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Abstract
The purpose of this thesis is to study the classical BV-BFV (Batalin–Fradkin–Vilkovisky) struc-
ture of gravity coupled to spinors and, specifically, of the simplest case of supergravity, where
only one gravitino is introduced in dimension four.

After a synthetic but thorough introduction on the BV-BFV machinery with some simple
examples, this thesis presents a summary of known results on Palatini–Cartan gravity in the
BV-BFV formalism, along with minor redefinitions, serving as a starting point for the further
developments and leading to an original description of Palatini–Cartan–Dirac gravity on mani-
folds with boundary, in which, starting from the study of the boundary structure of the classical
fields via the Kijowski–Tulczjiew construction, a BFV formulation is first obtained and then
linked to its BV bulk counterpart by means of the 1–dimensional AKSZ construction.

The main body of the present work is a thorough BV-BFV alnalysis of N = 1, D = 4
supergravity. In particular, after studying constraints of the theory and identifying the relevant
gauge symmetries, the existence of a BFV structure is established, but not directly computed
due to technical difficulties. Such study, along with the simpler case of PCD gravity, provides
enough insights to study the BV structure of SuGra in the bulk, where a complete off-shell BV
formulation is obtained, generalizing the results of Baulieu et al.

Finally, the last part of the thesis complements the above findings by constructing a BV-BFV
extendable theory of N = 1, D = 4 supergravity, which is obtained by eliminating the degrees
of freedom which are responsible for the obstruction in the BV-BFV extension of the theory.
Such procedure goes by the name of BV–pushforward, a technique that formalizes the concept
of "integrating out" certain modes, which is adapted here to the case of classical supergravity.

These results provide a foundational step toward the quantization of supergravity theories in
the presence of boundaries.
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Introduction

In the context of theoretical and mathematical physics, many efforts over the years have been
done towards defining a consistent notion of quantization of physical field theories. Historically,
this has concretely been obtained by performing a perturbative expansion around critical points
of the action functional, a method based on the stationary phase formula, which allows to evaluate
oscillatory integrals as an asymptotic power series whose coefficients are computed via Feynman
diagrams.

A major problem with such approach was posed in the mid-20th century in regards to the
quantization of gauge theories, emerging from the need to properly handle the infinite redundan-
cies introduced by local symmetry groups. Indeed, in such theories there is no isolated critical
point of the action functional, but rather a whole "orbit". The earliest technique for address-
ing this issue was presented by Fadeev and Popov [FP67], who proposed the introduction of
additional fields — the Fadeev–Popov ghosts — in order to obtain a well-defined gauge-fixed
theory.

Shortly after, the geometrical interpretation of these ghost fields was given by Becchi, Rouet
and Stora [BRS76], and independently by Tyutin [Tyu75], in the so-called BRST formalism. In
this context, the original classical space of fields is enlarged to encompass the introduction of the
ghost fields, unphysical degrees of freedom — typically represented by anti-commuting bosons
or, in the case of supersymmetric theories, by commuting spinors, in both cases violating the spin
statistics theorem — which are interpreted as the parameters generating the gauge symmetries.
On top of this, anti-ghosts are introduced, acting as the canonical momenta associated to the
ghosts. Thanks to the odd parity of the newly defined objects, one can assign a grading — given
by the difference between ghost and anti-ghost number — to the enlarged space of fields and
construct a nilpotent operator of degree 1 — the BRST operator —, which acts as the local
gauge symmetry on the classical fields. The introduction of the BRST operator then allows to
construct a chain complex, and to obtain the classical observables as its degree-0 cohomology.
Algebraically, this equates to extending the space of functionals by the Chevalley-Eilenberg
complex, where the CE differential is precisely the BRST operator.

The applications of the BRST formalism are not only limited to the study of field theories in
the bulk, as it is also a powerful tool in the reduction of constrained Hamiltonian systems, which
arise when dealing with boundary conditions for field theories on Cauchy surfaces. Historically,
such analysis was first given by Dirac [Dir58] in terms of first and second class constraints, em-
ploying the Poisson structure on the space of boundary fields. However, thanks to a construction
due to Kijowski and Tulczjew (KT) [KT79], one can, in favorable cases, associate a symplectic
structure to the space of fields on the Cauchy surface. The BRST formalism then turns out to
be instrumental in obtaining the reduced phase space of the theory, which is a central object
in the context of quantization, as functions on it can be regarded as physical observables and
provide the perfect candidate to be promoted to operators on a Hilbert space in the quantized
theory. The caveat is that such procedure only works in the case where the constraints can be

1
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recast as components of a momentum map. In this context, the Hamiltonian vector fields of the
constraints are interpreted as the generators of the gauge symmetries, and the BRST operator is
constructed in such a way that its degree-0 cohomology is exactly given by the algebra of func-
tions on the reduced phase space. In the smooth finite-dimentional setting, such construction
turns out to be the algebraic equivalent of the Marsden–Weinstein reduction [MW74].

Despite being suitable to describe a large class of gauge theories, the BRST procedure fails in
specific cases, among which are gravity and supergravity. The BV and BFV formalisms then arise
from the need of generalizing the BRST framework, where the former is suited for the description
of a field theory in the bulk and the latter provides its boundary counterpart. In particular, it
is sometimes the case — for example when dealing with a supersymmetric theory — that the
gauge symmetries close only modulo the equations of motion, while the BRST framework is best
suited for gauge algebras that close off-shell. To address these limitations, Batalin and Vilkovisky
[BV77; BV81] extended the formalism to include antifields,2 seen as degree -1 canonical momenta
associated to the classical fields and ghosts. Such introduction allows for the definition of a
canonical -1–shifted symplectic structure on the BV space of fields, rendering the latter a graded
symplectic supermanifold F . On F , the main theorem of BV assures that there exists a degree-1
operator — generalizing the BRST one — which, thanks to the introduction of anti-fields, is now
guaranteed to be nilpotent, equating to the requirement that the gauge algebra closes off-shell.
Furthermore, such cohomological vector field can be interpreted as the Hamiltonian vector field
associated to the BV action, a functional on the BV space of fields extending the classical action.
In this context, the gauge fixing is performed by choosing a Lagrangian submanifold of F , while
the gauge invariance is given by the independence on the choice of Lagrangian submanifold, in an
appropriate sense. For an exhaustive introduction to the formalism, we refer to [Mne17], while
[BBH95; BG05] offer alternative descripitions.

Analogously, the BFV (Batalin-Fradkin-Vilkovisky) [BF83] formalism provides a generaliza-
tion of the BRST analysis of constrained Hamiltonian systems. As already mentioned, thanks
to the KT construction one can assign the structure of a symplectic manifold to the space of
boundary fields, and define constraints on it. The BRST formalism is particularly useful in the
cohomological resolution of the reduced phase space, arising as the symplectic reduction of the
zero locus of the constraints on the boundary. However, such procedure is only suitable for
this goal when the constraints can be reinterpreted as components of a momentum map, but
there are cases, like the one of gravity, where the constraints are just first-class, without any
underlying momentum map in the classical sense. This is precisely when the BFV construction
comes into play, indeed, thanks to a theorem by Batalin and Fradkin, which has later been
mathematically formalised within the context of homological algebra by Stasheff [Sta97] and for
general coisotropic submanifolds by [Sch09]: one can always extend the space of boundary fields
by introducing ghosts and antighosts in such a way to define a degree–0 symplectic form and an
action functional of degree 1, in which the constraints are recast and whose Hamiltonian vector
field is cohomological.

In recent years, Cattaneo, Mnev and Reshetikin [CMR11; CMR14; CMR18] have developed
the framework in which the BV and BFV formalism become compatible, in such a way to account
for cutting and gluing, similarly to what had been previously proposed for the quantization of
topological field theories by Atiyah and Segal [Ati88; Seg88], who defined an axiomatization of
TQFT’s based on the categorical object of a "quantization" functor whose source category is the
one of cobordisms, i.e. manifolds with boundary (and possibly corners). The CMR program offers
a viable alternative suitable for a general class of gauge field theories, which is still categorical

2It is worth mentioning that antifields were present in the original work of BRS with the name of "BRS sources",
introduced in the construction of the Slavnov–Taylor identities [Tay71; Sla72], which are generalization of the
well-known Ward identities in the non-abelian gauge theory setting.
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in nature and is based on the BV technology, providing an algebraic solution to the problem of
the path integral evaluation, relating it to the cohomology of a well-defined cochain complex.

The BV-BFV axioms proposed by CMR state that, when a boundary is introduced, the BV
data in the bulk naturally induce a BFV structure on the boundary. Specifically, the variation
of the BV action gives a boundary term, which is the analog of a Noether one-form on the space
of boundary conditions, hence failing to be exactly the Hamiltonian of a cohomological vector
field. The variation of the Noether one-form is usually a degenerate closed two form, whose
reduction is assumed to be smooth, hence obtaining a graded symplectic structure on the space
of boundary fields, which is now promoted to the space of BFV fields. Furthermore, the Classical
Master Equation (CME), i.e. the requirement that the bulk BV action Poisson-commutes with
itself, is only satisfied up to a boundary term, which can be interpreted as a functional on the
space of BFV fields, taking the role of the BFV action. If the induced theory on the boundary
fulfills the BFV axioms, then one obtains a genuine BV-BFV theory, which has proved to be the
relevant object towards a boundary BV quantisation approach. This program has been applied
to a variety of different theories, notably BF theories [CMR20], Chern–Simons [CMW17] and,
recently, to the different incarnations of gravity [CS19a; CS19b; CCS21a].

The BV-BFV description of gravity
For decades, efforts have been made towards the quantization of gravity, with varying success,
but ultimately without a fully satisfying answer. The earliest attempts at providing a BV-BFV
analysis in this context have been performed classically by Cattaneo and Schiavina in the case of
Einstein–Hilbert gravity in [CS16], where they showed that the theory is BV-BFV extendable,
in the case where one assumes the boundary metric to be lightlike or timelike.

The Einstein-Hilbert formulation is just one of the different ways gravity can be described,
indeed a classically equivalent counterpart — which presents the same moduli space of solution as
of Einstein–Hilbert gravity — is given by Palatini–Cartan gravity, where the metric is substituted
by a coframe and the connection is assumed to be an independent field. In dimension 3, the
coframe formulation of gravity was shown [CS19a] to be strongly BV equivalent — a notion
that amounts to asking that the two BV theories present the same cohomological data — to
BF theory, and henceforth topological. In a recent paper [CS25], the authors obtained the BFV
quantization of 3D Palatini–Cartan gravity.

Despite the equivalence at the level of the Euler–Lagrange locus, the EL and PC theories of
gravity present many differences off-shell, since, for example, the latter is not BV-BFV extendable
in dimension four, as proved in [CS19b], where a BV structure was found, but the induced pre-
symplectic form on the space of boundary fields was shown to be singular, hence not providing
a smooth quotient.

The advantages of PC gravity are several, among which the main one is that of dealing solely
with differential forms, making it significantly less challenging to restrict to the boundary, and
allowing for a quick and simple use of Cartan calculus in a coordinate-free notation. In order
to resolve the limitations in the BV-BFV extention, such theory has been studied extensively
in the literature. In particular, the classical study of the boundary structure of PC gravity was
performed by Canepa, Cattaneo and Schiavina in [CS19c] and subsequently in [CCS21a], where,
thanks to the Kijowski–Tulczjew construction, the authors were able to find the reduced phase
space of the theory, and later embed it in the language of the BFV formalism.

Such description produced many insights on how to resolve the obstruction to the BFV ex-
tension of the BV PC theory in the bulk. Notably, this issue has been first resolved by employing
the 1-dimensional AKSZ (Alexandrov–Kontsevich–Schwarz–Zaboronsky) construction. Such for-
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malism was first introduced in [Ale+97], providing a canonical method for building solutions to
the CME. In this setting, starting from a well-defined BFV theory on the boundary, it allows to
induce in the bulk the data of a theory automatically satisfying all the BV axioms, hence defining
a BV-BFV extandable theory. The key observation is that the induced BV theory in the bulk
differs from the original one, which was not suitable for a BFV extention. In particular, such
theory presents a reduced space of BV fields, which are subject to constraints descending down
from the boundary and assuring that the boundary symplectic form is well-defined. Such results
were found in [CCS21b], where the authors also showed that the AKSZ-induced BV theory can
be embedded in the original BV PC theory.

The two theories are actually equivalent as can be formally explained through a construction
which goes by the name of BV-pushforward. Such procedure formalizes, in the context of the BV
technology, the idea of "integrating out" certain degrees of freedom, similarly to what happens
when heavy modes are discarded to obtained an effective field theories. Roughly speaking, one
assumes that the original space of fields can be, at least locally, split into the product of two
-1-symplectic supermanifolds. Integration along a Lagrangian submanifold of just one of the
two factors is guaranteed to produce an "effective" BV theory on the other factor, safisfying all
the relevant axioms. In some cases, like the one at hand, the BV-pushforward can be inverted
cohomologically, proving the equivalence of the two theories.

In the case of PC gravity, one can locally split the original space of BV fields into the
reduced space (obtained also via 1D AKSZ) of fields satisfying some constraints descending from
the boundary, and the rest. It was proved in [CC25b] that the latter space is a -1-symplectic
supermanifold, whose fields are responsible for the obstruction in the BFV extension of the full
BV PC theory. Integrating out the unconstrained fields exactly produces the desired result.

Supersymmetry, Supergravity and the necessity for BV
Parallelly to the development of quantum gauge theories, the mathematical physics scenario
was introduced to the concept of supersymmetry. As the prefix “super-“ suggests, this is an
extension beyond the normal kind of symmetry against which normal gauge theories are invariant.
Mathematically, this amounts to requiring that the Lie algebra generating the symmetry is a
superLie algebra, containing an anti commuting set of generators. Physically, transformations
with respect to these generators send bosons to fermions and vice versa. One of the main feature
of the supersymmetry transformations is that, when squared, they recover the usual translations,
which is going to be a crucial observation in supergravity theories.

The case case of supergravity is peculiar, since it is the super symmetric extension of gravity,
which can be regarded as the gauge theory of the Poincaré group, including translations, rotations
and Lorentz boosts. In particular, the local translation invariance implies general covariance,
which is just another name for diffeomorphism invariance. When considering supergravity, one
needs to introduce the gauge fields associated to the supersymmetry generators, which take the
name of gravitinos. Given the anti-commuting nature of the generators, such gauge fields will
be represented by spinors, whose spin is 3/2, hence the necessity to obtain a well-defined theory
of gravity coupled with spinors.

The easiest case, which serves as a warm-up for supergravity, is the coupling of a Dirac
spinor, which is a spin 1/2 field. The study of such theory requires to introduce the necessary
formalism for the definition of spinor fields on manifolds. This is usually done in terms of spin
structures, whose existence is guaranteed only under some topological conditions, specifically
that the second Stiefel-Whitney class vanishes.

The problem with spin structures, however, is that they are defined on (pseudo)Riemannian
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manifold with a fixed metric, which, in the case of gravity, is the central dynamical object of
the theory. This issue is resolved by the introduction of spin coframes, generalizing the notion
of coframes in general relativity, allowing for the coupling of half-integer spin fields, without the
introduction of a space-time metric. A theorem in [NF22] guarantees that the existence of spin
coframes is equivalent to the existence of spin structures, and one can induce one object from
the other and vice versa.

With the above technical background, the coupling of a Dirac spinor to the PC action is
just obtained by addition of the Dirac Lagrangian, where the flat derivative is replaced by the
covariant derivative with respect to the spin connection.

For the case of supergravity, however, the study of Dirac spinors just provides an insightful
toy model. Indeed, one of the requirements of supersymmetry is that the bosonic and fermionic
degrees of freedom of the theory should match, which constraints the type of spinors one is
allowed to consider, depending on the space—time dimension of the chosen theory. In dimension
4, the correct number of degrees of freedom is matched by Majorana spinors, particular Dirac
spinors that satisfy a reality condition given in terms of the charge conjugation matrix.3

The case investigated in this thesis is the simpler one: N = 1, D = 4 supergravity, namely
the one where just one gravitino appears. This theory has been largely studied in the past,
employing different techniques, such as the superspace formalism, where fields are described as
sections of certain (vector or principal) bundles over a supermanifold M of type (D|N), where
D is the space–time dimension and N is the number of supercharges. Such formalism has found
a geometrical interpretation in the so-called "rheonomy approach" [CDF91a; Cas18; DAu20],
where M is obtained as the coset space of two (super)groups G/H.4 However, in this thesis
the supermanifold language appears only in relation to BV/BFV formalism, and the rheonomy
approach is not contemplated. Indeed one of the insights of this work is that supersymmetry
emerges from the minimal coupling of gravity to a Majorana spinor. This is clear in the KT
approach to this theory, where the supersymmetry transformations arise as the Hamiltonian
vector fields of the constraints.

Indeed, the KT analysis of N = 1, D = 4 supegravity is performed in chapter 4, starting by
considering the induced pre-symplectic form on the space of boundary fields.

The main difference from the pure gravity case is that the gravitino interaction introduces a
torsion term quadratic in the gravitino, which implies that the connection satisfying the equations
of motion is not the usual Levi–Civita one. In general, a torsion term is introduced whenever
spinors are coupled to gravity via the spin connection, as it is also the case for the spin 1

2 Dirac
field. Furthermore, the gravitino satisfies the (massless) Rarita–Schwinger equation, which,
contrary to the simpler Dirac equation, descends to the boundary as a constraint.

After the symplectic reduction is obtained on the space of boundary fields, yielding a smooth
space called the "geometric phase space", the study of the constraints of N = 1, D = 4 su-
pergravity is performed in 4.1, showing that they form a first-class set. This implies that the
zero-locus of the constraints, the actual phase space of the theory, is a coisotropic submanifold.
Such space is of great importance as it represents, on a Cauchy surface, the space of boundary
conditions of the theory, which is in one-to-one correspondence with the space of solutions to
the Euler–Lagrange equations in the bulk. However, the phase space includes gauge-equivalent
boundary conditions, related by the action of the symmetries of the theory. In order to obtained
the reduced phase space, one needs to compute its coistropic reduction, which in most cases

3In principle, Weyl spinors would be suitable candidates for describing the gravitino as they also match the
required degrees of freedom. However, the only consistent solution in the 3 + 1 signature is provided by the choice
of Majorana spinors.

4This idea stems from the fact the superspace R(D−1,1)|N is obtained as the quotient of the superPoincaré
group Iso(R(D−1,1)|N ) with respect to the spin group Spin(D − 1, 1).
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turns out to be non-smooth. Ultimately, this is why the BFV formalism provides such a useful
tool, as it allows to cohomologically resolve the reduced phase space, obtaining the functions on
it as the degree 0 cohomology of the BFV operator.

Having shown that the constraints form a first-class set is enough to guarantee the existence
of a BFV structure. However, in the case of supergravity, the derivation of an explicit BFV action
provides very hard computational challenges. Indeed, in the simpler cases one recovers the BFV
action as the twisting of the Koszul and of the Chevalley–Eilenberg differentials, rephrased in
the language of supergeometry, obtaining an expression that is at most linear in the antighosts.
In the case of supergravity, one needs to take into account the fact that the supersymmetry
only closes modulo the equations of motion, which implies the introduction of rank-2 terms (i.e.
quadratic in the antighosts) in the action.

In light of such remarks, it is more convenient to first study the BV structure of N = 1, D = 4
supergravity in the bulk. As already mentioned, the naive definition of the BV operator as the
sum of the infinitesimal gauge symmetries, which is the solution proposed in the BRST formalism,
does not guarantee the off shell nilpotency property. In particular, the BRST procedure is not
sufficient to treat theories whose symmetry algebra closes only on shell, however, the main
theorem of BV guarantees that it is always possible to add terms to the BV action forming a
polynomial in the antifields of increasing degree, such that its Hamiltonian vector field — the
BV operator — is cohomological. This makes the BV formalism the only option for the study
of many supersymmetric theories, including supergravity, by means of cohomological methods.

In the case of N = 1, D = 4 supergravity, already in the half-shell case, where the torsion
equation is imposed, it was proved in [Bau+90] that rank-2 terms are necessary in the BV action.
In chapter 5, the theory is studied in its off shell formulation, leaving the spin connection uncon-
strained since, when restrcited to the boundary, it plays the role of the conjugate momentum of
the vielbein.

Dropping the torsion constraint in the bulk introduces many computational difficulties, which
are resolved by employing many technical results involving properties of the vielbein, gamma
matrices and Fierz identities, which are regrouped in A.3. Thanks to these tools, a fully covariant
fully off-shell BV formulation of N = 1, D = 4 supergravity is obtained in 5.1.1.

However, as it is the case for pure PC gravity, the theory is shown to be not 1-extendable. In
particular, the same obstructions to the definition of a regular BFV symplectic forms are found,
where the introduction of spinors only plays a marginal role. Indeed, the problem arises in the
boundary components of the spin connection, which is where the singularity of the kernel of the
induced boundary pre-symplectic form arises. Unfortunately, the problem cannot be solved as in
the case of the pure PC gravity, where the BV theory that produces the correct BFV extension
was found by means of the 1-D AKSZ construction.

In the case at hand, it is however possible to employ the methods of the BV pushforward,
eliminating the problematic degrees of freedom of the spin connection which are responsible for
the obstruction to the BFV extension, obtaining the restricted space of BV fields subject to the
appropriate constraints, which are retrieved from the classical structure of the theory on the
boundary. Specifically, the spin connection and its antifield are constrained in such a way as to
make the constraint set invariant under the BV operator, which amounts to require that they
are gauge invariant. With such method, it is then possible to obtain a well-defined BFV theory,
which in this thesis is only computed implicitly.
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The above considerations are summarised in the following diagram

F Fr

F∂

×

where F and Fr are respectively the full BV and restricted BV theory of N = 1, D = 4
supergravity, F∂ is the BFV theory on the boundary, while the squiggly arrow represents the BV
pushforward and the straight one the usual BV-BFV extension.

Outline of the thesis
The thesis is structured as follows

• Chapter 1 provides an overview of classical field theory on manifolds with boundary, intro-
ducing the the KT construction, and the BV-BFV technology;

• Chapter 2 reviews some known results in the theory of Palatini–Cartan gravity on manifolds
with boundary, as well as its BV-BFV formulation, providing the starting point for the
coupling of spinors to gravity;

• Chapter 3 couples Dirac fermions to Palatini–Cartan gravity, yielding a full BV-BFV theory
of Palatini–Cartan–Dirac gravity, with analysis of second-class constraints and the reduced
phase space, as well as the 1-dimensional AKSZ construction;

• Chapter 4 contains the constraint analysis of N = 1, D = 4 supergravity within the KT
construction, laying the groundwork for a BFV formulation;

• Chapter 5 presents the complete BV construction of supergravity and shows the existence
of a compatible BFV theory via the methods of the (classical) BV pushforward, applied to
the specific case of supergravity and generalized the known results for the PC theory;

• Appendix A is a self-contained review of Clifford algebras, spin groups, and spin coframes,
culminating in the construction of Majorana spinors and Fierz identities;

• Appendix B contains all the lengthy computations of the main results of this thesis, which
were too long and cumbersome to include in the main chapters.

Outlook and Future Directions
This thesis, while rooted in classical field theory, lays the groundwork for future studies in the
context of supergravity and gravity with spinors. Indeed, several insights can be extracted
from this work. Firstly, the BV-BFV formalism offers a powerful language which allows to
rigorously relate classical and quantum field theories, particularly when extended to systems with
boundaries (and possibly corners), allowing the description of supersymmetric theories which
require the introduction of higher order corrections. Secondly, the Palatini–Cartan formulation
of gravity, while naturally allowing the coupling of spinors and torsion, proves indispensable for
a geometric understanding of supergravity. Lastly, the BV pushforward technique and the AKSZ
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construction provide not only formal solutions to the master equation but also concrete tools for
building boundary theories.

In conclusion, this thesis contributes to the mathematical formalism required for the consis-
tent treatment of gauge theories on manifolds with boundary and provides a rigorous foundation
for understanding supergravity from a geometric and cohomological perspective. It invites further
investigations into the role of boundary conditions in supersymmetric models, and the interplay
between classical geometry and quantum field theory in the BV-BFV framework.



Chapter 1

Preliminaries

This chapter contains a description of the mathematical tools underlying the main results of the
thesis.

1.1 Classical Lagrangian field theories with boundary
In this section we introduce the necessary notions to define a field theory on a manifold with
boundary in a short and systematic way.

Let M be a D–dimensional manifold with boundary ∂M =: Σ and let F be a vector bundle
on M . For a large variety of theories—and in particular the ones at hand—the space of fields
FM is in general defined a (an open subspace of) an affine space modeled on the space of smooth
local sections ϕ on F , i.e. FM := Γ(M,F ), which is in general an infinite-dimensional manifold
(inheriting the structure of a Fréchet space) on which we assume that Cartan calculus is defined.

To define precisely the objects employed in the context of Lagrangian field theory, one first
needs to define the local calculus on M × FM . Let us consider the infinite jet bundle J∞F .
The smooth local sections of the infinite jet bundle Γ(M,J∞F ), can also be obtained by the jet
prolongation j∞ : Γ(M,F ) → Γ(M,J∞F ). We can define a map e∞ by precomposing j∞ with
the evaluation map ev: M × FM → F : (x, ϕ) 7→ ϕ(x), i.e.

e∞ : M × FM
(id,j∞)−−−−−→ M × Γ(M,J∞F ) ev−→ J∞F

It is a well known fact [Del18; And] that differential forms on J∞F carry a double degree,
defining a bicomplex with respect to a vertical differential dV and a horizontal differential dH ,
such that d = dV + dH is the usual de Rham differential. In particular, this implies that d2

V = 0,
d2
H = 0 and dV dH + dHdV = 0. It is then possible to define local forms on M × FM by pulling

back forms on J∞F along e∞. This produces a double complex of local forms defined by

Ω(p,q)
loc (M × FM ) := e∗

∞Ω(p,q)(J∞F ), (1.1)

where p is the vertical degree and q the horizontal one. The differentials are defined by d := e∗
∞dH

and δ := e∗
∞dV , representing respectively the de Rham differential on differential forms on M

and the “variational differential” on forms on F . In particular, d measures variations of fields at
the space–time level, while δ measures variations of the field configuration at a given space–time
point. A Lagrangian LM is defined to be a (D, 0) local form which, when evaluated at a field
configuration ϕ, is called Lagrangian density LM (ϕ).

9
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Definition 1.1. A field theory on M is given by a space of fields FM and an action functional
SM , seen as the integral of the Lagrangian LM .

The physical content of the theory is encapsulated by the action (or equivalently by the
Lagrangian), whose variation produces the Euler-Lagrange equations. In particular, in presence
of a boundary, one has

δSM = elM +
∫

Σ
aM ,

where elM is the Euler-Lagrange (integrated) local 1–form and aM is the boundary term arising
after integration by parts, which is a local 1-form depending on the fields and their jets at ∂M .
The critical locus is defined to be the set of solutions to the equations of motion

ELM := {ψ ∈ FM | elM |ψ = 0}.

In this context, the symmetries of the theory are defined by vector fields on FM leaving the
action invariant, i.e. X ∈ X(FM ) such that LX(SM ) = 0, where LX := ιXδ + διX is the Lie
derivative on the space of fields.

1.1.1 The Kijowski–Tulczijew construction
Defining αM :=

∫
∂M

aM , one notices

• αM is δ–exact on ELM , as αM = δSM |ELM

• defining ϖM := δαM , we have ϖM |ELM
= 0 and that ϖM is invariant under the following

transformation of the Lagrangian LM

LM 7−→ L̃M := LM + ϕM

αM 7−→ α̃M := αM + δΦM ,

where ΦM :=
∫
∂M

ϕM is a boundary term.

What this tells us is that αM can be regarded as a one-form connection on a line–bundle over
FM , and the property above is just a form of gauge–invariance of the curvature two-form ϖM .
Indeed, when one considers eiSM as a section of the line–bundle over FM , LM 7→ LM + ϕ is just
the infinitesimal action of the gauge transformation eiΦM .

Furthermore, we notice that ϖM is degenerate, i.e. kerϖM := {X ∈ X(FM ) | ιXϖM = 0} ̸=
{0}. In particular, vector fields on FM that preserve the fields at the boundary are by definition
in the kernel of ϖM , since ϖM only depends on the values of the fields (and their jets) on Σ.
This allows us to define the space of pre–boundary fields F̃Σ as the leaf space of the distribution
of such vector fields. This amounts to restricting the fields and their transversal jets to the
boundary, which in turn defines a surjective submersion

π̃ : FM → F̃Σ.

Additionally, π̃ uniquely induces the forms α̃Σ and ϖ̃∂ on F̃Σ. In particular, ϖ̃∂ = δα̃Σ is still a
closed two–form and

δSM = elM + π̃∗α̃Σ.

It is also convenient to define the subspace L̃M := π̃(ELM ) of pre–boundary fields that can be
extended to a solution of the E–L equations in the bulk. Such space is isotropic with respect to
ϖ̃∂ , since as before ϖ̃∂ |L̃M

= 0.1.
1In most cases, L̃M is a submanifold. Here we assume that it is the case
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It is possible that ϖ̃∂ is still degenerate, hence pre-symplectic, on the space of pre-boundary
fields F̃Σ. In this case, one needs to perform another quotient with respect to the kernel of the
pre-symplectic form ϖ̃∂ , assuming that it defines a regular integrable distribution. The quotient
space FΣ is called "geometric phase space" and is obtained as the leaf space of the characteristic
distribution of ker ϖ̃∂ , with quotient map p : F̃Σ → FΣ. If FΣ is smooth, then π = p ◦ π̃ is a
surjective submersion.

By construction, it is clear that (FΣ, ϖΣ) defines a symplectic manifold, but as such it is not
yet the physical phase space of the theory, as the latter is seen as the set of "Cauchy data" of the
theory (i.e. the space of boundary conditions of the theory).2

To better understand this statement, we notice that the Euler-Lagrange equations split into
evolution equations that contain derivatives transversal to the boundary, and constraints which
only contain derivatives of the fields in the directions tangential to the boundary. The constraints
need to be imposed on the space of pre–boundary fields, which usually enlarges the kernel of the
pre–symplectic form. The corresponding reduction leads to the reduced phase space.

To be precise, one works with the cylindrical manifold Mϵ := Σ × [0, ϵ], for some positive ϵ.
The boundary ∂M is then given by (Σ × {0}) ⊔ (Σ × {ϵ}), while L̃Mϵ

can be seen as a relation3

between F̃Σ ≃ F̃Σ×{0} and F̃Σ×{ϵ}. The space of Cauchy data C̃Σ is then defined to be the
subset of pre–boundary fields at Σ that can be extended to solutions to the E–L equations in a
cylindrical neighborhood of Σ, i.e.

C̃Σ := {c ∈ F̃Σ ≃ F̃Σ×{0} | ∃u ∈ F̃Σ×{ϵ} s.t. (c, u) ∈ L̃Mϵ
}.

The induced 2–form ϖ̃C
Σ is generally degenerate on C̃Σ, and the quotient CΣ is finally the reduced

phase space of the theory. Such space is often non–smooth, but in the context of field theory
one is interested in the algebra of functions on it, i.e. the physical observables of the theory.
Under certain assumptions, we will see in section 1.2.1 how such an algebra can be obtained
cohomologically within the BFV formalism.

Example 1.1. The easiest example is given by classical mechanics. The "space–time" is simply
given by an interval I := [a.b], while fields are in general curves in Rn, denoted by

q : [a, b] → Rn : t 7→ (qi(t)),

with i = 1, · · · , n. The action functional is simply

SM [q] :=
∫
I

(
1
2mδij q̇

iq̇j − V (q)
)
dt,

where V ∈ C∞(Rn)) is the potential function. The variation of SM yields the Euler-Lagrange
1-form and a boundary term

δSM =
∫
I

(
δijmq̈

j − ∂iV
)
δqidt − (δijmq̇jδqi)|ba.

Clearly, the bulk term contains the equations of motion, while the boundary term is the difference
of the so–called Noether 1–form at times b and a. In particular, defining the momenta pj :=
mδij q̇

i, the Noether one–form is just given by

α = piδq
i.

2Indeed, assuming the Cauchy problem is well-posed, to any boundary condition one can associate a unique
solution to the E-L equations in the bulk. Functions on the space of Cauchy data are then in one-to-one corre-
spondence with classical observables.

3A relation between two sets A and B is a subset of A×B.
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In the context of the KT construction, the boundary of the interval I is given by two disjoint
components {a} and {b}. Choosing one component, e.g. {a}, one sees that the space of pre–
boundary fields described in the section above is nothing but the set of all possible initial positions
and momenta (qi, pi) ∋ Fa = T ∗Rn, while the variation of the Noether one–form is just the
canonical symplectic form on R2n, given by

ω = δpiδq
i,

where we have omitted the ∧ symbol.4
In this case, no further reduction is required and T ∗Rn is already identified with the space of

Cauchy data of the theory, i.e. the (reduced) phase space.
The classical dynamics of the system is then encoded in the Hamiltonian function H :=

1
2mδ

ijpipj + V (q) defined on the phase space, since the flow of Hamiltonian vector field X of H
(i.e such that ιXω+dH = 0) governs the time evolution of the system. In particular, one obtains
the first order differential equation {

ṗi = − 1
m∂iV

q̇i = 1
mδ

ijpj .

One can then show that the graph L[a,b] of the flow of the Hamiltonian vector field X is a
Lagrangian submanifold on Fa×Fb = T ∗Rn×T ∗Rn, being careful to take −ω to be the symplectic
form on Fb.5

Example 1.2. Consider the simple case of electromagnetism over a D-dimensional Lorentzian
manifold (M, g). The dynamical fields of the theory are given by U(1)–connections on a line–
bundle over M , modeled by 1–forms A ∈ Ω1(M). Letting {xµ}, µ = 1, · · · ,dimM be local
coordinates on M the classical action is

SM [A] =
∫
M

gµνgρσFµνFρσ
√

| det g|dDx,

where Fµν = ∂µAν − ∂νAµ is the curvature of A. However, it is more convenient to work in the
so–called first order formalism, as that provides the correct starting point for the discussion in
the next section.

We introduce a 2–form field B ∈ Ω2(M), which acts as a Lagrange multiplier and has the
advantage of eliminating second order derivatives in the Lagrangian. Indeed one can define

SM [A,B] =
∫
M

B ∧ FA + 1
2B ∧ ⋆B.

The equations of motion are simply B = ⋆FA and dB = 0, which, after substituting the first
into the second, yield Maxwell’s equation for the connection A. The variation of SM [A,B]
immediately gives the boundary term

αΣ =
∫

Σ
B ∧ δA,

where B ∈ Ω2(Σ) and A ∈ Ω1(Σ). It is a quick computation to show that ϖΣ = δαΣ has a
trivial kernel, hence it is symplectic and we can define the space of boundary fields as FΣ =
Ω1(Σ) × Ω2(Σ), with

ϖΣ =
∫

Σ
δB ∧ δA.

4Notice that, since the space Fa is finite-dimensional, the variational differential δ coincides with the de-Rham
differential d on Ω(T ∗Rn).

5Indeed from the KT construction, one would in principle have ϖ := δα = δpiδq
i|a − δpiδq

i|b.
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Letting xi, i = 1, 2, 3 be the local coordinates along Σ and x0 the one transversal to Σ, we see that
dB = 0 in the bulk splits into ∂0B = Ḃ = 0, which is an evolution equation, and ∂iB = 0,6 which
is a constraint that needs to be imposed on the space of boundary fields and defines the space of
Cauchy data CΣ. It is convenient to define CΣ as the zero-locus of the following functional

Jµ =
∫

Σ
µdB,

where µ ∈ C∞(Σ) is a Lagrange multiplier. As it turns out, the Hamiltonian vector field of Jµ is
given by

JA = dµ JB = 0, with δJµ = ιJµ
ϖΣ,

which tells us that B is gauge–invariant (which tells us that FA is too) and that A 7→ A + dµ
is the infinitesimal U(1) gauge transformation of the connection. Furthermore, by definition of
CΣ, we have that Ker(ϖ∂ |CΣ) = span(Jµ), since 0 = δJµ|CΣ and δJµ = ιJµ

ϖ∂

The reduced phase space CΣ is then given by the quotient of the space of solutions of Gauss’
law by the gauge transformations.

For the interested reader, more examples and the theoretical background of the KT construc-
tion can be found in a modern notation in [Cat25].

1.2 The BV-BFV formalism on manifolds with boundary
The BV-BFV formalism, first introduced by Batalin, Fradkin and Vilkovisky [BV77; BV81;
BF83], is a general framework for the treatment of gauge field theories on manifolds with bound-
ary. The main construction requires the space of fields to be enlarged to a Z-graded7 superman-
ifold, and to be endowed with a symplectic form and a cohomological Hamiltonian vector field
encoding the classical symmetries of the system.

Definition 1.2. A BV manifold on M is the assignment of data (FM ,SM , Q,ϖM ), where
(FM , ϖM ) is a Z-graded manifold endowed with a -1-symplectic form ϖM , and SM and Q
are respectively a degree 0 functional (called BV action) and a degree 1 vector field on FM such
that

• ιQϖM = δSM , i.e. Q is the Hamiltonian vector field of SM ;

• Q2 = 1
2 [Q,Q] = 0, i.e. Q is cohomological.

Remark 1.1. As a consequence of Q being cohomological, the BV action satisfies the classical
master equation

(S, S) = 0, (1.2)

where (·, ·) is the Poisson bracket induced by the symplectic form ϖM .

Definition 1.3. A BFV manifold on Σ is the assignment of data (FΣ,SΣ, Q∂ , ϖΣ),8where
(FΣ, ϖΣ) is a Z-graded manifold endowed with a 0-symplectic form ϖΣ, and SΣ and Q∂ are
respectively a degree 1 functional (called BFV action) and a degree 1 vector field on FΣ such
that

6Applying B = ⋆FA and defining Ei := gij
∂
F0j as the electric field, we see dB = 0 on the boundary is equivalent

to Gauss’ law divE = 0.
7The grading is commonly referred to as "ghost degree", but here we consider for simplicity the total grading,

i.e. the sum of all the degrees of a field belonging to various graded vector fields.
8Notice the distinction between ϖ∂ arising from the KT construction and the BFV symplectic form ϖΣ
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• ιQϖΣ = δSΣ, i.e. Q∂ is the Hamiltonian vector field of SΣ;

• Q2
∂ = 0, i.e. Q∂ is cohomological.

If the symplectic form ϖΣ is exact, then (FΣ,SΣ, QΣ, ϖΣ) is called an exact BFV manifold.

We then see that the notions of BV and BFV manifolds only differ by the grading of the
symplectic form and the action. Typically the space of bulk fields will be given by a BV manifold,
while the boundary fields are modeled by a BFV manifold, hence the grading can be related to
the codimension of the "space–time" manifold.

To see how the theory on the bulk is related to the boundary one we notice that, in the
presence of a boundary, the condition δSM = ιQϖM will be only satisfied up to a boundary
term, i.e.

δSM = ιQϖM − ϑM .

This suggests generalizing the KT construction to define FΣ as the symplectic graded (su-
per)manifold on which ϖΣ := δϑΣ defines a symplectic form, where ϑM = π∗(ϑΣ) and π :
FM → FΣ.

Definition 1.4. An exact BV-BFV pair is given by the data (FM ,SM , QM , ϖM ;π), where
(FM ,SM , QM , ϖM ) is a broken BV manifold and π : FM → FΣ is a surjective submersion, such
that

ιQM
ϖM = δSM − π∗ϑΣ, (1.3)

together with an exact BFV manifold (FΣ = π(FM ),SΣ, QΣ, δϑΣ) , where one requires that
π∗(QM ) = QΣ.

Remark 1.2. Notice that, in the presence of boundary, the CME in the bulk is not satisfied
anymore, indeed one has

Q(S) = ιQδSM = ιQιQϖM − ιQπ
∗ϑΣ

One can define
SΣ := 1

2 ιQιQϖM , (1.4)

as in general, by the non–degeneracy of ϖM , one only obtains a boundary term from ιQιQϖM .
Furthermore, by the generalized CME

δSΣ = ιδπQδϑΣ = ιQΣϖθ,

where δπ is the differential of π and QΣ := δπQ.

1.2.1 The BFV formalism and the reduced phase space
As it turns out, the BFV formalism is helpful in the cohomological resolution of the reduced phase
space defined in the previous section. We start by studying the finite dimensional setting. Here
(F, ω) is a finite dimensional symplectic manifold, with functions ψi ∈ C∞(F ), i = 1, · · · , n, whose
differentials are independent and such that their zero locus C defines a coisotropic submanifold,
i.e. such that there exist functions fγαβ ∈ C∞(F ) such that

{ψi, ψj} = fkijψk.

If we let I be the ideal generated by the functions ψi’s, then the functions on C are simply
given by C∞(F )/I, as functions differing by a combination of the ψi’s will coincide on C. Now,
letting Xi’s be the Hamiltonian vector fields associated to the ψi’s, they span the characteristic
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foliation, hence the coisotropic reduction C is given as C/{Xi}.9 Furthermore, if C is smooth,
then

C∞(C) ≃ (C∞(F )/I)(X1···Xn)
,

meaning that the functions on C are equivalent to the Xi–invariant functions on C.
Now, we can introduce odd coordinates ci (the ghosts) and cℲi (the antighosts) respectively of

degree 1 and -1 (seen as coordinates on T ∗Rn[−1] , extending F to a graded symplectic manifold
F × T ∗Rn[−1] with 0–symplectic form given by ω + dcidcℲi . We can furthermore introduce a
cohomological vector field Q on F ×T ∗Rn[−1] given by Q(f) = ciXi(f), Q(cℲi ) = ψi and Q(ci) =
0, for all f ∈ C∞(F ). As it turns out, this is the Hamiltonian vector field of S = cαψα, and its
degree zero cohomology gives exactly the functions on C, as H0

Q ≃ {f ∈ C∞(F ) | Xα(f) = 0}/I.
Remark 1.3. It can happen that Q defined as above is not cohomological, i.e. it does not square to
zero. However, a result from Stasheff [Sta97] proves that one can always deform the Hamiltonian
S in such a way that Q is cohomological.

In practice one can always start by defining

S = ciψi + 1
2f

k
ijc

Ⅎ
kc
icj +R, (1.5)

where R is determined degree by degree by requiring {S, S} = 0.

Theorem 1.1 (CMR12). Let (F, ω) be a symplectic manifold and C a coisotropic submanifold,
then there exist a BFV manifold (F , Q, S,ϖ) whose body is given by F and such that

H0
Q ≃ C∞(C).

In the field theory setting, the BFV data (FΣ, ϖΣ, Q∂ ,SΣ) on the boundary is enough to
obtain the algebra of functions on the reduced phase space CΣ ≃ H0

Q∂
(FΣ).

1.3 A paradigmatic example of classical BV theory
After having seen how the BFV formalism is linked to the boundary structure of a field theory,
we shed some light on the BV formalism and how it relates to the bulk structure of a field theory.
In this context, our goal is to embed the classical space of bulk fields FM as the body of a graded
supermanifold FM , on which a functional SM is defined, generalizing the classical action SM –
to which it reduces on the body FM – and containing terms depending on all the other fields in
FM , in such a way that its Hamiltonian vector field Q encodes all the symmetries of the classical
theory and is cohomological.

The graded part of FM will consist of the ghosts, which arise naturally from the boundary
structure as the Lagrange multipliers of the constraints,10 and of antifields, comprising the field
momenta and the ghost momenta. In particular, contrary to the boundary case where a sym-
plectic form is organically obtained via the KT construction, here we need to introduce field
momenta, which allow to obtain a symplectic form in a Darboux chart.

In most cases, the symmetries of the system form a distribution D ⊂ X(FM ), which in general
is only required to be involutive on the Euler-Lagrange locus ELM := {ϕ ∈ FM | δS|ϕ = 0}.

We start by reviewing a less general case, and see how it can provide a starting point for
generalizations.

9Indeed the kernel of the restriciton to C of the symplectic form ωC is spanned precisely by the Xi’s, as
ιXi

ω = δψi = 0 on C.
10Seen here as the gauge parameters related to the gauge symmetries of the system
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1.3.1 The BRST case
In the simpler case where the distribution D is given by a Lie algebra action, we might employ
the BRST formalism. It offers a lower degree of generality compared to the BV procedure, but,
under certain assumptions, it yields the same result.

Essentially, one still obtains a cohomological resolution of the space of observables of the
theory, however it only involves the extention of the space of functionals by the Chevalley-
Eilenberg complex, without the twisting with the Koszul complex.

Definition 1.5. A BRST manifold on M is the assignment of data (FBRST ,SBRST , QBRST ),
where

• FBRST is a Z–graded supermanifold;

• SBRST is a degree 0 functional on FBRST ;

• QBRST is a cohomological vector field.

Letting G be a Lie group with Lie algebra g and ρ : g → X(FM ) the Lie algebra action, we
have D = ρ(g) and we can define

FBRST := FM × Ω0(M, g[1]) ∋ (ϕa, ci) =: Φα,

where ϕ ∈ FM are the classical fields of the theory and the c ∈ Ω0(M, g[1]) are the ghosts.
Considering a basis {vi} of g[1], we define the Xi := ρ(vi) ∈ X[1](FM ) as Xi =

∫
M

Xi(ϕa) δ
δϕa

QBRST :=
∫
M

ciXi(ϕa) δ

δϕa
− 1

2f
k
ijc

icj
δ

δck
,

which is cohomological11 and defines the Chevalley-Eilenberg differential on the complex ∧•g∗ ⊗
C∞(FM ) ≃ C∞(FM × g[1]). Then it is immediate to notice that

H0
QBRST

= {f ∈ C∞(FM ) | Q(F ) = ciXi(F ) = 0} = C∞(FM )g,

corresponding to the gauge–invariant functionals on the classical space of fields. The observant
reader will notice that the form of the cohomological vector field defined above is similar to the
expression (1.5). To see how the two equation relate, we embed the BRST formalism within the
BV one. We start by defining

FM := T ∗[−1]FBRST = T ∗[−1]D[1] ∋ (Φα,ΦℲ
α)

where the odd cotangent fibers define the anti-fields of degree -1 and -2. Such graded spaces
of fields can now be endowed with the canonical -1–symplectic form defined on a -1–shifted
cotangent bundle. In this setting, denoting as before by Φ = (Φα) the multiplet containing fields
and ghosts in D[1] and by Φ† = (Φ†

α) its canonical conjugate containing the anti-fields in the
fiber of T ∗[−1]D[1], one can define the BV symplectic form as

ϖM =
∫
M

δΦℲ
α ∧ δΦα.

Notice that functions on T ∗[−1]D[1] are in one–to–one correspondence with vector fields on
D[1] ≃ FM × Ω0(M, g[1]), hence we can lift QBRST to the functional

SBRST =
∫
M

ciXi(ϕa)ϕℲa − 1
2f

k
ijc

icjcℲk,

11Because the structure constant fkij of g satisfy the Jacobi identity
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which, after setting Q0(ϕa) := Xi(ϕa) and Qo(ck) := − 1
2f

k
ijc

icj , can be rewritten as SBRST =∫
M
Q0(Φα)ΦℲ

α. The full BV action then becomes

SM = SM + SBRST .

It automatically satisfies the CME because its Hamiltonian vector field is given by Q0 on Φ and
one can prove that Q2

0(Φα) = 0 is enough to obtain a cohomological vector field on the whole
space FM . In particular, one has

Q(Φα) = Q0(Φα), and Q(ΦℲ
α) = δLM

δΦα − (−1)βΦℲ
β

δ(Q0ϕ
β)

δΦα ,

Remark 1.4. Notice that Q on the anti-fields contains a term δLM

δΦα which, on the body, defines the
equations of motion related to the field Φα. Therefore, when computing the degree–0 cohomology
of Q, one can intuitively see how this is related to the gauge-invariant functions on the Euler-
Lagrange locus, as they are given by

kerQ : C0 → C1

ImQ : C−1 → C0 ≃ C∞
{

Φα
∣∣ δLM
δΦα = 0

}
/{gauge transformation},

where Ck are the functions of ghost degree k on FM .
We provide a simple example which is instructive for the remainder of the thesis: BF theory.

Example 1.3 (Yang–Mills theory). Consider a D-dimensional manifold M with bound-
ary ∂M =: Σ and a semisimple Lie group G with Lie algebra g, endowed with the pairing
< −,− >:= tr(−−). In the first order formalism, the fields of a D-dimensional Yang–Mills
theory are just a connection 1–form, seen as 1–form on M with values in the Lie algebra
A ∈ Ω1(M, g) and a D − 2 form B ∈ ΩD−2(M, g), hence

FYM = Ω1(M, g) × ΩD−2(M, g).

The action functional is

SYM :=
∫
M

tr
(
B ∧ FA + 1

2B ∧ ⋆B

)
.

We notice immediately that this action is invariant under the gauge transformation

A 7−→ A+ dAc B 7−→ B + [c,B],

for any c ∈ Γ(M, g). According to the procedure explained above, we can promote c to a ghost
field by shifting its grading by one and construct the following spaces of fields

FBRST
YM := Ω1(M, g) × ΩD−2(M, g) × Γ[1](M, g),

FBV
YM := T ∗[−1](Ω1(M, g) × ΩD−2(M, g)Γ(g)[1]).

On the latter space, we can furthermore define the canonical -1–symplectic form

ϖYM =
∫
M

tr
(
δA ∧ δA† + δB ∧ δB† + δc ∧ δc†)

.

The action of the gayge transformation on c is given, according to the Chevalley-Eilenberg dif-
ferential, by c 7→ c + 1

2 [c, c]. One can then check that the vector field on FBRST
YM defined by the

gauge transformations is cohomological, hence we obtain the BV action as

SYM =
∫
M

tr
(
BFA + 1

2B ⋆ B +A†dAc+B†[B, c] + 1
2c

†[c, c]
)
,
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with cohomological vector field defined by

QM = tr
∫
M

dAc
δ

δA
+ [B, c] δ

δB
+ 1

2[c, c] δ
δc

+ (dAB + [A†, c]) δ

δA†

+ (FA + ⋆B + [B†, c]) δ

δB† + (dAA† + [B,B†] + [c, c†]) δ

δc† .

In the presence of a boundary, the variation of the action produces a boundary term

δSYM = ιQM
ωYM −

∫
Σ

tr(BδA+A†δc),

which gives a boundary pre–symplectic two form ϖ̃∂
YM

ϖ̃∂
YM = tr

∫
Σ
δBδA+ δA†δc,

defined on the space of pre–boundary fields F̃Σ
YM , which is given by the restriction of the BV

fields to the boundary. Notice that cℲ is a top-form on M , hence it cannot be restricted to Σ.
Furthermore, when computing the kernel of ϖ̃∂

YM , one finds that it contains every vector field of
the form XBℲ

δ
δBℲ . The corresponding quotient is then given by

FBFV
YM = Ω1(Σ, g) × Ωn−2(Σ, g) × Ω0[1](Σ, g) × Ωn−1[−1](Σ, g).

As it is clear by the symplectic form being in Darboux form, we have that (A,B) and (c, AℲ) are
pairs of conjugate momenta. Lastly, one finds the BFV action to be

SΣ
YM =

∫
Σ

tr
(
BdAc+ 1

2A
†[c, c]

)
,

giving the same cohomological vector field as in the bulk.

1.3.2 Beyond BRST
The power of the BV formalism becomes clear when one considers systems with gauge symmetries
that close only on shell, which is the case of supergravity. The general solution to the problem
of finding an appropriate cohomological vector field is given by the BV algorithm. We define a
generic BV action by adding terms which are polynomials in the antifields, i.e.

SM = SM +
∫
M

Q0(Φα)ΦℲ
α +

P∑
I=2

Mα1···αI ΦℲ
α1 · · · ΦℲ

αI
,

where P is called rank of the BV action. It is a result of BV [BV77; BV81] that the rank is
finite, analogously to the BFV case.

In most cases, it is enough to stop at rank 2. Explicitly, we have

SM = SM +
∫
M

ΦℲ
αQ0(ϕα) + 1

2ΦℲ
αΦℲ

βM
αβ(Φ),

which modifies the Hamiltonian vector field as

Q(Φα) = Q0(Φα) + ΦℲ
βM

αβ ,

Q(ΦℲ
α) = δLM

δΦα − (−1)βΦℲ
β

δ(Q0ϕ
β)

δΦα + (−1)β+γ

2 ΦℲ
βΦℲ

γ

δMβγ

δΦα .
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In this case, the classical master equation reads

(SM ,SM ) =
∫
M

Q0(LM ) − (−1)βΦℲ
β

(
Q2

0Φα − (−1)β(α+1) δLM
δΦα M

αβ

)
+ (−1)β+γ

2 ΦℲ
γΦℲ

β

(
Q0(Mβγ) − (−1)γ+βα δQ0Φβ

δΦα Mαγ − (−1)β+γα δQ0Φγ
δΦα Mαβ

)
+ (−1)αβ

2 ΦℲ
βΦℲ

ρΦℲ
γ

δMργ

δΦα Mαβ .

We know that Q0(LM ) = 012 by definition of Q0, while the remaining terms at each order in the
anti-fields(ghost) must be imposed separately,

Q2
0Φα − (−1)β(α+1) δLM

δΦα M
αβ = 0, (1.6)

Q0(Mβγ) − (−1)γ+βα δQ0Φβ

δΦα Mαγ − (−1)β+γα δQ0Φγ

δΦα Mαβ = 0, (1.7)
δMργ

δΦα Mαβ = 0. (1.8)

We then see from (1.6) that Q0 squares to a linear combination of the equations of motion, hence
computing Q2

0 defines the next terms in the BV action, which depend on the Mαβ . One then
needs to check that (1.7) and (1.8) hold, which amounts to show that Q2 = 0. If also Q squares
to zero only on shell, one can continue this procedure inductively and compute the next terms
in the BV action.
Remark 1.5. It is just a matter of computations to show that Q2(Φα) = 0 implies (1.6), (1.7)
and (1.8). Hence it is not needed to show Q2(ΦℲ

α) = 0, as it follows naturally.

1.4 The AKSZ construction
Another useful realization of the BV-BFV formalism can be obtained through a construction
due to Aleksandrov, Kontsevich, Schwartz and Zaboronsky (AKSZ). It is also particularly useful
when tackling the problem of inducing a compatible BV structure in the bulk from a well defined
BFV one on the boundary, in the case of cylindrical spacetimes.

We start by considering the finite-dimensional setting. Let M be a Z–graded supermanifold,
and N be a regular manifold. The parity of the supermanifold M is just set to be the grading
modulo 2. We assume there exist a degree n function S on M and a non degenerate exact
2-form (hence symplectic) ω = dα, where α is of degree n − 1, assuming n > 0. With these
assumptions, M is called a dg-Hamiltonian manifold if {S, S} = 0, i.e. if and only if Q := {S, ·}
is cohomological.

Definition 1.6. Given the following diagram

Map(T [1]N,M) × T [1]N M

Map(T [1]N,M)

ev

p

we define the transgression map

T
(•)
N : Ω•(M) −→ Ω•(Map(T [1]N,M))

as T
(•)
N := p∗ev∗, setting p∗ =

∫
N
µN where µN is the canonical Berezinian on T [1]N.

12Under certain assumptions it could also be a boundary term.
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Remark 1.6. Notice that the differential on N can be reinterpreted as a vector field on
Map(T [1]N,M). Indeed, considering coordinates (ui, ξi) on T [1]N , we map ξi 7−→ dui provides
provides the isomorphism C∞(T [1]N) ≃ Ω•(N), and d = dui∂i is the image of ξi∂i ∈ X(T [1]N).

Theorem 1.2 ([Ale+97]). Letting FAKSZ := Map(T [1]N,M), ϖAKSZ := T2
N (ω) and SAKSZ :=

T0
N (S) + ιdN

T1
N (α), the data

FAKSZ := (FAKSZ , ϖAKSZ ,SAKSZ , QAKSZ)

define a BV theory.

