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Abstract

The purpose of this thesis is to study the classical BV-BFV (Batalin—Fradkin—Vilkovisky) struc-
ture of gravity coupled to spinors and, specifically, of the simplest case of supergravity, where
only one gravitino is introduced in dimension four.

After a synthetic but thorough introduction on the BV-BFV machinery with some simple
examples, this thesis presents a summary of known results on Palatini-Cartan gravity in the
BV-BFV formalism, along with minor redefinitions, serving as a starting point for the further
developments and leading to an original description of Palatini—-Cartan—Dirac gravity on mani-
folds with boundary, in which, starting from the study of the boundary structure of the classical
fields via the Kijowski-Tulczjiew construction, a BFV formulation is first obtained and then
linked to its BV bulk counterpart by means of the 1-dimensional AKSZ construction.

The main body of the present work is a thorough BV-BFV alnalysis of N = 1,D = 4
supergravity. In particular, after studying constraints of the theory and identifying the relevant
gauge symmetries, the existence of a BFV structure is established, but not directly computed
due to technical difficulties. Such study, along with the simpler case of PCD gravity, provides
enough insights to study the BV structure of SuGra in the bulk, where a complete off-shell BV
formulation is obtained, generalizing the results of Baulieu et al.

Finally, the last part of the thesis complements the above findings by constructing a BV-BFV
extendable theory of N = 1, D = 4 supergravity, which is obtained by eliminating the degrees
of freedom which are responsible for the obstruction in the BV-BFV extension of the theory.
Such procedure goes by the name of BV—pushforward, a technique that formalizes the concept
of "integrating out" certain modes, which is adapted here to the case of classical supergravity.

These results provide a foundational step toward the quantization of supergravity theories in
the presence of boundaries.
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Introduction

In the context of theoretical and mathematical physics, many efforts over the years have been
done towards defining a consistent notion of quantization of physical field theories. Historically,
this has concretely been obtained by performing a perturbative expansion around critical points
of the action functional, a method based on the stationary phase formula, which allows to evaluate
oscillatory integrals as an asymptotic power series whose coefficients are computed via Feynman
diagrams.

A major problem with such approach was posed in the mid-20th century in regards to the
quantization of gauge theories, emerging from the need to properly handle the infinite redundan-
cies introduced by local symmetry groups. Indeed, in such theories there is no isolated critical
point of the action functional, but rather a whole "orbit". The earliest technique for address-
ing this issue was presented by Fadeev and Popov [FP67], who proposed the introduction of
additional fields — the Fadeev—Popov ghosts — in order to obtain a well-defined gauge-fixed
theory.

Shortly after, the geometrical interpretation of these ghost fields was given by Becchi, Rouet
and Stora [BRST76], and independently by Tyutin |[Tyu75|, in the so-called BRST formalism. In
this context, the original classical space of fields is enlarged to encompass the introduction of the
ghost fields, unphysical degrees of freedom — typically represented by anti-commuting bosons
or, in the case of supersymmetric theories, by commuting spinors, in both cases violating the spin
statistics theorem — which are interpreted as the parameters generating the gauge symmetries.
On top of this, anti-ghosts are introduced, acting as the canonical momenta associated to the
ghosts. Thanks to the odd parity of the newly defined objects, one can assign a grading — given
by the difference between ghost and anti-ghost number — to the enlarged space of fields and
construct a nilpotent operator of degree 1 — the BRST operator —, which acts as the local
gauge symmetry on the classical fields. The introduction of the BRST operator then allows to
construct a chain complex, and to obtain the classical observables as its degree-0 cohomology.
Algebraically, this equates to extending the space of functionals by the Chevalley-Eilenberg
complex, where the CE differential is precisely the BRST operator.

The applications of the BRST formalism are not only limited to the study of field theories in
the bulk, as it is also a powerful tool in the reduction of constrained Hamiltonian systems, which
arise when dealing with boundary conditions for field theories on Cauchy surfaces. Historically,
such analysis was first given by Dirac [Dir58] in terms of first and second class constraints, em-
ploying the Poisson structure on the space of boundary fields. However, thanks to a construction
due to Kijowski and Tulczjew (KT) [KT79|, one can, in favorable cases, associate a symplectic
structure to the space of fields on the Cauchy surface. The BRST formalism then turns out to
be instrumental in obtaining the reduced phase space of the theory, which is a central object
in the context of quantization, as functions on it can be regarded as physical observables and
provide the perfect candidate to be promoted to operators on a Hilbert space in the quantized
theory. The caveat is that such procedure only works in the case where the constraints can be
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recast as components of a momentum map. In this context, the Hamiltonian vector fields of the
constraints are interpreted as the generators of the gauge symmetries, and the BRST operator is
constructed in such a way that its degree-0 cohomology is exactly given by the algebra of func-
tions on the reduced phase space. In the smooth finite-dimentional setting, such construction
turns out to be the algebraic equivalent of the Marsden—Weinstein reduction [MW74].

Despite being suitable to describe a large class of gauge theories, the BRST procedure fails in
specific cases, among which are gravity and supergravity. The BV and BFV formalisms then arise
from the need of generalizing the BRST framework, where the former is suited for the description
of a field theory in the bulk and the latter provides its boundary counterpart. In particular, it
is sometimes the case — for example when dealing with a supersymmetric theory — that the
gauge symmetries close only modulo the equations of motion, while the BRST framework is best
suited for gauge algebras that close off-shell. To address these limitations, Batalin and Vilkovisky
[BV77; BV81| extended the formalism to include antiﬁeldsﬂ seen as degree -1 canonical momenta
associated to the classical fields and ghosts. Such introduction allows for the definition of a
canonical -1-shifted symplectic structure on the BV space of fields, rendering the latter a graded
symplectic supermanifold F. On F, the main theorem of BV assures that there exists a degree-1
operator — generalizing the BRST one — which, thanks to the introduction of anti-fields, is now
guaranteed to be nilpotent, equating to the requirement that the gauge algebra closes off-shell.
Furthermore, such cohomological vector field can be interpreted as the Hamiltonian vector field
associated to the BV action, a functional on the BV space of fields extending the classical action.
In this context, the gauge fixing is performed by choosing a Lagrangian submanifold of F, while
the gauge invariance is given by the independence on the choice of Lagrangian submanifold, in an
appropriate sense. For an exhaustive introduction to the formalism, we refer to [Mnel7], while
[BBH95; BGO05] offer alternative descripitions.

Analogously, the BFV (Batalin-Fradkin-Vilkovisky) [BF83] formalism provides a generaliza-
tion of the BRST analysis of constrained Hamiltonian systems. As already mentioned, thanks
to the KT construction one can assign the structure of a symplectic manifold to the space of
boundary fields, and define constraints on it. The BRST formalism is particularly useful in the
cohomological resolution of the reduced phase space, arising as the symplectic reduction of the
zero locus of the constraints on the boundary. However, such procedure is only suitable for
this goal when the constraints can be reinterpreted as components of a momentum map, but
there are cases, like the one of gravity, where the constraints are just first-class, without any
underlying momentum map in the classical sense. This is precisely when the BF'V construction
comes into play, indeed, thanks to a theorem by Batalin and Fradkin, which has later been
mathematically formalised within the context of homological algebra by Stasheff [Sta97] and for
general coisotropic submanifolds by [Sch09]: one can always extend the space of boundary fields
by introducing ghosts and antighosts in such a way to define a degree-0 symplectic form and an
action functional of degree 1, in which the constraints are recast and whose Hamiltonian vector
field is cohomological.

In recent years, Cattaneo, Mnev and Reshetikin [CMR11; |CMR14; [CMR18] have developed
the framework in which the BV and BFV formalism become compatible, in such a way to account
for cutting and gluing, similarly to what had been previously proposed for the quantization of
topological field theories by Atiyah and Segal |Ati88; [Seg88|, who defined an axiomatization of
TQFT’s based on the categorical object of a "quantization" functor whose source category is the
one of cobordisms, i.e. manifolds with boundary (and possibly corners). The CMR program offers
a viable alternative suitable for a general class of gauge field theories, which is still categorical

2Tt is worth mentioning that antifields were present in the original work of BRS with the name of "BRS sources",
introduced in the construction of the Slavnov—Taylor identities [Tay71} |Sla72|, which are generalization of the
well-known Ward identities in the non-abelian gauge theory setting.
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in nature and is based on the BV technology, providing an algebraic solution to the problem of
the path integral evaluation, relating it to the cohomology of a well-defined cochain complex.

The BV-BFV axioms proposed by CMR state that, when a boundary is introduced, the BV
data in the bulk naturally induce a BFV structure on the boundary. Specifically, the variation
of the BV action gives a boundary term, which is the analog of a Noether one-form on the space
of boundary conditions, hence failing to be exactly the Hamiltonian of a cohomological vector
field. The variation of the Noether one-form is usually a degenerate closed two form, whose
reduction is assumed to be smooth, hence obtaining a graded symplectic structure on the space
of boundary fields, which is now promoted to the space of BFV fields. Furthermore, the Classical
Master Equation (CME), i.e. the requirement that the bulk BV action Poisson-commutes with
itself, is only satisfied up to a boundary term, which can be interpreted as a functional on the
space of BFV fields, taking the role of the BFV action. If the induced theory on the boundary
fulfills the BFV axioms, then one obtains a genuine BV-BFV theory, which has proved to be the
relevant object towards a boundary BV quantisation approach. This program has been applied
to a variety of different theories, notably BF theories [CMR20], Chern—Simons [CMW17] and,
recently, to the different incarnations of gravity [CS19a} |CS19bj; |(CCS21a].

The BV-BFYV description of gravity

For decades, efforts have been made towards the quantization of gravity, with varying success,
but ultimately without a fully satisfying answer. The earliest attempts at providing a BV-BFV
analysis in this context have been performed classically by Cattaneo and Schiavina in the case of
Einstein—Hilbert gravity in [CS16|, where they showed that the theory is BV-BFV extendable,
in the case where one assumes the boundary metric to be lightlike or timelike.

The Einstein-Hilbert formulation is just one of the different ways gravity can be described,
indeed a classically equivalent counterpart — which presents the same moduli space of solution as
of Einstein—Hilbert gravity — is given by Palatini—Cartan gravity, where the metric is substituted
by a coframe and the connection is assumed to be an independent field. In dimension 3, the
coframe formulation of gravity was shown |CS19a] to be strongly BV equivalent — a notion
that amounts to asking that the two BV theories present the same cohomological data — to
BF theory, and henceforth topological. In a recent paper [CS25], the authors obtained the BFV
quantization of 3D Palatini—Cartan gravity.

Despite the equivalence at the level of the Euler—Lagrange locus, the EL and PC theories of
gravity present many differences off-shell, since, for example, the latter is not BV-BFV extendable
in dimension four, as proved in [CS19b], where a BV structure was found, but the induced pre-
symplectic form on the space of boundary fields was shown to be singular, hence not providing
a smooth quotient.

The advantages of PC gravity are several, among which the main one is that of dealing solely
with differential forms, making it significantly less challenging to restrict to the boundary, and
allowing for a quick and simple use of Cartan calculus in a coordinate-free notation. In order
to resolve the limitations in the BV-BFV extention, such theory has been studied extensively
in the literature. In particular, the classical study of the boundary structure of PC gravity was
performed by Canepa, Cattaneo and Schiavina in [CS19¢| and subsequently in [CCS21a], where,
thanks to the Kijowski—Tulczjew construction, the authors were able to find the reduced phase
space of the theory, and later embed it in the language of the BFV formalism.

Such description produced many insights on how to resolve the obstruction to the BFV ex-
tension of the BV PC theory in the bulk. Notably, this issue has been first resolved by employing
the 1-dimensional AKSZ (Alexandrov—Kontsevich-Schwarz—Zaboronsky) construction. Such for-



4 CONTENTS

malism was first introduced in |Ale+97|, providing a canonical method for building solutions to
the CME. In this setting, starting from a well-defined BFV theory on the boundary, it allows to
induce in the bulk the data of a theory automatically satisfying all the BV axioms, hence defining
a BV-BFV extandable theory. The key observation is that the induced BV theory in the bulk
differs from the original one, which was not suitable for a BFV extention. In particular, such
theory presents a reduced space of BV fields, which are subject to constraints descending down
from the boundary and assuring that the boundary symplectic form is well-defined. Such results
were found in |[CCS21b], where the authors also showed that the AKSZ-induced BV theory can
be embedded in the original BV PC theory.

The two theories are actually equivalent as can be formally explained through a construction
which goes by the name of BV-pushforward. Such procedure formalizes, in the context of the BV
technology, the idea of "integrating out" certain degrees of freedom, similarly to what happens
when heavy modes are discarded to obtained an effective field theories. Roughly speaking, one
assumes that the original space of fields can be, at least locally, split into the product of two
-1-symplectic supermanifolds. Integration along a Lagrangian submanifold of just one of the
two factors is guaranteed to produce an "effective" BV theory on the other factor, safisfying all
the relevant axioms. In some cases, like the one at hand, the BV-pushforward can be inverted
cohomologically, proving the equivalence of the two theories.

In the case of PC gravity, one can locally split the original space of BV fields into the
reduced space (obtained also via 1D AKSZ) of fields satisfying some constraints descending from
the boundary, and the rest. It was proved in |[CC25b] that the latter space is a -1-symplectic
supermanifold, whose fields are responsible for the obstruction in the BFV extension of the full
BV PC theory. Integrating out the unconstrained fields exactly produces the desired result.

