notation to indicate the
spaces of i-forms on M with values in the jth wedge product of V

Ωi,j := Ωi
(
M,

∧jV) , (2.42)

which is generalized to all possible i, j ∈ N.

15In the sense of a vector bundle with fibers so(N − 1, 1)
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Remark 2.1.51. These spaces form indeed a graded algebra with graded product

∧ : Ωi,j × Ωk,l → Ωi+k,j+l for i+ k ≤ N, j + l ≤ N

(α, β) 7→ α ∧ β = (−1)(i+j)(k+l)β ∧ α.

We will refer to an element in Ωi,j also as an (i, j)-form.
Remark 2.1.52. If we consider a principal connection form on the principal SO(N−
1, 1)-bundle P , namely an element ω ∈ Ω1(P,∧2V ) (thanks to Theorem 2.1.50),
we can pull it back using local sections. We will obtain a family of local con-
nections ωα ∈ Ω1(Uα,

∧2V). These forms define a covariant derivative on M (see
Definition 2.1.57).

The action of the Lie algebra on ∧jV-differential forms will be denoted in the
following way.

Definition 2.1.53. Let α ∈ Ωi,j and β ∈ Ωk,l. Then, we define the bracket

[ , ] : Ωi,j × Ωk,l → Ωi+k,j+l−2 (2.43)

through

[α, β]a1...aj+l−2
µ1...µi+k

=

=
∑
σi+k

∑
σj+l−2

sign(σi+k)sign(σj+l−2)α
aσ(1)...aσ(j−1)a
µσ(1)...µσ(i) β

aσ(j)...aσ(j+l−2)b
µσ(i+1)...µσ(i+k) ι(ρ)ab,

(2.44)

where ι(ρ) is the contraction map that ∧mV inherits16 from the representation ρ of
SO(N−1, 1). For the fundamental representation, this map is just the contraction
with the η.

Remark 2.1.54. Shortly speaking, the bracket acts as a wedge product on both
space-time and internal indices not contracted with the contraction map.
Remark 2.1.55. The contraction map ι(ρ) is obtained from the representation map
of the algebra dρ : so(N − 1, 1) → End(V ) composed with the isomorphism of
Theorem 2.1.50.
Remark 2.1.56. As mentioned in Remark 2.1.32, in the following sections we will re-
tain the notation of Definition 2.1.53 while generalizing the meaning of the bracket
case by case.

We now rewrite Definition 2.1.48, generalizing it to the case of an exterior
product of bundles, using the notation introduced in Definition 2.1.53. This will
serve as our standard notation for the exterior covariant derivative in the following
sections.

16The representation ρ induces an algebra representation dρ and we can translate that to
∧2 V

thanks to Theorem 2.1.50. Then, we can easily generalize this action to
∧mV.
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Definition 2.1.57 (Reference form of the exterior covariant derivative). Local
connections in Ω1,2 define an exterior covariant derivative for ∧jV-valued i-forms
on M . We denote such a map with

dω : Ωi,j → Ωi+1,j. (2.45)

Explicitly, it reads

dωα = dα + [ω, α], (2.46)

where α ∈ Ωi,j.

Remark 2.1.58. Note that the representation of the brackets is the fundamental
one. This is due to the fact that V is the associated bundle to P through the fun-
damental representation. In the case of a different associated bundle, the brackets
will accordingly replaced.

Definition 2.1.59. Let ω ∈ A(P ) be a principal connection. Then, the associated
local connections on M define a global 2-form Fω ∈ Ω2,2, which satisfies, in any
arbitrary trivialization chart (Uα, sα),

Fω|Uα = dωα + 1
2[ωα, ωα], (2.47)

with ωα = s∗
αω.

A more detailed derivation of this definition can be found in [Tec19b].

2.2 Stratified manifolds

Definition 2.2.1 (Stratified manifold17). A stratified manifold is a topological
space X equipped with a decomposition

X =
⊔
α∈A

Sα, (2.48)

where each Sα is a (locally closed) smooth manifold of dimension dα, called a
stratum, and the following conditions hold:

1. Each Sα is a smooth manifold.
17See [Pfl01] for a detailed treatment.
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2. For any two strata Sα, Sβ, if

Sβ ∩ Sα ̸= ∅, (2.49)

then Sβ ⊂ Sα and dimSβ < dimSα. This is sometimes called the frontier
condition.

3. The topology of X is such that each closure Sα is a union of strata.

Remark 2.2.2. The stratification induces a partial order on the index set A defined
by

β ⪯ α ⇐⇒ Sβ ⊂ Sα, (2.50)

which, by the frontier condition, is well-defined and acyclic.
Example 2.2.3 (The Circular Cone). Consider the quadratic cone

X = {(x, y, z) ∈ R3 : z2 = x2 + y2}. (2.51)

It admits a two-stratum decomposition:

S2 = X \ {(0, 0, 0)}, (2.52)
S0 = {(0, 0, 0)}. (2.53)

Here the apex is a zero-dimensional stratum, and the smooth part is two-
dimensional.
Example 2.2.4 (Algebraic Varieties and Whitney Stratification). Let V ⊂ Cn be
an affine algebraic variety defined by the vanishing of polynomials f1, . . . , fm. For
each k = 0, . . . , n, set

Vk =
{
p ∈ V : rank

(
Df(p)

)
= n− k

}
, (2.54)

where Df(p) is the Jacobian matrix of (f1, . . . , fm) at p. Equivalently, Vk is the
locus where V is a smooth complex submanifold of complex dimension k (real
dimension 2k).

Then

V =
n⊔
k=0

Vk (2.55)

defines a stratification of V satisfying:

1. Frontier condition: if Vj ∩ Vk ̸= ∅, then j < k and Vj ⊂ Vk.
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2. Whitney regularity: for each j < k, the pair (Vj, Vk) satisfies Whitney’s
Conditions (A) and (B), ensuring that near any p ∈ Vj the tangent spaces
to Vk vary continuously and intersect TpVj in the expected dimension.

Example 2.2.5 (Square in R2). Let

X = [0, 1]2 ⊂ R2. (2.56)

We stratify X by

S0 = (0, 1)2, (2.57)
S1 =

(
{0} × (0, 1)

)
∪
(
{1} × (0, 1)

)
∪
(
(0, 1) × {0}

)
∪
(
(0, 1) × {1}

)
, (2.58)

S2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. (2.59)

Here S2 consists of the four corners of the square—points where two boundary
edges meet. The interior (0, 1)2 is S0, the open edges are S1, and the corner points
are S2.

Definition 2.2.6 (Manifold with corners18). A manifold with corners is a smooth
manifold M of dimension N equipped with a stratification

M =
K⊔
k=0

M [k], (2.60)

for some K ≤ N , satisfying the following:

1. Each M [k] is the codimension-k stratum, consisting of points locally diffeo-
morphic to an open subset of

{x1 = x2 = · · · = xk = 0} ⊂ Rk × RN−k, (2.61)

i.e., modeled on [0,∞)k × RN−k with exactly k vanishing coordinates.

2. Each stratum M [k] is a smooth manifold of dimension N−k (without bound-
ary).

3. The stratification satisfies the frontier condition:

M [k] ⊃
⊔
ℓ>k

M [ℓ]. (2.62)

4. The manifold M admits a smooth structure modeled on open subsets of
[0,∞)k × RN−k for k = 0, . . . , K, with smooth transition maps between
overlapping charts.

18See [Mel] for further details.
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Remark 2.2.7. In the following sections, we will restrict our attention to manifolds
with corners admitting only strata of codimension at most 2, that is:

M = M [0] ⊔M [1] ⊔M [2]. (2.63)

Remark 2.2.8. Notice that, even though a manifold with boundary is a special case
of a manifold with corners, consisting of only two strata, one of codimension-0 (the
bulk) and one of codimension-1 (the boundary), the definition of manifold with
corners usually refers to stratified structures with higher depth.



Chapter 3

Field theories on the boundary

3.1 Marsden–Weinstein reduction
The following notion of reduction we refer to originates from the work of Marsden
and Weinstein [MW74] and is commonly known as Marsden–Weinstein reduction.
The construction begins with a symplectic manifold equipped with a group action.
The goal is to produce a new symplectic manifold by effectively quotienting out
the group action.

We start with the fundamental ingredient of the whole construction.

Definition 3.1.1 (Symplectic manifold). A symplectic manifold is a manifold M
equipped with a closed, non-degenerate differential 2-form ϖ, called the symplectic
form. That is, it holds:

• Closedness: dϖ = 0;

• Non-degeneracy: for every point p ∈ M , the bilinear form

ϖp : TpM × TpM → R (3.1)

satisfies the condition that if ϖp(v, w) = 0 for all w ∈ TpM , then v = 0. This
is equivalent to requiring that the map

♭ : TpM → T ∗
pM, v 7→ ϖp(v, ·) (3.2)

is injective.1

Remark 3.1.2. In the finite dimensional case,2 the dimension of a symplectic man-
ifold must be even.

1Notice that, in the infinite dimensional case, only the injectivity of the map is required.
2All anti-symmetric matrices on an odd-dimensional space have zero determinant (degener-

acy).
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Theorem 3.1.3 (Darboux’s Theorem). Let (M,ϖ) be a symplectic manifold of
dimension 2n. Then, for every point m ∈ M , there exists a local chart around
m, with coordinates (x1, . . . , xn, p1, . . . , pn), such that the symplectic form ϖ takes
locally the canonical form

ϖ =
n∑
i=1

dpi ∧ dxi. (3.3)

In other words, all symplectic manifolds are locally symplectomorphic to (R2n, ϖ0),
where ϖ0 = ∑

i dpi ∧ dxi is the canonical symplectic form.

On top of a symplectic manifold, we add an action of a group encoded by the
following object.

Definition 3.1.4 (Momentum map). Let (M,ϖ) be a symplectic manifold, and
let G be a Lie group acting3 on M via symplectomorphisms.4 Denote by g the
Lie algebra of G, and for each ξ ∈ g, let Xξ be the fundamental vector field on M
associated to ξ. Then, a momentum map is a smooth map

J : M → g∗ (3.4)

such that for every ξ ∈ g, the function Jξ := ⟨J, ξ⟩ : M → R satisfies

dJξ + ιXξϖ = 0. (3.5)

If, in addition, J is equivariant with respect to the given action of G on M and
the coadjoint action of G on g∗, that is,

J(g · p) = Ad∗
g−1J(p) for all g ∈ G, p ∈ M, (3.6)

then J is called an equivariant momentum map.

Definition 3.1.5. Let f : M → N be a smooth map between smooth manifolds,
with M of dimension m and N of dimension n. A point y ∈ N is called a regular
value of f if, for every x ∈ f−1(y), the following map is surjective

dfx : TxM → TyN. (3.7)

If y ∈ N is not a regular value, it is called a critical value. A point x ∈ M is called
a critical point of f if dfx is not surjective.

3We will always consider smooth actions.
4Namely, the action preserves the symplectic form.
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Theorem 3.1.6 (Marsden–Weinstein). Let (M,ϖ) be a symplectic manifold, and
let G be a Lie group acting on M via symplectomorphisms. Suppose the action is
free and proper, and that there exists an equivariant momentum map

J : M → g∗. (3.8)
Let µ ∈ g∗ be a regular value of J , and denote by Mµ := J−1(µ)/Gµ the quotient
of the level set by the stabilizer subgroup Gµ of µ under the coadjoint action.

Then Mµ is a smooth manifold of dimension dimM − 2 dimG + dimGµ, and
it inherits a natural symplectic form ϖµ uniquely characterized by the condition

ι∗ϖ = π∗ϖµ, (3.9)
where ι : J−1(µ) ↪→ M is the inclusion and π : J−1(µ) → Mµ is the canonical
projection.

3.2 Symplectic reduction and the RPS
The concept of the reduced phase space (RPS) originates in physics. In gauge
theories, not all field equations describe the true dynamics of the fields; some
impose constraints. Simultaneously, the gauge algebra restricts the number of
independent local degrees of freedom. The reduced phase space arises precisely
when one aims to extract the genuine physical content of the theory by factoring
out gauge-related degrees of freedom and non-dynamical relations.
Definition 3.2.1 (RPS). The reduced phase space (RPS) is the symplectic space
of gauge-inequivalent boundary data that extend to solutions of the field equations
in the bulk.

The procedure we follow to obtain the reduced phase space is known as the KT
construction([KT79]). We start with a field theory on a manifold with boundary
M with action S where we notice that the integration by parts in the variation of
the action commonly gives rise to a boundary term α, which we call the Noether
1-form.

We denote the space of the fields of the theory as W . By considering the pull-
back of the fields in W to the boundary Σ via the natural inclusion i : Σ → M ,
we obtain the space of pulled-back fields denoted by W̃ . In this setting, the
boundary term α can be interpreted as a 1-form on the space of pulled-back fields.
Furthermore, the variational operator δ is regarded as a de Rham differential of
the complex of differential forms on W̃ .

Note that the 2-form on W̃ defined via
ϖ̃ = δα (3.10)

is closed.
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Remark 3.2.2. It is important to note that a closed 2-form does not necessarily
have to be non-degenerate. A closed 2-form with a possibly degenerate kernel is
called a pre-symplectic form, and a space endowed with such a form is called a
pre-symplectic space.

Definition 3.2.3. We define the space of pre-boundary fields for a field theory as
the pre-symplectic space (W̃ , ϖ̃), where W̃ is the space of pulled-back fields on
the boundary Σ and ϖ̃ is the pre-symplectic form.

In order to obtain a symplectic space, we could just quotient by the distribution
given by the kernel of the pre-symplectic form.

Definition 3.2.4. We define the geometric phase space of a field theory as the
symplectic space (W , ϖ) obtained as the quotient of the space of pre-boundary
fields by the kernel of its pre-symplectic form5

W := W̃
ker(ϖ̃) (3.11)

and with symplectic form ϖ, the unique 2-form on W such that p∗ϖ = ϖ̃, where
p : W̃ → W is the canonical projection.

Definition 3.2.5 (Symplectic reduction). The procedure we employed in con-
structing the geometric phase space is referred to as symplectic reduction. In
particular, when the reduction is carried out from a coisotropic submanifold, it is
called coisotropic reduction.

Remark 3.2.6. Notice that the Marsden–Weinstein reduction is a particular case
of coisotropic reduction, in which the characteristic distribution—i.e., the distri-
bution arising as the kernel of the presymplectic form—is generated by the action
of a Lie group through a momentum map.

As we mentioned in the beginning, in field theory, it is commonly understood
that not all field equations are dynamical, and on a manifold with boundary, this
is equivalent to having some field equations that are non-transverse with respect
to the boundary. The resulting non-dynamical equations can be interpreted as
constraints that must be satisfied by the boundary fields.
We can give these constraints the form of local functionals on W (or W̃), just by
integrating the pulled-back equations on Σ. We denote this set of constraints as
C (or C̃).

5This quotient is to be intended in the sense of distributions on the tangent bundle. Note
that ker(ϖ̃) is involutive, since ϖ̃ is closed.
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The first understanding of the nature of a set of constraints on a symplectic
space is due to Dirac [Dir50]. He pointed out correctly that the nature of the con-
straints, which he divided in first- and second-class, had important implications on
the local degrees of freedom of the theory.6 More precisely, the hamiltonian vector
fields of the first-class constraints generate the algebra of the symmetry group of
the theory and the ones of the second-class constraints do not. In Section 4.3, a
more detailed discussion of first- and second-class constraints is presented.

If these constraints are first class, their vanishing locus—which is a coisotropic
submanifold—can be possibly identified7 with the zero level set of a momentum
map associated to the gauge algebra generated by the Hamiltonian vector fields of
the constraints. The Marsden–Weinstein reduction of this locus yields the reduced
phase space (RPS). This is indeed the space of the non-gauge equivalent (thanks to
the quotient) initial conditions (the fields are on the boundary) for the dynamical
field equations of the theory (since we have considered the vanishing locus of the
constraints).

(W , S)

(W̃Σ, ϖ̃, C̃)

(WΣ, ϖ, C)

RPS

Pull-back to the boundary

Symplectic reduction

Reduction (possibly Marsden-Weinstein)

Table 3.1: Construction of the RPS.

3.3 The peculiarity of the null–boundary
It is worth setting aside a short section to discuss the nature of a null-boundary. As
we will see in the next sections, this kind of boundary requires additional conditions
to be imposed, due to the degeneracy of the induced metric. This feature has
direct consequences on the constraint algebra, since these extra conditions can be
reinterpreted as new local functionals defining the constraints of the theory. In

6The local degrees of freedom are defined as the dimension of the reduced phase space and
the dimension of a space is define as the rank of the fiber or its dimension as a C∞-module.

7The gauge algebra must integrate to a Lie group. Otherwise one has to perform another
coisotropic reduction.
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this section, we will focus on clarifying what a null-boundary is and present a
representative example to better illustrate the concept.

Definition 3.3.1 (Null-boundary). Let M be a differentiable pseudo-Riemannian
manifold with metric g. We say that the boundary of M , denoted as Σ = ∂M ,
is a null-boundary if the pullback of the metric g to Σ via the boundary inclusion
i : Σ → M is degenerate, i.e., if dim(Ker(ι∗g)) = 1, where the boundary metric is
considered as a map ι∗g : TΣ → T ∗Σ.

To give an idea about why this degeneracy arises, we can take into account the
following examples.
Example 3.3.2 (Minkowski). Consider the Minkowski space-time given by R4 with
metric η = diag(1, 1, 1,−1). The vielbein is given by the set of the following
tetrads

eaµ = δaµ, (3.12)
where a, µ = 1, 2, 3, 4.

If we consider as our space-time the submanifold given by time-like part of the
Minkowski space-time which has the light-cone as its boundary, we can take the
boundary vielbein with the following form8

eai =


ea1 = δa1
ea2 = δa2
ea+ = δa3 − δa4 ,

(3.13)

where again a = 1, 2, 3, 4 but i = 1, 2,+ the boundary coordinates. It follows that
the boundary metric is given by

η∂ij = ηabe
a
i e
b
j = diag(1, 1, 0), (3.14)

and it is thereby degenerate. Following from Definition 3.3.1, we have that the
light-cone is indeed a null-boundary.
Example 3.3.3 (Schwarzschild). Consider in the bulk (N = 4) the metric

g = e2B(r)dr2 + r2(dθ2 + sin2 θdφ2) − e2A(r)dt2. (3.15)

After properly setting A and B as

e2B(r) =
(
1 − 2m

r

)−1
(3.16)

e2A(r) = 1 − 2m
r
, (3.17)

8Note that, as we will be doing in the subsequent sections, we denote the bulk and boundary
vielbein in the same way.
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with 2m a constant called the Schwarzschild radius, this turns to be metric discov-
ered/invented by Karl Schwarzschild in 1916 ([K S16]). As well known, this metric
presents a particular singularity at r = 2m, which spatially lies on the surface S2.
This singularity is called event horizon.

We can see, by inspection, that

et = eAdt er = eBdr (3.18)
eθ = rdθ eφ = r sin θdφ, (3.19)

satisfy ηabeaeb = g, and can be taken as a choice of the vielbein.
The vanishing torsion condition completely determines the connection ω,

through the equation
(dωe)a = dea + ωabe

b = 0. (3.20)
Taking the exterior derivative of Eq. (3.18), yields

der = 0 (3.21)

det = dA

dr
eAdrdt (3.22)

deθ = drdθ (3.23)
deφ = sin θdrdφ+ r cos θdθdφ. (3.24)

We can write (dθ, dφ, dr, dt) in terms of the coframes and, therefore, Eq. (3.21)
becomes

der = 0 (3.25)

det = (−dA

dr
e−B)eter (3.26)

deθ = (r−1e−B)ereθ (3.27)
deφ = (r−1e−B)ereφ + (r−1 cot θ)eθeφ, (3.28)

which can be used in Eq. (3.20) in order to identify the connection form ω, for
which we have the six independent components

ωtr = (dA
dr
e−B)et (3.29)

ωrθ = (−r−1e−B)eθ (3.30)
ωθφ = (−r−1 cot θ)eφ (3.31)
ωrφ = (−r−1e−B)eφ (3.32)
ωtθ = 0 (3.33)
ωtφ = 0, (3.34)
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where the other components are given by the antisymmetry ωij = −ωj i.
We observe that these coframes present a degeneracy. More precisely, we notice

that that both A(r) and B(r) diverge when restricted to the event horizon. there-
fore, in order to overcome the problem of the degeneracy, consider the coframes of
Eq. (3.18) under the change of coordinates, with θ and φ that do not change and
rs = 2m the Schwarzschild radius with m the mass in natural units, given by (for
r > rs)

T =
( r
rs

− 1
)1/2

er/2rs cosh( t

2rs
) (3.35)

X =
( r
rs

− 1
)1/2

er/2rs sinh( t

2rs
), (3.36)

where we have set A(r) = log(1 − rs
r

) and B(r) = − log(1 − rs
r

). Moreover, notice
that r becomes a function of T and X.

This leads to the following coframes (Kruskal)

eT = 2 r
3
2
s√
r
e−r/2rsdT (3.37)

eX = 2 r
3
2
s√
r
e−r/2rsdR (3.38)

eθ = rdθ (3.39)

eφ = r sin θdφ. (3.40)

We take the components of Eq. (3.37) and restrict them to the S2 ×R hypersurface
with fixed r and coordinates (+, 1, 2). We have

ea1 = rδa1 (3.41)
ea2 = r sin θδa2 (3.42)

ea+ = 2 r
3
2
s√
r
e−r/2rs(δa3 + δa4), (3.43)

with a = 1, 2, 3, 4. These coframes are no longer degenerate in the present case for
r = 2m. On the other hand, the pulled back metric9

g∂ = e∗η = diag(0, r2, r2 sin2 θ) (3.44)

turns out to be degenerate. Thus, these coframes define a null-hypersurface.
9Here, e is the vielbein given by e1, e2, e+.



Chapter 4

Codimension-1 structure of
gravity

When it comes to pure gravity, it is worth dedicating an entire chapter only to
that. In fact, given that gravity will be present throughout all chapters of this
thesis, we will develop the underlying geometrical framework that will serve as the
foundation for the entirety of our discussion.

In the following chapter, we will recall the results of [CCS21a], where the non-
degenerate boundary structure is presented, and [CCT21], where the degenerate
one is treated instead.

4.1 The Palatini-Cartan theory
General Relativity is traditionally formulated ([Ein16]) using a linear (or Koszul)
affine connection ∇ on the tangent bundle TM . This leads to Einstein’s field equa-
tions, expressed in terms of the Ricci tensor Rµν , which depends on the Christoffel
symbols Γ and, consequently, on the metric gµν . The Ricci scalar R and the metric
gµν further appear in the Einstein-Hilbert action functional:

S =
∫
R

√
−g d4x. (4.1)

Since the connection is assumed to be Levi-Civita—i.e., the unique metric-
compatible and torsion-free affine connection—the Christoffel symbols are sym-
metric by definition.

Alternatively, one can consider the same action (4.1), but treat the connection
∇ as an independent variable, so that S = S[g,∇]. This approach allows Γ to
represent the coefficients of a generic affine connection, which may, in general,
be non-symmetric. If we impose metric compatibility, the variational principle

32
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ensures the torsion-free condition (and vice versa). This formulation is known as
the Palatini formalism ([Pal19]).

By means of the coframe formalism we developed in Chapter 2, we can cast the
theory into a different setting. Namely, we are able to express the affine and the
metric structure of the theory through a vielbein e and a principal connection ω,
letting general relativity resemble, from a geometrical perspective, an SU(N) gauge
theory. This approach is known as the coframe or Palatini–Cartan formulation.

Then, we define the theory as follows:

Definition 4.1.1. The classical Palatini–Cartan theory is the assignment of the
pair (F ,S)M to every pseudo riemannian N -dimensional manifold and vector space
V with reference metric1 η with space of fields

F = Ω̃1,1 × A(P ) ∋ (e, ω) (4.2)

and action functional

S =
∫
M

1
(N − 2)!e

N−2Fω + 1
N !Λe

N , (4.3)

where Λ ∈ R and the powers in e are in terms of the wedge product.

Remark 4.1.2. In Eq. (4.3), we have omitted both the wedge product and the trace.
The trace operator is the map Tr: ∧NV → R such that, given a basis {ui}i=1,...,N
of V , it holds that Tr[ui1 ∧ · · · ∧ uin ] = εi1...in , thus the trace works as a choice of
the orientation on M , which must be compatible with the SO(N − 1, 1) reduction.
Remark 4.1.3. In the subsequent sections, we will avoid reiterating a similar defi-
nition for each distinct case. Rather, we will provide the space of fields on M , and
it is important to bear in mind that the definitions of the upcoming theories will
be straightforward generalizations of Definition 4.1.1.

The fields of the theory are therefore the coframe e ∈ Ω̃1,1 and the pull-back of
the principal connection ω ∈ A(P ) via sections of P .

The Euler–Lagrange equations coming from the action principle δS = 0 are,
respectively for the variations in e and ω theory read

1
(N − 3)!e

N−3Fω − 1
(N − 1)!Λe

N−1 = 0 (4.4)

eN−3dωe = 0, (4.5)

1Note that any particular choice of the Lorentzian structure on V is immaterial, since a change
in V would just isomorphically reflect to the space of fields without changing SP C .
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which, in N = 4, reduce to

eFω − 1
3!Λe

3 = 0 (4.6)

edωe = 0. (4.7)

By injectivity of the map e ∧ · on Ω2,1 (see [CCT21]), Eq. (4.7) is equivalent to2

dωe = 0, (4.8)

which is the torsion-free condition. Therefore, this is the equation that identifies
the Levi-Civita connection for the metric (2.10).