To better understand the content of the above theorem, let us consider f ∈ C∞(M) and a
homogeneous degree map X ∈ FAKSZ . Then we can define the composition Xf = f ◦ X ∈
C∞(T [1]N) ≃ Ω•(N). In particular, if (ui, ξi) are coordinates over T [1]N , we can see Xf can be
ralized as a differential form on N as

Xf (u) = Xf (u)i1···ikdu
i1 ∧ · · · ∧ duik . (1.9)

If we let (xa) be coordinates on M, we can compose the coordinate fucntions xa with X and see
Xa(u) = Xa(u)i1···ikdu

i1 ∧ · · · ∧ duik . Then the AKSZ action and symplectic form take the form

SAKSZ =
∫
N

S[Xa(u)] + αa(X(u)) ∧ dXa(u)

ϖAKSZ =
∫
N

ωab(X(u))δXa(u) ∧ δXb(u).

1.4.1 The 1–dimensional case and its relation to the boundary
In this section we investigate how a BFV theory on Σ can induce a BV theory on I × Σ, where
I is an interval.

Letting FΣ be the data of an exact BFV theory, as it appears after the KT construction, we
notice that it automatically satisfies the definition of Hamiltonian dg manifold with n = 1. We
can therefore apply theorem 1.2 to see that the data FAKSZ given by

FAKSZ := Map(T [1]I,FΣ)
ϖAKSZ := T2

I(ϖΣ)
SAKSZ := T0

I(SΣ) + ιdI
T1
I(αΣ)

QAKSZ s.t. ιQAKSZ
ϖAKSZ = δSAKSZ

yield a BV theory on Σ × I.
The setting gets simplified when we notice that FAKSZ ≃ Ω•(I)×FΣ, i.e. we see that AKSZ

fields are just boundary fields times sections of a graded vector space, where in particular

Ω•(I) = C∞(I) ⊕ Ω1(I)[−1], (1.10)

we obtain two fields for every boundary field in FΣ. In particular, if ϕI are fields on FΣ, we obtain
that the AKSZ fields are ΦI := ϕI(t) + ψI(t)dt, where we point out that ϕI(t) ∈ C∞(I) × FΣ.
With this definition, the AKSZ action and symplectic form become

ϖAKSZ =
∫
I×Σ

(ϖΣ[Φ])IJδϕI(t) ∧ δψJ(t)dt (1.11)

SAKSZ =
∫
I×Σ

(αΣ[Φ])Iδψi(t)dt+ (SΣ[Φ])top (1.12)
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Furthermore, one can easily see that the BV theory obtained in this way automatically gives rise
to a a BV-BFV extendible theory, where the BFV one is given by the data on the target of the
AKSZ.

1.5 The quantum picture and the BV-pushforward
Given a classical BV-BFV theory as defined in the previous sections, in order to obtain a quantum
description we need to introduce the so–called BV laplacian ∆, an operator of degree -1 on the
space of BV fields and such that ∆2 = 0 and the following (almost Leibniz) rule holds

∆(fg) = (∆f)g + (−1)|f |f∆g + (−1)|f |{f, g}M ,

where {·, ·}M is the canonical Poisson bracket induced by the symplectic form ϖM .
To better illustrate the construction, we work in the finite–dimensional case, where the exis-

tence of a BV laplacian is always guaranteed. We start by considering a Z–graded manifold F
endowed with a −1–symplectic form ϖ. We denote by Dens 1

2 (F) the space of half–densities on
F . A theorem by [Khu00] [Sev06] allows to define the following.

Definition 1.7. The BV laplacian ∆ is a degree 1 coboundary operator, acting on Dens 1
2 (F).

In a Darboux chart (xi, ξi), it reads

∆ :=
∑
i

∂

∂xi
∂

∂ξi
.

Furthermore, if µ is a ∆-close, never vanishing element of Dens 1
2 (F), we can construct a µ–

dependent BV laplacian ∆µ acting on functions on F as µ 1
2 ∆µf = ∆(µ 1

2 f) ∈ C∞(F). Letting
L ⊂ F be a Lagrangian submanifold, we define the BV integral to be the following composition

Dens
1
2 (F) ·|L−→ Dens

1
2 (L)

∫
L−→ c ξ 7−→

∫
L
ξ|L.

The main theorem of BV [BV77; BV81] shows that for all half densities ξ on F and for all
Lagrangian submanifolds L, ∫

L
∆ξ = 0.

Furthermore, if ξ satisfies ∆ξ = 0, and Lt is a smooth family of Lagrangians parametrized by
t ∈ [0, 1], we have

d

dt

∫
Lt

ξ = 0 ⇒
∫

L0

ξ =
∫

L1

ξ.

Remark 1.7. In the context of field theory, the invariance under the choice of Lagrangian subman-
ifold expresses the invariance under deformations of gauge fixing, while the choice of a Lagrangian
submanifold equates to gauge fixing. The relevant object is the "path integral measure" µe i

ℏ S ,
where S is the BV action. The quantum master equation is then given by the condition

∆µ(e i
ℏ S) = 0 ⇔ 1

2(S,S) − iℏ∆S = 0,

which provides a modification to the CME.13

13If we assume we can expand S in powers of ℏ, we see that at order zero we retrieve the CME.
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Definition 1.8. Assume that F factorises as a direct product of -1–symplectic graded manifolds
F = F ′ × F ′′, with ϖ = ϖ′ +ϖ′′. Then

Dens
1
2 (F) = Dens

1
2 (F ′) ⊗ Dens

1
2 (F ′′).

The BV pushforward is a map between half densities Dens
1
2 (F) → Dens

1
2 (F ′) defined by BV

integration over the second factor. In particular, choosing a Lagrangian submanifold, the BV
pushforward is given by the map

PL : Dens
1
2 (F)

id⊗
∫

L−→ Dens
1
2 (F ′),

sending a half density ϕ′ ⊗ ϕ′′ to PL(ϕ′ ⊗ ϕ′′) := ϕ′ ∫
L ϕ

′′.

Remark 1.8. In the context of field theory, the BV pushforward is a consistent way to eliminate
"heavy modes", resulting in an effective theory. The main feature of this construction is that the
effective action obtained after integrating out the heavy modes (that lie in F ′′) still satisfies the
QME, as showed in the following theorem.

Theorem 1.3. Letting ∆, ∆′ and ∆′′ be the canonical BV laplacians respectively on F , F ′ and
F ′′, we have:

1. PL is a chain map, i.e. ∫
L

∆ξ = ∆′
∫

L
ξ.

2. if L0 and L1 are homotopic Lagrangian submanifolds in F ′′, then(∫
L0

ξ −
∫

L1

ξ

)
= ∆′η

for some η.

3. if S ∈ C∞(F)JℏK satisfies the QME, there is a unique S ′ ∈ C∞(F ′)JℏK is such that

(µ′) 1
2 e

i
ℏ S′

= PL

(
µ

1
2 e

i
ℏ S

)
,

and S ′ satisfies the QME.

In the case we are interested in, the space of fields does not factor as a direct product of odd
symplectic manifolds, but rather it involves the more general case where we only have a fiber
bundle F → F ′, that is locally given by F ′ × F ′′.

Definition 1.9. Letting F ′′ be a −1–symplectic graded manifold, a BV hedgehog is given by
an odd symplectic fiber bundle F → F ′ with fiber given by F ′′, endowed with a surjective
submersion π : F → F ′ such that for every point p ∈ F ′, there exists a neighborhood U ∋
p and a symplectomorphism φU : π−1(U) → U × F ′′. Furthermore, on the overlap of two
patches Uα∩ Uβ the transition functions φαβ : π−1(Uα∩ Uβ) → π−1(Uα∩ Uβ) are by construction
symplectomorphisms of F constant over F ′, which we require to be connected to the identity.

Then we can see that, for any Lagrangian submanifold L̃ ⊂ F̃ ′′, setting L := Φ−1(L̃) we
obtain

PL := (ϕ−1)∗ ◦ PL̃ ◦ Φ∗

for which all the results of theorem 1.3 hold.



Chapter 2

Known results in pure gravity

In this chapter we give a review of the Palatini-Cartan theory of gravity in the context of the BV
and BFV formalisms, as it provides the starting point for the study of Supergravity. The main
advantage of the PC formalism, also known as first order formulation of gravity, is that it yields a
neat boundary structure, where the spin connection morally acts as the conjugated momentum of
the vielbein, which is the field replacing the metric in the Einstein-Hilbert formulation of gravity.
The fact that we only have to deal with differential forms allows to avoid the use of coordinates,
which is particularly useful when applying Stokes’ theorem and computing boundary terms.

The following review is based on the results of the works of Canepa, Cattaneo, Schiavina and
Tecchiolli [CCS21a; CCT21], appearing in a series of papers in which PC gravity was studied as
a classical theory on manifolds with boundary within the BV-BFV framework, employing the
KT construction discussed in chapter 1.

2.1 Palatini–Cartan gravity in various dimensions
Let M be an D-dimensional manifold and let PSO be an SO(D − 1, 1)-principal bundle on it.
We consider a D-dimensional vector space (V, η) with the Minkowski metric, on which we let
the Lie group SO(D − 1, 1) act via the fundamental representation ρ : SO(D − 1, 1) → End(V ).
Next we consider the adjoint vector bundle V := PSO ×ρ V . Finally, we require that there is an
isomorphism e : TM → V. The first field of the theory is then an explicit choice of isomorphism
e : TM → V, a.k.a. a vielbein (the Lorentzian metric in the classically equivalent Einstein–Hilbert
formalism will be recovered by pull back: g = η(e, e)).12

The other field that we consider is a connection on PSO. Let ω ∈ Ω1(PSO, so(D − 1, 1)) be
the associated connection 1-form. We want to consider the gauge field as a dynamical field of
the theory. The following proposition gives a useful way to include it in this setting.

Proposition 2.1. The space of principal connections on PSO over M is an affine space modeled
on A(M) = Ω1(M,∧2V).

Proof. It is well known that it is possible to identify the affine space of principal connections as
the space of one forms with values in the corresponding Lie algebra so(D − 1, 1). Furthermore,
it is possible to identify so(D − 1, 1) with ∧2V by means of η.

1Note that we can pull back the fiber metric η and this defines a Lorentzian metric on M, so the setting
described above assumes that M admits a Lorentzian structure.

2The interest reader can learn more about the vielbein field in chapter A.2.1
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We define the space of (i, j)-forms to be the differential i-forms with values in the j-th exterior
power of V , namely

Ω(i,j)(M) := Ωi(M,∧jV).

The space of fields of our theory is then defined to be

FPC := Ω(1,1)
nd × A(M),

where Ω(1,1)
nd is the space of vielbeins as nondegenerate one-forms with values in V . This formalism

has the further advantage that all the fields are expressed as differential forms and hence can
easily be restricted to a suitable submanifold of M (e.g. its boundary, if it has one).

Classical action

We are looking for an action functional that gives the same Euler–Lagrange locus modulo sym-
metries as Einstein–Hilbert theory. The Palatini–Cartan action is

SPC :=
∫
M

1
(D − 2)!e

D−2 ∧ Fω + Λ
D!e

D, (2.1)

where ek := e ∧ e ∧ · · · ∧ e︸ ︷︷ ︸
k times

and Fω := dω + 1
2 [ω, ω] is the curvature associated to ω which we

regard as a (2, 2) form. We can find equations of motion by varying the action

δSPC =
∫
M

1
(D − 3)!e

D−3δeFω − 1
(D − 2)!e

D−2dω(δω) + Λ
(D − 1)!e

D−1δe (2.2)

=
∫
M

[
1

(D − 3)!e
D−3Fω + Λ

(D − 1)!e
D−1

]
δe+ 1

(D − 2)!dω(eD−2)δω

− 1
(D − 2)!d(eD−2δω),

where we used integration by parts and the fact that δωFω = −dω(δω).3 The last term in (2.2)
will produce a boundary term if ∂M ̸= ∅, due to Stokes theorem.

Then we find equations of motion

eD−3dωe = 0; (2.3)
1

(D − 3)!e
D−3Fω + Λ

(D − 1)!e
D−1 = 0. (2.4)

Equation (2.3) is equivalent to dωe = 0 because of the non-degeneracy condition (and because
eD−3 is injective in this case [CCS21a]). Furthermore, it fixes ω to be torsionless, and since it is
compatible with η, then dωe = 0 implies the metricity condition de∗(ω)g = 0, which is uniquely
solved by the Levi-Civita metric connection.

After imposing (2.3), we find that (2.4) is equivalent to Einstein’s field equation, with the
addition of a cosmological constant Λ.
Remark 2.1. It is important to notice that, even if e is an isomorphism, e∧· might not be, indeed
eD−3 ∧ Fω = 0 is not equivalent to the flatness condition Fω = 0

3δωFω = δω(dω + 1
2 [ω, ω]) = −dδω + 1

2 [δω, ω] − 1
2 [ω, δω] = −d(δω) − [ω, δω] = −dω(δω).
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Remark 2.2. There are two ways of showing that the PC and EH theories are equivalent. The
first one is to rewrite equation (2.4) after imposing (2.3) and see that it actually yields Einstein’s
field equation. The other way is to use (2.3) and rewrite the action SPC in terms of the metric
tensor, to see that it is equivalent to the Einstein–Hilbert action. This is seen by noticing that

eD

D! =
√

− det(g)dDx = Volg,
eD−2

(D − 2)!Fω = RVolg, (2.5)

where R is the Ricci scalar. In this case, the theory we obtain differs from the original Einstein–
Hilbert theory just by the fact that the connection is a free field.4 However, as already remarked,
the EoM’s admit the unique solution given by the Levi-Civita connection.

2.2 The reduced phase space of PC gravity and its BFV
formulation

We present here the results of [CCS21a] concerning the structure of the reduced phase space of
Palatini–Cartan gravity for D ≥ 4, keeping in mind that we are particularly interested in the
D = 4 case, which is the starting point for the N = 1 Supergravity. The results of this section
have been obtained through the Kijowski–Tulcjiev (KT) construction and are the background
construction that we will adapt when adding spinor fields in the following chapters.

The starting point of the KT analysis is the boundary term that we get when varying the
action (2.2):

α̃PC = 1
(D − 2)!

∫
Σ
eD−2δω.

Assumption 2.1. We further assume that the bulk vielbein satisfies the extra nondegeneracy
condition that the induced boundary metric g∂ , defined by g∂ := ι∗Σe

∗(η), is nondegenerate.5
This is an open condition on the space of bulk field that ensures that the constrained submanifold
CΣ is coisotropic.

The classical fields on the boundary will again be indicated by (e, ω). The inclusion ι : Σ ↪→ M
of Σ in M induces the bundles P |Σ := ι∗(P ) and V|Σ := ι∗(V). The (pre-)boundary fields are
respectively defined as

• e is a nondegenerate section of T ∗Σ ⊗ V|Σ, meaning that (i) at each point the three com-
ponents are linearly independent and (ii) the underlying metric g, defined by g := e∗(η), is
nondegenerate (because of Assumption 2.1);

• ω is an element of the space of connections A(Σ), locally modeled by Γ(T ∗Σ ⊗
∧2 V|Σ).

We denote the space of preboundary fields as F̃ ∂PC = Ω(1,1)
∂,n.d. × A(Σ), having defined

Ω(i,j)
∂ := Ωi(Σ,∧jV|Σ)

We note that α̃PC is the integral of a local (top, 1) form on F̃ ∂PC × Σ as defined in (1.1)
and therefore a 1-form on F̃ ∂PC . By taking its variation (the variational vertical differential), we
obtain a two-form on F̃ ∂PC

ϖ̃∂
PC := δα = 1

(D − 3)!

∫
Σ
eD−3δeδω. (2.6)

4That is the Palatini formulation of EH gravity.
5One might also consider the stronger condition that the induced boundary metric is space-like, but this is not

needed for the following considerations.
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By construction, ϖ̃∂
PC is closed on F̃ ∂PC and so satisfies the first requirement to be a symplectic

form on F̃ ∂PC . However, it is degenerate, namely ker(ϖ̃∂
PC) := {X ∈ T F̃ ∂PC | ιXϖ̃∂

PC = 0} ≠ {0}.
In [CCS21a] it was proven that ther kernel is regular. Hence, in order to get rid of this degeneracy,
we can perform a symplectic reduction.6 The quotient space F ∂PC will be called the geometric
phase space of the theory

F ∂PC := F̃ ∂PC
ker(ϖ̃∂

PC)
, (2.7)

with the canonical projection π∂ : F̃ ∂PC → F ∂PC . Hence the space of boundary fields is a bundle
F ∂ → Ω1

nd(Σ,V) with local trivialization on an open UΣ ⊂ Ω1
nd(Σ,V)

F ∂ ≃ UΣ × Ared(Σ),

where Ared(Σ) is the space of equivalence classes of connections ω ∈ A(Σ) under the equivalence
relation ω ∼ ω + v for every v ∈ Ω1,2(Σ) such that eD−3v = 0. The corresponding symplectic
form is

ϖ∂
PC = 1

(D − 3)!

∫
Σ
eD−3δeδ[ω]. (2.8)

In order to define the constraints on this quotient space, and to give an explicit description of
the reduced phase space, it is better to fix a representative of the equivalence relation described
above, since the restriction of the EL equations to the boundary are not invariant under the
equivalence relation. A convenient choice is given by the following construction.

Definition 2.1. We choose a nowhere vanishing section ϵn of V|Σ and we restrict the space of
fields by the conditions that e1, e2, e3, ϵn form a basis, where ei := e(∂i).7 Then, F ϵn

PC is defined
to be the space of pre-boundary fields F̃ ∂PC together with ϵn ∈ V.

On this space we have the following theorem:

Theorem 2.1 ([CCS21a]). Suppose that g∂ , the metric induced on the boundary, is nondegen-
erate. Given any ω̃ ∈ Ω1,2, there is a unique decomposition

ω̃ = ω + v (2.9)

with ω and v satisfying

eD−3v = 0 and ϵne
D−4dωe ∈ ImW

∂,(1,1)
1 . (2.10)

Let us denote by F ′ϵn

PC the subspace of F ϵn

PC of the fields satisfying (2.10).

Corollary 2.1 ([CCS21a]). F ′ϵn

PC is symplectomorphic to F ∂PC .

Hence from now on we will require (2.10) and work on F ′ϵn

PC . The space of coframes and
connections satisfying this last equation is the geometric phase space of the PC gravity theory.

6The vector fields in the kernel of the presymplectic form span a smooth involutive distribution. The quotient
space F̃∂PC/ker(ϖ̃∂PC) is the set of leaves in the foliation induced by ker(ϖ̃∂PC). In our case, the vector fields in
the kernel only act, at fixed e, as translations of the connection ω, therefore it is easy to see that the quotient
space is still a smooth manifold.

7There is actually no restriction in the space-like case; otherwise, one has to work on charts of the space of
fields and pick an ϵn for each chart
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Remark 2.3. One notices that, since the map eD−3 ∧· : Ω(1,2) → Ω(D−2,D−1) is an isomorphism,8
then in the bulk eD−3dωe = 0 must give rise to the same solution space of dωe = 0. However,
when moving to the boundary, eD−3

∂ ∧ · : Ω(1,2)
∂ → Ω(D−2,D−1)

∂ is not injective anymore. The
constraint (2.10), which we call structural constraint, not only allows to fix the representative
of [ω] ∈ Ared(Σ), but also ensures that the equivalence between eD−3dωe = 0 and dωe = 0 is
respected also on the boundary.

We can now analyze the restriction of the Euler–Lagrange equations on the boundary to see
which further constraints they impose on the geometric phase space. In order to simplify the
computation of their Hamiltonian vector fields, it is convenient to rewrite the constraints on F ′

ϵn

as discussed in [CCS21a]:

Lc =
∫

Σ
ceD−3dωe,

Pξ =
∫

Σ
ιξee

D−3Fω + ιξ(ω − ω0)eD−3dωe,

Hλ =
∫

Σ
λϵn

(
1

(D − 3)!e
D−3Fω + 1

(D − 1)!Λe
D−1

)
,

where ω0 is a reference connection and c ∈ Ω0,2
∂ , ξ ∈ X(Σ) and λ ∈ Ω0,0

∂ are Lagrange multipliers.
Remark 2.4. To be precise, the exact form of Pξ is originally given by the constraint

Pξ =
∫

Σ
ιξee

D−3Fω,

but in order to simplify the computation of the Hamiltonian vector field, we redefine it via the
transformation Pξ 7→ Pξ + Lιξ(ω−ω0), which does not change the zero–locus of the theory.

From now on we are going to consider the fields c, ξ and λ to be odd fields (shifted by 1 in a
suitable supermanifold). This will be useful later for the BFV formalism. For more details we
refer to [CCS21a].

The constraints above are of first class, hence defining a coisotropic submanifold of the geo-
metric phase space. The structure is specified by the following

Theorem 2.2 ([CCS21a]). Under Assumption 2.1, the functions Lc, Pξ, Hλ define a coisotropic
submanifold of Fϵn with respect to the symplectic structure ϖ∂

PC . In particular they satisfy the
relations

{Lc, Lc} = −1
2L[c,c] {Pξ, Pξ} = 1

2P[ξ,ξ] − 1
2LιξιξFω0

(2.11a)

{Lc, Pξ} = LLω0
ξ
c {Lc, Hλ} = −PX(i) + LX(i)(ω−ω0)a

−HX(n) (2.11b)
{Hλ, Hλ} = 0 {Pξ, Hλ} = PY (i) − LY (i)(ω−ω0)a

+HY (n) (2.11c)

where X = [c, λϵn], Y = Lω0
ξ (λϵn) and Z(i), Z(n) are the components of Z ∈ {X,Y } with respect

to the frame (ei, ϵn).
Furthermore, the notation Lωξ denotes the covariant Lie derivative along the odd vector field

ξ with respect to a connection ω:

LωξA = ιξdωA− dωιξA A ∈ Ωi,j∂ .
8See [Can24]
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2.2.1 The BFV PC structure
The data of theorem 2.2 can be translated into the BFV formalism as explained in Section 1.2.1.
The result is the following theorem.

Theorem 2.3 ([CCS21a]). Under Assumption 2.1, let FPC be the bundle

FPC
Σ −→ Ω1

nd(Σ,V), (2.12)

with local trivialisation on an open UΣ ⊂ Ω1
nd(Σ,V)

FPC
Σ ≃ UΣ × A(Σ) ⊕ T ∗

(
Ω0,2
∂ [1] ⊕ X[1](Σ) ⊕ C∞[1](Σ)

)
=: UΣ × TPC , (2.13)

and fields denoted by e ∈ UΣ and ω ∈ A(Σ) in degree zero such that they satisfy the structural
constraint ϵneD−4dωe ∈ ImW

∂,(1,1)
1 , ghost fields c ∈ Ω0,2

∂ [1], ξ ∈ X[1](Σ) and λ ∈ Ω0,0[1] in
degree one, kℲ ∈ ΩD−1,D−2

∂ [−1], λℲ ∈ ΩD−1,D
∂ [−1] and ζℲ ∈ Ω1,0

∂ [−1] ⊗ ΩD−1,D
∂ in degree minus

one, together with a fixed ϵn ∈ Γ(V), completing the image of elements e ∈ UΣ to a basis of V;
define a symplectic form and an action functional on FΣ

PC respectively by

ϖΣ
PC =

∫
Σ

1
(D − 3)!e

D−3δeδω + δcδkℲ + δλδλℲ + ιδξδζ
Ⅎ,

SPCΣ =
∫

Σ

1
(D − 3)!ce

D−3dωe+ 1
(D − 3)! ιξee

D−3Fω + 1
(D − 3)! ιξ(ω − ω0)eD−3dωe

+ λϵn

(
1

(D − 3)!e
D−3Fω + 1

(D − 1)!Λe
D−1

)
+ 1

2[c, c]kℲ

− Lω0
ξ ck

Ⅎ + 1
2 ιξιξFω0k

Ⅎ + [c, λϵn](i)(ζℲi − (ω − ω0)ikℲ) + [c, λϵn](n)λℲ

− Lω0
ξ (λϵn)(i)(ζℲi − (ω − ω0)ikℲ) − Lω0

ξ (λϵn)(n)λℲ − 1
2 ι[ξ,ξ]ζ

Ⅎ.

Then the triple (FΣ
PC , ϖ

PC
Σ ,SPCΣ ) defines a BFV structure on Σ.

Following [CCS21a] we can change variables to get rid of the redundancies introduced in
remark 2.4 in D = 4. In particular, we define

c′ = c+ ιξ(ω − ω0) ζℲ
′

• = ζℲ• − (ω − ω0)•k
Ⅎ, (2.14)

where the bullet • indicates any component in the one-form factor in Ω1,0
∂ [−1] ⊗ ΩD−1,D

∂ . In
other words, ζℲ′

• ∈ ΩD−1,D
∂ , with • = 1, 2, 3.

Lastly, we can define the new variable yℲ ∈ Ω(3,3)
∂ [−1] such that eiyℲ = ζℲ

′

i and ϵny
Ⅎ = λℲ,

which, omitting the ′ apex, yields

ϖΣ
PC =

∫
Σ
eδeδω + δcδkℲ + δωδ(ιξkℲ) − δλϵnδy

Ⅎ + ιδξδ(eyℲ), (2.15)

SPCΣ =
∫

Σ
cedωe+ ιξeeFω + λϵn

(
eFω + 1

3!Λe
3
)

+ 1
2[c, c]kℲ − Lωξ ckℲ

+ 1
2 ιξιξFωk

Ⅎ − [c, λϵn]yℲ + Lω0
ξ (λϵn)yℲ + 1

2 ι[ξ,ξ]ζ
Ⅎ. (2.16)
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2.3 The degenerate boundary case in D = 4
So for we have been assuming the induced boundary metric g∂ to be non–degenerate, which is an
open condition on the set of vielbeins on the boundary. This section is dedicated to investigating
the boundary structure of PC gravity in the case of a degenerate boundary metric.

The problem of fixing the representative of the connection in the pre-symplecitc form ϖ̃∂
PC

is present in both the non-degenerate and degenerate cases; however, the form of the structural
constraint strictly depends on the nature of the boundary (null or non-null). In fact, in the
non-degenerate case, the structural constraint (2.10) alone is sufficient to fix the representative
of [ω] ∈ Ared(Σ). On the other hand, on a null boundary, due to the degeneracy of e we also have
to impose an additional degeneracy constraint. We will see that, from a different perspective,
the structural constraint of the non-degenerate case is just a specific characterization of the
structural and the degeneracy constraint where the latter is trivial.

Definition 2.2. Let e ∈ Ω1,1
∂ and ek ∈ Ωk,k∂ be the wedge product of k elements e. Then, we

define the following maps:

W
Σ,(i,j)
k : Ωi,j∂ −→ Ωi+k,j+k∂

α 7−→ ek ∧ α

ϱ(i,j) : Ωi,j∂ −→ Ωi+1,j−1
∂ (2.17)

α 7−→ [e, α]

ϱ̃(i,j) : Ωi,j∂ −→ Ωi+1,j−1
∂ (2.18)

α 7−→ [ẽ, α],

with ẽ ∈ Ω̃1,1
∂ being a degenerate vielbein, namely ẽ∗η = 0.

We also give the definitions of three geometrical objects that we will require in the following
theorems.

Definition 2.3. Let J be a complement9 in Ω2,1
∂ of the space Im ϱ(1,2)|KerWΣ,(1,2)

1
. Then, we

define the following subspaces:

T := KerWΣ(2,1)
1 ∩ J ⊂ Ω2,1

∂ (2.19)

S := KerWΣ,(1,3)
1 ∩ Kerϱ̃(1,3) ⊂ Ω1,3

Σ (2.20)

K := KerWΣ,(1,2)
1 ∩ Kerϱ(1,2) ⊂ Ω1,2

∂ . (2.21)

We present the initial key result for the degenerate theory, which will ensure the equivalence
between dωe = 0 and edωe = 0 at the boundary. While it may appear initially quite redundant
with respect to lemma A.9, it will have profound implications for the geometry of the theory, as
highlighted in 2.6.

9To obtain an explicit expression for the complement, one can follow these steps. Start by selecting an arbitrary
Riemannian metric on the boundary manifold Σ and extend it to the space Ω2,1. Then, the orthogonal complement
of the image of the map ϱ(1,2)|KerWΣ,(1,2)

1 in Ω2,1
∂

can be identified as the space J , with respect to the chosen
Riemannian metric.
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Lemma 2.1 (Corollary of A.9). Let ϵn ∈ Ω0,1
∂ be fixed such that, for a chosen vielbein e ∈ Ω̃1,1

∂ ,
{e(v1), e(v2), e(v3), ϵn}10 is a basis of i∗V, where {v1, v2, v3} is a basis of TΣ. Moreover, let
α ∈ Ω2,1

∂ . Then, we have that
α = 0

if and only if 
α ∈ KerWΣ,(2,1)

1

ϵn(α− pT α) ∈ ImW
Σ,(1,1)
1

pT α = 0,

(2.22)

where pT is the projector onto T . We call the second and third conditions in (2.22) respectively
the structural and the degeneracy constraints.

The next lemma provides a formulation of the degeneracy constraint in terms of an integral
functional.
Lemma 2.2 ([CCT21]). Let α ∈ Ω2,1

∂ . Then, we have the following equivalence

pT α = 0 ⇐⇒
∫

Σ
τα = 0 ∀τ ∈ S. (2.23)

Remark 2.5. As long as we do not specify any α, these two lemmas remain purely geometrical
and do not depend on the properties of the field equations. We will then be able to use these
results for the interactive theories where the equivalence condition on the boundary will differ
from dωe = 0 and edωe = 0 (since the field equations will be different themselves). Therefore,
in general, we need to specify α for each different theory. In particular, for the Palatini–Cartan
theory, α = dωe and the structural and the degeneracy constraints readϵn(dωe− pT dωe) ∈ ImW

Σ,(1,1)
1

pT dωe = 0.
(2.24)

Remark 2.6. It is important to emphasize that Eq.s (2.22) are trivially equivalent to the structural
constraint

ϵnα ∈ ImW
Σ,(1,1)
1 (2.25)

in the non-degenerate case. Nonetheless, the introduction of this split plays a crucial role in
the analysis of the degenerate theory. More specifically, apart from pT not being trivial, 2.25
alone will not be sufficient to uniquely fix a representative of the equivalence class defining
the symplectic space (see 2.4). In other words, since in the non-degenerate case pT α = 0 holds
trivially, we can infer that the second equation in (2.22) is the most general form of the structural
constraint of the theory, whose geometrical implications are only visible in the degenerate case.
In fact, the peculiar integral condition of the degenerate case, introduced in 2.2, carries significant
consequences. It can be interpreted as a modification of the set of constraints of the theory by
incorporating a new functional constraint. For α = dωe (the case of the Palatini–Cartan theory),
this is denoted as

Rτ =
∫

Σ
τdωe. (2.26)

Further discussions of this matter will be presented in the next section.
10Notice in particular that, in any neighborhood of e of the space of boundary fields, we are allowed to pick ϵn

independently of the dynamics of the vielbein e. In other words, we can state that ϵn is constant in the field e.
This trivially implies that ϵn has no variation along e.
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Fixing the representative
The reduction by the kernel of the presymplectic form, as shown in [CS19b], is equivalent to a
quotient space with an equivalence relation on the connection form, as stated in the following
theorem.

Theorem 2.4 ([CS19b]). The geometric phase space for the Palatini–Cartan theory is the sym-
plectic manifold (FΣ, ϖ) given by the following equivalence relation on the space of pre-boundary
fields F̃Σ

ω′ ∼ ω ⇐⇒ ω′ − ω ∈ KerWΣ,(1,2)
1 (2.27)

and the symplectic form

ϖ =
∫

Σ
eδeδ[ω]. (2.28)

We refer to this equivalence class as A(Σ)red.

Remark 2.7. To study the reduced phase space of the theory, we make use of representatives for
the equivalence classes defined in (2.27). In the non-degenerate case, these representatives are
uniquely determined by the structural constraint itself. In other words, ensuring the equivalence
of dωe = 0 and edωe = 0 on the boundary, is enough to determine uniquely the representatives
of the equivalence classes defined in (2.27). However, in the degenerate case, the structural
constraint and the degenerate constraint (or its integral form Rτ ), despite the fact that they
indeed ensure on the boundary the equivalence mentioned above, are not sufficient to uniquely
assign a representative to each equivalence class. Therefore, it is necessary to seek an alternative
way to guarantee the unambiguous determination of these representatives.

We can accomplish that through the following lemma.

Lemma 2.3 ([CCT21]). Let g∂ be degenerate. Then, given ω ∈ Ω1,2
∂ and ϵn ∈ Ω0,1

∂ as in 2.1,
the conditions ϵn(dωe− pT (dωe)) ∈ ImW

Σ,(1,1)
1

pKω = 0
(2.29)

uniquely define a representative of the equivalence class [ω] ∈ A(Σ)red.

Remark 2.8. In [CCT21], it has been proved that the analysis is independent of the choice of
the representative of the equivalence class (2.27). In more rigorous terms, for each choice of the
representatives there is a canonical symplectomorphism between the symplectic space defined by
representatives and the geometric phase space of the theory.
Remark 2.9. It is important to highlight that, in the non-degenerate case, the subspaces T , S,
and K of definition 2.3 are trivial. It follows that the projectors pK and pT are also trivial. Once
again, this means that, in the non-degenerate theory, the structural constraint alone serves the
purpose of establishing the equivalence between dωe = 0 and edωe = 0 on the boundary, as well
as uniquely determining the representatives of the equivalence classes defined in (2.27).

We have seen that, on a null-boundary, we need both the structural and the degeneracy
constraints together with the additional equation pKω = 0 in order to guarantee the equivalence
between dωe = 0 and edωe = 0 on the boundary and uniquely fix the representative of the
equivalence class [ω] ∈ A(Σ)red.
More specifically, the role of the structural constraint together with the integral constraint Rτ is
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the one of ensuring the aforementioned equivalence condition, whereas, the structural constraint
together with pKω = 0 will uniquely fix the representatives.

We display now the constraints of the theory.
Definition 2.4. Let11 c ∈ Ω0,2

∂ [1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1] and τ ∈ S[1]. Then, we define the
following functionals

Lc =
∫

Σ
cedωe (2.30)

Pξ =
∫

Σ

1
2 ιξ(e

2)Fω + ιξ(ω − ω0)edωe (2.31)

Hλ =
∫

Σ
λϵn

(
eFω + Λ

3!e
3
)

(2.32)

Rτ =
∫

Σ
τdωe. (2.33)

We refer to these as the constraints of the Palatini–Cartan (degenerate) theory.
We are now able to determine the algebra of the constraints of the theory. This differs from

the one of the non-degenerate theory, since the new constraint Rτ changes the nature of the
Poisson brackets, which are no longer first-class.
Theorem 2.5 ([CCT21]). Let i∗g be degenerate. Then the structure of the Poisson brackets of
the constraints Lc, Pξ, Hλ and Rτ is given by the following expressions

{Lc, Lc} = −1
2L[c,c] {Pξ, Pξ} = 1

2P[ξ,ξ] − 1
2LιξιξFω0

{Lc, Pξ} = LLω0
ξ
c {Hλ, Hλ} ≈ 0

{Lc, Rτ} = −RpS [c,τ ] {Pξ, Rτ} = RpSL
ω0
ξ
τ .

{Rτ , Hλ} ≈ Gλτ {Rτ , Rτ} ≈ Fττ

{Lc, Hλ} = −PX(i) + LX(i)(ω−ω0)a
−HX(n)

{Pξ, Hλ} = PY (i) − LY (i)(ω−ω0)a
+HY (n)

with X = [c, λϵn] and Y = Lω0
ξ (λϵn) and where the superscripts (i) and (n) describe their

components with respect to ea, ϵn. Furthermore Fττ and Gλτ are functionals of e, ω, τ and λ
that are not proportional to any other constraint.

Remark 2.10. The symbol ≈ indicates the identity on the zero locus of the constraints. In
particular, this means that those brackets written with this symbol are not a linear combination
of the constraints themselves. On the other hand, all the brackets written with an = vanish on
the zero locus, for example {Lc, Lc} ≈ 0.
Remark 2.11. The distinctive feature of the degenerate theory, highlighted in [CCT21], is that
the additional constraint Rτ turns out to be second-class, for τ not constant.

2.4 The BV PC theory
The previous sections gave us insight on the action of the infinitesimal gauge symmetries, seen
as the Hamiltonian vector fields associated to the constraints on the geometric phase space. In

11The notation [1] indicates a shift in parity.
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this section we implement them as components of the cohomological vector field QPC , which,
despite the fact that the diffeomorphism symmetry cannot be canonically realized as the action
of a proper Lie algebra of a (finite dimensional) Lie group, turns out to be of BRST type. This
formulation was first found in [Pig00] and later refined within the BV formalism in [CS19b].

The classical infinitesimal symmetries correspond to the internal Lorentz gauge symmetry,
whose gauge parameter is given by the ghost c ∈ Ω(0,2)[1], and the diffeomorphism symmetry,
whose gauge parameter is ξ ∈ X[1](M). Explicitly, one can infer

δξe = Lωξ e δξω = ιξFω

δce = [c, e] δcω = dωc.

Theorem 2.6 ([CS19b]). The collection (FM
PC , ϖ

M
PC , QPC ,SMPC) defines a BV structure, where

FM
PC := T ∗[−1]FMPC and

FMPC = Ω(1,1)
n.d. ⊕ AM ⊕ Ω(0,2)[1] ⊕ X[1](M) ∋ (e, ω, c, ξ).

The symplectic form is canonically defined as

ϖM
PC =

∫
M

δeδeℲ + δωδωℲ + δcδcℲ + ιδξδξ
Ⅎ,

while the BV action reads

SMPC =
∫
M

e2

2 Fω − (Lωξ e− [c, e])eℲ + (ιξFω − dωc)ωℲ

+ 1
2(ιξιξFω − [c, c])cℲ + 1

2 ι[ξ,ξ]ξ
Ⅎ.

Lastly, one easily recovers the cohomological vector field as the Hamiltonian vector field of
SMPC

QPCe = Lωξ e− [c, e] QPCω = ιξFω − dωc

QPCc = 1
2(ιξιξFω − [c.c]) QPCξ = 1

2[ξ, ξ]

QPCe
Ⅎ = eFω + Lωξ eℲ − [c, eℲ]

QPCω
Ⅎ = edωe− dωιξω

Ⅎ − [c, ωℲ] + ιξ[e, eℲ] − 1
2dωιξιξc

Ⅎ

QPCc
Ⅎ = −dωωℲ − [e, eℲ] − [c, cℲ]

QPCξ
Ⅎ
• = (Fω)•ω

Ⅎ − dω•ee
Ⅎ + ιξ(Fω)•c

Ⅎ + Lωξ (ξℲ• ) + (dωιξξℲ)•

2.4.1 Obstruction to the BV-BFV extension of the PC theory
After obtaining the BV description of PC gravity in D ≥ 4, we could be tempted to apply the
construction in 1.2 with the hope to recover the BFV theory obtained from the KT construction.
However, it was proved in [CS19b] that the classical BV PC theory is not extendible to the
boundary. In particular, in D = 4 the induced exact two-form on the boundary is given by

ϖ̌PC
Σ =

∫
Σ

− eδeδω + δ(eℲnξn)δe+ δeℲδ(enξn) + δeℲιδξe+ eℲιδξδe

δ(ιξωℲ)δω + δ(ωℲ
nξ
n)δω + δωℲδc− δ(ιξcℲnξn)δω

δ(ξnιδξχ)volg∂ − δξnδ(ξnχ)volg∂
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The kernel of ϖ̌PC
Σ is given by the following set of equations

eXe = ιXξ
ωℲ − XξnωℲ

n + ιξXωℲ + XωℲ
n
ξn − XιξcℲnξn (2.34)

eXω = ιXξ
eℲ + XξneℲn + XeℲnξ

n,

where in general a vector field X ∈ X(F̌Σ
PC) is given by X =

∫
Σ Xα δ

δΦα + Xα δ
δΦℲ

α
, where (Φ,ΦℲ)

correspond to the field/antifield pair.12

The main problem with equation (2.34) is that it is singular, hence the symplectic structure
on the boundary fields is not well defined, since the corresponding quotient is not smooth.

2.5 The full BV-BFV description of PC gravity
In order to tackle the problem of finding a BV-BFV extendible PC theory in D = 4, we consider
the particular case of a cylindrical space–time M = I × Σ, where I = [0, 1]. In the following,
we will see how to achieve this with two different constructions: the AKSZ construction and the
BV–pushforward.
Remark 2.12. It was proved in [CS19a] that, in D = 3, Palatini–Cartan gravity is BV-BFV
extendible, and that it is BV–equivalent to BF theory, a topological field theory. In dimension
4, this is spoiled by an extra e factor in the action13, which generates a non–trivial kernel in the
boundary 1–form.

To solve this issue, we employ two seemingly unrelated strategies, which turn out to provide
the same result.

2.5.1 PC BV-BFV from the AKSZ construction
We denote by FΣ

PC = (FΣ
PC ,SΣ

PC , ϖ
Σ
PC) the BFV theory of Palatini–Cartan gravity developed in

the case of non–degenerate boundary in section 2.2.1. We employ the construction in 1.4.1. We
promote the fields in FΣ

PC to fields in FAKSZ
PC by considering [CCS21b]

e = e+ fℲ w = ω + uℲ

c = c+ w z = ξ + z (2.35)
l = λ+ µ cℲ = kℲ + cℲ

yℲ = eℲ + yℲ

where we used the same letters for the boundary fields which are now promoted to fields in
C∞(I) ⊗ FΣ

PC . In particular, if ϕ ∈ FΣ
PC , the corresponding AKSZ field becomes

P = ϕ+ ψℲ, where ϕ ∈ C∞(I) ⊗ FΣ
PC , and ψℲ ∈ Ω1[−1](I) ⊗ FΣ

PC

Theorem 2.7 ([CCS21b]). The AKSZ data FAKSZPC on M = I × Σ are given by

FAKSZ
PC = T ∗[−1](Map(I,FΣ

PC),

ϖAKSZ
PC =

∫
I×Σ

eδeδw + δcδcℲ + δwδ(ιzcℲ) − δlϵnδy
Ⅎ + ιδzδ(eyℲ),

12In our specific case, we have that Xe is the component of X along δ
δe

, and so on.
13Specifically, in the term e2

2 Fω .
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SAKSZPC =
∫
I×Σ

e2diw + cdIc
Ⅎ + dIwιzc

Ⅎ − ιdIzey
Ⅎ + dI lϵny

Ⅎ

+ cedwe + ιzeeFw + ϵnleFw + 1
2[c, c]cℲ − Lw

z cc
Ⅎ + 1

2 ιzιzFwc
Ⅎ

− [c, ϵnl]yℲ + Lw
z (ϵnl)y + 1

2 ι[z,z](eyℲ),

where it is understood that only the terms containing fields in Ω1[−1](I) should be selected in the
above expressions, to obtain a top form on I × Σ.

The above theorem provides a compatible BV-BFV theory of gravity in the first order for-
malism. In the next section, following [CCS21b], we see how it relates to the full BV theory in
the bulk

The reduced PC BV theory from AKSZ

The question arises on how to relate the AKSZ PC theory FAKSZPC with the full BV PC theory
in the bulk FPC . The main obvious difference is that the former is BV-BFV extendible, while
the latter is not, and the reason for that is that in FAKSZPC the connection is constrained by the
structural constraint (4.11) of the BFV PC theory F∂PC . Such constraint restricts the space AKSZ
of fields in the bulk in such a way that the induced boundary symplectic form is non-degenerate.
This motivates the following theorem

Theorem 2.8 ([CCS21b]). There exists a map Φ: FAKSZPC → FPC such that Φ: FAKSZ
PC → FPC

is an embedding and Φ∗(ϖM
PC) = ϖAKSZ

PC . Such map is called a BV embedding.

Remark 2.13. The map Φ actually splits as the composition of two maps. In particular, one
can first define a restricted space of BV fields Fr

PC , in which the connection and its antifield are
constrained, and establish a symplectomorphism φ between FAKSZ

PC and Fr
PC . Then one can

simply embed the restricted BV PC theory FrPC ↪→ FPC via the BV inclusion ιr : Fr
PC ↪→ FPC

and obtain Φ = ιr ◦ φ
Remark 2.14. In principle, one would need to show that FrPC defines a BV theory, however to
find a symplectomorphism φ between FAKSZ

PC and Fr
PC such that φ∗(SrPC) = SAKSZPC is enough,

as the CME will automatically be satisfied.
From now and for the remainder of the chapter, we indicate any bulk field ϕ with the bold

character ϕ. Furthermore, letting ϕ ∈ Ωk(I × Σ), we set

ϕ = ϕ̃+ ϕ̃n, with ϕ̃ ∈ Ωk(Σ) ⊗ C∞(I), ϕ̃n ∈ Ωk−1(Σ) ⊗ Ω1(I),

assuming xn to be the coordinate along I, then ϕ̃n = ϕ̃ndx
n, with ϕ̃n ∈ C∞(I) ⊗ Ωk−1(Σ). In

the same way a vector field ζ ∈ X(I × Σ) is going to be split as

ζ = ζ̃ + ζ̃
n
, with ζ̃ ∈ X(Σ) ⊗ C∞(I), ζ̃

n
∈ C∞(Σ) ⊗ X(I),

with ζ̃
n

= ζ̃n∂n.

Definition 2.5. The restricted space of BV fields is given by the subspace of FPC satisfying
the following structural constraints

WℲ := ω̃Ⅎ
n − ιzω̃

Ⅎ − ιξ̃ c̃
Ⅎ
n + ιz c̃

Ⅎ
nξ̃
n ∈ Im(W (1,1)

ẽ ) (2.36)

ϵndω̃ ẽ− ϵnW
−1
ẽ (W)dξ̃n + ιX̂(ω̃Ⅎ

n − c̃Ⅎnξ̃
n) ∈ Im(W (1,1)

ẽ ), (2.37)
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where W (i,j)
ẽk : Ω(i,j) → Ω(i+k,j+k) : α 7→ ẽk ∧ α shares the same properties of W ∂,(i,j)

k and

X̃ = Lω̃
ξ̃

(ϵn) − dω̃n
(ϵn)ξ̃n − [c̃, ϵn]; X̂ = ẽiaX̃

a∂i (2.38)

• ϖr
PC := ϖPC(I × Σ)|Fr

P C
;

• SrPC := SPC |Fr
P C

;

• QrPC = QPC .

We will make sense of the constraints defined above in the next section. We can now reinter-
pret the content of theorem 2.8 as saying that the following diagram commutes

FPC

FAKSZPC FrPC

Φ

φ

ιr

We will provide an explicit expression for φ in chapter 3.3, adapted to the presence of a Dirac
spinor ψ. The free PC theory symplectomorphism φ is then recovered simply by ’turning off’ all
the terms containing spinors.
Remark 2.15. The constraints (2.36) and (2.37) defining the reduced theory might seem arbitrar-
ily defined, however, we remark that they arise from the definition of the fields in FAKSZPC , which
are constrained by definition, since FAKSZPC is defined from the BFV PC theory obtained through
the KT construction, which required a choice of representative of the connection ω, given by
the structural constraint. In the next section, we will see how such constraints arise in a more
systematic way, without the introduction of the PC AKSZ theory.

2.5.2 PC BV-BFV from the BV-pushforward
In this section we will see how the restricted BV theory of PC gravity can be recovered via the
BV-pushforward [CC25b], explained in section 1.5. However, it is first worth investigating the
source of the constraints (2.36) and (2.37) in a more direct way, as we will want to generalize
them to the case of supergravity.

The constraints of the reduced BV PC theory

First of all, we see that the BFV-PC theory of section 2.2.1 found in [CCS21a] is

SΣ
PC =

∫
Σ

(ιξe+ λϵn)eFω + cedωe+
(

1
2 [c, c] − 1

2 ιξιξFω − Lωξ c
)
kℲ

− 1
2 ι[ξ,ξ]ey

Ⅎ +
(
[c, λϵn] − Lωξ (λϵn)

)
yℲ

(2.39)

ϖΣ
PC =

∫
Σ
eδeδω + δcδkℲ + δωδ

(
ιξ(kℲ)

)
− δ

(
ιδξ(e)yℲ

)
− δλϵnδy

Ⅎ. (2.40)

As previously remarked, in order to have a well-defined phase space, we need to carefully fix
some components of the boundary connection ω, in such a way that the term e ∧ δe ∧ δω in the
boundary symplectic form does not give rise to any degeneracy. This is the content of theorem
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4.1 (or equivalently of Theorem 33 in [CCS21a]). We might therefore be tempted to impose the
same constraint for the bulk fields, i.e.

ϵndω̃ ẽ ∈ Im(W (1,1)
ẽ ),

which amounts to imposing only some parts of the condition dωe = 0. Unfortunately, such
constraint is not invariant under the action of QPC , hence not defining a suitable restricted
BV theory. As it turns out, the correct one is given by (2.37). In particular, a direct (and
immediate) generalization of lemma A.6 tells us that there must exist unique σ ∈ C∞(I) ⊗ Ω(1,1)

∂

and ρ ∈ Ker(W (1,2)
ẽ ) such that

ϵndω̃ ẽ− ϵnW
−1
ẽ (W)dξ̃n + ιX̂(ω̃Ⅎ

n − c̃Ⅎnξ̃
n) = ẽσ + ϵn[ρ, ẽ].

In the same way, we can generalize theorem 4.1 and see that we can split ω̃ as ω̃ = ω̂ + ṽ, with
ṽ ∈ Ker(W (2,1)

ẽ ) and ω̂ satisfying

ϵndω̂ ẽ− ϵnW
−1
ẽ (W)dξ̃n + ιX̂(ω̃Ⅎ

n − c̃Ⅎnξ̃
n) ∈ Im(W (1,1)

ẽ ).

Then, since ϵndω̃ ẽ = ϵndω̂ ẽ + ϵn[ṽ, ẽ]. Constraint (2.37) is satisfied if and only if ρ = ṽ = 0,
implying that only ω̂ survives in Fr

PC , taking the role of the "reduced boundary connection",
which (thanks to theorem 4.1) can be seen as a representative living in Ared(I × Σ) := A(I ×
Σ)/ ker(W (1,2)

ẽ ).
The other structural constraint (2.36) is interpreted as fixing some components of the canon-

ical antifield ω̃Ⅎ
n

14. In particular, since ω̃Ⅎ
n ∈ Ω1(I) ⊗ Ω(2,2)

∂ , we can apply lemma A.6 to show
there exists a splitting

ωℲ
n = ẽρℲ + ϵn[ẽ, σℲ].

Then ρℲ is exactly in the "dual" of C∞(I) ⊗ Ω(1,2)
∂ /Ker(W (1,2)

ẽ ), providing a perfect candidate
for the antifield of ω̃ in Fr

PC . However, the constraint ωℲ
n ∈ Im(W (1,1)

ẽ ) is not Q–invariant, and
(2.36) turns out to be the correct one.

In order to shed some more light into the choice of constraints, we consider the "more co-
variant" combination of fields ωℲ − ιξc

Ⅎ, as such expression appears repeatedly in computations.
Specifically, when computing the variation of the BV-PC action, one obtains a total derivative
term ϑPC , whose variation (having used Stokes’ theorem on I × Σ) produces a term on the
boundary

δϑ̃∂PC =
∫

Σ
· · · + δω̃δ

(
ιξ̃(ω̃Ⅎ − c̃Ⅎnξ̃

n)
)

+ · · · .

Confronting it with the BFV symplectic form (2.40), one notices that the expression ω̃Ⅎ − c̃Ⅎnξ̃
n

is a good candidate for the boundary field kℲ, representing the antighost of c ∈ Ω(0,2)
∂ [1]. The

same expression also appears inside (2.36).
At this point we know from diagram (A.31) that we can redefine ωℲ = eω̌ and cℲ = e2

2 č, so
we have ωℲ − ιξc

Ⅎ = e
(
ω̌ − ιξeč− 1

2eιξč
)
, and since ωℲ = ω̃Ⅎ + ω̃Ⅎ

n and cℲ = c̃Ⅎn, unpacking the
expression yields

ωℲ − ιξc
Ⅎ =ω̃Ⅎ − c̃Ⅎnξ̃

n + ω̃Ⅎ
n − ιξ̃ c̃

Ⅎ
n

e
(
ω̌ − ιξeč− e

2 ιξč
)

=ẽ
(

˜̌ω + ˜̌ωn − ιξ̃ ẽ
˜̌c− ẽnξ̃

n˜̌c− ẽ

2(ιξ̃ ˜̌c− ˜̌cnξ̃n) − ιξ̃ ẽ
˜̌cn − ẽnξ̃

n˜̌cn
)

+ ẽn

(
˜̌ω − ιξ̃ ẽ

˜̌c− ẽnξ̃
n˜̌c− ẽ

2(ιξ̃ ˜̌c− ˜̌cnξ̃n)
)
.

14Indeed in the symplectic form the relevant term is δω̃δω̃Ⅎ
n.



38 CHAPTER 2. KNOWN RESULTS IN PURE GRAVITY

By inspection (discarding the terms proportional to dxn) one could then infer

ω̃Ⅎ − c̃Ⅎnξ̃
n = ẽ

(
˜̌ω − ιξ̃ ẽ

˜̌c− ẽnξ̃
n˜̌c− ẽ

2(ιξ̃ ˜̌c− ˜̌cnξ̃n)
)

=: ẽ˜̌k, (2.41)

having defined kℲ := ωℲ − ιξc
Ⅎ = eǩ = ẽ

˜̌
k + ẽn

˜̌
k + ẽ

˜̌
kn. However, we know from diagram

A.32 that W (2,1)
ẽ is surjective but not injective, hence the right hand side of (2.41) is defined

up to a term in kerW (2,1)
ẽ

15. In order to fix the representative of the equivalence class in
C∞(I) ⊗

(
Ω(2,1)
∂ / kerW (2,1)

ẽ

)
, we can generalize theorem 4.3 to see that we have to impose the

constraint
ϵn

˜̌
k = ϵn

(
˜̌ω − ιξ̃ ẽ

˜̌c− ẽn˜̌cξ̃n − e

2(ιξ̃ ˜̌c− ˜̌cnξ̃n)
)

∈ Im(W (1,1)
ẽ ),

which, thanks to the following proposition, turns out to be equivalent to (2.36).

Proposition 2.2. Constraint (2.36) is equivalent to

ϵn
˜̌
k ∈ Im(W (1,1)

ẽ ). (2.42)

Furthermore, constraint (2.37) is obtained by applying the cohomological vector field QPC to
(2.42).

Remark 2.16. As an immediate corollary, since Q2
PC = 0, one obtains that the structural con-

straints on Fr
PC are invariant with respect to the action of QPC .

Proof. We begin by unpacking the terms inside WℲ = ω̃Ⅎ
n − ιzω̃

Ⅎ − ιξ̃ c̃
Ⅎ
n + ιz c̃

Ⅎ
nξ̃
n, starting from

the definition kℲ := ωℲ − ιξc
Ⅎ = eǩ = ẽ

˜̌
k + ẽn

˜̌
k + ẽ

˜̌
kn. In particular, one sees

ω̃Ⅎ
n − ιξ̃ c̃

Ⅎ
n = k̃

Ⅎ
n = ẽ

˜̌
kn + µϵn

˜̌
k + ιz ẽ

˜̌
k

ιz
(
ω̃Ⅎ − c̃Ⅎnξ̃

n
)

= ιz k̃
Ⅎ = ιz ẽ

˜̌
k + ẽιz

˜̌
k,

hence, noticing WℲ = k̃
Ⅎ
n − ιz k̃

Ⅎ, we have

WℲ =ẽ˜̌kn + µϵn
˜̌
k + ιz ẽ

˜̌
k − ιz ẽ

˜̌
k − ẽιz

˜̌
k

=ẽ˜̌kn + µϵn
˜̌
k − ẽιz

˜̌
k ∈ Im(W (1,1)

ẽ )

⇔ ϵn
˜̌
k ∈ Im(W (1,1)

ẽ )

We can see that if WℲ = ẽτ̃Ⅎ for some τ̃Ⅎ ∈ Ω1(I) ⊗ Ω(1,1)
∂ [−1], and ϵn

˜̌
k = ẽ˜̌a for some ˜̌a ∈

C∞(I) ⊗ Ω(1,1)
∂ [−1], then

τ̃Ⅎ = ˜̌
kn + µ˜̌a− ιz ǩ (2.43)

For the second part of the proposition, we first apply QPC to ǩ = ω̌ − ιξeč− e
2 ιξč, obtaining,

QPC

(
ǩ

)
= dωe+ Lω

ξ (ǩ) −
[
c, ǩ

]
.