Supersymmetry, Supergravity and the necessity for BV

Parallelly to the development of quantum gauge theories, the mathematical physics scenario
was introduced to the concept of supersymmetry. As the prefix “super-“ suggests, this is an
extension beyond the normal kind of symmetry against which normal gauge theories are invariant.
Mathematically, this amounts to requiring that the Lie algebra generating the symmetry is a
superLie algebra, containing an anti commuting set of generators. Physically, transformations
with respect to these generators send bosons to fermions and vice versa. One of the main feature
of the supersymmetry transformations is that, when squared, they recover the usual translations,
which is going to be a crucial observation in supergravity theories.

The case case of supergravity is peculiar, since it is the super symmetric extension of gravity,
which can be regarded as the gauge theory of the Poincaré group, including translations, rotations
and Lorentz boosts. In particular, the local translation invariance implies general covariance,
which is just another name for diffeomorphism invariance. When considering supergravity, one
needs to introduce the gauge fields associated to the supersymmetry generators, which take the
name of gravitinos. Given the anti-commuting nature of the generators, such gauge fields will
be represented by spinors, whose spin is 3/2, hence the necessity to obtain a well-defined theory
of gravity coupled with spinors.

The easiest case, which serves as a warm-up for supergravity, is the coupling of a Dirac
spinor, which is a spin 1/2 field. The study of such theory requires to introduce the necessary
formalism for the definition of spinor fields on manifolds. This is usually done in terms of spin
structures, whose existence is guaranteed only under some topological conditions, specifically
that the second Stiefel-Whitney class vanishes.

The problem with spin structures, however, is that they are defined on (pseudo)Riemannian
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manifold with a fixed metric, which, in the case of gravity, is the central dynamical object of
the theory. This issue is resolved by the introduction of spin coframes, generalizing the notion
of coframes in general relativity, allowing for the coupling of half-integer spin fields, without the
introduction of a space-time metric. A theorem in [NF22] guarantees that the existence of spin
coframes is equivalent to the existence of spin structures, and one can induce one object from
the other and vice versa.

With the above technical background, the coupling of a Dirac spinor to the PC action is
just obtained by addition of the Dirac Lagrangian, where the flat derivative is replaced by the
covariant derivative with respect to the spin connection.

For the case of supergravity, however, the study of Dirac spinors just provides an insightful
toy model. Indeed, one of the requirements of supersymmetry is that the bosonic and fermionic
degrees of freedom of the theory should match, which constraints the type of spinors one is
allowed to consider, depending on the space—time dimension of the chosen theory. In dimension
4, the correct number of degrees of freedom is matched by Majorana spinors, particular Dirac
spinors that satisfy a reality condition given in terms of the charge conjugation matrixﬂ

The case investigated in this thesis is the simpler one: N = 1, D = 4 supergravity, namely
the one where just one gravitino appears. This theory has been largely studied in the past,
employing different techniques, such as the superspace formalism, where fields are described as
sections of certain (vector or principal) bundles over a supermanifold M of type (D|N), where
D is the space—time dimension and N is the number of supercharges. Such formalism has found
a geometrical interpretation in the so-called 'rheonomy approach" |[CDF91a} [Cas18} [DAu20),
where M is obtained as the coset space of two (super)groups G/H E| However, in this thesis
the supermanifold language appears only in relation to BV/BFV formalism, and the rheonomy
approach is not contemplated. Indeed one of the insights of this work is that supersymmetry
emerges from the minimal coupling of gravity to a Majorana spinor. This is clear in the KT
approach to this theory, where the supersymmetry transformations arise as the Hamiltonian
vector fields of the constraints.

Indeed, the KT analysis of N = 1, D = 4 supegravity is performed in chapter [4] starting by
considering the induced pre-symplectic form on the space of boundary fields.

The main difference from the pure gravity case is that the gravitino interaction introduces a
torsion term quadratic in the gravitino, which implies that the connection satisfying the equations
of motion is not the usual Levi-Civita one. In general, a torsion term is introduced whenever
spinors are coupled to gravity via the spin connection, as it is also the case for the spin % Dirac
field. Furthermore, the gravitino satisfies the (massless) Rarita—Schwinger equation, which,
contrary to the simpler Dirac equation, descends to the boundary as a constraint.

After the symplectic reduction is obtained on the space of boundary fields, yielding a smooth
space called the "geometric phase space", the study of the constraints of N = 1,D = 4 su-
pergravity is performed in [{.I] showing that they form a first-class set. This implies that the
zero-locus of the constraints, the actual phase space of the theory, is a coisotropic submanifold.
Such space is of great importance as it represents, on a Cauchy surface, the space of boundary
conditions of the theory, which is in one-to-one correspondence with the space of solutions to
the Euler-Lagrange equations in the bulk. However, the phase space includes gauge-equivalent
boundary conditions, related by the action of the symmetries of the theory. In order to obtained
the reduced phase space, one needs to compute its coistropic reduction, which in most cases

3In principle, Weyl spinors would be suitable candidates for describing the gravitino as they also match the
required degrees of freedom. However, the only consistent solution in the 3+ 1 signature is provided by the choice
of Majorana spinors.

4This idea stems from the fact the superspace is obtained as the quotient of the superPoincaré
group Iso(R(D*Ll”N) with respect to the spin group Spin(D — 1,1).

R(D-1,1)|N
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turns out to be non-smooth. Ultimately, this is why the BFV formalism provides such a useful
tool, as it allows to cohomologically resolve the reduced phase space, obtaining the functions on
it as the degree 0 cohomology of the BFV operator.

Having shown that the constraints form a first-class set is enough to guarantee the existence
of a BFV structure. However, in the case of supergravity, the derivation of an explicit BFV action
provides very hard computational challenges. Indeed, in the simpler cases one recovers the BFV
action as the twisting of the Koszul and of the Chevalley—Eilenberg differentials, rephrased in
the language of supergeometry, obtaining an expression that is at most linear in the antighosts.
In the case of supergravity, one needs to take into account the fact that the supersymmetry
only closes modulo the equations of motion, which implies the introduction of rank-2 terms (i.e.
quadratic in the antighosts) in the action.

In light of such remarks, it is more convenient to first study the BV structureof N =1,D =4
supergravity in the bulk. As already mentioned, the naive definition of the BV operator as the
sum of the infinitesimal gauge symmetries, which is the solution proposed in the BRST formalism,
does not guarantee the off shell nilpotency property. In particular, the BRST procedure is not
sufficient to treat theories whose symmetry algebra closes only on shell, however, the main
theorem of BV guarantees that it is always possible to add terms to the BV action forming a
polynomial in the antifields of increasing degree, such that its Hamiltonian vector field — the
BV operator — is cohomological. This makes the BV formalism the only option for the study
of many supersymmetric theories, including supergravity, by means of cohomological methods.

In the case of N = 1, D = 4 supergravity, already in the half-shell case, where the torsion
equation is imposed, it was proved in [Bau+90| that rank-2 terms are necessary in the BV action.
In chapter 5| the theory is studied in its off shell formulation, leaving the spin connection uncon-
strained since, when restrcited to the boundary, it plays the role of the conjugate momentum of
the vielbein.

Dropping the torsion constraint in the bulk introduces many computational difficulties, which
are resolved by employing many technical results involving properties of the vielbein, gamma
matrices and Fierz identities, which are regrouped in[A-3] Thanks to these tools, a fully covariant
fully off-shell BV formulation of N = 1, D = 4 supergravity is obtained in [5.1.1]

However, as it is the case for pure PC gravity, the theory is shown to be not 1-extendable. In
particular, the same obstructions to the definition of a regular BFV symplectic forms are found,
where the introduction of spinors only plays a marginal role. Indeed, the problem arises in the
boundary components of the spin connection, which is where the singularity of the kernel of the
induced boundary pre-symplectic form arises. Unfortunately, the problem cannot be solved as in
the case of the pure PC gravity, where the BV theory that produces the correct BFV extension
was found by means of the 1-D AKSZ construction.

In the case at hand, it is however possible to employ the methods of the BV pushforward,
eliminating the problematic degrees of freedom of the spin connection which are responsible for
the obstruction to the BFV extension, obtaining the restricted space of BV fields subject to the
appropriate constraints, which are retrieved from the classical structure of the theory on the
boundary. Specifically, the spin connection and its antifield are constrained in such a way as to
make the constraint set invariant under the BV operator, which amounts to require that they
are gauge invariant. With such method, it is then possible to obtain a well-defined BFV theory,
which in this thesis is only computed implicitly.
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The above considerations are summarised in the following diagram

§ ey §

RS g@

where § and §" are respectively the full BV and restricted BV theory of N = 1,D = 4
supergravity, §2 is the BFV theory on the boundary, while the squiggly arrow represents the BV
pushforward and the straight one the usual BV-BFV extension.

Outline of the thesis

The thesis is structured as follows

« Chapter [I] provides an overview of classical field theory on manifolds with boundary, intro-
ducing the the KT construction, and the BV-BFV technology;

o Chapter[2]reviews some known results in the theory of Palatini-Cartan gravity on manifolds
with boundary, as well as its BV-BFV formulation, providing the starting point for the
coupling of spinors to gravity;

o Chapter[3|couples Dirac fermions to Palatini-Cartan gravity, yielding a full BV-BFV theory
of Palatini-Cartan—Dirac gravity, with analysis of second-class constraints and the reduced
phase space, as well as the 1-dimensional AKSZ construction;

o Chapter [4 contains the constraint analysis of N = 1, D = 4 supergravity within the KT
construction, laying the groundwork for a BFV formulation;

o Chapter [f] presents the complete BV construction of supergravity and shows the existence
of a compatible BFV theory via the methods of the (classical) BV pushforward, applied to
the specific case of supergravity and generalized the known results for the PC theory;

 Appendix[A]is a self-contained review of Clifford algebras, spin groups, and spin coframes,
culminating in the construction of Majorana spinors and Fierz identities;

 Appendix [B] contains all the lengthy computations of the main results of this thesis, which
were too long and cumbersome to include in the main chapters.

Outlook and Future Directions

This thesis, while rooted in classical field theory, lays the groundwork for future studies in the
context of supergravity and gravity with spinors. Indeed, several insights can be extracted
from this work. Firstly, the BV-BFV formalism offers a powerful language which allows to
rigorously relate classical and quantum field theories, particularly when extended to systems with
boundaries (and possibly corners), allowing the description of supersymmetric theories which
require the introduction of higher order corrections. Secondly, the Palatini-Cartan formulation
of gravity, while naturally allowing the coupling of spinors and torsion, proves indispensable for
a geometric understanding of supergravity. Lastly, the BV pushforward technique and the AKSZ
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construction provide not only formal solutions to the master equation but also concrete tools for
building boundary theories.

In conclusion, this thesis contributes to the mathematical formalism required for the consis-
tent treatment of gauge theories on manifolds with boundary and provides a rigorous foundation
for understanding supergravity from a geometric and cohomological perspective. It invites further
investigations into the role of boundary conditions in supersymmetric models, and the interplay
between classical geometry and quantum field theory in the BV-BFV framework.



Chapter 1

Preliminaries

This chapter contains a description of the mathematical tools underlying the main results of the
thesis.

1.1 Classical Lagrangian field theories with boundary

In this section we introduce the necessary notions to define a field theory on a manifold with
boundary in a short and systematic way.

Let M be a D—dimensional manifold with boundary M =: ¥ and let F' be a vector bundle
on M. For a large variety of theories—and in particular the ones at hand—the space of fields
Fyy is in general defined a (an open subspace of) an affine space modeled on the space of smooth
local sections ¢ on F, i.e. Fyy :=T'(M, F'), which is in general an infinite-dimensional manifold
(inheriting the structure of a Fréchet space) on which we assume that Cartan calculus is defined.

To define precisely the objects employed in the context of Lagrangian field theory, one first
needs to define the local calculus on M x Fj;. Let us consider the infinite jet bundle J>°F.
The smooth local sections of the infinite jet bundle T'(M, J>°F), can also be obtained by the jet
prolongation j*°: I'(M,F) — T'(M, J*F). We can define a map ey, by precomposing j>° with
the evaluation map ev: M x Fpy — F: (z,¢) — ¢(x), i.e.

eoo: M x Foy S50 0p s« (M, % F) &% J®F

It is a well known fact [Dell8; |And| that differential forms on J*°F carry a double degree,
defining a bicomplex with respect to a vertical differential dy and a horizontal differential dg,
such that d = dy + dg is the usual de Rham differential. In particular, this implies that d%/ =0,
d%[ =0 and dydyg + dgdy = 0. It is then possible to define local forms on M x F); by pulling
back forms on J*°F along e.,. This produces a double complex of local forms defined by

QP (M x Frp) = 2 QP9 (J®F), (1.1)
where p is the vertical degree and ¢ the horizontal one. The differentials are defined by d := €% dg
and 0 := e} dy, representing respectively the de Rham differential on differential forms on M
and the “variational differential” on forms on F'. In particular, d measures variations of fields at
the space-time level, while § measures variations of the field configuration at a given space-time
point. A Lagrangian Ly, is defined to be a (D,0) local form which, when evaluated at a field
configuration ¢, is called Lagrangian density Las (o).

9
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Definition 1.1. A field theory on M is given by a space of fields F; and an action functional
S, seen as the integral of the Lagrangian L.

The physical content of the theory is encapsulated by the action (or equivalently by the
Lagrangian), whose variation produces the Euler-Lagrange equations. In particular, in presence
of a boundary, one has

5SM:€l]u+/CLM,
b

where elj; is the Euler-Lagrange (integrated) local 1-form and a,s is the boundary term arising
after integration by parts, which is a local 1-form depending on the fields and their jets at OM.
The critical locus is defined to be the set of solutions to the equations of motion

ELy := {1/} e Fy | Gl]y[‘w = O}

In this context, the symmetries of the theory are defined by vector fields on F); leaving the
action invariant, i.e. X € X(Fys) such that Lx(Sy) = 0, where Lx := txd + dutx is the Lie
derivative on the space of fields.