4.2 Boundary structure of gravity
In this section, we will assume that our stratified structure, with respect of Defi-
nition 2.2.6, has only two strata, i.e. we will work on a manifold with boundary.
Moreover, from now on, we will take N = 4. Notice that the geometrical method
implemented to the study of the boundary structure of the theory is the KT one,
based on the symplectic reduction defined in Definition 3.2.5, and described in the
previous sections.
Remark 4.2.1. Given i : : Σ → M the boundary inclusion. We will use the
following definition for bundle valued differential forms on the boundary

Ωi,j
Σ := Ωi(Σ,∧ji∗V). (4.9)

We notice that the integration by parts in the variation of the action S gives
rise to a boundary term

α =
∫

Σ

1
2e

2δω, (4.10)

which we call the Noether 1-form.
Remark 4.2.2. Notice that we denote fields on the boundary with the exact same
notation of the ones in the bulk.
Remark 4.2.3. By considering the pull-back of the fields in F to the boundary Σ via
the natural inclusion i : Σ → M , we obtain the space of pulled-back fields denoted
by F̃Σ. In this setting, the boundary term α defined in (4.10) can be interpreted as
a 1-form on the space of pulled-back fields. Furthermore, the variational operator
δ is regarded as a de Rham differential of the complex of differential forms on F̃Σ.

2This generalizes to a generic N .
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Lemma 4.2.4. The 2-form on F̃Σ defined via

ϖ̃ = δα =
∫

Σ
eδeδω (4.11)

is closed and degenerate.

Proof. The proof of the closeness follows immediately from the definition of the
graded algebra structure. The degeneracy comes from noticing that a vector X ∈
Ker(ϖ̃) acts as a shift ω 7→ ω + v with v ∈ Ω1,2

Σ such that ev = 0. In particular,
given

X = Xe
δ

δe
+ Xω

δ

δω
, (4.12)

we get

ϖ̃(X) =
∫

Σ
e(Xωδe+ Xeδω) = 0. (4.13)

Since we already mentioned that e∧· is injective on Ω1,1
Σ but not on Ω1,2

Σ , it follows
that Xe = 0 and eXω = 0, namely X acts on ω as ω 7→ ω + v with v ∈ Ω1,2

Σ such
that ev = 0.

Definition 4.2.5. We define the space of pre-boundary fields for the Palatini–
Cartan theory as the pre-symplectic space (F̃Σ, ϖ̃), where F̃Σ is the space of pulled-
back fields (e, ω) on the boundary Σ and ϖ̃ =

∫
Σ
eδeδω is the pre-symplectic form.

As we pointed out in Section 3.1, in order to obtain a symplectic space, we
could just quotient by the distribution given by the kernel of the pre-symplectic
form. We need first to define some maps.

Definition 4.2.6. Let e ∈ Ω̃1,1
Σ and ek ∈ Ωk,k

Σ be the wedge product of k elements
e. Then, we define the following maps:

W
Σ,(i,j)
k : Ωi,j

Σ −→ Ωi+k,j+k
Σ (4.14)

α 7−→ ek ∧ α

ϱ(i,j) : Ωi,j
Σ −→ Ωi+1,j−1

Σ (4.15)
α 7−→ [e, α]

ϱ̃(i,j) : Ωi,j
Σ −→ Ωi+1,j−1

Σ (4.16)
α 7−→ [ẽ, α],

with ẽ ∈ Ω̃1,1
Σ being a degenerate vielbein, namely ẽ∗η = 0.
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Theorem 4.2.7. The geometric phase space for the Palatini–Cartan theory is the
symplectic manifold (FΣ, ϖ) obtained by a symplectic reduction of the space of pre-
boundary fields F̃Σ. The symplectic form ϖ is the unique 2-form on FΣ such that
p∗ϖ = ϖ̃, where p : F̃Σ → FΣ is the canonical projection, and it is given by

ϖ =
∫

Σ
eδeδ[ω], (4.17)

where

ω′ ∼ ω ⇐⇒ ω′ − ω ∈ KerWΣ,(1,2)
1 . (4.18)

We refer to this equivalence class as Ared(Σ).

Proof. It follows from Lemma 4.2.4.

Remark 4.2.8. As mentioned in Chapter 3, we interpret the field equations con-
taining non-transversal terms to the boundary as local functionals (constraints)
on the space of pre-boundary fields of the theory.
The local functionals coming from the transversal components to the boundary
are given by

Lc =
∫

Σ
cedωe (4.19)

Pξ =
∫

Σ
ιξeeFω + ιξ(ω − ω0)edωe (4.20)

Hλ =
∫

Σ
λen

(
eFω + 1

3!Λe
3
)

(4.21)

where c ∈ Ω0,2
Σ [1], ξ ∈ X[1](Σ) and λ ∈ Ω0,0

Σ [1] are (odd) Lagrange multipliers and
the notation [1] denotes that the fields are shifted in parity and are treated as odd
variables.3
However, these functionals are not the only ones forming the constraints set of
the theory. In Section 3.3, we mention that, for a case of a null-boundary, the
pull-back of the metric to the boundary is in general degenerate. This fact has
a few implications. In particular, the degeneracy of the metric has an impact on
the constraints of the theory. Indeed, one has to encompass the consequences of
this degeneracy into a new constraint if one wants to take into account all possible
pseudo-Riemannian geometric structures of the boundary.

3The symbol [1] indicates indeed a shift in the parity. Note that this does not mean necessarily
that their total parity is odd. Moreover, this formulation is natural for the BV–BFV formalism;
while it lies beyond the scope of the present work, it may prove useful for future developments.
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Remark 4.2.9. On the boundary Σ, the injectivity property of the map e ∧ · act-
ing on boundary (2, 1)-forms is lost ([CCS21a]). This property guaranteed the
equivalence of dωe = 0 and edωe = 0 in the bulk. This situation is indeed prob-
lematic. In fact, in the bulk we have two perfectly equivalent conditions, namely
two equivalent ways of writing one of the field equations. If we take the equation
edωe = 0 as a constraint functional of the theory on the boundary, we need the
equivalence with dωe = 0 to hold in order to make sense of the field equations on
the boundary themselves. In other words, since in the bulk edωe = 0 must give
rise to the same solution space of dωe = 0, if the solutions space of these two equa-
tions on the boundary were to differ, then the theory on the boundary would be
ill-defined. I.e., the pull-back to the boundary of the solutions obtained from the
field equations in the bulk would be different from the boundary fields obtained
from the solutions of the fields equations on the boundary. It means that one has
to impose some additional conditions in order to maintain this equivalence on the
boundary4

Definition 4.2.10. Let J be a complement5 in Ω2,1
Σ of the space Im ϱ(1,2)|KerWΣ,(1,2)

1
.

Then, we define the following subspaces:

T := KerWΣ(2,1)
1 ∩ J ⊂ Ω2,1

Σ (4.22)
S := KerWΣ,(1,3)

1 ∩ Kerϱ̃(1,3) ⊂ Ω1,3
Σ (4.23)

K := KerWΣ,(1,2)
1 ∩ Kerϱ(1,2) ⊂ Ω1,2

Σ . (4.24)

Definition 4.2.11 (Completion vielbein). We define the completion vielbein as a
fixed non-vanishing section en ∈ Ω0,1

Σ such that, for e ∈ Ω̃1,1
Σ , {e(v1), e(v2), e(v3), en}

is a basis of i∗V , where {v1, v2, v3} is a basis of TΣ.
Remark 4.2.12. Notice that fixing a completion vielbein en selects an open subset
for e ∈ Ω̃1,1

Σ on which the defining conditions for en hold.
Remark 4.2.13. Notice in particular that, in any neighborhood of e of the space of
boundary fields, we are allowed to pick en independently of the dynamics of the
vielbein e. In other words, we can state that en is constant in the field e. This
trivially implies that en has no variation along e.

4Notice that one could theoretically consider the pull-back to the boundary of the equation
dωe = 0, instead of edωe = 0, and take that as a constraint. In fact, the solution space of dωe = 0
contains that one of edωe = 0. Notice that the constraint arising from dωe = 0 would be no
longer basic with respect to the quotient map defining the geometric phase space. Therefore,
one has to split it into an invariant and a non-invariant part, leading to a situation perfectly
equivalent to the one discussed above.

5To obtain an explicit expression for the complement, one can follow these steps. Start by
selecting an arbitrary Riemannian metric on the boundary manifold Σ and extend it to the space
Ω2,1. Then, the orthogonal complement of the image of the map ϱ(1,2)|KerW Σ,(1,2)

1 in Ω2,1
Σ can

be identified as the space J , with respect to the chosen Riemannian metric.
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Lemma 4.2.14 (Corollary of Lemma A.0.1). Given α ∈ Ω2,1
Σ , en ∈ Ω0,1

Σ a com-
pletion vielbein and T as defined in Definition 4.2.10, we have that

α = 0

if and only if 
α ∈ KerWΣ,(2,1)

1

en(α− pT α) ∈ ImW
Σ,(1,1)
1

pT α = 0,

(4.25)

where pT is the projector onto T . We call the second and third conditions in (4.25)
respectively the structural and the degeneracy constraints.

The next lemma provides a formulation of the degeneracy constraint in terms
of an integral functional.

Lemma 4.2.15 ([CCT21]). Let α ∈ Ω2,1
Σ . Then, we have the following equivalence

pT α = 0 ⇐⇒
∫

Σ
τα = 0 ∀τ ∈ S. (4.26)

Remark 4.2.16. As long as we do not specify any α, these two lemmas remain
purely geometrical and do not depend on the properties of the field equations.
We will then be able to use these results for the interactive theories where the
equivalence condition on the boundary will differ from dωe = 0 and edωe = 0
(since the field equations will be different themselves). Therefore, in general, we
need to specify α for each different theory. In particular, for the Palatini–Cartan
theory, α = dωe and the structural reads

en(dωe− pT dωe) ∈ ImW
Σ,(1,1)
1 , (4.27)

together with the additional constraint

Rτ =
∫

Σ
τdωe. (4.28)

Remark 4.2.17. It is important to emphasize that, in the non-degenerate case (i.e.
if the boundary has no null-components), Eq. (4.25) is trivially equivalent to the
structural constraint

enα ∈ ImW
Σ,(1,1)
1 . (4.29)

In fact, in the non-degenerate case, one can easily see that pT α = 0 holds trivially,
which also implies that the additional constraint Rτ is identically vanishing.
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Remark 4.2.18. To study the reduced phase space of the theory, we make use of
representatives for the equivalence classes defined in (4.18). In the non-degenerate
case, these representatives are uniquely determined by the structural constraint
itself. In other words, ensuring the equivalence of dωe = 0 and edωe = 0 on the
boundary, is enough to determine uniquely the representatives of the equivalence
classes defined in (4.18). However, in the degenerate case, the structural constraint
and the degenerate constraint (or its integral form Rτ ), despite the fact that they
indeed ensure on the boundary the equivalence mentioned above, are not sufficient
to uniquely assign a representative to each equivalence class. Therefore, it is
necessary to seek an alternative way to guarantee the unambiguous determination
of these representatives.

We can accomplish this through the following lemma.

Lemma 4.2.19 ([CCT21]). Given ω ∈ Ω1,2
Σ , en ∈ Ω0,1

Σ a completion vielbein and
K as defined in Definition 4.2.10, then the conditions

en(dωe− pT (dωe)) ∈ ImW
Σ,(1,1)
1

pKω = 0
(4.30)

uniquely define a representative of the equivalence class [ω] ∈ Ared(Σ).

Remark 4.2.20. In [CCT21], it has been proved that the analysis is independent
of the choice of the representative of the equivalence class (4.18). In more rigorous
terms, for each choice of the representatives there is a canonical symplectomor-
phism between the symplectic space defined by representatives and the geometric
phase space of the theory.
Remark 4.2.21. It is important to highlight that, in the non-degenerate case, the
subspaces T , S, and K of Definition 4.2.10 are trivial. It follows that the projec-
tors pK and pT are also trivial. Once again, this means that, in the non-degenerate
theory, the structural constraint alone serves the purpose of establishing the equiv-
alence between dωe = 0 and edωe = 0 on the boundary, as well as uniquely deter-
mining the representatives of the equivalence classes defined in Eq. (4.18).

We have seen that, on a null-boundary, we need both the structural and the
degeneracy constraints together with the additional equation pKω = 0 in order to
both guarantee the equivalence between dωe = 0 and edωe = 0 on the boundary
and uniquely fix the representative of the equivalence class [ω] ∈ A(i∗P )red.
More specifically, the role of the structural constraint together with the integral
constraint Rτ is the one of ensuring the aforementioned equivalence condition,
whereas, the structural constraint together with pKω = 0 will uniquely fix the
representatives.

From Lemma 4.2.19, it naturally follows the following theorem.
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Theorem 4.2.22. The geometric phase space of the Palatini–Cartan theory is
symplectomorphic to the space (F∂, ϖ∂), where6

F∂ ⊂ Ω̃1,1
Σ × Ω1,2

Σ (4.31)

with (e, ω) ∈ F∂ satisfying
en(dωe− pT (dωe)) ∈ ImW

Σ,(1,1)
1

pKω = 0,
(4.32)

as defined in Lemma 4.2.19.
The corresponding symplectic form on F∂ is given by

ϖ∂ =
∫

Σ
eδeδω. (4.33)

Remark 4.2.23. Because of convenience, from this to the following sections, we
will always work within spaces defined by representatives. We will equivalently
call them the geometric phase spaces of the theories.
Remark 4.2.24. Note that the space of fields F∂ described in Theorem 4.2.22 can
equally be formulated as a general fiber bundle. All results in this paper carry
over verbatim under this substitution.

We now display the constraints of the theory. The vanishing locus C̃ of these
functionals will then be the submanifold upon which we will build the reduced
phase space of the theory.

Definition 4.2.25. Let c ∈ Ω0,2
Σ [1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1] and τ ∈ S[1].

Then, we define the following functionals

Lc =
∫

Σ
cedωe (4.34)

Pξ =
∫

Σ

1
2ιξ(e

2)Fω + ιξ(ω − ω0)edωe (4.35)

Hλ =
∫

Σ
λen

(
eFω + Λ

3!e
3
)

(4.36)

Rτ =
∫

Σ
τdωe. (4.37)

We refer to these as the constraints of the Palatini–Cartan theory.
6Notice that we can either choose A(ι∗P) or the space of local connections on the boundary

Ω1,2
Σ .
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Remark 4.2.26. Although these constraints follow from the field equations, here
we adopt them as a definition. Our derivation relies on several geometric con-
structions and includes an arbitrary form of the constraints chosen for subsequent
computations. Therefore, it is convenient to cast them explicitly as a definition.

Remark 4.2.27. Notice that the structure of the constraints is invariant with re-
spect to the quotient map of Theorem 4.2.7. This is a fundamental point to make
sense of the whole construction.

We are now able to determine the algebra of the constraints of the theory.
This differs from the one of the non-degenerate theory, since the new constraint
Rτ changes the nature of the Poisson brackets, which become second class.

Theorem 4.2.28. The Poisson brackets of the constraints of Definition 4.2.25
read

{Lc, Lc} = −1
2L[c,c] {Pξ, Pξ} = 1

2P[ξ,ξ] − 1
2LιξιξFω0

{Lc, Pξ} = LLω0
ξ
c {Hλ, Hλ} ≈ 0

{Lc, Rτ} = −RpS [c,τ ] {Pξ, Rτ} = RpSLω0
ξ
τ .

{Rτ , Hλ} ≈ Gλτ {Rτ , Rτ} ≈ Fττ

{Lc, Hλ} = −PX(a) + LX(a)(ω−ω0)a −HX(n)

{Pξ, Hλ} = PY (a) − LY (a)(ω−ω0)a +HY (n)

with X = [c, λen] and Y = Lω0
ξ (λen) and where the superscripts (a) and (n)

describe their components with respect to ea, en. Furthermore Fττ and Gλτ are
functionals of e, ω, τ and λ that are not proportional to any other constraint.

Remark 4.2.29. The symbol ≈ indicates the identity on the zero locus of the
constraints. In particular, this means that those brackets written with this symbol
are not a linear combination of the constraints themselves. On the other hand, all
the brackets written with a = vanish on the zero locus, for example {Lc, Lc} ≈ 0.

Corollary 4.2.30. If the boundary metric i∗g is non-degenerate, then the func-
tionals in Definition 4.2.25 define a coisotropic submanifold.

The first step in each of the following sections will be the one of finding the
correct set of equations as a choice for the structural constraint. Then, we will find
the relations for uniquely fixing the representatives. Once established the correct
geometrical set-up, we will proceed by computing the algebra of the constraints of
the theory at hand.
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4.3 Digression: First and second class constraints
Definition 4.3.1. Consider a symplectic manifold W and a set of smooth maps
ϕi ∈ C∞(W) defined on it. Let Cij = {ϕi, ϕj} represent the matrix of Poisson
brackets associated with these maps. The count of second-class maps in the set
corresponds to the rank of the matrix Cij evaluated at the zero locus defined by
the ϕis.7 In particular, if Cij ≈ 0, we categorize all the maps as first-class.

Proposition 4.3.2. Let W be a symplectic manifold and let ψi, ϕj ∈ C∞(W),
where i = 1 . . . n and j = 1 . . .m. Moreover, denote with Cjj′ , Bij and Dii′ the
matrices representing, respectively, the Poisson brackets {ϕj, ϕj′}, {ψi, ϕj} and
{ψi, ψi′}, with i, i′ = 1 . . . n and j, j′ = 1 . . .m. Then, if D is invertible and
C = −BTD−1B, the number of second-class constraints is n, i.e. the rank of the
matrix D.

Proof. See [CCT21].

Theorem 4.3.3 ([CCT21]). The constraints Lc, Pξ, Hλ and Rτ do not form a
first class system. In particular, Rτ is a second class constraint, whereas the others
are first class.

We can now determine the degrees of freedom of the reduced phase space.
Let r denote the number of degrees of freedom in the reduced phase space, p the
number of degrees of freedom in the geometric phase space, f the number of first
class constraints, and s the number of second class constraints. The relationship
among them is given by8

r = p− 2f − s. (4.38)

For all the possible couplings, it follows that we obtain the same result of the
Palatini–Cartan theory, i.e.,

r = 2. (4.39)

Remark 4.3.4. We notice that in the specific case where the boundary metric is
non-degenerate, we would obtain r = 4. This reflects the existence of the con-
straint Rτ , which has been proven giving rise to a second class system. We recall
that such a constraint was implied by the geometry of the theory. In particular,
together with some additional condition, it ensured the possibility of uniquely fix-
ing a representative of the equivalence class of ω. In fact, on a general (possibly

7We assume the rank to be constant on the zero locus.
8The proof of this formula is contained in [HT92].
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null-) boundary, the space T defined in Definition 4.2.10 is non-trivial.
In physics, it is well-known that GR carries four local degrees of freedom.9 How-
ever, the constraint analysis of the degenerate theory sheds light of the fact that
these local degrees of freedom, in the case of manifolds with a null-boundary, are
reduced to only two. This fact has important implications regarding the study of
black-holes, since the event horizon is a null-hypersurface.

9Notice that sometimes the literature reports only two degrees of freedom. This is simply a
consequence of considering the dimension of the phase space or just the one of the base manifold.



Chapter 5

Codimension-1 structure of field
theories

5.1 Scalar field
In the canonical formalism, the Palatini–Cartan theory coupled with a scalar field
maintains the very same geometrical background of the previous sections with the
addition of two new fields, the scalar field ϕ and its conjugate momentum (upon
equation of motion) Π.

We must define the building blocks of our scalar Palatini–Cartan theory, start-
ing with the space of fields on M , which reads

Fϕ = Ω̃1,1 × A(P ) × C∞(M) × Ω0,1 ∋ (e, ω, ϕ,Π), (5.1)
and the action functional

Ss = S + Sϕ = S +
∫
M

1
6e

3Πdϕ+ 1
48e

4(Π,Π), (5.2)

where the brackets indicates the inner product of the Minkowski bundle. It follows
that the Euler-Lagrange equations of the theory are given by

edωe = 0 (5.3)

eFω + Λ
6 e

3 + 1
2e

2Πdϕ+ 1
12e

3(Π,Π) = 0 (5.4)

d(e3Π) = 0 (5.5)
e3(dϕ− (e,Π)) = 0. (5.6)

The variation of the action leads to the following Noether 1-form on the space of
pre-boundary fields

α̃ϕ =
∫

Σ

1
2e

2δω + 1
6e

3Πδϕ, (5.7)

44
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which gives rise to the following pre-symplectic form

ϖ̃ϕ = δα̃ =
∫

Σ
eδeδω + 1

6δ(e
3Π)δϕ. (5.8)

Similarly to the previous section, we can define the space of pre-boundary fields
F̃ϕ

Σ, as in Definition 4.2.5 for the Palatini–Cartan theory, by pulling back the fields
to the boundary Σ. Also in this case, we will write the fields on the boundary with
the same letters as for those in the bulk.

We are now able to define the geometric phase space of the theory via a reduc-
tion through the kernel of the pre-symplectic form.
Theorem 5.1.1 ([CCF22]). The geometric phase space for the scalar Palatini–
Cartan theory is the symplectic manifold (Fϕ

Σ, ϖϕ) given by the following equiva-
lence relations on the space of pre-boundary fields F̃ϕ

Σ

ω′ ∼ ω ⇐⇒ ω′ − ω ∈ KerWΣ,(1,2)
1 (5.9)

Π′ ∼ Π ⇐⇒ Π′ − Π ∈ KerWΣ,(0,1)
3 (5.10)

and the symplectic form

ϖϕ =
∫

Σ
eδeδ[ω] + 1

6δ(e
3[Π])δϕ. (5.11)

We refer to these equivalence classes as A(Σ)red and Ω0,1
Σ,red.

We notice that the first field equation (5.4) does not couple with the scalar
field. Therefore, since this purely geometrical term is equivalent to the one of
the Palatini–Cartan theory (namely α = dωe), the structural and degeneracy con-
straints possess the same form of the free theory. In fact, as we said, they serve
the purpose of maintaining the equivalence between edωe = 0 and dωe = 0 on the
boundary. We recall here the aforementioned constraints, which thus read

en(dωe− pT dωe) ∈ ImW
Σ,(1,1)
1

pT dωe = 0.
(5.12)

Similarly to the Palatini–Cartan theory, we focus on fixing the representative of
the equivalence classes defined in Theorem 5.1.1. The purely gravitational part
remains the same, since it follows uniquely from the kernel of the piece of (5.8)
equal to the pre-symplectic form of the free Palatini–Cartan theory. In other
words, since in the present case the equivalence class [ω] is defined in the same
way of the Palatini–Cartan theory, as well as the structural constraint, it follows
that Lemma 4.2.19 applies verbatim to the scalar field theory.
Although, we are left to fix the representative of the equivalence class for Π. For
this purpose, we give the following lemma.
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Lemma 5.1.2. Let ϕ ∈ C∞(Σ), Π ∈ Ω0,1
Σ and en ∈ Ω0,1

Σ as in Lemma 4.2.14.
Then, the conditions 

dϕ− (e,Π) = 0

pWΠ = 0,
(5.13)

with1 W = e(Ker(i∗g)), uniquely define a representative of the equivalence class
[Π] ∈ Ω0,1

Σ,red.
Proof. We first notice that, if we consider a vector field along the degenerate
direction (if any), namely X ∈ Ker(i∗g), and we take the contraction of the field
equations with it, we obtain the condition

ιXdϕ = 0. (5.14)

What happens is that the degeneracy in the boundary metric decouples ϕ and Π
along the degenerate direction2 and this is precisely why we need, compared to
the non-degenerate case, an extra condition in order to fix the representative of
the equivalence class of Π.

We can decompose the field Π ∈ Ω0,1
Σ in the following way3

Π = πnen + πaea, (5.15)

with a = 1, 2, 3. Then, we notice that, thanks to definition of the wedge product,
e3ea = 0 for every a and therefore π = πaea ∈ KerWΣ,(0,1)

3 . This means that fixing
a certain πn uniquely defines an equivalence class [Π] ∈ Ω0,1

Σ,red and vice versa. We
are thus left to show that the conditions (5.13) fix also uniquely π = πaea, as
a function of πn. Now, we recall that dim(Ker(i∗g)) = 1 and e is injective and,
therefore, we have that W ⊂ e(TΣ) is a 1-dimensional subspace. Furthermore, for
any open neighbourhood of e(TΣ), without loss of generality, we can assume that
the basis given by the vielbein {e1, e2, e3} is such that, say, e3 spans W . From
Eq. (5.15), it follows that the condition

pWΠ = 0 (5.16)
1Here, we regard the boundary metric as a map i∗g : TΣ → T ∗Σ and therefore we have that

Ker(i∗g) = {ξ ∈ X(Σ) | ιξ(i∗g) = 0} ⊂ X(Σ).
2This gives a condition on the derivative of ϕ. More specifically, the degeneracy of the

boundary metric complicates the selection of the components of the fields in the orthogonal
direction to the boundary. This implies that we could potentially have some spurious components
of the field ϕ generating the diffeomorphisms along the orthogonal direction. Therefore, we can
interpret the condition of Eq. (5.14) as a geometrical constraint that selects the only component
of the symmetry transformations orthogonal to the boundary which are actually generated by
the Hamiltonian vector field hϕ

λ of Eq. (5.41). In other words, one could say that Eq. (5.14)
selects the “physically meaningful” components of the derivative of the field ϕ.