15Defining kℲ = k̃Ⅎ + k̃
Ⅎ
n, we have that k̃Ⅎn = ẽn

˜̌
k+ ẽ

˜̌
kn, which is ill-defined since ˜̌

k is unique only up to elements
in Ker(W (2,1)

ẽ ). Such ambiguity is resolved by imposing the structural constrain (2.36), as is shown in the next
proposition and in remark 2.17
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From QPC(ǩ) we can extract QPC(˜̌k), and since (2.42) is equivalent to ϵn ˜̌
k − ẽ˜̌a = 0, for some

˜̌a ∈ C∞(I) ⊗ Ω(1,1)
∂ [−1], yielding

QPC(ϵn ˜̌
k − ẽ˜̌a) = − ϵn

(
dω̃ ẽ+ Lω̃

ξ̃
(˜̌k) + dξ̃n

˜̌
kn − ξ̃ndω̃n

˜̌
k − [c̃, ˜̌k]

)
− (Lω̃

ξ̃
ẽ− dξ̃nẽn − dω̃n ẽξ̃

n − [c̃, ẽ])˜̌a− ẽQPC ˜̌a = 0

⇔ ϵndω̃ ẽ+ dξ̃n(ϵn ˜̌
kn − ẽn˜̌a) + (Lω̃

ξ̃
ϵn − dω̃n

(ϵn)ξ̃n − [c̃, ϵn])˜̌k ∈ Im(W (1,1)
ẽ ).

Using (2.43) we see

˜̌
kn − ẽn˜̌a = ϵnτ̃

Ⅎ + µϵn˜̌a+ ιz(ϵn ˜̌
k) − (µϵn + ιz ẽ)˜̌a

= ϵnτ̃
Ⅎ + ιz(ẽ˜̌a) − ιz ẽ˜̌a

= ϵnτ̃
Ⅎ + ẽιzã,

obtaining
ϵndω̃ ẽ+ ϵndξ̃

nτ̃Ⅎ + (Lω̃
ξ̃
ϵn − dω̃n

(ϵn)ξ̃n − [c̃, ϵn])˜̌k ∈ Im(W (1,1)
ẽ ).

Having fixed such constraint, we recall there exist τ̃Ⅎ ∈ Ω1(I) ⊗ Ω(1,1)
∂ [−1] and µ̃Ⅎ ∈

Ker(W (1,2)
ẽ )[−1] such that

WℲ = ẽτ̃Ⅎ + ϵn[µ̃Ⅎ, ẽ]. (2.44)

Constraint (2.42) becomes WℲ = ẽτ̃Ⅎ, telling us that τ̃Ⅎ is isomorphic to a field in Fr
PC and µ̃Ⅎ

defines its complement in FPC .
Explicitly, setting ω̃Ⅎ

n = ω̂Ⅎ
n + ṽℲ, we can rewrite

ω̂n := ẽτ̃Ⅎ + ιzω̃
Ⅎ + ιξ̃ c̃

Ⅎ
n − ιz c̃

Ⅎ
nξ̃
n (2.45)

ṽℲ = ϵn[µ̃Ⅎ, ẽ]. (2.46)

Remark 2.17. Imposing (2.42) is equivalent to set µℲ = 0, implying ṽℲ = 0, which is consistent
with the fact that the other constraint (2.37) fixes ṽ = 0. Furthermore, from (2.43) and (2.45)
we see that ω̃Ⅎ

n − ιξ̃ c̃
Ⅎ
n = ẽ

(
k̃n + µ˜̌a

)
+ ιz ẽ

˜̌
k + ṽℲ, which, after imposing (2.42), becomes

ω̃Ⅎ
n − ιξ̃ c̃

Ⅎ
n = ẽ

˜̌
kn + ẽn

˜̌
k,

which solves any possible ambiguity in the definition of k̃Ⅎn.
Lastly, we can explicitly write the symplectic form on Fr

PC as

ϖr
PC =

∫
I×Σ

δẽδẽℲn + δẽnδẽ
Ⅎ + δω̂δω̂Ⅎ

n + δω̃nδω̃
Ⅎ + δc̃δc̃Ⅎn + ιδξ̃δξ̃

Ⅎ + δξ̃
Ⅎ
n
δξ̃n.

The BV PC pushforward

Proposition 2.3. [CC25b] There exists a symplectomorphism Φ between the graded -1–
symplectic manifolds FPC := (FPC , ϖPC) and FHPC := (FPC , ϖH

PC), where

ϖH
PC := ϖr

PC +
∫
I×Σ

δṽδṽℲ, with ṽ ∈ Ker(W (1,2)
ẽ ) and ṽℲ = ϵn[µ̃Ⅎ, ẽ],
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for some µ̃Ⅎ ∈ C∞(I)⊗Ω(1,2)
∂ [−1]. Furthermore, fixing a reference tetrad ẽ0 ∈ C∞(I)⊗Ω(1,1)

∂ and
considering Ff := T ∗[−1](Ker(W (1,2)

e0 )) together with its canonical symplectic form ϖf , there is
a surjective submersion π : FHPC → FrPC such that the quadruple

(FHPC ,FrPC ,Ff , π)

is a BV hedgehog.

The strategy employed by the author of [CC25b] to prove the above proposition relies on
factorising the symplectomorphism between FPC and FHPC into Φ = ϕ1 ◦ ϕ2. In particular, the
splitting occurs as follows

ϕ∗
2

(
ϖr
PC +

∫
I×Σ

δṽδṽℲ
)

= ϖr
PC +

∫
I×Σ

δω̂δṽℲ + δṽδṽℲ (2.47)

ϕ∗
1

(
ϖr
PC +

∫
I×Σ

δω̂δṽℲ + δṽδṽℲ
)

= ϖPC , (2.48)

where we remark that

ϖPC = ϖr
PC +

∫
I×Σ

δṽδω̂Ⅎ
n + δω̂δṽℲ + δṽδṽℲ

We will provide the full expression of the above symplectomorphisms in section 5.2 in the case of
supergravity. The current maps are recovered by discarding the terms that depend on the spinor
fields.
Proposition 2.4. [CC25b] The symplectomorphism Φ = ϕ1 ◦ ϕ2 defined above is such that

Φ∗ (
SHPC

)
= SPC , (2.49)

SHPC = SrPC +
∫
I×Σ

1
2 ẽẽn[ṽ, ṽ] + f(ṽℲ) (2.50)

where
f(ṽℲ) :=

(
Lω̃
ξ̃
ṽ + dω̃n ṽξ̃

n + dξ̃nιz ṽ − [c̃, ṽ]
)
ṽℲ (2.51)

Remark 2.18. We notice that, since we have a fiber bundle FH
PC → Fr

PC whose fiber is locally
modelled by Ff := T ∗[−1](Ker(W (1,2)

ẽ0
)) ∋ (ṽ, ṽℲ), and since the subspace

Lf := {(ṽ, ṽℲ) ∈ Ff | ṽℲ = 0} ⊂ Ff

is a Lagrangian submanifold with respect to the canonical symplectic form ϖf =
∫
I×Σ δṽδṽ

Ⅎ, we
can perform the BV pushforward by integrating SHPC along Lf as defined in section 1.5.
Theorem 2.9. [CC25b] The restricted BV PC theory FrPC is the BV pushforward of FHPC ob-
tained by integrating along the Lagrangian submanifold Lf := {(ṽ, ṽℲ) ∈ Ff | ṽℲ = 0} ⊂ Ff
Remark 2.19. In particular, the above theorem holds because, setting every expression containing
ṽℲ to zero, the symplectomorphism Φ of proposition 2.3 is such that

Φ∗
(

SrPC +
∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ]

)
= SPC

∣∣
Lf
,

with
∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ] taking the role of a Gaussian integral16 inside

∫
Lf
e

i
ℏ SP C , decoupling from

the expression and contributing to the partition function just as a multiplying constant.
16Indeed it can be proved [CC25b] that the quadratic form

∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ] is non–degenerate.



Chapter 3

Palatini-Cartan-Dirac gravity on
manifolds with boundary

In the following Chapter we will describe the structure of Platini–Cartan gravity coupled to a
spin 1

2 spinor field via the Dirac Lagrangian, in which the differential has been replaced by the
exterior covariant derivative.

We rely heavily on the objects defined in appendix A and the results therin. In particular,
in the following we assume M to be a 4–dimensional spin manifold, and Pspin → M a Spin(3, 1)
principal bundle on it. Defining spin coframes is equivalent to the usual coframes defined on
PSO = l(Pspin), where l is the bundle morphism given by the double cover Spin(3, 1) → SO(3, 1).
It is however necessary to introduce spin bundles in order to define spinors, which are here seen as
sections of the associated vector bundle to Pspin with respect to a half-integer spin representation.

A spin 1
2 spinor is just a section of the Dirac spinor bundle SD, whose parity has been shifted

to account for the fermionic nature of the fields. Denoting it by ψ,1 we have

ψ ∈ Γ(M,ΠSD).

The other fields of the theory are the vielbein e ∈ Ω(1,1)
n.d. and the spin connection ω ∈ A(M) ≃

Ω(1,2).

3.1 Coupling the Dirac Lagrangian to PC gravity

In the coupling of the spinor field, we apply the principle of covariance and substitute any
derivative with a covariant derivative, which in this case amounts to sending dψ in the free Dirac
Lagrangian to dωψ := dψ + [ω, ψ]. However, we first have to define what the action of a Lie
algebra–valued element α ∈ spin(3, 1) is on Dirac spinors.

Since the Dirac spinor bundle SD : Pspin ×γ C4 is the associated vector bundle to Pspin with
respect to the gamma representation, we just need to compute the image of an element α ∈
spin(3, 1) ≃ ∧2V under γ. We saw in Proposition A.5 that, if {va} is a basis of V , the infinitesimal

1In the next chapter, ψ will denote the gravitino, but there will be no ambiguities since it will only be denoting
Dirac spinors in the current chapter.

41
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action of the double cover l on the generators of the Lie algebra is given by

l̇ : so(3, 1) ≃ ∧2V −→ spin(3, 1)

va ∧ vb 7−→ 1
4 [va, vb],

which under the gamma representation are sent to 1
4 [γa, γb], where now [·, ·] indicates the com-

mutator of gamma matrices. Therefore one has

∧2V ∋ α = 1
2α

abva ∧ vb 7−→ 1
4α

abγab,

where we recall γab := 1
2 [γa, γb].

At this point it is easy to define the covariant derivative of a Dirac spinor field ψ:

dωψ := dψ + [ω, ψ] = dψ − 1
4ω

abγabψ. (3.1)

For the sake of consistency, we briefly check that it transforms well under a gauge transformation
ψ 7→ ψ′ = S(x)ψ, where for each x, S(x) ∈ Spin(N − 1, 1)

dω′ψ′ = dω′(Sψ) = (dω′S)ψ + Sdω′ψ

= (dS)ψ + [ω′, S]ψ + Sdψ + S[ω′, ψ]
= (dS)ψ + ω′(Sψ) − Sω′(ψ) + Sdψ + Sω′(ψ)
= (dS)ψ + Sω(ψ) − (dSψ) + Sdψ = S{dψ + ω(ψ)}
= S{dψ + [ω, ψ]} = Sdωψ = (dωψ)′,

where we used ω′ = SωS−1 − (dS)S−1.
The invariant Dirac Lagrangian is constructed via the Dirac pairing defined in Proposition

A.6, where we had defined ψ̄ := ψ†γ0, and < ψ,ψ >:= ψ̄ψ. We extend the definition of the
covariant derivative to the hermitian conjugate of ψ by requiring that dωψ = dωψ,2 hence
obtaining

dωψ = dψ + [ω, ψ] = dψ − 1
4ω

abψγaγb. (3.2)

The definition of covariant derivative extends also to the gamma matrices, where one must be
particularly careful. In particular, throughout the thesis we will be considering γ := γava, which
has values in V ⊗ C(V ), which means that it transforms as a Lorentz vector and via the action of
the gamma representation on gamma matrices: indeed, for all α ∈ ∧2V , one obtains the following
splitting

[α, γ] = [α, γ]V + [α, γ]S , (3.3)
where [α, γ]V := αabηbcγ

cva is the action on the vector part of γ and [α, γ]S := αab[γ(va ∧
vb), γc]vc = − 1

4α
ab(γabγc − γcγab)vc is the adjoint action of the Lie algebra of Spin(3, 1) in the

gamma representation.

Lemma 3.1. Let γ := γava ∈ V ⊗ C(4) be an element of the vector space V with values in the
Clifford algebra (seen as endomorphisms of the spinor bundle SD). Then

dωγ = 0.
2In other words, the quantity ψ̄ψ should be invariant under gauge transformations, which is consistent with

the fact that ψ̄ψ is a scalar.
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Proof. γ is a section of V and an endomorphism of the spin bundle Eλ. Hence its covariant
derivative reads

(dωγ)b = (dγ)b + ωbcγc − 1
4ω

ac(γaγcγb − γbγaγc).

Note that this formula implies the correct Leibniz rule for dω(γψ). Using the anti-commutation
relation of gamma matrices, we can show that ωbcγc− 1

4ω
acηbd(γaγcγd−γdγaγc) = 0 and conclude

the proof by noticing that γ is constant.

Finally the fully covariant Dirac Lagrangian is given by

SDirac :=
∫
M

i

2 · 3!e
3 (
ψγdωψ − dωψγψ

)
=

∫
M

i

2
(
ψγa∇aψ − ∇aψγ

aψ
)

Volg, (3.4)

with ∇aψ := eµa
(
∂µψ − 1

4ω
ab
µ γaγbψ

)
. The Palatini-Cartan-Dirac action is then

SPCD :=
∫
M

e2

2 Fω + e4

4! Λ + i

2 · 3!e
3 (
ψγdωψ − dωψγψ

)
.

Its variation yields

δS =δωS +
∫
M

[
eFω + i

e2

4
(
ψγdωψ − dωψγψ

)]
δe

+ i

3!δψ
[
e3γdωψ − 1

2dω
(
e3)

γψ

]
+ i

3!

[
e3dωψγ + 1

2dω
(
e3)

ψγ

]
δψ,

(3.5)

together with a boundary term

α̃∂PCD =
∫
∂M

eN−2

(N − 2)!δω + i
eN−1

2(N − 1)!
(
ψγδψ − δψγψ

)
. (3.6)

To compute δωS, first we define the internal contraction on V. In particular, for any X ∈ V and
for all α ∈ ∧kV , we define for all α = 1

k!α
i1···ikvi1 ∧ · · · ∧ vik

jXα := ηab
(k − 1)!X

aαbi2···ikvi2 ∧ · · · ∧ vik . (3.7)

With this definition, we obtain

[α,ψ] = 1
4jγjγαψ, and [α,ψ] = − (−1)|α||ψ|

4 ψjγjγα. (3.8)

We know δωSPCD = δωSPC + δωSDirac, with

δωSDirac =
∫
M

i

2 · 3!e
3 (
ψ̄γ[δω.ψ] − [δω.ψ̄]γψ

)
=

∫
M

i

8 · 3!e
3ψ̄ [γjγjγδω + jγjγδωγ]ψ

=
∫
M

i

8 · 3! ψ̄
[
γjγjγe

3 + jγjγe
3γ

]
ψδω,
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The equations of motion become

eFω + i
e2

4
(
ψγdωψ − dωψγψ

)
= 0, (3.9)

e

[
dωe+ i

4(ψ̄γ[e2, ψ] − [e2, ψ̄]γψ)
]

= 0, (3.10)

e3

3! γdωψ − dω

(
e3

2 · 3!

)
γψ = 0, (3.11)

e3

3! dωψγ + dω

(
e3

2 · 3!

)
ψγ = 0. (3.12)

Remark 3.1. First of all, notice that , once we impose ψ = ψ†γ0, then equations (3.11) and
(3.12) are one the Hermitian conjugate of the other, representing Dirac equation on a curved
background.

Secondly, contrary to the case of pure gravity, the coupling of a spinor field introduces a
torsion term, given by i

4 (ψ̄γ[e2, ψ] − [e2, ψ̄]γψ), hence the connection which solves the equation
of motion is not Levi-Civita.

3.1.1 Non–degenerate case
In this section we study the boundary structure of the PCD theory in the case where the induced
metric g∂ on Σ is non–degenerate. As usual, we employ the KT construction and restrict the
space of fields to the boundary, obtaining F̃PCDΣ = AΣ × Ω(1,1)

∂,n.d. × Γ(Σ,S|Σ) × Γ(Σ,S|Σ).
The presymplectic form on the space of preboundary fields is given as usual by the variation

of the boundary 1-form resulting from the variation of the action. We obtain

ϖ̃PCD
Σ =

∫
Σ
eδeδω + i

e2

4
(
ψγδψ − δψγψ

)
δe+ i

e3

3! δψγδψ, (3.13)

while

ιXϖ̃
PCD
Σ =

∫
Σ
eXeδω +

[
eXω + i

4e
2(ψγXψ − Xψγψ)

]
δe

+ iδψ

(
−e2

4 γψXe + e3

3! γXγ

)
+ i

(
e2

4 ψγXe + e3

3! Xψγ

)
δψ.

The kernel of the presymplectic form is hence given by the following system of equations:

eXe = 0 eXω + i
e2

4

(
ψγXψ + −Xψγψ

)
= 0

− e2

4 γψXe + e3

3! γXψ = 0 e2

4 ψγXe + e3

3! Xψγ = 0.

We can first solve the last two equations, using that γ is invertible and that W ∂,(0,0)
3 is injective.

We then find Xe = Xψ = Xψ = 0 and eXω = 0. The geometric phase space is a bundle over
Ω(1,1)
∂,n.d. with local trivialization FPCDΣ ≃ FPCΣ × Γ(Σ,S|Σ) × Γ(Σ,S|Σ).

To fix the representative of the connection, we generalize theorem 2.1 to the following.

Theorem 3.1. Suppose that g∂ , the metric induced on the boundary, is nondegenerate. Given
any ω̃ ∈ Ω1,2, there is a unique decomposition

ω̃ = ω + v, (3.14)
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with ω and v satisfying

ev = 0 and ϵn

[
dωe+ i

4(ψ̄γ[e2, ψ] − [e2, ψ̄]γψ)
]

∈ ImW
∂,(1,1)
1 . (3.15)

Proof. Let ω̃ ∈ Ω1,2
∂ . From Lemma A.6 we deduce that there exist unique σ ∈ Ω1,1

∂ and v ∈
KerW ∂,(1,2)

1 such that

ϵn

[
dωe+ i

4(ψ̄γ[e2, ψ] − [e2, ψ̄]γψ)
]

= eσ + ϵn[v, e].

We define ω := ω̃ − v. Then ω and v satisfy (3.14) and (3.15).
For uniqueness, suppose that ω̃ = ω1 + v1 = ω2 + v2 with evi = 0 and ϵndωi

e ∈ ImW
∂,(1,1)
1

for i = 1, 2. Hence
ϵndω1e− ϵndω2e = ϵn[v2 − v1, e] ∈ ImW

∂,(1,1)
1 .

Hence from Lemma A.5 and Lemma A.6 (for which we need nondegeneracy of g∂), we deduce
v2 − v1 = 0, since v2 − v1 ∈ KerW

∂,(1,2)
1 .

With the addition of a Dirac spinor, the constraints of the boundary PC become

LPCDc =
∫

Σ
c

(
edωe+ i

(8 · 3!)ψ
(
jγjγe

3γ + γjγjγe
3)
ψ

)
,

PPCDξ =
∫

Σ

1
2 ιξe

2Fω + ιξ(ω − ω0)
(
edωe− i

8 · 3!ψ
(
jγjγe

3γ + γjγjγe
3)
ψ

)
+ i

2 · 3! ιξe
3(ψγdωψ − dωψγψ),

HPCD
λ =

∫
Σ
λϵn

[
eFω + e3

3! Λ + i
e2

4
(
ψγdωψ − dωψγψ

)]
.

Remark 3.2. We can rewrite LPCDc to make the action of the internal symmetry group on the
fields more evident. In particular we obtain

LPCDc =
∫

Σ
cedωe− i

e3

2 · 3!
(
[c, ψ]γψ − ψγ[c, ψ]

)
, (3.16)

while PPCDξ becomes

PPCDξ =
∫

Σ

1
2 ιξe

2Fω + ιξ(ω − ω0)edωe− i

8 · 3! ιξe
3ψ

(
−[ω − ω0, ψγψ + ψγ[ω − ω0, ψ]

)
ψ

+ i

2 · 3! ιξe
3(ψγdωψ − dωψγψ)

=
∫

Σ

1
2 ιξe

2Fω + ιξ(ω − ω0)edωe− i
e3

2 · 3!
(
ψγιξdω0(ψ) − ιξdω0(ψ)γψ

)
=

∫
Σ

1
2 ιξe

2Fω + ιξ(ω − ω0)edωe− i
e3

2 · 3!

(
ψγLω0

ξ (ψ) − Lω0
ξ (ψ)γψ

)
.

(3.17)

Theorem 3.2. The constraints LPCDc , PPCDξ , HPCD
λ define a coisotropic submanifold with

respect to the symplectic structure ϖs. Their Poisson brackets3 read
3We point out that one should not confuse L with L, which respectively indicate the constraint and the Lie

derivative
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{PPCDξ , PPCDξ } = 1
2P[ξ,ξ] − 1

2L
PCD
ιξιξFω0

{HPCD
λ , HPCD

λ } = 0

{LPCDc , PPCDξ } = LPCDLω0
ξ
c {LPCDc , LPCDc } = −1

2L
PCD
[c,c]

{LPCDc , HPCD
λ } = −PPCDX(a) + LPCDX(a)(ω−ω0)a

−HPCD
X(n)

{PPCDξ , HPCD
λ } = PPCDY (a) − LPCDY (a)(ω−ω0)a

+HPCD
Y (n) ,

where X = [c, λϵn], Y = Lω0
ξ (λϵn) and Z(a), Z(n) are the components of Z ∈ {X,Y } with respect

to the frame (ea, ϵn).

Proof. The full proof is found in B.1.1

3.1.2 The BFV PCD structure
Again, the data of theorem 2.2 can be translated into the BFV formalism as explained in Section
1.2.1.

Theorem 3.3. Under Assumption 2.1, let FPCD be the bundle

FPCD
Σ −→ Ω1

nd(Σ,V), (3.18)
with local trivialisation on an open UΣ ⊂ Ω1

nd(Σ,V) × Γ(Σ,SΣ) × Γ(Σ,SΣ)

FPDC
Σ ≃ UΣ × A(Σ) × Γ(Σ,SΣ) × Γ(Σ,SΣ) ⊕T ∗

(
Ω0,2
∂ [1] ⊕ X[1](Σ) ⊕ C∞[1](Σ)

)
=: UΣ × TPCD,

(3.19)
and fields denoted by e ∈ UΣ, ω ∈ A(Σ) in degree zero such that they satisfy the structural
constraint ϵn

[
dωe+ i

4 (ψ̄γ[e2, ψ] − [e2, ψ̄]γψ)
]

∈ ImW
∂,(1,1)
1 and ψ ∈ Γ(Σ,SΣ), ghost fields c ∈

Ω0,2
∂ [1], ξ ∈ X[1](Σ) and λ ∈ Ω0,0[1] in degree one, kℲ ∈ ΩD−1,D−2

∂ [−1], λℲ ∈ ΩD−1,D
∂ [−1] and

ζℲ ∈ Ω1,0
∂ [−1] ⊗ ΩD−1,D

∂ in degree minus one, together with a fixed ϵn ∈ Γ(V), completing the
image of elements e ∈ UΣ to a basis of V; define a symplectic form and an action functional on
FΣ
PC respectively by

ϖΣ
PCD = ϖΣ

PC +
∫

Σ
i
e2

4
(
ψγδψ − δψγψ

)
δe+ i

e3

3! δψγδψ,

SPCDΣ = SPCDΣ +
∫

Σ

i

2 · 3!e
3 (
ψγdωψ − dωψγψ

)
.

Then the triple (FΣ
PCD, ϖ

PC
Σ ,SPCΣ ) defines a BFV structure on Σ.

Proof. We follow the same strategy of [CCS21a], from which we also borrow the notation. The
only bit that we need to prove, is that the new BFV action SPCDΣ still satisfies the classical
master equation

{SPCDΣ ,SPCDΣ } = ιQΣ
P CD

ιQΣ
P CD

ϖΣ
PCD = 0, (3.20)

where QS is the Hamiltonian vector field of SPCDΣ , defined by ιQS
ϖS = δSPCDΣ . In order to do

so, we can exploit the results of [CCS21a] and, noticing that SPCDΣ = SPCΣ ∗ SDirac, by linearity
we get

{SPCDΣ ,SPCDΣ } = {SPCΣ ,SPCΣ } + 2{SPCΣ , SDirac} + {SDirac, SDirac}.
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We have that {SPCΣ ,SPCΣ } = 0 from Theorem 2.3. The remaining part 2{SPCΣ , SDirac} +
{SDirac, SDirac} = 0 is instead a consequence of Theorem 3.2. Indeed, the explicit computation
of the second bracket follows verbatim the computation of the brackets between the constraints
in the proof of the aforementioned theorem by just considering only the terms containing ψ.
Nonetheless, the first bracket produces in a trivial way exactly the results of these brackets,
since SDirac does not depend on the ghost momenta.

3.1.3 Degenerate case
In this section, we study the case where the boundary is null–like, i.e. the induced metric g∂
on Σ is degenerate. The same consideration as in the free gravity case hold, with the caveat of
the introduction of a torsion term in the structural constraint. This also affects the degeneracy
constraint. Explicitly, the structural and the degeneracy constraints take the formϵn(αψ − pT αψ) ∈ ImW

Σ,(1,1)
1

pT αψ = 0.
(3.21)

with

αψ := dωe+ i

4(ψγ[e2, ψ] − [e2, ψ]γψ). (3.22)

We also recall the definition of subspaces

T := KerWΣ(2,1)
1 ∩ J ⊂ Ω2,1

∂ (3.23)

S := KerWΣ,(1,3)
1 ∩ Kerϱ̃(1,3) ⊂ Ω1,3

Σ (3.24)

K := KerWΣ,(1,2)
1 ∩ Kerϱ(1,2) ⊂ Ω1,2

∂ . (3.25)

3.1.4 Some non–recurring technical results
Before we continue, we introduce some useful lemmata containing important identities and re-
sults.
Proposition 3.1. Let τ ∈ S. Then, τ = ϵnβ with β ∈ Ω1,2

Σ [1] such that ϵnβ ∈ Kerϱ̃1,3 and ϵn
defined as above.

Proof. From 2.2, in particular, we have that

pT α = 0 =⇒
∫

Σ
τα = 0 ∀τ ∈ S, (3.26)

for α ∈ Ω2,1
Σ . Now, consider an α ∈ Ω2,1

Σ such that pT α = 0 holds together with the structural
constraint ϵn(α− pT α) = eσ (notice that this subset of Ω2,1

Σ is in general non-trivial because we
do not require the condition α ∈ KerWΣ,(2,1)

1 as in 2.1), then it follows that∫
Σ
τα =

∫
Σ
ecα+ ϵnβα =

∫
Σ
ecpT Cα+ βeσ =

∫
Σ
ecpT Cα, (3.27)

where pT C is the projection onto a complement of T . Since the right hand side of (3.26) must hold
for all τ ∈ S, if the intersection S∩ImWΣ,(0,2)

1 were not trivial, we would have an absurdum. This
implies c ∈ KerWΣ,(0,2)

1 for all τ ∈ S, which, thanks to the injectivity of WΣ,(0,2)
1 , is equivalent

to c = 0.
Lastly, the fact that ϵnβ ∈ Kerϱ̃1,3 follows immediately from the definition of S.
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Lemma 3.2. Given A ∈ Ωk,iΣ and B ∈ Ωl,jΣ with i, j = 2, 3 such that i+ j < 6, then we have

B(ψγ[A,ψ] − [A,ψ]γψ) = (−1)|A||B|A(ψγ[B,ψ] − [B,ψ]γψ). (3.28)

Proof. The proof goes by direct computation of

BγιγιγA = Bγγaγb[va, [vb, A]]

= (−1)|B|([va, B]γ + (−1)|B|Bγa)γaγb[vb, A]

= (−1)|B|([va, B]γγa − 4(−1)|B|B)γb[vb, A]

= −
(
[vb, [va, A]]γγaγb − (−1)|B|([va, B]γbγaγb + 4[γ,B])

)
A

= −(−(−1)|B|γιγιγB − 6(−1)|B|ιγB)A

= (−1)|B|(−1)|A|(|B|+1)A(γιγιγB + 6ιγB)

and

BιγιγAγ = (−1)|A||B|γaγb[va, [vb, A]]Bγ

= (−1)|A||B|(−1)|Aγaγb[vb, A]([va, B]γ + (−1)|B|γaB)

= −(−1)|A||B|Aγaγb
(
[vb, [va, B]]γ − (−1)|B|([va, B]γb − γa[vb, B])

)
= −(−1)|A||B|A

(
− ιγιγBγ + (−1)|B|(4[γ,B] + γaγbγa[vb, B])

)
= (−1)|A||B|A(ιγιγBγ − (−1)|B|6ιγB).

Then, we can conclude the proof by considering the four possible parities of A and B.

Proposition 3.2. Let τ ∈ S and e be a diagonal degenerate boundary vielbein, i.e. e∗η = i∗g̃
with η = diag(1, 1, 1 − 1) and i∗g̃ = diag(1, 1, 0). Then, we have

ϵn[τ, e] = 0. (3.29)

Proof. Given a = 1, 2, 3, 4 and let µ = 1, 2,+ be the coordinates on the boundary Σ such that
we can write the diagonal degenerate boundary vielbein e as

êa =
{
ea1 = δa1
ea2 = δa2

ea+ = δa3 − δa4

ϵan = δa3 + δa4 .

Then, the definition of τ ∈ S implies the following relations

τabc+ = 0 ∀a, b, c

τ123
µ = 0 µ = 1, 2

τ124
µ = 0 µ = 1, 2

τ234
1 = τ134

2

τ134
1 = −τ234

2 .
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The proof follows simply by computing ϵn[τ, e] in components implementing the explicit form of
the diagonal vielbein above4.

Lemma 3.3. Let5 A ∈ Ωk,iΣ with 2 ≤ i ≤ 4. Then, it holds

γιγιγA = (−1)|A|(ιγιγAγ + 4(i− 1)[γ,A]). (3.30)

Proof.

γιγιγA = (i− 2)!γaγbγcvaιvb
ιvc
A

= −(i− 2)!(γbγaγc + 2ηabγc)vaιvb
ιvc
A

= −(i− 2)!(−γbγcγa + 4ηabγc)vaιvb
ιvc
A

= (−1)|A|(ιγιγAγ + 4(i− 1)[γ,A]).

Remark 3.3. This lemma introduces a relation between the action of the brackets over the Clifford
algebra and V-algebra. In particular, it is consistent a triviality condition on the bracket in the
Clifford algebra, i.e.

[A,ψγψ] = (−1)|A|ψ[A, γ]Vψ = ψγ[A,ψ]Cl + [ψ,A]Clγψ,

where we occasionally added some redundancy with the labels of the specific algebras, even if
we will not use them in general.

3.1.5 The second class constraints
Now, perhaps unsurprisingly, we prove that the constraints form a second class set, under the
assumption of degenerate boundary. We first notice that we can get rid of some extra term
thanks to the following Proposition.

Proposition 3.3. Let τ ∈ S. Then, we have the following identity

τ(ψγ[e2, ψ] − [e2, ψ]γψ) = 0. (3.31)

Proof. The proof comes by applying twice 3.2. Therefore, by means of 3.1, we have

τ(ψγ[e2, ψ] − [e2, ψ]γψ) = ϵnβ(ψγ[e2, ψ] − [e2, ψ]γψ)

= ϵne
2(ψγ[β, ψ] − [β, ψ]γψ)

= eβ(ψγ[ϵne, ψ] − [ϵne, ψ]γψ)

= 0,

since β ∈ KerWΣ,(1,2)
1 .

4We refer to [CCT21] for further details about this kind of computations.
5Notice that this may be also a shifted variable, like τ for example.
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With τ ∈ S[1], the constraints are given by

LPCDc =
∫

Σ
cedωe− i

e3

2 · 3!
(
[c, ψ]γψ − ψγ[c, ψ]

)
(3.32)

PPCDξ =
∫

Σ

1
2 ιξ(e

2)Fω + ιξ(ω − ω0)edωe− i
e3

2 · 3!

(
ψγLω0

ξ (ψ) − Lω0
ξ (ψ)γψ

)
(3.33)

HPCD
λ =

∫
Σ
λϵn

(
eFω + Λ

3!e
3 + i

e2

4
(
ψγdωψ − dωψγψ

) )
(3.34)

RPCDτ =
∫

Σ
τdωe. (3.35)

Theorem 3.4. Let i∗g be degenerate. Then, the Poisson brackets of the constraints read

{LPCDc , LPCDc } = −1
2L[c,c] {PPCDξ , PPCDξ } = 1

2P
PCD
[ξ,ξ] − 1

2LιξιξFω0

{LPCDc , PPCDξ } = LPCDLω0
ξ
c {HPCD

λ , HPCD
λ } ≈ 0

{LPCDc , RPCDτ } = −RPCDpS [c,τ ] {RPCDτ , PPCDξ } = RPCDpSLω0
ξ
τ

{RPCDτ , HPCD
λ } ≈ Gλτ +KPCD

λτ {RPCDτ , RPCDτ } ≈ Fττ

{LPCDc , HPCD
λ } = −PPCDX(a) + LPCDX(a)(ω−ω0)a

−HPCD
X(n)

{PPCDξ , HPCD
λ } = PPCDY (a) − LPCDY (a)(ω−ω0)a

+HPCD
Y (n) ,

with X = [c, λϵn], Y = Lω0
ξ (λϵn) and where the superscripts (a) and (n) describe their components

with respect to ea, ϵn. Furthermore, Fττ , Gλτ and KPCD
λτ are functionals of e, ω, ψ, ψ, τ and λ

defined in the proof which are not proportional to any other constraint.

Proof. The proof is found in B.1.2

3.2 The BV PCD theory
We are now interested in investigating the BV structure of the Palatini-Cartan-Dirac theory in
the bulk. As in Chapter 2.4 we look at the Hamiltonian vector fields of the constraints and their
Poisson brackets, as they provide insights in the definition of the cohomological vector field of
the BV theory, and subsequently of the BV PCD action.

We start by defining the space of fields as usual, i.e.

FM
PCD := T ∗[−1](FPCD ×Fghosts) = T ∗[−1](Ω(1,1)

n.d. ×A(M)×Ω0(M,ΠSD)×Ω(0,2)[1]×X[1](M)).

Remark 3.4. To make computations slightly easier, we will omit considering the Dirac conjugate
field ψ̄ as an independent field, and we will fix it as ψ̄ = ψ†γ0.

We therefore obtain antifields eℲ ∈ Ω(3,3)[−1], ωℲ ∈ Ω(3,2)[−1], ψℲ ∈ Ω(4,4)[−1](ΠSD), cℲ ∈
Ω(4, 2)[−2] and ξℲ ∈ Ω(1,0)[−2] ⊗ Ω(4,4). The BV PCD symplectic form is the canonical one,

ϖM
PCD = ϖM

PC +
∫
M

i

2(δψ̄Ⅎδψ + δψ̄δψℲ).

Theorem 3.5. The BV PCD is given by the data (FM
PCD,SMPCD, ϖM

PCD, Q
M
PCD), with

SMPCD = SMPC +
∫
M

i

2 · 3!e
3 (
ψ̄γdωψ − dωψ̄γψ

)
+ i

2 ψ̄
Ⅎ(Lωξ (ψ) − [c, ψ]) − i

2(Lωξ (ψ̄) − [c, ψ̄])ψℲ.
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Proof. A very quick computation gives, for the Hamiltonian vector field of SMPCD,

QPCDe = QPCe QPCDω = QPCω

QPCDψ = Lωξ (ψ) + [c, ψ] QPCDψ̄ = Lωξ (ψ̄) + [c, ψ̄]
QPCDc = QPCc QPCDξ = QPCξ

QPCDe
Ⅎ = QPCe+ i

4e
2 (
ψ̄γdωψ − dωψ̄γψ

)
QPCDω

Ⅎ = QPCω
Ⅎ + i

4e(ψ̄γ[e2, ψ] − [e2, ψ̄]γψ) − i

2
(
[ιξψ̄Ⅎ, ψ] − [ψ̄, ιξψℲ]

)
QPCDψ

Ⅎ = i

3!e
3γdωψ − i

4e
2dωeγψ + Lωξ (ψℲ) − [c, ψℲ]

QPCDψ̄
Ⅎ = i

3!e
3dωψ̄γ + i

4e
2dωeψ̄γ + Lωξ (ψ̄Ⅎ) − [c, ψ̄Ⅎ]

QPCDc
Ⅎ = QPCc

Ⅎ + i

2
(
[ψ̄Ⅎ, ψ] − [ψ̄, ψℲ]

)
QPCDξ

Ⅎ
• = QPCξ

Ⅎ
• − i

2
(
ψ̄(dωψ)• − (dωψ̄)•ψ

Ⅎ)
.

At this point it is enough to check Q2
PCD = 0 on the fields and ghosts, disregarding the antifields.

This will ensure the CME is satisfied. Setting QPCD = QPC + QD, we first see Q2
PCD =

Q2
PC + [QPC , QD] + Q2

D. We notice that on e, ω, ξ and c one has QPCD = QPC , and since
Q2
PC = 0, we only need to check Q2

PCDψ = 0.

Q2
PCDψ =QPCD(Lωξ (ψ) + [c, ψ]) = 0,

following directly from theorem 21 in [CS19b].

Remark 3.5. Recall PC theory is not BV BFV extendible, the PCD theory exhibits the same
behaviour, as the introduction of the spinor fields does not cure the singularity of the pre-
symplectic form induced on the boundary.

3.3 The AKSZ PCD theory
Once again, we consider the cylindrical manifold M = I×Σ and apply the construction of section
1.4.1 to the BFV theory of theorem 3.3. As in section 2.5.1, we promote the fields in FΣ

PCD to
fields in FAKSZ

PCD by considering

e = e+ fℲ w = ω + uℲ

p = ψ + θℲ p̄ = ψ̄ + θ̄Ⅎ (3.36)
c = c+ w z = ξ + z

l = λ+ µ cℲ = kℲ + cℲ

yℲ = eℲ + yℲ

where we used the same letters for the boundary fields which are now promoted to fields in
Ω•(I) ⊗ FΣ

PC . In particular, if ϕ ∈ FΣ
PC , the corresponding AKSZ field becomes

P = ϕ+ φℲ, where ϕ ∈ C∞(I) ⊗ FΣ
PC , and φℲ ∈ Ω1[−1](I) ⊗ FΣ

PC .

Then, applying theorem 1.2, we obtain
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Theorem 3.6. The AKSZ data FAKSZPCD on M = I × Σ are given by

FAKSZ
PCD = T ∗[−1](Map(I,FΣ

PCD),

ϖAKSZ
PCD = ϖAKSZ

PCD +
∫
I×Σ

i

4e
2(p̄γδp − δp̄γp)δp + i

3!e
3δp̄γδp,

SAKSZPCD = SAKSZPC +
∫
I×Σ

i

2 · 3!e
3p̄γ(dIp + Lw

z p − [c, p]) + i

4ϵnle
2p̄γdwp + c.c.,

where it is understood that only the terms containing fields in Ω1[−1](I) should be selected in the
above expressions, to obtain a top form on I × Σ.

We unravel the above expressions, to find

ϖAKSZ
PCD = ϖAKSZ

PCD +
∫
I×Σ

i

2ef
Ⅎ(ψ̄γδψ)δe+ i

4e
2(ψ̄γδψ)δfℲ + i

4e
2(θ̄Ⅎγδψ

+ ψ̄γδθℲ)δe+ i

2e
2fℲδψ̄γδψ + i

3!e
3 (
δθ̄Ⅎγδψ

)
+ c.c., (3.37)

and

SAKSZPCD = SAKSZPC +
∫
I×Σ

i

4e
2fℲψ̄γ(Lωξ ψ − [c, ψ]) + i

2 · 3!e
3θ̄Ⅎγ(Lωξ ψ − [c, ψ])

+ i

2 · 3!e
3ψ̄γ(Lωz ψ + [ιξuℲ, ψ] + Lωξ θℲ − [w,ψ] − [c, θℲ])

+ i

4µϵne
2ψ̄γdωψ + i

2λϵnef
Ⅎψ̄γdωψ + i

2 · 3!e
3ψ̄γ∂nψ

+ i

4λϵne
2(θ̄Ⅎγdωψ + ψ̄γ[uℲ, ψ] + ψ̄γdωθ

Ⅎ) + c.c. (3.38)

Now we want to compare the AKSZ PCD theory with the BV PCD theory in the bulk. To do
so, we proceed as in section 2.5.1 and find a map Φ : FAKSZ

PCD → FPCD such that Φ∗(ϖM
PCD) =

ϖAKSZ
PCD and such that the image of FAKSZ

PC under Φ coincides with the restricted space of BV
fields Fr

PCD, defined in the following.

Definition 3.1. The restricted space of BV PCD fields is given by the subspace of FPCD
satisfying the following structural constraints

WℲ := ω̃Ⅎ
n − ιzω̃

Ⅎ − ιξ̃ c̃
Ⅎ
n + ιz c̃

Ⅎ
nξ̃
n ∈ Im(W (1,1)

ẽ ) (3.39)

ϵn

(
dω̃ ẽ+ i

4(ψ̄γ[e2, ψ] − [e2, ψ̄]γψ)
)

− ϵnW
−1
ẽ (W)dξ̃n + ιX̂(ω̃Ⅎ

n − c̃Ⅎnξ̃
n) ∈ Im(W (1,1)

ẽ ), (3.40)

where W (i,j)
ẽk : Ω(i,j) → Ω(i+k,j+k) : α 7→ ẽk ∧ α shares the same properties of W ∂,(i,j)

k and

X̃ = Lω̃
ξ̃

(ϵn) − dω̃n
(ϵn)ξ̃n − [c̃, ϵn]; X̂ = ẽiaX̃

a∂i (3.41)

• ϖr
PCD := ϖM

PCD(I × Σ)|Fr
P CD

;

• SrPCD := SPCD|Fr
P CD

;

• QrPCD = QPCD.
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In the following, we indicate any bulk field ϕ with the bold character ϕ. Furthermore, letting
ϕ ∈ Ωk(I × Σ), we set

ϕ = ϕ̃+ ϕ̃n, with ϕ̃ ∈ Ωk(Σ) ⊗ C∞(I), ϕ̃n ∈ Ωk−1(Σ) ⊗ Ω1(I),

assuming xn to be the coordinate along I, then ϕ̃n = ϕ̃ndx
n, with ϕ̃n ∈ C∞(I) ⊗ Ωk−1(Σ). In

the same way a vector field ζ ∈ X(I × Σ) is going to be split as

ζ = ζ̃ + ζ̃
n
, with ζ̃ ∈ X(Σ) ⊗ C∞(I), ζ̃

n
∈ C∞(Σ) ⊗ X(I),

with ζ̃
n

= ζ̃n∂n. Furthermore, we fix ϵn ∈ Γ(M,V) such that δϵn = ∂nϵn = 0 and such that
{ẽi, ϵn} form a basis of V.
Remark 3.6. In principle one would need to show that the restricted BV PCD theory FrPCD
is a genuine BV theory, which is achieved by checking the CME. However, we will obtain it
automatically as a corollary of the next theorem.

Theorem 3.7. There exists a symplectomorphism ϖ : (FAKSZ
PCD , ϖAKSZ

PCD ) → (Fr
PCD, ϖ

r
PCD) such

that φ∗(SrPCD) = SAKSZPCD . This data, together with the naive BV embedding ιr : FrPCD ↪→ FPCD
gives a BV embedding Φ := ιr ◦ φ.

Proof. The full proof is found in B.1.3
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Chapter 4

The Reduced Phase Space of
N = 1, D = 4 Supergravity

Supergravity is defined as the supersymmetry theory containing gravity, in which the SUSY is
realised locally (the spinor parameter χ is a function of the spacetime coordinates χ(x). We
investigate here the N = 1 case, namely the case in which only one supersymmetry generator
is introduced, in 4 dimensions, as it is the starting point for further generalizations. We start
with pure gravity, and subsequently couple it with a Majorana-type spinor, which will act as the
gravitino, the superpartner of the graviton.

Let M be a spin manifold and let PSpin be a principal Spin(3, 1) bundle over M . We introduce
a 4-dimensional real vector space V with a Lorentz-type metric η of signature (−,+,+,+).
Without loss of generality we can assume that η =diag(−1, 1, 1, 1) is the Minkowski metric and
define the associated bundle (called ’Minkowski bundle’) V := PSpin ×Λ V , where Λ is the spin 1
representation of Spin(3, 1).
Remark 4.1. Notice that the double cover l : Spin(3, 1) → SO(3, 1) induces a bundle morphism to
a SO(3, 1) bundle l̂ : PSpin → PSO, hence V ≃ PSO ×Λ0 V , where Λ0 is the vector representation
of SO(3, 1), such that Λ = Λ0 ◦ l. Furthermore, one can identify elements of the Lie algebra
of Spin(3, 1) with the second wedge power of V , as it defines 4 × 4 antisymmetric matrices:
spin(3, 1) = so(3, 1) ≃ ∧2V .

The last ingredient we need in our setting is what is commonly known as Dirac spinor bun-
dle, namely the following associated vector bundle SD := Pspin ×γ C4, where γ is the gamma
representation of the Clifford algebra C(V ) restricted to its spin subgroup Spin(V ) ≃Spin(3, 1).1

The independent fields of the theory are:
• The coframe e (also known as vielbein or tetrad in D = 4) defined as an isomorphism
e : TM → V, inducing a metric on spacetime as g := e∗(η), i.e. such that gµν = eaµe

b
νηab,

where µ = 1, 2, 3, 4 are curved indices on M while a = 0, 1, 2, 3 are flat indices on V .2 The
coframe has the advantage of being expressed as a differential form, indeed e = eaµdx

µva ∈
Ω1(M,V), where x are coordinates on M and {va} is a basis of V .

• The spin connection ω. The space of connections is denoted by AM , and is locally modeled
by 1-forms on M with values in the Lie algebra so(3, 1) = spin(3, 1), in our notation
ω = ωµdx

µva ∧ vb ∈ Ω1(M,∧2V).
1For more details about the notations and the convention see [Fil25]
2Note that e enjoys an internal Lorentz symmetry (acting on the flat indices) on top of the usual diffeomor-

phisms.

55
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• The gravitino ψ, a spin- 3
2 Majorana spinor, i.e. a 1-form on M with values in the subbundle

of Majorana spinors SM := {χ ∈ SD | χ̄ := χ†γ0 = χtC}, where C is the charge conjugation
matrix. Furthermore, as we are dealing with a fermion, we need to reverse the parity3 of
SM , obtaining ψ = ψµdx

µ ∈ Ω1(M,ΠSM ).

The theory is described by the following action functional4

SSG =
∫
M

e2

2 Fω + 1
3!eψ̄γ

3dωψ, (4.1)

where Fω = dω+ 1
2 [ω, ω] is the curvature of the connection, γ is an element of V ⊗ C(V ) defined

by γ = γava,5 and {va} is a basis of V . Lastly, we define dωψ := dψ − 1
4ω

abγabψ,6 having set
γab = γ[aγb] = 1

2 [γa, γb].
Remark 4.2. In general, when dealing with gamma matrices, we will omit the wedge symbol in
products of gamma matrices, so that γk := γ ∧ · · · ∧ γ = γa1···akva1 ∧ · · · ∧ vak

will automati-
cally select the anti-symmetrized product of k gamma matrices. The same hold for the wedge
multiplication of k coframes.
Remark 4.3. The bracket [·, ·] is defined to encode any (possibly graded7) Lie algebra action.8
In the general case, if a field ϕ transforms in a representation ρ of the Spin group, then we have
[ω, ϕ] := ρ(ω)(ϕ). In the case of the gravitino field, transforming in the gamma representation,
we obtain

[ω, ψ] = γ(ωabva ∧ vb)(ψ) = ωabγ(va ∧ vb)(ψ) = −1
4ω

abγabψ,

where γ(va ∧ vb) = − 1
4γab is the image under the gamma representation of the generators of the

Lie algebra spin(3, 1)9.
The variation of the N = 1, D = 4 supergravity action produces a boundary term and a bulk

term containing the Euler-Lagrange equations

δSSG =
∫
M

(
eFω + 1

3! ψ̄γ
3dωψ

)
δe+ e

(
dωe− 1

2 ψ̄γψ
)
δω + 1

3

(
1
2dωeψ̄γ

3 + edωψ̄γ
3
)
δψ

−
∫
∂M

e2

2 δω + 1
3!eψ̄γ

3δψ,

having used the fact that10

− 1
3!eψ̄γ

3[δω, ψ] = −1
2eψ̄γψδω. (4.2)

3The parity reversed Majorana spinor bundle is defined as ΠSM and simply given by SM with the requirement
that the components of each spinor are Grassmann-odd.

4We omit the symbol ∧ when multiplying differential forms and sections of the exterior algebra of V , but the
wedge product is assumed in both. Parity in the algebra is defined as the sum of the fermionic parity, the form
degree modulo 2, the degree in ΛV modulo 2, and the ghost number (to be introduced below) modulo 2.

5Notice in our notation we have the following relations
{γa, γb} = −2ηab {γµ, γν} = −2gµν ,

having set γµ = eaµγa.
6Alternatively, one can define for all α ∈ ∧2V , [α,ψ] := 1

4γ
abιva ιvbαψ = − 1

4γ
abαabψ, having set ιvavc := ηac.

7In our convention, the parity of an element α ∈ Ωi(M,∧jV ) is defined to be |α| = i+ j mod 2. In the same
way, a pure Majorana spinor has parity 1, so that in the case of the gravitino, |ψ| = 1 + 1 mod 2 = 0.

8The bracket [·, ·] on ∧•V (encoding the action of the Lorentz group) can also be induced from the pairing in
V , indeed if for any A,B ∈ V we define [A,B] := −(−1)|B|η(A,B) = −(−1)|B|AaBbηab, then one can extend
the action bi-linearly to ∧kV requiring that the graded Leibniz rule holds. Furthermore, notice that the bracket
defined above is graded, i.e. [A,B] = −(−1)|A||B|[B,A], where | · | denotes the parity.

9One can show − 1
4γab are generators of spin(3, 1)

10This identity is quickly obtained by applying formula (A.50).



57

We then obtain the following equations of motion:

eFω + 1
3! ψ̄γ

3dωψ = 0, (4.3)

e

(
dωe− 1

2 ψ̄γψ
)

= 0, (4.4)

edωψ̄γ
3 + 1

2dωeψ̄γ
3 = 0. (4.5)

Remark 4.4. In the bulk, eq. (4.4) is equivalent to dωe − 1
2 ψ̄γψ = 011, implying that the

background connection has torsion, while eq. 4.5 is equivalent to its complex conjugate, and can
be re-interpreted (after imposing (4.4)) as the Rarita-Schwinger equation for a massless Majorana
spinor in a curved background

eγ3dωψ − 1
4(ψ̄γψ)γ3ψ = eγ3dωψ = 0.

On-shell vs off-shell supersymmetry invariance

So far we have been considering the connection as a dynamical field, in what is called the Palatini-
Cartan formalism, also known as the first-order formulation of (super)gravity, referring to the
fact that only first order derivatives appear in the Lagrangian. If we impose (4.4) in the absence
of the gravitino, we obtain the torsionless condition, which, coupled with the metricity condition,
gives the Levi-Civita connection as the pullback of ω by e. Applying the torsionless condition,
one obtains the Einstein–Hilbert Lagrangian, which describes the second order formulation of
gravity.

In the case of supergravity, (4.4) implies the non-vanishing of torsion, which will be quadrat-
ically dependent on the Majorana field ψ. Historically, the formulation of supergravity has been
performed in the second–order formalism (the so called ’half-shell’ case), i.e. after imposing the
kinematical constraint (4.4).

In this setting, introducing a spinorial gauge parameter χ = χ(x), defined to be an even12

section of the Majorana spinor bundle, the infinitesimal supersymmetry transformations on the
fields read

δχe = −χ̄γψ, δχψ = dωχ,

with no need of specifying the variation of ω as it is constrained and can be obtained as a function
of ψ and e from (4.4). It is indeed very quick to check the invariance of the action under these
transformations

δχSSG =
∫

Σ
−ieχ̄γψFω + 1

3!(−iχ̄γψ)(ψ̄γ3dωψ) + 1
3!e(dωχ̄γ

3dωψ + ψ̄γ3[Fω, χ])

=
∫

Σ
−ieχ̄γψFω + 1

3(eψ̄γ3[Fω, χ] − [Fω, ψ̄]γ3χ]) − 1
3!

(
dωe− 1

2 ψ̄γψ
)
χ̄γ3dωψ = 0,

having used the constraint (4.4), identity (A.50), integration by parts, the Bianchi identity
dωdω(·) = [Fω, ·] and the Fierz identity (A.62) together with the flip relation (A.54) to
show ψ̄γ3dωψχ̄γψ = dωψ̄γ

3ψχ̄γψ = −dωψ̄γ3χψ̄γψ − dωψ̄γ
3ψχ̄γψ, implying ψ̄γ3dωψχ̄γψ =

− 1
2 ψ̄γψχ̄γ

3dωψ.

11That is because e ∧ · is an injective map when acting on Ω2(M,V), and it is in fact an isomorphism.
12The reason we consider an unphysical Grassmann even fermion will be clear in the following section, as it will

represent the ghost field associated to the gravitino
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If instead one keeps ω unconstrained, it is necessary to introduce the corresponding local
SUSY transformation, which can be either derived by the requirement that the action remains
invariant under the local supersymmetry (postulating the same transformations for e and ψ), or
by the analysis of the symplectic structure of the fields on the boundary Σ = ∂M . We use here
the first method, discarding the vanishing terms from the previous computations

δχSSG =
∫
M

−e2

2 dω(δχω) − 1
3!eψ̄γ

3[δχω, ψ] − 1
3!

(
dωe− 1

2 ψ̄γψ
)
χ̄γ3dωψ

=
∫
M

(
dωe− 1

2 ψ̄γψ
) (

eδχω − 1
3! χ̄γ

3dωψ

)
,

from which we obtain

δχe = −χ̄γψ, (4.6)

eδχω = 1
3! χ̄γ

3dωψ, (4.7)

δχψ = dωχ (4.8)

Notice that we have given only eδχω and not the explicit expression of δχω because it is not
strictly necessary, since we are sure that eδχω uniquely determines the expression for δχω. Indeed
it suffices to notice that W (1,2)

e := e∧ · : Ω1(M,∧2V) → Ω2(M,∧3V) provides an isomorphism,13

hence δχω is uniquely defined by the above equation.
In the following, it is convenient to recall the following notation, setting Σ := ∂M ,

Ω(k,l) := Ωk(M,∧lV) Ω(k,l)
∂ := Ωk(Σ,∧lV),

furthermore, we define the coframes e as those elements in Ω1,1 non-degenerate, hence e ∈ Ω(1,1)
n.d. .