1.1.1 The Kijowski—Tulczijew construction
Defining ap; := faM ajyr, one notices
o ayy is 0—exact on ELyy, as ay = 0Su| Ly,

o defining wys := daps, we have wyr|gr,, = 0 and that )y is invariant under the following
transformation of the Lagrangian Ly,

Las — Lo :=Las + éur
ap — Qg = 01M+(5¢M,

where @, 1= faM ¢ is a boundary term.

What this tells us is that aj; can be regarded as a one-form connection on a line-bundle over
F);, and the property above is just a form of gauge—invariance of the curvature two-form wj,.
Indeed, when one considers €™ as a section of the line-bundle over Fys, Lys — Las + ¢ is just
the infinitesimal action of the gauge transformation e?® .

Furthermore, we notice that wys is degenerate, i.e. kerwys = {X € X(F) | ixowp = 0} #
{0}. In particular, vector fields on F); that preserve the fields at the boundary are by definition
in the kernel of wyy, since wys only depends on the values of the fields (and their jets) on 3.
This allows us to define the space of pre-boundary fields Fy; as the leaf space of the distribution
of such vector fields. This amounts to restricting the fields and their transversal jets to the
boundary, which in turn defines a surjective submersion

’ﬁ'ZFM—>F2.

Additionally, 7 uniquely induces the forms &y, and &% on Fy,. In particular, @ = dasy, is still a
closed two—form and
0Sy =ely + T as.

It is also convenient to define the subspace Ly = 7(ELys) of pre-boundary fields that can be
extended to a solution of the E-L equations in the bulk. Such space is isotropic with respect to
@Y, since as before @7 = O

1In most cases, L is a submanifold. Here we assume that it is the case



1.1. CLASSICAL LAGRANGIAN FIELD THEORIES WITH BOUNDARY 11

It is possible that @? is still degenerate, hence pre-symplectic, on the space of pre-boundary
fields Fy. In this case, one needs to perform another quotient with respect to the kernel of the
pre-symplectic form %%, assuming that it defines a regular integrable distribution. The quotient
space Fy is called "geometric phase space" and is obtained as the leaf space of the characteristic
distribution of ker ©@?, with quotient map p : Fy, — Fs,. If Fy is smooth, then 7 = po 7 is a
surjective submersion.

By construction, it is clear that (Fx, wy) defines a symplectic manifold, but as such it is not
yet the physical phase space of the theory, as the latter is seen as the set of "Cauchy data" of the
theory (i.e. the space of boundary conditions of the theory)ﬂ

To better understand this statement, we notice that the Euler-Lagrange equations split into
evolution equations that contain derivatives transversal to the boundary, and constraints which
only contain derivatives of the fields in the directions tangential to the boundary. The constraints
need to be imposed on the space of pre-boundary fields, which usually enlarges the kernel of the
pre—symplectic form. The corresponding reduction leads to the reduced phase space.

To be precise, one works with the cylindrical manifold M, := ¥ x [0, €], for some positive .
The boundary M is then given by (X x {0}) L (X x {e}), while Ly;. can be seen as a relatio
between Fy ~ ng{o} and F’ZX{C}. The space of Cauchy data Cs, is then defined to be the
subset of pre-boundary fields at ¥ that can be extended to solutions to the E-L equations in a
cylindrical neighborhood of X, i.e.

ég ={ce FE o~ FEX{O} | Ju € FEx{e} s.t. (c,u) € IN/M‘}

The induced 2—form ﬁg is generally degenerate on Cs,, and the quotient C' s is finally the reduced
phase space of the theory. Such space is often non—smooth, but in the context of field theory
one is interested in the algebra of functions on it, i.e. the physical observables of the theory.
Under certain assumptions, we will see in section how such an algebra can be obtained
cohomologically within the BFV formalism.

Example 1.1. The easiest example is given by classical mechanics. The "space—time" is simply
given by an interval I := [a.b], while fields are in general curves in R™, denoted by

q: [a,b] > R": t — (qi(t)),

with i =1,--- n. The action functional is simply

Swulq] = /1 (;m@jqiqj - V(Q)) dt,

where V- € C*®(R™)) is the potential function. The variation of Sy yields the Euler-Lagrange
1-form and a boundary term

5SM = / (5wmqj - alV) 5qldt - (5”mqjc5qz)\l;
I

Clearly, the bulk term contains the equations of motion, while the boundary term is the difference
of the so—called Noether 1-form at times b and a. In particular, defining the momenta p; =
md;jq’, the Noether one-form is just given by

a = p;oq.

2Indeed, assuming the Cauchy problem is well-posed, to any boundary condition one can associate a unique
solution to the E-L equations in the bulk. Functions on the space of Cauchy data are then in one-to-one corre-
spondence with classical observables.

3A relation between two sets A and B is a subset of A x B.
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In the context of the KT construction, the boundary of the interval I is given by two disjoint
components {a} and {b}. Choosing one component, e.g. {a}, one sees that the space of pre—
boundary fields described in the section above is nothing but the set of all possible initial positions
and momenta (¢*,p;) > F, = T*R™, while the variation of the Noether one—form is just the
canonical symplectic form on R?", given by

w = 6p;dq’,

where we have omitted the A symbol[]

In this case, no further reduction is required and T*R™ is already identified with the space of
Cauchy data of the theory, i.e. the (reduced) phase space.

The classical dynamics of the system is then encoded in the Hamiltonian function H =
ﬁ&ijpipj + V(q) defined on the phase space, since the flow of Hamiltonian vector field X of H
(i.e such that txw+dH = 0) governs the time evolution of the system. In particular, one obtains
the first order differential equation

pi = =m0V

di = Liip,.
One can then show that the graph L,y of the flow of the Hamiltonian vector field X is a
Lagrangian submanifold on Fy x F, = T*R™ x T*R"™, being careful to take —w to be the symplectic
form on F,P|

Example 1.2. Consider the simple case of electromagnetism over a D-dimensional Lorentzian
manifold (M, g). The dynamical fields of the theory are given by U(1)-connections on a line—
bundle over M, modeled by 1-forms A € QY(M). Letting {z*}, p = 1,--- ,dim M be local
coordinates on M the classical action is

Suld) = [ "4 Fyu By Tictgld?.
M

where F,,, = 0,4, — 0, A, is the curvature of A. However, it is more convenient to work in the
so—called first order formalism, as that provides the correct starting point for the discussion in
the next section.

We introduce a 2—form field B € Q?(M), which acts as a Lagrange multiplier and has the
advantage of eliminating second order derivatives in the Lagrangian. Indeed one can define

1
Swm[A, B :/ B/\FA+§B/\*B.
M

The equations of motion are simply B = xF4 and dB = 0, which, after substituting the first
into the second, yield Maxwell’s equation for the connection A. The variation of Sy[A, B]
immediately gives the boundary term

Oéz;:/B/\(SA,
b

where B € Q%*(X) and A € QYX). It is a quick computation to show that wy, = dax, has a

trivial kernel, hence it is symplectic and we can define the space of boundary fields as Fyx, =
QD) x Q*(%), with

wzz/éB/\éA.
P

4Notice that, since the space F, is finite-dimensional, the variational differential § coincides with the de-Rham
differential d on Q(T*R™).
5Indeed from the KT construction, one would in principle have @ = da = 6p;0q°|a — 6Pidq’|p-
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Letting 2, i = 1,2, 3 be the local coordinates along ¥ and x° the one transversal to X, we see that
dB =0 1in the bulk splits into 9B = B = 0, which is an evolution equation, and 8; B = OE which
is a constraint that needs to be imposed on the space of boundary fields and defines the space of
Cauchy data Cx. It is convenient to define Cx as the zero-locus of the following functional

J/L = / ,UdBa
2

where € C*(X) is a Lagrange multiplier. As it turns out, the Hamiltonian vector field of J,, is
given by
JA:d,u JB :0, with 5J#:L‘]“w2,

which tells us that B is gauge—invariant (which tells us that Fu is too) and that A — A + du
is the infinitesimal U(1) gauge transformation of the connection. Furthermore, by definition of
Cs, we have that Ker(w?|c,) = span(J,,), since 0 = 6.J,|cy, and 6.J, = 13,7

The reduced phase space Cls, is then given by the quotient of the space of solutions of Gauss’
law by the gauge transformations.

For the interested reader, more examples and the theoretical background of the KT construc-
tion can be found in a modern notation in [Cat25|.

1.2 The BV-BFYV formalism on manifolds with boundary

The BV-BFV formalism, first introduced by Batalin, Fradkin and Vilkovisky [BV77; [BV8&1}
BF 83|, is a general framework for the treatment of gauge field theories on manifolds with bound-
ary. The main construction requires the space of fields to be enlarged to a Z—gradedﬂ superman-
ifold, and to be endowed with a symplectic form and a cohomological Hamiltonian vector field
encoding the classical symmetries of the system.

Definition 1.2. A BV manifold on M is the assignment of data (Fps,Sm,Q,wn), where
(Fa,woar) is a Z-graded manifold endowed with a -1-symplectic form wjys, and Sy and Q
are respectively a degree 0 functional (called BV action) and a degree 1 vector field on Fjs such
that

o wown = 06Sum, i.e. @ is the Hamiltonian vector field of Syy;
¢ Q*=3[Q,Q] =0, ie. Q is cohomological.

Remark 1.1. As a consequence of ) being cohomological, the BV action satisfies the classical
master equation

where (-, -) is the Poisson bracket induced by the symplectic form wyy.
Definition 1.3. A BFV manifold on ¥ is the assignment of data (.7-'2,827Qa,wz)ﬁwhere
(Fs,ws) is a Z-graded manifold endowed with a O-symplectic form wy, and Sy and Qg are

respectively a degree 1 functional (called BFV action) and a degree 1 vector field on Fy; such
that

6 Applying B = xF4 and defining E* := ggj Fp; as the electric field, we see dB = 0 on the boundary is equivalent
to Gauss’ law divE = 0.

"The grading is commonly referred to as "ghost degree", but here we consider for simplicity the total grading,
i.e. the sum of all the degrees of a field belonging to various graded vector fields.

8Notice the distinction between w? arising from the KT construction and the BFV symplectic form wy,
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o 1Qwy = ISy, i.e. Qp is the Hamiltonian vector field of Sy;
e Q% =0, ie. Qp is cohomological.
If the symplectic form wy is exact, then (Fx, Sy, @y, ws) is called an exact BFV manifold.

We then see that the notions of BV and BFV manifolds only differ by the grading of the
symplectic form and the action. Typically the space of bulk fields will be given by a BV manifold,
while the boundary fields are modeled by a BFV manifold, hence the grading can be related to
the codimension of the "space—time" manifold.

To see how the theory on the bulk is related to the boundary one we notice that, in the
presence of a boundary, the condition 0S5y = tgwy will be only satisfied up to a boundary
term, i.e.

5SM =lQWM — 191\/[
This suggests generalizing the KT construction to define Fy as the symplectic graded (su-

per)manifold on which wys := §¥s defines a symplectic form, where ¥y = 7*(dx) and 7 :
Fu — ]:z;.

Definition 1.4. An exact BV-BFV pair is given by the data (Fas, Snr, @, @war; ), where
(Far, Sary Qar, war) is a broken BV manifold and 7 : Fpy — Fx is a surjective submersion, such
that

LQMWM=5SM—7T*192, (1.3)

together with an exact BFV manifold (Fx = n(Fu),Ss, Qs,dVs) , where one requires that
T (Qm) = Qs.

Remark 1.2. Notice that, in the presence of boundary, the CME in the bulk is not satisfied
anymore, indeed one has

Q(S) = LQ58M =QLWM — LQW*ﬁZ
One can define )

SE = §LQLQWM, (1.4)

as in general, by the non-degeneracy of wjs, one only obtains a boundary term from tgiowas.
Furthermore, by the generalized CME

582 = Lgﬂ-Q&?g = LQxy Wy,

where 07 is the differential of 7 and Qs = é7Q.

1.2.1 The BFYV formalism and the reduced phase space

As it turns out, the BFV formalism is helpful in the cohomological resolution of the reduced phase
space defined in the previous section. We start by studying the finite dimensional setting. Here
(F,w) is a finite dimensional symplectic manifold, with functions ¢; € C*(F'),i =1,--- ,n, whose
differentials are independent and such that their zero locus C' defines a coisotropic submanifold,
i.e. such that there exist functions f); € C*°(F) such that

{i, 05} = flr.

If we let Z be the ideal generated by the functions ;’s, then the functions on C are simply
given by C*(F)/Z, as functions differing by a combination of the v,;’s will coincide on C. Now,
letting X;’s be the Hamiltonian vector fields associated to the 1);’s, they span the characteristic
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foliation, hence the coisotropic reduction C is given as C/ {XZ}E Furthermore, if C' is smooth,
then
C>(0) = (€=(F)/T) ),

meaning that the functions on C' are equivalent to the X;—invariant functions on C.

Now, we can introduce odd coordinates ¢’ (the ghosts) and ¢; (the antighosts) respectively of
degree 1 and -1 (seen as coordinates on T*R"[—1] , extending F' to a graded symplectic manifold
F x T*R"[-1] with 0-symplectic form given by w + dc'dc;. We can furthermore introduce a
cohomological vector field Q on F x T*R"[—1] given by Q(f) = ¢'X;(f), Q(¢}) = ¢; and Q(c') =
0, for all f € C*°(F). As it turns out, this is the Hamiltonian vector field of S = ¢“t,, and its
degree zero cohomology gives exactly the functions on C, as HY ~ {f € C*(F) | Xo(f) = 0}/Z.