3We take the basis of i∗V given by the vielbein and the completion en. Notice that, as a
section of i∗V, en will have components along the vielbein in general.
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implies

πne3
n + π3 = 0. (5.17)

Moreover, with such a choice of basis, we can write the exterior derivative of the
scalar field as

dϕ = ∂iϕdx
i = ea1∂aϕdx

1 + ea2∂aϕdx
2, (5.18)

where we implemented the condition ιXdϕ = 0, which reads ea3∂aϕ = 0. Lastly, we
can write the field equations implementing Eq. (5.18), obtaining

dϕ− (e,Π) = ∂iϕdx
i − (eai dxiea, πbeb + πnen) (5.19)

= eai ∂aϕdx
i − eai π

bgabdx
i − eai π

ngandx
i (5.20)

= eai (∂aϕ− πbgab − πngan)dxi = 0, (5.21)

where g is the metric and b = 1, 2. Since the restricted inner product is non-
degenerate, we have

∂aϕ− πbgab − πngan = 0 (5.22)

and thus we deduce the following equation for πb (with b = 1, 2)

πb = gab(∂aϕ− πngan). (5.23)

It follows that Eqs. (5.17) and (5.23) completely fix the components of π in terms
of πn. Hence, since fixing πn is equivalent to fixing a representative for [Π] and
vice versa, we have that, given an equivalence class (or equivalently a πn), the
conditions (5.13) fix uniquely the representative of [Π]. On the other hand, given
a representative, the conditions (5.13) fix unambiguously a πn and therefore an
equivalence class [Π].

Similarly to the previous section, we obtain the following result.
Theorem 5.1.3. The geometric phase space of the scalar Palatini–Cartan theory
is symplectomorphic to the space (F∂

ϕ , ϖ
∂
ϕ), where

F∂
ϕ ⊂ Ω̃1,1

Σ × Ω1,2
Σ × C∞(Σ) × Ω0,1

Σ (5.24)

with (e, ω, ϕ,Π) ∈ F∂
ϕ satisfying

en(dωe− pT (dωe)) ∈ ImW
Σ,(1,1)
1

pKω = 0

dϕ− (e,Π) = 0

pWΠ = 0,

(5.25)
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as defined in Lemma 4.2.19 and Lemma 5.1.2, and where the corresponding sym-
plectic form on F∂

ϕ is given by

ϖ∂
ϕ =

∫
Σ
eδeδω + 1

6δ(e
3Π)δϕ. (5.26)

Definition 5.1.4. Let c ∈ Ω0,2
Σ [1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1] and τ ∈ S[1]. Then,

we define the following functionals

Lc =
∫

Σ
cedωe (5.27)

P ϕ
ξ =

∫
Σ

1
2ιξ(e

2)Fω + 1
3!ιξ(e

3Π)dϕ+ ιξ(ω − ω0)edωe (5.28)

Hϕ
λ =

∫
Σ
λen

(
eFω + Λ

3!e
3 + 1

2e
2Πdϕ+ 1

2 · 3!e
3(Π,Π)

)
(5.29)

Rτ =
∫

Σ
τdωe. (5.30)

We refer to these as the constraints of the scalar Palatini–Cartan theory.

In the following theorem, we give the form of the Poisson brackets determining
the constraint algebra of the theory.

Theorem 5.1.5. The Poisson brackets of the constraints of Definition 5.1.4 read

{Lc, Lc}ϕ = −1
2L[c,c] {P ϕ

ξ , P
ϕ
ξ }ϕ = 1

2P
ϕ
[ξ,ξ] − 1

2LιξιξFω0

{Lc, P ϕ
ξ }ϕ = LLω0

ξ
c {Hϕ

λ , H
ϕ
λ}ϕ ≈ 0

{Lc, Rτ}ϕ = −RpS [c,τ ] {P ϕ
ξ , Rτ}ϕ = RpSLω0

ξ
τ

{Rτ , H
ϕ
λ}ϕ ≈ Gλτ {Rτ , Rτ}ϕ ≈ Fττ

(5.31)

{Lc, Hϕ
λ}ϕ = −P ϕ

X(a) + LX(a)(ω−ω0)a −Hϕ

X(n) (5.32)
{P ϕ

ξ , H
ϕ
λ}ϕ = P ϕ

Y (a) − LY (a)(ω−ω0)a +Hϕ

Y (n) , (5.33)

with X = [c, λen] and Y = Lω0
ξ (λen) and where the superscripts (a) and (n)

describe their components with respect to ea, en. Furthermore, Fττ and Gλτ are
functionals of e, ω, τ and λ which are not proportional to any other constraint.4

Proof. First, we introduce the following notation5

P ϕ
ξ = Pξ + pϕξ Hϕ

λ = Hλ + hϕλ, (5.34)
4They are properly defined in [CCT21] (proof of Theorem 30).
5With Pξ and Hλ of Definition 4.2.25.
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in order to simplify the computations.
In accordance with the results from [CCT21] and [CCF22], we possess knowl-

edge of the some of the brackets as follows

{Lc, Lc} = −1
2L[c,c] {Lc, P ϕ

ξ }ϕ = LLω0
ξ
c

{P ϕ
ξ , P

ϕ
ξ }ϕ = 1

2P
ϕ
[ξ,ξ] − 1

2LιξιξFω0
{Lc, Rτ} = −RpS [c,τ ]

{Pξ, Rτ} = RpSLω0
ξ
τ {Rτ , Hλ} ≈ Gλτ

{Rτ , Rτ} ≈ Fττ {Hϕ
λ , H

ϕ
λ}ϕ ≈ 0

(5.35)

{Lc, Hϕ
λ}ϕ = −P ϕ

X(a) + LX(a)(ω−ω0)a −Hϕ

X(n) (5.36)

{P ϕ
ξ , H

ϕ
λ}ϕ = P ϕ

Y (a) − LY (a)(ω−ω0)a +Hϕ

Y (n) (5.37)

with F and G non-identically-vanishing functional of τ and λ defined in [CCT21]
(Theorem 30) and X = [c, λen] ∈ Ω0,1

Σ divided into a tangential component X(a) =
[c, λen](a) and a normal component X(n) = [c, λen](n). We are therefore left to
compute the brackets {Rτ , h

ϕ
λ}ϕ and {Rτ , p

ϕ
ξ }ϕ. Also, we can recall the known

results from [CCT21] and [CCT21] for what concerns all Hamiltonian vector fields.
In particular, for pϕξ , we have

pϕe = 0 pϕω = 0 (5.38)
pϕρ = −Lω0

ξ ρ pϕϕ = −ξ(ϕ), (5.39)

whereas, for hϕλ, we have

hϕe = 0 hϕω = λen
(
Πdϕ+ e

4(Π,Π)
)

− λ

2 eΠ(Π, en) (5.40)

hϕρ = 1
2dω(λene2Π) hϕϕ = −λ(en,Π), (5.41)

where we have defined a new field ρ := 1
3!e

3Π ∈ Ω3,4
Σ .

Next, it is helpful to write explicitly the variation6 of Rτ , which reads7

δRτ =
∫

Σ
δτdωe− τ [δω, e] + τdωδe (5.42)

=
∫

Σ
(g(τ, ω, e) + dωτ)δe+ [τ, e]δω, (5.43)

6We compute the Hamiltonian vector fields in the following manner. Let X be the Hamiltonian
vector field of the functional F for the symplectic form ϖ, then it holds ιXϖ − δF = 0, where
δF is the functional derivative of F .

7Since τ is defined on S and the latter is defined making use of e, it follows that τ has a
non-trivial variation along e.
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where we have introduced the formal expression g = g(τ, e, ω) which encodes the
dependence of τ on e (see [CCT21] Theorem 30 for further details). It follows that
the Hamiltonian vector fields are

eRe = [τ, e] eRω = g(τ, ω, e) + dωτ (5.44)
Rρ = 0 Rϕ = 0. (5.45)

Now that we possess all Hamiltonian vector fields, we are ready to compute the
Poisson brackets of the remaining constraints. First, we notice that

{Rτ , p
ϕ
ξ }ϕ = 0 (5.46)

since pϕξ has trivial Hamiltonian vector fields along e or ω. Then, we compute

{Rτ , h
ϕ
λ}ϕ =

∫
Σ

−λenΠdϕ[τ, e] − e

4λen(Π,Π)[τ, e] + λ

2 eΠ(Π, en)[τ, e]. (5.47)

Here, the last two terms are zero thanks to e[τ, e] = 0 (following from eτ = 0 in
the definition of S). For the term bracket, we have∫

Σ
−λenΠdϕ[τ, e] =

∫
Σ

−λΠdϕτ [en, e] (5.48)

=
∫

Σ
−λΠdϕτ(en, e) (5.49)

(5.13)=
∫

Σ
−λΠ(e,Π)τ(en, e) (5.50)

=
∫

Σ
−λΠ(e,Π)en[τ, e] (5.51)

= 0, (5.52)

where we implemented the Leibniz identity for the squared brackets, the definition
of τ ∈ S and Proposition A.0.6, thanks to the fact that there are no derivatives in
the integral.8

Finally, in order to complete the proof, we can simply exploit the linearity of
the Poisson brackets and recall the definition of the split introduced in Eq. (5.34)
together with the known results mentioned above.

Corollary 5.1.6. If the boundary metric i∗g is non-degenerate, then the function-
als in Definition 5.1.4 define a coisotropic submanifold.

8Roughly speaking, we can “diagonalize” the vielbein.
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5.2 Yang–Mills field
In this section, we will examine the case of an SU(n)-gauge-field,9 namely a prin-
cipal connection A of a principal SU(n)-bundle over M denoted with P (see
[Tec19b] Section 5). It follows that the space of gauge fields is locally modelled on
Ω1(M, su(n)), via the pull-backs along the sections of G. In the Standard Model
of particle physics, this kind of field is responsible for the mediation of a variety of
interactions, in particular, the Electroweak and the Strong interaction. Moreover,
similarly to what we did in the previous section, we associate to the gauge field10

A an independent field B ∈ Γ
(∧2V ⊗ su(n)

)
.

Hence, the Yang–Mills Palatini–Cartan theory is defined by the following space
of fields

FA = Ω̃1,1 × A(P ) × A(G) × Γ
(∧2V ⊗ su(n)

)
∋ (e, ω,A,B), (5.53)

and the action functional

SYM = S + SA = S +
∫
M

1
4e

2Tr(BFA) + 1
48e

4Tr(B,B), (5.54)

where Ω2(M, su(n)) ∋ FA = dA+ 1
2 [A,A] is the field strength, ( , ) is the canonical

pairing in ∧2 V and Tr: su(n) → R is the trace over the algebra.
The Euler-Lagrange equations are as follows

dωe = 0 (5.55)

e(Fω + Tr(BFA)) + e3

6 (Λ + 1
2Tr(B,B)) = 0 (5.56)

e2
(
FA + 1

2(e2, B)
)

= 0 (5.57)

dA(e2B) = 0, (5.58)

whereas the Noether 1-form becomes

α̃YM =
∫

Σ

e2

2 δω + e2

2 Tr(BδA). (5.59)

It follows that the pre-symplectic form of the theory is

ϖ̃YM = ϖ +ϖA = δα̃YM =
∫

Σ
eδeδω + Tr(eBδeδA) + 1

2Tr(e2δBδA). (5.60)

This is a 2-form over the space of pre-boundary fields obtained as the pull-back of
bulk fields along i : Σ → M and denoted in this case as F̃A

Σ . Notice that, also in
this case, we refer to boundary fields with the same notation of bulk fields.

9All the considerations below work with a general Lie algebra g.
10Note that we refer to both A and its pull-back as the gauge field.
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Theorem 5.2.1. The geometric phase space for the Yang–Mills Palatini–Cartan
theory is the symplectic manifold (FA

Σ , ϖA) given by the following equivalence re-
lations on the space of pre-boundary fields F̃A

Σ

ω′ ∼ ω ⇐⇒ ω′ − ω ∈ KerWΣ,(1,2)
1 (5.61)

B′ ∼ B ⇐⇒ B′ −B ∈ KerWΣ,(0,2∗)
2 , (5.62)

where 2∗ indicates that the ∧2 V-algebra is tensored with su(n), and the symplectic
form

ϖYM =
∫

Σ
eδeδ[ω] + 1

2Tr(δ(e2[B])δA). (5.63)

We refer to these equivalence classes as A(Σ)red and Γ
(∧2i∗V ⊗ su(n)

)
red

.

Remark 5.2.2. In the context of the Yang–Mills Palatini–Cartan theory, we can
indeed establish unique representatives for these equivalence classes. Subsequently,
we can proceed to formulate the constraints in a manner analogous to the approach
we previously employed in the preceding section. The representative for [ω] ∈
A(Σ)red is already uniquely fixed thanks to equivalent considerations to the ones
articulated in the previous sections. Therefore, the structural and the degeneracy
constraints for the Yang–Mills Palatini–Cartan theory read

en(dωe− pT dωe) ∈ ImW
Σ,(1,1)
1

pT dωe = 0.
(5.64)

We are therefore left with the problem of the representative for [B] ∈ Γ
(∧2i∗V⊗

su(n)
)
red

, which is determined by the following lemma.

Lemma 5.2.3. Given A ∈ A(i∗G), B ∈ Γ
(∧2i∗V ⊗ su(n)

)
and en ∈ Ω0,1

Σ as in
Lemma 4.2.14, the conditions

FA + 1
2(e2, B) = 0

pΩ0,1∗
e ∧WB = 0,

(5.65)

with Ωi,j∗
e := Ωi

(
Σ,∧j e(TΣ) ⊗ su(n)

)
where W = e(Ker(i∗g)), uniquely define a

representative of the equivalence class [B] ∈ Γ
(∧2i∗V ⊗ su(n)

)
red

.
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Proof. We can decompose an element11 B ∈ Γ
(∧2i∗V ⊗ su(n)

)
as12

B = baneaen + 1
2b

abeaeb, (5.66)

with ban, bab ∈ Γ(su(n)) and a, b = 1, 2, 3. We notice that b = babeaeb ∈
Ker(WΣ,(0,2∗)

2 ), since e2eaeb = 0 for all a, b = 1, 2, 3. This directly implies that
the components ban are already uniquely determined by the equivalence class [B]
and vice versa. Now, as we did in the proof of Lemma 5.1.2, we observe that
dim(Ker(i∗g)) = 1 and e is injective and, therefore, we have that W ⊂ e(TΣ) is
a 1-dimensional subspace. Hence, for any open neighbourhood of e(TΣ), with-
out loss of generality, we can take as a basis of e(TΣ) the one given by the
{e1, e2, e3} such that e3 spans W . Then, since a basis of Ω0,1∗

e ∧ W is given by
{e1e3, e2e3} ⊗ su(n), we have that, similarly to the scalar case, we first notice that
the field equations imply the condition ιXFA = 0, with X ∈ Ker(i∗g). Moreover,
the condition pΩ0,1∗

e ∧WB = 0 implies that

2b[1ne3]
n + b13 = 2b[2ne3]

n + b23 = 0, (5.67)

where the square brackets in the indices denote the anti-symmetrization.
Next, consider the condition ιXFA = 0. Then, we can write

FA = 1
2Fabe

a
i e
b
jdx

idxj = 1
2F12dx

1dx2. (5.68)

Furthermore, similarly to the preceding case, we can write

2FA + (e2, B) = (5.69)

= Fijdx
idxj + (1

2e
a
i e
b
jdx

idxjeaeb, b
cdeced + bcnecen) (5.70)

= Fabe
a
i e
b
jdx

idxj + bcdeai e
b
jgacgbddx

idxj + bcneai e
b
jgacgbndx

idxj (5.71)

= eai e
b
j(Fab + bcdgacgbd + bcngacgbn)dxidxj = 0. (5.72)

We observe that, since the restricted inner product is non-degenerate, we have

Fab + bcdgacgbd + bcngacgbn = 0 (5.73)

and, given a, b, c, d ̸= 3, we can use the inverse metric to write

bcd = −(gacgbdFab + gbdgbnb
cn). (5.74)

11We can consider the basis for e(TΣ) given by the vielbein. See the proof of Lemma 5.1.2 for
more details.

12Apart from the wedge product, in order to lighten the notation, we also omit the tensor
product.
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This result together with Eq. (5.67) fixes uniquely the elements bab in terms of
ban (with a, b = 1, 2, 3). The completion of the proof follows from analogous
considerations to the ones of the scalar case in the previous section.

Also in this case, we get the following result.

Theorem 5.2.4. The geometric phase space of the Yang–Mills Palatini–Cartan
theory is symplectomorphic to the space (F∂

YM , ϖ
∂
YM), where

F∂
YM ⊂ Ω̃1,1

Σ × Ω1,2
Σ × A(i∗G) × Γ

(∧2i∗V ⊗ su(n)
)

(5.75)

with (e, ω,A,B) ∈ F∂
YM satisfying

en(dωe− pT (dωe)) ∈ ImW
Σ,(1,1)
1

pKω = 0

FA + 1
2(e2, B) = 0

pΩ0,1∗
e ∧WB = 0,

(5.76)

as defined in Lemma 4.2.19 and Lemma 5.2.3, and where the corresponding sym-
plectic form on F∂

YM is given by

ϖ∂
YM = ϖ∂ +ϖ∂

A =
∫

Σ
eδeδω + 1

2Tr(δ(e2B)δA). (5.77)

Definition 5.2.5. Let c ∈ Ω0,2
Σ [1], µ ∈ C∞(Σ, g)[1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1]

and τ ∈ S[1]. Moreover, let ρ = e2B ∈ Ω2,4∗
Σ . Then, we define the following

functionals

Lc =
∫

Σ
cedωe (5.78)

Mµ =
∫

Σ
Tr(µdAρ) (5.79)

PA
ξ =

∫
Σ

1
2ιξe

2Fω + ιξ(ω − ω0)edωe+ 1
2Tr(ιξρFA) (5.80)

+ Tr
(
ιξ(A− A0)dAρ

)
(5.81)

HA
λ =

∫
Σ
λen

(
eFω + Λ

3!e
3 + eTr(BFA) + 1

2 · 3!e
3Tr(B,B)

)
(5.82)

Rτ =
∫

Σ
τdωe. (5.83)

We refer to these as the constraints of the Yang–Mills Palatini–Cartan theory.
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Theorem 5.2.6. The Poisson brackets of the constraints of Definition 5.2.5 read

{Lc, Lc}YM = −1
2L[c,c] {Mµ,Mµ}YM = −1

2M[µ,µ]

{Lc, PA
ξ }YM = LLω0

ξ
c {HA

λ , H
A
λ }YM ≈ 0

{Lc,Mµ}YM = 0 {Pξ,Mµ}YM = MLA0
ξ
µ

{HA
λ ,Mµ}YM = 0 {Rτ ,Mµ}YM = 0

{Lc, Rτ}YM = −RpS [c,τ ] {PA
ξ , Rτ}YM = RpSLω0

ξ
τ

{Rτ , H
A
λ }YM ≈ Gλτ +KA

λτ {Rτ , Rτ}YM ≈ Fττ

(5.84)

{PA
ξ , P

A
ξ }YM = 1

2P
A
[ξ,ξ] − 1

2LιξιξFω0
− 1

2MιξιξFω0
(5.85)

{Lc, HA
λ }YM = −PA

X(a) + LX(a)(ω−ω0)a −HA
X(n) (5.86)

{PA
ξ , H

A
λ }YM = PA

Y (a) − LY (a)(ω−ω0)a +HA
Y (n) , (5.87)

with X = [c, λen] and Y = Lω0
ξ (λen) and where the superscripts (a) and (n)

describe their components with respect to ea, en. Furthermore, Fττ , Gλτ and KA
λτ

are functional of e, ω,A,B, τ and λ defined in the proof13 which are not proportional
to any other constraint.

Proof. Similarly to the proof of Theorem 5.1.5, we will introduce now a split in
some of the constraints. In this case, we have

PA
ξ = Pξ + pAξ HA

λ = Hλ + hAλ . (5.88)

Moreover, from [CCT21] and [CCF22], we have knowledge of the following brackets

{Lc, Lc} = −1
2L[c,c] {Lc, PA

ξ }YM = LLω0
ξ
c

{PA
ξ , P

A
ξ }YM = 1

2P
A
[ξ,ξ] − 1

2LιξιξFω0
{Lc, Rτ} = −RpS [c,τ ]

{Pξ, Rτ} = RpSLω0
ξ
τ {Rτ , Hλ} ≈ Gλτ

{Rτ , Rτ} ≈ Fττ {HA
λ , H

A
λ }YM ≈ 0

{Mµ,Mµ}YM = −1
2M[µ,µ] {Lc,Mµ}YM = 0

{PA
ξ ,Mµ}YM = MLA0

ξ
µ

{Mµ, H
A
λ }YM = 0

(5.89)

{Lc, HA
λ }YM = −PA

X(a) + LX(a)(ω−ω0)a −HA
X(n) (5.90)

{Pξ, HA
λ }YM = PA

Y (a) − LY (a)(ω−ω0)a +HA
Y (n) , (5.91)

13F and G are properly defined in [CCT21] (proof of Theorem 30).
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with F and G non-identically-vanishing functional of τ and λ defined in [CCT21]
(Theorem 30), X = [c, λen] and Y = Lω0

ξ (λen). We are thus left with computing
the remaining brackets.

Equivalently to the scalar case, the Hamiltonian vector fields for Rτ are given
by

eRe = [τ, e] eRω = g(τ, ω, e) + dωτ (5.92)
RYM = 0 Rρ = 0, (5.93)

since in does not possess any variation along the gauge fields. We consider now
the variation

δMµ =
∫

Σ
Tr(µδ(dAρ)) =

∫
Σ

Tr(−µ([δA, ρ] + dA(δρ)) (5.94)

=
∫

Σ
Tr
(
[µ, ρ]δA+ dAµ δρ

)
, (5.95)

and therefore we obtain the following Hamiltonian vector fields

Me = 0 Mω = 0 (5.96)
Mρ = [µ, ρ] MYM = dAµ. (5.97)

From [CCF22], for pAξ , we have

pAe = 0 pAω = 0 (5.98)
pAρ = −LA0

ξ ρ pAYM = −LA0
ξ (A− A0) − ιξFA0 , (5.99)

whereas, for hAλ , the Hamiltonian vector fields read

hAe = 0 hAρ = dA(λeneB) (5.100)

hAYM = λ(B, ene) ehAω = Tr
(
λenBFA + λen

e2

4 (B,B) − λeB(B, ene)
)
. (5.101)

Now, we are left with computing the Poisson brackets of the constraints for
{Rτ , h

A
λ }YM , {Rτ , p

A
ξ }YM and {Rτ ,Mµ}YM . We start with noticing that

{Rτ , p
A
ξ }YM = {Rτ ,Mµ}YM = 0 (5.102)

since both pAξ and Mµ have vanishing Hamiltonian vector fields along e and ω.
Then, we are left with computing

{Rτ , h
A
λ }YM =

∫
Σ

Tr
(
λenBFAW

−1
1 [τ, e] + λen

e

4(B,B)[τ, e] (5.103)

− λB(B, ene)[τ, e]
)
, (5.104)
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where the second term is zero because of e[τ, e] = 0 and the first and third terms
in general do not vanish. In fact, we have

{Rτ , h
A
λ }YM = (5.105)

=
∫

Σ
Tr
(
λenBFAW

−1
1 [τ, e] − λB(B, ene)[τ, e]

)
(5.106)

=
∫

Σ
Tr
(λen

2 B(B, e2) − λB(B, ene)e
)
W−1

1 [τ, e] (5.107)

=
∫

Σ
Tr
(
λB

(en
2 (B, e2) − (B, ene)e

))
W−1

1 [τ, e] (5.108)

≈ : KA
λτ , (5.109)

where W−1
1 : Ω2,2

Σ → Ω1,1
Σ indicates the inverse of the map WΣ,(1,1)

1 and the symbol
≈ : means that we are defining the quantity KA

λτ on the constraint submanifold.
Then, thanks to Corollary 12 of [CCT21], we can write the explicit form of KA

λτ

by means of the independent components X and Y of τ , defined in Proposition 8
of[CCT21]. Hence, we define KA

λτ as

KA
λτ =

∫
Σ

Tr
(
λ
(1

2
( 2∑
µ=1

YµCµµ −
2∑

µ1 ̸=µ2=1
X µ2
µ1 Cµ1

µ2

)
(5.110)

−
( 2∑
µ=1

YµDµ
µ −

2∑
µ1 ̸=µ2=1

X µ2
µ1 Dµ1

µ2

)))
, (5.111)

where Cρσ := (Bρ3 −Bρ4)(B, e2)3σ and Dρ
σ := (Bρ3 −Bρ4)(B, ene)σ.

Therefore, thanks to the linearity of the Poisson brackets together with the
known results, this completes the proof.

Corollary 5.2.7. If the boundary metric i∗g is non-degenerate, then the function-
als in Definition 5.2.5 define a coisotropic submanifold.

5.3 Spinor field
The concept of a spinor field is central in mathematical physics. The idea of a
spinor field is funded on the definition a particular subalgebra of the tensor algebra
over a vector space, called the Clifford algebra. In the following, we will recall the
basic and fundamental results about the structure of these algebras in order to be
able to write the Palatini–Cartan theory coupled with a Dirac spinor and then we
will proceed to compute the algebra of its constraints.
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Definition 5.3.1. Let, V be a vector space over K = R,C and g : V × V → K be
a symmetric bilinear form.14 Moreover, let Ig be the two sided ideal in the tensor
graded algebra T (V ) of V generated by

{v ⊗ v + g(v, v)1, v ∈ V }, (5.112)

where 1 ∈ T (V ) is the unit element. Then, we define the Clifford algebra Cl(V, g)
as the filtered algebra given by the quotient

Cl(V, g) := T (V )
Ig

. (5.113)

Remark 5.3.2. The general definition of a Clifford algebra is given by means of
a universal property in the category of unital associative algebras. One can re-
cover Definition 5.3.1 by building a functor between the category of vector spaces
endowed with a symmetric bilinear form and the category of unital associative al-
gebras. Then, the universal property guarantees that morphisms extend uniquely
to Clifford algebras homomorphisms.