4.1 Constraint analysis of N = 1, D = 4 SUGRA
We briefly recall the form of the action of N = 1, D = 4 Supergravity:

SSG =
∫
M

e2

2 Fω + 1
3!eψ̄γ

3dωψ. (4.9)

The boundary term in the variation of the action depends only on the value of the fields at
the boundary. In particular, we consider only those tetrads defining non-degenerate metrics on
the boundary.14

We have

δSSG =
∫
M

ELM −
∫

Σ

e2

2 δω + 1
3!eψ̄γ

3δψ,

hence obtaining

ϖ̃∂
SG =

∫
Σ
eδeδω + 1

3! ψ̄γ
3δψδe+ 1

3!eδψ̄γ
3δψ. (4.10)

13A proof of this statement is found in [Can24]
14Specifically, we require g∂ij := (ei, ej) to be non denegenerate on Σ, i.e. either time–like or space–like.
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First reduction and structural constraint

Many of the following tools have been discusses in the previous chapters, notably in 1 and in 2.
As it turns out, ϖ̃∂

SG is closed but not non–degenerate, its kernel is given by Ker(ϖ̃∂
SG) =

{
∫

Σ Xω δ
δω ∈ X(F̃Σ) | eXω = 0, Xω ∈ Ω(1,2)

∂ }.15 In other words, any vector field acting on the
boundary connections as ω 7→ ω + v, such that ev = 0, is in the kernel of the pre–symplectic
form. We then define the geometric phase space as the quotient of the space of preboundary
fields with respect to the action of the vector fields in Ker(ϖ̃∂

SG) (i.e. consider the charachteristic
foliation of this distribution), obtaining

F ∂SG :=
(
Ω1
n.d.(Σ,V) × A(Σ) × Ω1(Σ,SM )

)
/ ker(ϖ̃∂

SG) = Ω1
n.d.(Σ,V) × AΣ,red × Ω1(Σ,SM ),

where AΣ,red := AΣ/{ω ∼ ω + v, ev = 0}.
At this point, the constraints are simply obtained by restricting the equations of motion (4.3),

(4.4) and (4.5) to the boundary, defining functions on F̃Σ. However as pointed out in [CCS21a],
the constraints are generally not invariant under the distribution defined by ker(ϖ̃∂

SG)16, hence
they cannot be naively extended to functions on FΣ. In order to do so, we cleverly fix a repre-
sentative of [ω] ∈ AΣ,red (i.e. choose a v-section), such that it imposes the non-invariant part of
the constraint.
Remark 4.5. Notice that, in the bulk, the torsion equation dωe − 1

2 ψ̄γψ = 0 is equivalent to
e

(
dωe− 1

2 ψ̄γψ
)

= 0, but it is not the case when e is the vielbein restricted to the bound-
ary, as W ∂(2,1)

1 is not an isomorphism and in particular not injective. Indeed one finds that
e

(
dωe− 1

2 ψ̄γψ
)

has 6 local components, and is invariant under the action of ker(ϖ̃∂
SG), while

the remaining part of dωe − 1
2 ψ̄γψ has another 6 local components, which will be used to fix

v ∈ ker(W ∂(1,2)
e ).

Definition 4.1. In the following, we will denote by ϵn a nowhere vanishing section in Γ(Σ,V)
such that, if we let e = eidx

i, with i = 1, 2, 3, {e1, e2, e3, ϵn} is a local basis of V.

Remark 4.6. Notice that, in a neighborhood U ⊂ Ω1,1
∂,n.d. of a given tetrad e, we can choose ϵn

independently of the e’s (implying that δfieldsϵn = 0). In particular, we choose ϵn such that its
Lie derivative with respect to the vector field normal to the boundary vanishes.

Theorem 4.1. Assume the metric g∂ induced by the boundary vielbein e is non-degenerate.
Then for any ω̃ ∈ Ω(1,2)

∂ there exists a unique decomposition ω̃ = ω + v such that

ev = 0 and ϵn

(
dωe− 1

2 ψ̄γψ
)

= eσ, (4.11)

15To be precise, any tangent vector field X =
∫

Σ Xe δδe + Xω δ
δω

+ Xψ
δ
δψ

is in the kernel of ϖ̃1,4
SG iff eXe = 0,

eγ3Xψ = 0 and eXω = 0, but the first two conditions imply Xe = 0 and Xψ = 0.
16One can check that, for any v ∈ Ω(1,2)

∂
such that ev = 0, equations (4.3) and (4.5) are invariant under

ω 7→ ω + v, after applying (4.4), hence they will only depend on [ω] ∈ AΣ,red. In particular, one sees

δv

(
eFω+v + 1

3!
ψ̄γ3dω+vψ

)
= −edωv −

1
2
eψ̄γψv = −dω(ev) + e

(
dωe−

1
2
ψ̄γψ

)
v ≈ 0,

where the symbol ≈ is used to indicate an equality modulo equations of motion, i.e. an equality holding on–shell.
We also see

δv

(
eγ3dωψ −

1
2
dωeγ

3ψ

)
= −eγ3[v, ψ] −

1
2

[v, e]γ3ψ
(A.50)

= −3evγψ −
1
2
e[v, γ3]V ψ −

1
2
v[e, γ3]ψ = 0,

having used ev = 0 and e[v, γ3]V = [ev, γ3] − v[e, γ3].
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for some σ ∈ Ω(1,1)
∂ . Furthermore, the constraint dωe− 1

2 ψ̄γψ = 0 splits as

dωe− 1
2 ψ̄γψ = 0 ⇔

{
e

(
dωe− 1

2 ψ̄γψ
)

= 0
ϵn

(
dωe− 1

2 ψ̄γψ
)

∈ Im(W ∂(1,1)
1 )

(4.12)

We call ϵn
(
dωe− 1

2 ψ̄γψ
)

= eσ structural constraint and e
(
dωe− 1

2 ψ̄γψ
)

= 0 invariant con-
straint.

Proof. We start by noticing that the splitting of the torsion constraints into structural and
invariant part is a simple consequence of lemma A.5. Now, from lemma A.6, we know that there
exist σ ∈ Ω(1,1)

∂ and v ∈ Ker(W ∂(1,2)
1 ) such that

ϵn

(
dω̃e− 1

2 ψ̄γψ
)

= eσ + ϵn[v, e].

Then one fixes ω := ω̃ − v, obtaining the desired result. The uniqueness is simply shown by
assuming there exist different splitting ω̃ = ω1 + v1 = ω2 + v2 as above, implying [e, v1 − v2] ∈
Im(W ∂(1,1)

1 ), which, by lemma A.6 and A.5 shows v1 = v2.

Constraints and the first class condition

Now we can finally define the constraints on F ∂SG simply as the restriction of (4.5) and (4.3) to
the boundary plus the invariant torsion constraint. In order to readily have them as functionals
over F ∂SG, we make use of Lagrange multipliers17 µ ∈ Ω(1,1)

∂ [1], c ∈ Ω(0,2)
∂ and χ ∈ Γ(SM |Σ),

obtaining

Jµ =
∫

Σ
µ

(
eFω + 1

3! ψ̄γ
3dωψ

)
Lc =

∫
Σ
c

(
edωe− 1

2eψ̄γψ
)

Mχ =
∫

Σ

1
3 χ̄

(
eγ3dωψ − 1

2dωeγ
3ψ

)
.

Remark 4.7. As we will see later, the Hamiltonian vector fields are related to the gauge sym-
metries of the theory (i.e. they define the infinitesimal gauge transformations). In particular,
Lc generates the internal Lorentz symmetry, Mχ is the generator of the supersymmetry and Jµ
generates the diffeomorphism symmetry. The last statement can be refined once one notices
that, since {e1, e2, e3, ϵn} defines a local basis of V, it is possible to split µ = λϵn + ιξe, with
λ ∈ C∞(Σ)[1] and ξ ∈ X[1](Σ). Then ξ and λ can be interpreted respectively as the gauge
parameters associated to the tangential and transversal diffeomorphisms with respect to Σ. The
constraint Jµ splits into

Pξ =
∫

Σ

1
2 ιξ(e

2)Fω + 1
3! ιξeψ̄γ

3dωψ and Hλ =
∫

Σ
λϵn

(
eFω + 1

3! ψ̄γ
3dωψ

)
.

17In view of the BFV description of the theory in the following chapter, we shift the degree of the Lagrange
multiplier by one, as they will later represent the ghosts of the theory.
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Remark 4.8. Notice that Lc can be rewritten in a nicer form, in particular one finds18

Lc =
∫

Σ
cedωe+ 1

3!eψ̄γ
3[c, ψ].

To further simplify the computations, we introduce a reference connection ω0 and use Cartan
magic formula to define, for any field ϕ, the Lie derivative along ξ with respect to ω0 as

Lω0
ξ ϕ := [ιξ, dω0 ]ϕ = ιξdω0ϕ− dω0ιξϕ.

Then, to make the dependence of Pξ on the newly defined Lie derivative apparent and to make the
Hamiltonian vector field of Pξ well defined, we take into consideration the following redefinition:19

Pξ → Pξ + Lιξ(ω−ω0) +Mιξψ, yielding

Pξ =
∫

Σ

1
2 ιξe

2Fω + ιξ(ω − ω0)edωe− 1
3!eψ̄γ

3Lω0
ξ ψ.

Lastly, it will be convenient to rewrite Mχ in the following form, obtained by integrating by
parts

Mχ =
∫

Σ

1
3!e(dωχ̄γ

3ψ + χ̄γ3dωψ)

Theorem 4.2. Let g∂ be non-degenerate on Σ. Then the functions Pξ, Hλ, Lc and Mχ form a
first-class set of constraints, defining a coisotropic submanifold as their zero-locus. In particular

{Lc, Lc} = −1
2L[c,c] {Lc,Mχ} = M[c,χ]

{Lc, Pξ} = LLω0
ξ
c {Pξ,Mχ} = −MLω0

ξ
χ

{Pξ, Pξ} = 1
2P[ξ.ξ] − 1

2LιξιξFω0
{Hλ, Hλ} = 0

{Lc, Hλ} = −Pζ + Lιζ(ω−ω0) +Mιζψ −Hζn {Mχ, Hλ} = 0
{Pξ, Hλ} = Pϑ − Lιϑ(ω−ω0) −Mιϑψ +Hϑ(n)

{Mχ,Mχ} = 1
2Pφ − 1

2Lιφ(ω−ω0) − 1
2Mιφψ + 1

2Hφ(n) (4.13)

where, setting {xi} local coordinates on Σ, one has ζ = eia[c, λϵn]a∂i, ϑ = eia(Lω0
ξ (λϵn))a∂i,

φ = eiaχ̄γ
aχ∂i, while ζ(n) = [c, λϵn]n, ϑ(n) = (Lω0

ξ (λϵn))n, φ(n) = χ̄γnχ. Lastly, we have the
following

1
3! χ̄γ

3dωχ = eα∂(χ, dωχ) + ϵnβ
∂(χ, dωχ)

ϵnMω = eα∂(ϵnMω) + ϵnβ
∂(ϵnMω),

where Mω is the component of the Hamiltonian vector field Mχ along ω.
18Here we used the fact that

−
1
2
ceψ̄γψ = i

2 · 3!
e
(
ψ̄γ3[c, ψ] + [c, ψ]γ3ψ

)
= i

3!
ψ̄γ3[c, ψ].

19Redefining the constraint set as a C∞(F 1,4
SG)-linear combination of the original constraints does not change

the zero-locus of such constraints, which ultimately is what we will be interested in.
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Proof. We begin by computing the Hamiltonian vector fields of the constraints, defined by
ιXf

ϖ∂
SG = δf .

We see

ιXϖ
∂
SG =

∫
Σ
eXeδω +

(
eXω + 1

3!Xψ̄γ
3ψ

)
δe+ 1

3

(
1
2Xeψ̄γ

3 + eXψ̄γ
3
)
δψ. (4.14)

δLc =
∫

Σ
[c, e]eδω + edωcδe+ 1

3! ψ̄γ
3[c, ψ]δe+ 1

3!e
(
δψ̄γ3[c, ψ] + ψ̄γ3[c, δψ]

)
=

∫
Σ

[c, e]eδω +
(
edωc+ 1

3! ψ̄γ
3[c, ψ]

)
δe+ 1

3!e
(
δψ̄γ3[c, ψ] + [c, ψ̄]γ3δψ − ψ̄[c, γ3]δψ

)
=

∫
Σ

[c, e]eδω +
(
edωc+ 1

3! ψ̄γ
3[c, ψ]

)
δe+ 1

3e
(

[c, ψ̄]γ3δψ − 1
2 ψ̄[c, γ3]V δψ

)
=

∫
Σ

[c, e]eδω +
(
edωc+ 1

3! ψ̄γ
3[c, ψ]

)
δe+ 1

3

(
1
2 [c, e]ψ̄γ3 + e[c, ψ̄]γ3

)
δψ

Remark 4.9. In the second step we used the fact that an element in ∧2V acts on γ both in the
spinor representation and in the vector one, and they cancel each other out. Explicitly, using
the fact that ∧2V ≃ so(3, 1) ≃ spin(3, 1), a basis for it is given by {− 1

4γ[aγb]} or equivalently
by {va ∧ vb}. Now, since γ = γava has values in C(V ) ⊗ V , when acting with c we have
[c, γ] = [c, γ]S + [c, γ]V = 0, in fact20

[c, γ]S := 1
4J[γ, [γ, c]], γK = −1

4(cabγaγbγ + γcabγaγb) = −cabγavb = −[c, γ]V .

Now, since χ̄γNψ has no spinor indices (for any two arbitrary spinors χ and ψ), [c, χ̄γNψ] =
(−1)|χ|χ̄[c, γN ]V ψ, but at the same time the Leibniz rule for [c, ·] holds, we find

[c, χ̄γNψ] = (−1)|χ|χ̄[c, γN ]V ψ = [c, χ]γNψ − (−1)|χ|χ̄γN [c, ψ]. (4.15)

δPξ =
∫

Σ
−Lω0

ξ eδω −
(
ιξFω0 + Lω0

ξ (ω − ω0) + 1
3! ψ̄γ

3Lω0
ξ ψ

)
δe− 1

3!e
(
δψ̄γ3Lω0

ξ ψ + ψ̄γ3Lω0
ξ δψ

)
=

∫
Σ

−Lω0
ξ eδω −

(
ιξFω0 + Lω0

ξ (ω − ω0) + 1
3! ψ̄γ

3Lω0
ξ ψ

)
δe− 1

3

(
eLω0

ξ ψ̄γ
3 + 1

2Lω0
ξ eψ̄γ

3
)
δψ;

δHλ =
∫

Σ
dω(λϵne)δω + λϵnFωδe+ 1

3!λϵn(δψ̄γ3dωψ − ψ̄γ3[δω, ψ] + ψ̄γ3dωδψ)

=
∫

Σ

(
dω(λϵne) − 1

2λϵnψ̄γψ
)
δω + λϵnFωδe+ 1

3

(
λϵndωψ̄γ

3 + 1
2dω(λϵn)ψ̄γ3

)
δψ;

δMχ =
∫

Σ

1
3!δe(dωχ̄γ

3ψ + χ̄γ3dωψ) + 1
3!e([δω, χ̄]γ3ψ − χ̄γ3[δω, ψ]) + 1

3δψ̄
(
eγ3dωχ− 1

2dωeγ
3χ

)
=

∫
Σ

1
3! (dωχ̄γ

3ψ + χ̄γ3dωψ)δe− ieχ̄γψδω + 1
3δψ̄

(
eγ3dωχ− 1

2dωeγ
3χ

)
20We indicate the graded commutator by double square brackets JA,BK = AB − (−1)|A||B|BA.
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This allows to extract the following vector fields21

Le = [c, e] Lω = dωc+ VL Lψ = [c, ψ]
Pe = −Lω0

ξ e Pω = −ιξFω0 − Lω0
ξ (ω − ω0) + VP Pψ = −Lω0

ξ ψ

He = dω(λϵn) + λσ eHω = λϵnFω − 1
3!Hψ̄γ

3ψ eγ3Hψ = λϵnγ
3dωψ + 1

2λσγ
3ψ

Me = −χ̄γψ eMω = 1
3!(dωχ̄γ

3ψ + χ̄γ3dωψ) − 1
3! ψ̄γ

3Mψ eγ3Mψ = eγ3dωχ− 1
2dωeγ

3χ

(4.16)

Remark 4.10. Notice that the components along ω of the Hamiltonian vector fields are defined
up to a term V ∈ Ker(W ∂(1,2)

e ), which is fixed by requiring that Xω preserves the structural
constraint 4.12. In most of the future calculations we will only need eXω, but one can in any
case prove [CCS21a] that elements in Ω(2,3)

∂ are in the image of W ∂(1,2)
e , hence such Xω always

exists.
The discussion is analogous in the computation of Hψ and Mψ, indeed by considering eγ3Xψ,

one sees
eγ3Xψ = eaγbcdXψϵabcdVolV

(A.44)= iγ5[e, γ]Xψ.

Now, since Ω(1,0)
∂ (ΠSM ) and Ω(2,0)

∂ (ΠSM ) have the same local dimension, showing eγ3 is injective
proves that it is also an isomorphism, but that amounts to show that

[e, γ]Xψ = 0 ⇒ Xψ = 0,

or in other words that γ[iXψ,j] = 0 implies Xψ,j = 0, which is immediately verified by solving the
system of three equations.2223 One can then define Meψ such that

eγ3Meψ := −1
2dωeγ

3χ
A.15= −1

2

(
dωe− 1

2 ψ̄γψ
)
γ3χ. (4.17)

The rest of the proof, which amounts to showing that the constraints form a first class set,
is found in B.2.1.

4.2 Towards a BFV description
Having proved that the constraints form a first-class set, under the assumption of a regular
boundary, Theorem 1.1 tells us that there must exist a BFV structure on FΣ. Indeed, one can
consider the bundle

F∂
SG → Ω(1,1)

∂,n.d. × Ω1
∂(SΣ,m)

with local trivialization on an open UΣ ⊂ Ω(1,1)
∂,n.d. × Ω1

∂(SΣ,m)

UΣ × AΣ,red × T ∗(Ω(0,2)
∂ [1]
(c,k†)

⊕ X[1](Σ)
(ξ,ζ†)

⊕ C∞[1](Σ)
(λ,λ†)

⊕ Γ[1](ΠSM
(χ,θ†)

))

21Strictly speaking, in the computation of Mψ one would have a term proportional to Meψ̄γ3δψ = −ψ̄γχψ̄γ3δψ,
but this one vanishes because of A.15.

22We defined γi := γaeai , which is still an invertible matrix.
23This computation also explicitly shows that the kernel of the pre-symplectic form (4.10) does not contain any

term of the kind Xψ
δ
δψ

.
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where e ∈ Ω(1,1)
∂,n.d., ω ∈ AΣ,red and Ω1

∂(SΣ,m), while the antighosts of c, ξ and χ are denoted
respectively by kℲ ∈ Ω(3,2)

∂ [−1], ζ† ∈ Ω(1,0)
∂ [−1]⊗Ω(3,4)

∂ and θℲ ∈ Ω(3,4)[−1](ΠSM ). In particular,
generalizing [CCS21a], one defines AΣ,red as the space of connections modeled over Ω(1,2)

∂ satis-
fying a modified version of structural constraint (4.11), called the BFV structural constraint

ϵn

(
dωe− 1

2 ψ̄γψ
)

+
(

Lω0
ξ (ϵn)i − [c, ϵn]iχ

)
k†
i + · · · = eσ,

where · · · regroups possible extra terms to ensure the constraint is invariant under the action of
the cohomological vector field Q∂SG.

The canonical symplectic form is defined as

ϖΣ
SG =

∫
Σ
eδeδω + 1

3! ψ̄γ
3δψδe+ 1

3eδψ̄γ
3δψ + δcδkℲ + ιδξδζ

Ⅎ + δλδλℲ + iδχ̄δθℲ. (4.18)

Now, following the discussion in 1.2.1, one can, as a first attempt, define the tentative BFV
action from the structure of the constraints as

SΣ
SG :=Lc +Mχ + Pξ +Hλ

+
∫

Σ

(
1
2 [c, c] + 1

2 ιξιξFω0 − Lω0
ξ c

)
kℲ + i(Lω0

ξ χ̄− [c, χ̄])θℲ

− 1
2 ι[ξ,ξ]ζ

Ⅎ +
(

[c, λϵn]n − Lω0
ξ (λϵn)n + 1

2 χ̄γ
nχ

)
λℲ

+
(

[c, λϵn]j − Lω0
ξ (λϵn)j + 1

2 χ̄γ
jχ

)
(ζ†
j − (ω − ω0)jkℲ − iψ̄jθℲ)

(4.19)

At this point, in order to obtain a BFV structure, one needs to show that {SΣ
SG,SΣ

SG}BFV = 0.
However, doing so is a computationally hard task, which, when carried out fully24 does not
yield the desired result, hence SΣ

SG needs to be complemented with terms of higher order in the
antighosts.

Introducing new variables

We know from diagram (A.32) that W ∂,(2,1)
e is surjective, therefore it is possible to rewrite

kℲ = ek̃, for (more than) a k̃ ∈ Ω(2,1)
∂ . Considering the field redefiniton with k̃ as the new

field, we immediately notice that the new symplectic form contains a term eδk̃δc leading to a
degeneracy, in particular

Ker(ϖΣ
SG) =

{
Xk̃

δ

δk̃
, Xk̃ ∈ Ω(2,1)

∂

∣∣∣∣ eXk̃ = 0
}
.

To obtain a well defined symplectic form one needs to consider [k̃] ∈ Ω(2,1)
∂ /Ker(W ∂,(2,1)

e ). How-
ever, we can cleverly fix a representative thanks to the following.

Theorem 4.3. For all k̃ ∈ Ω(2,1)
∂ there exist a unique decomposition

k̃ = ǩ + r

with ǩ, r ∈ Ω(2,1)
∂ such that

er = 0, ϵnǩ = eǎ, (4.20)
24We spare the reader of the cumbersome details of this computation.
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for some ǎ ∈ Ω(1,1)
∂ . Furthermore, the field ǩ in the decomposition above only depends on the

equivalence class [k̃] ∈ Ω(2,1)
∂,red.

Remark 4.11. Notice that, as an immediate consequence of the first statement we obtain [k̃] = [ǩ],

Proof. The decomposition is a direct consequence of lemma A.8. Now consider k̃1, k̃2 ∈ [k̃], then
by definition k̃1 − k̃2 = r′ ∈ Ker(W ∂(1,2)

e ). By A.8, k̃1 = ǩ1 + r1 and k̃2 = ǩ2 + r2 such that
ϵnǩ1, ϵnǩ2 ∈ Im(W ∂,(1,1)

e ) and er1 = er2 = 0, hence{
ǩ1 − ǩ2 = r2 − r1 − r′ ∈ Ker(W ∂(1,2)

e )
ϵn(ǩ1 − ǩ2) ∈ Im(W ∂,(1,1)

e ),

which implies, by lemma A.5, that ǩ1 = ǩ2.

At this point, we recall from remark 4.8 that we altered the original constraint set (to an
equivalent one) by redefining Pξ. In particular, in order to obtain nicer Hamiltonian vector fields,
we had

Pξ 7→ Pξ − Lιξ(ω−ω0) −Mιξψ.

Following [CCS21a] it is convenient to change variables in order to get rid of the redundancies.
We introduce

c′ = c+ ιξ(ω − ω0) χ′ = χ+ ιξψ ζℲ
′

• = ζℲ• − (ω − ω0)•k
Ⅎ − iψ̄•θℲ. (4.21)

Lastly, we can define the new variable yℲ ∈ Ω(3,3)
∂ [−1] such that eiyℲ = ζℲ

′

i and ϵny
Ⅎ = λℲ,

which, combined with the field redefinition kℲ = eǩ, yields (omitting the ′ apex)

SΣ
SG =

∫
Σ

(ιξe+ λϵn)
(
eFω + 1

3! ψ̄γ
3dωψ

)
+ c

(
edωe− 1

2 ψ̄γψ
)

+ 1
3 χ̄

(
eγ3dωψ − 1

2dωeγ
3ψ

)
+

(
1
2 [c, c] − 1

2 ιξιξFω − Lωξ c
)
eǩ

+ ǩ
1
3! (χ̄− ιξψ̄)γ3dωχ− ǎ

1
3! (χ̄− ιξψ̄)γ3dωψ − 1

2 ι[ξ,ξ]ey
Ⅎ − iιξ

(
Lωξ ψ̄ − [c, ψ]

)
θℲ

+ i
(
Lωξ χ̄− [c, χ̄]

)
θℲ +

(
[c, λϵn] − Lωξ (λϵn) + 1

2 χ̄
′γχ− ιξ(χ̄γψ)

)
yℲ

(4.22)

ϖΣ
SG =

∫
Σ
eδeδω + 1

3! ψ̄γ
3δψδe+ 1

3eδψ̄γ
3δψ + δc′δ(eǩ) + δωδ

(
ιξ(eǩ)

)
+ iδχ̄δθℲ + iδψ̄δ(ιξθℲ) − δ

(
ιδξ(e)yℲ

)
− δλϵnδy

Ⅎ.

(4.23)

This is a good starting point but, as remarked before, it is not yet the full BFV action. In order
to obtain it, one way would be to extract the Hamiltonian vector field Q∂SG of SΣ

SG and compute
(QSG)2, which would allow us to algorithmically produce the extra terms in the action. Such
method, while theoretically feasible, provides many challenges. The other way to obtain a BFV
action is to induce it from the BV structure in the bulk. In the following chapter, we choose the
latter option.
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Chapter 5

The BV-BFV description of
N = 1, D = 4 Supergravity

5.1 The BV N = 1, D = 4 Supergravity Action

A BV description of on-shell N = 1, D = 4 supergravity has been provided in [Bau+90], where
it was shown that the BV action is of rank 2 (i.e. quadratic in the anti-fields). However, to the
best of our knowledge, no off-shell BV description of it has been obtained.

We start here by applying the simplest procedure from section 1.2, defining the space of BV
fields as

FSG = T ∗[−1]
(
Ω(1,1)

n.d. ⊗ AM ⊗ Ω1(M,ΠSM ) ⊗ Ω(0,2)[1] × X[1](M) ⊗ Γ[1](M,ΠSM )
)
,

where

• e ∈ Ω(1,1)
n.d. , ω ∈ AM and ψ ∈ Ω1(M,ΠSM ) are the classical fields;

• c ∈ Ω(0,2)[1] = Γ[1](M,∧2V) ≃ Γ[1](M, so(1, 3)), ξ ∈ X[1](M) and χ ∈ Γ[1](M,ΠSM ) are
the ghost fields,1 seen as odd generators respectively to the internal Lorentz symmetry, the
diffeomorphism symmetry and the local supersymmetry;

• eℲ ∈ Ω(3,3)[−1], ωℲ ∈ Ω(3,2)[−1] and ψℲ ∈ Ω(3,4)[−1](M,ΠSM ) are the field momenta,
while cℲ ∈ Ω(4,2)[−2], ξℲ ∈ Ω1(M)[−2]⊗Ω(4,4) and χℲ ∈ Ω(4,4)[−2](M,ΠSM ) are the ghost
momenta.

The -1–symplectic forms reads

ϖSG =
∫
M

δeδeℲ + δωδωℲ + iδψ̄δψℲ + δcδcℲ + ιδξδξ
Ⅎ + iδχ̄δχℲ. (5.1)

Our first attempt of finding a suitable BV action requires finding the vector field Q0 describing

1Note that all the ghosts have ghost number 1, yet χ, unlike c and ξ, has even Grassmann parity.

67
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the symmetries of the theory. We define2

Q0e = Lωξ e− [c, e] + χ̄γψ Q0ω = ιξFω − dωc+ δχω

Q0ψ = Lωξ ψ − [c, ψ] − dωχ Q0ξ = 1
2[ξ, ξ] + 1

2φ

Q0c = 1
2(ιξιξFω − [c.c]) + ιξδχω Q0χ = Lωξ χ− [c, χ] − 1

2 ιφψ,

where eδχω = − 1
3! χ̄γ

3dωψ and φµ = χ̄γµχ. In particular, for the fields on which it is defined, one
can notice that Q0 = QPC + δχ, having borrowed QPC from [CS19b]. Since we know Q2

PC = 0,
we obtain

Q2
0 = [QPC , δχ] + δ2

χ.

The classical action S0 is then complemented with a contribution s1 linear in the anti–fields,
obtaining

S1 = S0 + s1 =
∫
M

e2

2 Fω + 1
3!eψ̄γ

3dωψ

+
∫
M

−(Lωξ e− [c, e] + χ̄γψ)eℲ + (ιξFω − dωc+ δχω)ωℲ

− i(Lωξ ψ̄ − [c, ψ̄] − dωχ̄)ψℲ +
(

1
2 ιξιξFω − 1

2 [c, c] + ιξδχω

)
cℲ

+ 1
2(ι[ξ,ξ] + ιφ)ξℲ − i

(
Lωξ χ̄− [c, χ̄] − 1

2 ιφψ̄
)
χℲ.

In principle, to check the classical master equation {S1,S1}BV = 0 it is sufficient to prove
Q2

0 = 0 on the fields and ghosts. Proceeding by stages, we first obtain

δ2
χe = −1

2Lωφe+ 1
2 ιφ

(
dωe− 1

2 ψ̄γψ
)

δ2
χψ = −1

2Lωφψ + 1
2 ιφdωψ −

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)
χ

eδ2
χω = −1

2eιφFω + 1
2 ιφ

(
eFω + 1

3! ψ̄γ
3dωψ

)
− 1

2 · 3! ψ̄ιφ(γ3dωψ)

− 1
3! ψ̄γ

3χ

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)

δ2
χc = 1

2 ιφδχω + ιξδ
2
χω δ2

χχ = −1
2Lωφχ δ2

χξ = 0,

where γ̂ := γµ∂µ = eµaγ
a∂µ, γ := [e, γ] = γµdx

µ and the map < e,− > is defined via the inverse
vielbein as

< e,− > : Ω(i,j) −→ Ω(i−1,j+1)

σ 7−→ vaη
abeµb ι∂µσ.

The interested reader can find the full computation of δ2
χ in B.3.1.

2One could obtain the correct SUSY transformations by inspecting the boundary structure and phase space
Hamiltonian of supergravity.
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Remark 5.1. Notice that, as expected, the square of the supersymmetry transformation is pro-
portional to the diffeomorphisms3 with respect to the generator φ := χ̄γ̂χ, plus a term which is
proportional to the equations of motion.

The full expression of Q2
0, whose full computation can be found in B.3.2, is given by

Q2
0e = 1

2 ιφ
(
dωe− 1

2 ψ̄γψ
)

Q2
0ψ = 1

2 ιφdωψ −
(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)
χ

eQ2
0ω = 1

2 ιφ
(
eFω + 1

3! ψ̄γ
3dωψ

)
+ 1

2 · 3! ψ̄γ
3ιφdωψ

− 1
3! ψ̄γ

3χ

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)

Q2
0c = 1

2 ιφδχω + ιξQ
2
0ω Q2

0χ = 0 Q2
0ξ = 0,

This tells us that the BV description of N = 1, D = 4 SuGra is at least of second rank, hence
we need to correct the action.

Lastly, for the sake of completeness, we also provide the expression of Q0 for the anti–fields.
It is obtained by computing δfieldsS1. In particular, as we saw in section 1.3.1 , Q0ΦℲ will be
proportional to the equations of motion for the respective fields, and for cℲ and ωℲ we will
have Q0 = QPC + δχ. We compute δχ as the Hamiltonian vector field of s1, namely such that
ιδχϖBV = δs1, using

ιXϖBV =
∫
M

Xeδe
Ⅎ + δe(XeℲ + Xωω̌ + eXcč) + eXωδω̌ + δω(eXω + ω̌Xe)

+ iXψ̄δψ
Ⅎ + iδψ̄XψℲ + e2

2 Xcδč+ δc

(
e2

2 Xč + ečXe

)
+ ιXξ

δξℲ + ιδξXξℲ + iXχ̄δχ
Ⅎ + iδχ̄XχℲ ,

Furthermore, one can also split s1 = sPC1 + sχ1 , where sPC1 is the part coming from the free

3This is in line with the fact that supersymmetry squares to the translations, which in their local version are
realized by the diffeomorphisms.
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gravity BV theory. We are then left with

Q0e
Ⅎ = eFω + 1

3! ψ̄γ
3dωψ + Lωξ eℲ − [c, eℲ] − i

2 · 3! ιφ(e3ψ̄)χℲ
0 + 1

2 ιφ[vc, eµb η
bcξℲµ]

− 1
2 · 3! χ̄γ

3dωψ + 1
3! ιξ(χ̄γ

3dωψč) − ω̌δχω − ečιξδχω

eQ0ω̌ = e

(
dωe− 1

2 ψ̄γψ
)

− ιξ[eℲ, e] − dω(ιξωℲ) − e[c, ω̌] + 1
2dωιξιξc

Ⅎ − ω̌Lωξ e

− 1
2 χ̄γψω̌ − 1

2 · 3! χ̄[ω̌, γ3]V ψ − 1
2 χ̄γψ

(
čιξe+ 1

2eιξ č
)

+ 1
2 · 3! χ̄[čιξe+ 1

2eιξ č, γ
3]ψ

+ i

2 ιξ
(
eψ̄Ⅎ

0γγψ − 1
3!ψ

Ⅎ
0γ[e, γ3]ψ

)
+ i

2eψ̄
Ⅎ
0γγχ− i

2 · 3! ψ̄
Ⅎ
0γ[e, γ3]χ+ i

8 ιξ
(
e2χ̄Ⅎ

0γ
2χ

)
Q0ψ

Ⅎ = − i

3

(
eγ3dωψ − 1

2dωeγ
3ψ

)
− i

3!γ
3dω(ω̌χ) + Lωξ ψℲ − [c, ψℲ] + iγχeℲ

− i

3!dω
(
čιξeγ

3χ+ 1
2eιξ čγ

3χ

)
− 1

2 ιφχ
Ⅎ

e2

2 Q0č = −dωωℲ − [e, eℲ] + i

8e
2χ̄Ⅎ

0γ
2χ+ i

2eψ̄
Ⅎ
0γγψ − i

2 · 3! ψ̄
Ⅎ
0γ[e, γ3]ψ − 1

2 čL
ω
ξ e

2 − čeχ̄γψ,

Q0ξ
Ⅎ
• = −eℲ•dωe− dωee

Ⅎ
• − ωℲ

•Fω − (ιξcℲ)•Fω + ι[•,ξ]ξ
Ⅎ − idωψ̄(ψℲ)•

+ iψ̄•dωψ
Ⅎ − i(dωχ̄)•χ

Ⅎ + 1
3! če•χ̄γ

3dωψ + 1
2 · 3!eč•χ̄γ

3dωψ

Q0χ
Ⅎ = i

3!γ
3dωψ + iγψeℲ − dωψ

Ⅎ − ιγ̂ξ
Ⅎχ,

(5.2)

having used A.4.4 to redefine

χℲ = e4

4! χ
Ⅎ
0 . (5.3)

5.1.1 The second rank BV action
Before continuing, for computational purposes, it is convenient to redefine some of the fields. In
particular, using A.4.2 and looking at the diagram A.31, we notice that one can uniquely define
č ∈ Ω(2,0)[−1] and ω̌ ∈ Ω(2,1)[−1] such that

cℲ = e2

2 č and ωℲ = eω̌. (5.4)

With this redefinition, we then see

e2

2 Q
2
0c = i

8 χ̄ιφ(EoMψ) − 1
8 · 3! ιφ

(
(EoMω)χ̄γ3ψ

)
− 1

2 ιξeιφ(EoMe)

− 1
2 · 3! ιξeψ̄γ

3ιφdωψ + ιξ

(e
4 ιφ(EoMe)

)
+ i

8 ιξιφ(ψ̄EoMψ)

− e

2 ιξ
(

1
3! ψ̄γ

3χ

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
))

+ 1
2 ιξe

1
3! ψ̄γ

3χ

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)
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There are still some terms that are not immediately recognizable as proportional to the
equations of motion. In order to achieve that, one needs lemmata A.12, A.13 and A.5. In
particular, setting γ := [e, γ] = γµdx

µ, thanks to A.12 we can redefine ψℲ as

ψℲ := 1
3!eγ

3γψℲ
0 ,

while from A.13 and A.5 we have the following maps

α : Ω(3,1)(ΠSM ) → Ω(1,0)(ΠSM ) β : Ω(3,1)(ΠSM ) → ker (γ3
(3,1))

κ : Ω(2,1)(ΠSM ) → Ω(1,0)(ΠSM ) κ : Ω(2,1)(ΠSM ) → ker (γγ3
(2,1))

such that for all θ ∈ Ω(3,1) and ω ∈ Ω(2,1) one has

θ = ieγα(θ) + β(θ), ω = eκ(ω) + κ(ω).

Lastly, one can use the fact that vavbvcvd = ϵabcdVolV and (A.44) to show that the equation of
motion for the gravitino reduces to

i

3

(
eγ3dωψ − 1

2dωeγ
3ψ

)
= −1

3γ
5

(
γdωψ − 1

2 [dωe, γ]ψ
)

VolV = 0.

In the end, from the terms of the kind
∫

ΦℲ
αQ

2
0Φα inside (S1,S1), we can use (1.6) to obtain the

coefficients of the rank–2 action, obtaining S2 = S0 + s1 + s2, with

s2 =
∫
M

1
2

(
ω̌ − 1

2eιξ č− čιξe

)
ιφe

Ⅎ + 1
4

(
1
2 ψ̄

Ⅎ
0γ + α(ω̌ψ̄)γ − i

2 ιξ čψ̄ − α(čιξeψ̄)γ − i

2 čχ̄
)
ιφψ

Ⅎ

+ i

4 · 3!

(
1
2α(ω̌ψ̄)γ − i

2 ιξ čψ̄ − α(čιξeψ̄)γ − i

2 čχ̄
)
γ3ιφ(ω̌ψ)

− i

2 · 3!

(
1
2 ψ̄

Ⅎ
0γ + 1

2α(ω̌ψ̄)γ − i

2 ιξ čψ̄ − α(čιξeψ̄)γ
)
γ3χ < e, χ̄[ω̌, γ]ψ > (5.5)

+ 1
2 · 3!

(
1
4 ψ̄

Ⅎ
0γ − i

2 ιξ čψ̄ − α(čιξeψ̄)γ
)
γ3χ < e, χ̄γ2ψℲ

0 >

− 1
32

(
iψ̄Ⅎχ+ 1

3!(ω̌ − eιξ č− 2čιξe)ψ̄γ3χ

)
χ̄ιγ̂ιγ̂([ω̌, γ]ψ)

− i

32

(
iψ̄Ⅎχ+ 1

3!(eιξ č+ 2čιξe)ψ̄γ3χ

)
χ̄ιγ̂ιγ̂(γ2ψℲ

0 ),

Now, letting q be the Hamiltonian vector field of s2, we see Q = Q0 + q, and, after a long but
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straightforward computation, we have

qe = 1
2 ιφω̌ − 1

2 ιφčιξe− 1
4 ιφ(eιξ č)

eqω = 1
2 ιφe

Ⅎ + i

4 · 3! ιφ(ψ̄Ⅎ
0γ)γ3ψ + i

4 · 3! ψ̄γ
3ιφ

(
γα(ω̌ψ)

)
− 1

8 · 3! ιφčχ̄γ
3ψ − 1

8 · 3! ιξ čψ̄γ
3ιφψ

− i

4 · 3! ψ̄γ
3ιφ

(
γα(čιξeψ)

)
+ 1

2 · 3! ψ̄γ
3χκ

[
< e, χ̄

(
− i

2γ
2ψℲ

0 − [ω̌, γ]ψ − 1
2γιξ čψ − ιξγčψ

)
>

]
+ 1

16 · 3! ψ̄γ
3χχ̄ιγ̂ιγ̂

(
− i

2γ
2ψℲ

0 − [ω̌, γ]ψ − 1
2γιξ čψ − ιξγčψ

)
qψ = i

4 ιφ(γψℲ
0 ) − i

4 ιφ
(
γα(ω̌ψ)

)
− i

4 ιφ
(
γα(čιξeψ)

)
+ 1

8 ιφčχ− 1
8 ιφ(ιξ čψ)

+ i

4χκ
(
< e, χ̄γ2ψℲ

0 + iχ̄[ω̌ − i

2 ιξ če+ ιξeč] >
)

+ 1
16χχ̄ιγ̂ιγ̂(γ2ψℲ

0 + i[ω̌ − i

2 ιξ če+ ιξeč])

e2

2 qc = − i

8 χ̄ιφψ
Ⅎ − i

8 · 3! ιφ(ω̌χ̄γ3ψ) − 1
2 ιξeιφe

Ⅎ + 1
4 ιξ(eιφe

Ⅎ) − i

4 · 3! ιφ(ψ̄Ⅎ
0γ)γ3ιξeψ

+ i

4 · 3! ιφ
(
α(ω̌ψ̄)γ

)
γ3ιξeψ − i

8 ιξ(ψ̄ιφψ
Ⅎ) − 1

8 · 3! ιξ(ω̌ψ̄γ
3ιφψ)

+ 1
4 · 3! ιξ

(
ψ̄γ3χ < e, χ̄([ω̌, γ]ψ + iγ2ψℲ

0 ) >
)

− 1
2 · 3! ιξeψ̄γ

3χκ
(
< e, χ̄([ω̌, γ]ψ + iγ2ψℲ

0 ) >
)

+ 1
32 · 3! ιξeψ̄γ

3χχ̄ιγ̂ιγ̂([ω̌, γ]ψ + iγ2ψℲ
0 ) − 1

32 · 3!eιξ
(
ψ̄γ3χχ̄ιγ̂ιγ̂([ω̌, γ]ψ + iγ2ψℲ

0 )
)
,

(5.6)

while one can immediately see qχ = 0 and qξ = 0.
Unfortunately, it turns out that (5.5) is not yet the full rank–2 action. Indeed, one needs to

require the cohomological vector field Q along c to contain terms proportional to ιξQω. This is
not the case here as s2 is missing terms quadratic in the antighost č.

Remark 5.2. As stated above, one can use equation (1.6)

Q2
0Φα − (−1)β(α+1) δLM

δΦα M
αβ = 0

to define Mαβ(Φ), which are exactly the coefficients appearing in the quadratic part of the action,
where the equation of motion δLM

δΦα is replaced by the corresponding antifield ΦℲ
α. However, since

there is no equation of motion for the ghosts, and in particular no equation of motion for c, the
terms quadratic in č have to be found by hand by checking Q2 = 0, or equivalently by imposing
the consistency equations (1.7),(1.8).

As it turns out, defining el(č, ξ, φ, ψ) as the terms inside eqω that contain č,4 we have the
following theorem.

Theorem 5.1. The collection (FSG, ϖSG, Q,S) defines a BV structure, where

S = S2 +
∫
M

1
2c

Ⅎιξl(č, ξ, φ, ψ),

4For the full expression, see (B.13)
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and l(č, ξ, φ, ψ) implicitly defined by

el(č, ξ, χ, ψ) := − 1
8 · 3! ιξ čψ̄γ

3ιφψ − i

4 · 3! ψ̄γ
3ιφ

(
γα(čιξeψ)

)
− 1

2 · 3! ψ̄γ
3χκ

[
< e, χ̄

(
1
2γιξ čψ + ιξγčψ

)
>

]
− 1

16 · 3! ψ̄γ
3χχ̄ιγ̂ιγ̂

(
1
2γιξ čψ + ιξγčψ

)
.

Remark 5.3. We can significantly simplify the notation in the definition of the action by defin-
ing the combination of fields kℲ := ωℲ − ιξc

Ⅎ and kℲ = eǩ. With this, the the extra term
1
2c

Ⅎιξl(č, ξ, φ, ψ) is automatically contained in the following

s2 =
∫
M

1
2e

Ⅎιφǩ + 1
4

(
1
2 ψ̄

Ⅎ
0 + α(ǩψ̄)γ − 1

2 čχ̄
)
ιφψ

Ⅎ

− i

4 · 3!

(
ψ̄Ⅎ

0γ + α(ǩψ̄)γ
)
γ3χ < e, χ̄[ǩ, γ]ψ >

+ i

8 · 3!

(
α(ǩψ̄)γ − ičχ̄

)
γ3ιφ(ǩψ) + 1

8 · 3! ψ̄
Ⅎ
0γγ

3χ < e, χ̄γ2ψℲ
0 >

− 1
32

(
iψ̄Ⅎχ+ 1

3! ǩψ̄γ
3χ

)
χ̄ιγ̂ιγ̂([ǩ, γ]ψ) + 1

32 ψ̄
Ⅎχχ̄ιγ̂ιγ̂(γ2ψℲ

0 ).

(5.7)

Proof. We leave the proof for section B.3.3.

5.2 The BV pushforward of N = 1, D = 4 Supergravity
Having found a BV action for N = 1, D = 4 Supergravity raises the question on whether one
can induce a well–defined BFV structure on the boundary, following the construction of 1.2.
However, as remarked in section 2.4.1, already in the case of Palatini–Cartan gravity – of which
supergravity is the supersymmetric extension – the boundary pre–symplectic form induced by
the BV action is singular, hence not suitable to obtain a BFV structure. By repeating the same
computations of 2.4.1 in the SUGRA setting, one immediately sees that the singularity of the
induced pre–symplectic form is not affected by the introduction of the gravitino, which allows us
to employ the same strategy employed in PC gravity, with the appropriate distinctions.

In 2.5.1 we saw how the authors in [CCS21b] obtained a BV-BFV extendible theory of PC
gravity by employing the 1–dimensional AKSZ construction, considering the PC BFV theory as
the target. Such strategy is obviously not suitable for the problem at hand, as we do not yet
have a full BFV theory for SUGRA, but rather we want to induce one from the BV data in the
bulk.

The solution is then offered by the BV pushforward, which was computed for the case of
PC gravity in [CC25b] and reviewed in 2.5.2. There we saw how one can ”integrate out" the
components of the spin connection ω responsible for the singularity of the induced boundary
symplectic form. The result of the construction is a reduced theory, on which the fields are
constrained. Originally, such constraints were found by looking at the 1–D AKSZ PC theory,
but in the case of SUGRA we need to obtain them in an independent way, which is provided by
generalising proposition 2.2, starting from a generalization of constraint 4.20 found in the study
of the boundary structure of SUGRA. Thanks to this, we can define the following.

Definition 5.1. Letting M = I × Σ, the reduced N = 1, D = 4 Supergravity theory is given by
FrSG := (Fr

SG, ϖ
r
SG, Q

r
SG,SrSG), where
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• Fr
SG is given by the the subspace of FSG(I × Σ) satisfying the following constraints

ϵn

(
˜̌ω − ιξ̃ ẽ

˜̌c− ẽn˜̌cξ̃n − e
2 (ιξ̃ ˜̌c− ˜̌cnξ̃n)

)
= ẽ˜̌a (5.8)

QSG

[
ϵn

(
˜̌ω − ιξ̃ ẽ

˜̌c− ẽn˜̌cξ̃n − e
2 (ιξ̃ ˜̌c− ˜̌cnξ̃n)

)
− ẽ˜̌a

]
= 0, (5.9)

for some ˜̌a ∈ C∞(I) ⊗ Ω(1,1)
∂ [−1];

• ϖr
SG := ϖSG(I × Σ)|Fr

SG
;

• SrSG := SSG|Fr
SG

;

• QrSG = QSG.

Remark 5.4. Carrying out some computations, (5.9) can be expressed as

ϵn

(
dω̃ ẽ− 1

2
¯̃ψγψ̃

)
− ϵnτ̃

Ⅎdξ̃n + ιX̂ k̃
Ⅎ + Q = ẽσ, (5.10)

where terms Q are left implicitly defined by applying the terms in QSG depending on the ψ̃ and
χ̃ to ϵnǩ. Furthermore, we can also define xℲ ∈ C∞(I)⊗Ω(1,1)

∂ and yℲ ∈ C∞(I)⊗Ω(1,2)
∂ such that

Q = ẽxℲ + ϵn[ẽ, yℲ]. (5.11)

Lastly, we have
X̃ := Lω̃

ξ̃
(ϵn) − dω̃n(ϵn)ξ̃n − [c̃, ϵn], X̂ = ẽiaX̃

a∂i.

Remark 5.5. As of now, we do not know if such reduced theory is a genuine BV theory, since
we did not check explicitly that (SrSG,SrSG) = 0 holds. However, showing that one can recover
the reduced theory as the BV pushfoward of the supergravity hedgehog will automatically assure
that the CME holds.

The first goal is to find a symplectomorphism between FSG = (FSG(I× Σ), ϖSG(I× Σ)) and
FHSG =

(
FSG(I × Σ), ϖr

SG +
∫
I×Σ δṽδṽ

Ⅎ
)

. To do so, we follow [CC25b], splitting the symplecto-
morphism in two steps.

Lemma 5.1. There exists a symplectomorphism ϕ1 : FSG(I × Σ) → FSG(I × Σ) such that

ϕ∗
1

(
ϖr
SG +

∫
I×Σ

δṽδṽℲ + δω̂δṽℲ
)

= ϖSG(I × Σ).

Explicitly, we have that all the fields are preserved by the symplectomorphism5 except

ϕ∗
1(ẽℲ) = ẽℲ + ṽ

˜̌
k ϕ∗

1(ẽℲn) = ẽℲn − ṽ
˜̌
kn − ιz ṽ

˜̌
k

ϕ∗
1(c̃) = c̃− ιξ̃ ṽ + ιz ṽξ̃

n ϕ∗
1(ξ̃Ⅎ) = ξ̃

Ⅎ − ṽc̃Ⅎn ϕ∗
1(ξ̃Ⅎ

n
) = ξ̃

Ⅎ
n

+ ιz ṽc̃
Ⅎ
n ϕ∗

1(ω̃n) = ω̃n + ιz ṽ

Proof. The proof can be copied, mutatis mutandis, from [CC25b], since ϖSG = ϖPC +∫
M
iδψ̄δψℲ + iδχ̄δχℲ, and only the field inside ϖPC transform under ϕ1.

5In particular we also have ϕ∗
1(ṽ) = ṽ, ϕ∗

1(ω̂) = ω̂, ϕ∗
1(τ̃Ⅎ) = τ̃Ⅎ and ϕ∗

1(µ̃Ⅎ) = µ̃Ⅎ.
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Lemma 5.2. There exists a symplectomorphism ϕ2 : FSG(I × Σ) → FSG(I × Σ) such that

ϕ∗
2

(
ϖr
SG +

∫
I×Σ

δṽδṽℲ
)

= ϖr
SG +

∫
I×Σ

δṽδṽℲ + δω̂δṽℲ.

In particular, defining α ∈ C∞(I) ⊗ Ω(1,1)
∂ and β ∈ C∞(I) ⊗ Ω(1,2)

∂ such that

dξ̃nµ̃Ⅎ = ẽα+ ϵn[ ˜e, β], (5.12)

then ϵndξ̃
nµ̃Ⅎ = ϵnẽα =: ẽν, where ν = ϵnα ∈ C∞(I) ⊗ Ω(1,2)

∂ .
The action of ϕ2 is given by

ϕ∗
2(ẽℲ) = ẽℲ + ν

˜̌
k ϕ∗

2(ṽ) = ṽ + yℲ

ϕ∗
2(ω̃n) = ω̃n + ιzν + ιX̃ µ̃

Ⅎ ϕ∗
2(ω̂) = ω̂ + ν

ϕ∗
2(c̃) = c̃+ ιX̃ µ̃

Ⅎξ̃n + ιξ̃ν + ιzνξ̃
n ϕ∗

2(c̃Ⅎn) = c̃Ⅎn + [ϵn, ˜̌kµ̃Ⅎ]

ϕ∗
2(ω̃Ⅎ) = ω̃Ⅎ + [ϵn, ξ̃n ˜̌

kµ̃Ⅎ] ϕ∗
2(ω̃n) = ω̃n + [ϵn, ιξ(˜̌kµ̃Ⅎ)]

ϕ∗
2(ϕ̃Ⅎn) = ϕ̃Ⅎn − iϵnγψ̃µ̃

Ⅎ,

ϕ∗
2(ẽℲn) = ẽℲn + dω̃(ϵnµ̃Ⅎ) + σµ̃Ⅎ + ιX̃(˜̌kµ̃Ⅎ) − ν

˜̌
kn − ιzν

˜̌
k − xℲµ̃Ⅎ + [ϵnyℲ, ỹℲ]

ϕ∗
2(ξ̃Ⅎn) = ξ̃Ⅎn + ιX̃ c̃

Ⅎ
nµ̃

Ⅎ + d(ϵnτℲµ̃Ⅎ) + ιz c̃
Ⅎ
nν + ιzν[ϵn, ˜̌kµ̃Ⅎ] + (dω̃nϵn)˜̌kµ̃Ⅎ + ιX̃ µ̃

Ⅎ[ϵn, ˜̌kµ̃Ⅎ]

ϕ∗
2(ξ̃Ⅎ) = ξ̃Ⅎ + c̃Ⅎnν + dω̂ϵn(˜̌kµ̃Ⅎ) + ν[ϵn, ˜̌kµ̃Ⅎ].

Proof. Once again, we can refer to [CC25b] and the proof therein. In particular, we notice that
the ϕ2 defined above is exactly the same as ϕPC2 of section 2.5.2, except a few cases. Indeed,
defining ϕ2 = ϕPC2 + ϕ3, we have

ϕ∗
3(ṽ) = yℲ ϕ∗

3(ψ̃Ⅎ
n) = −iϵnγψ̃µ̃Ⅎ ϕ∗

3(ẽℲn) = xℲµ̃Ⅎ + [ϵnyℲ, µ̃Ⅎ]

where we recall Q = ẽxℲ + ϵn[ẽ, yℲ]. Then, by [CC25b], we have

ϕ∗
2

(
ϖr
PC +

∫
I×Σ

δṽδṽℲ
)

= ϖr
PC +

∫
I×Σ

δṽδṽℲ + δω̂δṽℲ + δ ˜̄ψδ(ϵnγψµ̃Ⅎ) + δQδµ̃Ⅎ,

where we have taken into account that the structural constraint that was used in [CC25b] has
been changed to take the gravitino interaction into consideration.

The term ϵnδψ̃γψ̃µ̃
Ⅎ is balanced by the term ϕ∗

3

(∫
I×Σ δψ̃δψ̃n,Ⅎ

)
= ϕ∗

3(φrSG −ϖr
PC) while

ϕ∗
3

(
ϖr
PC +

∫
I×Σ

δvδṽℲ
)

=
∫
I×Σ

δẽδ(xℲµ̃Ⅎ + [ϵnyℲ, µ̃Ⅎ]) + δyℲδ(ϵn[ẽ, µ̃Ⅎ]) =
∫
I×Σ

−δQδµ̃Ⅎ,

balancing exactly the remaining term and showing the lemma.6

Proposition 5.1. Let FHSG be the BV theory given by

(FH
SG, ϖ

H
SG,SHSG),

6We remark we have used the property that ẽµ̃Ⅎ = 0.
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where
ϖH
SG = ϖr

SG +
∫
I×Σ

δṽδṽℲ

and
SHSG = SrSG +

∫
I×Σ

1
2 ẽnẽ[ṽ − yℲ, ṽ − yℲ] + g(ṽℲ), (5.13)

with
g(ṽℲ) = f(vℲ) + (δχ(ṽ + ν) + q(ṽ + ν)) ṽℲ, (5.14)

having defined δχ as the supersymmetry transformation and q as the Hamiltonian vector field of
the rank–2 part of the BV action defined in (5.7) and f(ṽℲ) as in (2.51).

Then, letting Φ := ϕ1 ◦ ϕ2, we have

Φ∗(SHSG) = SSG.

The proposition will follow immediately from the following lemmata.
Lemma 5.3. The symplectomorphism ϕ2 is such that

ϕ∗
2

(
SrSG +

∫
I×Σ

1
2 ẽnẽ[ṽ − yℲ, ṽ − yℲ] + g(ṽℲ)

)
= SrSG +

∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ] + h(ṽℲ),

where h(ṽℲ) = g(ṽℲ) + (ιξ̃Fω̂ + Fω̃n
ξ̃n + dω̂ c̃+ δχω̂ + qω̂)ṽℲ.7

Lemma 5.4. The symplectomorphism ϕ1 is such that

ϕ∗
1

(
SrSG +

∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ] + h(ṽℲ)

)
= SSG

Proof. The proofs of the above lemmatas are found in B.3.4

Remark 5.6. So far, we have showed that the BV theory FHSG is BV–equivalent to the full BV
theory. In particular, this implies that the BV action is equivalent to the reduced BV action with
the addition of the terms depending on ṽℲ and ṽ. Ultimately, we are interested in integrating
out the field ṽ, which is responsible for the singularity of the pre–symplectic form induced on
the boundary by the full BV action, therefore obtaining a decoupling of Sr from the dynamics
of ṽ is fundamental.