Remark 1.3. It can happen that ) defined as above is not cohomological, i.e. it does not square to
zero. However, a result from Stashefl [Sta97| proves that one can always deform the Hamiltonian
S in such a way that @ is cohomological.

In practice one can always start by defining
. 1 o
S =c; + 3 Zcéc’cﬂ + R, (1.5)

where R is determined degree by degree by requiring {5, S} = 0.

Theorem 1.1 (CMR12). Let (F,w) be a symplectic manifold and C a coisotropic submanifold,
then there exist a BE'V manifold (F,Q, S, w) whose body is given by F' and such that

H% ~ C>(C).

In the field theory setting, the BFV data (Fx,wx,Qs,Sx) on the boundary is enough to
obtain the algebra of functions on the reduced phase space Cy, ~ H 223 (Fx).

1.3 A paradigmatic example of classical BV theory

After having seen how the BFV formalism is linked to the boundary structure of a field theory,
we shed some light on the BV formalism and how it relates to the bulk structure of a field theory.
In this context, our goal is to embed the classical space of bulk fields F; as the body of a graded
supermanifold Fjs, on which a functional Sys is defined, generalizing the classical action Sy; —
to which it reduces on the body Fj; — and containing terms depending on all the other fields in
Fur, in such a way that its Hamiltonian vector field @ encodes all the symmetries of the classical
theory and is cohomological.

The graded part of Fj; will consist of the ghosts, which arise naturally from the boundary
structure as the Lagrange multipliers of the constraintsm and of antifields, comprising the field
momenta and the ghost momenta. In particular, contrary to the boundary case where a sym-
plectic form is organically obtained via the KT construction, here we need to introduce field
momenta, which allow to obtain a symplectic form in a Darboux chart.

In most cases, the symmetries of the system form a distribution D C X(F)y), which in general
is only required to be involutive on the Euler-Lagrange locus ELy := {¢ € Fir | 65| = 0}.

We start by reviewing a less general case, and see how it can provide a starting point for
generalizations.

9Indeed the kernel of the restriciton to C' of the symplectic form wc is spanned precisely by the X;’s, as
tx,w=0¢; =0on C.
10Seen here as the gauge parameters related to the gauge symmetries of the system
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1.3.1 The BRST case

In the simpler case where the distribution D is given by a Lie algebra action, we might employ
the BRST formalism. It offers a lower degree of generality compared to the BV procedure, but,
under certain assumptions, it yields the same result.

Essentially, one still obtains a cohomological resolution of the space of observables of the
theory, however it only involves the extention of the space of functionals by the Chevalley-
Eilenberg complex, without the twisting with the Koszul complex.

Definition 1.5. A BRST manifold on M is the assignment of data (Fgrst,SprsT @ BRST);
where

o Fprst is a Z-graded supermanifold;
o Sprst is a degree 0 functional on Fprsr;
e QpBrsT is a cohomological vector field.

Letting G be a Lie group with Lie algebra g and p: g — X(F)s) the Lie algebra action, we
have D = p(g) and we can define

Fprst = Fy x Q°(M, g[1]) 3 (¢%,¢') =: ©°,

where ¢ € F); are the classical fields of the theory and the ¢ € QO(M g[l]) are the ghosts.
Considering a basis {v;} of g[1], we define the X; := p(v;) € X[1](Fas) as X' = [, X;(¢) 6¢a

1 i 0
= a —_ - ..1077
(BRST / Xi(¢ )(5¢“ 5 ¢ 55

which is cohomologicaﬂ and defines the Chevalley-Eilenberg differential on the complex A®g* ®
C>®(Fpr) ~ C=(Fp x g[1]). Then it is immediate to notice that

HY oo ={f €C®(Fur) | Q(F) = ¢'X;(F) = 0} = C>(Fy)*,

corresponding to the gauge—invariant functionals on the classical space of fields. The observant
reader will notice that the form of the cohomological vector field defined above is similar to the
expression . To see how the two equation relate, we embed the BRST formalism within the
BV one. We start by defining

Fur = T*[-1)Fprsr = T*[-1]D[1] > (&%, d2)

where the odd cotangent fibers define the anti-fields of degree -1 and -2. Such graded spaces
of fields can now be endowed with the canonical -1-symplectic form defined on a -1-shifted
cotangent bundle. In this setting, denoting as before by ® = (®<) the multiplet containing fields
and ghosts in D[1] and by ®' = (®]) its canonical conjugate containing the anti-fields in the
fiber of T*[—1]D[1], one can define the BV symplectic form as

wn :/ 502 A 5D°.
M

Notice that functions on T*[—1]D[1] are in one-to—one correspondence with vector fields on
DI[1] ~ Fy x Q°(M, g[1]), hence we can lift Qprsr to the functional

. 1 .
SBRST = /M ¢ Xi(¢") g — §ff§clcj0i,

11Because the structure constant f@ of g satisfy the Jacobi identity
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which, after setting Qo(¢) == X;(¢*) and Q,(c*) == —1 i’;-cicj, can be rewritten as Sprsr =
J3 Qo(@¥)®Z. The full BV action then becomes

Sm = Sum + SBRsT-

It automatically satisfies the CME because its Hamiltonian vector field is given by Q¢ on ® and
one can prove that Q3(®%) = 0 is enough to obtain a cohomological vector field on the whole
space Fjs. In particular, one has

Ly 5(Quo”)
D) = Qo (™ d3) = — (D)o -
Remark 1.4. Notice that @) on the anti-fields contains a term ‘;fbi‘f which, on the body, defines the

equations of motion related to the field ®*. Therefore, when computing the degree—0 cohomology
of @), one can intuitively see how this is related to the gauge-invariant functions on the Euler-
Lagrange locus, as they are given by

kerQ:C° = C!
ImQ : C—-1 — C°

oL
~ (C™ {<I>a | M O} /{gauge transformation},

5o
where C* are the functions of ghost degree k on Fy;.
We provide a simple example which is instructive for the remainder of the thesis: BF theory.

Example 1.3 (Yang-Mills theory). Consider a D-dimensional manifold M with bound-
ary OM =: ¥ and a semisimple Lie group G with Lie algebra g, endowed with the pairing
< —,— >=tr(——). In the first order formalism, the fields of a D-dimensional Yang—Mills
theory are just a connection 1-form, seen as I-form on M with values in the Lie algebra
A e QY M,g) and a D —2 form B € QP~2(M, g), hence

Fyy = Q' (M, g) x Q77*(M, g).
The action functional is
1
Sy]\/[ I:/ tr (B/\FA+B/\*B> .
M 2
We notice immediately that this action is invariant under the gauge transformation
Ar— A+dac B+— B+ ¢, B],

for any ¢ € I'(M,g). According to the procedure explained above, we can promote ¢ to a ghost
field by shifting its grading by one and construct the following spaces of fields

Foar ' = QN (M, g) x QP72 (M, g) x T[1)(M, g)
Fym =T [-1(QN (M, g) x QP7*(M, g)T'(g)[1]).
On the latter space, we can furthermore define the canonical -1-symplectic form
@y M :/ tr (AN GSAT + 6B ASBT +dc A del).
M
The action of the gayge transformation on c is given, according to the Chevalley-FEilenberg dif-

ferential, by ¢ — ¢+ %[c, c]. One can then check that the vector field on FSAR/[ST defined by the
gauge transformations is cohomological, hence we obtain the BV action as

1 1
Sym = / tr (BFA + QB*B + Aldsc+ BY[B,d + gcT[c, c]) :
M
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with cohomological vector field defined by
) ) 1 ) )
QM tT/MdAC(sA‘i‘[ ,C]éB—i_Q[C’C](SC—i_(dA +[ ’C])(SAT
) )
t t f iy 2
+ (Fa +*B + [BY, o) s + (da AT+ [B, BT] + [, ¢T]) =

In the presence of a boundary, the variation of the action produces a boundary term
ISy = LoyWwym — /2 tr(B6A + ATéc),
which gives a boundary pre—symplectic two form 7%,8/ M
@y =tr / §BSA + 5AT5c,
b

defined on the space of pre-boundary fields ﬁEM, which is given by the restriction of the BV
fields to the boundary. Notice that ¢ is a top-form on M, hence it cannot be restricted to .
Furthermore, when computing the kernel of <¢.,,, one finds that it contains every vector field of
the form XBj#. The corresponding quotient is then given by

Fyad =QN(2,9) x Q"73(8,9) x QU[1)(Z,9) x Q" [-1](Z, g).

As it is clear by the symplectic form being in Darboux form, we have that (A, B) and (c, A?) are
pairs of conjugate momenta. Lastly, one finds the BFV action to be

Sy :/ tr <BdAc+ %AT[C, C]) ,
b

giving the same cohomological vector field as in the bulk.

1.3.2 Beyond BRST

The power of the BV formalism becomes clear when one considers systems with gauge symmetries
that close only on shell, which is the case of supergravity. The general solution to the problem
of finding an appropriate cohomological vector field is given by the BV algorithm. We define a
generic BV action by adding terms which are polynomials in the antifields, i.e.

P
SM:SM+/ Qo(®)D2 + > Mo, 02
M =2

where P is called rank of the BV action. It is a result of BV [BV77; BV81| that the rank is
finite, analogously to the BFV case.
In most cases, it is enough to stop at rank 2. Explicitly, we have

1
Sv=Su+ /M D;Qo(0™) + 5‘1)34‘1)3]\4&6(‘1’)7

which modifies the Hamiltonian vector field as
Q%) = Qo(d*) + DM,

Q@) = 0Ly 20(Que?) | (=1)PFY L 6MPY

= — (=1
550 (=1 +

B sPpo 2 BZv spo
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In this case, the classical master equation reads

(Sars Sur) = /M Qo(Lar) — (_1),3@5 (ng)a _ (_1)6(a+1)5LMMa/3)

oD
(=D i B 450 0Q®7 472 9Q0®7 s
+ Tl adad QoM7) — (1) e TR e — ()Pt Sy
(_1)045 454 deP'Y «
+ oy R MO

We know that Qo(Ly) = qﬂ by definition of @)y, while the remaining terms at each order in the
anti-fields(ghost) must be imposed separately,

Q2D — (—1)Ple+D) 3L praf — (1.6)
Qo(MP7) — (—1)7+90 SQRT MY — (—1) P OGN =, (L.7)
65\&[)‘: MeB = . (18)

We then see from that Qg squares to a linear combination of the equations of motion, hence
computing Q3 defines the next terms in the BV action, which depend on the M @ One then
needs to check that and hold, which amounts to show that Q% = 0. If also Q squares
to zero only on shell, one can continue this procedure inductively and compute the next terms
in the BV action.

Remark 1.5. Tt is just a matter of computations to show that Q?(®%) = 0 implies (1.6)), (1.7)
and (1.8). Hence it is not needed to show Q?(®2) = 0, as it follows naturally.

1.4 The AKSZ construction

Another useful realization of the BV-BFV formalism can be obtained through a construction
due to Aleksandrov, Kontsevich, Schwartz and Zaboronsky (AKSZ). It is also particularly useful
when tackling the problem of inducing a compatible BV structure in the bulk from a well defined
BFYV one on the boundary, in the case of cylindrical spacetimes.

We start by considering the finite-dimensional setting. Let M be a Z—graded supermanifold,
and N be a regular manifold. The parity of the supermanifold M is just set to be the grading
modulo 2. We assume there exist a degree n function S on M and a non degenerate exact
2-form (hence symplectic) w = da, where « is of degree n — 1, assuming n > 0. With these
assumptions, M is called a dg-Hamiltonian manifold if {S, S} = 0, i.e. if and only if @ :={S, -}
is cohomological.

Definition 1.6. Given the following diagram

Map(T[1]N,M) x T[1I]N ———— M

/|

Map(T[1]N, M)
we define the transgression map
Tl Q* (M) — Q*(Map(T[1]N, M))

as ‘Sg\?) = p.ev*, setting p, = fN pn where py is the canonical Berezinian on T[1]N.

12Under certain assumptions it could also be a boundary term.
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Remark 1.6. Notice that the differential on N can be reinterpreted as a vector field on
Map(T[1]N, M). Indeed, considering coordinates (u‘,&") on T[1]N, we map &' — du® provides
provides the isomorphism C®(T[1]N) ~ Q*(N), and d = du’d; is the image of £'9; € X(T[1]N).

Theorem 1.2 ([Ale+97]). Letting FAKSZ .= Map(T[1]N, M), wA%5% .= 32 (w) and Saxsz =
TU(S) + tay T (), the data

Saksz = (FA57 w57 Saksz,Qaksz)
define a BV theory.

To better understand the content of the above theorem, let us consider f € C*°(M) and a
homogeneous degree map X € Faksz. Then we can define the composition Xy = fo X €
C>®(T[1]N) ~ Q*(N). In particular, if (u’, &%) are coordinates over T[1]N, we can see X ; can be
ralized as a differential form on N as

Xi(u) = Xp(u)iy i du™ A~ Adu'™. (1.9)

If we let () be coordinates on M, we can compose the coordinate fucntions z* with X and see
X (u) = X%(u)y...iydu®s A--- Adu'*. Then the AKSZ action and symplectic form take the form

SAKSZ:AS[Xa(U)]+Ola(X(U))/\an(U)

wAKSZ:/Nwab(X(u))éXa(u)/\(st(u).

1.4.1 The 1-dimensional case and its relation to the boundary

In this section we investigate how a BF'V theory on ¥ can induce a BV theory on I x 3, where
I is an interval.