In the following, we will state some results which are well-known facts in the
literature. They will serve as a basis in order to build the theory of spin coframes,
which can be regarded as a sort of generalization of the vielbein and the coframe
formalism. We refer to [Wer19], [Fat18] and references therein for the proofs of
these results as well as more details.

Definition 5.3.3. Let V be a quadratic vector space on R and let (p, q) be the
signature of g. Moreover, let Cl+(V, g) := Cl0 ⊕ Cl2 ⊕ Cl4 ⊕ ... be the subalgebra
defined by the even grading. We define the group Pinp,q ⊂ Cl(V, g) as the subgroup
of the group of units in Cl(V, g) generated by v ∈ V such that |g(v, v)| = 1.
Then, we defined the group Spinp,q as the subgroup of Pinp,q given by

Spinp,q := Pinp,q ∩ Cl+(V, g). (5.114)

Proposition 5.3.4. Let V be a quadratic vector space on R and let (p, q) be the sig-
nature of g. Moreover, let ρ : Spinp,q → GL

(
spinp,q

)
be the adjoint representation.

Then, we have the following:

– spinp,q ⊂ Cl(V, g);

– The map ρ acts as SO(p, q) on V 15 (or, for its complexification, as SO(n) ×
U(1) with n = p+ q);

14We call this space a quadratic vector space.
15Here, we regard V as a first grade subspace of the Clifford algebra.



5.3. SPINOR FIELD 59

– The map ρ defines a covering map16 ρ : Spinp,q → SO(p, q).

Furthermore, the group Spinp,q is simply connected and it is the universal cover of
SO(p, q). Therefore, in particular, Spin3,1

∼= SL(2,C).

Definition 5.3.5. Let P̂ be a principal Spinp,q-bundle on M and LM the frame
bundle. Then, we define the spin map E : P̂ → LM as the principal bundle
morphism such that the following diagram commutes

P̂ LM

P

M

p̂

E

ρ

π

p

ẽ

where ρ : P̂ → P denotes the bundle morphism induced by the covering map of
Proposition 5.3.4 and ẽ the vielbein of Definition 2.1.12.

The following result will be a particular example of the broader spectrum of
the classification of Clifford algebras. In a nutshell, they exhibit a 2-periodicity in
the complex case and a 8-periodicity in the real case.

Theorem 5.3.6. Let V be a 4-dimensional quadratic vector space on K and, in
particular, if K = R, let (p, q) = (3, 1). Furthermore, let M4×4(K)Cl denote the
algebra of 4 × 4 matrices on K endowed with the Clifford structure. Then, we have
the following isomorphism

λ : Cl(V, g) → M4×4(K)Cl. (5.115)

Remark 5.3.7. If we consider the complexification of the algebra spinC
3,1, as a con-

sequence of Theorem 5.3.6, the adjoint representation ρ : Spin3,1 → GL
(
spinC

3,1

)
can be regarded as acting on M4×4(C)Cl, since spinp,q ⊂ Cl(V, g). Moreover, we
know by Proposition 5.3.4 that ρ acts as SO(3, 1) on V . Hence, this statement
takes the form

ρS(γa) = SγaS−1 = Λa
bγ

b, (5.116)

where S ∈ λ
(
Spin3,1

)
and Λ ∈ SO(3, 1) is the matrix associated to S under the

covering map with a, b = 1, 2, 3, 4. In other words, the complexified algebra of the
16By abuse of notation, we denote the covering map and the adjoint representation in the same

manner.
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spin group, where the adjoint representation acts, can be expressed in terms of
γ-matrices, which can be also labeled according to a basis of V , i.e. γ = γava ∈
V ⊗ M4×4(C)Cl, such that the Clifford relation reads

{γa, γb} = −2ηab14×4, (5.117)

where the brackets denote the anti-commutators.
Furthermore, if we denote with f : SO(3, 1) → Aut(V ) the fundamental represen-
tation of SO(3, 1), by composition with the adjoint representation of Spin3,1, we
can construct the Minkowski bundle as the associated vector bundle to P̂ under
the composition, i.e.

V := P̂ ×f◦ρ V. (5.118)

Note that the isomorphism of Theorem 5.3.6 defines a representation of the
complexified group SpinC

3,1 on C4. This representation is called the γ-representation
and it corresponds to the representation (1

2 , 0) ⊕ (0, 1
2) of SL(2,C) (thanks to the

group isomorphism Spin3,1
∼= SL(2,C)). This fact allows to have the following

definition.

Definition 5.3.8. Let γ : SpinC
3,1 → Aut(C4) be the γ-representation of the spin

group. Then, we define the spinor bundle as the associated vector bundle to P̂
under γ, namely

S := P̂ ×γ C4. (5.119)

We define a spinor field17 as a section of the odd-bundle ΠS, where Π indicates
the parity reversal operation.18

Remark 5.3.9. Notice that, in this context, we can regard the γ-matrices as el-
ements γ ∈ Γ

(
V ⊗ End(ΠS)

)
. Note also that, by construction, the parity of a

spinor field ψ ∈ Γ(ΠS) is given by |ψ| = 1.

Proposition 5.3.10. Given a real vector space V and the isomorphism so(3, 1) ∼=∧2 V , we have the following algebra isomorphism

dρ : spin3,1 →
2∧
V, (5.120)

17In our case, we will only deal with Dirac spinors. Therefore, the term “spinor” refers uniquely
to a Dirac one. In a more general setting, we must slightly generalize our definition in order to
include other spin structures.

18Parity inversion is fundamental since we want spinors to be Grassmannian/odd quantities.
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which is given by

dρ−1(v ∧ w) = −1
4[ṽ, w̃], (5.121)

where v, w ∈ V , ṽ, w̃ ∈ spin3,1 and ρ : Spin3,1 → GL
(
spin3,1

)
is the adjoint repre-

sentation.

If we consider the complexified Lie algebra spinC
3,1 and the isomorphism of

Proposition 5.3.10, we can build a covariant derivative for spinor fields in terms of
local connections in Ω1,2. Explicitly, it reads

dωψ = dψ + [ω, ψ] = dψ − 1
4ω

abγaγbψ. (5.122)

We define the covariant derivative for the conjugate of ψ such that dωψ = dωψ.
Therefore, we have

dωψ = dψ + [ω, ψ] = dψ − 1
4ω

abψγaγb. (5.123)

By Remark 5.3.9, we can extend the definition of the covariant derivative also
to the γ-matrices. It follows the upcoming lemma.

Lemma 5.3.11 ([CCF22]). Let γ ∈ Γ
(
V ⊗ End(ΠS)

)
. Then, it holds

dωγ = 0. (5.124)

The space of fields of the Spinor Palatini–Cartan theory is given by19

Fψ = Ω̃1,1 × A(P ) × Γ(ΠS) × Γ(ΠS̄) ∋ (e, ω, ψ, ψ), (5.125)

whereas the action functional reads

SS = S + Sψ = S +
∫
M

i

12e
3(ψγdωψ − dωψγψ). (5.126)

It follows that the field equations are the following Euler-Lagrange equations for
the action SS

eFω + i

4e
2(ψγdωψ − dωψγψ) = 0 (5.127)

edωe+ i

6(ψγ[e3, ψ] − [e3, ψ]γψ) = 0 (5.128)

e3

6 γdωψ − 1
12dωe

3γψ = 0 (5.129)

e3

6 dωψγ + 1
12dωe

3ψγ = 0, (5.130)

19Where S̄ is simply given by the conjugate representation γ̄.
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where we define, for X ∈ Γ(V) and α ∈ Ωr,k
Σ , the contraction

ιXα := ηab
(k − 1)!X

aαbi2···ikvi2 ∧ · · · ∧ vik (5.131)

and consequently, for χ ∈ Ωi,j
Σ , the brackets
[χ, ψ] := 1

4(j−1)ιγιγχψ

[χ, ψ] := − (−1)|χ||ψ|

4(j−1) ψιγιγχ,
(5.132)

where |χ| is the parity of χ and |ψ| the parity of ψ.
Similar to the preceding sections, the space of pre-boundary fields F̃ψ

Σ , as de-
fined in Definition 4.2.5 for the Palatini–Cartan theory, can be established by
pulling back the fields to the boundary Σ. Furthermore, we will keep denoting the
fields on the boundary in the same way as those in the bulk.

The Noether 1-form becomes

α̃ψ =
∫

Σ

e2

2 δω + i
e3

12
(
ψγδψ − δψγψ

)
(5.133)

and therefore the pre-symplectic form of the theory is

ϖ̃ψ =
∫

Σ
eδeδω + i

e2

4
(
ψγδψ − δψγψ

)
δe+ i

e3

3! δψγδψ. (5.134)

As outlined in [CCF22], we can now define the geometric phase space of the theory
through a reduction using the kernel of the pre-symplectic form.

Theorem 5.3.12. The geometric phase space for the Spinor Palatini–Cartan the-
ory is the symplectic manifold (Fψ

Σ , ϖψ) given by the following equivalence relations
on the space of pre-boundary fields F̃ψ

Σ

ω′ ∼ ω ⇐⇒ ω′ − ω ∈ KerWΣ,(1,2)
1 (5.135)

and the symplectic form

ϖψ =
∫

Σ
eδeδ[ω] + i

e2

4
(
ψγδψ − δψγψ

)
δe+ i

e3

3! δψγδψ. (5.136)

We denote this equivalence class as A(Σ)red.

Remark 5.3.13. Likewise the preceding cases, we notice that the equivalence class of
ω, defining the geometric phase space, remains equal to the Palatini–Cartan theory.
In fact, similarly to the previous couplings, this can be seen as a consequence of
the fact that the symplectic form does not have any other piece along ω, but the
one equal to the Palatini–Cartan case.
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Remark 5.3.14. In the case at hand, the field equations see a substantial dif-
ference. Namely, the Levi-Civita (or torsion-free) condition edωe = 0 no longer
holds. Indeed, the Lagrangian of the theory couples the connection with the spinor.
Therefore, the structural and the degeneracy constraints take the form

en(aψ − pT aψ) ∈ ImW
Σ,(1,1)
1

pT aψ = 0.
(5.137)

with

aψ := dωe+ i

4(ψγ[e2, ψ] − [e2, ψ]γψ). (5.138)

Theorem 5.3.15. The geometric phase space of the spinor Palatini–Cartan theory
is symplectomorphic to the space (F∂

ψ , ϖ
∂
ψ), where

F∂
ψ ⊂ Ω̃1,1

Σ × Ω1,2
Σ × Γ(Πi∗S) × Γ(Πi∗S̄) (5.139)

with (e, ω, ψ, ψ) ∈ F∂
ψ satisfying

en(aψ − pT aψ) ∈ ImW
Σ,(1,1)
1

pKω = 0,
(5.140)

as defined in Lemma 4.2.19 and Remark 5.3.14, and where the corresponding sym-
plectic form on F∂

ψ is given by

ϖ∂
ψ =

∫
Σ
eδeδω + i

e2

4
(
ψγδψ − δψγψ

)
δe+ i

e3

3! δψγδψ. (5.141)

The following proposition will ensure that, although the form of the degeneracy
constraint is sensibly different from the preceding cases, the form of the functional
Rψ
τ will coincide with the one of the Palatini–Cartan theory.

Proposition 5.3.16. Let τ ∈ S. Then, we have the following identity

τ(ψγ[e2, ψ] − [e2, ψ]γψ) = 0. (5.142)

Proof. The proof comes by applying twice Lemma A.0.9. Therefore, by means of
Proposition A.0.5, we have

τ(ψγ[e2, ψ] − [e2, ψ]γψ) = enβ(ψγ[e2, ψ] − [e2, ψ]γψ) (5.143)

= ene
2(ψγ[β, ψ] − [β, ψ]γψ) (5.144)

= eβ(ψγ[ene, ψ] − [ene, ψ]γψ) (5.145)
= 0, (5.146)

since β ∈ KerWΣ,(1,2)
1 .
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We are now able to properly give the constraints of the theory.

Definition 5.3.17. Let c ∈ Ω0,2
Σ [1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1] and τ ∈ S[1].

Then, we define the following functionals

Lψc =
∫

Σ
cedωe− i

e3

2 · 3!
(
[c, ψ]γψ − ψγ[c, ψ]

)
(5.147)

Pψ
ξ =

∫
Σ

1
2ιξ(e

2)Fω + ιξ(ω − ω0)edωe− i
e3

2 · 3!
(
ψγLω0

ξ (ψ) − Lω0
ξ (ψ)γψ

)
(5.148)

Hψ
λ =

∫
Σ
λen

(
eFω + Λ

3!e
3 + i

e2

4
(
ψγdωψ − dωψγψ

))
(5.149)

Rτ =
∫

Σ
τdωe. (5.150)

We refer to these as the constraints of the spinor Palatini–Cartan theory.

Theorem 5.3.18. The Poisson brackets of the constraints of Definition 5.3.17
read

{Lψc , Lψc }ψ = −1
2L

ψ
[c,c] {Pψ

ξ , P
ψ
ξ }ψ = 1

2P
ψ
[ξ,ξ] − 1

2L
ψ
ιξιξFω0

{Lψc , P
ψ
ξ }ψ = LψLω0

ξ
c

{Hψ
λ , H

ψ
λ }ψ ≈ 0

{Lψc , Rτ}ψ = −RpS [c,τ ] {Rψ
τ , P

ψ
ξ }ψ = RpSLω0

ξ
τ

{Rτ , H
ψ
λ }ψ ≈ Gλτ +Kψ

λτ {Rτ , Rτ}ψ ≈ Fττ

(5.151)

{Lψc , H
ψ
λ }ψ = −Pψ

X(a) + Lψ
X(a)(ω−ω0)a −Hψ

X(n) (5.152)

{Pψ
ξ , H

ψ
λ }ψ = Pψ

Y (a) − Lψ
Y (a)(ω−ω0)a +Hψ

Y (n) , (5.153)

with X = [c, λen], Y = Lω0
ξ (λen) and where the superscripts (a) and (n) describe

their components with respect to ea, en. Furthermore, Fττ , Gλτ and Kψ
λτ are func-

tionals of e, ω, ψ, ψ, τ and λ defined in the proof which are not proportional to any
other constraint.

Proof. First, we notice that the contraction of the symplectic form with a vector
field X ∈ X(Fψ

Σ ) is given by

ιXϖ
∂
ψ =

∫
Σ
eXeδω +

[
eXω + i

4e
2(ψγXψ − Xψγψ)

]
δe (5.154)

+ iδψ
(

− e2

4 γψXe + e3

3!γXψ

)
+ i
(e2

4 ψγXe + e3

3! Xψγ
)
δψ. (5.155)



5.3. SPINOR FIELD 65

Then, we start giving the Hamiltonian vector fields of the constraints. For Lψc and
Pψ
ξ , from [CCF22], we have

Lψe = [c, e] Lψψ = [c, ψ] (5.156)
Lψω = dωc Lψ

ψ
= [c, ψ] (5.157)

Pψe = −Lω0
ξ e Pψψ = −Lω0

ξ (ψ) (5.158)
Pψω = −Lω0

ξ (ω − ω0) − ιξFω0 Pψ
ψ

= −Lω0
ξ (ψ). (5.159)

Whereas, for Hψ
λ , we have

Hψ
e = dω(λen) + λσ + i

4λψ
(
ιγιγeneγ − γιγιγene

)
ψ (5.160)

eHψ
ω = λen

(
Fω + Λ

2 e
2
)

− i
λen
4 e(ψγdωψ − dωψγψ) (5.161)

e3

3!γHψ
ψ = λen

2 e2γdωψ − λen
4 edωeγψ (5.162)

+ i

64λe
[
ψ
(
ιγιγ(ene2)γ − γιγιγ(ene2)

)
ψ
]
γψ (5.163)

e3

3! H
ψ

ψ
γ = λen

2 e2dωψγ + λen
4 edωeψγ (5.164)

− i

64λeψγ
[
ψ
(
ιγιγ(ene2)γ − γιγιγ(ene2)

)
ψ
]
, (5.165)

where σ ∈ Ω1,1
Σ . Lastly, the Hamiltonian vector fields of Rτ , are given by

eRe = [τ, e] (5.166)

eRω = δτ

δe
dωe+ dωτ (5.167)

Rψ = Rψ = 0, (5.168)

since they coincide with the ones of the Palatini–Cartan theory of Definition 4.2.25.
Notice that, instead of using the function g = g(τ, e, ω), we preferred expressing
the variation of τ with respect to e by means of the functional derivative δτ

δe
.

However, we have the relation

g(τ, e, ω) = δτ

δe
dωe. (5.169)

Now, we are ready to compute the Poisson brackets of the constraints. From
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[CCF22], we have already knowledge of the following Poisson brackets

{Pψ
ξ , P

ψ
ξ }ψ = 1

2P
ψ
[ξ,ξ] − 1

2L
ψ
ιξιξFω0

{Hψ
λ , H

ψ
λ }ψ = 0 (5.170)

{Lψc , P
ψ
ξ }ψ = LψLω0

ξ
c

{Lψc , Lψc }ψ = −1
2L

ψ
[c,c] (5.171)

{Lψc , H
ψ
λ }ψ = −Pψ

X(a) + Lψ
X(a)(ω−ω0)a −Hψ

X(n) (5.172)

{Pψ
ξ , H

ψ
λ }ψ = Pψ

Y (a) − Lψ
Y (a)(ω−ω0)a +Hψ

Y (n) , (5.173)

with X = [c, λen] and Y = Lω0
ξ (λen) as above. Therefore, we are left with com-

puting the remaining constraints. First, we notice that

{Rτ , L
ψ
c }ψ = {Rτ , Lc} = −RpS [c,τ ] = −RpS [c,τ ]. (5.174)

Similarly, we can also compute the bracket

{Rτ , P
ψ
ξ }ψ = {Rτ , Pξ} = RpSLω0

ξ
τ = RpSLω0

ξ
τ . (5.175)

Now, we move on to compute the bracket {Rτ , H
ψ
λ }ψ, i.e.

{Rτ , H
ψ
λ }ψ =

∫
Σ

(
en
δβ

δe
dωe+ dω(enβ)

)(
dω(λen) + λσ (5.176)

− iλ(ψγ[ene, ψ] − [ene, ψ]γψ)
)

(5.177)

+W−1
1 [enβ, e]

(
λen(Fω + Λ

2 e
2) (5.178)

− i

4λene(ψγdωψ − dωψγψ)
)

(5.179)

≈
∫

Σ
−iλβdωen(ψγ[ene, ψ] − [ene, ψ]γψ) (5.180)

− i

4[enβ, e]λen(ψγdωψ − dωψγψ) (5.181)

+Gλτ , (5.182)

where, in the last passage, we used Lemma A.0.9 and the fact that e2
n = 0. More-

over, the quantity Gλτ and the map W−1
1 are defined respectively in Theorem 30

of [CCT21] and in the proof of Theorem 5.2.6. Now, we can notice that, thanks
to Lemma A.0.9, we can write

λβdωen(ψγ[ene, ψ] − [ene, ψ]γψ) = (5.183)

= λenedωen(ψγ[β, ψ] − [β, ψ]γψ) (5.184)

= λeβ(ψγ[endωen, ψ] − [endωen, ψ]γψ) (5.185)
= 0, (5.186)
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obtaining

{Rτ , H
ψ
λ }ψ ≈ Gλτ −

∫
Σ

i

4[enβ, e]λen(ψγdωψ − dωψγψ). (5.187)

Finally, we can write the integral as

{Rτ , H
ψ
λ }ψ ≈ Gλτ −

∫
Σ

i

4λτ [en, ê](ψγdωψ − dωψγψ), (5.188)

where we implemented again Proposition A.0.5 and also the relation20

en[τ, e] = τ [en, ê] (5.189)

with ê defined as ê := e− ẽ (see Eq. (4.16)). More specifically, using the definition
of the independent components of τ , as we did in the proof of Theorem 5.2.6, we
have

{Rτ , H
ψ
λ }ψ ≈ Gλτ +Kψ

λτ , (5.190)

with

Kψ
λτ := −

∫
Σ
iλ
( 2∑
µ=1

Yµ

(
ĝndωJψ

)3µ

µ
+

2∑
µ1 ̸=µ2=1

X µ2
µ1

(
ĝndωJψ

)µ1

3µ2

)
, (5.191)

where ĝn := [en, ê] ∈ Ω1,0
Σ and dωJψ := dω(ψγψ) ∈ Ω1,1

Σ .
Finally, since {Rτ , Rτ}ψ = {Rτ , Rτ}, this final result completes the proof.

Corollary 5.3.19. If the boundary metric i∗g is non-degenerate, then the func-
tionals in Definition 5.3.17 define a coisotropic submanifold.

5.4 Yang–Mills-spinor

Thus far, we have focused on the fundamental fields of the theory, which provide
the basic building blocks for the interactions to come. In the following sections,
we will begin to consider such interactions, starting with the Yang–Mills-spinor.
The space of fields of the spinor Palatini–Cartan theory is given by

FYMS = FYM × Γ(ΠSSU(N)) × Γ(ΠS̄SU(N)), (5.192)

20It simply comes from the definition of S.
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where the index SU(N) indicates that we take into account the internal gauge
group,21 and FYM is defined in Eq. (5.53). Whereas the action functional reads

SYMS = S + Sψ + SA + SA,ψ, (5.193)

where

SA,ψ =
∫
M

eN−1

2(N − 1)!
(
ψγ[A,ψ] − [A,ψ]γψ

)
, (5.194)

with ψγ[A,ψ] = igiψIγA
I
Jψ

J and gi a constant.
Since the interaction term does not contain derivatives, the boundary structure

is just the direct sum of the Yang–Mills and spinor structures. In particular, the
geometric phase space is given by the following theorem.

Theorem 5.4.1. The geometric phase space of the Yang–Mills-spinor Palatini–
Cartan theory is symplectomorphic to the space (F∂

YMS, ϖ
∂
YMS), where

F∂
YMS ⊂ F∂

YM × Γ(Πi∗SSU(N)) × Γ(Πi∗S̄SU(N)) (5.195)

with F∂
YM defined in Theorem 5.2.4 and (e, ω,A,B, ψ, ψ) ∈ F∂

YMS satisfying



en(aψ − pT aψ) ∈ ImW
Σ,(1,1)
1

pKω = 0

FA + 1
2(e2, B) = 0

pΩ0,1∗
e ∧WB = 0,

(5.196)

as defined in Lemma 4.2.19, Lemma 5.2.3, Lemma 4.2.19 and Remark 5.3.14, and
where the corresponding symplectic form on F∂

YMS is given by

ϖYMS = ϖ +ϖA +ϖψ. (5.197)

21One takes the tensor product of the two associated vector bundles—to the principal SO(3, 1)-
and SU(N)-bundle—together with the tensor product of the spinorial representation of SO(3, 1)
on C4 and the fundamental representation of SU(N) on CN , respectively. This construction is
equivalent to considering the principal bundle with structure group given by the direct prod-
uct SO(3, 1)× SU(N), and then forming the associated vector bundle via the tensor product
representation on C4 ⊗ CN .
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Definition 5.4.2. Let c ∈ Ω0,2
Σ [1], µ ∈ C∞(Σ, g)[1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1],

and τ ∈ S[1], and the other functionals be as in Definition 5.2.5 and Defini-
tion 5.3.17. Then, we define the following functionals

LA,ψc = Lc + lψc (5.198)
PA,ψ
ξ = Pξ + pAξ + pψξ + pA,ψξ (5.199)

HA,ψ
λ = Hλ + hAλ + hψλ + hA,ψλ (5.200)

MA,ψ
µ = MA

µ +mA,ψ
µ (5.201)

RA,ψ
τ = Rτ , (5.202)

where

lψc = Lψc − Lc (5.203)
pψξ = Pψ

ξ − Pξ (5.204)
hψλ = Hψ

λ −Hλ (5.205)
pAξ = PA

ξ − Pξ (5.206)
hAλ = HA

λ −Hλ (5.207)

and

pA,ψξ =
∫

Σ
−i e3

2 · 3!
(
ψγ[ιξA0, ψ] − [ιξA0, ψ]γψ

)
(5.208)

hA,ψλ =
∫

Σ
−λen

[
i
e2

4
(
ψγ[A,ψ] − [A,ψ]γψ

)]
(5.209)

mA,ψ
µ =

∫
Σ

−i e3

2 · 3!
(
[µ, ψ]γψ − ψγ[µ, ψ]

)
. (5.210)

We refer to these as the constraints of the Yang–Mills-spinor Palatini–Cartan the-
ory.

Theorem 5.4.3. The Poisson brackets of the constraints of Definition 5.4.2 read

{LA,ψc , LA,ψc }YMS = −1
2L

A,ψ
[c,c] {PA,ψ

ξ , PA,ψ
ξ }YMS = 1

2P
A,ψ
[ξ,ξ] − 1

2L
A,ψ
ιξιξFω0

{LA,ψc , PA,ψ
ξ }YMS = LA,ψLω0

ξ
c

{HA,ψ
λ , HA,ψ

λ }YMS ≈ 0

{LA,ψc , Rτ}YMS = −RpS [c,τ ] {RA,ψ
τ , PA,ψ

ξ }YMS = RpSLω0
ξ
τ

{Rτ , H
A,ψ
λ }YMS ≈ Gλτ +Kψ

λτ {Rτ , Rτ}YMS ≈ Fττ

{LA,ψc , HA,ψ
λ }YMS = −PA,ψ

X(a) + LA,ψ
X(a)(ω−ω0)a −HA,ψ

X(n)

{PA,ψ
ξ , HA,ψ

λ }YMS = PA,ψ

Y (a) − LA,ψ
Y (a)(ω−ω0)a +HA,ψ

Y (n) ,
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with X = [c, λen], Y = Lω0
ξ (λen) and where the superscripts (a) and (n) describe

their components with respect to ea, en. Furthermore, Fττ , Gλτ and Kψ
λτ are func-

tionals of e, ω, ψ, ψ, τ and λ defined in Theorem 5.3.18 which are not proportional
to any other constraint.