Furthermore, we can copy the content of remark 2.18 to see that we have a fiber bundle
FH
SG → Fr

SG whose fiber is locally given by Ff := T ∗[1](kerW (1,2
ẽ0

), for a reference non–degenerate
tetrad e0. We can furthermore obtain a BV bundle

FH
SG F̃H

SG

Fr
SG

Ξ

πH π̃H

where F̃H
SG := Fr

SG × Ff is a product of -1–symplectic manifolds. The symplectomorphism
Ξ is found by noticing that at any spacetime point x ∈ M , we can find a unique orthogonal
transformation Λx8 such that ẽ0 = Λxẽ, hence providing an isomorphism

kerW (1,2)
ẽ0

= {ṽ ∈ Ω(1,2)
∂ | ∀x ∈ M, Λxẽxṽx = 0} ≃ kerW (1,2)

ẽ .

7Notice that h(ṽℲ) = QSG(ω̂ + ṽ)ṽℲ
8This is the content of remark A.11
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This extends as a symplectomorphism Ff = T ∗[1] kerW (1,2)
ẽ0

≃ T ∗[1] kerW (1,2)
ẽ . Therefore,

considering an open U ⊂ Fr
SG, with the local trivialization of FH

SG → Fr
SG is given by

FH
SG

∣∣∣∣
U

≃ U × T ∗[1] kerW (1,2)
ẽ ,

we see that the above symplectomorphism induces Ξ : FH
SG → F̃H

SG.

Theorem 5.2.
P̃L : Dens

1
2 (FSG) → Dens

1
2 (Fr

SG)

defined by the composition

Dens
1
2 (FSG) Φ∗

−→ Dens
1
2 (FH

SG) PL−→ Dens
1
2 (Fr

SG),

wehere Φ = ϕ2 ◦ϕ1 as defined in proposition 5.1 and PL is the BV pushforward of the BV bundle
FH
SG → Fr

SG along the Lagrangian submanifold Lf := {(ṽ, ṽℲ) ∈ Ff | ṽℲ = 0}.
Then

µ
1
2
r exp

(
i

ℏ
SrSG

)
= P̃Lµ

1
2 exp

(
i

ℏ
SSG

)
Proof. The proof amounts to showing that µ

1
2
r exp

(
i
ℏSrSG

)
= PLµ

1
2 exp

(
i
ℏSHSG

)
. This is a con-

sequence of the fact that on Lf we have

SHSG
∣∣∣∣
Lf

= SrSG +
∫
I×Σ

1
2 ẽnẽ[ṽ − yℲ, ṽ − yℲ].

and that the quadratic form 1
2 ẽnẽ[−,−] : Ω(1,2)

∂ × Ω(1,2)
∂ → C∞(M) is non–degenerate [CC25b],

hence producing a well-defined Gaussian integral∫
Lf

µ
1
2
f exp

(
i

ℏ

∫
I×Σ

1
2 ẽnẽ[ṽ − yℲ, ṽ − yℲ]

)
,

which contributes to PLµ
1
2 exp

(
i
ℏSHSG

)
just with a constant factor.

5.2.1 The induced N = 1, D = 4 Supergravity BFV action
So far, we worked on a cylinder to obtain the reduced BV action of N = 1, D = 4 supergravity.
Such theory is a suitable candidate to obtain a BFV structure on the boundary, since the induced
boundary symplectic form is now non–degenerate, hence solving the original issue outlined at
the beginning of the previous section.

Traditionally, one would need to compute the boundary potential 1–form αΣ
SG arising as a

boundary term from
δSrSG = ιQr

SG
ϖr
SG + (πr,ΣSG)∗(ϑr,ΣSG),

where πr,ΣSG : Fr
SG → Fr,Σ

SG is the surjective submersion to the space of boundary fields. In
particular, we notice that, from the variation of SHSG, we have

δSHSG = ιQH
SG
ϖH
SG + (πΣ

SG)∗
(
ϑr,ΣSG +

∫
Σ
ξ̃nṽℲδṽ

)
.
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The induced action on the boundary is obtained as the boundary term given by the (failure
of) the CME in the bulk

1
2 ιQSG

ιQSG
ϖM
SG = Sr,ΣSG + SΣ

f ,

where SΣ
SG is exactly the boundary BFV action we are seeking, given as SΣ

SG = 1
2 ιQr

SG
ιQr

SG
ϖr
SG,

while SΣ
f can be seen as the Hamiltonian generating the gauge transformations of v, defining a

coisotropic submanifold.9 In particular, one sees

SΣ
f =

∫
Σ

(
Lω̂
ξ̃
ṽ + ιz ṽdξ̃

n − [c̃, ṽ] + δχv + qṽ
)
ṽℲξ̃n + 1

2ϵnξ̃
nẽ[ṽ, ṽ] (5.15)

This is not significantly relevant at the moment, as we are are interested in Sr,ΣSG . In par-
ticular, we know from 4.2 that a BFV structure FΣ := (FΣ

SG,SΣ
SG, ϖ

Σ
SG) must exist such that

H0
QΣ

SG

(FΣ
SG) ≃ C∞(CΣ

SG). The goal is then to find a symplectomorphsim

(FΣ
SG, ϖ

Σ
SG) Φr−→ (Fr,Σ

SG , ϖ
r,Σ
SG)

and then define SΣ
SG := Φ∗

r

(
SΣ,r
SG

)
, as we know that it satisfies the CME by construction.

Symplectomorphism via 1–D AKSZ

In this subsection, we employ the methods from the 1–D AKSZ construction described in 1.4.1
to obtain the following -1–symplectic supermanifold

FAKSZ
SG := Map(T [1]I,FΣ

SG)

ϖAKSZ
SG := T

(2)
I (ϖΣ

SG).

and look for a symplectomorphism Φr : (Fr
SG, ϖ

r
SG) → (FAKSZ

SG , ϖAKSZ
SG ).

For starters we define, as in chapter 3.3, the AKSZ fields

e = e+ fℲ w = ω + uℲ

p = ψ + ςℲ p̄ = ψ̄ + ς̄Ⅎ

x = χ+ ϵ x̄ = χ̄+ ϵ̄

c = c+ w z = ξ + z (5.16)
l = λ+ µ cℲ = kℲ + cℲ

xℲ = θℲ + χℲ x̄Ⅎ = θ̄Ⅎ + χ̄Ⅎ

yℲ = eℲ + yℲ,

9Indeed by construction one has {SΣ
f ,S

Σ
f } = 0, where {−,−} is the Poisson bracket induced by ϖΣ

f =∫
Σ δ(ξ̃

nṽℲ)δṽ.
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having used the splitting FAKSZ
SG := Ω•(I) × FΣ

SG. Recalling (1.10), we have

e ∈ C∞(I) ⊗ Ω(1,1)
∂ fℲ ∈ Ω1[−1](I) ⊗ Ω(1,1)

∂

ω ∈ C∞(I) ⊗ Ω(1,2)
∂ uℲ ∈ Ω1[−1](I) ⊗ Ω(1,2)

∂

ψ ∈ C∞(I) ⊗ Ω(1,0)
∂ (ΠSM ) ςℲ ∈ Ω1[−1](I) ⊗ Ω(1,0)

∂ (ΠSM )

χ ∈ C∞(I) ⊗ Ω(0,0)
∂ [1](ΠSM ) ϵ ∈ Ω1[−1](I) ⊗ Ω(0,0)

∂ [1](ΠSM )
ξ ∈ C∞(I) ⊗ X[1](Σ) z ∈ Ω1[−1](I) ⊗ X[1](Σ)

c ∈ C∞(I) ⊗ Ω(0,2)
∂ [1] w ∈ Ω1[−1](I) ⊗ Ω(0,2)

∂ [1]
λ ∈ C∞(I) ⊗ C∞[1](Σ) µ ∈ Ω1[−1](I) ⊗ C∞[1](Σ)

kℲ ∈ C∞(I) ⊗ Ω(3,2)
∂ [−1] cℲ ∈ Ω1[−1](I) ⊗ Ω(3,2)

∂ [−1]

θℲ ∈ C∞(I) ⊗ Ω(3,4)
∂ [−1](ΠSM ) χℲ ∈ Ω1[−1](I) ⊗ Ω(3,4)

∂ [−1](ΠSM )

ηℲ ∈ C∞(I) ⊗ Ω(3,3)
∂ [−1] eℲ ∈ Ω1[−1](I) ⊗ Ω(3,3)

∂ [−1]

where we have omitted the ∼ symbol for boundary fields, as in this section there is not ambiguity
of meaning.10

The AKSZ symplectic form is then given by

ϖAKSZ
SG = ϖAKSZ

PC +
∫
I×Σ

1
3!

(
ς̄Ⅎγ3δψδe+ ψ̄γ3δςℲδe+ ψ̄γ3δψδfℲ + fℲδψ̄γ3δψ

)
+ 1

3eδψ̄γ
3δςℲ + iδϵ̄δθℲ + iδχ̄δχℲ + iδς̄(ιδξθℲ + ιξδθ

Ⅎ)

+ iδψ̄
(
ιδzθ

Ⅎ + ιzδθ
Ⅎ + ιδξχ

Ⅎ + ιξδχ
Ⅎ)

Proposition 5.2. There exists a symplectomorphism Φr : Fr
SG → FAKSZ

SG such that

Φ∗
r(e) = e+ λµ−1fℲ Φ∗

r(en) = µϵn + ιze+ λϵinf
Ⅎ
i

Φ∗
r(ω) = ω − λµ−1uℲ Φ∗

r(ωn) = w − ιξu
Ⅎ − λϵinui

Φ∗
r(ψ) = ψ + λµ−1ςℲ Φ∗

r(ψn) = ϵ− ιξςdag + λµ−1ιzς
Ⅎ

Φ∗
r(ψℲ) = θℲ Φ∗

r(ψℲ
n
) = ιzθ

Ⅎ + ιξχℲ − e

3γ
3ςℲ − 1

3f
Ⅎγ3ψ + 1

3λµ
−1fγ3ςℲ

Φ∗
r(χ) = χ+ λµ−1ιξς

Ⅎ Φ∗
r(χℲ

n
) = χℲ

Φ∗
r(c) = c− λµ−1ιξ(uℲ) Φ∗

r(cℲn) = cℲ

Φ∗
r(ωℲ) = kℲ Φ∗

r(ωℲ
n) = efℲ + ιzk

Ⅎ + ιξc
Ⅎ

Φ∗
r(ξi) = ξi − λµ−1zi Φ∗

r(ξℲ) = eyℲ + fℲeℲ − uℲkℲ + cℲλµ−1uℲ + iς̄ℲθℲ − iλµ−1ς̄ℲχℲ

Φ∗
r(eℲ) = eℲ − λµ−1yℲ Φ∗

r(ξn) = λµ−1

Φ∗
r(eℲn) =euℲ + ιze

Ⅎ − λϵiny
Ⅎ
i + λµ−1fℲuℲ − 1

3! ς̄
Ⅎγ3ψ − 1

3!λµ
−1ς̄Ⅎγ3ςℲ

Φ∗
r(ξℲn) =enyℲ + efℲuℲ + fℲιze

Ⅎ + uℲιzk
Ⅎ + cℲλϵinu

Ⅎ
i − 1

3!f
Ⅎψ̄γ3ςℲ

− 1
3!eς̄

Ⅎγ3ςℲ + iιz ς̄
ℲθℲ − iλµ−1ιz ς̄

ℲχℲ

10Note that, starting from ??, we will reintroduce the ∼ notation, and the "untilded" fields will refer to the
bulk.
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Proof. We leave this long calculation for section B.3.5.

With the above isomorphism, we can define the boundary BFV action as SΣ
SG := (Φr)∗SΣ,r

SG

and
SAKSZSG := T

(0)
I (SΣ

SG) + ιdI
T

(1)
I (αΣ

SG).

By definition one has

SΣ
SG = 1

2 ιQAKSZ
SG

ιQAKSZ
SG

ϖAKSZ
SG

SΣ,r
SG = 1

2 ιQ
r
SG
ιQr

SG
ϖr
SG,

but since ϖAKSZ
SG = Φ∗

r(ϖr
SG) and SΣ

SG = Φ∗
r

(
SΣ,r
SG

)
, then one must have QAKSZSG = (Φr)∗Q

r
SG.

At the same time

δSAKSZSG = ιQAKSZ
SG

ϖAKSZ
SG + π∗ϑΣ

= Φ∗
r

(
ιQr

SG
ϖr
SG

)
+ π∗ϑΣ

= δSrSG + π∗(ϑΣ − ϑrSG).

Taking the variation of the above expression gives δϑΣ − δΦ∗
r(ϑrSG) = 0, implying

Φ∗
r(ϖ

r,Σ
SG) = ϖΣ

SG,

which is exactly the symplectomorphism we were seeking on the space of BFV boundary fields.
Remark 5.7. We notice that, in section 4.2 we defined the BFV space of fields FΣ

SG as the space
of boundary fields subject to the structural constraint

ϵn

(
dωe− 1

2 ψ̄γψ
)

+ · · · = eσ,

where the terms (· · · ) were left undefined to account for contribution that would render the
structural constraint invariant with respect to the cohomological vector field QΣ

SG, which was yet
to be obtained in 4.2. In principle, when defining FAKSZ

SG , the structural constraints splits into
a tangent constraint to Σ and a part containing the transversal component along the interval I.
In order to overcome the ambiguity in the definition of FSG

AKSZ , we simply define the structural
constraints to be

Φ∗
r(ϵnǩ − eǎ) = 0 (5.17)

Φ∗
r

[
ϵn

(
dωe− 1

2 ψ̄γψ − τℲdξn
)

+ ιXk
Ⅎ + Q − eσ

]
= 0. (5.18)

In particular, we see that (5.17) is automatically satisfied by construction. Indeed, (5.17) is
equivalent to WℲ ∈ Im(W ∂(1,1)

e ), therefore, recalling the definition (2.36) of WℲ, we have

Φ∗
r

(
ωℲ
n − ιzω

Ⅎ − ιξc
Ⅎ
n + ιzc

Ⅎ
nξ
n
)

=
= efℲ + ιzk

Ⅎ + ιξc
Ⅎ − zikℲi − ιξc

Ⅎ − ziλµ−1cℲ + ziλµ−1cℲ

= efℲ.
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This tells us that the only relevant constraint in the space of AKSZ fields is given by (5.18),
which in turn splits into the structural constraint of FΣ

SG, simply given as

ϵn

(
dωe− 1

2 ψ̄γψ
)

+ ιXk
Ⅎ + Q′ = eσ (5.19)

and the part proportional to λµ−1, which is given by

ϵn
(
[uℲ, e] + dωf

Ⅎ − ψ̄γςℲ
)

+
(
Lωz ϵn + [ιξuℲ − w, ϵn]

)i
kℲi + ιXc

Ⅎ + (XifℲi )jkℲj + U =Ⅎ σ + eB,

having defined Φ∗
r(Q) = Q′ + λµ−1U. The above two equations then define respectively the

tangential and transversal AKSZ constraints.
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Appendix A

Spinors and spin coframes on
manifolds: a review with
technical results

Spinors are fundamental in the description of supersymmetry theories and, specifically, of su-
pergravities. Historically, mathematicians and physicists have adopted different notations for
the same objects, used in different context. In particular, the definition of supergravity theories
requires considering different kinds of spinors depending on the spacetime dimensions, which is
often a source of confusion to the uninitiated reader.

This review is an attempt to provide a self-contained account on the fundamental tools used
in the study of spinors, trying to reconcile the rigorous mathematical definitions with the less
precise physics terminology. The secondary scope of these notes is to be a repository of results
which are used by the author in forthcoming papers on supergravity, removing the necessity to
provide a series of heavy technical proofs, which are conveniently regrouped here.

The work is organized as follows: the first part of section A.1 provides all the necessary
definitions and a classification of real and complex Clifford algebras, followed by the definition
and main results on spin groups (and their Lie algebras). Furthermore, a systematic classification
of the representations of Clifford algebras is presented, with a particular interest in the Lorentzian
case, in which we provide a constructive method to obtain the so–called gamma representation,
commonly used in physics. The last part of this section is devoted to the definition of Majorana
spinors, a central object in the theories of supergravity, showing the direct correlation between
the existence of a real structure and the so–called charge conjugation matrix.

In section A.2, we employ the ideas developed in the previous chapter within the context
of differential geometry, providing a global description of spin structures and, specifically, spin
coframes, a concept which is particularly useful in supergravity. Indeed one can show that the
notion of spin coframes is equivalent to that of spin structure (and, in particular, requires the
same topological assumptions to exist), with the advantage of providing a framework which allows
to define spinor fields without the necessity of fixing a metric, which is ultimately considered as
a dynamical object in the context of physics.

Lastly, section A.3 contains some very well known identities, as well as some lesser known
ones. A full description on how to obtain Fierz rearrangements in D = 4 is presented, with a
particularly useful example in the mostly plus Lorentzian signature. Most of these results are
rephrased in the index–free notation provided by the spin coframe formalism. Finally, the last
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part presents a series of technical lemmata in dimension 4, which, as previously anticipated, acts
as a repository of results useful in future works of the author.

A.1 Clifford algebras and spin groups
Some of the introductory content in the following section has appeared in [CCF22] and has been
reported to have a complete discussion with a consistent notation. The remaining section on
Clifford algebras mainly follows ,[KS87a],[fatibene2018], [LM90], [RS17] and [Fig].

The parts regarding Majorana spinors and Fierz identities follow [Fig], [CDF91a; CDF91b],
[FV12], [KT83], [Sch79] and [Dab88]. References [Van85; Har90] are also recommended.

A.1.1 Clifford algebras
Let V be a real vector space of dimension D with an inner product of signature (r, s). Let ηab
be the matrix diag(−1, · · · ,−1, 1, · · · , 1) with r plus 1 and s minus 1, giving the inner product
on V with respect to an orthonormal basis {va}, a = 1, · · · , D.

We define the Clifford algebra on V by means of its universal property. In particular

Definition A.1 (Clifford map). A Clifford map is given by the pair (A, ϕ) where A is an asso-
ciative algebra with unity and ϕ is a linear map ϕ : V → A such that ∀u, v ∈ V

ϕ(u)ϕ(u) = −η(u, u)1A (A.1)

Definition A.2 (Clifford algebra). The Clifford algebra C(V ) is an associative algebra with unit
together with a Clifford map i : V → C(V ) such that any Clifford map factors through a unique
algebra homomorphism from C(V ). In other words, given any Clifford map (A, ϕ) there is a
unique algebra homomorphism Φ: C(V ) → A such that ϕ = Φ ◦ i

V A

C(V )

ϕ

i Φ

Proposition A.1. The Clifford algebra of V is unique up to isomorphisms.

We give a model for such an algebra. Consider the tensor algebra T (V ) := R⊕V ⊕V ⊗2 ⊕· · ·
and quotient it out by the two-sided ideal I(V ) generated by v ⊗ v + η(v, v)1, i.e.

C(V ) := T (V )
I(V ) .

Indeed one can set i to be the composition of the canonical projection ρ : T (V ) → C(V )
with the inclusion V ↪→ T (V ). Every linear map ϕ : V → A extends uniquely to an algebra
homomorphism Φ̃ : T (V ) → A, which identically vanishes on I(V ) by (A.1). This implies that
Φ̃ uniquely descends to a homomorphism Φ : C(V ) → A, satisfying

Φ ◦ i = ϕ.

Notice that T (V ) is a Z-graded algebra. The ideal I(V ) is spanned by elements that are not
necessarily homogeneous, therefore the Z–grading is lost in the Clifford algebra. However, the
generators of I(V ) are even, therefore C(V ) will be Z2-graded. In particular, it splits into

C(V ) = C0(V ) ⊕ C1(V ).
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Another important property, for any two vectors v, w ∈ V , is the following

(v + w)2 = v2 + vw + wv + w2 = −η(v, v)1 − η(w,w)1 + {v, w}
= −η(v + w, v + w)1 = −η(v, v)1 − η(w,w)1 − 2η(v, w)1

⇒ {v, w} := vw + wv = −2η(v, w)1.

Now, considering an orthonormal basis {va} of V , setting the first s elements {vA} such that
η(vA, vA) = −1 and the second r elements {vi} such that η(vi, vi) = 1, we obtain {va, vb} =
−2ηab1. This means that when a ̸= b, vavb = −vbva and that vava = ±1.

At this point, since every element in the tensor algebra T (V ) is a finite linear combination
of the product of finite elements in the basis of V , to obtain elements in C(V ) we simply apply
the constraint {va, vb} = −2ηab1. Indeed, since the elements of V are multiplicative generators
of T (V ), they must also generate C(V ), hence a basis of Clifford algebra is given in the form

1 va vab := vavb
a<b

vabc := vavbvc
a<b<c

· · · v∗ := v1 · · · vD (A.2)

The Z2-grading is now clearer, as we can interpret even (odd) elements of C(V ) to be finite linear
combinations of products of an even (odd) number of elements of the basis V . In particular, the
even part C0(V ) is a sub-algebra of C(V ), while the odd part C1(V ) is not (it does not contain
the unity). They are both 2d−1-dimensional, making C(V ) 2d-dimensional.

Proposition A.2. There exists a canonical isomorphism between the Clifford algebra and the
exterior algebra of V

σ : C(V ) → ∧•V (A.3)

Proof. For any u = uava ∈ V , consider the dual vector u = ηabu
bνa, where {νa} is a basis of

covectors such that νa(vb) = δab . Let θ be the mapping

θ : V → End(∧•V ) s.t. θ(u)(α) = u ∧ α+ ιuα,

where ιuα is the contraction with the covector of u for all α ∈ ∧•V . Then one finds

θ(u)2α = u ∧ u ∧ α+ u ∧ ιuα+ ιu(u ∧ α) + ιuιuα

= u ∧ ιuα+ ιuu ∧ α− u ∧ ιuα = ιuuα

= η(u, u)α.

This implies, by the universal property, the existence of an algebra morphism

θ̂ : C(V ) → End(∧•V ),

which, composed with with the identity element in End(∧•V ), yields

σ : C(V ) → ∧•V.

It is immediate to check that an element u1 · · ·uk ∈ C(V ) is sent to u1 ∧ · · · ∧ uk ∈ ∧•V , hence
one obtains that a basis of C(V ) is sent to a basis of ∧•V , proving that σ defines an isomorphism.
Remark A.1. The highest grade basis element v∗ is also known as volume element, in analogy
with its image under σ, defining the volume form on V .
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A.1.2 Classification of Clifford Algebras
We start by classifying real Clifford algebras. In this section, we denote by C(r, s) the Clifford
algebra over the D-dimensional real vector space V endowed with a non-degenerate metric of
signature (r, s). We will also denote by K(N) the N × N matrices over the field K, while, in
view of the future definition of gamma matrices, in this section we will denote the generators of
the Clifford algebra by Γa. We first consider the low-dimensional Clifford algebras, which will
provide the fundamental building blocks to obtain the higher dimensional ones.

Lemma A.1.

(i) C(1, 0) ≃ C, (ii) C(0, 1) ≃ R ⊕ R, (iii) C(1, 1) ≃ R(2),
(iv) C(0, 2) ≃ R(2), (v) C(2, 0) ≃ H.

Proof. In order to prove the above statements, we pick a representation of the Clifford algebra
in terms of matrices,

(i) there is only one element {v1} in the basis of V , such that Γ2
1 = −1, defining a complex

structure on T (V ), hence C(1, 0) = C;

(ii) analogously, we find Γ2
1 = 1, hence C(0, 1) = R ⊕ R;

(iii) following the physics notation and setting {v0, v1} as basis of V such that Γ2
0 = 1 and

Γ2
1 = −1, we can choose the following anticommuting matrices

Γ0 = σ1 =
(

0 1
1 0

)
and Γ1 = iσ2 =

(
0 1

−1 0

)
, (A.4)

They are 2×2 real matrices, hence they generate C(1, 1) = R(2). The even part is generated
by 1 and Γ∗ = Γ0Γ1, given by

Γ∗ = −σ3 =
(

−1 0
0 1

)
,

hence obtaining C0(1, 1) as the diagonal 2 × 2 real matrices;

(iv) in the case of C(0, 2), we pick anticommuting matrices Γ1 and Γ2 squaring to 1, which are
explicitly realized by

Γ1 = σ1 =
(

0 1
1 0

)
and Γ2 = σ3 =

(
1 0
0 −1

)
,

as before we obtain C(0, 2) = R(2), and the volume element is given by

Γ∗ = −iσ2 =
(

0 −1
1 0

)
,

which defines a complex structure as it squares to −1. Hence the even subalgebra, being
generated by 1 and Γ∗, is C0(0, 2) = C;

(v) for C(2, 0) we need two anticommuting matrices Γ1 and Γ2 squaring to −1, which are
explicitly realized by

Γ1 = iσ1 =
(

0 i
i 0

)
and Γ2 = iσ2 =

(
0 1

−1 0

)
,
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both squaring to −1, hence defining two anticommuting complex structures. The Clifford
algebra then has to coincide with the algebra of quaternions H, explicitly realized by the
identification {1, i, j, k} = {1,Γ1,Γ2,Γ∗}, where

Γ∗ = −iσ3 =
(

−i 0
0 i

)
,

The even subalgebra is generated by 1 and Γ∗, which again defines a complex structure,
hence obtaining C0(0, 2) = C.

The following lemma allows to recover higher dimensional Clifford algebras from the lower
dimensional ones
Lemma A.2. The following statements are true

1. C(d, 0) ⊗ C(0, 2) ≃ C(0, d+ 2)

2. C(0, d) ⊗ C(2, 0) ≃ C(d+ 2, 0)

3. C(r, s) ⊗ C(1, 1) ≃ C(r + 1, s+ 1)
Proof. For (i), consider {vi}, i = 1, · · · , d and {vα}, α = d + 1, d + 2 respectively generating
C(d, 0) and C(0, 2). Then there are relations

vi · vj = −2δij1 and vα · vβ = 2δαβ .

We can define new elements {va} , a = 1, · · · , d+ 2 as

va :=
{

vi ⊗ vd+1 · vd+2 a ≤ d

1 ⊗ vα a > d

A quick computation gives
va · vb = 2δab1,

hence proving the va’s generate C(0, d+ 2).
The case of (ii) is analogous. For (iii) consider {v1, · · · , vr, vr+1, · · · , vr+s} as a basis of Rr,s,

generating C(r, s), and {v′
1, v

′
2} as generating C(1, 1). Then we define a new set of vectors {va},

a = 1, · · · , d+ 2 such that

va =


va ⊗ v′

1 · v′
2, 1 ≤ a ≤ r

1 ⊗ v′
1 a = r + 1

va−1 ⊗ v′
1 · v′

2 r + 1 ≤ a ≤ d+ 1
1 ⊗ v′

2 a = d+ 2

A quick computation shows that the newly defined v′
as generate C(r + 1, s+ 1).

As a result, one can show that structure of the (r, s) real Clifford algebra has periodicity 8
in r − s. The following prposition allows us to classify the even Clifford subalgebras.
Proposition A.3. The even Clifford subalgebra is related to the full one in the following way

C0(r + 1, s) ≃ C(s, r) and C0(r, s+ 1) ≃ C(r, s), (A.5)

furthermore,
C0(r, s) ≃ C0(s, r). (A.6)
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Taking into account the periodicity of the structure of Clifford algebras, we obtain the fol-
lowing classification

r − s mod 8 C(r, s) N

0,6 R(2 N
2 ) D

2,4 H(2 N
2 ) D − 2

1,5 C(2 N
2 ) D − 1

3 H(2 N
2 ) ⊕ H(2 N

2 ) D − 3
7 R(2 N

2 ) ⊕ R(2 N
2 ) D − 1

r − s mod 8 C0(r, s) N

1,7 R(2 N
2 ) D − 1

3,5 H(2 N
2 ) D − 3

2,6 C(2 N
2 ) D − 2

4 H(2 N
2 ) ⊕ H(2 N

2 ) D − 4
0 R(2 N

2 ) ⊕ R(2 N
2 ) D − 2

Table A.1: Clifford algebras and even Clifford subalgebras in various dimensions

The situation is significantly simplified when one takes into consideration the complexification
of the Clifford algebras. Consider VC = V ⊗R C and define the mapping

î : V ⊗R C → C(V ) ⊗R C : u⊗ z 7→ i(u) ⊗ z,

then î(u⊗ z)2 = i(u)2 ⊗ z2 = −η(u, u)1 ⊗ z2 = −η(u⊗ z, u⊗ z)1, proving that

C(V )C = C(V ) ⊗R C = C(VC). (A.7)

Now, since on VC it is always possible to diagonalize η to a Euclidean metric, denoting by
C(D) the complex Clifford algebra over CD, one obtains

C(D) ≃ C(D, 0)C ≃ C(D − 1, 1)C ≃ · · · ≃ C(0, D)C. (A.8)

Notice also that the above statement, together with proposition A.3, implies that

C0(D) ≃ C(D − 1). (A.9)

Proposition A.4.

C(n+ 2) ≃ C(n) ⊗ C(2), C(2k) ≃ C(2k), C(2k + 1) ≃ C(2k) ⊕ C(2k). (A.10)

Proof. Using lemma A.2 and eq. (A.8), we see that

C(n+ 2) ≃ (C(n, 0) ⊗R C) ⊗C (C(0.2) ⊗R C) ≃ C(n) ⊗C C(2).

By lemma A.1 and (A.7) we obtain

C(1) ≃ C ⊕ C and C(2) ≃ C(2),

thanks to which, by iteration of the above result, we obtain

C(2k) ≃
k⊗

C(2) ≃ End(
k⊗

C2) ≃ C(2k)

and

C(2k + 1) ≃
k⊗

C(2) ⊕
k⊗

C(2) ≃ C(2k) ⊕ C(2k).

Therefore, proposition (A.9), allows to obtain the following classification
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D mod 2 C(D) N

0 C(2 N
2 ) D

1 C(2 N
2 ) ⊕ C(2 N

2 ) D − 1

D mod 2 C0(D) N

0 C(2 N
2 ) ⊕ C(2 N

2 ) D − 2
1 C(2 N

2 ) D − 1

Table A.2: Complex Clifford algebra and even subalgebra in various dimensions

A.1.3 Pin and Spin groups
Definition A.3 (grading map). Consider the Clifford map i : V → C(V ). By abuse of notation,
this map sends v to v inside C(V ). Defining α := −i : v → C(V ) : v 7→ −v, it has the property
that α(v)α(v) = −η(v, v)1. We can extend it to the whole C(V ) as α : C(V ) → C(V ) by restricting
it to the identity on even elements, to minus the identity on odd elements. This map is called
grading (or parity) since it essentially defines the Z2-grading on C(V ).

Clearly we have that α ◦ α = 1, therefore α is invertible and equal to its inverse.

Definition A.4 (transpose). Let S = u1u2 · · ·uk ∈ C(V ). We define the transpose of S to be
t(S) = t(u1u2 · · ·uk) := uk · · ·u2u1 =: S

It is well defined since the generators of the Clifford ideal are invariant under the transposition.

Furthermore, the transpose preserves the grading, namely t(α(S)) = α(t(S)).
It is a well known fact that not all elements in C(V ) are invertible. Let us define the mul-

tiplicative subgroup C∗(V ) ⊂ C(V ) of invertible elements. Clearly every subgroup of C(V ) is
contained in C∗(V ).

Definition A.5 (Clifford group). The Clifford group is defined to be the Lie subgroup of C∗(V ),
given by

Γ(V ) := {S ∈ C∗(V ) | ∀u ∈ V, α(S)uS−1 ∈ V }.
The map l : Γ(V ) → Aut(V ) defined by α(S)(u) = α(S)uS−1 is by definition a representation
of Γ(V ), called twisted adjoint representation.

Lemma A.3. The twisted adjoint representation is such that

1. l(α(S)) = l(S) for all S ∈ Γ(V );

2. for any vector v ∈ V such that η(v, v) = ±1, the map l(v) is a reflection about the plane
orthogonal to the unit vector v;

3. ker(l) ≃ R∗.

Proof. We prove each point separately:

1. l(S)(u) = −α(l(S)(u) = −α(α(S)uS−1) = Suα(S)−1 = l(α(S)(u)).

2. Recalling that vv = −η(v, v)1 = −|v|21, we have v−1 = − v
|v|2 . For all w ∈ V , denote

w∥ := η(v,w)
η(v,v) v to be the component of w parallel to v ∈ V . The perpendicular component

is defined as w⊥ := w − w∥. Then

α(v)wv−1 = −vwv−1 = |v|−2vwv = |v|−2
(
uw⊥v + vw∥v

)
= |v|−2(−vvw⊥ − η(v, w⊥)v − |v|2w∥)
= w⊥ − w∥ = l(v)w.
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3. Setting {va} as the usual orthonormal basis of V , let S ∈ ker(l), then for all u ∈ V ,
α(S)uS−1 = u, implying α(S)u = uS. Splitting S = S0 + S1 into even and odd part, we
obtain

uS0 = S0u uS1 = −S1u.

Without loss of generality, we can set S0 = p0 + v1p1, where p0 and p1 are respectively
even and odd polynomials in v2, · · · , vD. Then, using the above equation with u = v1, we
see

v1p0 + v2
1p1 = p0v1 + v1p1v1 = p0v1 − v2

1p1,

hence v2
1p1 = 0, implying p1 = 0. As a consequence S0 does not contain v1, but this

procedure can be iterated for all basis elements va, hence one must have S0 = λ1 for some
λ ∈ R∗. The same argument can be repeated for S1, hence showing ker l = 1 · R∗.

Theorem A.1. The following is a short exact sequence

1 → R∗ → Γ(V ) → O(V ) → 1 (A.11)

Proof. By point 3 of the previous lemma, ker(l) = R∗, hence we just need to show l is surjective
onto O(V ). Notice

η
(
l(S)u, l(S)w) = −1

2
(
l(S)ul(S)w + l(S)wl(S)u

)
= −1

2
(
l(S)ul(α(S))w + l(S)wl(α(S))u

)
= −1

2α(S)(uw + wu)α(S−1)

= η(u,w),

hence proving that l : Γ(V ) → O(V ) and l is a homomorphism.
Now, by Cartan-Dieudonne theorem, for all R ∈ O(V ), R = R1 · · ·Rk for k ≤ D = dim(V )

and Ri are reflections. By point 2 we know there exist unit vectors ui ∈ V such that Ri = l(ui)
and therefore R = l(u1) · · · l(uk) = l(u1 · · ·uk), hence showing that l is surjective.

One can define the further subgroup S(V ) ⊂ C∗(V ) ⊂ C(V ) of invertible elements S whose
inverse is proportional to their transpose, namely such that SS ∝ 1.

Definition A.6 (Pin and Spin groups). We define the Pin group Pin(V ) to be the subgroup of
S(V ) generated by unit vectors (i.e. such that v2 = η(v, v) = ±1), while the Spin group Spin(V )
is defined to be the intersection of Pin(V ) with the even Clifford subalgebra C(V ). In other words

Pin(V ) := {u1 · · ·uk | u2
i = ±1} (A.12)

Spin(V ) := {u1 · · ·uk | k even and u2
i = ±1} = Pin(V ) ∩ C0(V ). (A.13)

Elements in Spin(V ) are products of an even number of unit vectors, S = u1u2 · · ·u2k. In
this case it is easy to find the inverse of S, as

S−1 = ±1
|u1|2 · · · |u2k|2

u2k · · ·u2u1

As an immediate consequence of the above theorem, we have the following
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Corollary A.1. The restriction of l to the Pin and Spin groups defines the following short exact
sequences

1 → Z2 → Pin(V ) → O(V ) → 1,
1 → Z2 → Spin(V ) → SO(V ) → 1. (A.14)

Lie Algebra of Spin group

Proposition A.5. Let V be a D–dimensional real vector space. Lie(Spin(V )) is a Lie subalgebra
of C(V ), given by

Lie(Spin(V )) = ∧2V

Proof. This can be seen by noticing that the double cover l : Spin(V ) → SO(V ) reduces to an
isomorphism of Lie algebras (locally their tangent space at the identity is the same)

l̇ : spin(V ) → so(V )
a 7−→ l̇(i) = [a, ·],

where, for all u ∈ V , the [a, u] ∈ SO(V ) is given by

[a, u] := ∂

∂t

∣∣
t=0(e−taueta).

Now, knowing that {va ∧ vb} is a basis for so(V ), we compute a basis for spin(V ).
Define vab := 1

4 [va, vb], then, for all u = ucvc ∈ V

l̇(vab)u = 1
4[[va, vb], u] = 1

2 [vavb, u]

= 1
2 (vavbu− uvavb) = 1

2 (vavbu− uvavb + vauvb − vauvb)

= η(u, va)vb − η(vb, u)va = uc(δdb ηac − δdaηbc)vd,

hence
l̇(vab)dc = δdb ηac − δdaηbc = −(Mab)dc

where Mab are the generators of the Lorentz group SO(V ) in the fundamental representation.
This implies that − 1

4 [va, vb] defines a basis for spin(V ).

A.1.4 Representations
Given the definition of the Pin and Spin groups seen respectively as subgroups of C(V ) and
C0(V ), classifying irreducible representations of C(V ) and C0(V ) will automatically produce a
classification of irreps of the Pin and Spin groups, which are called respectively pinor and spinor
representations.

Looking at table A.1.2, we can already classify the irreducible pinor representations, as H(N)
and R(N) have a unique irreducible representation given respectively by HN and RN , whereas
C(N) has two, one isormorphic to CN and the complex conjugate one. Therefore the number of
irreducible pinor representations is given by

pr,s =
{

2 if r − s = 1, 3 mod 4,
1 if r − s = 2, 4 mod 4.
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Table A.1.2 also tells us whether the representation is real, complex or quaternionic.
For the spinor representations, since Spin is a subspace of the even Clifford algebra, we only

need to look at table A.1.2, which implies that the number of irreducible inequivalent spinor
representations is

sr,s =
{

2 if r − s = 2, 4 mod 4,
1 if r − s = 1, 3 mod 4.

Notice that in the even dimensional case D = 2k there are two inequivalent irreducible spinor
representations (known as Weyl representations), which correspond to the Weyl spinors and can
be understood by looking at the volume element v∗ = v1 · · · vD. Being v∗ the product of an
even number of generators, it anticommutes with them, i.e. {v∗, va} = 0 for all a = 1, · · · , D,
but it commutes with all the elements in the even Clifford subalgebra, hence with all the group
elements in Spin(V ), which implies that it must act as a scalar in the spinor representations.
This means that the inequivalent Weyl representations can be labelled by the eigenvalues of v∗.
Furthermore, a straightforward computation gives, for even D = r + s = 2k

v2
∗ = (−1)

r−s
2 1. (A.15)

One can classify the inequivalent spinor representation as follows

• r− s = 0 mod 8. There are two inequivalent real spinor representations, of real dimension
2 D−2

2 , labeled by the eigenvalue of v∗ being 1 or −1;

• r − s = 1, 7 mod 8. There is a unique spinor representation, which is real and of real
dimension 2 D−1

2 ;

• r− s = 2, 6 mod 8. There are two inequivalent complex spinor representations, of complex
dimension 2 D−2

2 , labeled by the eigenvalue of v∗ being i or −i;

• r − s = 3, 5 mod 8. There is a unique spinor representation, which is quaternionic and of
quaternionic dimension 2 D−3

2 ;

• r − s = 4 mod 8. There are two inequivalent quaternionic spinor representations, of
quaternionic dimension 2 D−4

2 , labeled by the eigenvalue of v∗ being 1 or −1;

Complex representations and the Lorentzian signature case

As it is significantly easier to deal with complex Clifford algebras, we turn our attention to
complex representations of C(D).

We recall
C(2k) ≃ C(2k) and C(2k + 1) ≃ C(2k) ⊕ C(2k), (A.16)

which implies there are faithful representations

Γ(2k) : C(2k) → End(C2k

) (A.17)

Γ(2k+1) : C(2k + 1) → End(C2k

) ⊕ End(C2k

), (A.18)

where Γ2k is irreducible and Γ2k+1 splits into two irreducible representations. These are precisely
the pinor representations of the complex Clifford algebra.
Remark A.2. The above irreducible representations are unique up to conjugacy with unitary
matrices. From now on, we drop the subscript and denote such representations just by Γ.
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Proposition A.6. Let s = 1 (i.e. only one time–like direction), d := r and k := ⌊d+1
2 ⌋.

Furthermore, let {v0, v1 · · · , vd} be a basis of VC such that in the Clifford algebra v2
0 = 1 and

vivj + vjvi = −2δij1 for all i, j = 1, · · · , d. Then there exists a choice of complex representation
Γ of C(d+ 1) on C2k (called Gamma representation) such that

(i) Γ0 := Γ(v0) is hermitian;

(ii) Γi := Γ(vi) is anti–hermitian for all i = 1, · · · , d;

(iii) Γ0 defines a hermitian form1 for all ψ1, ψ2 ∈ C2k as

⟨ψ1, ψ2⟩ := ψ†
1Γ0ψ2, (A.19)

where ψ† := (ψ∗)t denotes the canonical hermitian conjugate in C2k . Such pairing is called
Dirac pairing and, upon defining the Dirac conjugate as ψ̄ := ψ†Γ0, can be redefined as

⟨ψ1, ψ2⟩ = ψ̄1ψ2.

Remark A.3. In the physics context, ψ in C2k is called a Dirac spinor, although strictly speaking
it is a pinor, since C2k is the complex pinor representation as seen in (A.17) and (A.18). Fur-
thermore, following Dirac’s nomenclature, the matrices Γa in C(2k) are called gamma matrices.
Remark A.4. The Dirac conjugate definition extends to any operator A ∈End(C2k ) as

Ā := Γ−1
0 A†Γ0.

As it turns out, from the above proposition it follows

Γ†
a := Γ−1

0 ΓaΓ0 ∀a = 0, · · · , d, (A.20)

and noticing that Γ−1
0 = Γ0, it is easy to see that the gamma matrices are invariant under Dirac

conjugation, i.e. Γ̄a = Γa.
Furthermore, it is possible to prove that the spin group representation on C2k induced by the

gamma representation is unitary. Indeed, recalling that { 1
4vab} defines a basis of the Lie algebra

spin(1, d), and having defined Γab := Γ(vab) = 1
2 Γ(vavb − vbva) = 1

2 (ΓaΓb − ΓbΓa), one sees

Γ−1
0 (ΓaΓb)† Γ0 = Γ−1

0 Γ†
bΓ

†
aΓ0 = Γ−1

0 Γ−1
0 ΓbΓ0Γ−1

0 ΓaΓ0 = ΓbΓa,

therefore Γ−1
0 (Γab)†Γ0 = Γba = −Γab, hence implying (expanding the exponential)

Γ−1
0 exp

(
1
4ω

abΓab
)†

Γ0 = exp
(

−1
4ω

abΓab
)

= exp
(

1
4ω

abΓab
)−1

. (A.21)

Proof. We start by the case of D = 3 + 1 and prove the proposition by induction2. Consider the
Pauli matrices σa defined by

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0
0 −1

)
,

1A hermitian form on VC is given by an R−bilinear form ⟨−,−⟩ : V × V → C such that for all v1, v2 ∈ V and
λ ∈ C

• ⟨v1, λv2⟩ = λ⟨v1, v2⟩;
• ⟨v1, v2⟩∗ = ⟨v2, v1⟩, where (−)∗ denotes complex conjugation

2The cases where D = 1 and D = 2 have appeared in previous examples, while the case for D = 3 can be
derived from the D = 2 using the same induction method
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and set σ̄0 = σ0 and σ̄i = −σi for i = 1, 2, 3. Then a choice of gamma matrices is given by

Γa =
(

0 σa
σ̄a 0

)
.

One can easily check that this choice satisfies the Clifford condition, while Γ0 is hermitian and
Γi antihermitian for i = 1, 2, 3.

The fact that ⟨−,−⟩ is a hermitian form is an immediate consequence of Γ0 being hermitian.
Now, assuming there exists a gamma representation for D = 2k, given by matrices Γa, one

can define a gamma matrices Γ′
a for a = 0, · · · , D (i.e. a gamma representation for D + 1) as

follows

Γ′
a :=

{
Γa for a ≤ d

Γ′
d+1 = αΓ∗ = αΓ0Γ1 · · · Γd

where

α =
{

1 for k even
i for k odd

In a similar way, starting from gamma matrices for D = 2k, one obtains gamma matrices Γ′′
a

representing the complex D + 2 Clifford algebra as

Γ′′
a≤d :=

(
0 Γa

Γa 0

)
, Γ′′

d+1 :=
(

0 1
−1 0

)
, Γ′′

d+2 =
(
i1 0
0 i1

)
.

A.1.5 Charge conjugation and Majorana spinors in the Lorentzian sig-
nature

Before giving the definition of Majorana spinors, we first notice that the sets {±Γ∗
a} define two

new (equivalent) representations of the complex Clifford algebra C(D), therefore there must exist
a unitary matrix B such that

Γa = ηB−1Γ∗
aB, (A.22)

with η = ±1. By separately taking the complex conjugate and inverting the equation above we
find

Γ∗
a = ηB∗Γa(B∗)−1 = ηBΓaB−1,

implying Γa = B−1B∗Γa(B∗)−1B, which yelds

B∗ = ϵB−1, ϵ = ±1.

Notice that since B is unitary, then B† = B−1 = ϵB∗, implying Bt = ϵB. In general, ϵ depends
on η and can be found using a method due to Scherk [Sch79; KT83]. Upon defining the charge
conjugation matrix as

C := BtΓ0, (A.23)

from remark A.4 one can see Γ†
a = Γ0ΓaΓ0, but at the same time Γ†

a = (Γta)∗ = η(B−1)ΓtaBt,
hence finding

ΓtaC = ηCΓa, CC† = 1 and Ct = ϵηC. (A.24)

Now, first considering D = 2k, it is clear that the set {ΓA} := {1,Γa,Γab, · · · ,Γ0Γ1 · · · Γd},
generates the whole algebra of 2k × 2k complex matrices, as it is the image of (A.2) under the
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gamma representation. Clearly, for all A, CΓA are still generators of the whole algebra and
either symmetric or antisymmetric, depending on η as can be seen from (A.24). The problem of
counting how many of these matrices are antisymmetric is addressed in [Sch79], and it depends
on η, ϵ and D. However, we know that on C2k there are 2k

2 (2k − 1) independent antisymmetric
matrices. Eventually, one finds

ϵ = cos
(π

4 (d− 1)
)

− ηsin
(π

4 (d− 1)
)
.

In the even-dimensional case one can choose either signs for η = ±1, while in the case where
D = 2k + 1, one needs to require that Γd+1 transforms correctly under B (i.e. as in (A.22)),
which fixes η as

η = (−1)k.
We can now start discussing about Majorana spinors.

Definition A.7. A Majorana representation is a particular real representation (of C(V )). It
is possible to understand what types of Clifford algebras allow for such real representations by
looking at table A.1.2, but, in the context described above, we regard a Majorana representation
as a complex representation endowed with a real structure3.

The following theorem allows us to relate the real structure to the charge conjugation matrix.

Theorem A.2. Let D be such that ϵ = 1 as defined above, then

ϕ : C2k

→ C2k

: ψ 7→ Bψ∗

defines a real structure.

Remark A.5. In this particular case, one can use the charge conjugation matrix to define a
Spin(d, 1)–invariant complex bilinear form C : C2k × C2k → as

C(ψ1, ψ2) := ψt1 · C · ψ2, ∀ψ1, ψ2 ∈ C2k

.

Furthermore, there exist a choice of gamma matrices for which C is real.

Proof. Clearly ϕ is connjugate linear, while

ϕ2ψ = BB∗ψ = ϵψ = ψ.

Lastly, Spin(d, 1)–invariance amounts to checking that C is Spin(d, 1)–invariant, namely

(ΓaΓb)tC = ΓtbΓtaC = ηΓtbCΓa = CΓbΓa,

implying (Γab)tC = −CΓab, hence satisfying

exp
(

1
4ω

abΓab
)t

Cexp
(

1
4ω

abΓab
)

= C.

3Given a complex linear representation of a Lie group ρ : G →End(W ) on a complex vector space W , a real
or quaternionic structure is a real linear map φ : W → W such that

• φ2 = idW

• φ(λv) = λ∗v, i.e. φ is conjugate linear;
• φ is invariant under ρ, i.e. it commutes with the image of all elements of G under ρ, [φ, ρ(g)] = 0.
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Remark A.6. When ϵ = −1, the above proof still holds, but in this case ϕ2 = −id, hence defining
a quaternionic structure.

Definition A.8. Assume ϵ = 1 for some k, then a (s)pinor ψ ∈ C2k satisfying the reality
condition

ϕ(ψ) = Bψ∗ = ψ, (A.25)

is said to be Majorana when η = −1 and pseudo-Majorana when η = 1.

Remark A.7. It is customary to rephrase the above condition in terms of the charge conjugation
matrix, noticing that B = ϵCΓ0, one obtains that, under the above assumptions, ψ is Majorana
when

CΓ0ψ
∗ = ψ.

The following table contains information on the allowed values of ϵ and η in various dimen-
sions.

η = 1 η = −1
ϵ = 1 D = 1, 2, 8 mod 8 D = 2, 3, 4 mod 8
ϵ = −1 D = 4, 5, 6 mod 8 D = 6, 7, 8 mod 8

A.2 Spin coframe formalism, i.e. defining spinor fields on
manifolds

In the previous section, we saw the algebraic construction and classification of Clifford algebras
and spinors. This section is dedicated to investigating the local structure of such objects in the
context of differential geometry, with the goal of providing a framework that allows to treat the
definition of supergravity in the same formulation found in [CS19b; CCS21a]. The main part
follows [LM90], [Fat+98] and [NF22] for the spin frame definition. For a detailed review of the
"bosonic" coframe formalism, reference [Tec19a] is recommended.

A.2.1 Basic notions on principal bundles
In the following, we assume M to be a pseudo-riemannian manifold of dimension D.

Definition A.9. Let G be a Lie group. A principal G-bundle π : P → M is a fiber bundle such
that

• There exists a smooth right action R : P × G → P which is free, i.e. such that R(p, e) :=
pė = p for all p ∈ P , letting e ∈ G be the identity;

• π : P → M is diffeomorphic as a bundle to P → P/G.

Remark A.8. Notice that, since R is free, any orbit Op := {q ∈ P | ∃g ∈ G s.t. q = p · g} =
[p] ∈ P/G is isomorphic to G. Then points x ∈ M is in one-to-one correspondence with orbits
[p] ∈ P/G, and each fiber is isomorphic to the group G, as π−1(x) = [p] = Op ≃ G.

Definition A.10. Given a G-principal bundle P , a trivialization of P is a collection (Uα, ϕα),
with α is an element of an index set I, such that

• U := {Uα}α∈I is an open cover of M ,
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• ϕα : π−1(Uα) → Uα ×G are diffeomorphisms

• letting Uαβ := Uα∩Uβ , transition functions ϕαβ : Uαβ×G → Uαβ×G are given by (smooth)
functions gαβ : Uαβ → G via left action as ϕαβ : (x, h) 7→ (x, gαβ · h) and must respect the
cocycle identity

gαβ · gβγ · gγα = e, for all x ∈ Uαβγ . (A.26)

Remark A.9. In general, a principal bundle can be recovered by pasting together its local data,
i.e. pasting the local products {Uα × G} via the transition functions gαβ . Indeed, it is possible
to show that any principal G−bundle P is equivalent to a pair (U , {gαβ}), where U is an open
cover and {gαβ : Uαβ → G} are functions satisfying the cocycle condition.4

Definition A.11. Two G-principal bundles P and P ′ over M are equivalent if there exists a
homeomorphism H : P → P ′ such that the following diagram commutes

P P ′

M

H

π π′

and such that H is equivariant, i.e. H(p · g) = H(p) · g for all g ∈ G and p ∈ P .

It is interesting to understand such definition at the level of local trivialization, which will
allow us to describe the set of inequivalent principal G–bundles over M . First of all, let P and
P ′ be defined respectively by (U , {gαβ}) and (U , {g′

αβ}) as in the above remark. They induce
trivializations (ϕα) and (ϕ′

α), which allow to define

Hα := ϕ′
α ◦H ◦ ϕ−1

α : Uα ×G → Uα ×G.

Now, since π′ ◦ H = π, we must have that Hα(x, g) = (x, hα(x, g)) for some hα : Uα × G → G.
Now, using equivariance, we obtain

Hα(x, g · f) = Hα(x, g) · f ⇒ hα(x, g · f) = hα(x, g) · f,

which implies that Hα(x, g) = (x, hα(x, e) · g) = (x, gα(x) · g), having defined gα(x) := hα(x, e).
The relation between the transition functions can be understood by noticing that, by definition
of equivalence, the following diagram must commute

Uαβ ×G π−1(Uαβ) Uαβ ×G

Uαβ ×G (π′)−1(Uαβ) Uαβ ×G

ϕ−1
α

ϕβα

Hα

ϕβ

H Hβ

ϕ′−1
α

ϕ′
βα

ϕ′
β

therefore ϕ′
βα = Hβ ◦ ϕβα ◦H−1

α , implying

g′
αβ = g−1

α · gαβ · gβ .
4The cocycle condition is equivalent to the Cech coboundary condition, and gαβ is nothing but a Cech 1–cocycle

with coefficients in G (to be precise, with coefficients in the sheaf of germs of smooth maps to G).
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Hence (U , {gαβ}) and (U , {g′
αβ}) define equivalent bundles P and P ′ iff there exists a family

gα : Uα → G of smooth functions such that g′
αβ = g−1

α · gαβ · gβ . Upon inspection, one realizes
that this is nothing but a Cech-coboundary condition (in the multiplicative sense), and therefore
g′
αβ and gαβ only "differ by an exact term", where gα acts as a "Cech 0-cochain". Therefore one

can see an equivalence class of principal G–bundles as an element of H1(U ;G).
Letting (Ui) be a family of open covers such that for i > j Ui ⊂ Uj , then one can define

H1(M ;G) as the direct limit (in the categorical sense)

H1(M ;G) = limiH
1(Ui;G).

Notice that this set is strictly speaking not a group, but contains an identity given by the trivial
principal bundle M ×G. If G is abelian, then H1(M ;G) is just the first Cech cohomology group
with coefficients in G.

Definition A.12. The frame bundle LM → M is a principal GL(D,R)–bundle defined by

LM =
⋃
x

LxM, LxM := {ea = (e0, · · · , ed) | (ea) is a basis of TxM}.

with trivialisation given by ϕα : π−1(Uα) → Uα × GL(D,R) : (x, ea) 7→ (x, eµa), having set µ =
0, · · · , d

Remark A.10. One can see that the transition functions between two charts with local coordinates
{x} and {x′} act via left action as e′µ

a = ∂x′µ

∂xν e
ν
a .

Assuming that M is orientable, and having chosen a Lorentzian metric g on it, one can define
the orthonormal frame bundle as the subbundle of the frame bundle containing orthonormal
frames, i.e.

SO(M, g) := {ea ∈ LM | g(ea, eb) = ηab},

where ηab is the Minkowski metric.
Remark A.11. Notice that SO(M, g) is a principal SO(d, 1)–bundle. Furthermore, for a given
metric g, there exist more than one ON basis, as for any ea ON and for any Λ ∈ SO(d, 1), also
e′
b = eaΛab satisfies g(e′

a, e
′
b) = ηab. However, the viceversa is not true, indeed for each ON basis

ea there is a unique metric g with respect to which it is orthonormal.
As it turns out, it is particularly useful to consider the dual notion of an ON frame, namely

an ON coframe, the dual basis eb with respect to a given frame ea, i.e. such that

eb(ea) = δba.

This motivates the following definition

Definition A.13. Given a principal SO(d, 1)–bundle PSO, a veilbein map is a principal bundle
morphism ẽ : PSO → LM satisfying verticality and equivariance, i.e. such that the following two
diagrams commute

PSO LM PSO LM

M PSO LM

ẽ

π π

ẽ

·Λ ·Λ

ẽ

where Λ is an element of SO(d, 1) possibly seen as an element of GL(d+ 1,R).
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Choosing a local section sα : Uα → PSO, on the overlap of two patches Uαβ transition
functions Λαβ : Uαβ → SO(d, 1) act via right action as

sβ = sα · Λαβ .