Letting §x be the data of an exact BFV theory, as it appears after the KT construction, we
notice that it automatically satisfies the definition of Hamiltonian dg manifold with n = 1. We
can therefore apply theorem [I.2] to see that the data Faxsz given by

FAKSZ . — Map(T[1]1, Fx)
AKSZ G2 ()
Saksz = T1(Ss) + ta, T (ax)

s.t. AkSZ

Qaksz LOarszs @ = 0SaKsz

yield a BV theory on ¥ x I.
The setting gets simplified when we notice that FAK5% ~ Q*(I) x Fy, i.e. we see that AKSZ
fields are just boundary fields times sections of a graded vector space, where in particular

Q*(I) = Cc>=(I) ® QY(I)[-1], (1.10)
we obtain two fields for every boundary field in Fx. In particular, if ¢! are fields on Fyx, we obtain
that the AKSZ fields are ® := ¢!(t) + o (t)dt, where we point out that ¢!(t) € C*(I) x Fs.
With this definition, the AKSZ action and symplectic form become

Waksz = / (s []) 166" (1) A 567 ()dt (1.11)
IxX%

Suxsy — /I (x[@) s (0t + (Ssfo) (1.12)
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Furthermore, one can easily see that the BV theory obtained in this way automatically gives rise
to a a BV-BFV extendible theory, where the BFV one is given by the data on the target of the
AKSZ.

1.5 The quantum picture and the BV-pushforward

Given a classical BV-BFV theory as defined in the previous sections, in order to obtain a quantum
description we need to introduce the so—called BV laplacian A, an operator of degree -1 on the
space of BV fields and such that A% = 0 and the following (almost Leibniz) rule holds

A(fg) = (Afg+ (1) fAg+ (=1 f, g},

where {-, -} is the canonical Poisson bracket induced by the symplectic form cyy.

To better illustrate the construction, we work in the finite-dimensional case, where the exis-
tence of a BV laplacian is always guaranteed. We start by considering a Z—graded manifold F
endowed with a —1-symplectic form w. We denote by Dens? (F) the space of half-densities on
F. A theorem by [Khu00] [Sev06] allows to define the following.

Definition 1.7. The BV laplacian A is a degree 1 coboundary operator, acting on Dens? (F).
In a Darboux chart (z¢,&;), it reads

o 0
A::;axia—&.

Furthermore, if pu is a A-close, never vanishing element of Dens%(}" ), we can construct a p—
dependent BV laplacian A, acting on functions on F as p2 A, f = A(u? f) € C®(F). Letting
L C F be a Lagrangian submanifold, we define the BV integral to be the following composition

Dens%(]—') e, Dens%(ﬁ) £> c Er—s / €|z
c
The main theorem of BV [BV77; BV81| shows that for all half densities £ on F and for all

Lagrangian submanifolds £,
/ A =0,
L

Furthermore, if £ satisfies A¢ = 0, and L£; is a smooth family of Lagrangians parametrized by

t € [0, 1], we have
d
Gl ==«
dt Je, Lo Ly

Remark 1.7. In the context of field theory, the invariance under the choice of Lagrangian subman-
ifold expresses the invariance under deformations of gauge fixing, while the choice of a Lagrangian
submanifold equates to gauge fixing. The relevant object is the "path integral measure" pe#s,
where S is the BV action. The quantum master equation is then given by the condition

i 1
A (er®) =0 & 5(8,8) —ihAS =0,

which provides a modification to the CMEE

131f we assume we can expand S in powers of h, we see that at order zero we retrieve the CME.
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Definition 1.8. Assume that F factorises as a direct product of -1-symplectic graded manifolds
F=F xF", with w =@ +@”. Then
Dens? (F) = Dens? (F') ® Dens? (F").

The BV pushforward is a map between half densities Dens%(]: ) — Dens%(]:' ) defined by BV
integration over the second factor. In particular, choosing a Lagrangian submanifold, the BV
pushforward is given by the map

N id®f£ N
Pr: Dens? (F) — Dens? (F'),
sending a half density ¢’ ® ¢ to Pz(¢/ @ ¢") :=¢' [, ¢".

Remark 1.8. In the context of field theory, the BV pushforward is a consistent way to eliminate
"heavy modes", resulting in an effective theory. The main feature of this construction is that the
effective action obtained after integrating out the heavy modes (that lie in F") still satisfies the
QME, as showed in the following theorem.

Theorem 1.3. Letting A, A’ and A" be the canonical BV laplacians respectively on F, F' and

F", we have:
/Ang’/f.
L L

2. if Ly and L1 are homotopic Lagrangian submanifolds in F", then
(Lo [e) -2
;C() £1

3. if S € C°(F)[1] satisfies the QME, there is a unique 8’ € C°(F')[h] is such that

1. Pr is a chain map, i.e.

for some n.

and S’ satisfies the QME.

In the case we are interested in, the space of fields does not factor as a direct product of odd
symplectic manifolds, but rather it involves the more general case where we only have a fiber
bundle F — F’, that is locally given by F’ x F”.

Definition 1.9. Letting F” be a —1-symplectic graded manifold, a BV hedgehog is given by
an odd symplectic fiber bundle 7 — F’ with fiber given by F”, endowed with a surjective
submersion 7: F — F’ such that for every point p € F’', there exists a neighborhood U >
p and a symplectomorphism ¢y : 7 1(U) — U x F”. Furthermore, on the overlap of two
patches U, NUg the transition functions @ag: 71 (Us NUs) — 71 (U, NUg) are by construction
symplectomorphisms of F constant over F’, which we require to be connected to the identity.

Then we can see that, for any Lagrangian submanifold £ C F”, setting £ == ® (L) we
obtain
Pr = ((jfl)* oPso0®,

for which all the results of theorem [I.3] hold.



Chapter 2

Known results in pure gravity

In this chapter we give a review of the Palatini-Cartan theory of gravity in the context of the BV
and BFV formalisms, as it provides the starting point for the study of Supergravity. The main
advantage of the PC formalism, also known as first order formulation of gravity, is that it yields a
neat boundary structure, where the spin connection morally acts as the conjugated momentum of
the vielbein, which is the field replacing the metric in the Einstein-Hilbert formulation of gravity.
The fact that we only have to deal with differential forms allows to avoid the use of coordinates,
which is particularly useful when applying Stokes’ theorem and computing boundary terms.

The following review is based on the results of the works of Canepa, Cattaneo, Schiavina and
Tecchiolli [CCS21aj; [CCT21], appearing in a series of papers in which PC gravity was studied as
a classical theory on manifolds with boundary within the BV-BFV framework, employing the
KT construction discussed in chapter

2.1 Palatini—Cartan gravity in various dimensions

Let M be an D-dimensional manifold and let Pso be an SO(D — 1, 1)-principal bundle on it.
We consider a D-dimensional vector space (V,7) with the Minkowski metric, on which we let
the Lie group SO(D — 1, 1) act via the fundamental representation p: SO(D — 1,1) — End(V).
Next we consider the adjoint vector bundle V := Pso X, V. Finally, we require that there is an
isomorphism e: T'M — V. The first field of the theory is then an explicit choice of isomorphism
e: TM — V, ak.a. a vielbein (the Lorentzian metric in the classically equivalent Einstein—Hilbert
formalism will be recovered by pull back: g = n(e, e))Eﬂ

The other field that we consider is a connection on Pso. Let w € QY(Pso,s0(D — 1,1)) be
the associated connection 1-form. We want to consider the gauge field as a dynamical field of
the theory. The following proposition gives a useful way to include it in this setting.

Proposition 2.1. The space of principal connections on Pso over M is an affine space modeled
on A(M) = QY (M, \?V).

Proof. Tt is well known that it is possible to identify the affine space of principal connections as
the space of one forms with values in the corresponding Lie algebra so(D — 1,1). Furthermore,
it is possible to identify so(D — 1,1) with A%V by means of 7. O

INote that we can pull back the fiber metric n and this defines a Lorentzian metric on M, so the setting
described above assumes that M admits a Lorentzian structure.
2The interest reader can learn more about the vielbein field in chapter

23
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We define the space of (i, j)-forms to be the differential i-forms with values in the j-th exterior
power of V', namely

QD (M) == QI(M, N V).
The space of fields of our theory is then defined to be

Fpo := ind’l) x A(M),

where Q;ld’l) is the space of vielbeins as nondegenerate one-forms with values in V. This formalism
has the further advantage that all the fields are expressed as differential forms and hence can
easily be restricted to a suitable submanifold of M (e.g. its boundary, if it has one).

Classical action

We are looking for an action functional that gives the same Euler-Lagrange locus modulo sym-
metries as Einstein—Hilbert theory. The Palatini-Cartan action is

1 A
Spei= | ————eP2ANF, + —€P 2.1
PC /M (D—2)° o (2.1)

where ¥ :=¢AeA---Aeand F, := dw+ 3w, w] is the curvature associated to w which we
~—_—

k times
regard as a (2,2) form. We can find equations of motion by varying the action

1 D-3 1 D-2 A D1
~Ju (D=3) o= =ay IRl 2.2
e /M 22 T 17 R 7 S VT (22)
= 1 b3 L D1 1 bo
/M{(D—f‘)’e F“+(D—1)!e 66+(D—2)!dw(6 )ow
1 —
D gy’ 0w,

where we used integration by parts and the fact that d,F, = —d,,(dw)F] The last term in (2.2)
will produce a boundary term if M # @), due to Stokes theorem.
Then we find equations of motion

eP3d,e=0; (2.3)

1 D-3 A D—-1 __

Equation is equivalent to d, e = 0 because of the non-degeneracy condition (and because
eP~3 is injective in this case [CCS21a]). Furthermore, it fixes w to be torsionless, and since it is
compatible with 7, then dy,e = 0 implies the metricity condition d-(,)g = 0, which is uniquely
solved by the Levi-Civita metric connection.

After imposing , we find that is equivalent to Einstein’s field equation, with the

addition of a cosmological constant A.

Remark 2.1. It is important to notice that, even if e is an isomorphism, e A - might not be, indeed
eP=3 A F,, = 0 is not equivalent to the flatness condition F,, =0

36wF, = 6y (dw + %[w,w}) = —déw + %[Jw,w} — %[w,éw} = —d(dw) — [w, 0w] = —dy, (dw).
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Remark 2.2. There are two ways of showing that the PC and EH theories are equivalent. The
first one is to rewrite equation after imposing and see that it actually yields Einstein’s
field equation. The other way is to use and rewrite the action Sp¢ in terms of the metric
tensor, to see that it is equivalent to the Einstein—Hilbert action. This is seen by noticing that

oD 5 eD—2

ﬁ = — det(g)d Tr = \folg7 me = RVOlg, (25)
where R is the Ricci scalar. In this case, the theory we obtain differs from the original Einstein—
Hilbert theory just by the fact that the connection is a free ﬁeldﬁ However, as already remarked,
the EoM’s admit the unique solution given by the Levi-Civita connection.

2.2 The reduced phase space of PC gravity and its BFV
formulation

We present here the results of [CCS21a] concerning the structure of the reduced phase space of
Palatini—Cartan gravity for D > 4, keeping in mind that we are particularly interested in the
D = 4 case, which is the starting point for the N = 1 Supergravity. The results of this section
have been obtained through the Kijowski-Tulcjiev (KT) construction and are the background
construction that we will adapt when adding spinor fields in the following chapters.

The starting point of the KT analysis is the boundary term that we get when varying the

action (2.2)):

R D—2
apc = (D—2)!/Ee ow.

Assumption 2.1. We further assume that the bulk vielbein satisfies the extra nondegeneracy
condition that the induced boundary metric ¢°, defined by ¢° = e (n), is nondegenemte
This is an open condition on the space of bulk field that ensures that the constrained submanifold
Cy, is coisotropic.

The classical fields on the boundary will again be indicated by (e,w). The inclusion ¢ : ¥ < M
of ¥ in M induces the bundles P|y := ¢*(P) and V|s := ¢*(V). The (pre-)boundary fields are
respectively defined as

e is a nondegenerate section of T*% ® V|x, meaning that (i) at each point the three com-
ponents are linearly independent and (ii) the underlying metric g, defined by g := e*(n), is
nondegenerate (because of Assumption ;

« w is an element of the space of connections A(X), locally modeled by ['(T*S @ A V|y).
We denote the space of preboundary fields as F3, = Qg{i?i x A(X), having defined
Qi) = QU M Vy)

We note that apc is the integral of a local (top,1) form on F8, x ¥ as defined in (L.1)
and therefore a 1-form on F38.. By taking its variation (the variational vertical differential), we
obtain a two-form on 3

- 1 _
Wpe 1= 0o = [CEE) /2 eP36edw. (2.6)

4That is the Palatini formulation of EH gravity.
50ne might also consider the stronger condition that the induced boundary metric is space-like, but this is not
needed for the following considerations.
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By construction, @gc is closed on Fgc and so satisfies the first requirement to be a symplectic
form on 3. However, it is degenerate, namely ker(%) := {X € TF2, | ix&%, = 0} # {0}.
In [CCS21a] it was proven that ther kernel is regular. Hence, in order to get rid of this degeneracy,
we can perform a symplectic reductionﬂ The quotient space F}‘ZC will be called the geometric
phase space of the theory

F8 = (2.7)

with the canonical projection my: Fgc — F 1830' Hence the space of boundary fields is a bundle
F9 — QL (2,V) with local trivialization on an open Us; C Q1 (%, V)

FB ~ Us, x ~Ared(2)7

where A™¢?(X) is the space of equivalence classes of connections w € A(X) under the equivalence
relation w ~ w + v for every v € Q%2(X) such that eP?~3v = 0. The corresponding symplectic
form is

wlo = ﬁ /E eP36ed[w). (2.8)

In order to define the constraints on this quotient space, and to give an explicit description of
the reduced phase space, it is better to fix a representative of the equivalence relation described
above, since the restriction of the EL equations to the boundary are not invariant under the
equivalence relation. A convenient choice is given by the following construction.