Proof. Notice that the proof of each bracket relies on the result presented in Ap-
pendix B. The first step is to compute the Hamiltonian vector fields of the con-
straints. The expressions for the Hamiltonian vector fields have been presented in
the former sections. Hence the only components that we have to compute through
(??) are lA,ψ, pA,ψ, hA,ψ and mA,ψ. Let us start from lA,ψ. It must satisfy

ιlA,ψ(ϖ +ϖA +ϖψ) + ιlψϖA + ιlAϖψ = 0. (5.211)

Since ιlψϖA = ιlAϖψ = 0 we conclude lA,ψ = 0. Similarly we have

ιpA,ψ(ϖ +ϖA +ϖψ) + ιpψϖA + ιpAϖψ = δpA,ψξ . (5.212)

Since ιpψϖA = ιpAϖψ = 0, the computation is exactly the same as for pψξ with A0
instead of ω0. Hence we get

pA,ψe = 0 pA,ψω = VpA,ψ (5.213)
pA,ψA = 0 pA,ψρ = 0 (5.214)
pA,ψψ = −[ιξA0, ψ] pA,ψ

ψ
= −[ιξA0, ψ]. (5.215)

For hA,ψ, we have ιhψϖA = ιhAϖψ = 0 and

δhA,ψλ =
∫

Σ
−λenieδe

(
ψγ[A,ψ]

)
− λen

[
i
e2

2
(
δψγ[A,ψ] (5.216)

+ ψγ[δA, ψ] − ψγ[A, δψ]
)]
. (5.217)

Hence, we get:

hA,ψe = 0 hA,ψω = − i

2λenψγ[A,ψ] + VhA,ψ (5.218)

hA,ψA = 0 (hA,ψρ )JI = −1
2giλene

2ψIγψ
J (5.219)

e3

3!γhA,ψψ = λene
2

2 γ[A,ψ] e3

3! h
A,ψ

ψ
γ = λene

2

2 [A,ψ]γ. (5.220)

As for pA,ψξ , the Hamiltonian vector field of mA,ψ
µ can be obtained by noticing that
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it is equal to that of lψc by substituting c with µ. The result is22

mA,ψ
e = 0 mA,ψ

ω = VmA,ψ (5.221)
mA,ψ
A = 0 mA,ψ

ρ = 0 (5.222)
mA,ψ
ψ = [µ, ψ] mA,ψ

ψ
= [µ, ψ]. (5.223)

We can now compute the constraints using Theorem B. Before beginning the actual
computation we note that for all constraints

ιX+xψιY+yψϖA + ιX+xAιY+yAϖψ = 0, (5.224)
ιXιYϖA = 0, (5.225)
ιXιYϖψ = 0. (5.226)

Furthermore, it is also possible to note that

ιxψιyAϖYMS = 0 (5.227)
ιxAιyψϖYMS = 0 (5.228)

for all brackets except {HA,ψ
λ , HA,ψ

λ }. In particular,

ιhψιhAϖYMS = ιhψιhAϖ =
∫

Σ
ehψe hAω = 0, (5.229)

since hψe ∼ λ, hψω ∼ λ and λ2 = 0. Hence, we conclude that we have

{XA,ψ, Y A,ψ}YMS = {X + xA, Y + yA}A + {X + xψ, Y + yψ}ψ − {X, Y } (5.230)
+ ιyA,ψδ(X + xA + xψ + xA,ψ) (5.231)
+ ιxA,ψδ(Y + yA + yψ + yA,ψ) (5.232)
− ιxA,ψιyA,ψϖYMS. (5.233)

Using this formula, we can compute the following brackets

{MA,ψ
µ ,MA,ψ

µ }YMS = {MA
µ ,M

A
µ }A + 2ιmA,ψδ(MA

µ +mA,ψ
µ ) (5.234)

− ιmA,ψιmA,ψϖYMS (5.235)

= 1
2M

A
[µ,µ] + 2

∫
Σ
i
e3

2 · 3!
(
[µ, [µ, ψ]]γψ − ψγ[µ, [µ, ψ]] (5.236)

+ [µ, ψ]γ[µ, ψ]
)

+ 2
∫

Σ
i
e3

2 · 3! [µ, ψ]γ[µ, ψ] (5.237)

− 2
∫

Σ
i
e3

3! [µ, ψ]γ[µ, ψ] (5.238)

= 1
2M

A
[µ,µ] + 1

2m
A,ψ
[µ,µ] = 1

2M
A,ψ
[µ,µ], (5.239)

22Where we refer to VmA,ψ as an object in the kernel of e.
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where we omit the terms that are zero.
Since lA,ψ = 0, we get

{MA,ψ
µ , LA,ψc }YMS = {MA

µ , Lc}A + ιmA,ψδ(Lc + lψc ) (5.240)

=
∫

Σ
−i e3

2 · 3!
(

− [c, [µ, ψ]]γψ − [c, ψ]γ[µ, ψ] (5.241)

− [µ, ψ]γ[c, ψ] + ψγ[c, [µ, ψ]]
)

(5.242)

= 0, (5.243)

where we used that [c, [µ, ψ]] = [µ, [c, ψ]] and the two identities

[µ, ψγψ] = 0 (5.244)
[µ, ψ]γψ − ψγ[µ, ψ] = 2[µ, ψ]γψ. (5.245)

Moreover, we have

{MA,ψ
µ , PA,ψ

ξ }YMS = {MA
µ , Pξ + pAξ }A + ιpA,ψδ(MA

µ +mA,ψ
µ ) (5.246)

+ ιmA,ψδ(Pξ + pAξ + pψξ + pA,ψξ ) (5.247)
− ιmA,ψιpA,ψϖYMS (5.248)

= MA

LA0
ξ
µ

−
∫

Σ
i
e3

3!
(
[µ, ψ]γ[ιξA0, ψ] + [ιξA0, ψ]γ[µ, ψ]

)
(5.249)

−
∫

Σ
i
e3

2 · 3!
(
[µ, ψ]γLω0+A0

ξ (ψ) − ψγLω0+A0
ξ ([µ, ψ]) (5.250)

+ Lω0+A0
ξ ([µ, ψ])γψ

)
(5.251)

+
∫

Σ
i
e3

2 · 3!
(
Lω0+A0
ξ (ψ)γ[µ, ψ] + 2

(
[µ, ψ]γ[ιξA0, ψ] (5.252)

+ [ιξA0, ψ]γ[µ, ψ]
))

(5.253)

= MA

LA0
ξ
µ

−
∫

Σ
i
e3

2 · 3!
(

− ψγ[LA0
ξ µ, ψ] + [LA0

ξ µ, ψ]γψ
)

(5.254)

= MA

LA0
ξ
µ

+mA,ψ

LA0
ξ
µ

= MA,ψ

LA0
ξ
µ
, (5.255)

where we used Lω0+A0
ξ µ = LA0

ξ µ and [µ, ψ]γLω0+A0
ξ (ψ) = −ψγ[µ,Lω0+A0

ξ (ψ)].
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Similarly, we get

{MA,ψ
µ , HA,ψ

λ }YMS = {MA
µ , H

A
λ }A + ιhA,ψδ(MA

µ +mA,ψ
µ ) (5.256)

+ ιmA,ψδ(Hλ + hAλ + hψλ + hA,ψλ ) (5.257)
− ιmA,ψιhA,ψϖYMS (5.258)

= −
∫

Σ

iλene
2

2
(
ψγ[dAµ, ψ][µ, ψ]γ[A,ψ] − [A,ψ]γ[µ, ψ] (5.259)

+ [µ, ψ]γdωψ − ψγdω([µ, ψ]) + dω([µ, ψ])γψ (5.260)

+ dω(ψ)γ[µ, ψ]
)
[µ, ψ]γ[A,ψ] − ψγ[A, [µ, ψ]] (5.261)

+ [A, [µ, ψ]]γψ + [A,ψ]γ[µ, ψ] (5.262)

− [µ, ψ]γ[A,ψ] − [A,ψ]γ[µ, ψ]
)

(5.263)

= −
∫

Σ

iλene
2

2
(
ψγ[dAµ, ψ] + [µ, ψ]γdω+Aψ (5.264)

− ψγdω+A[µ, ψ] + dω+A[µ, ψ]γψ (5.265)

+ dω+Aψγ[µ, ψ]
)

(5.266)

= −
∫

Σ

iλene
2

2 ψγ[dAµ, ψ] +
∫

Σ

iλene
2

2 ψγ[dA+ωµ, ψ] (5.267)

= 0, (5.268)

where we used dA+ωµ = dAµ.

Using again that lA,ψ = 0, we obtain

{LA,ψc , LA,ψc }YMS = {Lc, Lc}A + {Lc + lψc , Lc + lψc }ψ − {Lc, Lc} (5.269)

= 1
2(L[c,c] + lψ[c,c]) = 1

2L
A,ψ
[c,c]. (5.270)
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Similarly,

{LA,ψc , PA,ψ
ξ }YMS = {Lc, Pξ + pAξ }A + {Lc + lψc , Pξ + pψξ }ψ (5.271)

− {Lc, Pξ} + ιpA,ψδ(Lc + lψc ) (5.272)
= LALω0

ξ
c + LψLω0

ξ
c

− LLω0
ξ
c (5.273)

+
∫

Σ
i
e3

2 · 3!
(
[c, [ιξA0, ψ]]γψ + [c, ψ]γ[ιξA0, ψ]

)
(5.274)

+
∫

Σ
i
e3

2 · 3!
(

− [ιξA0, ψ]γ[c, ψ] − ψγ[c, [ιξA0, ψ]]
)

(5.275)

= LA,ψLω0
ξ
c

+
∫

Σ
i
e3

2 · 3!
(

− [ιξA0, [c, ψ]]γψ + [c, ψ]γ[ιξA0, ψ]
)

(5.276)

+
∫

Σ
i
e3

2 · 3!
(

− [ιξA0, ψ]γ[c, ψ] + ψγ[ιξA0, [c, ψ]]
)

(5.277)

= LA,ψLω0
ξ
c
, (5.278)

where we used [c, [ιξA0, ψ]] = −[ιξA0, [c, ψ]] and [ιξA0, [c, ψ]]γψ = [c, ψ]γ[ιξA0, ψ].
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We also have
{LA,ψc , HA,ψ

λ }YMS = {Lc, Hλ + hAλ }A + {Lc + lψc , Hλ + hψλ}ψ (5.279)
− {Lc, Hλ} + ιhA,ψδ(Lc + lψc ) (5.280)

= −PA
X(ν) + LX(ν)(ω−ω0)ν −HA

X(n) (5.281)
+MA

X(ν)(A−A0)ν − Pψ

X(ν) + Lψ
X(ν)(ω−ω0)ν (5.282)

−Hψ

X(n) − PX(ν) + LX(ν)(ω−ω0)ν −HX(n) (5.283)

−
∫

Σ

i

2[λenψγ[A,ψ], e2] (5.284)

−
∫

Σ

i

4
(

− [c, λene2[A,ψ]]γψ + [c, ψ]γλene2[A,ψ]
)

(5.285)

+
∫

Σ

i

4
(

− λene
2[A,ψ]γ[c, ψ] + ψγ[c, λene2[A,ψ]]

)
(5.286)

= −PA
X(ν) + LX(ν)(ω−ω0)ν −HA

X(n) (5.287)
+MA

X(ν)(A−A0)ν − Pψ

X(ν) + Lψ
X(ν)(ω−ω0)ν (5.288)

−Hψ

X(n) − PX(ν) + LX(ν)(ω−ω0)ν −HX(n) (5.289)

−
∫

Σ
[c, λen]

[
i
e2

4
(
ψγ[A,ψ] − [A,ψ]γψ

)]
(5.290)

= −PA
X(ν) + LX(ν)(ω−ω0)ν −HA

X(n) (5.291)
+MA

X(ν)(A−A0)ν − Pψ

X(ν) + Lψ
X(ν)(ω−ω0)ν (5.292)

−Hψ

X(n) − PX(ν) + LX(ν)(ω−ω0)ν −HX(n) (5.293)
− pA,ψ

X(ν) − hA,ψ
X(n) +mA,ψ

X(ν)(A−A0)ν (5.294)

= −PA,ψ

X(ν) + LA,ψ
X(ν)(ω−ω0)ν −HA,ψ

X(n) +MA,ψ

X(ν)(A−A0)ν , (5.295)

where, in the second last passage, we used that [c, λen] = X = X(ν)eν + X(n)en
and that

−pA,ψ
X(ν) +mA,ψ

X(ν)(A−A0)ν = −
∫

Σ
[c, λen](ν)eν

[
i
e2

4
(
ψγ[A,ψ] − [A,ψ]γψ

)]
. (5.296)

Let us now consider
{PA,ψ

ξ , PA,ψ
ξ }YMS = {Pξ + pAξ , Pξ + pAξ }A + {Pξ + pψξ , Pξ + pψξ }ψ − {Pξ, Pξ} (5.297)

+ 2ιpA,ψδ(Pξ + pAξ + pψξ + pA,ψξ ) − ιpA,ψιpA,ψϖYMS. (5.298)
Then, we have

{Pξ + pAξ , Pξ + pAξ }A + {Pξ + pψξ , Pξ + pψξ }ψ − {Pξ, Pξ} (5.299)

= 1
2
(
PA

[ξ,ξ] − LιξιξFω0
−MA

ιξιξFA0
+ Pψ

[ξ,ξ] − LψιξιξFω0
− P[ξ,ξ] + LιξιξFω0

)
(5.300)
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and

2ιpA,ψδ(Pξ + pAξ + pψξ + pA,ψξ ) − ιpA,ψιpA,ψϖYMS (5.301)

= −
∫

Σ
i
e3

2 · 3!
(
[ιξA0, ψ]γLω0+A0

ξ (ψ) + ψγLω0+A0
ξ ([ιξA0, ψ])

)
(5.302)

−
∫

Σ
i
e3

2 · 3!
(

− Lω0+A0
ξ (ψ)γ[ιξA0, ψ] − Lω0+A0

ξ ([ιξA0, ψ])γψ
)

(5.303)

= −
∫

Σ
i
e3

2 · 3!
(

− ψγ[ιξA0,Lω0+A0
ξ (ψ)] + ψγLω0+A0

ξ ([ιξA0, ψ])
)

(5.304)

−
∫

Σ
i
e3

2 · 3!
(

− [ιξA0,Lω0+A0
ξ (ψ)]γψ − Lω0+A0

ξ ([ιξA0, ψ])γψ
)

(5.305)

=
∫

Σ
−i e3

2 · 3!
(

− ψγ[Lω0+A0
ξ (ιξA0), ψ] − [Lω0+A0

ξ (ιξA0), ψ]γψ
)

(5.306)

=
∫

Σ
i
e3

4 · 3!
(
ψγ
[
ι[ξ,ξ]A0 + ιξιξFA0 , ψ

]
+
[
ι[ξ,ξ]A0 + ιξιξFA0 , ψ

]
γψ
)

(5.307)

= 1
2p

A,ψ
[ξ,ξ] −mA,ψ

ιξιξFA0
, (5.308)

where we used that Lω0+A0
ξ ιξA0 = LA0

ξ ιξA0 = 1
2ι[ξ,ξ]A0 + 1

2ιξιξFA0 .

Thus, we get

{PA,ψ
ξ , PA,ψ

ξ }YMS = 1
2
(
PA,ψ

[ξ,ξ] − LA,ψιξιξFω0
−MA,ψ

ιξιξFA0

)
. (5.309)
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We then analyze

{PA,ψ
ξ , HA,ψ

λ }YMS = {Pξ + pAξ , Hλ + hAλ }A + {Pξ + pψξ , Hλ + hψλ}ψ− (5.310)
{Pξ, Hλ}ιhA,ψδ(Pξ + pAξ + pψξ + pA,ψξ ) (5.311)
+ ιpA,ψδ(Hλ + hAλ + hψλ + hA,ψλ ) − ιpA,ψιhA,ψϖYMS (5.312)

= PA
Y (ν) − LY (ν)(ω−ω0)ν (5.313)

+HA
Y (n) −MA

Y (ν)(A−A0)ν + pψ
Y (ν) − lψ

Y (ν)(ω−ω0)ν (5.314)

+ hψ
Y (n) −

∫
Σ

iλenLω0
ξ e

2

4
(
ψγ[A,ψ] − [A,ψ])γψ

)
(5.315)

−
∫

Σ

iλene
2

2
(
ψγ[ιξFω0 + LA0

ξ (A− A0), ψ] (5.316)

− [ιξFω0 + LA0
ξ (A− A0), ψ]γψ

)
(5.317)

−
∫

Σ

iλene
2

2
(
[A,ψ]γLω0+A0

ξ ψ − Lω0+A0
ξ ψγ[A,ψ]

)
(5.318)

−
∫

Σ

iλene
2

4
(
[ιξA0, ψ]γdω+Aψ − ψγdω+A[ιξA0, ψ] (5.319)

+ dω+A[ιξA0, ψ]γψ
)

(5.320)

−
∫

Σ

iλene
2

4
(
dω+Aψγ[ιξA0, ψ] + 2[A,ψ]γ[ιξA0, ψ] (5.321)

+ 2[ιξA0, ψ]γ[A,ψ]
)
. (5.322)

Hence, we get

{PA,ψ
ξ , HA,ψ

λ }YMS = PA
Y (ν) − LY (ν)(ω−ω0)ν +HA

Y (n) (5.323)
−MA

Y (ν)(A−A0)ν + pψ
Y (ν) − lψ

Y (ν)(ω−ω0)ν (5.324)

+ hψ
Y (n) −

∫
Σ

iLω0
ξ (λen)e2

4
(
ψγ[A,ψ] − [A,ψ])γψ

)
(5.325)

= PA
Y (ν) − LY (ν)(ω−ω0)ν +HA

Y (n) (5.326)
−MA

Y (ν)(A−A0)ν + pψ
Y (ν) − lψ

Y (ν)(ω−ω0)ν (5.327)

+ hψ
Y (n) + pA,ψ

Y (ν) + hA,ψ
Y (n) −mA,ψ

Y (ν)(A−A0)ν (5.328)

= PA,ψ

Y (ν) − LA,ψ
Y (ν)(ω−ω0)ν +HA,ψ

Y (n) −MA,ψ

Y (ν)(A−A0)ν (5.329)
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Furthermore, we compute

{HA,ψ
λ , HA,ψ

λ }YMS = {Hλ + hAλ , Hλ + hAλ }A + {Hλ + hψλ , Hλ + hψλ}ψ (5.330)
− {Hλ, Hλ} + ιhA,ψδ(Hλ + hAλ + hψλ + hA,ψλ ) (5.331)
+ ιhA,ψδ(Hλ + hAλ + hψλ + hA,ψλ ) − ιhA,ψιhA,ψϖYMS (5.332)

= 0, (5.333)

because all the components of the Hamiltonian vector field ofHA,ψ
λ are proportional

to λ, and λ2 = 0.
To complete the proof, observe that all brackets involving Rτ have either been

computed in the previous sections, or vanish due to the fact that Rτ has no Hamil-
tonian vector field along the spinor directions, or because enτ = 0.

Corollary 5.4.4. If the boundary metric i∗g is non-degenerate, then the function-
als in Definition 5.4.2 define a coisotropic submanifold.

5.5 Yang–Mills-Higgs
The following case consists of a scalar field and a Yang–Mills field both coupled
to gravity, with the addition of a Higgs-type potential.

Definition 5.5.1 (Higgs field). Let PSU(n) be a SU(n)-principal bundle over M ,
with the fundamental representation given by n : SU(n) → End(Cn) and its conju-
gate one n̄ taken with respect to the canonical hermitian structure on Cn. Then,
we define the Higgs field ϕ (a complex scalar multiplet) as a section of the asso-
ciated vector bundle En := PSU(n) ×n Cn, whereas, respectively, ϕ† is a section of
En̄ := PSU(n) ×n̄ Cn.
We also introduce the field23 Π ∈ Γ(M,V ⊗ En) =: Ω0,1(En) and its conjugate
Π† ∈ Ω(0,1)(En̄).

Remark 5.5.2. In the remainder of this section, we will identify (sections of) the
Lie algebra su(n) with (sections of) the algebra of hermitian traceless matrices
over Cn, i.e.

Γ(M, su(n)) ≃ Γ(M, (En ⊗ En̄)t,h) =: Γ(M, (En ⊗ En̄)′).

Furthermore, we will consider ϕ and Π to be such that the total degrees are |ϕ| = 0
and |Π| = 1.

23Which turns out to be the associated momentum.
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Remark 5.5.3. The canonical hermitian product on Cn induces a hermitian product
on En (and hence on Γ(En)). We symmetrize it (i.e. add its complex conjugate)
to account for the reality requirement

< ·, · > : En × En −→ C (5.334)

( ϕ , φ ) 7−→ < ϕ,φ >:= 1
2(ϕ†φ+ (−1)|ϕ||φ|φ†ϕ). (5.335)

Furthermore, we denote the full interior product on En ⊗ V by

(< ·, · >) : (En ⊗ V)2 −→ C (5.336)

(Π, ϵ) 7−→ (< Π, ϵ >) := 1
2ηab(Π

†a
i ϵ

b,i + c.c). (5.337)

Definition 5.5.4. Given α ∈ Γ(M, (En ⊗ En̄)′), we set dαϕ := dϕ + [A, ϕ] and
dαϕ

† := dϕ† + [α, ϕ†], which in coordinates we read24

[α, ϕ]i := igH(αϕ)i = igαijϕ
j; (5.338)

[α, ϕ†]i = −(−1)|α|(|ϕ|+1)igHϕ
†
jα

j
i , (5.339)

where gH is a constant related to the representation of SU(n).

The space of fields of the spinor Yang–Mills-Higgs Palatini–Cartan theory is
given by

FYMH = FYM × Γ(M,En) × Γ(M,En̄) × Ω0,1(En) × Ω0,1(En̄), (5.340)

whereas the action functional reads

SYMS = S + SH + SA + SA,ψ, (5.341)

where

SH =
∫
M

e3

3! < Π, dAϕ > + e4

2 · 4!(< Π,Π >) − qH
4 · 4!e

4(< ϕ, ϕ > −v2)2 (5.342)

SA,ψ =
∫
M

eN−1

2(N − 1)!
(
ψγ[A,ψ] − [A,ψ]γψ

)
, (5.343)

with ψγ[A,ψ] = igiψIγA
I
Jψ

J and qH , v and gi constants.
24the action of su(n) on ϕ† is defined by requiring that [α, < ϕ, ϕ >] = 0, since < ϕ, ϕ > is

assumed to be a SU(n) scalar.
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Remark 5.5.5. Notice that the first terms of SH are formally equivalent to Sϕ of
Section 5.1, after substituting dϕ → dAϕ and setting ϕ to a SU(n) multiplet. Then
one can easily show that in this case the structural constraint reads

dAϕ− (e,Π) = 0. (5.344)

As a consequence the interaction between the YM field and the Higgs field is
contained in SH .

Alike the preceding section, the interaction term does not contain derivatives.
Hence, the boundary structure is just the direct sum of the Yang–Mills and the
(multiplet) scalar structures. In particular, it follows the following result.
Theorem 5.5.6. The geometric phase space of the Yang–Mills-Higgs Palatini–
Cartan theory is symplectomorphic to the space (F∂

YMH , ϖ
∂
YMH), where

F∂
YMH = F∂

YM × Γ(Σ, En|Σ) × Γ(Σ, En̄|Σ) × Ω0,1
Σ (En|Σ) × Ω0,1

Σ (En̄|Σ) (5.345)

with (e, ω,A,B, ϕ, ϕ†,Π,Π†) ∈ F∂
YMH satisfying

en(dωe− pT (dωe)) ∈ ImW
Σ,(1,1)
1

pKω = 0

dAϕ− (e,Π) = 0

pWΠ = 0

FA + 1
2(e2, B) = 0

pΩ0,1∗
e ∧WB = 0,

(5.346)

as defined in Lemma 4.2.19, Lemma 5.1.2, Lemma 5.2.3 and Remark 5.3.14, and
where the corresponding symplectic form on F∂

YMH is given by

ϖYMH = ϖ +ϖA +ϖH , (5.347)

where
ϖH =

∫
Σ
< δp, δϕ >, (5.348)

with p := e3

3! Π.
Before moving on to the constraint analysis, we provide some useful identities.