As it turns out, it is sufficient to know ẽ on sα to know it on the whole π−1(Uα), indeed ẽ(sα(x)) =
(x, αea(x)), where ea(x) is a frame defining a basis of TxM , then thanks to equivariance, for all
p ∈ π−1(Uα), there exists a Λ ∈ SO(d, 1) such that p = sα · Λ, hence ẽ(p) = ẽ(sα · Λ) = ẽ(sα) · Λ.

It is then clear that a vielbein map uniquely defines a family of frames differing by orthonormal
transformations on overlaps of the patches. It is also easy to see that the viceversa is true, and
as a consequence, keeping in mind remark A.11, a vielbein map uniquely defines a metric g (with
respect to which ea is ON) on M via the dual frame, i.e.

gµν = eaµe
b
νηab.

It becomes even clearer when one takes the image of PSO under ẽ, finding

ẽ(PSO) = {(x, ea) | (ea) is a basis of TxM , and g(ea, eb) = ηab} ≃ SO(M, g).

This observation motivates the following definition:

Definition A.14. Let (V, η) be a real D−dimensional vector space endowed with the Minkowski
metric, and let ρ : SO(d, 1) → V be the fundamental representation of the Lorentz group on V ,
then the Minkwoski bundle V is the associated bundle5

V = PSO ×ρ V,

With this definition, it is clear that the vielbein map is in 1-to-1 correspondence with linear
isomorphisms between TM and V, as they are given by coframes (called vielbein field) dual to
the ones defined by the vielbein map. In particular, choosing a local basis {va} of V and local
coordinates x on M , one has

e : TM ∼→ V, e = eaµdx
µva s.t. eaµe

µ
b = δab .

A.2.2 Spin structures and the equivalence with spin (co)frames
Definition A.15. Let Ps be a Spin(d, 1)–principal bundle over (M, g), a spin structure is a pair
(Ps,Σ) such that Σ: Ps → SO(M, g) is an equivariant principal morphism, i.e. such that the
following diagrams commute

Ps SO(M, g) Ps SO(M, g)

M Ps SO(M, g)

Λ

π π

Λ

·S ·l(S)

Λ

where S ∈ Spin(d, 1) and l : Spin(d, 1) → SO(d, 1) is the double covering defined in the previous
chapter.

Remark A.12. In general it is not true that every orientable pseudoriemannian manifold admits
a spin structure, but, as we will see, there are topological requirements that need to be assumed
for it to be true.

5Here PSO ×ρ V is defined to be the quotient PSO × V/ ∼, where (p, v) ∼ (q, w) if there exists a Λ ∈ SO(d, 1)
such that q = p · Λ and w = ρ(Λ)−1 · v
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We notice that the notion of spin structure is similar to the one of equivalence of principal
bundles, so it might be useful to rephrase the problem of understanding when a spin structure
exists in terms of equivalence of bundles.

We saw earlier that H1(M ;G) is the set of inequivalent principal G–bundles. Borrowing some
results from the theory of Cech cohomology, one can prove that if

1 → K
i→ G

j→ G′ → 1

is a short exact sequence of topological groups, then there is an exact sequence at the level of
cohomology, given by

1 → H0(M ;K) i∗→ H0(M ;G) j∗→ H0(M ;G′) ∂∗→ H1(M ;K) i∗→ H1(M ;G) j∗→ H1(M ;G′),

where ∂ is the Cech coboundary operator and H0(M ;G) is the global sections of G seen as
0-cocycles.6 It is also possible to prove, if K is abelian, that the sequence can be extended to

· · · → H1(M ;K) → H1(M ;G) → H1(M ;G′) → H2(M ;K).

Therefore, considering the short exact sequence (A.14) 0 → Z2 → Spin(d, 1) l→ SO(d, 1) → 0,
we can define the second Stiefel-Whitney class as the induced map w2 in the exact sequence

w2 : H1(M ; SO(d, 1)) → H2(M ; Z2)

H1(M ; Spin(d, 1)) l∗−→ (M ; SO(d, 1)) w2−→ H2(M ; Z2)

Theorem A.3. (M,G) admits a spin structure if and only if w2([SO(M, g)]) = 0.

Proof. When considering the orthonormal frame bundle SO(M, g), and in particular its equiv-
alence class [SO(M, g)] ∈ H1(M ; SO(d, 1)), we see that the second Stiefel-Whitney class of
[SO(M, g)] vanishes if and only if [SO(M, g)] ∈ Im(l∗), which tells us that the orthonormal
bundle is induced by a Spin bundle, and in particular l∗ defines a spin structure.

To see it more explicitly, let (U , {gαβ}) be a cocycle representing SO(M, g), with U defined
such that each non empty Uαβ is simply connected. We can lift the gαβ to functions {g̃αβ : Uαβ →
Spin(d, 1)} and define Kαβγ := g̃βγ ·(g̃αγ)−1 · g̃αβ7 on Uαβγ . Clearly l(Kαβγ) = 1 as this is exaclty
the cocycle identity for SO(M, g), implying Kαβγ ∈ Z2. Furthemore, it is easy to notice that
(∂K)αβγδ = 1, hence it defines a cocycle, which represents the second Stiefel-Whitney class. In
particular w2 = 0 translates to

[K] = {Kαβγ · (∂λ)αβγ | λαβ : Uαβ → Z2} = 1

It is clear that [K] = 1 iff K = ∂λ. Defining g̃′
αβ := λ−1

αβ · gαβ , it is easy to show that g̃′
αβ is a

cocycle (i.e. satisfy the cocycle identity), hence it is possible to reconstruct a Spin-bundle from
(U , {g̃′

αβ}), showing there are no obstructions for the existence of a spin structure.
Conversely, if one assumes that a spin structure exists, then it is immediate to see [K] = 1

because the lifted transition functions automatically satisfy the cocycle identity.
We are only left with showing that [K] is independent of the choice of trivialization and on

the choice of the lift. We start by showing the independence on the choice of lift of {gαβ}. Let
6Indeed the cocycle identity is exactly the requirement that the local sections can be glued to a global one on

the overlap of the patches Uα.
7Notice that this is almost a coboundary as g̃βγ(g̃αγ)−1g̃αβ = (∂g̃)αβγ , however it is not because g̃αβ does

not take values in Z2, namely g̃αβ is not a Z2-cochain.
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καβ be some 1–cochain inducing g̃”αβ = g̃αβ · καβ . This defines a new lift K” which is in the
same equivalence class as K, as K” = K · ∂κ.

Now we can choose different local sections {g′
αβ} for the original SO–bundle. We have previ-

ously seen that g′
αβ = g−1

α · gαβ · gβ , which, after choosing a lift g̃α, gives K ′
αβγ = g̃−1

β ·Kαβγ · g̃β .
Now, since K ′

αβγ ∈ Z2, then g̃β and its inverse are both either 1 or −1, so K ′
αβγ = Kαβγ .

As one can notice, so far we needed to fix a metric in order to define a spin strucutre. Now,
we introduce an equivalent approach that does not rely on such assumption, and therefore is
more suitable to work with theories where the metric is a dynamical field.
Definition A.16. Given a principal Spin(d, 1)–bundle Ps, a spinbein map is a principal bundle
morphism ê : PS → LM satisfying verticality and equivariance, i.e. the following diagrams
commute

Ps LM Ps LM

M PSO LM

ẽ

π π

ẽ

·Λ ·Λ

ẽ

As before, the spinbein defines a moving frame on sections ŝα : Uα → Ps as ê(ŝα(x)) =
(x, α(ea)), where αea = αe

µ
a∂µ. On intersections the frames change by right action of an orthogo-

nal transformation seen as the image under l of a Spin transformation Sαβ defining the transition
functions, i.e.

ê(ŝβ) = ê(ŝα) · Sαβ ⇒ β(ea) = α(eb)lba(Sαβ).
Remark A.13. Also in this case, by dualizing the frames, one can induce unquely a metric on M as
gµν = eaµe

b
νηab. Exactly as before, the image of Ps under ê turns out to be the orthogonal bundle

SO(M, g). Furthermore, lifting l to a bundle map l̂ : Ps → PSO, it is clear that a trivialization
on Ps induces one on PSO via l̂, and for each family of sections ŝα we obtain sections sα := l̂ ◦ ŝ.
Equivalently, one obtains that the following diagram commutes

Ps LM

PSO

M

p̂

ê

l̂

π

p

e

(A.27)

Notice that also a vielbein map e equivalent to the one introduced in the previous chapter is
introduced.

The reason for the last statement is clear when one defines the associated bundle

V̂ := Ps ×ρ̂ V,

where ρ̂ is the vector (i.e. spin 1) representation of Spin(d, 1) on V. Notice however how every
integer spin representation λ̂ of Spin(d, 1) is the same as a representation of SO(d, 1), as it factors
through the double cover λ̂ = λ◦ l. In particular, this tells us that V̂ ≃ V and that a spin coframe

e : TM ∼−→ V̂

produces the same dynamics as the vielbein field. The advantage of using spin bundles is that of
being able to define associated vector bundles with respect to half-integer spin representations,
i.e. spinor bundles.
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Theorem A.4. [NF22] A spinbein map ê on M exists if and only if a spin structure exists on
(M, g) for some metric g.

Proof. Given a spinbein map ê : Ps → LM , it induces a spin structure just by restricting the
target to the image of ê, i.e.

Σ: Ps
ê−→ ê(Ps) = SO(M, g),

where in this case g is the metric induced by the coframe defined by ê. Conversely, if Σ : Ps →
SO(M, g) is a spin structure, one can induce a spinbein map ê := ι̂ ◦ Σ, where ι̂ : PSO → LM is
the inclusion in the frame bundle.

Having proved this, it is clear that using spin coframes is allowed exactly when spin structures
exist, and viceversa, hence we can regard it as an equivalent description.

Finally, we have all the ingredients to define spinor bundles.

Definition A.17. Let VC be the complexification of the D-dimensional real vector space V . By
the discussion in the previous chapter, we know that, depending on the parity of D, there exist
faithful representations of the Clifford algebra C(VC) = C(V )C. In particular, we are interested in
the gamma representation Γ of proposition A.6, which allows to define the Dirac spinor bundle
as

SD := PS ×Γ C2
D
2

Sections of SD are called Dirac spinor fields. Furthermore, when the dimension allows it, one
can also define the subbundle of Majorana spinors as

SM :=
⋃
x∈M

{(x, ψ) ∈ SD,x | CΓ0ψ
∗ = ψ}.

A.2.3 Lemmata about spin coframes
As anticipated in chapter 2, throughout the thesis we will be relying heavily on the properties
of coframes. Here we provide a quick recap of some results appearing in [Can24] and some other
original ones, both in the bulk and on the boundary.8

We start by defining the following spaces

Ω(i,j) := Ωi(M,∧jV) Ω(i,j)
∂ := Ωi(Σ,∧jV|Σ) (A.28)

where V is identified with V̂ and e is a spin coframe, and maps

W
(i,j)
k : Ω(i,j) −→ Ω(i+k,j+k) : α 7−→ ek ∧ α, (A.29)

W
∂(i,j)
k : Ω(i,j)

∂ −→ Ω(i+k,j+k)
∂ : α 7−→ ek ∧ α, (A.30)

where
ek := e ∧ · · · ∧ e︸ ︷︷ ︸

k times

.

Such maps have been studied in previous papers (notably in [CS19c; CCS21a] and [Can24]. The
following diagram [Can24] indicates the properties of W (i,j)

1 and W ∂,(i,j)
1 , in particular a hooked

8There will be no distinction between the boundary and the bulk fields, as their definition will be clear from
the context.
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arrow indicates injectivity while a two–headed arrow indicates surjectivity. In the bulk we have

Ω(0,0) Ω(0,1) Ω(0,2) Ω(0,3) Ω(0,4)

Ω(1,0) Ω(1,1) Ω(1,2) Ω(1,3) Ω(1,4)

Ω(2,0) Ω(2,1) Ω(2,2) Ω(2,3) Ω(2,4)

Ω(3,0) Ω(3,1) Ω(3,2) Ω(3,3) Ω(3,4)

Ω(4,0) Ω(4,1) Ω(4,2) Ω(4,3) Ω(4,4)

(A.31)

whereas on the boundary one obtains

Ω(0,0)
∂ Ω(0,1)

∂ Ω(0,2)
∂ Ω(0,3)

∂ Ω(0,4)
∂

Ω(1,0)
∂ Ω(1,1)

∂ Ω(1,2)
∂ Ω(1,3)

∂ Ω(1,4)
∂

Ω(2,0)
∂ Ω(2,1)

∂ Ω(2,2)
∂ Ω(2,3)

∂ Ω(2,4)
∂

Ω(3,0)
∂ Ω(3,1)

∂ Ω(3,2)
∂ Ω(3,3)

∂ Ω(3,4)
∂

(A.32)

Lemma A.4. [CS19c; CCF22; CF25] The following maps are isomorphisms:

1. W (0,2)
2 : Ω(0,2) → Ω(2,4),

2. W (2,0)
2 : Ω(2,0) → Ω(4,2),

3. W (1,1)
2 : Ω(2,0) → Ω(3,3),

4. W (0,0)
4 : Ω(0,0) → Ω(4,4),

5. ϱ(0,1) : Ω(0,1) → Ω(1,0).

6. ϱ(3,4) : Ω(3,4) → Ω(4,3).

Lemma A.5 ([CCS21a]). Let α ∈ Ω2,1
∂ . Then

α = 0 ⇐⇒

{
eα = 0
ϵnα ∈ ImW

∂,(1,1)
1

. (A.33)

Lemma A.6 ([CCS21a]). Let β ∈ Ω2,2
∂ . If g∂ is nondegenerate, there exist a unique v ∈

KerW ∂,(1,2)
1 and a unique ρ ∈ Ω1,1

∂ such that

β = eρ+ ϵn[e, v].
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Lemma A.7. Let a ∈ Ω(1,2)
∂ . Then

a = 0 ⇐⇒

{
ea = 0
ϵna ∈ Im(W ∂(0,2)

e )
.

Proof. Let I ⊂ R be an interval with {xn} coordinate on it and let M̃ := Σ × I. Then E :=
e+ ϵndx

n ∈ Γ(M̃,V) defines a non-degenerate vielbein on M . Let A := a+ bdxn ∈ Ω1(M̃,∧2V),
with b ∈ Ω(0,2)

∂ .
Then the above system is equivalent to the the equation E ∧A = ea+ (eb− ϵna)dxn = 0. By

diagram (A.31), E ∧ · is injective, hence E ∧A = 0 iff A = 0, implying a = 0.

Lemma A.8. For all k̃ ∈ Ω(2,1)
∂ there exists a unique decomposition k̃ = ǩ + r such that

er = 0, ϵnǩ ∈ Im(W ∂,(1,1)
e ).

Proof. From A.6, we know there exists a unique decomposition

ϵnk̃ = eǎ+ ϵn[e, b̌],

with b̌ ∈ Ker(W ∂,(1,2)
e ). Define r := [e, b̌] and ǩ := k̃ − r. This implies

ϵnǩ = eǎ ∈ Im(W ∂,(1,1)
e ) er = e[e, b̌] = [e, eb̌] − [e, e]b̌ = 0.

For uniqueness, assume there exist k̃ = ǩ1 + r1 = ǩ2 + r2 such that r1, r2 ∈ Ker(W ∂(1,2)
e ) and

ϵnǩ1, ϵnǩ2 ∈ Im(W ∂,(1,1)
e ). Then we obtain the following system{

ϵn(ǩ1 − ǩ2) = ϵn(r2 − r1) ∈ Im(W ∂,(1,1)
e )

e(r2 − r1) = 0.

By lemma A.7, we have that r2 = r1, implying ǩ1 − ǩ2 = r2 − r1 = 0.

Lemma A.9. Let Θ ∈ Ω(1,3)
∂ . Then there exist unique α ∈ Ω(0,2)

∂ and β ∈ Ker(W ∂(1,2)
e ) such

that
Θ = eα+ ϵnβ.

Proof. Consider the map

ρ : Ker(W ∂(1,2)
e ) → Ω(1,3)

∂

β 7→ ϵnβ.

Then assume ∃β ∈ Ker(W ∂(1,2)
e ) such that ρ(β) = ϵnβ = 0. Lemma A.7 implies that β = 0,

hence ρ is injective.
We can then deduce that dim(Imρ)=dim( Ker(W ∂(1,2)

e ) )=6. In the same way, since W ∂(0,2)
e is

injective, dim(Im(W ∂(0,2)
e ))=6=dim(Ω(0,2)

∂ ). Hence dim(Im(W ∂(0,2)
e ))+ dim(Imρ)=12=dim(Ω(1,3)

∂ ).
Now we just need to prove that Im(W ∂(0,2)

e ) ∩ Imρ = {0}.
Assume ∃0 ̸= β ∈ Ker(W ∂(1,2)

e ) such that for some α ∈ Ω(0,2)
∂

ϵnβ = eα.

Then, by lemma A.7, setting a = v, we automatically obtain β = 0, contradicting the hypothesis.
Hence Im(W ∂(0,2)

e ) ∩ Imρ = {0}, implying Ω(1,3)
∂ ≃ ImW ∂(0,2)

e ⊕ Imρ. Uniqueness follow from the
injectivity of ρ and W

(0,2)
e .
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Definition A.18. The previous lemma allows to define maps

α∂ : Ω(1,3)
∂ → Ω(0,2)

∂ β∂ : Ω(1,3)
∂ → Ω(1,2)

∂

Θ 7→ α∂(Θ) Θ 7→ β∂(Θ);

such that Θ = eα∂(Θ) + ϵnβ∂(Θ).

Lemma A.10. The map 1
3!ϵne

3 : Ω(0,0)
∂ → Ω(3,4)

∂ is an isomorphism.

Proof. It is immediate to see that Ω(3,0)
∂ ≃ Ω(3,4)

∂ as Γ(Σ,∧4V) ≃ C∞(Σ) upon choice of an
orientation. The same is true for Ω(3,0)

∂ ≃ Ω(0,0)
∂ , hence we have Ω(0,0)

∂ ≃ Ω(3,4)
∂ . Therefore

showing that the above maps are isomorphisms is equivalent to showing that they are nowhere
vanishing, which is obvious from their defininition.

Remark A.14. If one does the computation directly, letting ẽ be the tetrad in the bulk and
denoting the transversal (to the boundary) index by n, it’s possible to see that VolM = 1

4! ẽ
4 =

1
3! ẽ

3ẽndx
n. Restricting to the boundary, we have ẽn = υϵn+ιζe, where υ ∈ C∞(Σ) and ζ ∈ X(Σ).

In particular, υ is a nowhere vanishing function, hence, upon restriction to the boundary, one
finds

VolΣ = 1
3!

(
υϵne

3 + ιζ(e)e3)
= 1

3!υϵne
3 ⇒ 1

3!ϵne
3 = 1

υ
VolΣ,

Corollary A.2. The map
1
3!e

3γ : Ω(0,0)
∂ (ΠSM ) → Ω(3,4)

∂ (ΠSM )

is an isomorphism.

Proof. By direct inspection, 1
3!e

3γ = 1
3!ϵne

3γn. Since γn is invertible9, A.10 implies the desired
result.

A.3 Tools and identities
A.3.1 Basic Identities on gamma matrices
Let a = 0, · · · , d. Setting Γa1···an := Γ[a1Γa2 · · · Γan], we present a list of well known identities10

adjusted to the mostly plus signature:

ΓaΓa = −D; (A.34)
ΓaΓbΓa = (D − 2)Γb; (A.35)
ΓaΓbΓcΓa = (4 −D)ΓbΓc + 4ηbc1; (A.36)
ΓaΓbΓcΓdΓa = (D − 6)ΓbΓcΓd − 4ηcdΓb − 4ηbcΓd + 4ηbdΓc; (A.37)

Γa1···ar = 1
2 (Γa1Γa2···ar − (−1)rΓa2···ar Γa1) ; (A.38)

ΓaΓa1···ar Γa = (−1)r+1(D − 2r)Γa1···ar ; (A.39)

Γa1···arb1···bsΓb1···bs
= (−1)r (D − r)!

(D − r − s)!Γ
a1···ar (A.40)

9{γn, γn} = 2(γn)2 = −2g(nn) ̸= 0 implies (γn)−1 = − 1
gnn

γn
10which the reader can easily check by permuting the gamma matrices using their defining equations
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In D = 4, where we denote gamma matrices with {γa}, having set γ5 := iγ0γ1γ2γ3, the
following identities hold:

γaγbγcγdγa = 2γdγcγb; (A.41)
γaγbγc = −ηabγc − ηbcγa + ηacγb + iϵdabcγdγ

5; (A.42)

γ5γcd = − i

2ϵ
abcdγab; (A.43)

γaγ5 = iϵabcdγbcd. (A.44)

Considering {va} basis for V , we set Γ := Γava11 and define the bracket [·, ·] to encompass the
action of spin(d, 1) ≃ ∧2V on ∧jV , i.e extend by linearity and graded Leibniz (on the first and
second entries) the following

[va, ·] : ∧k V −→ ∧k−1V

α = 1
k!α

a1···akva1 · · · vak
7−→ 1

(k − 1)!ηaa1α
a1···akva2 · · · vak

we obtain

[va,ΓN ] = N [va,Γ]ΓN−1 +N(N − 1)vaΓN−2, N ≥ 2; (A.45)
= (−1)N−1(NΓN−1Γa +N(N − 1)ΓN−2va). (A.46)

Now we are interested in the cases when the expression containing spinors is real (whether
it is because it contains Majorana-type spinors or because we are dealing with real quantities
defined via Dirac spinors). In particular, in most of the relevant computations, denoting complex
conjugation by (·)∗, one considers iA− iA∗, where A is any expression containing spinors. Here
we list some recurring expressions:

[va,Γ]ΓN − (−1)NΓN [va,Γ] = −2NvaΓN−1; (A.47)
[Γ,Θ]Γ2 − Γ2[Γ,Θ] = 4NΓΘ ∀ (A.48)

χ̄γ3[α,ψ] = 3χ̄γψ + (−1)|α| 1
2 χ̄[α, γ3]vψ, (A.49)

for all α ∈ ∧2V, θ ∈ ∧D−3V , Θ ∈ ∧NV and even Majorana spinors χ and ψ, having defined

[α,ψ] := 1
4 [γ, [γ, α]]V ψ = −1

4α
abγabψ,

having considered the split [α, γ] = [α, γ]C + [α, γ]V = 0, since an element in ∧2V ≃ spin(d, 1)
acts both via the Gamma representation and on V via the fundamental representation.

Another important identity derived from the ones above, is the following

χ̄γ[α,ψ] = 3χ̄γψα+ 1
2 χ̄[α, γ3]V ψ, (A.50)

which is true for all χ, ψ ∈ SM and α ∈ ∧2V .

11From now on we will omit the ∧ symbol and automatically assume that for all B ∈ V , BN = B∧· · ·∧B ∈ ∧NV .



A.3. TOOLS AND IDENTITIES 107

A.3.2 Identities on Majorana spinors
Majorana flip relations

Let D = 2k, 2k+1. Given any two Majorana spinors ψ and χ (for which, we recall, ϵ = 1, η = −1)
of arbitrary parity, denoting Γ = Γava ∈ End(C2k ) ⊗ V , we have the following

χ̄ψ = −(−1)|χ||ψ|ψ̄χ; (A.51)
χ̄Γψ = (−1)|ψ|+|χ|+|ψ||χ|ψ̄Γχ; (A.52)
χ̄Γ2ψ = (−1)|ψ||χ|ψ̄Γ2χ; (A.53)
χ̄Γ3ψ = −(−1)|ψ|+|χ|+|ψ||χ|ψ̄Γ3χ; (A.54)

In general, one finds

χ̄ΓNψ = −tN (−1)N(|ψ|+|χ|)+|ψ||χ|ψ̄ΓNχ, (A.55)

where tN is defined from (CΓN )t = −tNCΓN and is such that tN+4 = tN .12 The first 4
parameters read

t0 = 1, t1 = −1, t2 = −1, t3 = 1,
while the general formula is

tN = (−1)⌊
N+1

2 ⌋. (A.56)

Fierz identities

As stated in (A.2), one can find a basis of the Clifford algebra using products of elements of the
basis of V . In the context of the gamma representation, the Clifford product is mapped into
matrix multiplication, hence a basis is given in terms of products of gamma matrices as {Γ[A]} :=
{1,Γa,Γab, · · · ,Γa0···ad}, where [A] represents the number of factors in the basis element, also
known as the rank of the basis element. We define {Γ[A]} :== {1,Γa,Γba, · · · ,Γad···a0} with
lower indices in the opposite order, as it helps with signs arising in the computations.

Starting by the even dimensional case where D = 2k, we aim at using the generators {Γ[A]}
to obtain any matrix on C(2k). Indeed, on C(2k), one has the obvious pairing introduced by the
trace operator, i.e. ∀M,N ∈ C(2k), (M,N) := Tr(MN†).

It can be shown that, for even dimensions D = 2k, one has the following property

Tr(Γ[A]Γ[B]) = (−1)[A]2kδ[A]
[B], (A.57)

where for a generic index set [A] = a1 · ar, δ[A]
[B] := δa1···ar

b1···br
:= δ

[a1]
b1

· · · δar]
br

. The above relation
allows to expand any matrix M ∈ C(2k) as a linear combination of products of gamma matrices,
i.e.

M =
∑
A

m[A]Γ[A] with m[A] = (−1)[A]

2m Tr(MΓ[A]).

Denoting by α = 1, · · · , 2k the spinor indices, following [FV12], one can consider δβαδδγ as a matrix
with entries labelled by indices β and γ, while α and δ are just dummy inert indices. Applying
the above formula we obtain

δβαδ
δ
γ =

∑
A

(m[A])δα(Γ[A])βγ , (m[A])δα = (−1)[A]

2k δβαδ
δ
γ(Γ[A])γβ = (−1)[A]

2k (Γ[A])δα,

12A closer inspection reveals t0 = t3 = −ϵη = 1, t1 = t2 = −ϵ,
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obtaining

δβαδ
δ
γ =

∑
A

(−1)[A]

2k (Γ[A])δα(Γ[A])βγ

We are interested in the decomposition of γaγa in even dimensions. We obtain

(Γa)ρα(Γa)δσ = (Γa)ρβ(Γa)γσδβαδδγ

= (Γa)ρβ(Γa)γσ
∑
A

(−1)[A]

2k (Γ[A])δα(Γ[A])βγ

=
∑
A

(−1)[A]

2k (Γ[A])δα(ΓaΓ[A]Γa)ρσ.

From (A.39), we see ΓaΓ[A]Γa = (−1)[A]+1(D − 2[A])Γ[A], hence obtaining

(Γa)ρα(Γa)δσ =
∑
A

(2[A] −D)
2k (Γ[A])ρσ(Γ[A])δα (A.58)

Now we consider the case D = 4. We can use the charge conjugation matrix to lower the
indices of the gamma matrices13 and obtain (γa)·

αβ := Cαδ(γa)δβ . Furthermore, we symmetrize
the part in (βρδ) obtaining

(γa)·
α(β(γa)·

ρδ) = 1
4

[
−4Cα(δCρβ) − 2(γa)·

α(δ(γa)·
ρβ) − 0 + 2(γabc)·

α(δ(γabc)·
ρβ) + 4(γ5)·

α(δ(γ5)·
ρβ)

]
= −1

2(γa)·
α(δ(γa)·

ρβ) = 0,

Having used that C(αβ) = 0, (γabc)·
(ρβ) = 0 and that (γ5)·

(ρβ) = 0, as a consequence of the fact
that

(γa1···ar )·
αβ = −tr(γa1···ar )·

βα. (A.59)
Then one finds

(γa)·
α(β(γa)·

ρδ) = 0. (A.60)
Contracting with 4 Majorana spinors λi’s (i = 1, · · · , 4) of arbitary parity, we obtain

λ̄1γ
3λ2λ̄3γλ4 = (−1)|λ2||λ3|λ̄1γλ3λ̄2γ

3λ4 + (−1)|λ4|(|λ2|+|λ3|+1)+|λ3|λ̄1γλ4λ̄2γ
3λ3; (A.61)

λ̄1γ
3λ2λ̄3γλ4 = −(−1)|λ2||λ3|λ̄1γ

3λ3λ̄2γλ4 − (−1)|λ4|(|λ2|+|λ3|+1)+|λ3|λ̄1γ
3λ4λ̄2γλ3. (A.62)

A.3.3 Lemmata and other facts about spinor fields
The following section regroups a series of results which are cited throghout the thesis. They
involve some identities and lemmata about spinor in the spin coframe formalism in D = 4, both
in the bulk and on the boundary.

Lemma A.11. The map

Θ(1,0) : Ω(1,0)(ΠSD) −→ Ω(2,4)(ΠSD)

ψ 7−→ 1
3!eγ

3ψ

is injective.
13It is also useful to adopt this formalism when dealing with scalar quantities defined in terms of spinors. For

example, we have χ̄α = χβCαβ and Cβα := δϵαCϵβ .
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Proof. Using vavbvcvd = ϵabcdVolV

1
3!eγ

3ψ = 1
3!e

aγbcdψvavbvcvd

= 1
3!ϵabcde

aγbcdψVolV
(A.44)= 1

3! iγ
5eaγaψVolV = 0 ⇔ [e, γ]ψ = 0.

Now [e, γ]ψ = 0 if and only if γ[µψν] = 0, which is uniquely solved by ψ = 0, hence proving Θ(1,0)

is injective.

Lemma A.12. The map

Θ(1,0)
γ : Ω(1,0)(ΠSD) −→ Ω(3,4)(ΠSD)

ψ 7−→ 1
3!eγ

3γψ

is an isomorphism, where γ := [e, γ] = γµdx
µ

Proof. First of all, from the previous proof we know eγ3 = iγ5[e, γ] = iγ5γVolV . Then

eγ3γψ = iγ5γ2ψVolV = 0 ⇔ γ2ψ = 0 ⇔ γ[µγνψρ] = 0.

The latter is a system of 4 equations whose solution (due to invertibility of the gamma matrices)
is uniquely given by ψρ = 0. This shows that Θ(1,0)

γ is injective, but since dim Ω(1,0) = dim Ω(3,4)

and Θ(1,0)
γ is linear, by the rank theorem dim Im(Θ(1,0)

γ ) = dim Ω(3,4) hence it is also surjective.

Remark A.15. By the same reasoning (or just by taking the Dirac conjugate of the above ex-
pression), one finds that also the map

ψ 7−→ 1
3!eγγ

3ψ

is an isomorphism.

Lemma A.13. For all θ ∈ Ω(3,1)(ΠSM ) there exist unique α ∈ Ω(1,0)(ΠSM ) and β ∈
Ω(3,1)(ΠSM ) such that

θ = ieγα+ β and γ3β = 0. (A.63)

Proof. We start by considering the map (eγ)(1,0) : Ω(1,0) → Ω(3,1) : α 7→ eγα. We see that
eγα = 0 implies γα+ 0 due to injectivity of W (1,0)

e [Can24], while

γα = 0 ⇔ γ[µαν] = 0 ⇔ αν = 0,

hence implying that (eγ)(1,0) is injective.
Now, defining (γ3)(3,1) : Ω(3,1) → Ω(3,4) : β 7→ γ3β, we notice that γ3β = VolV [γ, β]V , hence

ker((γ3)(3,1)) = {β ∈ Ω(3,1) | [γ, β] = 0}. We have

[γ, β] = γaβ
a
µνρ = 0,
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which is a system of 4 independent equations, implying dim(ker((γ3)(3,1))) = dim(Ω(3,1))−4 = 12.
Now, since (eγ)(1,0) is injective, it is immediate to see that

dim(Ω(3,1)) = 16 = dim(Im((eγ)(1,0))) + dim(ker((γ3)(3,1))) = dim(Ω(1,0)) + dim(ker((γ3)(3,1))).

The claim is then proved once we show that Im((eγ)(1,0))∩ker((γ3)(3,1)) = {0}. This is immediate
since, by lemma A.12, for all α ∈ Ω(1,0),

γ3eγα = 0 ⇔ α = 0.

Lemma A.14. Let n ∈ N and γγn(i,j) be the map

γγn(i,j) : Ω(i,j) → Ω(i,j+n) : β 7→ γγnβ.

Then, for all θ ∈ Ω(2,1)(ΠSM ) there exist unique α ∈ Ω(1,0)(ΠSM ) and β ∈ ker γγ3
(2,1) such that

θ = eα+ β.

Proof. We see dim Im(W (1,0)
1 ) = dim Ω(1,0) = 4 as W (1,0)

1 is injective. On the other hand,
from A.12, we see Ω(3,4) = eγγ3Ω(1,0), implying in particular that γγ3

(2,1) is surjective, hence
dim ker(γγ3

(2,1)) = dim Ω(2,1) − dim Ω(3,4) = 20. Now, since dim Ω(2,1) = dim Im(W (1,0)
1 ) +

dim ker(γγ3
(2,1)), we just need to prove that Im(W (1,0)

1 )∩ker(γγ3
(2,1)) = {0}. Choosing α ∈ Ω(1,0),

we see
eα ∈ ker(γγ3

(2,1)) ⇔ eγγ3α = 0 ⇔ α = 0.

For uniqueness, assume there exist α1, α2 ∈ Ω(1,0) and β1, β2 ∈ ker(γγ3
(2,1)) such that θ =

eα1 + β1 = eα2 + β2, then

e(α1 − α2) = β2 − β1 ∈ ker(γγ3
(2,1)),

which implies α1 − α2 = 0, and β2 − β1 = 0.

Lemma A.15. For all λ, ψ, χ ∈ SM such that |χ| = 0 and |ψ| = 1, the following identities hold

λ̄γ3χχ̄γψ = 0, χ̄γχλ̄γ3ψ = 0 and λ̄γχχ̄γ3ψ = 0.

Proof. The proof of the above identity rely on subsequent applications of Fierz identities
(A.61) and (A.62) and Majorana flip relations. In particular λ̄γ3χχ̄γψ

(A.61)= λ̄γχχ̄γ3ψ +
(−1)|ψ|λ̄γψχ̄γ3χ = λ̄γχχ̄γ3ψ, having used (A.54). At the same time

λ̄γχχ̄γ3ψ
(A.54)= (−1)|λ|(|ψ|+1)χ̄γ3ψλ̄γχ

(A.61)= (−1)|λ|(|ψ|+1)
(

(−1)|λ||ψ|χ̄γψψ̄γ3χ+ (−1)|λ|χ̄γχλ̄γ3ψ
)

(A.52)(A.54)= −(−1)|ψ|λ̄γχχ̄γ3ψ + (−1)|λ||ψ|χ̄γχλ̄γ3ψ,

hence showing that when |ψ| = 1, χ̄γχλ̄γ3ψ = 0. Now at the same time we have

λ̄γ3χχ̄γψ
(A.62)= −λ̄γ3χ− (−1)|ψ|λ̄γ3ψχ̄γχ,

hence λ̄γ3χχ̄γψ = − 1
2 (−1)|ψ|λ̄γ3ψχ̄γχ = 0. Lastly, we saw that λ̄γχχ̄γ3ψ = λ̄γ3χχ̄γψ = 0.
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A.4 Proofs of section A.3
We now list the proofs of equations in A.3

• (A.45) and (A.46). We prove this by induction, first showing it holds for N = 2, 3 and then
proving the inductive step, having set Γa := ηabΓb = [va,Γ].

[va,Γ2] = ΓaΓ − ΓΓa = ΓaΓ − ΓbvbΓcηac = ΓaΓ + ΓcηacΓbvb + 2ηbcηacvb = 2ΓaΓ + 2va
= 2ΓcΓbηacvb + 2va = −2ΓΓa − 4ηcbηacvb + 2va = −2ΓΓa − 2va,

[va,Γ3] = [va,Γ2]Γ + Γ2Γa = −2ΓcΓdΓbηadvcvb − 2vaΓ + Γ2Γa
= 2ΓcΓbΓdηadvcvb + 4ηdbηadΓcvcvb + 2Γva + Γ2Γa = 3Γ2Γa + 6Γva
= ΓaΓ2 − Γ[va,Γ2] = ΓaΓ2 − 2ΓΓaΓ − 2Γva
= ΓaΓ2 + 2ΓbΓcΓdηadvbvc + 4ηcdηadΓbvbvc + 2vaΓ
= 3ΓaΓ2 + 6vaΓ.

Now assume (A.45) and (A.46) hold for N − 1, then

[va,ΓN ] = ΓaΓN−1 − Γ[va,ΓN−1] = ΓaΓN−1 − (N − 1)ΓΓaΓN−2 − (N − 1)(N − 2)ΓvaΓN−3

= NΓaΓN−1 + 2(N − 1)vaΓN−2 + (N − 1)(N − 2)vaΓΓN−2

= NΓaΓN−1 +N(N − 1)vaΓN−2

= [va,ΓN−1]Γ + (−1)N−1ΓN−1Γa
= (−1)N−2[(N − 1)ΓN−2Γa(N − 1)(N − 2)ΓN−3va]Γ + (−1)N−1ΓN−1Γa
= (−1)N−1(NΓN−1Γa +N(N − 1)ΓN−2va);

• (A.47) follows immediately by subtracting (A.45) from (A.46) applied to ΓN+1:

• (A.48). Consider Θ = 1
N ! Θa1···anva1 · · · vaN

, then

[Γ,Θ]Γ2 = (−1)|Θ|−N

(N − 1)! Θa1a2···aN va2 · · · vaN
ηa1aΓaΓbΓcvbvc

= − (−1)|Θ|−N

(N − 1)! Θa1a2···aN vcvbva2 · · · vaN
ηa1a(−4ηabΓc + ΓbΓcΓa)

= Γ2[Γ,Θ] + 4NΓΘ;

• (A.49) Consider α ∈ ∧2V with parity |α|, then for any Dirac spinor (of any parity) χ and
ψ we have χ̄γ3[α,ψ] = 1

4 χ̄γ
3γaγb[va, [vb, α]]ψ, so

γ3γaγb[va, [vb, α]] = −[va, γ3[vb, α]]γaγb + (3γ2γa + 6γva)[vb, α]γaγb

= −[va, (3γ2γb + 6γvb)γaγbα] − 6γ2[γ, α]V
= −6γ2[γ, α]V + [va, 12γvbηabα]
= −6γ2[γ, α]V + 36γα+ (−1)|α|12γvbηabαcdηcavd
= −12γα+ (1)|α|6γ2[α, γ]V .



112 APPENDIX A. SPINORS AND SPIN COFRAMES ON MANIFOLDS

Now, since [α, γ3]V = 3γ2[α, γ]V − (1)|α|12γα, one has that

γ3γaγb[va, [vb, α]] = (1)|α|2[α, γ3]V + 12γα,

hence
χ̄γ3[α,ψ] = 3χ̄γψ + (−1)|α| 1

2 χ̄[α, γ3]vψ.

• (A.51). We use the fact that Ct = −C, hence

χ̄ψ = χαCαβψ
β = (−1)|χ||ψ|ψβCαβχ

α = −(−1)|χ||ψ|ψβCβαχ
α = −(−1)|χ||ψ|ψ̄χ;

• (A.52). We denote by (Γa)·
αβ := Cαδ(Γa)δβ and by (Γa)αβ = δαϵ(Γa)ϵβ . Then, using

CΓa = −(Γa)tC, we have

(Γa)·
αδ = Cαβ(Γa)βδ = δαϵC

ϵ
β(Γa)βδ = −δαϵ(Γa,t)ϵβC

β
δ = −(Γa,t)αβCβδ

= −(Γa)βαCβδ = −(Γa)ϵαδϵβC
β
δ = −Cϵδ(Γa)ϵα = Cδϵ(Γa)ϵα

= (Γa)·
δα,

hence finding
Cαβ(Γa)βδ = −Cβδ(Γa)βα = Cδβ(Γa)βα. (A.64)

Now we have

χ̄Γψ = (−1)|ψ|χ̄αCαβ(Γa)βδψ
δva = (−1)|ψ|χ̄α(Γa)·

αβψ
βva

= (−1)|ψ|+|ψ||χ|ψβ(Γa)·
βαχ

αva = (−1)|χ|+|ψ|+|ψ||χ|ψ̄Γχ;

• (A.53). Recall Γab := Γ[aΓb] = 1
2 [Γa,Γb]. Now

(ΓaΓb)·
αβ = (Γa)·

αδ(Γb)δβ = (Γa)·
δα(Γb)δβ = Cδϵ(Γa)ϵα(Γb)δβ

= −Cϵδ(Γa)ϵα(Γb)δβ = −(Γb)·
ϵβ(Γa)ϵα = −(Γb)·

βϵ(Γa)ϵα
= −(ΓbΓa)·

βα,

implying (Γab)·
αβ = −(Γba)·

βα = (Γab)·
βα, finding

χ̄Γ2ψ = χ̄α(Γab)·
αβψ

βvavb = (−1)|ψ||χ|ψ̄β(Γab)·
βαχ

αvavb = (−1)|ψ||χ|ψ̄Γ2χ;

• (A.54). Again Γabc = Γ[aΓbΓc], and

(ΓaΓbΓc)·
αβ = (ΓaΓb)·

αδ(Γc)δβ = −(ΓbΓa)·
δα(Γc)δβ = −Cδϵ(ΓbΓa)ϵα(Γc)δβ

= Cϵδ(ΓbΓa)ϵα(Γc)δβ = (Γc)·
ϵβ(ΓbΓa)ϵα = (Γc)·

βϵ(ΓbΓa)ϵα
= (ΓcΓbΓa)·

βα,

implying (Γabc)·
αβ = −(Γabc)·

βα, which in turn gives

χ̄Γ3ψ = (−1)|ψ|χα(Γabc)·
αβψ

βvavbvc = −(−1)|ψ|+|ψ||χ|ψβ(Γabc)·
βαχ

αvavbvc

= −(−1)|ψ|+|χ|+|ψ||χ|ψ̄Γ3χ;
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• (A.55). In order to prove the general formula, we first have to prove

(Γa1···ar )·
αβ = −tr(Γa1···ar )·

βα.

In particular, we want to show that tr = (−1)⌊
r+1

2 ⌋. We know this is true for r = 0, 1, 2, 3
as we showed explicitly the values of tr in these cases. Now we prove the inductive step.
Consider

(Γa1···ar Γar+1)·
αβ = (Γa1···ar )·

αδ(Γar+1)δβ = −(−1)⌊
r+1

2 ⌋(Γa1···ar )·
δα(Γar+1)δβ

= (−1)⌊
r+1

2 ⌋Cϵδ(Γa1···ar )ϵα(Γar+1)δβ = (−1)⌊
r+1

2 ⌋(Γar+1)·
βϵ(Γa1···ar )ϵα

= (−1)⌊
r+1

2 ⌋(Γar+1Γa1···ar )·
βα,

implying

(Γa1···ar+1)·
αβ = (−1)⌊

r+1
2 ⌋(Γar+1a1···ar )·

βα = (−1)⌊
r+1

2 ⌋+r(Γa1···ar+1)·
βα

= −(−1)⌊
r+1

2 ⌋+r+1(Γa1···ar+1)·
βα = −(−1)⌊

r+2
2 ⌋(Γa1···ar+1)·

βα,

showing that tr+1 = (−1)⌊
r+2

2 ⌋ as expected.14 With this formula, we can now easily show

χ̄ΓNψ = (−1)N |ψ|χα((Γa1···aN )·
αβψ

βva1 · · · vaN

= −tN (−1)N |ψ|+|ψ||χ|ψβ(Γa1···aN )·
βαχ

αva1 · · · vaN

= −tN (−1)N(|ψ|+|χ|)+|ψ||χ|ψ̄ΓNχ

• (A.61) and (A.62). We consider four Majorana spinors λi of arbitrary parity. First we see
that

λ̄1γ
3λ2λ̄3γλ4 = −(−1)|λ2|+|λ3|λ̄1γ

bcdλ2λ̄3γ
aλ4vavbvcvd

= −4!(−1)|λ2|+|λ3|λ̄1γ
bcdλ2λ̄3γ

aλ4ϵabcdv0v1v2v3

(A.44)= −4!i(−1)|λ2|+|λ3|λ̄1γ
5γaλ2λ̄3γ

aλ4v0v1v2v3

= 4!i(−1)|λ2|+|λ3|λ̄1γaγ
5λ2λ̄3γ

aλ4v0v1v2v3,

having used {γ5, γa} = 0.. Redefining λ′
2 := γ5λ2 and λ̄′

1 := λ̄1γ
5 and setting v4 =

v0v1v2v3, we obtain

λ̄1γ
3λ2λ̄3γλ4 = −4!i(−1)|λ2|+|λ3|λ̄′

1γaλ2λ̄3γ
aλ4v

4 (A.65)
= 4!i(−1)|λ2|+|λ3|λ̄1γaλ

′
2λ̄3γ

aλ4v
4 (A.66)

We now apply (A.60) to the expressions containing γaγa. Explicitly

3λ′α
1 λ

β
2λ

ρ
3λ
δ
4(γa)·

α(β(γa)·
ρδ) = λ′α

1 λ
β
2λ

ρ
3λ
δ
4((γa)·

αβ(γa)·
ρδ + (γa)·

αρ(γa)·
βδ + (γa)·

αδ(γa)·
βρ)

= λ̄′
1γ
aλ2λ̄3γaλ4 + (−1)|λ2||λ3|λ̄′

1γ
aλ3λ̄2γaλ4

+ (−1)|λ4|(|λ2|+|λ3|)λ̄′
1γ
aλ4λ̄2γaλ3

= 0,

14Here we used the fact that (−1)⌊
n
2 ⌋+n = (−1)

⌊
n+1

2

⌋
, as one can easily check by separating the cases for

n = 2k, 2k + 1.
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substituing in (A.65) gives

λ̄1γ
3λ2λ̄3γλ4 = −i · 4!(−1)|λ2|+|λ3|[(−1)|λ2|+|λ3|λ̄1γ

5γaλ3λ̄2γ
aλ4

+ (−1)|λ4|(|λ2|+|λ3|)λ̄1γ
5γaλ4λ̄2γ

aλ3]v4

(A.44)= −(−1)|λ2||λ3|λ̄1γ
3λ3λ̄2γλ4 − (−1)|λ3|+|λ4|(|λ2|+|λ3|+1)λ̄1γ

3λ4λ̄2γλ3.

(A.61) is recovered in the same way applying (A.60) to (A.66).



Appendix B

Lengthy computations

B.1 Proofs of chapter 3

B.1.1 Theorem 3.2

Proof of theorem 3.2. We first compute the Hamiltonian vector fields of the constraints. To
make the notation lighter, we get rid of the apex PCD, as its use is implied in the following
computations.

δLc =
∫

Σ
[c, e]eδω +

(
edωc+ i

4e
2 (
ψγ[c, ψ] − [c, ψ]γψ

))
δe

+ i

2 · 3!e
3 [
δψ̄γ[c, ψ] − ψ̄γ[c, δψ] + [c, δψ̄]γψ + [c, ψ̄]γδψ

]
▼=

∫
Σ

[c, e]eδω +
(
edωc+ i

4e
2 (
ψγ[c, ψ] − [c, ψ]γψ

))
δe

+ ie3

3!
[
[c, ψ̄]γδψ + δψ̄γ[c, ψ]

]
− ie3

2 · 3!
[
δψ̄[c, γ]ψ + ψ̄[c, γ]δψ

]
=

∫
Σ

[c, e]eδω +
(
edωc+ i

4e
2 (

[c, ψ]γψ + ψγ[c, ψ]
))

δe

+ i

3!e
3

[
δψ

(
1
2 [c, γ]ψ + γ[c, ψ]

)
+

(
[c, ψ]γ − 1

2 ψ̄[c, γ]
)
δψ

]
,

where in the last passage we used that

ψ̄γ[c, δψ] = ψ̄[c, γ]δψ − [c, ψ̄]γδψ (B.1)
[c, δψ̄]γψ = δψ̄γ[c, ψ] − δψ̄[c, γ]ψ (B.2)

which can easily be proved using the following identity

jγjγcγ = −γjγjγc− 4jγc = −γjγjγc+ 4[c, γ]. (▼)
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We also get

δPξ =
∫

Σ
−eδe

(
Lω0
ξ (ω − ω0) + ιξFω0 − i

4e
(
ψγLω0

ξ (ψ) − Lω0
ξ (ψ)γψ

))
− Lω0

ξ (e)eδω + iδψ

(
− e3

2 · 3!γLω0
ξ (ψ)

)
+ ie3

2 · 3!ψγLω0
ξ (δψ)

− ie3

2 · 3!L
ω0
ξ (δψ)γψ − i

2 · 3!e
3Lω0

ξ (ψ)γδψ

=
∫

Σ
−eδe

(
Lω0
ξ (ω − ω0) + ιξFω0 − i

4e
(
ψγLω0

ξ (ψ) − Lω0
ξ (ψ)γψ

))
− Lω0

ξ (e)eδω − iδψ

(
e3

3! γLω0
ξ (ψ) − 1

2 · 3!L
ω0
ξ (e3)γψ

)
− i

(
e3

3! Lω0
ξ (ψ)γ + 1

2 · 3!L
ω0
ξ (e3)ψγ

)
δψ,

δHλ =
∫

Σ
λϵn

[
Fω + Λ

2 e
2 + i

e

2
(
ψγdωψ − dωψγψ

)]
δe+ dω(λϵne)δω

+ i

4λϵne
2
[
δψγdωψ − ψγdωδψ + dωδψγψ + dωψγδψ

+ ψγ[δω, ψ] − [δω, ψ]γψ
]

=
∫

Σ
λϵn

[
Fω + Λ

2 e
2 + i

e

2
(
ψγdωψ − dωψγψ

)]
δe+ dω(λϵne)δω

+ iδψ

[
λϵn

e2

4 γdωψ − dω

(
λϵn

e2

4 γψ
)]

+ i

[
λϵn

e2

4 dωψγ + dω

(
λϵn

e2

4 ψγ
)]

δψ

+ i

16λψ
(
jγjγ(ϵne2)γ − γjγjγ(ϵne2)

)
ψδω.

We are then left with

LPCDe = [c, e] LPCDψ = [c, ψ]
LPCDω = dωc+ VL LPCD

ψ
= [c, ψ]

PPCDe = −Lω0
ξ e PPCDψ = −Lω0

ξ (ψ)
PPCDω = −Lω0

ξ (ω − ω0) − ιξFω0 + VP PPCD
ψ

= −Lω0
ξ (ψ).

HPCDe = dω(λϵn) + λσ + i

4λψ (jγϵnjγeγ − γjγϵnjγe)ψ

eHPCDω = λϵn

(
Fω + λ

2 e
2
)

− i
λϵn
4 e(ψγdωψ − dωψγψ)

e3

3! γHPCDψ = λϵn
2 e2γdωψ − λϵn

4 edωeγψ + i

64λe
[
ψ

(
jγjγ(ϵne2)γ − γjγjγ(ϵne2)

)
ψ

]
γψ

e3

3! HPCD
ψ

γ = λϵn
2 e2dωψγ + λϵn

4 edωeψγ − i

64λeψγ
[
ψ

(
jγjγ(ϵne2)γ − γjγjγ(ϵne2)

)
ψ

]
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The Poisson brackets of the constraints are:

{Lc, Lc} =
∫

Σ
(· · · ) − i

4e
2

(
−1

4ψjγjγcγψ + 1
4ψγjγjγcψ

)
[c, e]

+ i

3!e
3[c, ψ]γ[c, ψ]

=
∫

Σ
(· · · ) + i

8 · 3!ψ(jγjγcγ − γjγjγc)ψ[c, e3]

+ i

16 · 3!e
3ψjγjγcγjγjγcψ

▼=
∫

Σ
(· · · ) − i

2 · 3!
(
[c, ψ]γψ − ψγ[c, ψ]

)
[c, e3]

+ i

32
e3

3!ψ (−γjγjγcjγjγc+ 4[c, γ]jγjγc− jγjγcjγjγcγ + 4jγjγc[c, γ])ψ

=
∫

Σ
(· · · ) + i

2 · 3!e
3 (
ψγ[c, [c, ψ]] − [c, [c, ψ]]γψ

)
=

∫
Σ

−1
2 [c, c]edωe+ i

4 · 3!e
3 (

[[c, c], ψ]γψ − ψγ[[c, c], ψ]
)

= −1
2L[c,c],

where in last few steps we used the graded Jacobi identity to prove

[c, [c, ψ] = −1
2 [[c, c], ψ]

and the fact that
γjγjγcjγjγc = jγjγcjγjγcγ + 4jγjγcjγc+ 4jγcjγjγc.

{Lc, Pξ} =
∫

Σ
(· · · ) − i

2 · 3!e
3

(
[c, ψ]γLω0

ξ ψ − ψγLω0
ξ ([c, ψ]) + Lω0

ξ ([c, ψ])γψ + Lω0
ξ ψγ[c, ψ]

)
− i

2 · 3! [c, e
3]

(
ψγLω0

ξ ψ − Lω0
ξ ψγψ

)
=

∫
Σ

(· · · ) − i

2 · 3!e
3(

[c, ψ]γLω0
ξ ψ + Lω0

ξ ψγ[c, ψ] − ψγ[Lω0
ξ c, ψ] + ψγ[c,Lω0

ξ ψ]

− [Lω0
ξ c, ψ]γψ − [c,Lω0

ξ ψ]γψ
)

− i

2 · 3! [c, e
3](ψγLω0

ξ ψ − Lω0
ξ ψγψ)

=
∫

Σ
(· · · ) − i

2 · 3!
(
[c, ψ]γLω0

ξ ψ + Lω0
ξ ψγ[c, ψ] − ψγ[Lω0

ξ c, ψ] + [Lω0
ξ c, ψ]γψ

− [c, ψ]γLω0
ξ ψ − ψ[c, γ]Lω0

ξ ψ − Lω0
ξ ψ[c, γ]ψ − Lω0

ξ ψγ[c, ψ]
+ ψ[c, γ]Lω0

ξ ψ + Lω0
ξ ψ[c, γ]ψ

)
=

∫
Σ

Lω0
ξ cedωe− i

2 · 3!e
3(

[Lω0
ξ c, ψ]γψ − ψγ[Lω0

ξ c, ψ]
)

= LLω0
ξ
c,

where in the second to last passage we used that
ψγ[c,Lω0

ξ ψ] = −[c, ψ]γLω0
ξ ψ − ψ[c, γ]Lω0

ξ ψ,

[c,Lω0
ξ ψ]γψ = Lω0

ξ ψ[c, γ]ψ + Lω0
ξ ψγ[c, ψ].
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{Lc, Hλ} = Lc(Hλ) =
∫

Σ
(· · · ) + λϵn

{
i

4 [c, e2]
(
ψγdωψ − dωψγψ

)
+ i

4e
2(

[c, ψ]γdωψ

− ψγdω[c, ψ] + dω([c, ψ])γψ + dωψγ[c, ψ]

+ ψγ[dωc, ψ] − [dωc, ψ]γψ
)}

▽=
∫

Σ
(· · · ) − [c, λϵn] i4e

2(
ψγdωψ − dωψγψ

)
− i

λϵn
4 e2

{
− ψ[c, γ]dωψ − dωψ[c, γ]ψ

+ ψ[c, γdωψ − ψγ[c, dωψ] + [dωc, ψ]γψ − [c, dωψ]γψ + [c, dωψ]γψ

+ dωψ[c, γ]ψ + ψγ[dωc, ψ] − [dωc, ψ]γψ − ψγ[dωc, ψ] + ψγ[c, dωψ]
}

=
∫

Σ
−[c, λϵn]

(
eFω + Λ

2 e
2 + i

4e
2(ψγdωψ − dωψγψ)

)
= −P[c,λϵn](a) −H[c,λϵn](a) + L[c,λϵn](a)(ω−ω0)(a)

having used the following identities, which can be easily found

dωψγ[c, ψ] = [c, dωψ]γψ + dωψ[c, γ]ψ,
[c, ψ]γdωψ = ψ[c, γ]dωψ − ψγ[c, dωψ].