Definition 2.1. We choose a nowhere vanishing section €, of V|y and we restrict the space of
fields by the conditions that ey, s, €3, €, form a basis, where e; := e(&‘i)ﬂ Then, Fgi. is defined
to be the space of pre-boundary fields F’ IQC together with €, € V.

On this space we have the following theorem:

Theorem 2.1 (|[CCS21a)]). Suppose that g°, the metric induced on the boundary, is nondegen-
erate. Given any @ € QV2, there is a unique decomposition

W=w+v (2.9)
with w and v satisfying
ePBuv=0 and e,eP*d,ecIm Wla’(l’l). (2.10)
Let us denote by Fpg the subspace of g of the fields satisfying .
Corollary 2.1 (|CCS21a)). Fyg is symplectomorphic to F2.

Hence from now on we will require (2.10) and work on Fjg. The space of coframes and
connections satisfying this last equation is the geometric phase space of the PC gravity theory.

6The vector fields in the kernel of the presymplectic form span a smooth involutive distribution. The quotient
space F‘I‘gc/ker(fﬂgc) is the set of leaves in the foliation induced by ker(fﬂgc). In our case, the vector fields in
the kernel only act, at fixed e, as translations of the connection w, therefore it is easy to see that the quotient
space is still a smooth manifold.

"There is actually no restriction in the space-like case; otherwise, one has to work on charts of the space of
fields and pick an €, for each chart
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Remark 2.3. One notices that, since the map eP? 3 A-: Q12 — Q(P=2.D=1) g ap isomorphism
then in the bulk eP?3d,e = 0 must give rise to the same solution space of d,e = 0. However,
when moving to the boundary, e; A Qg’m — QgD_2’D_1) is not injective anymore. The
constraint , which we call structural constraint, not only allows to fix the representative
of [w] € Aea(2), but also ensures that the equivalence between e?~3d, e = 0 and d,e = 0 is

respected also on the boundary.

We can now analyze the restriction of the Euler—Lagrange equations on the boundary to see
which further constraints they impose on the geometric phase space. In order to simplify the
computation of their Hamiltonian vector fields, it is convenient to rewrite the constraints on F/
as discussed in [CCS21al:

Lc:/ceDf‘gdwe,
b))

P = / eeePB3F, 4 1e(w — wo)eP Pdye,
by

_ ; D-3 ; D-1
H)\—/E)\en<(D3)!e F,+ (Dfl)!Ae ,

where wy is a reference connection and ¢ € Qg’z, EeX(X)and X € Qg’o are Lagrange multipliers.

Remark 2.4. To be precise, the exact form of P is originally given by the constraint

sz/LgeeD_SFw,
b

but in order to simplify the computation of the Hamiltonian vector field, we redefine it via the
transformation Pe +— P¢ + L, (w—-wy), which does not change the zero-locus of the theory.

From now on we are going to consider the fields ¢,& and A to be odd fields (shifted by 1 in a
suitable supermanifold). This will be useful later for the BFV formalism. For more details we
refer to [CCS21a].

The constraints above are of first class, hence defining a coisotropic submanifold of the geo-
metric phase space. The structure is specified by the following

Theorem 2.2 ([CCS21a[). Under Assumptz'on the functions L., Pe, Hy define a coisotropic
submanifold of Fe, with respect to the symplectic structure w?gc. In particular they satisfy the
relations

1

{Lc, LC} = _iL[C’C] {va PE} = %P[&E] — %ngtngo (2.11&)
{LC, Pf} = LLZ)OC {LC, HA} = 7PX(’7> + LX(i)(wwa)a — HX(W,) (211b)
{H\,H\} =0 {Pg, Hy} =Py — Ly(i)(w,wg)a + Hy (n) (2.11¢)

where X = [c, Ae,], Y = LZ’“ (Nen) and ZW | Z(M) are the components of Z € {X, Y} with respect
to the frame (e;, €n).

Furthermore, the notation L¢ denotes the covariant Lie derivative along the odd vector field
& with respect to a connection w:

LY A =1ed,A—docA  AeQf.

8See [Can24|
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2.2.1 The BFV PC structure

The data of theorem can be translated into the BFV formalism as explained in Section
The result is the following theorem.

Theorem 2.3 ([CCS21a]). Under Assumption[2.1] let Fpc be the bundle

FEC —al,(=,v), (2.12)

with local trivialisation on an open Us C QL (,V)
FEC = Us x AR) o T (9311 0 X[1(D) © C*[I)(S)) = Us x Tre,  (213)

and fields denoted by e € Us, and w € A(X) in degree zero such that they satisfy the structural
constraint e,eP~4d, e € Ilea’(l’l), ghost fields ¢ € QY°[1], € € X[1](Z) and A € QOO[1] in
degree one, k¥ € QgiLD*Q[—l], Me Qgil’D[—l] and (7 € 9(19,0[_1] ® Qanl’D in degree minus
one, together with a fixed e, € T(V), completing the image of elements e € Us, to a basis of V;
define a symplectic form and an action functional on }—EC respectively by

1,
@ = /E Dy’ et + Bedk? + BN+ s,

1 1 1
PC _ D-3 D-3 - D=3
Sy = /Emce dye + (1)7_3)!%66 F,+ mbs(w wo)e” dye
1 1 1
A | ———— D—SFw A D—-1 - k,j
A ((D3)!e oot ) taled

1 ‘
—Lgock? + §L5L§Fw0/€j + e, Aen] D (CF = (w — wo)ik?) + [, Aep] WA

. 1
— L (en) V(6 = (@ — wo)ih?) — L hen) N = Suge >

3

Then the triple (Fio, wE€, SEC) defines a BFV structure on X.

Following [CCS21a] we can change variables to get rid of the redundancies introduced in
remark 2.4l in D = 4. In particular, we define

d =c+e(w—wo) ¢ =¢0 = (w—wo)ek?, (2.14)

where the bullet o indicates any component in the one-form factor in Qé’o[fl] ® QBD*LD. In
other words, C,j/ € Qg_l’D, with e = 1,2, 3.
Lastly, we can define the new variable 37 € 91(93’3)[—1] such that e;y” = Cfl and €,y = \7,
which, omitting the ’ apex, yields
s E E E E
Wpe = /e5e§w + 0cok™ + 6wd(ek™) — OXen 0y + Lsed(ey?), (2.15)
b
1 1
Sgc — /cedwe + eeeF, + Ae, (er + 3'Ae3> + 5[0, c]kj _ gckj
E .

1 . 1
+ §L£L§kaj — [, Aenly? + Lgo(/\en)yj + ib[é,g]cj. (2.16)
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2.3 The degenerate boundary case in D =4

So for we have been assuming the induced boundary metric ¢? to be non-degenerate, which is an
open condition on the set of vielbeins on the boundary. This section is dedicated to investigating
the boundary structure of PC gravity in the case of a degenerate boundary metric.

The problem of fixing the representative of the connection in the pre-symplecitc form L%'?DC
is present in both the non-degenerate and degenerate cases; however, the form of the structural
constraint strictly depends on the nature of the boundary (null or non-null). In fact, in the
non-degenerate case, the structural constraint alone is sufficient to fix the representative
of [w] € Area(X). On the other hand, on a null boundary, due to the degeneracy of e we also have
to impose an additional degeneracy constraint. We will see that, from a different perspective,
the structural constraint of the non-degenerate case is just a specific characterization of the
structural and the degeneracy constraint where the latter is trivial.

Definition 2.2. Let e € Qé’l and e € Qg’k be the wedge product of k elements e. Then, we
define the following maps:

%,(4,9) . ()t i+k,j+k
W, 1 Q57— Qy

ow—>ek/\a

1) QT QLI (2.17)
ar— e, ql

() Qi i1l (2.18)
ar— [é al,

with € € Qé’l being a degenerate vielbein, namely é*n = 0.

We also give the definitions of three geometrical objects that we will require in the following
theorems.

Definition 2.3. Let J be a complementﬂ in Q?)’l of the space Im Q<172)|KerW2’(1’2>' Then, we

define the following subspaces: '

T == KeeW;®V 0 c 03t (2.19)
S = Kerle’(l’?’) N Kerg!?® ¢ le’g (2.20)
K= Kerng’(l’Z) N Kerg®? ¢ Q};z. (2.21)

We present the initial key result for the degenerate theory, which will ensure the equivalence
between d,e = 0 and ed,e = 0 at the boundary. While it may appear initially quite redundant
with respect to lemma[A9] it will have profound implications for the geometry of the theory, as
highlighted in 2.6]

9To obtain an explicit expression for the complement, one can follow these steps. Start by selecting an arbitrary
Riemannian metric on the boundary manifold 3 and extend it to the space Q2'1. Then, the orthogonal complement
of the image of the map o(1:2) \Kerle‘“’Q) in Q;’l can be identified as the space J, with respect to the chosen
Riemannian metric.
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Lemma 2.1 (Corollary of . Let e, € Qg’l be fixed such that, for a chosen vielbein e € Qyt,
{e(v1),e(va), e(vs), €, )19 is a basis of i*V, where {v1,va,v3} is a basis of TS. Moreover, let
o€ 9(29’1. Then, we have that

a=20
if and only if
a € Kerw Y
en(a —pra) € Im le’(l’l) (2.22)

pra =0,

where p is the projector onto T. We call the second and third conditions in (2.22)) respectively
the structural and the degeneracy constraints.

The next lemma provides a formulation of the degeneracy constraint in terms of an integral
functional.

Lemma 2.2 (|[CCT21|). Let a € Qg’l. Then, we have the following equivalence
pra=0 <= /7‘a=0 V1 eS. (2.23)
b

Remark 2.5. As long as we do not specify any «, these two lemmas remain purely geometrical
and do not depend on the properties of the field equations. We will then be able to use these
results for the interactive theories where the equivalence condition on the boundary will differ
from d,e = 0 and ed,e = 0 (since the field equations will be different themselves). Therefore,
in general, we need to specify a for each different theory. In particular, for the Palatini-Cartan
theory, a = d,e and the structural and the degeneracy constraints read

en(dye — prdye) € Im le’(l’l)
(2.24)
pwae =0.

Remark 2.6. It is important to emphasize that Eq.s (2.22]) are trivially equivalent to the structural
constraint

ena € Im WY (2.25)

in the non-degenerate case. Nonetheless, the introduction of this split plays a crucial role in
the analysis of the degenerate theory. More specifically, apart from py not being trivial,
alone will not be sufficient to uniquely fix a representative of the equivalence class defining
the symplectic space (see . In other words, since in the non-degenerate case pra = 0 holds
trivially, we can infer that the second equation in is the most general form of the structural
constraint of the theory, whose geometrical implications are only visible in the degenerate case.
In fact, the peculiar integral condition of the degenerate case, introduced in[2:2] carries significant
consequences. It can be interpreted as a modification of the set of constraints of the theory by
incorporating a new functional constraint. For o = d,e (the case of the Palatini-Cartan theory),
this is denoted as

RT:/wae. (2.26)
b

Further discussions of this matter will be presented in the next section.

10Notice in particular that, in any neighborhood of e of the space of boundary fields, we are allowed to pick €,
independently of the dynamics of the vielbein e. In other words, we can state that ¢, is constant in the field e.
This trivially implies that €, has no variation along e.
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Fixing the representative

The reduction by the kernel of the presymplectic form, as shown in [CS19b|, is equivalent to a
quotient space with an equivalence relation on the connection form, as stated in the following
theorem.

Theorem 2.4 (|CS19b|). The geometric phase space for the Palatini—Cartan theory is the sym-
plectic manifold (Fs, @) given by the following equivalence relation on the space of pre-boundary

fields Fx,

Wew = W —we KWt (2.27)

and the symplectic form

w:/eéeé[w}. (2.28)

We refer to this equivalence class as A(X)red-

Remark 2.7. To study the reduced phase space of the theory, we make use of representatives for
the equivalence classes defined in . In the non-degenerate case, these representatives are
uniquely determined by the structural constraint itself. In other words, ensuring the equivalence
of d,e = 0 and ed,e = 0 on the boundary, is enough to determine uniquely the representatives
of the equivalence classes defined in . However, in the degenerate case, the structural
constraint and the degenerate constraint (or its integral form R;), despite the fact that they
indeed ensure on the boundary the equivalence mentioned above, are not sufficient to uniquely
assign a representative to each equivalence class. Therefore, it is necessary to seek an alternative
way to guarantee the unambiguous determination of these representatives.

We can accomplish that through the following lemma.

Lemma 2.3 (|[CCT21]). Let g2 be degenerate. Then, given w € Qé’g and €, € Qg’l as in
the conditions
€n(dye — pr(dye)) € Im WIZ’(M)
(2.29)

prw =0
uniquely define a representative of the equivalence class [w] € A(X)red-

Remark 2.8. In [CCT21], it has been proved that the analysis is independent of the choice of
the representative of the equivalence class . In more rigorous terms, for each choice of the
representatives there is a canonical symplectomorphism between the symplectic space defined by
representatives and the geometric phase space of the theory.

Remark 2.9. Tt is important to highlight that, in the non-degenerate case, the subspaces 7T, S,
and /C of definition [2.3| are trivial. It follows that the projectors px and py are also trivial. Once
again, this means that, in the non-degenerate theory, the structural constraint alone serves the
purpose of establishing the equivalence between d,e = 0 and ed,e = 0 on the boundary, as well
as uniquely determining the representatives of the equivalence classes defined in .

We have seen that, on a null-boundary, we need both the structural and the degeneracy
constraints together with the additional equation pxw = 0 in order to guarantee the equivalence
between d,e = 0 and ed,e = 0 on the boundary and uniquely fix the representative of the
equivalence class [w] € A(X)red-

More specifically, the role of the structural constraint together with the integral constraint R is
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the one of ensuring the aforementioned equivalence condition, whereas, the structural constraint
together with pxw = 0 will uniquely fix the representatives.
We display now the constraints of the theory.