Lemma 5.5.7. Let ϕ, φ ∈ Γ(En), α ∈ Γ(su(n)). Then, we have

< αφ, ϕ > = (−1)|α||φ| < φ,αϕ > (5.349)

< φ, [α, ϕ] > = igH
2 Tr[(−1)|α||φ|φϕ† − (−1)|ϕ|(|α|+|φ|)ϕφ†)α] (5.350)

[LA0
ξ , dA]ϕ = LA0

ξ dAϕ+ dAL
A0
ξ ϕ = [ιξFA0 + LA0

ξ (A− A0), ϕ]. (5.351)
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Definition 5.5.8. Let c ∈ Ω0,2
Σ [1], µ ∈ C∞(Σ, g)[1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1],

and τ ∈ S[1], and the other functionals be as in Definition 5.4.2. Then, we define
the following functionals

LH,Ac = Lc (5.352)
PH,A
ξ = Pξ + pAξ + pHξ + pH,Aξ (5.353)

HH,A
λ = Hλ + hAλ + hHλ + hVHλ + hH,Aλ (5.354)

MH,A
µ = MA

µ +mA,ψ
µ (5.355)

RH,A
τ = Rτ , (5.356)

where

lHc = Lϕ→H
c − Lc (5.357)

pHξ = P ϕ→H
ξ − Pξ (5.358)

hHλ = Hϕ→H
λ −Hλ, (5.359)

with ϕ → H denoting the formal substitution25 of the scalar field of Section 5.1
with the Higgs field and

mH,A
µ =

∫
Σ

i

2gHTr[µ(ϕp† − pϕ†)] =
∫

Σ
< p, [µ, ϕ] > (5.360)

pH,Aξ =
∫

Σ
− < p, ιξ[A0, ϕ] > (5.361)

hVHλ = −
∫

Σ
λen

qH
24 e

3(< ϕ, ϕ > −v2)2 =
∫

Σ
λen

e3

3!VH (5.362)

hH,Aλ =
∫

Σ
λen

e2

2 < Π, [A, ϕ] > . (5.363)

We refer to these as the constraints of the Yang–Mills-Higgs Palatini–Cartan the-
ory.
Theorem 5.5.9. The Poisson brackets of the constraints of Definition 5.5.8 read

{LH,Ac , LH,Ac }YMH = −1
2L

H,A
[c,c] {PH,A

ξ , PH,A
ξ }YMH = 1

2P
H,A
[ξ,ξ] − 1

2L
H,A
ιξιξFω0

{LH,Ac , PH,A
ξ }YMH = LH,ALω0

ξ
c

{HH,A
λ , HH,A

λ }YMH ≈ 0

{LH,Ac , Rτ}YMH = −RpS [c,τ ] {RH,A
τ , PH,A

ξ }YMH = RpSLω0
ξ
τ

{Rτ , H
H,A
λ }YMH ≈ Gλτ +KA

λτ {Rτ , Rτ}YMH ≈ Fττ

{LH,Ac , HH,A
λ }YMH = −PH,A

X(a) + LH,A
X(a)(ω−ω0)a −HH,A

X(n)

{PH,A
ξ , HH,A

λ }YMH = PH,A

Y (a) − LH,A
Y (a)(ω−ω0)a +HH,A

Y (n) ,

25This means that we are considering the natural pairing <, > when needed.
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with X = [c, λen], Y = Lω0
ξ (λen) and where the superscripts (a) and (n) describe

their components with respect to ea, en. Furthermore, Fττ , Gλτ and KA
λτ are func-

tionals of e, ω,A,B, τ and λ defined in Theorem 5.2.6 which are not proportional
to any other constraint.

Proof. Once again, we use the results contained in the preceding sections for the
components of the Hamiltonian vector fields. In particular, we have, upon the
usual formal substitution, xH = xϕ. The residual components are computed using
the results in Appendix B. We start with MH,A

µ . One can quite easily see that

mH,A
ϕ = [µ, ϕ], mH,A

p = [µ, p].

Now, since lH,Ac = 0 and ιlϕϖA = ιlAϖH = 0, one finds

lH,A = 0.

For PH,A
ξ , we find

δpA,Hξ =
∫

Σ
− < δp, ιξ[Ao, ϕ] > + < [A0, ιξp], δϕ >= ιpϕϖA︸ ︷︷ ︸

0

+ ιpAϖH︸ ︷︷ ︸
0

+ιpH,AϖYMH ,

finding
pH,Aϕ = −ιξ[A0, ϕ], pH,Ap = [A0, ιξp].

All the other components of pH,A vanish.
Regarding HH,A

λ , we find that hH = hϕ as expected, except for the components
that inherit the Higgs potential term:

hHp = dω
(λen

2 e2Π
)

+ λen
2 · 3!qhe

3(< ϕ, ϕ > −v2)ϕ; (5.364)

ehHω = λen
(
e < Π, dϕ > +e

2

4 < (Π,Π) > +e
2

2 VH
)

− λ

2 e
2Π(Π, en) + VhH . (5.365)

For hH,Aλ , we obtain

δhH,Aλ =
∫

Σ
λen

[
e < Π, [A, ϕ] > δe+ e2

2
(
< δΠ, [A, ϕ] > (5.366)

+ < [A,Π], δϕ >
)]

+
∫

Σ
λen

igHe
2

4 Tr[(Πϕ† − ϕΠ†)δA] (5.367)

= ιhϕϖA︸ ︷︷ ︸
0

+ ιhAϖH︸ ︷︷ ︸
0

+ιhH,AϖYMH , (5.368)
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hence finding

hA,He = 0 ehA,Hω = −λen
2 e < Π, [A, ϕ] > (5.369)

e3

3! h
A,H
ϕ = λen

2 e2[A.ϕ] e3

3! h
A,H
Π = λen

2 e2[A,Π] (5.370)

hA,HA = 0 hA,Hρ = igH
4 λene

2Tr(Πϕ† − ϕΠ†) (5.371)

For the following computations, we use Appendix B. As before, we notice that, for
all constraints, it holds

ιX+xH ιY+yHϖA + ιX+xAιY+yAϖH = 0, (5.372)
ιXιYϖA = 0, (5.373)
ιXιYϖH = 0, (5.374)

ιxH ιyAϖYMH = 0, (5.375)
ιxAιyHϖYMH = 0. (5.376)

Hence, we can use

{XH,A, Y H,A}YMH = {X + xA, Y + yA}A + {X + xH , Y + yH}H (5.377)
− {X, Y } + ιyH,Aδ(X + xA + xH + xH,A) (5.378)
+ ιxH,Aδ(Y + yA + yH + yH,A) − ιxH,AιyH,AϖYMH . (5.379)

Applying it, we get

{MA,H
µ ,MA,H

µ }YMH = {MA
µ ,M

A
µ }A + 2ιmH,Aδ(MA

µ +mH,A
µ ) (5.380)

− ιmH,AιmH,AϖYMH (5.381)

= 1
2M

A
[µ,µ] +

∫
Σ
< [µ, p], [µ, ϕ] > + < p, [µ, [µ, ϕ]] > (5.382)

−
∫

Σ
< [µ, p], [µ, ϕ] > (5.383)

= 1
2M

A
[µ,µ] + 1

2

∫
Σ
< p, [[µ, µ], ϕ] > (5.384)

= 1
2M

H,A
[µ,µ], (5.385)

{LA,Hc ,MA,H
µ }YMH = {MA

µ , Lc}A + ιmH,AδLc = 0, (5.386)
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and

{MH,A
µ , PH,A

ξ }YMH = {MA
µ , Pξ + pAξ }A + ιpH,Aδ(MA

µ +mH,A
µ ) (5.387)

− ιmH,AιpH,AϖYMH + ιMAιP+pAϖH + ιMAιpHϖYMH (5.388)
= MA

LA0µ (5.389)

+
∫

Σ

(
< [A0, ιξp], [µ, ϕ] > + < p, [µ, [ιξA0, ϕ]] >

)
(5.390)

+
∫

Σ

(
− < [µ, p],Lω0+A0

ξ ϕ > − < p,Lω0+A0
ξ [µ, ϕ] >

)
(5.391)

−
∫

Σ

(
< [µ, p], [ιξA0, ϕ] > + < [A0, ιξp], [µ, ϕ] >

)
(5.392)

= MA

LA0
ξ
µ

−
∫

Σ
< p, [LA0

ξ µ, ϕ] >= MH,A

LA0
ξ
µ
, (5.393)

where we noticed that in the second step the first and third lines cancel out and
where we also used

− < [µ, p],Lω0+A0
ξ ϕ >=< p, [µ,Lω0+A0

ξ ϕ] > . (5.394)

Then, we compute

{MH,A
µ , HH,A

λ }YMH = {MA
µ , H

A
λ }A + ιhH,Aδ(MA

µ +mH,A
µ ) (5.395)

+ ιmH,Aδ(Hλ + hAλ + hHλ + hH,Aλ ) − ιmH,AιhH,AϖYMH (5.396)

=
∫

Σ

λene
2

2
(
< Π, [dAµ, ϕ] > + < [A,Π], [µ, ϕ] > (5.397)

+ < Π, [µ, [A, ϕ]] >
)

(5.398)

−
∫

Σ

λene
2

2
(
< [µ,Π], dϕ > + < Π, d[µ, ϕ] >

)
(5.399)

+ λene
3

3 < [µ,Π],Π > (5.400)

+
∫

Σ

λene
3qH

3 (< ϕ, ϕ > −v2) < [µ, ϕ], ϕ > (5.401)

+
∫

Σ

λene
2

2
(
< [µ,Π], [A, ϕ] > + < Π, [A, [µ, ϕ]] >

)
(5.402)

−
∫

Σ

λene
2

2
(
< [µ,Π], [A, ϕ] > + < [A,Π], [µ, ϕ] >

)
(5.403)

= 0, (5.404)

having used the fact that [µ,< ϕ, ϕ >] = [µ,< Π,Π >] = 0 and the Jacobi identity
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for A, µ and ϕ. We also have

{LA,Hc , LA,Hc }YMH = {LHc , LHc }H + {LAc , LAc }A − {Lc, Lc} (5.405)

= −1
2L[c,c] = −1

2L
A,H
[c,c] (5.406)

and

{LA,Hc , PH,A
ξ }YMH = {Lc, Pξ + pHξ }H + {Lc, Pξ + pAξ }A (5.407)

− {Lc, Pξ} + ιpH,AδLc (5.408)
= LH,ALω0c. (5.409)

Furthermore, we have

ιhH,AδLc =
∫

Σ
c
[λen

4 < Π, [A, ϕ] >, e2
]

=
∫

Σ

[
c, λen

]e2

4 < Π, [A, ϕ] >, (5.410)

and hence, using [c, λen] = X = X(ν)eν +X(n)en and

−pH,A
X(ν) +mH,A

X(ν)(A−A0)ν =
∫

Σ

[
c, λen

](ν)
eν
e2

4 < Π, [A, ϕ] >, (5.411)

we get

{LA,Hc , HH,A
λ }YMH = {Lc, Hλ + hAλ }A + {Lc, Hλ + hHλ }H (5.412)

− {Lc, Hλ} + ιhH,AδLc (5.413)
= −PA

X(ν) + LAX(ν)(ω−ω0)ν −HA
X(n) (5.414)

+MA
Xν(A−A0)ν − PH

X(ν) + LHX(ν)(ω−ω0)ν (5.415)
−HH

X(n) + PX(ν) − LX(ν)(ω−ω0)ν (5.416)
+HX(n) − pH,A

X(ν) − hH,A
X(n) +mH,A

X(ν)(A−A0)ν (5.417)

= −PH,A

X(ν) + LH,A
X(ν)(ω−ω0)ν −HH,A

X(n) +MH,A
Xν(A−A0)ν . (5.418)
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We compute

{PH,A
ξ , PH,A

ξ }YMH = {Pξ + pAξ , Pξ + pAξ }A + {Pξ + pHξ , Pξ + pHξ }H (5.419)
− {Pξ, Pξ} + 2ιpH,Aδ(Pξ + pAξ + pHξ + pH,Aξ ) (5.420)
− ιpH,AιpH,AϖYMH (5.421)

= 1
2P

A
[ξ,ξ] − 1

2L
A
ιξιξFω0

(5.422)

− 1
2M

A
ιξιξFA0

+ 1
2P

ψ
[ξ,ξ] − 1

2L
ψ
ιξιξFω0

− 1
2P[ξ,ξ] (5.423)

+ 1
2LιξιξFω0

+
∫

Σ
< [A0, ιξp],Lω0+A0

ξ ϕ > (5.424)

+ < p,Lω0+A0
ξ [ιξA0, ϕ] > (5.425)

−
∫

Σ
< [A0, ιξp], [ιξA0, ϕ] > (5.426)

= 1
2P

A
[ξ,ξ] − 1

2L
A
ιξιξFω0

− 1
2M

A
ιξιξFA0

(5.427)

+ 1
2P

ψ
[ξ,ξ] − 1

2L
ψ
ιξιξFω0

− 1
2P[ξ,ξ] (5.428)

+ 1
2LιξιξFω0

+
∫

Σ
< p, [ι[ξ,ξ]A0, ϕ] > (5.429)

= 1
2P

H,A
[ξ,ξ] − 1

2L
H,A
ιξιξFω0

− 1
2M

H,A
ιξιξFA0

, (5.430)

where we made use of the following identity

1
2ι[ξ,ξ]A0 = ιξdιξA0 − 1

2ιξιξdA0. (5.431)



5.5. YANG–MILLS-HIGGS 87

We also have

{PH,A
ξ , HH,A

λ }YMH = {Pξ + pAξ , Hλ + hAλ }A + {Pξ + pHξ , Hλ + hHλ }H (5.432)
− {Pξ, Hλ} + ιhH,Aδ(Pξ + pAξ + pHξ + pH,Aξ ) (5.433)
+ ιpH,Aδ(Hλ + hAλ + hHλ + hH,Aλ ) (5.434)
− ιpH,AιhH,AϖYMH (5.435)

= PA
Y (ν) − LAY (ν)(ω−ω0)ν +HA

Y (n) (5.436)
−MA

Y ν(A−A0)ν + PH
Y (ν) − LHY (ν)(ω−ω0)ν (5.437)

+HH
Y (n) − PY (ν) + LY (ν)(ω−ω0)ν −HY (n) (5.438)

+
∫

Σ
Lω0+A0
ξ e

λene

2 < Π, [A, ϕ] > (5.439)

+
∫

Σ

λene
2

2 < [A,Π],Lω0+A0
ξ ϕ > (5.440)

−
∫

Σ

λene
2

2 < Π,Lω0+A0
ξ [A, ϕ] > (5.441)

+
∫

Σ
< Π,Lω0+A0

ξ

(λene2

2 [A, ϕ]
)
> (5.442)

+
∫

Σ

λene
2

2 < [ιξA0,Π], dAϕ > (5.443)

+
∫

Σ

λene
2

2
(
< Π, dA[ιξA0, ϕ] >

)
(5.444)

+
∫

Σ

λene
3

3 < [A,Π],Π > (5.445)

+
∫

Σ

λene
3qH

3 (< ϕ, ϕ > −v2) < [A, ϕ], ϕ > (5.446)

= PA
Y (ν) − LAY (ν)(ω−ω0)ν (5.447)

+HA
Y (n) −MA

Y ν(A−A0)ν + PH
Y (ν) − LHY (ν)(ω−ω0)ν (5.448)

+HH
Y (n) − PY (ν) + LY (ν)(ω−ω0)ν −HY (n) (5.449)

+
∫

Σ
Lω0+A0
ξ (λen)e

2

2 < Π, [A, ϕ] > (5.450)

= PH,A

Y (ν) − LH,A
Y (ν)(ω−ω0)ν +HH,A

Y (n) −MH,A
Y ν(A−A0)ν , (5.451)

having used (5.351).
Then, we calculate

{HH,A
λ , HH,A

λ }YMH = {HH
λ , H

H
λ }H + {HA

λ , H
A
λ }A − {Hλ, Hλ} (5.452)

+ 2ιhH,A
λ
δHH,A

λ − ιhH,A
λ
ιhH,A
λ
ϖYMH = 0, (5.453)
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where we implemented the fact all terms in 2ιhH,A
λ
δHH,A

λ − ιhH,A
λ
ιhH,A
λ

ΩSM contain
either (λen)2 = 0 or λendω(λen) = 0.

What remains is to compute the brackets involving Rτ that are neither trivially
vanishing nor directly reducible to cases already treated in the preceding sections.
For instance, we have

{Rτ , h
H,A
λ } = Rτ

∫
Σ
λen

e2

2 < Π, [A, ϕ] > (5.454)

=
∫

Σ
λen[τ, e] < Π, [A, ϕ] > (5.455)

=
∫

Σ
λen[τ, ê] < Π, [A, ϕ] > (5.456)

=
∫

Σ
λτ [en, ê] < Π, [A, ϕ] >, (5.457)

where ê is the vielbein along the non-degenerate direction. Moreover, we used
the fact that en[τ, e] = [enτ, e] + τ [en, e] = τ [en, e], thanks to enτ = 0 following
the definitions. We notice that the integral contains no derivatives. Thus, we can
diagonalize the vielbein as26

êa =
ea1 = δa1
ea2 = δa2

(5.458)

ea+ = δa3 − δa4 (5.459)

ean = δa3 + δa4 , (5.460)

with a = 1, 2, 3, 4. This leads to

{Rτ , h
H,A
λ } = 0, (5.461)

since [en, ê] = 0 because of our choice of diagonalization.
On top of that, we have

{Rτ , h
H
λ } = Rτ

∫
Σ
λen

[
e2

2 < Π, dϕ > (5.462)

+ e3

2 · 3!(< Π,Π >) − q

24e
3(< ϕ, ϕ > −v2)2

]
(5.463)

=
∫

Σ
λen[τ, e] < Π, dϕ > (5.464)

= 0, (5.465)
26Note that, in this setting, the vielbein along the degenerate direction is e+.
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by noticing that all terms containing e[τ, e] are vanishing because of eτ = 0 (by
definition of S) and [e, e] = 0. The integral in (5.464) has analogously been
computed in Section 5.1.

In order to complete the proof, we notice that {Rτ ,m
H
µ } = 0 because mH

e =
mH
ω = 0.

Remark 5.5.10. Notice that, after choosing U(1) as the gauge group and setting
qH = 0, we obtain scalar electrodynamics coupled to gravity as a particular case
of this theory.

Corollary 5.5.11. If the boundary metric i∗g is non-degenerate, then the func-
tionals in Definition 5.5.8 define a coisotropic submanifold.

5.6 Yukawa
The space of fields of the Yukawa Palatini–Cartan theory is given by

FY = Fϕ × Γ(ΠS) × Γ(ΠS̄), (5.466)

or, equivalently,

FY = Fψ × C∞(M) × Ω0,1, (5.467)

where Fϕ and Fψ are defined in Eq. (5.1) and Eq. (5.125) respectively. Whereas,
the action functional reads

SY = S + Sϕ + Sψ + Sϕ,ψ, (5.468)

where

Sϕ,ψ = gY

∫
M

1
2 · 4!e

4ψϕψ, (5.469)

with gY a constant.
As in the previous sections, we notice that the interaction term does not contain

derivatives. It follows that the boundary structure is just the direct sum of the
scalar and spinor structures. In particular, the geometric phase space is given by
the following theorem.

Theorem 5.6.1. The geometric phase space of the Yukawa Palatini–Cartan theory
is symplectomorphic to the space (F∂

Y , ϖ
∂
Y ), where

F∂
Y ⊂ F∂

ϕ × Γ(Πi∗S) × Γ(Πi∗S̄) (5.470)
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with F∂
ϕ defined in Theorem 5.1.3 and (e, ω, ϕ,Π, ψ, ψ) ∈ F∂

Y satisfying


en(aψ − pT aψ) ∈ ImW
Σ,(1,1)
1

pKω = 0

dAϕ− (e,Π) = 0

pWΠ = 0,

(5.471)

as defined in Lemma 4.2.19, Lemma 5.1.2, and Remark 5.3.14, and where the
corresponding symplectic form on F∂

Y is given by

ϖY = ϖ +ϖϕ +ϖψ. (5.472)

Remark 5.6.2. From the previous computation, we already know that for a spinor
field and a scalar field coupled to gravity, the constraint-generating expressions are
those associated with variations δe and δω, as all remaining variations correspond
to evolution equations. From the form of the Yukawa interaction term in the
action, we deduce that no additional constraints arise beyond those of pure gravity,
and that the only constraint modified by the interaction is Hλ.

This leads to the following definition.

Definition 5.6.3. Let c ∈ Ω0,2
Σ [1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1], and τ ∈ S[1], and

the other functionals be as in Definition 5.1.4 and Definition 5.3.17. Then, we
define the following functionals

Lϕ,ψc = Lc + lψc (5.473)
P ϕ,ψ
ξ = Pξ + pϕξ + pψξ (5.474)

Hϕ,ψ
λ = Hλ + hϕλ + hψλ + hϕ,ψλ (5.475)

Rϕ,ψ
τ = Rτ , (5.476)

where

pϕξ = P ϕ
ξ − Pξ (5.477)

hϕλ = Hϕ
λ −Hλ (5.478)

and

hϕ,ψλ = gY

∫
Σ
λen

1
2 · 3!e

3ψϕψ (5.479)

We refer to these as the constraints of the Yukawa Palatini–Cartan theory.
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Theorem 5.6.4. The Poisson brackets of the constraints of Definition 5.6.3 read

{Lϕ,ψc , Lϕ,ψc }Y = −1
2L

ϕ,ψ
[c,c] {P ϕ,ψ

ξ , P ϕ,ψ
ξ }Y = 1

2P
ϕ,ψ
[ξ,ξ] − 1

2L
ϕ,ψ
ιξιξFω0

{Lϕ,ψc , P ϕ,ψ
ξ }Y = Lϕ,ψLω0

ξ
c

{Hϕ,ψ
λ , Hϕ,ψ

λ }Y ≈ 0

{Lϕ,ψc , Rτ}Y = −RpS [c,τ ] {Rϕ,ψ
τ , P ϕ,ψ

ξ }Y = RpSLω0
ξ
τ

{Rτ , H
ϕ,ψ
λ }Y ≈ Gλτ +Kψ

λτ {Rτ , Rτ}Y ≈ Fττ

{Lϕ,ψc , Hϕ,ψ
λ }Y = −P ϕ,ψ

X(a) + Lϕ,ψ
X(a)(ω−ω0)a −Hϕ,ψ

X(n)

{P ϕ,ψ
ξ , Hϕ,ψ

λ }Y = P ϕ,ψ

Y (a) − Lϕ,ψ
Y (a)(ω−ω0)a +Hϕ,ψ

Y (n) ,

with X = [c, λen], Y = Lω0
ξ (λen) and where the superscripts (a) and (n) describe

their components with respect to ea, en. Furthermore, Fττ , Gλτ and Kψ
λτ are func-

tionals of e, ω, ψ, ψ, τ and λ defined in Theorem 5.3.18 which are not proportional
to any other constraint.

Proof. The proof will follow the usual path defined in the previous sections and
in Appendix B, given that most of the results are taken from the computations of
Theorem 5.1.5 and Theorem 5.3.18.

Let us start with the constraint Lϕ,ψc . We first notice that ιlϕϖψ = ιlψϖϕ = 0.
The variation of the interaction term is lϕ,ψc = 0, hence we also conclude

lϕ,ψ = 0. (5.480)

For P ϕ,ψ
ξ , we work in the same way and find

pϕ,ψ = 0. (5.481)

On the other hand, for Hϕ,ψ
λ we get ιhϕϖψ = 0 and

ιhψϖϕ =
∫

Σ

1
2e

2hψe Πδϕ. (5.482)

Note that we will not need the explicit expression. The variation of the interaction
term reads

δhϕ,ψλ := gY

∫
Σ
λen

(1
4e

2δeψϕψ + 1
2 · 3!e

3δψϕψ (5.483)

− 1
2 · 3!e

3ψδϕψ − 1
2 · 3!e

3ψϕδψ
)
. (5.484)
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Hence, we get:

hϕ,ψe = 0 ehϕ,ψω = 0 (5.485)

hϕ,ψϕ = 0 1
3!e

3hϕ,ψΠ = −1
2e

2hψe Π + 1
2 · 3!gY λene

3ψψ (5.486)

γhϕ,ψψ = − i

2gY λenϕψ hϕ,ψ
ψ
γ = i

2gY λenψϕ (5.487)

Before implementing the results of Appendix B, we note that for the whole set
of constraints, we have

ιX+xψιY+yψϖϕ + ιX+xϕιY+yϕϖψ = 0. (5.488)

Then,

{Lϕ,ψc , Lϕ,ψc }Y = {Lc + lϕc , Lc + lϕc }ϕ + {Lc + lψc , Lc + lψc }ψ − {Lc, Lc} (5.489)
+ ιlϕιlψϖY + ιlψιlϕϖY (5.490)

= −1
2L[c,c] − 1

2 l
ψ
[c,c] = −1

2L
ϕ,ψ
[c,c] (5.491)

where we used for the second line lϕe = lψe = 0 and skipped the zero terms.
Similarly, we obtain

{Lϕ,ψc , P ϕ,ψ
ξ }Y = {Lc + lϕc , Pξ + pϕξ }ϕ + {Lc + lψc , Pξ + pψξ }ψ − {Lc, Pξ} (5.492)

+ ιlϕιpψϖY + ιlψιpϕϖY (5.493)
= LLω0

ξ
c + lψLω0

ξ
c

= Lϕ,ψLω0
ξ
c

(5.494)

where we used for the second line lϕe = pϕe = lψe = pψe = 0, and

{P ϕ,ψ
ξ , P ϕ,ψ

ξ }Y = {Pξ + pϕξ , Pξ + pϕξ }ϕ + {Pξ + pψξ , Pξ + pψξ }ψ − {Pξ, Pξ} (5.495)
+ ιpϕιpψϖY + ιpψιpϕϖY (5.496)

= 1
2P[ξ,ξ] − 1

2LιξιξFω0
+ 1

2p
ϕ
[ξ,ξ] + 1

2p
ψ
[ξ,ξ] − 1

2 l
ψ
ιξιξFω0

(5.497)

= 1
2P

ϕ,ψ
[ξ,ξ] − 1

2L
ϕ,ψ
ιξιξFω0

. (5.498)

For the brackets with Hϕ,ψ
λ , we have

{Lϕ,ψc , Hϕ,ψ
λ }Y = {Lc + lϕc , Hλ + hϕλ}ϕ + {Lc + lψc , Hλ + hψλ}ψ − {Lc, Hλ} (5.499)

+ ιhϕ,ψδ(Lc + lψc ), (5.500)
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and we compute the last term, yielding

ιhϕ,ψδ(Lc + lψc ) =
∫

Σ
−ce[hϕ,ψω , e] − i

e3

2 · 3!
(

− [c,hϕ,ψ
ψ

]γψ − hϕ,ψ
ψ
γ[c, ψ]

)
(5.501)

− i
e3

2 · 3!
(

− [c, ψ]γhϕ,ψψ + ψγ[c,hϕ,ψψ ]
)

(5.502)

=
∫

Σ
−1

4gY ce[λeneψϕψ, e] (5.503)

− i
e3

2 · 3!
(

− [c,hϕ,ψ
ψ

]γψ − hϕ,ψ
ψ
γ[c, ψ]

)
(5.504)

− i
e3

2 · 3!
(

− [c, ψ]γhϕ,ψψ + ψγ[c,hϕ,ψψ ]
)

(5.505)

= −
∫

Σ

e3

2 · 3!gY [c, λen]ψϕψ, (5.506)

where we used the properties for the bracket [·, ·] on spinors. The result can be
easily regarded as hϕ,ψ

X(n) . Hence, we get

{Lϕ,ψc , Hϕ,ψ
λ }Y = −PX(ν) + LX(ν)(ω−ω0)ν −HX(n) − pϕ

X(ν) − hϕ
X(n) − pψ

X(ν) (5.507)
+ lψ

X(ν)(ω−ω0)ν − hψ
X(n) − hϕ,ψ

X(n) (5.508)

= −P ϕ,ψ

X(ν) + Lϕ,ψ
X(ν)(ω−ω0)ν −Hϕ,ψ

X(n) (5.509)

Analogously, we write

{P ϕ,ψ
ξ , Hϕ,ψ

λ }Y = {Pξ + pϕξ , Hλ + hϕλ}ϕ + {Pξ + pψξ , Hλ + hψλ}ψ − {Pξ, Hλ} (5.510)
+ ιhϕ,ψδ(Pξ + pψξ + pϕξ ) + ιhψιpϕϖY . (5.511)

Let us consider the terms in the second row. We have

ιhψιpϕϖY =
∫

Σ

1
2e

2hψe Πpϕϕ = −
∫

Σ

1
2e

2hψe ΠLξϕ.
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On the other hand, we compute

ιhϕ,ψδ(Pξ + pψξ + pϕξ ) =
∫

Σ
− 1

3!e
3hϕ,ψΠ Lξϕ (5.512)

− i
e3

2 · 3!
(
hϕ,ψ
ψ
γLω0

ξ (ψ) + Lω0
ξ (ψ)γhϕ,ψψ

)
(5.513)

− i

2 · 3!
(
Lω0
ξ (e3ψ)γhϕ,ψψ + hϕ,ψ

ψ
γLω0

ξ (e3ψ)
)

(5.514)

=
∫

Σ

1
2e

2hψe ΠLξϕ− 1
2 · 3!gY λene

3ψψLξϕ (5.515)

+ e3

2 · 3!
(1

2gY λenψϕLω0
ξ (ψ) (5.516)

− 1
2gY λenLω0

ξ (ψ)ϕψ
)

(5.517)

− 1
2 · 3!