(▽)

{Pξ, Pξ} =
∫

Σ
(· · · ) + i

2 · 3!L
ω0
ξ (e3)

(
ψγLω0

ξ ψ − Lω0
ξ ψγψ

)
− i

2 · 3!e
3{

− Lω0
ξ ψγLω0

ξ ψ

+ ψγLω0
ξ Lω0

ξ ψ − Lω0
ξ Lω0

ξ ψγψ − Lω0
ξ ψγLω0

ξ ψ
}

=
∫

Σ
(· · · ) − i

2 · 3!e
3{

Lω0
ξ ψγψ + ψγLω0

ξ Lω0
ξ ψ − Lω0

ξ Lω0
ξ ψγψ + Lω0

ξ ψγLω0
ξ ψ

− Lω0
ξ ψγLω0

ξ ψ + ψγLω0
ξ Lω0

ξ ψ − Lω0
ξ Lω0

ξ ψγψ − Lω0
ξ ψγLω0

ξ ψ
}

=
∫

Σ
(· · · ) − i

3!e
3(
ψγLω0

ξ Lω0
ξ ψ − Lω0

ξ Lω0
ξ ψγψ

)
♣=

∫
Σ

(· · · ) − i

2 · 3!e
3(
ψγLω0

[ξ,ξ]ψ − Lω0
[ξ,ξ]ψγψ

)
+ i

2 · 3!e
3(

[ιξιξFω0 , ψ]γψ − ψγ[ιξιξFω0 , ψ]
)

= 1
2P[ξ,ξ] − 1

2LιξιξFω0 ;
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{Pξ, Hλ} =
∫

Σ
(· · · ) + λϵn

{
− i

4Lω0
ξ (e2)(ψγdωψ − dωψγψ + i

4e
2[

− Lω0
ξ ψγdωψ

+ ψγdωLω0
ξ ψ − dωLω0

ξ ψγψ − dωψγLω0
ξ ψ

− ψγ[ιξFω0 + Lω0
ξ (ω − ω0), ψ] + [ιξFω0 + Lω0

ξ (ω − ω0), ψ]γψ
]}

=
∫

Σ
(· · · ) + iLω0

ξ (λϵn)e
2

4
(
ψγdωψ − dωψγψ

)
+ i

λϵn
4 e2{

ψγLω0
ξ dωψ

− Lω0
ξ dωψγψ + ψγdωLω0

ξ ψ − dωLω0
ξ ψγψ

− ψγ[ιξFω0 + Lω0
ξ (ω − ω0), ψ] + [ιξFω0 + Lω0

ξ (ω − ω0), ψ]γψ
}

♦=
∫

Σ
(· · · ) + iLω0

ξ (λϵn)e
2

4
(
ψγdωψ − dωψγψ

)
+ i

λϵn
4 e2{

ψγ[Lω0
ξ ω, ψ] − [Lω0

ξ ω, ψ]γψ

− ψγ[ιξFω0 + Lω0
ξ (ω − ω0), ψ] + [ιξFω0 + Lω0

ξ (ω − ω0), ψ]γψ
}

=
∫

Σ
(· · · ) + iLω0

ξ (λϵn)e
2

4
(
ψγdωψ − dωψγψ

)
+ i

λϵn
4 e2{

ψγ[Lω0
ξ ω0 − ιξFω0 , ψ]

− [Lω0
ξ ω0 − ιξFω0 , ψ]γψ

}
=

∫
Σ

Lω0
ξ (λϵn)

(
eFω + Λ

2 e
2 + i

4e
2(
ψγdωψ − dωψγψ

))
= PLω0

ξ
(λϵn)(a) +HLω0

ξ
(λϵn)(a) − LLω0

ξ
(λϵn)(a)(ω−ω0),

where we used that Lω0
ξ ω0 − ιξFω0 = −dιξω0 and the following identity:

Lω0
ξ dωψ = −dωLω0

ξ ψ + [Lω0
ξ ω, ψ]. (♦)

Furthermore, recalling that dω0γ = 0, it is quite easy to see that

ψγ[dιξω0, ψ] − [dιξω0, ψ]γψ = −[dιξω0, ψγψ] = 0.

Now, before computing {Hλ, Hλ}, we first notice that the Hamiltonian vector field associated
to Hλ can be rewritten as

eγHψ = 3λϵnγdωψ − 3
2λσγψ + 3i

8 λβ

eHψγ = 3λϵndωψγ + 3
2ψγλσ − 3

8 iλβ,

with β := ψ
(
jγϵnjγeγ − γjγϵnjγe

)
γψ, hence

{Hλ, Hλ} =
∫

Σ
i

[
λϵn
2 Hψe

2γdωψ − 1
4dω(λϵn)e2Hψγψ − λϵn

2 dωeeHψγψ

]
+ i

[(
λϵn
2 dωψ + 1

4dω(λϵn)ψ
)
e2γHψ + λϵn

2 dωeψeγHψ

]
=

∫
Σ

3
4 · 32dω(λϵn)λψγψ

[
ψ

(
jγjγ(ϵne2)γ − γjγjγ(ϵne2)

)
ψ

]
− 3

4 · 32dω(λϵn)λψγψ
[
ψ

(
jγjγ(ϵne2)γ − γjγjγ(ϵne2)

)
ψ

]
= 0,

where all the remaining terms vanish because they are either proportional to λ2 = 0 or ϵ2n = 0.
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B.1.2 Theorem 3.4
Proof of 3.4. First, we notice that the contraction of the symplectic form with a vector field
X ∈ X(FPCD

Σ ) is given by

ιXϖ =
∫

Σ
eXeδω +

[
eXω + i

4e
2(ψγXψ − Xψγψ)

]
δe (B.3)

+ iδψ

(
−e2

4 γψXe + e3

3! γXψ

)
+ i

(
e2

4 ψγXe + e3

3! Xψγ

)
δψ.

Then, we start giving the Hamiltonian vector fields of the constraints. For LPCDc and PPCDξ ,
from the non–degenerate case, we have

LPCDe = [c, e] LPCDψ = [c, ψ]
LPCDω = dωc LPCD

ψ
= [c, ψ]

PPCDe = −Lω0
ξ e PPCDψ = −Lω0

ξ (ψ)
PPCDω = −Lω0

ξ (ω − ω0) − ιξFω0 PPCD
ψ

= −Lω0
ξ (ψ).

Whereas, for Hψ
λ , we have

Hψe = dω(λϵn) + λσ + i

4λψ (ιγιγϵneγ − γιγιγϵne)ψ

eHψω = λϵn

(
Fω + Λ

2 e
2
)

− i
λϵn
4 e(ψγdωψ − dωψγψ)

e3

3! γHψψ = λϵn
2 e2γdωψ − λϵn

4 edωeγψ

+ i

64λe
[
ψ

(
ιγιγ(ϵne2)γ − γιγιγ(ϵne2)

)
ψ

]
γψ

e3

3! Hψ
ψ
γ = λϵn

2 e2dωψγ + λϵn
4 edωeψγ

− i

64λeψγ
[
ψ

(
ιγιγ(ϵne2)γ − γιγιγ(ϵne2)

)
ψ

]
,

where σ ∈ Ω1,1
Σ . Lastly, the Hamiltonian vector fields of RPCDτ , are given by

eRPCDe = [τ, e]

eRPCDω = δτ

δe
dωe+ dωτ

RPCDψ = RPCD
ψ

= 0,

since they coincide with the ones of the Palatini–Cartan theory of 2.4. Notice that, instead of
using the function g = g(τ, e, ω), we preferred expressing the variation of τ with respect to e by
means of the functional derivative δτ

δe
. However, we have the relation

g(τ, e, ω) = δτ

δe
dωe.
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Now, we are ready to compute the Poisson brackets of the constraints. From the non–degenerate
case, we have already knowledge of the following Poisson brackets

{PPCDξ , PPCDξ } = 1
2P

PCD
[ξ,ξ] − 1

2L
PCD
ιξιξFω0

{Hψ
λ , H

ψ
λ } = 0

{LPCDc , PPCDξ } = LPCDLω0
ξ
c {LPCDc , LPCDc } = −1

2L
PCD
[c,c]

{LPCDc , Hψ
λ } = −PPCDX(a) + LPCDX(a)(ω−ω0)a

−Hψ
X(n)

{PPCDξ , Hψ
λ } = PPCDY (a) − LPCDY (a)(ω−ω0)a

+Hψ
Y (n) ,

with X = [c, λϵn] and Y = Lω0
ξ (λϵn) as above. Therefore, we are left with computing the

remaining constraints. First, we notice that

{RPCDτ , LPCDc } = {Rτ , Lc} = −RpS [c,τ ] = −RPCDpS [c,τ ].

Similarly, we can also compute the bracket

{RPCDτ , PPCDξ } = {Rτ , Pξ} = RpS Lω0
ξ
τ = RPCDpS Lω0

ξ
τ .

Now, we move on to compute the brackets {RPCDτ , RPCDτ } and {RPCDτ , HPCD
λ }. The first

bracket is simply given by

{RPCDτ , RPCDτ } = {Rτ , Rτ} ≈ Fττ

with Fττ defined in Theorem 30 of [CCT21] and which is in general non-vanishing on the con-
straint submanifold. Whereas, for the second one, we obtain

{RPCDτ , Hψ
λ } =

∫
Σ

(
ϵn
δβ

δe
dωe+ dω(ϵnβ)

)(
dω(λϵn) + λσ

− iλ(ψγ[ϵne, ψ] − [ϵne, ψ]γψ)
)

+W−1
1 [ϵnβ, e]

(
λϵn(Fω + Λ

2 e
2)

− i

4λϵne(ψγdωψ − dωψγψ)
)

≈
∫

Σ
−iλβdωϵn(ψγ[ϵne, ψ] − [ϵne, ψ]γψ)

− i

4 [ϵnβ, e]λϵn(ψγdωψ − dωψγψ)

+Gλτ ,

where, in the last passage, we used 3.2 and the fact that ϵ2n = 0. Moreover, the quantity Gλτ is
defined in Theorem 30 of [CCT21]. Now, we can notice that, thanks to 3.2, we can write

λβdωϵn(ψγ[ϵne, ψ] − [ϵne, ψ]γψ) =

= λϵnedωϵn(ψγ[β, ψ] − [β, ψ]γψ)

= λeβ(ψγ[ϵndωϵn, ψ] − [ϵndωϵn, ψ]γψ)

= 0,
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obtaining

{RPCDτ , Hψ
λ } ≈ Gλτ −

∫
Σ

i

4 [ϵnβ, e]λϵn(ψγdωψ − dωψγψ).

Finally, we can write the integral as

{RPCDτ , Hψ
λ } ≈ Gλτ −

∫
Σ

i

4λτ [ϵn, ê](ψγdωψ − dωψγψ),

where we implemented again 3.1 and also the relation1

ϵn[τ, e] = τ [ϵn, ê] (B.4)

with ê defined as ê := e− ẽ (see 2.18). More specifically, using the definition of the independent
components of τ , we have

{RPCDτ , Hψ
λ } ≈ Gλτ +KPCD

λτ ,

with

KPCD
λτ := −

∫
Σ
iλ

( 2∑
µ=1

Yµ
(
ĝndωJψ

)3µ
µ

+
2∑

µ1 ̸=µ2=1
X µ2
µ1

(
ĝndωJψ

)µ1

3µ2

)
,

where ĝn := [ϵn, ê] ∈ Ω1,0
Σ and dωJψ := dω(ψγψ) ∈ Ω1,1

Σ .
This final result completes the proof.

B.1.3 Theorem 3.7

Proof of 3.7. We start by noticing that on M = I × Σ one has the following splitting

e = ẽ+ ẽn ω = ω̃ + ω̃n

eℲ = ẽℲ + ẽℲn ωℲ = ω̃Ⅎ + ω̃Ⅎ
n

ψ = ψ̃ ψℲ = ψ̃Ⅎ,n

c = c̃ cℲ = c̃Ⅎn

ξ = ξ̃ + ξ̃n ξℲ = ξ̃
Ⅎ + ξ̃

Ⅎ
n

If ϕ̃ ∈ C∞(I) ⊗ Ωk(Σ) denotes the field in FPCD(I × Σ), we denote by ϕ the corresponding field
in the BFV space of fields FΣ

PCD.

Remark B.1. Since by hypothesis we have that {ẽi, ϵn} form a basis of V, which is equivalent to
asking that ẽ define a non-degenerate metric on the boundary, we can decompose ẽn = ιz ẽ+µϵn,
where zi := ẽin and µ := ẽnn. Notice also that µ ̸= 0 necessarily, otherwise e would not define a
non–degenerate metric on M , which is required by assumption.

1It simply comes from the definition of S.
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We define φ on the above fields by

φ∗(ẽ) = e+ λµ−1fℲ φ∗(ẽn) = µϵn + ιze+ λϵinf
Ⅎ
i

φ∗(ω̃) = ω − λµ−1uℲ φ∗(ω̃n) = w − ιξu
Ⅎ − λϵinui

φ∗(ψ̃) = ψ + λµ−1θℲ φ∗(ψ̃Ⅎ,n) = e3

3! γθ
Ⅎ − 1

2e
2fℲγψ + 1

2λµ
−1e2fγθℲ

φ∗(c̃) = c− ιξ(λµ−1uℲ) φ∗(c̃Ⅎn) = cℲ

φ∗(ω̃Ⅎ) = kℲ φ∗(ω̃Ⅎ
n) = efℲ + ιzk

Ⅎ + ιξc
Ⅎ

φ∗(ξ̃i) = ξi − λµ−1zi φ∗(ξ̃Ⅎ) = eyℲ + fℲeℲ − uℲkℲ + cℲλµ−1uℲ

φ∗(ẽℲ) = eℲ − λµ−1yℲn φ∗(ξ̃n) = λµ−1

φ∗(ẽℲn) = euℲ + ιze
Ⅎ − λϵiny

Ⅎ
i + λµ−1fℲuℲ − i

4e
2θ̄

Ⅎ
γψ − i

4e
2λµ−1θ̄

Ⅎ
γθℲ − i

2λµ
−1efℲθ̄

Ⅎ
γψ + c.c.

φ∗(ξ̃Ⅎ
n
) = (µϵn + ιze)yℲ + efℲuℲ + fℲιze

Ⅎ + uℲιzk
Ⅎ + cℲλϵinu

Ⅎ
i − i

2 · 3!e
3θ̄

Ⅎ
γθℲ − i

4e
2fℲθ̄

Ⅎ
γψ + c.c.

We remark that, after setting ψ = 0 and θℲ = 0, the φ defined above coincides with the one
defined in the PC AKSZ theory in [CCS21b] appearing in 2.13. This implies that, if one splits
ϖM
PCD = ϖM

PC +ϖM
D and SMPCD = SMPC + SMD , by theorem 2.8 one has

φ∗(ϖM
PC) =

= ϖAKSZ
PC +

∫
I×Σ

− i

2 · 3!δ(e
3)

(
δθℲγψ + θℲγδψ

)
1

− i

4δ(λµ
−1)fℲδ(e2)θℲγψ

2

− i

4δ(λµ
−1)fℲe2

(
δθℲγψ3 + θℲγδψ4

)
+ i

4λµ
−1δfℲδ(e2)θℲγψ

5

+ i

4λµ
−1δfℲe2

(
δθℲγψ6 + θℲγδψ7

)
+ i

2 · 3!δ(e
3)δ(λµ−1)θℲγθℲ

8

− i

3!δ(e
3)λµ−1δθℲγθℲ

9
+ i

4δ(λµ
−1)fℲδ(λµ−1)e2θℲγθℲ

10

− i

2δ(λµ
−1)fℲ

[
1
2λµ

−1δ(e2)θℲγθℲ
11

+ λµ−1e2δθℲγθℲ12

]
− i

4λµ
−1δfℲδ(λµ−1)e2θℲγθℲ

13
+ i

2 · 3!δ(λµ
−1)δ(e3)θℲγθℲ

14

+ i

3!δ(λµ
−1)e3δθℲγθℲ

15
− i

4δ(λµ
−1)

(
δ(e2)fℲθℲγψ

16
+ e2δfℲθℲγψ17

)
+ i

4δ(λµ
−1)

(
e2fℲδθℲγψ18 + e2fℲθℲγδψ19

)
− i

4δ(e
2)

[
δ(λµ−1)fℲθ̄Ⅎγψ

20
− (λµ−1)δfℲθ̄Ⅎγψ

21

]
− i

4δ(e
2)

[
λµ−1fℲδθ̄

Ⅎ
γψ22 + (λµ−1)fℲθ̄Ⅎγδψ

23

]
+ c.c.

(B.5)

where "c.c." encapsulates all the complex conjugates of the above terms except the real ones (e.g.
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iδθγδθ). One also finds

φ∗(ϖM
D ) =

∫
I×Σ

i

2δφ
∗( ˜̄ψ

Ⅎ
)δ(φ∗ψ̃)

=
∫
I×Σ

i

3!δ(e
3)θ̄Ⅎγ

(
δψ1 + δ(λµ−1)θℲ

2
− λµ−1δθℲ3

)
+ i

3!e
3δθγ

(
δψ4 + δ(λµ−1)θℲ

5
− λµ−1δθℲ6

)
− i

4δ(e
2)fℲψ̄γ

(
δψ7 + δ(λµ−1)θℲ

8
− λµ−1δθℲ9

)
− i

4e
2δfℲψ̄γ

(
δψ10 + δ(λµ−1)θℲ

11
− λµ−1δθℲ12

)
+ i

4e
2fℲδψ̄γ

(
δψ13 + δ(λµ−1)θℲ

14
− λµ−1δθℲ15

)
− i

4λµ
−1δ(e2)fℲθℲγ

(
δψ16 + δ(λµ−1)θℲ

17

)
− i

4λµ
−1e2δfℲθℲγ

(
δψ18 + δ(λµ−1)θℲ

19

)
+ i

4λµ
−1e2fℲδθℲγ

(
δψ20 + δ(λµ−1)θℲ

21

)
+ i

4δ(λµ
−1)e2fℲθℲγ

(
δψ22 + δ(λµ−1)θℲ

23
− λµ−1δθℲ24

)
+ c.c.

(B.6)

We now proceed to show that (3.37) coincides with φ∗(ϖM
PCD). We see

• The terms (B.5.1) + (B.6.1) + (B.6.4)(B.6.7) + (B.6.10) + (B.6.13) exactly reproduce the
terms inside (3.37).

• (B.5.2) + (B.5.16) + (B.5.20) + (B.6.17) = 0

• (B.5.3) + (B.5.18) = 0

• (B.5.4) + (B.5.19) + (B.6.14) + (B.6.19) = 0

• (B.5.5) + (B.5.21) = 0

• (B.5.6) + (B.6.12) = 0

• (B.5.7) + (B.6.18) = 0

• (B.5.8) + (B.5.14) = 0

• (B.5.9) + (B.6.3) = 0

• (B.5.10) + (B.6.23) = 0

• (B.5.11) + (B.6.17) = 0

• (B.5.12) + (B.6.24) = 0

• (B.5.13) + (B.6.19) = 0

• (B.5.15) + (B.6.5) = 0

• (B.5.17) + (B.6.11) = 0

• (B.5.17) + (B.6.11) = 0

• (B.5.22) + (B.6.9) = 0

• (B.5.23) + (B.6.16) = 0

• (B.6.15) + (B.6.20) = 0.
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We now move to show that φ∗(SMPCD) = SAKSZPCD . We start by computing the terms inside
φ∗(SMPC) that depend ψ and θℲ, which appear in φ∗(ẽℲn) and φ∗(ξ̃Ⅎn). We use the following

φ∗(Lω̃
ξ̃
ẽ+ dω̃n

ẽξ̃n + ẽndξ̃
n − [c̃, ẽ]) =

= Lωξ e+ Lωξ (λµ−1fℲ) − λµ−1Lωz (e) − λµ−1Lωz (λµ−1)fℲ + dω(λµ−1)ιze
+ λµ−1∂ne+ λµ−1∂n(λµ−1)fℲ + λµ−1[w, e] − λµ−1[ιξuℲ, e]
+ d(λµ−1)(µϵn + ιze− λµ−1ιzf

Ⅎ) − [c, e] + λµ−1[c, fℲ],

φ∗(Lω̃
ξ̃
ψ̃ + dω̃n

ψ̃ξ̃n − [c̃, ψ̃]) =

= Lωξ ψ + Lωξ (λµ−1θℲ) − λµ−1Lωz (ψ) − λµ−1Lωz (λµ−1)θℲ

+ λµ−1∂nψ + λµ−1∂n(λµ−1)θℲ + λµ−1[w,ψ] − λµ−1[ιξuℲ, ψ]
− [c, ψ] + λµ−1[c, θℲ],

and that φ∗([ξ̃, ξ̃]n = Lωξ (λµ−1) − λµ−1Lωz (λµ−1)) + Lωz (λµ−1)∂n(Lωz (λµ−1)).

We then find

φ∗(SMPC) = SAKSZPC +

+
∫

i

2 · 3!e
3θ̄

Ⅎ
γθℲ(Lωξ (λµ−1)

1
− λµ−1Lωz (λµ−1)

2
+ λµ−1∂n(λµ−1)

3
)

+ i

4e
2fℲθ̄

Ⅎ
γψ(Lωξ (λµ−1)

4
− λµ−1Lωz (λµ−1)

5
+ λµ−1∂n(λµ−1)

6
)

+ i

4e
2θ̄

Ⅎ
γψ

(
Lωξ e7

+ Lωξ (λµ−1fℲ8 − λµ−1Lωz e9
− λµ−1Lωz (λµ−1)fℲ

10

)
+ i

4e
2θ̄

Ⅎ
γψ

(
d(λµ−1)ιze11

+ λµ−1∂ne12 + λµ−1∂n(λµ−1)fℲ
13

+ λµ−1[w, e]
14

− λµ−1[ιξuℲ, e]15

)
+ i

4e
2θ̄

Ⅎ
γψ

(
d(λµ−1)(µϵn16 + ιze17 − λµ−1ιzf

Ⅎ
18) − [c, e]

19
+ λµ−1[c, fℲ]

20

)
+ i

4λµ
−1e2θ̄

Ⅎ
γθℲ

(
Lωξ e21

+ Lωξ (λµ−1)fℲ
22

− d(λµ−1)ιze23
+ d(λµ−1)(µϵn24 + ιze25) − [c, e]

26

)
+ i

4λµ
−1e2fℲθ̄

Ⅎ
γψ

(
Lωξ e27

− d(λµ−1)ιze28
+ d(λµ−1)(µϵn29 + ιze30) − [c, e]

31

)
+ c.c.

(B.7)
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We also have

φ∗(SMD ) = φ∗
∫
I×Σ

i

4 ẽ
2ẽn

¯̃ψγdω̃ψ̃ + i

2 · 3! ẽ
2 ¯̃ψγdω̃

n
ψ̃ + i ¯̃ψℲ,n(Lω̃

ξ̃
ψ̃ + dω̃n

ψ̃ξ̃n − [c̃, ψ̃])

=
∫
I×Σ

i

4µϵn
(
ψ̄γ(dωψ1 + d(λµ−1θℲ

2

)
) + i

4λϵne
2

(
ψ̄γ(dωθℲ3 + [uℲ, ψ]

4
) + θ̄

Ⅎ
γ(dωψ5 + d(λµ−1)θℲ

6
)
)

+ i

2 · 3! ιze
3

[
ψ̄γ(dωψ7 + dω(λµ−1θℲ)

8
− λµ−1[uℲ, ψ]

9
) + λµ−1θ̄Ⅎγ(dωψ10 + d(λµ−1)θℲ

11
)
]

+ i

4λµ
1ιz(e2fℲ)ψ̄γ(dωψ12 + d(λµ−1)θℲ

13
) + i

2λϵnf
Ⅎψ̄γdωψ14 + d(λµ−1)θℲ

15
)

+ i

2 · 3!e
3ψ̄γ

(
∂n(ψ16 + λµ−1θℲ17) + [w,ψ18 + λµ−1θℲ19] − [ιξuℲ, ψ20 + λµ−1θℲ21]

)
+ i

2 · 3!e
3ψ̄γλµ−1[ιzuℲ, ψ]

22
+ i

2 · 3!λµ
−1e3θ̄γ(∂nψ23

+ ∂n(λµ−1)θℲ
24

+ [w,ψ]
25

− [ιξuℲ, ψ]
26

)

+ i

4λµ
−1e2fℲψ̄γ(∂nψ27

+ ∂n(λµ−1)θℲ
28

+ [w,ψ]
29

− [ιξuℲ, ψ]
30

)

+ i

3!e
3θ̄

Ⅎ
γ

(
(Lωξ ψ31

+ Lωξ (λµ−1θℲ)
32

− λµ−1Lωz ψ33
− λµ−1Lωz (λµ−1)θℲ

34
+ λµ−1∂nψ35

)
+ i

3!e
3θ̄

Ⅎ
γ

(
λµ−1∂n(λµ−1)θℲ

36
+ λµ−1[w,ψ]

37
− λµ−1[ιξuℲ, ψ]

38
− [c, ψ]

39
+ λµ−1[c, θℲ]

40

)
− i

2e
2fℲψ̄γ

(
(Lωξ ψ41

+ Lωξ (λµ−1θℲ)
42

− λµ−1Lωz ψ43
− λµ−1Lωz (λµ−1)θℲ

44
+ λµ−1∂nψ45

)
− i

2e
2fℲψ̄γ

(
λµ−1∂n(λµ−1)θℲ

46
+ λµ−1[w,ψ]

47
− λµ−1[ιξuℲ, ψ]

48
− [c, ψ]

49
+ λµ−1[c, θℲ]

50

)
+ i

2λµ
−1e2fℲθ̄γ

(
(Lωξ ψ51

+ Lωξ (λµ−1θℲ)
52

− [c, ψ]
53

)
+ c.c

(B.8)

We confront the above with equation (3.38) and see

• (B.8.31) + (B.8.39) + (B.7.7) + (B.7.1) = − i
2·3!e

3θ̄Ⅎγ(Lωξ ψ− [c, ψ]) − i
2·3!e

3ψ̄γ(Lωξ θ− [c, θ])

• all the other terms inside (3.38) are given by (B.8.16) + (B.8.18) + (B.8.20) + (B.8.41) +
(B.8.49).

The remainder in (B.7) and (B.8) must vanish. Indeed

• (B.7.1) + (B.7.21) + (B.7.23) + (B.8.32) = 0

• (B.7.2) + (B.7.22) + (B.7.25) + (B.8.11) + (B.8.34) + +(B.8.52) = 0

• (B.7.3) + (B.8.24) + (B.8.36) = 0

• (B.7.4) + (B.7.8) + (B.7.27) + (B.8.22) + (B.8.42) + (B.8.51) + (B.8.43) = 0

• (B.7.5) + (B.7.10) + (B.7.18) + (B.7.28) + (B.7.30) + (B.8.13) + (B.8.44) = 0

• (B.7.6) + (B.7.13) + (B.8.28) + (B.8.36) = 0

• (B.7.9) + (B.7.11) + (B.7.17) + (B.8.8) + (B.8.10) + (B.8.33) = 0

• (B.7.12) + (B.8.17) + (B.8.35) + (B.8.23) = 0

• (B.7.14) + (B.8.25) + (B.8.37) + (B.8.19) = 0
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• (B.7.15) + (B.8.21) + (B.8.38) + (B.8.19) + +(B.8.38) = 0

• (B.7.16) + (B.8.2) + (B.8.26) + (B.8.19) = 0

• (B.7.20) + (B.7.31) + (B.8.50) + (B.8.53) = 0

• (B.7.24) + (B.8.6) = 0

• (B.7.26) + (B.8.40) = 0

• (B.7.29) + (B.8.15) = 0

• (B.8.18) + (B.8.22) = 0

• (B.8.18) + (B.8.22) = 0

• (B.8.27) + (B.8.45) = 0

• (B.8.29) + (B.8.47) = 0

• (B.8.30) + (B.8.48) = 0

So far we have proved that defining φ : FAKSZPCD → FPCD is such that φ∗(ϖM
PCD) = ϖAKSZ

PCD and
φ∗(SMPCD) = SAKSZPCD . However, we also notice that the image of ϕ is given by the restricted BV
PCD fields, i.e. ϕ(FAKSZ

PCD ) = Fr
PCD. Indeed

φ∗(WℲ) = φ∗
(
ω̃Ⅎ
n − ιξ̃ c̃

Ⅎ
n − ιz̃(ω̃Ⅎ − c̃Ⅎnξ̃

n)
)

= efℲ ∈ Im(W ∂,(1,1)
e )

and in the same way

φ∗
(
ϵn

(
dω̃ ẽ+ i

4(ψ̄γ[e2, ψ] − [e2, ψ̄]γψ)
)

− ϵnW
−1
ẽ (W)dξ̃n + ιX̂(ω̃Ⅎ

n − c̃Ⅎnξ̃
n)

)
= e(σ + λµ−1B),

for some σ and B. This concludes the proof.

B.2 Proofs of chapter 4

B.2.1 Theorem 4.2

proof of 4.2. Having obtained the Hamiltonian vector fields of the constraints, we can compute
their Poisson brackets. The pure gravity sector has been computed in [CCS21a], we refer to it
for the details, and concentrate on the Rarita-Schwinger sector.

Remark B.2. In the following, instead of the definition via the symplectic form {F,G} =
ιXF

ιXG
ϖ, we use the equivalent formulation {F,G} = XF (G)(= ιXF

δG = ιXF
ιXG

ϖ).
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{Lc, Lc} =
∫

Σ
−[c, c]edωe+ 1

3! [c, e]ψ̄γ
3[c, ψ] + 1

3!e
(
[c, ψ̄]γ3[c, ψ] + ψ̄γ3[c, [c, ψ]]

)
=

∫
Σ

−[c, c]edωe+ 1
3!e

(
−ψ̄[c, γ3]v[c, ψ] + ψ̄[c, γ3]V [c, ψ] + 2ψ̄γ3[c, [c, ψ]]

)
=

∫
Σ

−[c, c]edωe+ 1
3!eψ̄γ

3[[c, c], ψ]

= −
∫

Σ
[c, c]e

(
dωe− 1

2 ψ̄γψ
)

= −L[c,c];

{Lc,Mχ} = 1
3!

∫
Σ

[c, e](dωχ̄γ3ψ + χ̄γ3dωψ) + e([dωc, χ̄]γ3ψ + dωχ̄γ
3[c, ψ] − χ̄γ3[dωc, ψ] + χ̄γ3dω[c, ψ])

= 1
3!

∫
Σ
e(dωχ̄[c, γ3]V ψ − χ̄[c, γ3]V dωψ + [dωc, χ̄]γ3ψ − dωχ̄[c, γ3]V ψ − [c, dωχ̄]γ3ψ − χ̄γ3[c, dωψ])

= 1
3!

∫
Σ
e(dω[c, χ̄]γ3ψ − [c, χ̄]γ3dωψ) = M[c,χ],

having used Leibniz rule and an expression analogous to (4.15).

{Lc, Pξ} =
∫

Σ
Lω0
ξ cedωe− 1

3! [c, e](ψ̄γ
3Lω0

ξ ψ) − 1
3!e

(
[c, ψ̄]γ3Lω0

ξ ψ + ψ̄γ3Lω0
ξ [c, ψ]

)
=

∫
Σ

Lω0
ξ cedωe− 1

3!e
(
ψ̄γ3[c,Lω0

ξ ψ] + ψ̄γ3[Lω0
ξ c, ψ] − ψ̄γ3[c,Lω0

ξ ψ]
)

=
∫

Σ
Lω0
ξ cedωe− 1

3!eψ̄γ
3[Lω0

ξ c, ψ] =
∫

Σ
Lω0
ξ ce

(
dωe− 1

2 ψ̄γψ
)

= LLω0
ξ
c;

{Lc, Hλ} =
∫

Σ
−[c, λϵn]eFω + 1

3!λϵn
(
[c, ψ̄]γ3dωψ − ψ̄γ3[dωc, ψ] + ψ̄γ3dω[c, ψ]

)
=

∫
Σ

−[c, λϵn]eFω + 1
3!λϵn

(
[c, ψ̄]γ3dωψ − ψ̄γ3[c, dωψ]

)
=

∫
Σ

−[c, λϵn]eFω + 1
3!λϵnψ̄[c, γ3]V dωψ

=
∫

Σ
−[c, λϵn]

(
eFω + 1

3! ψ̄γ
3dωψ

)
= −PX + LιX (ω−ω0) +MιXψ −HXn ,

where, letting {xi} be coordinates on Σ, we have X = eia[c, λϵn](i)∂i and X(n) = [c, λϵn](n),
having set eiaeaj = δij .

{Pξ,Mχ} =
∫

Σ
− 1

3!L
ω0
ξ e(dωχ̄γ

3ψ + χ̄γ3dωψ) − ieχ̄γ3ψ(ιξFω0 + Lω0
ξ (ω − ω0))

− 1
3!e(dωχ̄γ

3Lω0
ξ ψ − χ̄γ3dωLω0

ξ ψ)

⋆=
∫

Σ

1
3!e

(
Lω0
ξ χ̄γ

3dωψ − dωLω0
ξ ψ̄γ

3ψ
)

= −MLω0
ξ
χ,
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where we have used integration by parts and

[Lω0
ξ , dω]ψ = [ιξFω0 + Lω0

ξ (ω − ω0), ψ] (⋆)

{Pξ, Hλ} =
∫

Σ
Lω0
ξ (λϵn)eFω − 1

3!λϵn
(

Lω0
ξ ψ̄γ

3dωψ − ψ̄γ3[ιξFω0 + Lω0
ξ (ω − ω0), ψ] + ψ̄γ3dωLω0

ξ ψ
)

⋆=
∫

Σ
Lω0
ξ (λϵn)eFω + 1

3!L
ω0
ξ (λϵn)ψ̄γ3dωψ

= PY − LιY (ω−ω0) −MιY ψ +HY (n) ,

where Y = eiaLω0
ξ (λϵn)(i)∂i, Y (n) = Lω0

ξ (λϵn)(n).

{Mχ,Mχ} = 1
2

∫
Σ

− 1
3! χ̄γψ(dωχ̄γ3ψ + χ̄γ3dωψ) − eMωχ̄γψ + e

3!dωχ̄γdωχ

− 1
2 · 3!dωχ̄dωeγ

3χ+ 1
3!eχ̄γ

3[Fω, χ] + 1
3!eχ̄γ

3dωMe
ψ

A.15= 1
2

∫
Σ

− 1
3!dωeχ̄γ

3dωχ+ 1
3 χ̄γ

3[Fω, χ] + 1
3!dωedωχ̄γ

3χ+ 1
3!dωeχ̄γ

3Meψ

(A.50)=
∫

Σ

1
2 χ̄γχeFω

=
∫

Σ

1
2 χ̄γχeFω − eα∂(χ, dωχ)

(
dωe− 1

2 ψ̄γψ
)

− ϵnβ
∂(χ, dωχ)

(
dωe− 1

2 ψ̄γψ
)

= 1
2Pφ − 1

2Lιφ(ω−ω0) − 1
2Mιφψ +Hφn

where φi := χ̄γaχeia and φn := χ̄γaχena , having used that Meψ ∝ χ, hence χ̄γ3Meψ ∝ χ̄γ3χ = 0.

{Pξ, Pξ} =
∫

Σ
edωeι[ξ,ξ](ω − ω0) + 1

2 ι[ξ,ξ](e2)Fω − edωeFω0 + 1
3!L

ω0
ξ eψ̄γ

3Lω0
ξ ψ

+ 1
3!e

(
Lω0
ξ ψ̄γ

3ψ + ψ̄γ3Lω0
ξ Lω0

ξ ψ
)

B.9=
∫

Σ
edωeι[ξ,ξ](ω − ω0) + 1

2 ι[ξ,ξ](e2)Fω + 1
3!eψ̄γ

3Lω0
[ξ,ξ]ψ

− edωeFω0 + 1
3!eψ̄γ

3[ιξιξFω0 , ψ]

= P[ξ,ξ] − LιξιξFω0
;

having used
Lω0
ξ Lω0

ξ A = 1
2Lω0

[ξ,ξ]A+ 1
2[ιξιξFω0 , A]. (B.9)

=
∫

Σ
dω(λϵn)

(
λϵnFω − 1

3! ψ̄γ
3Hψ

)
+ λϵn

(
dωe− 1

2 ψ̄γψ
)

Hω

+ 1
3!λϵn

(
Hψ̄γ

3dωψ + ψ̄γ3dωHψ
)

=
∫

Σ
λeHωσ + 1

3λϵnψ̄γ
3Hψ =

∫
Σ
λ2(· · · ) = 0,
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having used the fact that λ2 = ϵ2n = 0 and that dω(λϵn)λϵn = 0;

{Mχ, Hλ} = Mχ(Hλ)

=
∫

Σ
−λϵnχ̄γψFω + dω(λϵne)Mω + 1

3!λϵndωχ̄γ
3dωψ − 1

2λϵnψ̄γψMω + 1
3!λϵnψ̄γ

3[Fω, χ]

=
∫

Σ
−λϵnχ̄γψFω + λϵn

(
dωe− 1

2 ψ̄γψ
)

Mω + 1
3!λϵn

(
ψ̄γ3[Fω, χ] + χ̄γ3[Fω, ψ]

)
(A.50)=

∫
Σ
λϵnMω

(
dωe− 1

2 ψ̄γψ
)

=
∫

Σ

(
eα∂(Mω) + ϵnβ

∂(Mω)
) (

dωe− 1
2 ψ̄γψ

)
= Lα∂ (ϵnMω)

having used the structural constraint and that eβ∂(χ, ψ) = 0.

B.3 Proofs of chapter 5
B.3.1 Computing δ2

χ

To obtain the full expression of δ2
χ, we start by the simpler case of δ2

χe. We have

δ2
χe = δχ(χ̄γψ) = −1

2 ιφψ̄γψ + χ̄γdωψ = −1
2dω(χ̄γχ) + 1

2 ιφ
(

−1
2 ψ̄γψ

)
= −1

2Lωφe+ 1
2 ιφ

(
dωe− 1

2 ψ̄γψ
)
,

For the computation of δ2
χψ, we have

δ2
χψ = δχ(−dωχ) = −[δχω, χ] − 1

2dωιφψ = −[δχω, χ] − 1
2Lωφψ + 1

2 ιφdωψ.

We now need the explicit form of δχω. In order to obtain it, we rewrite dωψ in the veilbein basis,
i.e. define

dωψ := 1
2ρabe

aeb = 1
4[va, [vb, e2]]ρab,

hence obtaining

eδχω = − 1
4 · 3! χ̄[va, [vb, e2]]γ3ρab = − 1

4 · 3! χ̄
(
[va, e2[vb, γ3]] − [vb, e2][va, γ3]

)
= eχ̄

(
1
2γaγ

2eb − γvaeb + 1
4eγbγaγ + 1

2evaγ
b

)
ρab.

Recalling the definitions of γ̂ := γaeµa∂µ ∈ X(M), and of the map2

< e, · > : Ω(i,j) → Ω(i−1,j+1)

α 7→ vaη
adeµd ι∂µα,

we have

δχω = 1
2 χ̄ιγ̂(γ2dωψ) − χ̄γ < e, dωψ > +1

4eχ̄ιγ̂ιγ̂(γdωψ) − 1
2eχ̄ιγ̂ < e, dωψ > . (B.10)

2Notice that, with this definition, [e,< ê, dωψ >] = 2dωψ.
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For computational reasons, rather than [δχω, χ] it is easier to compute 1
3!eγγ

3[δχω, χ], since the
multiplication by 1

3!eγγ
3 provides an isomorphism from lemma A.12. Furthermore, without loss

of generality we can contract the expression with a generic Majorana spinor λ. Using (A.50), we
find

1
3!eλ̄γγ

3[δχω, χ] = 1
2 λ̄γγχeδχω + 1

2 · 3!eλ̄γ[δχω, γ3]χ

= − 1
2 · 3! λ̄γγχχ̄γ

3dωψ + 1
2 · 3! λ̄γγ

3χ[e, δχω]
(A.15)= 1

2 · 3! λ̄γγ
3χ[e, δχω].

Now, a rather long but straightforward computation gives

[e, δχω] = 5χ̄γdωψ + χ̄γιγ̂(γdωψ) + χ̄ < e, γdωψ > +1
4eχ̄ιγ̂ιγ̂(γdωψ).

We notice that in λ̄γγ3χ[e, δχω] all the terms containing χ̄γ(·) vanish because of lemma A.12.
Hence, eliminating the arbitrary spinor λ, we are left with

1
3!eγγ

3[δχω, χ] = 1
2 · 3!γγ

3χχ̄ < e, γdωψ > + 1
8 · 3!eγγ

3χχ̄ιγ̂ιγ̂(γdωψ)

A.5= 1
3!eγγ

3χ

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)
,

hence showing
[δχω, χ] =

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)
χ,

and
δ2
χψ = −1

2Lωφψ + 1
2 ιφdωψ −

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)
χ.

We notice that computing eδ2
χω defines δ2

χω uniquely due the fact that the map e ∧ · is an
isomorphism on Ω(1,2). Hence we obtain

eδ2
χω = δχ(eδχω) − χ̄γψδχω = δχ

(
− 1

3! χ̄γ
3dωψ

)
− χ̄γψδχω

= 1
2 · 3! ιφ(ψ̄)γ3dωψ + 1

3! χ̄γ
3[δχω, ψ] + 1

3! χ̄γ
3[Fω, χ] − χ̄γψδχω

= 1
2 ιφ

(
1
3! ψ̄γ

3dωψ

)
− 1

2 · 3! ψ̄ιφ(γ3dωψ) + 1
3! χ̄γ

3[δχω, ψ]

+ 1
2Fωχ̄γχ− χ̄γψδχω

= −1
2eιφFω + 1

2 ιφ
(
eFω + 1

3! ψ̄γ
3dωψ

)
− 1

2 · 3! ψ̄ιφ(γ3dωψ)

+ 1
3! χ̄γ

3[δχω, ψ] − χ̄γψδχω.

Now we can use (A.50) to see

χ̄γψδχω = 1
3! χ̄γ

3[δχω, ψ] − 1
3! [δχω, χ̄]γ3ψ,
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hence

eδ2
χω = − 1

2eιφFω + 1
2 ιφ

(
eFω + 1

3! ψ̄γ
3dωψ

)
− 1

2 · 3! ψ̄ιφ(γ3dωψ) − 1
3! ψ̄γ

3[δχω, χ]

= − 1
2eιφFω + 1

2 ιφ
(
eFω + 1

3! ψ̄γ
3dωψ

)
− 1

2 · 3! ψ̄ιφ(γ3dωψ)

− 1
3! ψ̄γ

3χ

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)
.

B.3.2 Computing Q2
0

The detailed computation of Q2
0 goes as follows: we start by using Q2

0 = [QPC, δχ]+δ2
χ, obtaining

Q2
0e = QPC(χ̄γψ) + δχ(Lωξ e− [c, e]) − 1

2Lωφe+ 1
2 ιφ (EoMω)

= Lωξ χ̄γψ − [c, χ̄]γψ − χ̄γLωξ ψ + χ̄γ[c, ψ] + 1
2Lωφe+ [ιξωχ, e]

− Lωξ (χ̄γψ) − [ιξδχω, χ] + [c, χ̄γψ] − 1
2Lωφe+ 1

2 ιφ (EoMω)

= 1
2 ιφ (EoMω) ,

similarly, we have

Q2
0ψ = Q0(Lωξ ψ − [c, ψ] − dωχ)

= 1
2Lω[ξ,ξ]ψ + 1

2Lωφψ + [ιξιξFω, ψ] − [Lωξ c, ψ] + [ιξδχω, ψ]

− Lωξ Lωξ ψ + Lωξ [c, ψ] + Lωξ dωχ+ 1
2[[c, c], ψ] − 1

2 [ιξιξFω, ψ]

− [ιξδχω, ψ] + [c,Lωξ ψ] − [c, [c, ψ]] − [c, dωχ] + δ2
χψ

− [ιξFω, χ] + [−Lωξ c, χ] + dω
(
−Lωξ χ− [c, χ]

)
= 1

2 ιφdωψ −
(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)
χ,

having noticed the following
• 1

2 Lω[ξ,ξ]ψ + [ιξιξFω, ψ] − Lωξ Lωξ ψ − 1
2 [ιξιξFω, ψ] = 0;

• Lωξ dωχ+ dωLωξ χ− [ιξFω, χ] = 0, since [Lωξ , dω] = [ιξFω, ·] on any field;

• 1
2 [[c, c], ψ] − [c, [c, ψ]] = 0 using graded Jacobi identity.

For the connection, we see

eQ0(δχω) = − 1
3!Q0(χ̄γ3dωψ) − (Lωξ e− [c, e])δχω + eδ2

χω

= − 1
3! (L

ω
ξ χ̄− [c, χ̄])γ3dωψ + 1

3! χ̄γ
3[ιξFω − dωc, ψ]

− 1
3! χ̄γ

3dω(Lωξ ψ − [c, ψ]) − (Lωξ e− [c, e])δχω + eδ2
χω

= − 1
3!L

ω
ξ (χ̄γ3dωψ) + 1

3! [c, χ̄γ
3dωψ] − (Lωξ e− [c, e])δχω + eδ2

χω

= e(Lωξ δχω − [c, δχω]) + eδ2
χω,
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hence obtaining

eQ2
0ω = eQ0(ιξFω − dωc+ δχω)

= 1
2eιφFω − eιξdωδχω − e[δχω, c] + edωιξδχω + eLωξ δχω

− e[c, δχω] + eδ2
χω

= 1
2 ιφ (EoMe) − 1

2 · 3! ψ̄ιφ(γ3dωψ)

− 1
3! ψ̄γ

3χ

(
χ̄κ(< e, γdωψ >) + 1

8 χ̄ιγ̂ιγ̂(γdωψ)
)

For c, χ and ξ, we can do the computations of Q2
0 right away, obtaining

Q2
0c = QPC(ιξδχω) + δχ

(
1
2 ιξιξFω − 1

2 [c, c] + ιξδχω

)
= 1

2 ι[ξ,ξ]δχω + ιξLωξ δχω − ιξ[c, δχω] + 1
2 ιξιφFω − 1

2 ιξιξdωδχω

− [ιξδχω, c] + 1
2 ιφδχω + ιξδ

2
χω

= 1
2 ιφδχω + ιξQ

2
0ω,

having used the fact that 1
2 ι[ξ,ξ]δχω + ιξLωξ δχω − 1

2 ιξιξdωδχω = 0.

For Q2
0ξ, we see

Q2
0(ξ) = 1

2Q0([ξ, ξ] + φ) = 1
2 [ξ, φ] + 1

2Q0(χ̄γaχeµa)∂µ

= 1
2[ξ, φ] + Lωξ (χ̄)γµχ∂µ − [c, χ̄]γµχ∂µ − 1

2 ιφψ̄γ
µχ∂µ + 1

2 χ̄γ
aχQ0(eµa)∂µ.

Now, since eµaebµ = δba, we have Q0(eµa) = −eνae
µ
bQ0(ebν), obtaining

Q2
0(ξ) = 1

2 [φ, ξ] + Lωξ (χ̄)γµχ∂µ − [c, χ̄]γµχ∂µ − 1
2 ιφψ̄γ

µχ∂µ

− 1
2e

µ
b χ̄γ

νχ
(
(Lωξ e)bν − [c, eν ]b + χ̄γbψν

)
∂µ

= −1
2 [ξ, φ] + Lωξ (χ̄)γµχ∂µ − [c, χ̄]γµχ∂µ − 1

2 ιφψ̄γ
µχ∂µ

+ 1
2 χ̄[c, γ]µV χ∂µ − 1

2 χ̄γ
µιφψ∂µ + 1

2 χ̄Lωξ (γµ∂µ)χ

= −1
2Lωξ (ϕ) + 1

2Lωξ (χ̄γµχ∂µ) = 0.
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Notice also that this tells us that Q0φ = Lωξ (φ) = [ξ, φ]. Lastly,

Q2
0χ = Q0

(
Lωξ χ− [c, χ] − 1

2 ιφψ
)

= 1
2Lω[ξ,ξ]χ+ 1

2Lωφχ+ [ιξιξFω, χ] − [Lωξ c, χ] + [ιξδχω, χ] − Lωξ Lωξ χ

+ Lωξ [c, χ] + 1
2Lωξ ιφψ − 1

2 [ιξιξFω, χ] + 1
2 [[c, c], χ] − [ιξδχω, χ]

+ [c,Lωξ χ] − [c, [c, χ]] − 1
2 [c, ιφψ] − 1

2 ι[ξ,φ]ψ + 1
2 ιφ

(
Lωξ ψ − [c, ψ] − dωχ

)
= 0.

B.3.3 Showing the CME

Proof of 5.1. We start by considering the variation of 5.5. The full computation is long and
tedious, hence we do not provide the details. However, carefully carrying it out yields the
following Hamiltonian vector fields

qe = 1
2 ιφω̌ − 1

2 ιφčιξe− 1
4 ιφ(eιξ č)

eqω = 1
2 ιφe

Ⅎ + i

4 · 3! ιφ(ψ̄Ⅎ
0γ)γ3ψ + i

4 · 3! ψ̄γ
3ιφ

(
γα(ω̌ψ)

)
− 1

8 · 3! ιφčχ̄γ
3ψ − 1

8 · 3! ιξ čψ̄γ
3ιφψ

− i

4 · 3! ψ̄γ
3ιφ

(
γα(čιξeψ)

)
+ 1

2 · 3! ψ̄γ
3χκ

[
< e, χ̄

(
− i

2γ
2ψℲ

0 − [ω̌, γ]ψ − 1
2γιξ čψ − ιξγčψ

)
>

]
+ 1

16 · 3! ψ̄γ
3χχ̄ιγ̂ιγ̂

(
− i

2γ
2ψℲ

0 − [ω̌, γ]ψ − 1
2γιξ čψ − ιξγčψ

)
qψ = i

4 ιφ(γψℲ
0 ) − i

4 ιφ
(
γα(ω̌ψ)

)
− i

4 ιφ
(
γα(čιξeψ)

)
+ 1

8 ιφčχ− 1
8 ιφ(ιξ čψ)

+ i

4χκ
(
< e, χ̄γ2ψℲ

0 + iχ̄[ω̌ − i

2 ιξ če+ ιξeč] >
)

+ 1
16χχ̄ιγ̂ιγ̂(γ2ψℲ

0 + i[ω̌ − i

2 ιξ če+ ιξeč])

e2

2 qc = − i

8 χ̄ιφψ
Ⅎ − i

8 · 3! ιφ(ω̌χ̄γ3ψ) − 1
2 ιξeιφe

Ⅎ + 1
4 ιξ(eιφe

Ⅎ) − i

4 · 3! ιφ(ψ̄Ⅎ
0γ)γ3ιξeψ

+ i

4 · 3! ιφ
(
α(ω̌ψ̄)γ

)
γ3ιξeψ − i

8 ιξ(ψ̄ιφψ
Ⅎ) − 1

8 · 3! ιξ(ω̌ψ̄γ
3ιφψ)

+ 1
4 · 3! ιξ

(
ψ̄γ3χ < e, χ̄([ω̌, γ]ψ + iγ2ψℲ

0 ) >
)

− 1
2 · 3! ιξeψ̄γ

3χκ
(
< e, χ̄([ω̌, γ]ψ + iγ2ψℲ

0 ) >
)

+ 1
32 · 3! ιξeψ̄γ

3χχ̄ιγ̂ιγ̂([ω̌, γ]ψ + iγ2ψℲ
0 ) − 1

32 · 3!eιξ
(
ψ̄γ3χχ̄ιγ̂ιγ̂([ω̌, γ]ψ + iγ2ψℲ

0 )
)
,

while the full vector field Q is obtained by summing Q = Q0 + q, Qχ = Q0χ and Qξ = Q0ξ.

Now, to keep the discussion somewhat contained, we explicitly compute Q2e and show it
vanishes, as similar computations and arguments work for the other fields and ghosts too.

Before we begin, we remark that eqω̌ = −ω̌qe and e2

2 qč = −eqeč. We then start by computing
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q(φ) = χ̄γaχq(eaµ)∂µ, obtaining

q(φµ) = −eνae
µ
b χ̄γ

aχq(ebν)

= −eµb χ̄γ
νχ

(
1
2(ιφω̌)bν − 1

2(ιφč)νιξeb − 1
4(ιφ(ebιξ č))ν

)
= −eµb

(
1
2 ιφιφω̌

b − 1
2 ιφιφčιξe

b − 1
4 ιφιφ(ebιξ č)

)
= 0,

since ιφ is odd. Now we have

Q2e = Q2
0e+Q0qe+ qQ0e+ q2e.

Notice that q2e is quadratic in the anti–fields, while the other terms are at most linear, hence
we proceed to show q2e = 0 separately. Notice first that from lemma A.4.3, we can equivalently
compute e2

2 Q
2e, obtaining

e2

2 q2e =e2

2 q

(
1
2 ιφω̌ − 1

2 ιφčιξe− 1
4 ιφ(eιξ č)

)
=e2

2

[
− 1

2 ιφqω̌ + 1
2 ιφqčιξe+ 1

2 ιφčιξ
(

1
2 ιφω̌ − 1

2 ιφčιξe− 1
4 ιφ(eιξ č)

)
+ 1

4 ιφ(eιξqč) + 1
4 ιφ

(
ιξ č

(
1
2 ιφω̌ − 1

2 ιφčιξe− 1
4 ιφ(eιξ č)

)) ]
= − e

4 ιφ(eqω̌) + 1
4 χ̄γχeqω̌ − 1

4 χ̄γχιξ
(
e2

2 qč

)
+ e

4 ιφιξ
(
e2

2 qč

)
+ e2

2

[
1
4 ιφčιξιφω̌ − 1

4 ιφčιξιφčιξe+ 1
8 χ̄γχιφčιξιξ č− 1

8 ιφčιφιξ čιξe

+ 1
4 ιξιφč

(
1
2 ιφω̌ − 1

2 ιφčιξe− 1
4 ιφ(eιξ č)

) ]
.

Making the expressions containing qč and qω̌ explicit is quite a cumbersome challenge. The
reader will excuse us for not providing all the steps, however, when the dust settles, we are left
with

e2

2 q2e = 1
16 χ̄γχιφ

(
ω̌ιξ(eč) − ω̌2 − (ιξe)2č2 + 1

4 ιξ(e
2)ιξ(č2) + e2(ιξ č)2

)
= − 1

16 ιφ
[
χ̄γχ

(
ω̌ιξ(eč) − ω̌2 − (ιξe)2č2 + 1

4 ιξ(e
2)ιξ(č2) + e2(ιξ č)2

)]
= 0.

To show that e2

2 q2e = 0, first consider any Ξ ∈ Ω(4,2), then the expression above is of the type
χ̄γχΞ ∈ Ω(4,3). Now, thanks to lemma A.4.6 and A.12, we can see that there must exist a
θ̃ ∈ Ω(1,0)(SM ) such that

χ̄γΞχ = 1
3! [e, eχ̄γ

3γθ̃].
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Similarly, using A.4.5, there must exist a θ ∈ Ω(0,1) such that θ̃ = [e, θ], hence finding

ιφ(χ̄γχΞ) = 1
3! ιφ[e, eχ̄γ3γθ̃]

= 1
3! [χ̄γχ, eχ̄γ

3γθ̃] − 1
3! [e, χ̄γaχχ̄γ3γaθ̃]︸ ︷︷ ︸

0 from (A.61)

+ 1
3! [e, eχ̄γ

3γ[χ̄γχ, θ]]

= − 1
3! [e, [χ̄γχ, eχ̄γ

3γ]]θ = − 1
3! [e, [χ̄γχ, eχ̄γ

3γθb]]vb.