Definition 2.4. Lec € Q%%(1], € € X(2)[1], A € C®(2)[1] and 7 € S[1]. Then, we define the
following functionals

L.= / ced,e (2.30)
b
Lo s
P = ibg(e VFu + te(w — wo)edy,e (2.31)
b
A,
Hy = /E)\en (er 5 ) (2.32)
R, - / rdge. (2.33)
b

We refer to these as the constraints of the Palatini-Cartan (degenerate) theory.

We are now able to determine the algebra of the constraints of the theory. This differs from
the one of the non-degenerate theory, since the new constraint R, changes the nature of the
Poisson brackets, which are no longer first-class.

Theorem 2.5 (|[CCT21|). Let i*g be degenerate. Then the structure of the Poisson brackets of
the constraints L., P:, Hx and R, is given by the following expressions

{Le,Le} = —%L[C,C] {Pe, Pe} = %P[s,s] - %LLE%Fwo
{Les P} = Lo, {H\, H\} =0

{Le; R} = —Rpglen {Pe, Br} = Ry poor
{R,,H\} = Gy, {R- R:} = Frr

{Lca H)\} = _PX(i> + LX(i)(wfwo)a - HX(")
{Pe, Ha} = Pyy — Ly () (w—wy), + Hym

with X = [c,Aen| and Y = L¢°(Xen) and where the superscripts (i) and (n) describe their
components with respect to ey, €,. Furthermore F,, and Gy, are functionals of e, w, T and A
that are not proportional to any other constraint.

Remark 2.10. The symbol = indicates the identity on the zero locus of the constraints. In
particular, this means that those brackets written with this symbol are not a linear combination
of the constraints themselves. On the other hand, all the brackets written with an = vanish on
the zero locus, for example {L., L.} = 0.

Remark 2.11. The distinctive feature of the degenerate theory, highlighted in |[CCT21], is that
the additional constraint R, turns out to be second-class, for 7 not constant.

2.4 The BV PC theory

The previous sections gave us insight on the action of the infinitesimal gauge symmetries, seen
as the Hamiltonian vector fields associated to the constraints on the geometric phase space. In

" The notation [1] indicates a shift in parity.
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this section we implement them as components of the cohomological vector field @) pc, which,
despite the fact that the diffeomorphism symmetry cannot be canonically realized as the action
of a proper Lie algebra of a (finite dimensional) Lie group, turns out to be of BRST type. This
formulation was first found in [Pig00] and later refined within the BV formalism in [CS19b].

The classical infinitesimal symmetries correspond to the internal Lorentz gauge symmetry,
whose gauge parameter is given by the ghost ¢ € Q(O’z)[l], and the diffeomorphism symmetry,
whose gauge parameter is £ € X[1](M). Explicitly, one can infer

dee = Lge dew = e Fy,
dee = [c, €] Ocw = dc.

Theorem 2.6 (|CS19b|). The collection (FAL, @M., Qpc,SAL) defines a BV structure, where
FM, =T*[-1]FAL and

Fie = Ol @ Ay 0 Q0P 1] @ X[1(M) 3 (0w, e,).
The symplectic form is canonically defined as
wf\p/fc = / dede” + Swow? + dede” + ngéfj,
M
while the BV action reads

2
S%C = / %Fw - (Lge - [C, ebt’f;i + (Lng — dwc)o.)j
M

+ %(%%Fw —le.d)e + %L[E,é]gj'
Lastly, one easily recovers the cohomological vector field as the Hamiltonian vector field of
Sk
Qrce = Lge —c, €] Qpcw = 1eF, —dye
Qree = 5 (iereF — [ed) Qre€ =316
Qpce’ =eF, + LZ”ej —[e,e?]
Qpcw? = edye — dytew? — [c,w?] + tele, ] — %dengcj

CQPC'Cj = _dwwj - [6, ej] - [67 cj]

QPC’ff = (Fw)owj - dw.@ej + Lé(FW)OCj + L?(foj) + (dw%fj)-

2.4.1 Obstruction to the BV-BFV extension of the PC theory

After obtaining the BV description of PC gravity in D > 4, we could be tempted to apply the
construction in [I.2) with the hope to recover the BFV theory obtained from the KT construction.
However, it was proved in [CS19b| that the classical BV PC theory is not extendible to the
boundary. In particular, in D = 4 the induced exact two-form on the boundary is given by

k¢ = / —ededw + d(ei&™)de + de?d(ent™) + devisce + eisede
by

§(tew?)ow + §(WiE™)ow + dwde — d(1ecie™)ow
d(&"Lsex)volgo — 6™ (E™ x)volge
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The kernel of £ is given by the following set of equations

eX, = L)(E(,dj — Xgnwi + Lgij + Xwifn — szci£71 (234)
Xy = ixce” + Xeneg) + X €,

where in general a vector field X € X(F35) is given by X = Js XQM% + XC“M%, where (@, ®7)
correspond to the field /antifield pair

-]
The main problem with equation (2.34) is that it is singular, hence the symplectic structure
on the boundary fields is not well defined, since the corresponding quotient is not smooth.

2.5 The full BV-BFYV description of PC gravity

In order to tackle the problem of finding a BV-BFV extendible PC theory in D = 4, we consider
the particular case of a cylindrical space—time M = I x X, where I = [0,1]. In the following,
we will see how to achieve this with two different constructions: the AKSZ construction and the
BV-—pushforward.

Remark 2.12. It was proved in [CS19a] that, in D = 3, Palatini-Cartan gravity is BV-BFV
extendible, and that it is BV—equivalent to BF theory, a topological field theory. In dimension
4, this is spoiled by an extra e factor in the actiorﬂ which generates a non—trivial kernel in the
boundary 1-form.

To solve this issue, we employ two seemingly unrelated strategies, which turn out to provide
the same result.

2.5.1 PC BV-BFYV from the AKSZ construction

We denote by 5. = (Fpos Speos @he) the BFV theory of Palatini-Cartan gravity developed in
the case of non—degenerate boundary in section We employ the construction in We
promote the fields in F5, to fields in FAKSZ by considering [CCS21b]

¢e=e+ f? w=w+u’

c=c+w 3=£&+=2 (2.35)
[=A+p ? =k? 4 ¢

b? = e + ¢

where we used the same letters for the boundary fields which are now promoted to fields in
C>*(I) ® Fpo. In particular, if ¢ € Fp, the corresponding AKSZ field becomes

P=o¢+?,  where $eC®()@F5y and ¢ € Q-1](])® Fi
Theorem 2.7 ([CCS21b)). The AKSZ data FpES? on M =1 x ¥ are given by

Fp&s7 =T*[-1)(Map(I, Fpe),

waks? = /I i ededto + Sede? + orod(1;¢7) — Slen,dn? + 1550 (en?),
X

121n our specific case, we have that X. is the component of X along %, and so on.

2
13Specifically, in the term S Fo.
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SAKSZ — / e2d;vo + cdpe? + drroeye? — 1g,,en? + drle,n?
Ix%
1 1
+ cedipe + tyeefy + epleFy + §[c, c]cj — L;"ccj + §L5L5chj
1
[C €n ]U +Lm(€n )U"’ 33](20 )

where it is understood that only the terms containing fields in Q*[—1](I) should be selected in the
above expressions, to obtain a top form on I X X.

The above theorem provides a compatible BV-BFV theory of gravity in the first order for-
malism. In the next section, following [CCS21b|, we see how it relates to the full BV theory in
the bulk

The reduced PC BV theory from AKSZ

The question arises on how to relate the AKSZ PC theory §AK 82 with the full BV PC theory
in the bulk Fpc. The main obvious difference is that the former is BV-BFV extendible, while
the latter is not, and the reason for that is that in gégsz the connection is constrained by the
structural constraint of the BFV PC theory §%. Such constraint restricts the space AKSZ
of fields in the bulk in such a way that the induced boundary symplectic form is non-degenerate.
This motivates the following theorem

Theorem 2.8 (|CCS21b|). There exists a map ®: FaE5? — Fpc such that ®: FAES? — Fpo

is an embedding and ®*(whl,) = whE5%. Such map is called a BV embedding.

Remark 2.13. The map ® actually splits as the composition of two maps. In particular, one
can first define a restricted space of BV fields Fp, in which the connection and its antifield are
constrained, and establish a symplectomorphism ¢ between Fps AKSZ and Fpc- Then one can
simply embed the restricted BV PC theory §'p- — §pc via the BV inclusion ¢, : Fpo — Fpc
and obtain ® = ¢. 0 ¢

Remark 2.14. In principle, one would need to show that §p- defines a BV theory, however to
find a symplectomorphism ¢ between FAE 5% and FF, such that p*(Sho) = SAESZ is enough,
as the CME will automatically be satlsﬁed

From now and for the remainder of the chapter, we indicate any bulk field ¢ with the bold
character ¢. Furthermore, letting ¢ € QF(I x X), we set

$p=0+d,,  with ¢cQFED)®C(), ¢, Q" (D)® (),

assuming 2" to be the coordinate along I, then ¢, = ¢,d2", with ¢, € C*(I) ® Q*~1(X). In
the same way a vector field ¢ € X(I x X) is going to be split as

¢=C+4C,  with Cex(m)ec™I), { €C®(%)ax(I),
with Zn =("0,.

Definition 2.5. The restricted space of BV fields is given by the subspace of Fp¢ satisfying
the following structural constraints

W= @7 — 0,07 — gl + € € Im(WEHY) (2.36)
endé — en W N Q) dE™ + 14 (@7 — 76" € Im(WHY), (2.37)
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where Wé(,i’j): Q) — QUAkI+R) . o 5 g8 A o shares the same properties of Wka’(i’j) and

X =Li(en) —ds, (€)€" —[Gen]; X =€, X0, (2.38)
s Wpo =wpe(l X ¥)|Fr
o Spc=SrclFp,;
e Qpc =0Qpc.

We will make sense of the constraints defined above in the next section. We can now reinter-
pret the content of theorem as saying that the following diagram commutes

Sprc
[}
]

AKSZ
Spc”” ——— Spc

We will provide an explicit expression for ¢ in chapter adapted to the presence of a Dirac
spinor . The free PC theory symplectomorphism ¢ is then recovered simply by ’turning off” all
the terms containing spinors.

Remark 2.15. The constraints and defining the reduced theory might seem arbitrar-
ily defined, however, we remark that they arise from the definition of the fields in Sﬁg 82 which
are constrained by definition, since 557 is defined from the BFV PC theory obtained through
the KT construction, which required a choice of representative of the connection w, given by
the structural constraint. In the next section, we will see how such constraints arise in a more
systematic way, without the introduction of the PC AKSZ theory.

2.5.2 PC BV-BFYV from the BV-pushforward

In this section we will see how the restricted BV theory of PC gravity can be recovered via the
BV-pushforward |[CC25b], explained in section However, it is first worth investigating the
source of the constraints and in a more direct way, as we will want to generalize
them to the case of supergravity.

The constraints of the reduced BV PC theory
First of all, we see that the BFV-PC theory of section found in |[CCS21a] is

1 1
Sro = / (tee + Aep)eF,, + cede + <[c, c — §L§L£Fw - LZ-JC> =
by

X 2 (2.39)
= steaey” + (le.Aen] = LE(Aen)) v
wlzpc = / ededw + dedk? + 6w5(L§(kj)) - 6(L5§(e)yj) - (5)\en(5yj. (2.40)
b

As previously remarked, in order to have a well-defined phase space, we need to carefully fix
some components of the boundary connection w, in such a way that the term e A de A dw in the
boundary symplectic form does not give rise to any degeneracy. This is the content of theorem
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4.1| (or equivalently of Theorem 33 in [CCS21a]). We might therefore be tempted to impose the
same constraint for the bulk fields, i.e.

endyé € Im(WHY),
which amounts to imposing only some parts of the condition d,e = 0. Unfortunately, such
constraint is not invariant under the action of @pc, hence not defining a suitable restricted
BV theory. As it turns out, the correct one is given by (2.37). In particular, a direct (and

immediate) generalization of lemma tells us that there must exist unique o € C*(I) ® Q(al’l)
and p € Ker(Wé(l’Q)) such that

endsl — e, W5 H(Q)dE™ + 14 (@5 — 61€™) = é0 + €n[p, €.

In the same way, we can generalize theorem and see that we can split @ as @ = @ + ¥, with

NS Ker(W~(2’1)) and @ satisfying

e

endo® — ea Wi (W)AE" + 14 (@ — E7€") € (W),

€

Then, since €,dzé = €,dwé + €,[0,€]. Constraint (2.37)) is satisfied if and only if p = o = 0,
implying that only & survives in Fp, taking the role of the "reduced boundary connection',
which (thanks to theorem [4.1)) can be seen as a representative living in A;eq(I X X) := A(I x

%)/ ker(WH?).

€
The other structural constraint ([2.36)) is interpreted as fixing some components of the canon-
ical antifield @ In particular, since @2 € QY(I) ® 9(82’2), we can apply lemma to show
there exists a splitting

E

wl= éﬁj + enlé, ).

Then p? is exactly in the "dual" of C>°(I) ® Qg’z)/Ker(Wé(M)), providing a perfect candidate

for the antifield of & in Fp. However, the constraint w; € Im(Wé(l’l)) is not @)—-invariant, and
turns out to be the correct one.

In order to shed some more light into the choice of constraints, we consider the "more co-
variant" combination of fields w? — L,Scj7 as such expression appears repeatedly in computations.
Specifically, when computing the variation of the BV-PC action, one obtains a total derivative
term ¥pc, whose variation (having used Stokes’ theorem on I x X) produces a term on the
boundary

e = [ e APt
b

Confronting it with the BFV symplectic form ([2.40)), one notices that the expression @~ — 635”

is a good candidate for the boundary field k<, representing the antighost of ¢ € 9(80’2) [1]. The
same expression also appears inside (2.36]).