(1
2gY λenLω0

ξ (e3ψ)ϕψ (5.518)

− 1
2gY λenψϕLω0

ξ (e3ψ)
)

(5.519)

=
∫

Σ
−gY

1
2 · 3!λenLω0

ξ (e3ψϕψ) + 1
2e

2hψe ΠLξϕ (5.520)

=
∫

Σ
gY

1
2 · 3!L

ω0
ξ (λen)e3ψϕψ + 1

2e
2hψe ΠLξϕ, (5.521)

where we used Lω0
ξ γ = 0. The second term in the last row cancels out with the one

computed above, while the first is exactly hϕ,ψ
Y (n) . Thus, collecting all the terms, we

get

{P ϕ,ψ
ξ , Hϕ,ψ

λ }Y = PY (ν) − LY (ν)(ω−ω0)ν +HY (n) + pϕ
Y (ν) + hϕ

Y (n) + pψ
Y (ν) (5.522)

− lψ
Y (ν)(ω−ω0)ν + hψ

Y (n) + hϕ,ψ
Y (n) (5.523)

= −P ϕ,ψ

Y (ν) + Lϕ,ψ
Y (ν)(ω−ω0)ν −Hϕ,ψ

Y (n) . (5.524)

Finally, we consider

{Hϕ,ψ
λ , Hϕ,ψ

λ }Y = {Hλ + hϕλ, Hλ + hϕλ}ϕ + {Hλ + hψλ , Hλ + hψλ}ψ (5.525)
− {Hλ, Hλ} + 2ιhϕ,ψδ(Hλ + hϕλ + hψλ + hϕ,ψλ ) (5.526)
− ιhϕ,ψιhϕ,ψϖY + 2ιhϕιhψϖY . (5.527)

All the terms of the first line are zero, as proved in the previous theorems. Fur-
thermore, notice that Hλ + hϕλ + hψλ + hϕ,ψλ is proportional to λ, as well as hϕ,ψ, hϕ

and hψ. Since λ2 = 0, we conclude that {Hϕ,ψ
λ , Hϕ,ψ

λ } = 0.
For what concerns the brackets with Rτ , we notice that they are either treated

in Theorem 5.1.5 and Theorem 5.3.18 or trivially vanishing.
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Corollary 5.6.5. If the boundary metric i∗g is non-degenerate, then the function-
als in Definition 5.6.3 define a coisotropic submanifold.



Chapter 6

Codimension-2 structure of
gravity

6.1 Courant algebroid and Dirac structure

Definition 6.1.1 (Courant algebroid1). A Courant algebroid over a smooth man-
ifold M is a vector bundle E → M equipped with a non-degenerate symmetric
bilinear form ⟨·, ·⟩, a bilinear bracket [·, ·] : Γ(E) × Γ(E) → Γ(E), and an anchor
map ρ : Γ(E) → Γ(TM), satisfying the following conditions for all e1, e2, e3 ∈ Γ(E)
and f ∈ C∞(M):

i. [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]],

ii. ρ([e1, e2]) = {ρ(e1), ρ(e2)},

iii. [e1, fe2] = f [e1, e2] + (ρ(e1)f)e2,

iv. ⟨e1, [e2, e3] + [e3, e2]⟩ = ρ(e1)⟨e2, e3⟩,

v. ρ(e1)⟨e2, e3⟩ = ⟨[e1, e2], e3⟩ + ⟨e2, [e1, e3]⟩,

where {·, ·} is the Lie bracket of vector fields.

Remark 6.1.2. From the properties above, it follows that [e1, e2] + [e2, e1] =
D⟨e1, e2⟩, where D : C∞(M) → Γ(E) is a differential operator defined as D = ρ∗d,
with ρ∗ : Γ(T ∗M) → Γ(E) the co-anchor map of ρ defined by ⟨ρ∗(α), e⟩ = α(ρ(e)),
with α ∈ Γ(T ∗M) and e ∈ Γ(E), and d the de Rham differential operator. In other
words, the bracket [·, ·] is not antisymmetric in general, and its lack of antisymme-
try is measured by D and the pairing. Notice that it would be possible to modify

1See [Mei25], [Roy02] and references therein for more details.

96
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the axioms of Definition 6.1.1 in order to account for an antisymmetric bracket.
In this case, it would no longer satisfy the Jacobi-type identity of property (i),
and the differential operator D would then measure its failure.
Remark 6.1.3. Notice the difference with a Lie algebroid. A Lie algebroid is a
vector bundle A → M equipped with a Lie bracket [·, ·] on its space of sections
and an anchor map ρ : A → TM satisfying the Leibniz rule

[a, fb] = f [a, b] + (ρ(a)f) b, (6.1)

for all a, b ∈ Γ(A) and f ∈ C∞(M). In this setting, the bracket is skew-symmetric
and satisfies both the Leibniz and the Jacobi identities.

Definition 6.1.4 (Dirac structure). A Dirac structure on a manifold M is a sub-
bundle D ⊆ TM ⊕ T ∗M whose space of sections Γ(D) is closed under the bracket
[·, ·] and that is maximally isotropic with respect to the bilinear form ⟨·, ·⟩, i.e.
⟨X + X ,Y + Y⟩ = 0 for all X + X ,Y + Y ∈ Γ(D) and D has maximal rank among
all isotropic subbundles of TM ⊕ T ∗M .

6.2 Corner structure of gravity
Consider the pure gravitational setting, where we set the boundary metric i∗g to
be non-degenerate.2

Definition 6.2.1. Let c ∈ Ω0,2
Σ [1], ξ ∈ X(Σ)[1] and λ ∈ C∞(Σ)[1]. Then, we

define the following functionals

Lc =
∫

Σ
cedωe (6.2)

Pξ =
∫

Σ

1
2ιξ(e

2)Fω + ιξ(ω − ω0)edωe (6.3)

Hλ =
∫

Σ
λen

(
eFω + Λ

3!e
3
)
. (6.4)

We refer to these as the constraints of the Palatini–Cartan non-degenerate theory.

Remark 6.2.2. The geometric set-up we are working with is that of a stratified
manifold—more precisely, a manifold with corners as defined in Definition 2.2.6
and specified in Remark 2.2.7. From now on, we will refer to the codimension-
1 and codimension-2 strata as, respectively, the boundary and the corner of the
manifold.

2Alternatively, one imposes the degeneracy constraint and work within that submanifold.
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Notice that we can make the vielbein descend to the corner3 by considering

Ω̃1,1
Σ ∋ e 7→ e+ emdx

m, (6.5)

where, on the right-hand side4, e ∈ Ω̃1,1
Γ and em ∈ Ω0,1

Γ are such that, given a
completion vielbein as in Definition 4.2.11, we have that {e(v1), e(v2), em, en} is a
basis of j∗i∗V , where {v1, v2} is a basis of TΓ. Notice, however, that em is not
fixed, conversely to the case of Definition 4.2.11.
Analogously, we have

ω 7→ ω + ωmdx
m (6.6)

d 7→ d+ dxm∂m. (6.7)

By means of these decompositions, we have that the boundary constraints in Def-
inition 6.2.1 yield the following additional conditions on the corner5

emdωe = edωem − edωme (6.8)
emFω − eFωm = 0. (6.9)

Whereas, the structural constraint in Eq. (4.29) (with α = dωe) descends to the
corner as

endωme+ endωem = eσm + emσ. (6.10)

Definition 6.2.3. We define πΓ : F∂ → F∂∂ to be the restriction of the boundary
fields to the corner.

Now, given a local functional X of Definition 6.2.1 and its Hamiltonian vector
field X ∈ X(Σ), we can notice that the Hamiltonian equation in the presence of a
codimension-2 corner becomes something of the form

δX = ιXϖ + π∗
ΓX , (6.11)

where X is a 1-form on F∂∂.

3See [CC24] for other details.
4Given i : Σ → M and j : Γ → Σ, we can define Ωi,j

Γ := Ωi(Γ,
∧j(j∗i∗V)).

5We have to account for the transversal components of the zero locus of the constraints in
Definition 6.2.1.
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Definition 6.2.4. Let c ∈ Ω0,2
Γ [1], ζ ∈ X(Γ)[1] and λ, η ∈ C∞(Γ)[1]. Then, the

functionals in Definition 6.2.1 define the following 1-forms on F∂∂

Jc =
∫

Γ
ceδe = δ

∫
Γ

ce2

2 (6.12)

Eζ =
∫

Γ
ιζ
e2

2 δω + ιζ(ω − ω0)eδe = δ
∫

Γ
ιζ
e2

2 (ω − ω0) (6.13)

Kη =
∫

Γ
η
[
eemδω + (ω − ω0)meδe

]
(6.14)

Fλ =
∫

Γ
λeneδω, (6.15)

where we have considered ιξ 7→ ιζ + η∂m, with ∂m the derivation transversal to Γ.

Remark 6.2.5. Notice that we can also project the Hamiltonian vector fields for
the functionals of Definition 6.2.1 to the corner, eventually defining a subbundle
D ⊆ TF∂∂ ⊕ T ∗F∂∂ constructed out of such restricted vector fields together with
the 1-forms of Definition 6.2.4. The construction of this projection is contained in
the proof of Theorem 6.2.10.

Definition 6.2.6. Let E = TF∂∂ ⊕ T ∗F∂∂. Then, the structure (E, ⟨·, ·⟩, [·, ·], ρ),
given by

• ⟨X + X ,Y + Y⟩ = ιXY − ιYX ,

• [X + X ,Y + Y ] = {X,Y} + LXY + ιYδX (Dorfman bracket), and

• ρ = p1 (natural projection to Γ(TF∂∂)),

is called the standard Courant algebroid on F∂∂.

Remark 6.2.7. Note that the introduction of odd Lagrange multipliers induces
a parity shift, resulting in a sign change in the relations among odd quantities.
Accordingly, we have structured the quantities in Definition 6.2.6 to reflect this
grading.

Lemma 6.2.8. If δ(ιXY − ιYX ) = 0, then [X + X ,Y + Y ] = [Y + Y ,X + X ].

Proof. The proof is given by direct computation. We calculate [X + X ,Y + Y ] =
{X,Y}+ιXδY−διXY+ιYδX = {Y,X}+ιXδY−διYX +ιYδX = {Y,X}+LYX +ιXδY =
[Y + Y ,X + X ], where we used that διXY = διYX .

Remark 6.2.9. This result coincides with the observation in Remark 6.1.2. Namely,
we can construct an alternative bracket—the Courant bracket ([Cou90])—which
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is defined as the antisymmetrization6 of the Dorfman bracket but does not satisfy
the Jacobi identity. Once again, Lemma 6.2.8 essentially shows that, given the
vanishing of the differential of the pairing, the Dorfman and Courant brackets are
equivalent.

Theorem 6.2.10. The subbundle D ⊆ TF∂∂ ⊕T ∗F∂∂ as defined in Remark 6.2.5
is closed under the Dorfman bracket and isotropic with respect to the natural pair-
ing.

Proof. By Definition 6.2.6, we know that TF∂∂ ⊕ T ∗F∂∂ can be endowed with a
Courant algebroid structure.

We begin by proving that the subbundle is isotropic. Once this is achieved,
the proof of the closedness of the brackets can be simplified, as it will suffice to
verify it for a smaller class of elements, thanks to the antisymmetry of the Courant
bracket. In fact, due to Lemma 6.2.8, the Dorfman bracket and its antisymmetrized
counterpart—the Courant bracket—are equivalent in an isotropic setting.

Thus, we obtain the following results.

⟨Jc + Jc,Eζ + Eζ⟩ = ιJc

∫
Γ
ιζ
e2

2 δω + ιζ(ω − ω0)eδe− ιEζ

∫
Γ
ceδe (6.16)

=
∫

Γ
ιζ
e2

2 dωc+ ιζ(ω − ω0)e[c, e] + ceLω0
ζ e (6.17)

=
∫

Γ
− e2

2 ιζdωc+ e2

2 [ιζ(ω − ω0), c] + e2

2 L
ω0
ζ c (6.18)

= 0, (6.19)

⟨Jc + Jc,Kη + Kη⟩ = ιJc

∫
Γ
ηemeδω + η(ω − ω0)meδe− ιKη

∫
Γ
ceδe (6.20)

=
∫

Γ
ηemedωc+ η(ω − ω0)m[c, e

2

2 ] + ce(ηdω0
m
e− dηem) (6.21)

=
∫

Γ
dηemec− ηdω(eme)c+ c[η(ω − ω0)m,

e2

2 ] (6.22)

+ cηdω0
m

e2

2 − cedηem (6.23)

=
∫

Γ
cηdω(eme) + cηedωme (6.24)

= 0, (6.25)

6We mean here a graded antisymmetrization.
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where we imposed the condition Eq. (6.8),

⟨Jc + Jc,Fλ + Fλ⟩ = ιJc

∫
Γ
λeneδω − ιFλ

∫
Γ
ceδe (6.26)

=
∫

Γ
λenedωc− cdω(λene) (6.27)

= 0, (6.28)

⟨Eζ + Eζ ,Kη + Kη⟩ = ιEζ

∫
Γ
ηemeδω + η(ω − ω0)meδe (6.29)

− ιKη

∫
Γ
ιζ
e2

2 δω + ιζ(ω − ω0)eδe (6.30)

=
∫

Γ
ηeme(ιζFω + dωιζ(ω − ω0)) − η(ω − ω0)mLω0

ζ

e2

2 (6.31)

− ιζeeFωm − ιζeedω(η(ω − ω0)m) (6.32)

+ ιζ(ω − ω0)eηdω0
m
e− ιζ(ω − ω0)edηem (6.33)

=
∫

Γ
ηemιζeFω − dηemeιζ(ω − ω0) (6.34)

+ ηdω(eme)ιζ(ω − ω0) + η(ω − ω0)mdω0ιζ
e2

2 (6.35)

− ιζeeFωm − ηdωιζ
e2

2 (ω − ω0)m (6.36)

+ ιζ(ω − ω0)eηdω0
m
e− ιζ(ω − ω0)edηem (6.37)

=
∫

Γ
ηemιζeFω + ηedωmeιζ(ω − ω0) − ιζeeFωm (6.38)

− η(ω − ω0)m[ω − ω0, ιζ
e2

2 ] + ιζ(ω − ω0)eηdω0
m
e (6.39)

=
∫

Γ
ηιζe(emFω − eFωm) − ηedωmeιζ(ω − ω0) (6.40)

+ ηιζ(ω − ω0)([(ω − ω0)m,
e2

2 ] − dω0
m

e2

2 ) (6.41)

= 0, (6.42)
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where we both used Eq. (6.8) and Eq. (6.9),

⟨Eζ + Eζ ,Fλ + Fλ⟩ = ιEζ

∫
Γ
λeneδω − ιFλ

∫
Γ
ιζ
e2

2 δω + ιζ(ω − ω0)eδe (6.43)

=
∫

Γ
λene(−ιζFω + dωιζ(ω − ω0)) (6.44)

− ιζeλenFω − ιζ(ω − ω0)dω(λene) (6.45)

= 0, (6.46)

and

⟨Fλ + Fλ,Kη + Kη⟩ = ιFλ

∫
Γ
ηemeδω + η(ω − ω0)meδe− ιKη

∫
Γ
λeneδω (6.47)

=
∫

Γ
ηemλenFω + η(ω − ω0)mdω(λene) (6.48)

− λeneηFωm − λenedω(η(ω − ω0)m) (6.49)

=
∫

Γ
ηλen(emFω − eFωm) (6.50)

= 0, (6.51)

where we implemented again Eq. (6.9), which concludes the proof of the isotropy.
In order to prove that the Dorfman bracket on Γ(D) is involutive, we first have

to complete the construction of D, i.e. we have to consider the Hamiltonian vector
fields for the functionals in Definition 6.2.17—i.e. vector fields over F∂—and push
them forward to Γ(TF∂∂). Therefore, we have to project the Hamiltonian vector
fields on the boundary to the corner, taking into account its transversal direction.
We achieve this result by means of Eq. (6.5) and Eq. (6.6), as well as ιξ 7→ ιζ+η∂m.

For Jc, we simply have

Jc,e = [c, e] Jc,em = [c, em] (6.52)
Jc,ω = dωc Jc,ωm = dωmc. (6.53)

7See, for example, [CCS21a] for a derivation of the Hamiltonian vector fields on the boundary
for non-degenerate gravity.
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Then, we observe the following results for the Lie derivatives

−Lω0
ξ e 7→ −(ιζ + ηι∂m)(dω0 + dxmdω0

m
)(e− emdx

m) (6.54)
+ (dω0 + dxmdω0

m
)(ιζ + ηι∂m)(e− emdx

m) (6.55)
= −(ιζ + ηι∂m)(dω0e− dω0emdx

m + dxmdω0
m
e) (6.56)

+ (dω0 + dxmdω0
m

)(ιζe+ ηem) (6.57)
= −(ιζdω0e− dxmιζdω0em + dxmιζdω0

m
e (6.58)

− ηdω0em + ηdω0
m
e) + dω0ιζe+ dω0ηem (6.59)

− ηdω0em + dxmdω0
m
ιζe (6.60)

+ dxm(∂mηem − ηdω0
m
em) (6.61)

= −Lω0
ζ e− dxm(−Lω0

ζ em + ιζdω0
m
e− dω0

m
ιζe) (6.62)

− ηdω0
m
e+ dηem + dxmdω0

m
(ηem) (6.63)

= −Lω0
ζ e+ dxm(Lω0

ζ em + ι∂mζe) − ηdω0
m
e (6.64)

+ dηem + dxmdω0
m

(ηem), (6.65)

−Lω0
ξ (ω − ω0) 7→ −(ιζ + ηι∂m)(dω0 + dxmdω0

m
)(ω − ω0 + dxm(ω − ω0

m)) (6.66)
+ (dω0 + dxmdω0

m
)(ιζ + ηι∂m)(ω − ω0 + dxm(ω − ω0

m)) (6.67)
= −(ιζ + ηι∂m)(dω0(ω − ω0) − dxmdω0(ω − ω0)m (6.68)

+ dxmdω0
m

(ω − ω0)) + (dω0 + dxmdω0
m

)(ιζ(ω − ω0) (6.69)
+ η(ω − ω0)m) (6.70)

= −(ιζdω0(ω − ω0) − dxmιζdω0(ω − ω0)m (6.71)
+ dxmιζdω0

m
(ω − ω0) − ηdω0(ω − ω0)m (6.72)

+ ηdω0
m

(ω − ω0)) + dω0ιζ(ω − ω0) (6.73)
+ dη(ω − ω0)m − ηdω0(ω − ω0)m (6.74)
+ dxm(ι∂mζ(ω − ω0) + ιζdω0

m
(ω − ω0) (6.75)

+ dω0
m

(η(ω − ω0)m)) (6.76)
= −Lω0

ζ (ω − ω0) + dxm(Lω0
ζ (ω − ω0)m (6.77)

+ ι∂mζ(ω − ω0)) − ηdω0
m

(ω − ω0) (6.78)
+ dη(ω − ω0)m + dxmdω0

m
(η(ω − ω0)m) (6.79)
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and

−ιξFω0 7→ −(ιζ + ηι∂m)(dω0 + dxm∂mω0 + dxmdω0
m (6.80)

+ 1
2[ω0, ω0] + dxm[ω0

m, ω0]) (6.81)

= −(ιζ + ηι∂m)(Fω0 + dxm(∂mω0 − dω0ω
0
m)) (6.82)

= −ιζFω0 − dxm(ιζ∂mω0 − Lω0
ζ ω

0
m) − η∂mω0 + ηdω0ω

0
m. (6.83)

With these identities we can write the other Hamiltonian vector fields, which are
given by

Eζ,e = −Lω0
ζ e Eζ,em = Lω0

ζ em + ι∂mζe (6.84)
Eζ,ω = −ιζFω0 − Lω0

ζ (ω − ω0) Eζ,ωm = Lω0
ζ ωm + ι∂mζ(ω − ω0) − ι∂mζω0 (6.85)

Fλ,e = dω(λen) + λσ Fλ,em = dωm(λen) + λσm (6.86)
eFλ,ω = λenFω eFλ,ωm + emFλ,ω = λen(∂mω − dωωm) (6.87)

Kη,e = −ηdω0
m
e+ dηem Kη,em = dω0

m
(ηem) (6.88)

Kη,ω = −ηdω0
m
ω + dη(ω − ω0)m + ηdω0

m Kη,ωm = dω0
m

(η(ω − ω0)m). (6.89)

Therefore, the Dorfman brackets are given by the following computations.8

[Jc + Jc,Jc + Jc] = −1
2J[c,c] +

�
����1

2ιJcδJc − 1
2δ(ιJcJc) +

�
����1

2ιJcδJc (6.90)

= −1
2J[c,c] − 1

2

∫
Γ
c[c, eδe] = −1

2J[c,c] − 1
2

∫
Γ
[c, c]eδe (6.91)

= −1
2J[c,c] − 1

2J[c,c], (6.92)

where we used the exactness property of Jc,

[Eζ + Eζ ,Jc + Jc] = JLω0
ζ
c − δ(ιEζJc) (6.93)

= JLω0
ζ
c + δ

∫
Γ
ceLω0

ζ e (6.94)

= JLω0
ζ
c + δ

∫
Γ

e2

2 L
ω0
ζ c (6.95)

= JLω0
ζ
c + JL

ω0
ζ
c, (6.96)

8The criteria for choosing if to compute [X + X , Y + Y] or [Y + Y, X + X ] were purely selected
on the base of computational convenience.
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[Jc + Jc,Kη + Kη] = Jηd
ω0
m
c + ιJcδKη − δ(ιJcKη) (6.97)

= Jηd
ω0
m
c + ιJc

∫
Γ

− ηδemeδω + ηemδeδω − ηeδωmδe (6.98)

− δ(
∫

Γ
ηemedωc− ηe(ω − ω0)m[c, e]) (6.99)

= Jηd
ω0
m
c +

∫
Γ
ηe[c, em]δω − ηδemedωc+ ηem[c, e]δω (6.100)

+ ηemδedωc+ ηedωmcδe+ ηeδωm[c, e] (6.101)
+ ηδemedωc− ηemδedωc− ηem[δω, c] (6.102)

+ η(ω − ω0)m[c, eδe] − ηδωm[c, e
2

2 ] (6.103)

= Jηd
ω0
m
c +

∫
Γ
ηdω0

m
ceδe (6.104)

= Jηd
ω0
m
c + Jηd

ω0
m
c, (6.105)
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[Fλ + Fλ,Jc + Jc] = −E[c,λen]i − R[c,λen]m − F[c,λen]n (6.106)
+ J[c,λen]i(ω−ω0)i + J[c,λen]m(ω−ω0)m (6.107)
− δ(ιFλJc) + ιJcδFλ (6.108)