As it turns out, after some manipulation involving a mixture of Leibniz rule and Fierz identities,
we have [e, [χ̄γχ, eχ̄γ3γθb]] = 3[e, χ̄γχχ̄γ2γ2θb], while, thanks to (A.50),

χ̄γχχ̄γ2γ2θb = 1
3 χ̄γ

3[χ̄γ2γ2θb, χ] = 1
3! χ̄γ

3γaγcχχ̄γcγaγ
2θb (B.11)

(A.60)= − 1
3! χ̄γ

3γaγ2θbχ̄γaχ
(A.61)= −1

3 χ̄γ
3γaχχ̄γaγ2θb

(A.54)= 1
3 χ̄γ

3γaχθ̄bγ2γaχ
(A.61)= 1

3! χ̄γ
3γaγ2θbχ̄γaχ

(A.61)= −χ̄γχχ̄γ2γ2θb = 0,

hence showing e2

2 q2e = 0.
We now consider the remaining terms of Q2e, which, after some rearranging, read

q
(
Lωξ e− [c, e]c+ χ̄γψ

)
+Q0

(
1
2 ιφω̌ − 1

2 ιφčιξe− 1
4 ιφ(ιξce)

)
=

=[ιξqω, e] − [qc, e] − χ̄γqψ − 1
2 ιφ(Q0ω̌) + 1

2 ιφ(Q0čιξe) + 1
4 ιφ(eιξQ0č)

+ 1
2 ιφLωξ ω̌ − 1

2 ιφLωξ čιξe− 1
4 ιφčι[ξ,ξ]e− 1

8 ιφι[ξ,ξ]če+ 1
8 ι[ξ,ξ]čχ̄γχ

− 1
4eιφιξL

ω
ξ č+ 1

4 ιξL
ω
ξ čχ̄γχ− 1

2 ιφ[c, ω̌] − 1
8 χ̄γχιφč+ 1

2 ιφčχ̄γιξψ

+ 1
4 ιφιξ čχ̄γψ − 1

4 ιξ čχ̄γιφψ.

(B.12)

A few remarks are in order. First of all, notice that the term − 1
2 ιφQ0ω̌ contains a term (propor-

tional to the equations of motion) that cancels out exactly the non zero part of Q2
0e. Secondly,

we notice that, in order to obtain Q2e = 0, we need to implement some terms in qc to balance
out ιξqω, in particular we are missing all the terms proportional to č. Explicitly, eqω contains

el(č, ξ, χ, ψ) := − 1
8 · 3! ιξ čψ̄γ

3ιφψ − i

4 · 3! ψ̄γ
3ιφ

(
γα(čιξeψ)

)
− 1

2 · 3! ψ̄γ
3χκ

[
< e, χ̄

(
1
2γιξ čψ + ιξγčψ

)
>

]
(B.13)

− 1
16 · 3! ψ̄γ

3χχ̄ιγ̂ιγ̂

(
1
2γιξ čψ + ιξγčψ

)
,

hence, to cancel them in the computation of Q2
0e (and in general Q2

0), we need to add3 to qc
terms of the kind ιξl(č, ξ, φ, ψ), resulting in a correction term in s2

1
2c

Ⅎιξl(č, ξ, φ, ψ).

3Similarly to adding ιξδχω to Q0c
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Hence, in the computation of e2

2
(
[ιξqω, e] − [qc, e]

)
we are left with

e2

2
(
[ιξqω, e] − [qc, e]

)
=[e, e

2

2 qc] + 1
2 [e, eqωιξe] − 1

2 [e, eιξ(eqω)]

= e

16 · 3! [ιξ
(
ιφčχ̄γ

3ψ
)
, e] − 1

16 · 3! [ιξeιφčχ̄γ
3ψ, e]

− i

8 [χ̄ιφψℲ, e] + 1
8 · 3! [ιφ(ω̌χ̄γ3ψ), e].

Similarly, when computing − 1
2 ιφQ0ω̌ + 1

2 ιφQ0čιξe+ 1
4 ιφ(eιξQ0č), we notice that a lot of the

terms in Q0ω̌ are canceled out by ιξQ0č.4 In particular, after noticing that

−e2

4 ιφQ0ω̌ = −e

4 ιφ(eQ0ω̌) + 1
4 χ̄γχeQ0ω̌

and
e2

2

(
1
2 ιφQ0čιξe+ 1

4 ιφ(eιξQ0č)
)

= e

4 ιφιξ
(
e2

2 Q0č

)
− 1

4 χ̄γχιξ
(
e2

2 Q0č

)
,

one finds that the remaining terms are

e2

2

(
−1

2 ιφQ0ω̌ + 1
2 ιφQ0čιξe+ 1

4 ιφ(eιξQ0č)
)

=

= − e2

4 ιφEoMω + e

4 ιφdωιξω
Ⅎ

1
− 1

4 χ̄γχdωιξω
Ⅎ

2
− e2

4 [c, ιφω̌] − e

8 ιφ(dωιξιξcℲ + ιξιξdωc
Ⅎ)

3

+ 1
8 χ̄γχ(dωιξιξcℲ + ιξιξdωc

Ⅎ)
4

+ e

4 ιφ(ω̌Lωξ e)
5

− 1
4 χ̄γχω̌Lωξ e

6
+ e

4 ιφ
(

1
2 χ̄γψω̌ + 1

2 · 3! χ̄[ω̌, γ3]ψ
)

− 1
4 χ̄γχ

(
1
2 χ̄γψω̌ + 1

2 · 3! χ̄[ω̌, γ3]ψ
)

+ e

4 ιφ
[

1
2 χ̄γψ

(
ιξeč+ e

2 ιξ č
)

− 1
2 · 3! χ̄[

(
ιξeč+ e

2 ιξ č
)
, γ3]ψ

]
− 1

4 χ̄γχ
[

1
2 χ̄γψ

(
ιξeč+ e

2 ιξ č
)

− 1
2 · 3! χ̄[

(
ιξeč+ e

2 ιξ č
)
, γ3]ψ

]
− e

4 ιφ
(
i

2eψ̄
Ⅎ
0γγχ− 1

2 · 3! ψ̄
Ⅎ
0γ[e, γ3]χ

)
+ 1

4 χ̄γχ
(
i

2eψ̄
Ⅎ
0γγχ− 1

2 · 3! ψ̄
Ⅎ
0γ[e, γ3]χ

)
− e

4 ιφιξ
(

1
2Lωξ (e2)č

)
7

+ 1
4 χ̄γχιξ

(
1
2Lωξ (e2)č

)
8

− e

4 ιφιξ(χ̄γψeč) + 1
4 χ̄γχιξ(χ̄γψeč)

− e

4 ιφιξdωω
Ⅎ

9
+ 1

4 ιξdωω
Ⅎ

10
,

(B.14)

where we added terms proportional to ιξιξdωcℲ, which vanish since dωcℲ = 0.
Now we notice that

• (B.14.1) + (B.14.2) + (B.14.5) + (B.14.6) + (B.14.9) + (B.14.10) = − e2

2 ιφLωξ ω̌;

• using the identity [CCS21a]

1
2 ι[ξ,ξ]A = −1

2 ιξιξdωA+ ιξdωιξA− 1
2dωιξιξA

4All the terms in Q0ω̌ coming from the variation in S1 of Lωξ (·) with respect of ω are exactly canceled by the
ones in ιξQ0č coming from the variation of [c, ·] with respect to c
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and the fact that LξωcℲ = −dωιξcℲ, then

(B.14.3) + (B.14.4) + (B.14.7) + (B.14.8) =

= e2

2

(
1
4 ιφčι[ξ,ξ]e+ 1

8eιφι[ξ,ξ]č+ 1
2 ιξeιφLωξ č+ 1

8 χ̄γχι[ξ,ξ]č+ 1
4 χ̄γχιξL

ω
ξ č+ e

4 ιφιξL
ω
ξ č

)
.

Now we can finally compute the full Q2e, taking into consideration the full expression of χ̄γqψ,
from (B.12)

Q2e = e

16 · 3! [ιξ
(
ιφčχ̄γ

3ψ
)
, e]

1
− 1

16 · 3! [ιξeιφčχ̄γ
3ψ, e]

2
− i

8 [χ̄ιφψℲ, e]
3

+ 1
8 · 3! [ιφ(ω̌χ̄γ3ψ), e]

4

− e2

2 ιφLωξ ω̌
5

− e2

4 [c, ιφω̌]
6

+ e

4 ιφ
(

1
2 χ̄γψω̌ + 1

2 · 3! χ̄[ω̌, γ3]ψ
)

7

+ e2

2

(
1
4 ιφčι[ξ,ξ]e

8
+ 1

8eιφι[ξ,ξ]č
9

+ 1
2 ιξeιφLωξ č

10
+ 1

8 χ̄γχι[ξ,ξ]č
11

+ 1
4 χ̄γχιξL

ω
ξ č

12
+ e

4 ιφιξL
ω
ξ č

13

)
− 1

4 χ̄γχ
(

1
2 χ̄γψω̌ + 1

2 · 3! χ̄[ω̌, γ3]ψ
)

14
+ e

4 ιφ
[

1
2 χ̄γψ

(
ιξeč+ e

2 ιξ č
)

15
− 1

2 · 3! χ̄[
(
ιξeč+ e

2 ιξ č
)

16
, γ3]ψ

]
− 1

4 χ̄γχ
[

1
2 χ̄γψ

(
ιξeč+ e

2 ιξ č
)

17
− 1

2 · 3! χ̄[
(
ιξeč+ e

2 ιξ č
)

18
, γ3]ψ

]
− e

4 ιφ
(
i

2eψ̄
Ⅎ
0γγχ− 1

2 · 3! ψ̄
Ⅎ
0γ[e, γ3]χ

)
19

+ 1
4 χ̄γχ

(
i

2eψ̄
Ⅎ
0γγχ− 1

2 · 3! ψ̄
Ⅎ
0γ[e, γ3]χ

)
20

− e

4 ιφιξ(χ̄γψeč)21
+ 1

4 χ̄γχιξ(χ̄γψeč)22
− e2

2 χ̄γ
[
i

4 ιφ(γψℲ
0 )

23
− i

4 ιφ
(
γα(ω̌ψ)

)
24

− i

4 ιφ
(
γα(čιξeψ)

)
25

]
− e2

2 χ̄γ
[

1
8 ιφčχ26

− 1
8 ιφ(ιξ čψ)

27
+ i

4χκ
(
< e, χ̄γ2ψℲ

0 28
+ iχ̄[ω̌29 − i

2 ιξ če30
+ ιξeč31

, γ]ψ >
)]

− e2

2 χ̄γ
(

1
16χχ̄ιγ̂ιγ̂(γ2ψℲ

0 32
+ i[ω̌33 − i

2 ιξ če34
+ ιξeč35

, γ]ψ)
)

+ e2

2

(
1
4 ιφιξ čχ̄γψ36

− 1
4 ιξ čχ̄γιφψ37

)
+ e2

2

(
1
2 ιφLωξ ω̌

38
− 1

2 ιφLωξ čιξe
39

− 1
4 ιφčι[ξ,ξ]e

40
− 1

8 ιφι[ξ,ξ]če
41

+ 1
8 ι[ξ,ξ]čχ̄γχ

42

)
+ e2

2

(
−1

4eιφιξL
ω
ξ č

43
+ 1

4 ιξL
ω
ξ čχ̄γχ

44
− 1

2 ιφ[c, ω̌]
45

− 1
8 χ̄γχιφč46

+ 1
2 ιφčχ̄γιξψ47

)
.

(B.15)

We can regroup the above terms to show that the total sum is zero. We immediately see

• (B.15.5) + (B.15.38) = 0,

• (B.15.6) + (B.15.45) = 0,

• (B.15.8) + (B.15.40) = 0,

• (B.15.9) + (B.15.41) = 0,

• (B.15.10) + (B.15.39) = 0,

• (B.15.11) + (B.15.42) = 0,

• (B.15.12) + (B.15.44) = 0,



B.3. PROOFS OF CHAPTER 5 139

• (B.15.13) + (B.15.43) = 0,

• (B.15.26) + (B.15.46) = 0,

For the remaining terms there is a recurring pattern which we explicitly show just once. Consider
for example (B.15.3) + (B.15.19) + (B.15.20) + (B.15.23) + (B.15.28) + (B.15.32), we have, after
expanding the terms

• (B.15.3) = i
8e

( 1
2 χ̄γ

2γιφ(γψℲ
0 ) + eχ̄γιφ(γψℲ

0 )
)
,

• (B.15.19) + (B.15.20) = i
16eιφ(ψ̄Ⅎ

0γ)γγ2χ+ i
8·3!eψ̄

Ⅎ
0γ[χ̄γχ, γ3]χ− i

8·3! χ̄γχψ̄
Ⅎ
0γ[e, γ3]χ,

• the term (B.15.28) + (B.15.32) presents an added difficulty, which can be resolved once
one notices that, backwards engineering the methods used to compute δ2

χψ in the previous
section,5 it can be rewritten as

(B.15.28) + (B.15.32) = e2

8

[
(W (2,3)

1 )−1
(
i

3! χ̄γ
3γψℲ

0

)
, χ̄γχ

]
= −e

8

[
χ̄γχ,

i

3! χ̄γ
3γψℲ

0

]
− i

8 · 3! χ̄γ
3γψℲ

0 [e, χ̄γχ]

A.15= −e

8

[
χ̄γχ,

i

3! χ̄γ
3γψℲ

0

]
+ i

8 · 3! χ̄[e, γ3]γψℲ
0 χ̄γχ.

it is a simple matter of algebra to see (B.15.3) + (B.15.19) + (B.15.20) + (B.15.23) +
(B.15.28) + (B.15.32) = 0.

As previously anticipated, one can analogously show the following terms vanish

• (B.15.1)+(B.15.2)+(B.15.2)+(B.15.15)+(B.15.16)+(B.15.17)+(B.15.18)+(B.15.21)+
(B.15.22) + (B.15.25) + (B.15.27) + (B.15.30) + (B.15.31) + (B.15.34) + (B.15.35) +
(B.15.36) + (B.15.37) + (B.15.47) = 0

• (B.15.4) + (B.15.7) + (B.15.14) + (B.15.29) + (B.15.33) = 0

Now, in order to show that Q2 = 0 when computed on the other fields and ghosts, one needs
to perform similar manipulations as in the case of Q2e, but we think that explicitly carrying
them out, while equally (if not more) challenging, does not provide any further insight.

B.3.4 BV pushforward computations
Proof. Proof of 5.3 Adapting the proof from [CC25b], one can easily see that, considering the

5In this particular case, it suffices to notice that (B.15.28) + (B.15.32) is exactly equal to

−
e2

4
χ̄γ[α, χ],

which is easily seen after comparing it with the expression of [δχω, χ]. One then just substitutes dωψ in δχω with
iγ2ψℲ

0 to find that α is such that eα = i
3! χ̄γ

3γψℲ
0 . Then the above expression becomes

−
e2

4
χ̄γ[α, χ] = −

e2

8
[α, χ̄γχ].
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extra terms inside the supergravity structural constraint, we have

(
ϕPC2

)∗
(

SrPC +
∫
I×Σ

1
2 ẽnẽ[ṽ − yℲ, ṽ − yℲ] + g(ṽℲ)

)
= SrPC +

∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ] + hPC(ṽℲ)

+
∫
I×Σ

Lω̂
ξ̃
ẽxℲµ̃Ⅎ

1
− ϵn[Lω̂

ξ̃
e, yℲ]µ̃Ⅎ

2

− ϵn[e,Lω̂
ξ̃
yℲ]µ̃Ⅎ

3
+ ϵnLω̂

ξ̃
( ˜̄ψ)γψ̃µ̃Ⅎ

4
+ 1

2Lω̂
ξ̃

(ϵn)iµ̃Ⅎ
i e

˜̄ψγψ̃
5

+ 1
2(dω̃nϵn)iµ̃Ⅎ

i ξ̃
n ˜̄ψγψ̃

6
+ (dω̃ne)ξ̃nxℲµ̃Ⅎ

7
+ ϵn[dω̃ne, y

Ⅎ]ξ̃nµ̃Ⅎ
8

+ ϵn[e, dω̃ny
Ⅎ]ξ̃nµ̃Ⅎ

9
− ϵndω̃n

˜̄ψγψ̃ξ̃nµ̃Ⅎ
10

+ 1
2 ẽnν

˜̄ψγψ̃
11

+ 1
2 ẽιzν

˜̄ψγψ̃
12

− ẽnx
Ⅎdξ̃nµ̃Ⅎ

13 + ϵn[ẽn, yℲ]dξ̃nµ̃Ⅎ
14

+ ιzy
Ⅎdξ̃nṽℲ15 − ϵn[c̃, ˜̄ψ]γψ̃µ̃Ⅎ

16

+ ϵn[[c̃, ẽ], yℲ]µ̃Ⅎ
17

− [c̃, yℲ]ṽℲ
18

− [c, e]xℲµ̃Ⅎ
19

− 1
2 [c̃, ϵn]iµ̃Ⅎ

i ẽ
˜̄ψγψ̃

20
+ (δχν + qν) ṽℲ

21

(B.16)

where hPC(ṽℲ) = f(vℲ) + (ιξ̃Fω̂ + Fω̃n ξ̃
n + dω̂ c̃)ṽℲ. We also easily see that

ϕ∗
3

(
SrPC +

∫
I×Σ

1
2 ẽnẽ[ṽ − yℲ, ṽ − yℲ] + g(ṽℲ)

)
=

=
∫
I×Σ

(δχyℲ + qyℲ)ṽℲ
1

+ Lω̂
ξ̃
ẽ

(
−xℲµ̃Ⅎ

2 + [ϵnµ̃Ⅎ, yℲ]
3

)
+ dω̃ẽξ̃

n
(

−xℲµ̃Ⅎ
4 + [ϵnµ̃Ⅎ, yℲ]

5

)
+ ẽndξ̃

n
(

−xℲµ̃Ⅎ
6 + [ϵnµ̃Ⅎ, yℲ]

7

)
− [c̃, ẽ]

(
−xℲµ̃Ⅎ

8 + [ϵnµ̃Ⅎ, yℲ]
9

)
+ Lω̂

ξ̃
yℲṽℲ

10

+ dω̃n
yℲξ̃nṽℲ

11
− [c, yℲ]ṽℲ

12
.

(B.17)

We immediately see

• (B.17.2) + (B.16.1) = 0.

• (B.17.3) + (B.16.3) = 0.

• (B.17.4) + (B.16.8) = 0.

• (B.17.5) + (B.16.9) = 0.

• (B.17.6) + (B.16.14) = 0.

• (B.17.7) + (B.16.15) = 0.

• (B.17.8) + (B.16.20) = 0.

• (B.17.9) + (B.16.19) = 0.

• (B.17.10) + (B.16.3) = 0.

• (B.17.11) + (B.16.9) = 0.

• (B.17.12) + (B.16.18) = 0.
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We are left with computing ϕ∗
2(srψ + sr2), where s2 is given by (5.7) and

srψ :=
∫
I×M

1
3!

(
ẽn

˜̄ψγ3dω̂ψ̃ + ẽ ˜̄ψ
n
γ3dω̂ψ̃ + ẽ ˜̄ψγ3dω̃n

ψ̃ + ẽ ˜̄ψγ3dω̂ψ̃n

)
− ˜̄χγψ̃

n
ẽℲ − ˜̄χγψ̃ẽℲn − 1

3!
˜̄χγ3

(
dω̃n

ψ̃ + dω̂ψ̃n

) ˜̌
k − 1

3!
˜̄χγ3dω̂ψ̃

˜̌
kn

− i
(

Lω̂
ξ̃

˜̄ψ + dω̃n

˜̄ψξ̃n + ˜̄ψndξ̃n − [c̃, ˜̄ψ] − dω̂ ˜̄χ
)
ψ̃Ⅎ

n

− i
(

Lω̂
ξ̃

˜̄ψ
n

+ ι∂nξ̃
˜̄ψ − dω̃n

( ˜̄ψnξ̃n) − [c̃, ˜̄ψn] − dω̃n
˜̄χ
)
ψ̃Ⅎ

− i

(
Lω̂
ξ̃

˜̄χ+ dω̃n
˜̄χξ̃n − [c̃, ˜̄χ] − 1

2 ιφ̃
˜̄ψ − 1

2
˜̄ψnφ̃n

)
χ̃Ⅎ

n

+ 1
2 ιφ̃ξ̃

Ⅎ + 1
2 ξ̃

Ⅎ
n
φ̃n.

Notice that ϕ∗
2(k̃Ⅎ) = 0, hence we obtain

ϕ∗
2

(
srψ + sr2

)
= srψ + sr2

=
∫
I×Σ

1
3!

(
ẽn

˜̄ψγ3[ν, ψ̃]
1

+ ẽ ˜̄ψnγ3[ν, ψ̃]
2

+ ẽ ˜̄ψγ3[ιzν3
+ ιX̃ µ̃

Ⅎ, ψ̃]
4

+ e ˜̄ψγ3[ν, ψ̃n]
5

)
+ ϵnq ˜̄ψγψ̃µ̃

Ⅎ

6
+ ˜̄χγψ̃

(
dω̂(ϵnµ̃Ⅎ)

7
+ σµ̃Ⅎ

8 + ˜̌
knν9 + ιzν

˜̌
k10 + ιX̃(˜̌kµ̃Ⅎ)

11

)
+ ˜̄χγψ̃

(
xℲµ̃Ⅎ

12 + ϵn[ẽ, yℲ]
13

)
+ ˜̄χγψ̃n ˜̌

k14 − 1
3!

˜̄ψγ3
(

[ιzν15 + ιX̃ µ̃
Ⅎ

16
, ψ] + [ν, ψ̃n]

17

) ˜̌
k

− 1
3!

˜̄χγ3[ν, ψ̃]˜̌kn
18

− i[ν, ˜̄χ]ψ̃Ⅎ
n19

+ ϵn

(
Lω̂
ξ̃

˜̄ψ
20

+ dω̃n

˜̄ψξ̃n
21

+ ˜̄ψndξ̃n22 − [c̃, ˜̄ψ]
23

)
γψ̃µ̃Ⅎ

− ϵn

(
dω̂ ˜̄χ24 + [ν, ˜̄χ]

25

)
γψ̃µ̃Ⅎ − i[ιzν26 + ιX̃ µ̃

Ⅎ
27
, ˜̄χ]ψ̃Ⅎ + 1

2 ιφ̃ν
(
c̃Ⅎn28

+ [ϵn, ˜̌kµ̃Ⅎ]
29

)
+ 1

2Lω̂φ̃(ϵn) ˜
ǩµ̃Ⅎ

30
+ 1

2 φ̃
n

(
ιX̃ c̃

Ⅎ
nµ̃

Ⅎ + d(ϵnτℲµ̃Ⅎ)
31

+ ιz c̃
Ⅎ
nν32

+ ιzν[ϵn, ˜̌kµ̃Ⅎ]
33

)
+ φ̃n

(
(dω̃n

ϵn)˜̌kµ̃Ⅎ
34

+ ιX̃ µ̃
Ⅎ[ϵn, ˜̌kµ̃Ⅎ]

35

)
+ 1

2

(
dω̂(ϵnµ̃Ⅎ)

36
+ σµ̃Ⅎ

37 + ˜̌
knν38 + ιzν

˜̌
k39

)
ιφ̃

˜̌
k

+ 1
2

(
ιX̃(˜̌kµ̃Ⅎ)

40
+ xℲµ̃Ⅎ

41 + ϵn[ẽ, yℲ]
42

)
ιφ̃

˜̌
k + 1

2

(
dω̂(ϵnµ̃Ⅎ)

43
+ σµ̃Ⅎ

44 + ˜̌
knν45 + ιzν

˜̌
k46

) ˜̌
knφ̃

n

+ 1
2

(
ιX̃(˜̌kµ̃Ⅎ)

47
+ xℲµ̃Ⅎ

48 + ϵn[ẽ, yℲ]
49

) ˜̌
knφ̃

n + 1
2ν

˜̌
kιφ̃

˜̌
kn

50
(B.18)

We can then see

• (B.18.1) + (B.16.12) = 0.

• (B.18.2) + (B.18.5) + (B.18.21) = 0.

• (B.18.3) + (B.16.13) = 0.

• (B.18.4) + (B.16.6) + (B.16.7) + (B.16.21) = 0.

• (B.18.20) + (B.16.5) = 0.

• (B.18.21) + (B.16.11) = 0.
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• (B.18.23) + (B.16.17) = 0.

Therefore, noticing that SrSG = SrPC + srψ + sr2, we have

ϕ∗
2

(
SrSG +

∫
I×Σ

1
2 ẽnẽ[ṽ − yℲ, ṽ − yℲ] + g(ṽℲ)

)
=

= SrSG +
∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ] + f(ṽℲ) +

(
(δχ̃ + q)ṽ + (δχ̃ + q)yℲ

1
+

)
ṽℲ

+ ϵnq ˜̄ψγψ̃µ̃
Ⅎ

2
+ ˜̄χγψ̃

(
dω̂(ϵnµ̃Ⅎ)

3
+ σµ̃Ⅎ

4 + ˜̌
knν5 + ιzν

˜̌
k6 + ιX̃(˜̌kµ̃Ⅎ)

7

)
+ ˜̄χγψ̃

(
xℲµ̃Ⅎ

8 + ϵn[ẽ, yℲ]
9

)
+ ˜̄χγψ̃n ˜̌

kν10 − 1
3!

˜̄χγ3
(

[ιzν11 + ιX̃ µ̃
Ⅎ

12
, ψ] + [ν, ψ̃n]

13

) ˜̌
k

− 1
3!

˜̄χγ3[ν, ψ̃]˜̌kn
14

− i[ν, ˜̄χ]ψ̃Ⅎ
n15

− ϵn

(
dω̂ ˜̄χ16 + [ν, ˜̄χ]

17

)
γψ̃µ̃Ⅎ

− i[ιzν18 + ιX̃ µ̃
Ⅎ

19
, ˜̄χ]ψ̃Ⅎ + 1

2 ιφ̃ν
(
c̃Ⅎn20

+ [ϵn, ˜̌kµ̃Ⅎ]
21

)
+ 1

2Lω̂φ̃(ϵn) ˜
ǩµ̃Ⅎ

22
+ 1

2 φ̃
n

(
ιX̃ c̃

Ⅎ
nµ̃

Ⅎ + d(ϵnτℲµ̃Ⅎ)
23

+ ιz c̃
Ⅎ
nν24

+ ιzν[ϵn, ˜̌kµ̃Ⅎ]
25

)
+ φ̃n

(
(dω̃nϵn)˜̌kµ̃Ⅎ

26
+ ιX̃ µ̃

Ⅎ[ϵn, ˜̌kµ̃Ⅎ]
27

)
+ 1

2

(
dω̂(ϵnµ̃Ⅎ)

28
+ σµ̃Ⅎ

29 + ˜̌
knν30 + ιzν

˜̌
k31

)
ιφ̃

˜̌
k

+ 1
2

(
ιX̃(˜̌kµ̃Ⅎ)

32
+ xℲµ̃Ⅎ

33 + ϵn[ẽ, yℲ]
34

)
ιφ̃

˜̌
k + 1

2

(
dω̂(ϵnµ̃Ⅎ)

35
+ σµ̃Ⅎ

36 + ˜̌
knν37 + ιzν

˜̌
k38

) ˜̌
knφ̃

n

+ 1
2

(
ιX̃(˜̌kµ̃Ⅎ)

39
+ xℲµ̃Ⅎ

40 + ϵn[ẽ, yℲ]
41

) ˜̌
knφ̃

n + 1
2ν

˜̌
kιφ̃

˜̌
kn

42
.

(B.19)

We are therefore left with showing that all the underlined terms above exacltly correspond to
(δχ̃ + q)ω̂ṽℲ. We already remarked that we only know e(δχ̃ + q) and not the full expression.
However, we notice

(δχ̃ + q)ω̂ṽℲ = ϵn[(δχ̃ + q)ω̂, ẽ]µ̃Ⅎ.

It is then enough to apply the operator (δχ̃ + q) to the constraint (5.10), and isolate the term we
need exactly. In particular, we see that

(δχ̃ + q)
[
ϵn

(
dω̂ ẽ− 1

2
˜̄ψγψ̃ + (˜̌kn − ιz

˜̌
k)dξ̃n

)
+ ιX̃ k̃

Ⅎ + ẽxℲ + ϵn[ẽ, yℲ] − ẽσ

]
µ̃Ⅎ = 0

yields the relevant term ϵn[(δχ̃ + q)ω̂, ẽ]µ̃Ⅎ.6 We apply the operator to each addend one by one,

6We have used that τℲ = ˜̌
kn − ιz

˜̌
k + ǎ and that ϵnǎ = 0.
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obtaining

ϵn[(δχ̃ + q)(ω̂ + ν), ẽ]µ̃Ⅎ =

=ϵn
(

− ˜̄χγdω̂ψ̃1 + dω̂(ιφ̃ ˜̌
k

2
+ ˜̌
knφ̃

n)
3

+ q ˜̄ψγψ̃4

)
µℲ + 1

3! [ν,
˜̄χ]γ3ψ̃n

˜̌
k

5

+ 1
3! [ν,

˜̄χ]γ3ψ̃
˜̌
kn

6
− i[ν, ˜̄χ]ψ̃Ⅎ

n7
− 1

2νιφ̃c̃
Ⅎ
n

8
+ 1

3! [ιzν,
˜̄χ]γ3ψ̃

˜̌
k

9

− i[ιzν, ˜̄χ]ψ̃Ⅎ
10

− 1
2 ιzνc̃

Ⅎ
nφ̃

n

11
− 1

2νιφ̃(˜̌kn ˜̌
k)

12
− 1

2 ιzν
˜̌
k(ιφ̃ ˜̌

k + ˜̌
kφ̃n

13

+ (˜̌kn − ιz
˜̌
k)dφ̃nµ̃Ⅎ

14
+ 1

2 µ̃
Ⅎ

(
Lω̂φ̃ϵn15

− dω̃n
ϵnφ̃

n

16

) ˜̌
k + 1

3!
˜̄χγ3[ιX̃ µ̃Ⅎ, ψ̃]

17

− 1
2 c̃

Ⅎ
nφ̃

nιX̃ µ̃
Ⅎ

18
− i[ιX̃ µ̃Ⅎ, ˜̄χ]ψ̃Ⅎ

19
+ ˜̄χγψ̃xℲµ̃Ⅎ

20

+ ˜̄χγψ̃ιX̃(˜̌kµ̃)
21

+ µ̃Ⅎ(qX̃)˜̌k
22

− 1
2

(
ιφ̃

˜̌
k

23
+ ˜̌
knφ̃

n
24

)
ιX̃(˜̌kµ̃Ⅎ)

+ 1
2

(
ιφ̃

˜̌
k + ˜̌

knφ̃
n

25

)
xℲµ̃Ⅎ + ϵn

[
˜̄χγψ̃26 + 1

2

(
ιφ̃

˜̌
k + ˜̌

knφ̃
n

27

)
, yℲ

]
µ̃Ⅎ

+ ϵn[ẽ, (δχ + q)yℲ]µ̃Ⅎ
28

+ ˜̄χγψ̃σµ̃Ⅎ
29 + 1

2

(
ιφ̃

˜̌
k + ˜̌

knφ̃
n

30

)
σµ̃Ⅎ

− [ν, ˜̄χ]γψ̃ϵnµ̃Ⅎ
31

− 1
2 ιφ̃ν[ϵn, ˜̌kµ̃Ⅎ]

32
− 1

2 ιzν[ϵn, ˜̌kµ̃Ⅎ]φ̃n
33

− 1
2 [ϵn, ˜̌kµ̃Ⅎ]φ̃nιX̃ µ̃Ⅎ

34
(B.20)

where we have used the definition of δχ and q from (5.6) and (5.2).7 Furthermore, we have used
the fact that ω̂ + ν = ϕ2(ω̂) to compute ϵnµℲ[ẽ, (δχ + q)ν] = (δχ + q)νṽℲ.

We are just left with checking that all the terms in (B.20) appear in (B.19). We notice

• (B.19.1) = (B.20.28);

• (B.19.2) = (B.20.4);

• (B.19.3) + (B.19.16) = (B.20.1) having used integration by parts;

• (B.19.4) = (B.20.29);

• (B.19.5) + (B.19.14) = (B.20.6);

7For completeness, we compute explicitly the terms ϵn(δχ ˜̌
kn + ιzδ

˜̌
k)dξ̃nµ̃Ⅎ. The computation works for q

equivalently. We know from (5.2) that in the bulk

eδχǩ = −
1
2
χ̄γψǩ −

1
2 · 3!

χ̄[ǩ, γ3]ψ + i[ψ̄Ⅎ,χ] −
1
2
ιφc

Ⅎ. (B.21)

Selecting the component along dxn, we obtain

ẽnδχ
˜̌
k + ẽδχ

˜̌
kn = ιz(ẽδχ ˜̌

k) + µϵnδχ
˜̌
k + ẽ(δχ ˜̌

kn − ιzδχ
˜̌
k),

hence, using ϵndξ̃nµℲ = ẽν, with ϵnν = 0, we have

ϵn(δχ ˜̌
kn + ιzδ

˜̌
k)dξ̃nµ̃Ⅎ = νẽ(δχ ˜̌

kn − ιzδχ
˜̌
k)

= ν

(
ẽnδχ

˜̌
k + ẽδχ

˜̌
kn − ιz(ẽδχ ˜̌

k)
)
,

which gives the desired result, as ẽnδχ ˜̌
k + ẽδχ

˜̌
kn and ẽδχ

˜̌
k can be found respectively as the transversal and

tangential components of (B.21).
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• (B.19.6) + (B.19.11) = (B.20.9);

• (B.19.7) = (B.20.21);

• (B.19.9) = (B.20.26);

• (B.19.10) + (B.19.13) = (B.20.5);

• (B.19.12) = (B.20.17);

• (B.19.15) = (B.20.7);

• (B.19.17) = (B.20.31);

• (B.19.18) = (B.20.10);

• (B.19.19) = (B.20.19);

• (B.19.20) = (B.20.8);

• (B.19.21) = (B.20.32);

• (B.19.22) = (B.20.15);

• (B.19.23) = (B.20.18) + (B.20.14);

• (B.19.24) = (B.20.11);

• (B.19.25) = (B.20.33);

• (B.19.26) = (B.20.16);

• (B.19.27) = (B.20.34);

• (B.19.28) + (B.19.35) = (B.20.2) + (B.20.3);

• (B.19.29) + (B.19.36) = (B.20.30);

• (B.19.30) + (B.19.42) = (B.20.12);

• (B.19.31) + (B.19.38) = (B.20.13);

• (B.19.32) + (B.19.39) = (B.20.23) + (B.20.24);

• (B.19.33) + (B.19.40) = (B.20.25);

• (B.19.34) + (B.19.41) = (B.20.27);

• (B.19.37) = 0, because ˜̌
k2
n = 0, since it is an odd quantity,

which concludes the proof.
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Proof of 5.4. We start by noticing that all the terms of the quadratic part s2 of SSG are left
unchanged by ϕ1, except for the term 1

2 ǩιφe
Ⅎ. Therefore, letting

ASG : =
∫
I×Σ

e2

2 Fω + 1
3!eψ̄γ

3dωψ − (Lω
ξ e− [c, e] + χ̄γψ)eℲ

+ (ιξFω − dωc+ δχω)ωℲ − i(Lω
ξ ψ̄ − [c, ψ̄] − dωχ̄)ψℲ

+
(

1
2 ιξιξFω − 1

2 [c, c] + ιξδχ̄ω

)
cℲ + 1

2 ι[ξ,ξ]ξ
Ⅎ + 1

2 ιφξ
Ⅎ

− i

(
Lω
ξ χ̄− [c, χ̄] − 1

2 ιφψ̄
)
χℲ + 1

2

(
ω̌ − ιξeč− e

2 ιξč
)
ιφe

Ⅎ,

we just have to show that

ϕ∗
1

(
Ar
SG +

∫
I×Σ

ẽnẽ
2[ṽ, ṽ] + h(ṽℲ)

)
= ASG.

In order to do so, we start by looking at the proof of the corresponding lemma for the pure PC
theory in [CC25b], we see that, with the new definition of structural constraints, we have

ϕ∗
1

(
SrPC +

∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ] + h(ṽℲ)

)
= SPC+

∫
I×Σ

1
2 ṽµϵn

¯̃ψγψ̃−ṽµQ+(δχ(ω̂ + ṽ) + q(ω̂ + ṽ)) ṽℲ.

At this point, we see

ASG = SPC +
∫
I×Σ

1
3!eψ̄γ

3dωψ − χ̄γψeℲ + δχωω
Ⅎ

− i(Lω
ξ ψ̄ − [c, ψ̄] − dωχ̄)ψℲ + ιξδχ̄ωc

Ⅎ

+ 1
2 ιφξ

Ⅎ − i

(
Lω
ξ χ̄− [c, χ̄] − 1

2 ιφψ̄
)
χℲ

+ 1
2

(
ω̌ − ιξeč− e

2 ιξč
)
ιφe

Ⅎ

obtaining

Ar
SG = SrPC +

∫
I×M

1
3!

(
ẽn

˜̄ψγ3dω̂ψ̃ + ẽ ˜̄ψ
n
γ3dω̂ψ̃ + ẽ ˜̄ψγ3dω̃n

ψ̃ + ẽ ˜̄ψγ3dω̂ψ̃n

)
− ˜̄χγψ̃

n
ẽℲ − ˜̄χγψ̃ẽℲn − 1

3!
˜̄χγ3

(
dω̃n

ψ̃ + dω̂ψ̃n

) ˜̌
k − 1

3!
˜̄χγ3dω̂ψ̃

˜̌
kn

− i
(

Lω̂
ξ̃

˜̄ψ + dω̃n

˜̄ψξ̃n + ˜̄ψndξ̃n − [c̃, ˜̄ψ] − dω̂ ˜̄χ
)
ψ̃Ⅎ

n

− i
(

Lω̂
ξ̃

˜̄ψ
n

+ ι∂nξ̃
˜̄ψ − dω̃n

( ˜̄ψnξ̃n) − [c̃, ˜̄ψn] − dω̃n
˜̄χ
)
ψ̃Ⅎ

− i

(
Lω̂
ξ̃

˜̄χ+ dω̃n
˜̄χξ̃n − [c̃, ˜̄χ] − 1

2 ιφ̃
˜̄ψ − 1

2
˜̄ψnφ̃n

)
χ̃Ⅎ

n

+ 1
2 ιφ̃ξ̃

Ⅎ + 1
2 ξ̃

Ⅎ
n
φ̃n + 1

2
˜̌
kιφ̃ẽ

Ⅎ
n + 1

2
˜̌
kn

(
ιφ̃ẽ

Ⅎ + ẽℲnφ̃
n
)
,
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and

ASG − SPC =Ar
SG − SrPC +

∫
I×Σ

1
3!

(
ẽn

˜̄ψγ3[ṽ, ψ̃]
1

+ ẽ ˜̄ψ
n
γ3[ṽ, ψ̃]

2
+ ẽ ˜̄ψγ3[ṽ, ψ̃

n
]
3

)
+

∫
I×Σ

− 1
3!

˜̄χγ3
(

[ṽ, ψ̃
n
]˜̌k

4
+ [ṽ, ψ̃]˜̌kn5

)
− i

(
[ιξ̃ ṽ,

˜̄ψ]
6

− [ṽ, ˜̄χ]
7

)
ψ̃Ⅎ

n

− i
(

[ιξ̃ ṽ,
˜̄ψ
n
]
8

)
ψ̃Ⅎ − i

(
[ιξ̃ ṽ, ˜̄χ]

9

)
χ̃Ⅎ

n
+ (δχ(ω̂ + ṽ) + q(ω̂ + ṽ)) ṽℲ,

(B.22)

Using (A.50), we see that (B.22.1) = 1
2 ẽnṽψ̄γψ, and that (B.22.2) + (B.22.3) give

1
3!

( ˜̄ψ
n
γ3[ṽ, ψ̃] + ẽ ˜̄ψγ3[ṽ, ψ̃

n
]
)

∝ ẽṽ ˜̄ψ
n
γψ̃ = 0.

A straightforward computation gives, for equation (??)

ϕ∗
1 (Ar

SG − SrPC) +
∫
I×Σ

1
2 ṽµϵn

¯̃ψγψ̃ − ṽµQ − (δχ(ω̂ + ṽ) + q(ω̂ + ṽ)) ṽℲ

= Ar
SG − SrPC +

∫
I×Σ

1
3! ẽ

˜̄ψγ3[ιz ṽ, ψ̃]
1

− ˜̄χγψ̃
n
ṽ
˜̌
k

2
+ ˜̄χγψ̃ṽ˜̌

kn3
+ ˜̄χγψ̃ιz ṽ˜̌

k
4

− 1
3!

˜̄χγ3[ιz ṽ, ψ̃]˜̌k
5

− i[ιξ̃ ṽ,
˜̄ψ]ψ̃Ⅎ

n6
− i[ιξ̃ ṽ, ψ̃n]ψ̃Ⅎ

7
+ i[ιz ṽ, ˜̄χ]ψ̃Ⅎ

8

− i[ιξ̃ ṽ, ˜̄χ]χ̃Ⅎ
n9

− 1
2 ṽιφ̃c̃

Ⅎ
n

10
+ 1

2 ιz ṽc̃
Ⅎ
nφ̃

n

11
− 1

2
˜̌
kιφ̃(ṽ˜̌

kn + ιz ṽ
˜̌
k)

12

+ 1
2

˜̌
kn

(
ιφ̃(ṽ˜̌

k) − (ιz ṽ˜̌
k)φ̃n

)
13

+ 1
2 ṽµϵn

˜̄ψγψ̃
14

− ṽµQ
15
.

(B.23)

We are then only left to show that equations (B.23) and (B.22) coincide. We start by noticing
the following terms match:

• (B.23.1) + (B.23.14) A.50= 1
2 ṽ(ιz ẽ+ µϵn) ¯̃ψγψ̃ = (B.22.1).

• (B.22.6) = (B.23.6).

• (B.22.8) = (B.23.7).

• (B.22.9) = (B.23.8)

Before we proceed, we need to find an explicit expression of Q. Indeed, recall that it was defined
in (5.9) as the part of QSG(ϵn ˜̌

k− ẽ˜̌a) = 0 depending on χ̃ and ψ̃. We start by computing eQSGǩ
in the bulk as in the proof of proposition ??. It is a quick computation to see

eQSGǩ =e
(
dωe− 1

2 ψ̄γψ + Lω
ξ ǩ − [c, ǩ] − 1

2 ιφ(eč)
)

− 1
4 χ̄γ

2[ǩ, γ]ψ − i

4 ψ̄
Ⅎ
0γ

2γ2χ− 1
2 ǩιφǩ.

In particular, one has

Q = ϵn

(
QSG(˜̌k) − dω̃ ẽ+ 1

2
˜̄ψγψ̃ − Lω̃

ξ̃

˜̌
k + [c̃, ˜̌k]

)
.
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The only term inside Q which can be easily found is given by − 1
2ϵn

( ¯̃χγχ̃˜̌c
)
, as the terms pro-

portional to ẽ can be reabsorbed in the right hand side of the structural constraint (5.9). In
particular, we can define

B := Q + 1
2ϵn

( ¯̃χγχ̃˜̌c
)
.

Unfortunately, finding QSGǩ and extracting QSG(˜̌k) as the part not proportional to dxn, is not
convenient in our case, as it involves cumbersome computations. It is however more convenient
to consider the part along dxn inside eQSG(ǩ), which is given by ẽnQSG(˜̌k) + ẽQSG(˜̌kn). As in
the computation of the BV pushforward we are only interested in µṽQ, we notice that

ṽ
(
ẽnQSG(˜̌k) + ẽQSG(˜̌kn)

)
ṽẽnQSG(˜̌k) = −µṽϵnQSG ˜̌

k − ιz ṽẽQSG(˜̌k),

having used ẽṽ = 0. At this point, discarding all the terms that do not depend on χ and ψ, we
obtain the term (B.23.15) as

−µṽQ =
[
ṽ

(
ẽnQSG(˜̌k) + ẽQSG(˜̌kn)

)
+ ιz ṽẽQSG(˜̌k)

] ∣∣∣∣
ψ,χ

.

In particular, inside eQSGǩ, what we are interested in are the terms

−e1
2 ιφ(eč) − 1

4 χ̄γ
2[ǩ, γ]ψ − i

4 ψ̄
Ⅎ
0γ

2γ2χ− 1
2 ǩιφǩ.

We carry out the computation term by term:
• −e 1

2 ιφ(eč). As previously anticipated, this gives − 1
2ϵn

( ¯̃χγχ̃˜̌c
)
. We obtain

1
2µṽϵn

( ¯̃χγχ̃˜̌c
)

= − 1
2 ṽ(ẽn − ιz ẽ)(ιφẽ+ ẽnφ̃

n)˜̌c

=1
2 ṽιφ(ẽnẽ˜̌c) − 1

2 ιz ṽ
(

1
2 ιφ̃(e2)˜̌c+ ẽẽnφ̃

n˜̌c
)

= 1
2 ṽιφ̃(c̃Ⅎn) − 1

2 ιz ṽc̃
Ⅎ
nφ̃

n,

having used the fact that c̃Ⅎn = ẽnẽ
˜̌c+ 1

2 ẽ
2˜̌cn and that ẽṽ = 0 repeatedly. We see that the

terms above exactly cancel out (B.23.10) + (B.23.11).

• − 1
4 χ̄γ

2[ǩ, γ]ψ. We have

ṽ

(
−1

4
¯̃χγ2[˜̌knγ]ψ̃ − 1

4
˜̄χγ2[˜̌k, γ]ψ̃

n

)
− 1

4 ιz ṽ
˜̄χγ2[˜̌k, γ]ψ

(A.50)= ṽ
(

˜̄χγψ̃˜̌
kn1

+ ˜̄χγψ̃˜̌
k

2

)
− 1

3!
˜̄χγ3

(
[ṽ, ψ̃]˜̌kn3

+ [ṽ, ψ̃
n
]˜̌k

4

)
− ιz ṽ ˜̄χγψ̃˜̌

k
5

+ 1
3!

˜̄χγ3[ιz ṽ, ψ̃]˜̌k
6
.

(B.24)

We see that (B.24.1) + (B.24.2) + (B.24.5) + (B.24.6) + (B.23.2) + (B.23.3) + (B.23.4) +
(B.23.5) = 0, while (B.24.3) = (B.22.5) and (B.24.4) = (B.22.4)

• − i
4 ψ̄

Ⅎ
0γ

2γ2χ. Before carrying out the computation, we notice that − i
4 ψ̄

Ⅎ
0γ

2γ2χ =
−i[ψ̄Ⅎ,χ], where the action on χ is given only by the part in V of ψℲ. Using Leib-
niz and the Majorana flip relations, we then have

− iṽ[ ˜̄ψ
Ⅎ

n
, χ̃] − iιz ṽ[ ˜̄ψℲ, χ̃]

= −i[ṽ, ˜̄χ]ψ̃Ⅎ
n1

+ i[ιz ṽ, ˜̄χ]ψ̃Ⅎ
2
.

(B.25)
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We see (B.25.2) + (B.23.8) = 0, while (B.25.2) = (B.22.7), which tells us that (B.23)
contains all the terms in (B.22). We are then left to show that (B.23) does not contain
extra terms.

• − 1
2 ǩιφǩ. We have simply

− 1
2 ṽιφ̃(˜̌kn

˜̌
k) + 1

2 ιz ṽ
˜̌
k

˜̌
knφ̃

n, (B.26)

since ˜̌
kιφ̃

˜̌
k = 1

2 ιφ̃(˜̌k2) = 0 because there are no 4-forms on Σ and since ˜̌
k2
n = 0 because of

parity. It is easy to see that equation (B.26) exactly cancels out (B.23.12) + (B.23.13).

The above computation tells us that eq. (B.23) is equal to eq. (B.22), hence showing

ϕ∗
1

(
Ar
SG +

∫
I×Σ

1
2 ẽnẽ[ṽ, ṽ] + h(ṽℲ)

)
= ASG,

B.3.5 AKSZ Symplectomorphism

We now want to show the proof of proposition 5.2. We start by recalling the form of the AKSZ
symplectic form:

ϖAKSZ
SG = ϖAKSZ

PC +
∫
I×Σ

1
3!

(
ς̄Ⅎγ3δψδe

1
+ ψ̄γ3δςℲδe

2
+ ψ̄γ3δψδfℲ

3
+ fℲδψ̄γ3δψ

4

)
+ 1

3eδψ̄γ
3δςℲ

5
+ iδϵ̄δθℲ6 + iδχ̄δχℲ

7
+ iδς̄(ιδξθℲ8

+ ιξδθ
Ⅎ

9
)

+ iδψ̄
(
ιδzθ

Ⅎ
10

+ ιzδθ
Ⅎ

11
+ ιδξχ

Ⅎ
12

+ ιξδχ
Ⅎ

13

) (B.27)

The reduced BV form is given by

ϖr
SG = ϖr

PC +
∫
I×Σ

iδψ̄
n
δψℲ + iδψ̄δψℲ

n
+ iδχ̄δχℲ

n
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Notice that, as it happened in chapter 3.3, we have

Φ∗
r(ϖr

PC) = ϖAKSZ
PC +

+
∫
I×Σ

δe

(
1
3! ς̄

Ⅎγ3δψ
1

+ 1
3! ψ̄γ

3ςℲ

2
− 1

3!δ(λµ
−1)ς̄Ⅎγ3ςℲ

3
+ 1

3λµ
−1δς̄Ⅎγ3ςℲ

4

)
+ δ(λµ−1)fℲ

(
1
3! ς̄

Ⅎγ3δψ
5

+ 1
3! ψ̄γ

3ςℲ

6
− 1

3!δ(λµ
−1)ς̄Ⅎγ3ςℲ

7
+ 1

3λµ
−1δς̄Ⅎγ3ςℲ

8

)
− λµ−1δfℲ

(
1
3! ς̄

Ⅎγ3δψ
9

+ 1
3! ψ̄γ

3ςℲ

10
− 1

3!δ(λµ
−1)ς̄Ⅎγ3ςℲ

11

)
+ iιδξδς̄Ⅎθ

Ⅎ
12

+ iιδξ ς̄Ⅎδθ
Ⅎ

13
+ iδ(λµ−1)

(
iιzδς̄Ⅎθ

Ⅎ
14

+ iιz ς̄Ⅎδθ
Ⅎ

15

)
+ iλµ−1

(
iιδzδς̄Ⅎθ

Ⅎ
16

+ iιδz ς̄Ⅎδθ
Ⅎ

17

)
− iδ(λµ−1)ιδξ ς̄ℲχℲ

18

− iλµ−1
(
ιδξδς̄

ℲχℲ
19

+ ιδξ ς̄
ℲδχℲ

20

)
+ iδ(λµ−1)

(
δ(λµ−1)ιz ς̄Ⅎχ

21
+ λµ−1ιzδς̄

Ⅎχ
22

)
+ iδ(λµ−1)

(
λµ−1ιz ς̄

Ⅎδχ
23

+ λµ−1ιδz ς̄
Ⅎχ

24

)
+ δ(λµ−1)

(
ιδz ς̄

ℲθℲ25
+ ιzδς̄

ℲθℲ26
− ιz ς̄

ℲδθℲ27

)
+ 1

3!δ(λµ
−1)

(
δfℲψ̄γ3ςℲ

28
+ fℲδψ̄γ3ςℲ

29
− fℲψ̄γ3δςℲ

30
+ δeς̄Ⅎγ3ςℲ

31
+ 2eς̄Ⅎγ3δςℲ

32

)
− iδ(λµ−1)

(
δ(λµ−1)ιz ς̄Ⅎχ

33
+ λµ−1ιzδς̄

Ⅎχ
34

+ λµ−1ιz ς̄
Ⅎδχ

35
+ λµ−1ιδz ς̄

Ⅎχ
36

)
,

(B.28)

and

Φ∗
r

(
iδψ̄

n
δψℲ + iδψ̄δψℲ

n
+ iδχ̄δχℲ

n

)
= 1

3!δψ̄
(

2γ3ςℲδe
1

+ eγ3δςℲ
2

− γ3ψδfℲ
3

− fℲγ3δψ
4

+ δ(λµ−1)fℲγ3ςℲ
5

− λµ−1δfℲγ3ςℲ
6

)
− 1

3!δψ̄λµ
−1fℲγ3δςℲ

7
+ 1

3!δ(λµ
−1)ς̄Ⅎ

(
2γ3ςℲδe

8
+ 2eγ3δςℲ

9
− γ3ψδfℲ

10
− fℲγ3δψ

11
+ δ(λµ−1)fℲγ3ςℲ

12

)
− 1

3!δ(λµ
−1)ς̄Ⅎ

(
λµ−1δfℲγ3ςℲ

13
− λµ−1fℲγ3δςℲ

14

)
+ 1

3!λµ
−1δς̄

(
2γ3ςℲδe

15
+ eγ3δςℲ

16
− γ3ψδfℲ

17

)
+ 1

3!λµ
−1δς̄Ⅎ

(
−fℲγ3δψ

18
+ δ(λµ−1)fℲγ3ςℲ

19

)
+ iδψ̄

(
ιδzθ

Ⅎ
20

+ ιzδθ
Ⅎ

21

)
+ iδ(λµ−1)ς̄Ⅎ

(
ιδzθ

Ⅎ
22

+ ιzδθ
Ⅎ

23

)
− iλµ−1δς̄Ⅎ

(
ιδzθ

Ⅎ
24

+ ιzδθ
Ⅎ

25

)
+ iδψ̄

(
ιδξχ

Ⅎ
26

+ ιξδχ
Ⅎ

27

)
+ iδ(λµ−1)ς̄Ⅎ

(
ιδξχ

Ⅎ
28

+ ιξδχ
Ⅎ

29

)
− iλµ−1δς̄Ⅎ

(
ιδξχ

Ⅎ
30

+ ιξδχ
Ⅎ

31

)
+ iδχ̄δχℲ

32
+ iδ(λµ−1)ιξ ς̄ℲδχℲ

33

− iλµ−1ιδξ ς̄
ℲδχℲ

34
− iλµ−1ιξδς̄

ℲδχℲ
35

+ iδϵ̄δθℲ36 − iιδξς
ℲδθℲ

37
− iιξδς̄

ℲδθℲ
38

+ iδ(λµ−1)ιz ς̄ℲδθℲ39

− iλµ−1διz ς̄
ℲδθℲ

40
− iλµ−1ιδz ς̄

ℲδθℲ
41

− iλµ−1διzδς̄
ℲδθℲ

42
(B.29)

We can then see that the following terms inside Φ∗
r(ϖr

SG) add up to ϖAKSZ
SG :

• (B.28.1) + (B.29.1) = (B.27.1)

• (B.28.2) = (B.27.2)

• (B.29.3) = (B.27.4)
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• (B.29.4) = (B.27.4)

• (B.29.2) = (B.27.5)

• (B.29.36) = (B.27.6)

• (B.29.32) = (B.27.7)

• (B.28.12) = (B.27.8)

• (B.29.38) = (B.27.9)

• (B.29.20) + (B.29.21) = (B.27.10) + (B.27.11)

• (B.29.26) + (B.29.27) = (B.27.12) + (B.27.13)

while the remaining terms in Φ∗
r(ϖr

SG) add up to zero

• (B.28.3) + (B.28.31) + (B.29.8) = 0

• (B.28.4) + (B.29.15) = 0

• (B.28.5) + (B.28.31) + (B.29.5) + (B.29.29) = 0

• (B.28.6) + (B.28.30) = 0

• (B.28.7) + (B.29.8) = 0

• (B.28.8) + (B.29.14) + (B.29.19) = 0

• (B.28.9) + (B.29.6) = 0

• (B.28.10) + (B.29.17) = 0

• (B.28.11) + (B.29.13) = 0

• (B.29.7) + (B.29.18) = 0

• (B.29.9) + (B.29.18) = 0

• (B.29.10) + (B.28.28) = 0

• (B.29.16) = 0 because of (A.54) and the parity of δςℲ

• (B.29.22) + (B.28.25) = 0

• (B.29.23) + (B.29.39) + (B.28.15) + (B.28.27) = 0

• (B.29.24) + (B.28.16) = 0

• (B.29.25) + (B.29.38) = 0

• (B.29.37) + (B.28.13) = 0

• (B.29.41) + (B.28.17) = 0

• (B.28.14) + (B.28.26) = 0

• (B.29.28) + (B.28.18) = 0
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• (B.29.29) + (B.29.33) = 0

• (B.29.30) + (B.28.19) = 0

• (B.29.31) + (B.29.35) = 0

• (B.29.34) + (B.28.20) = 0

• (B.28.21) + (B.28.33) = 0

• (B.28.22) + (B.28.34) = 0

• (B.28.23) + (B.28.35) = 0

• (B.28.24) + (B.28.36) = 0
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