= −E[c,λen]i − R[c,λen]m − F[c,λen]n (6.109)
+ J[c,λen]i(ω−ω0)i + J[c,λen]m(ω−ω0)m (6.110)

− δ
∫

Γ
ce(dω(λen) + λσ) + ιJc

∫
Γ
λenδeδω (6.111)

= −E[c,λen]i − R[c,λen]m − F[c,λen]n (6.112)
+ J[c,λen]i(ω−ω0)i + J[c,λen]m(ω−ω0)m (6.113)

− δ
∫

Γ
dωc(eλen) −

∫
Γ
λen[c, e]δω − λendωcδe (6.114)

= −E[c,λen]i − R[c,λen]m − F[c,λen]n (6.115)
+ J[c,λen]i(ω−ω0)i + J[c,λen]m(ω−ω0)m (6.116)

−
∫

Γ
[δω, c], λene+ λendωcδe (6.117)

+
∫

Γ
λen[c, e]δω + λendωcδe (6.118)

= −E[c,λen]i − R[c,λen]m − F[c,λen]n (6.119)
+ J[c,λen]i(ω−ω0)i + J[c,λen]m(ω−ω0)m (6.120)
− E[c,λen]i − R[c,λen]m − F[c,λen]n (6.121)
+ J[c,λen]i(ω−ω0)i + J[c,λen]m(ω−ω0)m , (6.122)

[Eζ + Eζ ,Eζ + Eζ ] = 1
2E[ζ,ζ] − 1

2JιζιζFω0
− 1

2δ(ιEζEζ) (6.123)

= 1
2E[ζ,ζ] − 1

2JιζιζFω0
(6.124)

+ 1
2δ
∫

Γ
ιζ
e2

2 (ιζFω0 + Lω0
ζ (ω − ω0)) + ιζ(ω − ω0)Lω0

ζ

e2

2 (6.125)

= −1
2δ
∫

Γ

e2

2 ιζιζFω0 + e2

2 ιζL
ω0
ζ (ω − ω0) (6.126)

− e2

2 (ι[ζ,ζ](ω − ω0) + ιζL
ω0
ζ (ω − ω0)) (6.127)

= 1
2E[ζ,ζ] + 1

2E[ζ,ζ] − 1
2JιζιζFω0

− 1
2JιζιζFω0

, (6.128)
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[Eζ + Eζ ,Kη + Kη] = Kιζdη + JηιζFω0
m

+ Eη∂mζ + ιEηδKη − δ(ιEζKη) (6.129)

= Kιζdη + JηιζFω0
m

+ Eη∂mζ (6.130)

ιEζ

∫
Γ

− ηδemeδω + ηemδeδω − ηeδωmδe (6.131)

− δ
∫

Γ
ηeme(−ιζFω0 − Lω0

ζ (ω − ω0)) (6.132)

+ ηe(ω − ω0)mLω0
ζ e (6.133)

= Kιζdη + JηιζFω0
m

+ Eη∂mζ (6.134)

+
∫

Γ
ηLω0

ζ emeδω − ηδeme(−ιζFω0 − Lω0
ζ (ω − ω0)) (6.135)

− ηemL
ω0
ζ eδω + ηem(−ιζFω0 − Lω0

ζ (ω − ω0))δe (6.136)
− ηe(−Lω0

ζ ωm − ι∂mζ(ω − ω0) + ιζ∂mω0)δe (6.137)
− ηeδωmL

ω0
ζ e+ ηδeme(−ιζFω0 − Lω0

ζ (ω − ω0)) (6.138)
− ηemδe(−ιζFω0 − Lω0

ζ (ω − ω0)) (6.139)

+ η(ω − ω0)mLω0
ζ (eδe) − ηδωmL

ω0
ζ (e

2

2 ) (6.140)

− ηemeL
ω0
ζ δω + ηι∂mζ

e2

2 δω (6.141)

= Kιζdη + JηιζFω0
m

+ Eη∂mζ (6.142)

+
∫

Γ
ιζdηemeδω + ιζdηe(ω − ω0)mδe (6.143)

− ηLω0
ζ (ω − ω0)meδe+ ηe(Lω0

ζ ωm + ι∂mζ(ω − ω0) (6.144)
+ ιζ∂mω0)δe (6.145)

= Kιζdη + JηιζFω0
m

+ Eη∂mζ (6.146)

+ Kιζdη +
∫

Γ
ηe(ιζdω0

m + ι∂mζ(ω − ω0) + ιζ∂mω0)δe (6.147)

+ ηι∂mζ
e2

2 δω (6.148)

= Kιζdη + JηιζFω0
m

+ Eη∂mζ (6.149)

+ Kιζdη + JηιζFω0
m

+
∫

Γ
η(ι∂mζ

e2

2 δω (6.150)

+ ι∂mζ(ω − ω0)
δe2

2 ) (6.151)

= Kιζdη + JηιζFω0
m

+ Eη∂mζ (6.152)

+ Kιζdη + JηιζFω0
m

+ Eη∂mζ (6.153)
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[Kη + Kη,Kη + Kη] = Kη∂mη + ιKηδKη − 1
2δ(ιKηKη) (6.154)

= Kη∂mη + ιKη

∫
Γ

− ηδemeδω (6.155)

+ ηemδeδω − ηeδωmδe (6.156)

+ 1
2δ
∫

Γ
η(eemδω + (ω − ω0)meδe (6.157)

= Kη∂mη +
∫

Γ
η∂mηemeδω (6.158)

+ ηδemedη(ω − ω0)m + ηemδedη(ω − ω0)m (6.159)
+ ηe∂mη(ω − ω0)mδe− ηedηemδωm (6.160)

+ 1
2δ
∫

Γ
ηeemdη(ω − ω0)m + η(ω − ω0)medηem (6.161)

= Kη∂mη +
∫

Γ
η∂mη(emeδω + e(ω − ω0)mδe) (6.162)

+ ηdηδ(eme(ω − ω0)m) (6.163)

+ δ
∫

Γ
ηdηeme(ω − ω0)m (6.164)

= Kη∂mη +
∫

Γ
η∂mη(emeδω + e(ω − ω0)mδe) (6.165)

+ ηdηδ(eme(ω − ω0)m) (6.166)

−
∫

Γ
ηdηδ(eme(ω − ω0)m) (6.167)

= Kη∂mη +
∫

Γ
η∂mη(emeδω + e(ω − ω0)mδe) (6.168)

= Kη∂mη + Kη∂mη, (6.169)

[Fλ + Fλ,Fλ + Fλ] = ιFλδFλ − 1
2δ(ιFλFλ) (6.170)

= ιFλ

∫
Γ
λenδeδω − 1

2δ
∫

Γ
λenλenFω (6.171)

=
∫

Γ
λen(dω(λen) + λσ)δω + λenFλ,ωδe (6.172)

=
∫

Γ
λen(dωλen − λdωen)δω (6.173)

= 0, (6.174)
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where we used λ2 = e2
n = 0 and the fact that Fλ,ω is proportional to λ,

[Fλ + Fλ,Kη + Kη] = Eη∂m(λen)i + Fη∂m(λen)n + Kη∂m(λen)m (6.175)
− Jη∂m(λen)i(ω−ω0)i − Jη∂m(λen)m(ω−ω0)m (6.176)
+ ιFλδKη − δ(ιFλKη) + ιKηδFλ (6.177)

= Eη∂m(λen)i + Fη∂m(λen)n + Kη∂m(λen)m (6.178)
− Jη∂m(λen)i(ω−ω0)i − Jη∂m(λen)m(ω−ω0)m (6.179)

+ ιFλ

∫
Γ

− ηδeemδω − ηδemeδω − ηeδωmδe (6.180)

− δ
∫

Γ
ηemλenFω − η(ω − ω0)mdω(λene) (6.181)

+ ιKη

∫
Γ
λenδeδω (6.182)

= Eη∂m(λen)i + Fη∂m(λen)n + Kη∂m(λen)m (6.183)
− Jη∂m(λen)i(ω−ω0)i − Jη∂m(λen)m(ω−ω0)m (6.184)

+
∫

Γ
η(dω(λen) + λσ)emδω + ηemFωδe (6.185)

+ η(dωm(λen) + λσ)eδω − ηδemλenFω (6.186)
+ ηeFωδe− ηe(dω(λen) + λσ)δωm (6.187)

+
∫

Γ
ηδemλenFω + ηemλendωδω (6.188)

− ηδωmdω(λene) − η(ω − ω0)m[δω, λene] (6.189)
+ η(ω − ω0)mdω(λenδe) (6.190)

+
∫

Γ
λen(−ηdω0

m
e− dηem)δω (6.191)

+ λen(−ηdω0
m
ω + dη(ω − ω0)m)δe (6.192)

= Eη∂m(λen)i + Fη∂m(λen)n + Kη∂m(λen)m (6.193)
− Jη∂m(λen)i(ω−ω0)i − Jη∂m(λen)m(ω−ω0)m (6.194)

+
∫

Γ
η(dω(λen) + λσ)emδω + ηλen(dωωm − ∂mω)δe (6.195)

+ η(dωm(λen) + λσm)eδω − ηδemλenFω (6.196)

− ηdω(λene)δωm +
∫

Γ
ηλenFωδem − dω(ηemλen)δω (6.197)

+ ηδω[(ω − ω0)mλene] + dω(η(ω − ω0)m)λenδe (6.198)

+
∫

Γ
λen(−ηdω0

m
e− dηem)δω (6.199)

+ λen(−ηdω0
m
ω + dη(ω − ω0)m)δe (6.200)



110 CHAPTER 6. CODIMENSION-2 STRUCTURE OF GRAVITY

= Eη∂m(λen)i + Fη∂m(λen)n + Kη∂m(λen)m (6.201)
− Jη∂m(λen)i(ω−ω0)i − Jη∂m(λen)m(ω−ω0)m (6.202)

+
∫

Γ
η(dω(λen) + λσ)emδω + ηλen(dωωm − ∂mω)δe (6.203)

+ η(dωm(λen) + λσm)eδω − ηδemλenFω (6.204)

− ηdω(λene)δωm +
∫

Γ
dηemλenδω (6.205)

+ ηλ(endωmeeσm)δω − ηemdω(λen)δω (6.206)
+ ηδω[(ω − ω0)m, λene] + dη(ω − ω0)mλenδe (6.207)

− ηdω(ω − ω0)mλenδe+
∫

Γ
λen(−ηdω0

m
e− dηem)δω (6.208)

+ λen(−ηdω0
m
ω + dη(ω − ω0)m)δe (6.209)

= Eη∂m(λen)i + Fη∂m(λen)n + Kη∂m(λen)m (6.210)
− Jη∂m(λen)i(ω−ω0)i − Jη∂m(λen)m(ω−ω0)m (6.211)

+
∫

Γ
ηλen(dωωm − ∂mω)δe+ η∂m(λen)eδω (6.212)

− ηλendω0
m
eω − ηλendω0

m
ωδe+ ηλendωmeδω (6.213)

+ ηδω[(ω − ω0)m, λene] − ηdωωmλenδe (6.214)
+ ηdωω

0
mλenδe (6.215)

= Eη∂m(λen)i + Fη∂m(λen)n + Kη∂m(λen)m (6.216)
− Jη∂m(λen)i(ω−ω0)i − Jη∂m(λen)m(ω−ω0)m (6.217)
+ Eη∂m(λen)i + Fη∂m(λen)n + Kη∂m(λen)m (6.218)
− Jη∂m(λen)i(ω−ω0)i − Jη∂m(λen)m(ω−ω0)m , (6.219)
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and
[Eζ + Eζ ,Fλ + Fλ] = ELω0

ζ
(λen)i + FLω0

ζ
(λen)n + RLω0

ζ
(λen)m (6.220)

− JLω0
ζ

(λen)i(ω−ω0)i − JLω0
ζ

(λen)m(ω−ω0)m (6.221)

+ ιEζδFλ − δ(ιEζFλ) (6.222)
= ELω0

ζ
(λen)i + FLω0

ζ
(λen)n + RLω0

ζ
(λen)m (6.223)

− JLω0
ζ

(λen)i(ω−ω0)i − JLω0
ζ

(λen)m(ω−ω0)m (6.224)

+ ιEζ

∫
Γ
λenδeδω + δ

∫
Γ
λene(Lω0

ζ (ω − ω0) + ιζFω0) (6.225)

= ELω0
ζ

(λen)i + FLω0
ζ

(λen)n + RLω0
ζ

(λen)m (6.226)

− JLω0
ζ

(λen)i(ω−ω0)i − JLω0
ζ

(λen)m(ω−ω0)m (6.227)

−
∫

Γ
λenL

ω0
ζ eδω + λen(ιζFω0 + Lω0

ζ (ω − ω0))δe (6.228)

+ λen(−ιζFω0 − Lω0
ζ (ω − ω0))δe+ λeneL

ω0
ζ δω (6.229)

= ELω0
ζ

(λen)i + FLω0
ζ

(λen)n + RLω0
ζ

(λen)m (6.230)

− JLω0
ζ

(λen)i(ω−ω0)i − JLω0
ζ

(λen)m(ω−ω0)m (6.231)

+
∫

Γ
Lω0
ζ (λen)eδω (6.232)

= ELω0
ζ

(λen)i + FLω0
ζ

(λen)n + RLω0
ζ

(λen)m (6.233)

− JLω0
ζ

(λen)i(ω−ω0)i − JLω0
ζ

(λen)m(ω−ω0)m (6.234)

+
∫

Γ
(Lω0

ζ (λen)iei + Lω0
ζ (λen)nen + Lω0

ζ (λen)mem)eδω (6.235)

= ELω0
ζ

(λen)i + FLω0
ζ

(λen)n + RLω0
ζ

(λen)m (6.236)

− JLω0
ζ

(λen)i(ω−ω0)i − JLω0
ζ

(λen)m(ω−ω0)m (6.237)

+ ELω0
ζ

(λen)i + FL
ω0
ζ

(λen)n + RL
ω0
ζ

(λen)m (6.238)

− JL
ω0
ζ

(λen)i(ω−ω0)i − JL
ω0
ζ

(λen)m(ω−ω0)m . (6.239)

Remark 6.2.11. In this setting, the isotropy is a sort of on-shell condition. In
fact, Eq. (6.8) and Eq. (6.9) are, as we already mentioned, the transversal to the
corner components of the constraints Definition 6.2.1 on the boundary and they
are satisfied on their zero locus.
Remark 6.2.12. Notice that the only thing left to prove in order to show that the
subbundle D forms a Dirac structure is that the isotropy is maximal, possibly on
a suitable submanifold of F∂∂.



Appendix A

Linear maps, decompositions and
contractions

Lemma A.0.1. Let en ∈ Ω0,1
Σ be as in Lemma 4.2.14 and α ∈ Ω2,1

Σ . Then, we
have

α = 0

if and only if α ∈ KerWΣ,(2,1)
1

enα ∈ ImW
Σ,(1,1)
1 .

(A.1)

Proof. See [CCS21a].

Corollary A.0.2. Let en ∈ Ω0,1
Σ be as in Lemma 4.2.14 and γ ∈ Ω2,2

Σ . Then, we
have the unique decomposition

γ = eσ + enα, (A.2)

with σ ∈ Ω1,1
Σ and α ∈ KerWΣ,(2,1)

1 .

Proof. We define the map

W
n,Σ,(i,j)
1 : Ωi,j

Σ → Ωi,j+1
Σ (A.3)

κ 7→ enκ. (A.4)

From Lemma A.0.1, we know that the map W
n,Σ,(2,1)
1 |KerWΣ,(2,1)

1
is injective,1

whereas, the proof of the injectivity of WΣ,(1,1)
1 is given in [Can21]. Moreover,

1It is easy to see by setting enα = 0.
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Lemma A.0.1 basically states that the intersection ImWΣ,(1,1)
1 ∩ImW n,Σ,(2,1)

1 |KerWΣ,(2,1)
1

is trivial. We then have
dim(ImWΣ,(1,1)

1 ) = dim(Ω1,1
Σ ) = 12 (A.5)

and
dim(ImW n,Σ,(2,1)

1 |KerWΣ,(2,1)
1

) = dim(KerWΣ,(2,1)
1 ) = 6, (A.6)

since we know from [Can21] that WΣ,(2,1)
1 is surjective. Given that

dim(Ω2,2
Σ ) = 18, (A.7)

it follows the statement.
Lemma A.0.3. Let en ∈ Ω0,1

Σ be as in Lemma 4.2.14 and v ∈ Ω1,2
Σ . Then, we have

v = 0 (A.8)
if and only if v ∈ KerWΣ,(1,2)

1

env ∈ ImWΣ,(0,2)
1 .

(A.9)

Proof. This statement is the precise analogous of Lemma A.0.1 and the proof
follows verbatim upon the substitution W

Σ,(1,1)
1 → W

Σ,(0,2)
1 .

Corollary A.0.4. Let en ∈ Ω0,1
Σ be as in Lemma 4.2.14 and θ ∈ Ω1,3

Σ . Then, we
have the unique decomposition

θ = ec+ enβ, (A.10)

with c ∈ Ω0,2
Σ and β ∈ KerWΣ,(1,2)

1 .

Proof. Given the map W
n,Σ,(1,2)
1 defined in Corollary A.0.2, from Lemma A.0.3,

we know that the map W
n,Σ,(1,2)
1 |KerWΣ,(1,2)

1
is injective, whereas, the proof of the

injectivity of WΣ,(0,2)
1 is given in [Can21]. Moreover, Lemma A.0.3 basically states

that the intersection ImWΣ,(0,2)
1 ∩ ImW n,Σ,(1,2)

1 |KerWΣ,(1,2)
1

is trivial. We then have

dim(ImWΣ,(0,2)
1 ) = dim(Ω0,2

Σ ) = 6 (A.11)
and

dim(ImW n,Σ,(1,2)
1 |KerWΣ,(1,2)

1
) = dim(KerWΣ,(1,2)

1 ) = 6, (A.12)

since we know from [Can21] that WΣ,(1,2)
1 is surjective. Given that

dim(Ω1,3
Σ ) = 12, (A.13)

it follows the statement.
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Proposition A.0.5. Let τ ∈ S. Then, τ = enβ with β ∈ Ω1,2
Σ [1] such that

enβ ∈ Kerϱ̃1,3 and en defined as above.

Proof. From Lemma 4.2.15, in particular, we have that

pT α = 0 =⇒
∫

Σ
τα = 0 ∀τ ∈ S, (A.14)

for α ∈ Ω2,1
Σ . Now, consider an α ∈ Ω2,1

Σ such that pT α = 0 holds together with
the structural constraint en(α − pT α) = eσ (notice that this subset of Ω2,1

Σ is in
general non-trivial because we do not require the condition α ∈ KerWΣ,(2,1)

1 as in
Lemma 4.2.14), then it follows that∫

Σ
τα =

∫
Σ
ecα + enβα =

∫
Σ
ecpT Cα + βeσ =

∫
Σ
ecpT Cα, (A.15)

where pT C is the projection onto a complement of T . Since the right hand side of
(A.14) must hold for all τ ∈ S, if the intersection S ∩ ImWΣ,(0,2)

1 were not trivial,
we would have an absurdum. This implies c ∈ KerWΣ,(0,2)

1 for all τ ∈ S, which,
thanks to the injectivity of WΣ,(0,2)

1 , is equivalent to c = 0.
Lastly, the fact that enβ ∈ Kerϱ̃1,3 follows immediately from the definition of

S.
Proposition A.0.6. Let τ ∈ S and e be a diagonal degenerate boundary vielbein,
i.e. e∗η = i∗g̃ with η = diag(1, 1, 1 − 1) and i∗g̃ = diag(1, 1, 0). Then, we have

en[τ, e] = 0. (A.16)

Proof. Given a = 1, 2, 3, 4 and let µ = 1, 2,+ be the coordinates on the boundary
Σ such that we can write the diagonal degenerate boundary vielbein e as

êa =
ea1 = δa1
ea2 = δa2

(A.17)

ea+ = δa3 − δa4 (A.18)

ean = δa3 + δa4 . (A.19)

Then, the definition of τ ∈ S implies the following relations

τabc+ = 0 ∀a, b, c (A.20)
τ 123
µ = 0 µ = 1, 2 (A.21)

τ 124
µ = 0 µ = 1, 2 (A.22)

τ 234
1 = τ 134

2 (A.23)
τ 134

1 = −τ 234
2 . (A.24)
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The proof follows simply by computing en[τ, e] in components implementing the
explicit form of the diagonal vielbein above.2

Lemma A.0.7. Let3 A ∈ Ωk,i
Σ with 2 ≤ i ≤ 4. Then, it holds

γιγιγA = (−1)|A|(ιγιγAγ + 4(i− 1)[γ,A]). (A.25)

Proof.

γιγιγA = (i− 2)!γaγbγcvaιvbιvcA (A.26)
= −(i− 2)!(γbγaγc + 2ηabγc)vaιvbιvcA (A.27)
= −(i− 2)!(−γbγcγa + 4ηabγc)vaιvbιvcA (A.28)
= (−1)|A|(ιγιγAγ + 4(i− 1)[γ,A]). (A.29)

Remark A.0.8. This lemma introduces a relation between the action of the brackets
over the Clifford algebra and V-algebra. In particular, it is consistent a triviality
condition on the bracket in the Clifford algebra, i.e.

[A,ψγψ] = (−1)|A|ψ[A, γ]Vψ = ψγ[A,ψ]Cl + [ψ,A]Clγψ, (A.30)

where we occasionally added some redundancy with the labels of the specific al-
gebras, even if we will not use them in general.

Lemma A.0.9. Given A ∈ Ωk,i
Σ and B ∈ Ωl,j

Σ with i, j = 2, 3 such that i + j < 6,
then we have

B(ψγ[A,ψ] − [A,ψ]γψ) = (−1)|A||B|A(ψγ[B,ψ] − [B,ψ]γψ). (A.31)

Proof. The proof goes by direct computation of

BγιγιγA = Bγγaγb[va, [vb, A]] (A.32)

= (−1)|B|([va, B]γ + (−1)|B|Bγa)γaγb[vb, A] (A.33)

= (−1)|B|([va, B]γγa − 4(−1)|B|B)γb[vb, A] (A.34)

= −
(
[vb, [va, A]]γγaγb − (−1)|B|([va, B]γbγaγb + 4[γ,B])

)
A (A.35)

= −(−(−1)|B|γιγιγB − 6(−1)|B|ιγB)A (A.36)

= (−1)|B|(−1)|A|(|B|+1)A(γιγιγB + 6ιγB) (A.37)
2We refer to [Tec19a] for further details about this kind of computations.
3Notice that this may be also a shifted variable, like τ for example.
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and

BιγιγAγ = (−1)|A||B|γaγb[va, [vb, A]]Bγ (A.38)

= (−1)|A||B|(−1)|Aγaγb[vb, A]([va, B]γ + (−1)|B|γaB) (A.39)

= −(−1)|A||B|Aγaγb
(
[vb, [va, B]]γ − (−1)|B|([va, B]γb − γa[vb, B])

)
(A.40)

= −(−1)|A||B|A
(

− ιγιγBγ + (−1)|B|(4[γ,B] + γaγbγa[vb, B])
)

(A.41)

= (−1)|A||B|A(ιγιγBγ − (−1)|B|6ιγB). (A.42)

Then, we can conclude the proof by considering the four possible parities of A and
B.



Appendix B

Properties of the Poisson brackets

Sum of two terms
Let (W , ϖ) be a symplectic manifold, Wf a manifold and ϖf a differential 2-form
on W such that

(W ⊕ Wf ,= Ωf = ϖ +ϖf )

forms a symplectic manifold.1 Moreover, let us suppose that we have two con-
straints of the form

Xf = X + xf , Y f = Y + yf

where X, Y ∈ C∞(W) and xf , yf ∈ C∞(W ⊕ Wf ).
The first step towards the computation of the Poisson brackets is to find the

Hamiltonian vector fields of the functions Xf and Y f , i.e. vector fields satisfying

ιXfΩf = δXf , ιYfΩf = δY f .

Without loss of generality, we will consider only the case for X. Let us denote by
X the Hamiltonian vector field of X with respect to ϖ:

ιXϖ = δX.

Then, if we look for an Hamiltonian vector field of the form

Xf = X + xf

we get that xf must satisfy

ιXϖf + ιxf (ϖ +ϖf ) = δxf .

Then we have the following result.
1In our case (W, ϖ) is the geometric phase space of gravity while the index f denotes the

spaces of some matter fields.
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Lemma B.0.1. The Poisson brackets of the functions Xf and Y f with respect to
the symplectic form Ωf are given by the following expression

{Xf , Y f}f = {X, Y } + ιyf δ(X + xf ) + ιxf δ(Y + yf ) − ιxf ιyfΩf + ιXιYϖf ,

where {•, •}f means that we are considering the Poisson brackets with respect to
ϖ+ϖf and {•, •} means that we are considering the Poisson brackets with respect
to ϖ.

Proof. If we expand the Poisson brackets {Xf , Y f}f we get eight terms as follows

ιX+xf ιY+yf (ϖ +ϖf ) = ιXιYϖ + ιXιyfϖ + ιxf ιYϖ + ιxf ιyfϖ

+ ιXιYϖf + ιXιyfϖf + ιxf ιYϖf + ιxf ιyfϖf .

It is then straightforward to observe that the first term in this expression corre-
sponds to {X, Y }; the sum of the second, fourth, sixth, and eighth terms corre-
sponds to ιyf δ(X + xf ), while the sum of the third, fourth, seventh, and eighth
terms corresponds to ιxf δ(Y + yf ). Note, however, that the eighth term has been
counted twice and must therefore be subtracted once, and the fifth term, which
was omitted so far, must be added.
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