At this point we know from diagram (A.31)) that we can redefine w” = ew and ¢ = £¢, 50

2
we have w? — 1gc? = e (W — 1geé — $ewe€), and since w? = @7 + @7 and ¢? = &7, unpacking the
expression yields

E

w” — Lgcj =@

=

— &G+ @ — g8,

. ., € ~ (= < S~ n3
e (w —1ge€ — §L5c> =e(w+w, —ze¢—en"e -

14Indeed in the symplectic form the relevant term is 6@6@%.
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By inspection (discarding the terms proportional to dz™) one could then infer
ol —Elin=é <w — 1560 — EnE"E — S (166 — éngn)) =: ¢k, (2.41)

having defined k7 := w3 — 1gc? = ek = ek + én/% + ékn. However, we know from diagram
that Wé(2’1) is surjective but not injective, hence the right hand side of (2.41) is defined
up to a term in ker Wé(2’1) In order to fix the representative of the equivalence class in

C*(I)® (9(82’1)/1{61“ Wé(2’1)), we can generalize theorem to see that we have to impose the
constraint - ~ ~ . e -
enk = en (w — 188 — EnE€" — (168~ éngn)) e Im(WY),

which, thanks to the following proposition, turns out to be equivalent to ([2.36]).

Proposition 2.2. Constraint (2.36)) is equivalent to
enk € Im(WY), (2.42)

Furthermore, constraint (2.37)) is obtained by applying the cohomological vector field Qpc to
(12.42)).

Remark 2.16. As an immediate corollary, since Q%C = (, one obtains that the structural con-
straints on Fp are invariant with respect to the action of Qpc.

4

Proof. We begin by unpacking the terms inside 207 = &~ — 1,07 — Lgéi + Liégén, starting from

the definition k¥ := w? — 1ec” = ek = ek + énl% + é@n. In particular, one sees

.. ~4 >
hence, noticing 287 = k,, — ¢,k?, we have

@j :één + Henl:c + Liél:c — Lgélzi — ébjc
zéén + Henl?: - éLéli: € Im(Wé(l’l))
o enk e Im(WHY)
We can see that if 207 = 72 for some 77 € Q'(I) ® Qg’l)[—l], and enlz: = éa for some @ €
c>=(I) ® 94"V [~1], then

7=k, + b — 12k (2.43)

For the second part of the proposition, we first apply Qpc to k=d— tge€ — Sig€, obtaining,

Qpc (E) =d,e+ L‘é’(lvc) - [c, Ivc} .

5Defining k3 = k7 +Ei, we have that Ei = gnl;:—ﬁ-één, which is ill-defined since k is unique only up to elements
in Ker(Wé(2’1>). Such ambiguity is resolved by imposing the structural constrain (2.36)), as is shown in the next
proposition and in remark
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<

From Qpc (k) we can extract Qpc(l;:), and since (2.42)) is equivalent to e,k — éa = 0, for some
G e c=(I) @YV [-1], yielding

Using ([2.43) we see

Ep — 606 = €,77 + [Lend + Lz(enl;:) — (pen + Lzé)gl
=€, 7+ 1,(6d) — 1,64

= €,7° + éu,a,

obtaining

nda + end€" 7 + (Lien = da, (en)€" = 6 €]} € Im(WY).
O

Having fixed such constraint, we recall there exist 7% € QYI) ® Qg’l)[—l] and fi@ €

Ker(Wém))[—l] such that
W = e + e, [0, €. (2.44)

Constraint ([2.42)) becomes W = &7, telling us that 77 is isomorphic to a field in Fpe and Ej
defines its complement in Fpc.
Explicitly, setting @2 = Qfl + ©7, we can rewrite

B, = 67T + 1,07 + 160 — 1,52 E" (2.45)

o = eali, ). (2.46)

Remark 2.17. Imposing (2.42)) is equivalent to set Bj = 0, implying 97 = 0, which is consistent
with the fact that the other constraint (2.37) fixes ¥ = 0. Furthermore, from (2.43) and ({2.45)
we see that @° — Lééi = é(&n + Hé) + Lié/vc + ¢, which, after imposing (2.42)), becomes

~ 4
which solves any possible ambiguity in the definition of k,,.

Lastly, we can explicitly write the symplectic form on Fp as
~4 ~d ~
who = / 866, + 08,,06” + 600G, + 6@, 007 + 060¢, + 15608 + 6€ 68"
Ix%

The BV PC pushforward
Proposition 2.3. [CC250] There exists a symplectomorphism ® between the graded -1-

symplectic manifolds Fpc = (Fpc,wpc) and 2o = (Fpo,whe), where

Whe = Wpe +/1 25175@j, with v € Ker( 6(1,2)) and o7 = e, [fi?, €],
X
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for some i € C>(I) ®Q((91’2)[—1]. Furthermore, fizing a reference tetrad éy € C*° (1) ®Q(61’1) and

considering Fy := T*[—l](Ker(Wé[}’Q))) together with its canonical symplectic form wg, there is
a surjective submersion m: FE, — §ho such that the quadruple

(Sgcv STPC’ Sﬁ 77)
is a BV hedgehog.

The strategy employed by the author of [CC25b| to prove the above proposition relies on
factorising the symplectomorphism between §pc and Sgc into ® = ¢ o ¢o. In particular, the
splitting occurs as follows

s (w’“PC + / 5@&#) = who + / 80607 4 6905 (2.47)
IxY Ix%

o <w;C + / 5&6T7 + mf;ﬂ) = wpo, (2.48)
Ix%
where we remark that
wpe = Who + / SO0 + 60T + 68607
Ix%

We will provide the full expression of the above symplectomorphisms in section [5.2]in the case of
supergravity. The current maps are recovered by discarding the terms that depend on the spinor
fields.

Proposition 2.4. [CC25b] The symplectomorphism ® = ¢1 o ¢o defined above is such that

®* (SPe) = Spc (2.49)
1
Sho=Spo+ [ geelo.0+ 1@ (2.50)
Ix% 2
where i R R
F@?) = (Lg@ +dy 5" + dEMLT — |6, @}) s (2.51)

Remark 2.18. We notice that, since we have a fiber bundle FH., — FF whose fiber is locally
modelled by F; = T*[—l](Ker(Wé(ol’?))) > (9,97, and since the subspace

Ly:={(v,0%) € Fy |27 =0} C Fy
is a Lagrangian submanifold with respect to the canonical symplectic form wy = || Ixs S0, we
can perform the BV pushforward by integrating SH, along £ 7 as defined in section

Theorem 2.9. [CC25b] The restricted BV PC theory §t is the BV pushforward of 2, ob-
tained by integrating along the Lagrangian submanifold L; = {(9,37) € F; | 87 = 0} € Fy

Remark 2.19. In particular, the above theorem holds because, setting every expression containing
97 to zero, the symplectomorphism & of proposition is such that

* r 1~ ~T~ o~
ol <SPC+/I><E 2ene[v,v]> ZSPC’M’

with [ Ixs %éné[& 7] taking the role of a Gaussian integral'|inside [ iy enSrc , decoupling from
the expression and contributing to the partition function just as a multiplying constant.

16Tndeed it can be proved |[CC25b| that the quadratic form fIxE %éné[f), 0] is non—degenerate.



Chapter 3

Palatini-Cartan-Dirac gravity on
manifolds with boundary

In the following Chapter we will describe the structure of Platini-Cartan gravity coupled to a
1

spin 5 spinor field via the Dirac Lagrangian, in which the differential has been replaced by the
exterior covariant derivative.

We rely heavily on the objects defined in appendix [A] and the results therin. In particular,
in the following we assume M to be a 4-dimensional spin manifold, and Py, — M a Spin(3,1)
principal bundle on it. Defining spin coframes is equivalent to the usual coframes defined on
Pgo = l(Pspin), where [ is the bundle morphism given by the double cover Spin(3,1) — SO(3,1).
It is however necessary to introduce spin bundles in order to define spinors, which are here seen as
sections of the associated vector bundle to Py, with respect to a half-integer spin representation.

A spin % spinor is just a section of the Dirac spinor bundle Sp, whose parity has been shifted

to account for the fermionic nature of the fields. Denoting it by wE] we have
v € T(M,1ISp).

The other fields of the theory are the vielbein e € Qilldl) and the spin connection w € A(M) ~
Q2

3.1 Coupling the Dirac Lagrangian to PC gravity

In the coupling of the spinor field, we apply the principle of covariance and substitute any
derivative with a covariant derivative, which in this case amounts to sending di in the free Dirac
Lagrangian to d,¢ = di + [w,]. However, we first have to define what the action of a Lie
algebra—valued element « € spin(3,1) is on Dirac spinors.

Since the Dirac spinor bundle Sp: Pypin X4 C* is the associated vector bundle to Pspi, with
respect to the gamma representation, we just need to compute the image of an element o €
spin(3,1) ~ A%V under . We saw in Proposition[A.5|that, if {v,} is a basis of V, the infinitesimal

n the next chapter, ¥ will denote the gravitino, but there will be no ambiguities since it will only be denoting
Dirac spinors in the current chapter.

41
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action of the double cover [ on the generators of the Lie algebra is given by
[: 50(3,1) ~ A2V — spin(3,1)

1
Vg N Vp — i[va,va

which under the gamma representation are sent to [ys, ], where now [-,] indicates the com-
mutator of gamma matrices. Therefore one has

1 1
ANV sa= §aabva A vp —> iaab%b,

where we recall 7,p = %[fya,fyb].
At this point it is easy to define the covariant derivative of a Dirac spinor field :

duth = i+ [, 9] = b — 7 (3.1)

For the sake of consistency, we briefly check that it transforms well under a gauge transformation
¥ ) = S(x)1, where for each x, S(z) € Spin(N — 1,1)

dt) = dy (Sv) = (duw S) + Sdrip

= (dS)y + [w', S|y + Sdyp + S[w', ]

= (dS)y + w'(S) — Sw' (1) + Sdip + Sw’ (1)

= (dS) + Sw(y) — (dSY) + Sdyp = S{dy + w(¥)}
= S{dy + [w, ¢} = Sdu,yp = (du)’,

where we used w’ = SwS~! — (dS)S~1.

The invariant Dirac Lagrangian is constructed via the Dirac pairing defined in Proposition
where we had defined ) := 9Ty, and < 1,9 >= 11). We extend the definition of the
covariant derivative to the hermitian conjugate of i by requiring that d,v = dwE hence
obtaining

4 = &P+ [, F] = df — 30" P, (32)

The definition of covariant derivative extends also to the gamma matrices, where one must be
particularly careful. In particular, throughout the thesis we will be considering v = y*v,, which
has values in V ® C(V'), which means that it transforms as a Lorentz vector and via the action of
the gamma representation on gamma matrices: indeed, for all o € A2V, one obtains the following
splitting

[Oé,’}/] = [Oéa’Y]v + [Oé,’}/]s, (33)
where [a, 7]y = a®ny°v, is the action on the vector part of v and [a,v]s = a®®[y(vy A
p), Y¢]ve = f%a“b(%b’yc — Y“Yap)Ve is the adjoint action of the Lie algebra of Spin(3,1) in the

gamma representation.

Lemma 3.1. Let v := %, € V ® C(4) be an element of the vector space V' with values in the
Clifford algebra (seen as endomorphisms of the spinor bundle Sp). Then
d,y = 0.

2In other words, the quantity 1) should be invariant under gauge transformations, which is consistent with
the fact that 1 is a scalar.
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Proof. ~ is a section of V and an endomorphism of the spin bundle Fy. Hence its covariant
derivative reads

1
Ohwath+ww%—ZwMWmmﬁ—¢mﬁJ

Note that this formula implies the correct Leibniz rule for d, (). Using the anti-commutation
relation of gamma matrices, we can show that wbc’yc — %wacnbd(’yafyc’yd —YdYa"e) = 0 and conclude
the proof by noticing that - is constant. O

Finally the fully covariant Dirac Lagrangian is given by

SDirac = /M ) 13'63 (E’ded) - dw@%ﬁ) = /M % (E’Yavaw - Vai”y%/}) VOlga (34)

with Vi) :=e# (8#7,& — iwﬁb%%w). The Palatini-Cartan-Dirac action is then

e2 et T g —
Spcp = . EFUJ + IA + 5. 31° (Vydotp — dupyi)) .

Its variation yields

08 =6,5 + /

2
|:er + Z% (E’de’(/) - dww’}’w)} de
M

+Qm%%@¢—;@@%m4 (3.5)
i . — 1 3 —

together with a boundary term

. oN—2 N1 -
Shop = | g+ ity (#100 — 6). (36)

To compute 4,5, first we define the internal contraction on V. In particular, for any X € V and
for all & € A*V, we define for all o = %a““'“ﬁvil A Ay,

Jxoa = (k@bl)!XaabiQ”'i’“viQ A A, (3.7)
With this definition, we obtain
1. _ (=1)lellvl__
[, Y] = Z]’y]'yawv and [, Y] = _?w]'y]’yoﬂ (3.8)

We know 6,Spcp = d,Spc + 00 SDirac, With

6wSDirac = /M ﬁeg (1/;’7[5001#] - [5“}’1[}}71/))

7 - ..
= / ﬁe% [V Jn 0w + fiyJyowy] o
M .

[ .o .o
=/‘&ywhhhé+hhéﬂwm,
M .
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The equations of motion become

2

eF, + i (Pydu — duiy) =0, (3.9)

e [due+ 120l - 1,0l =0, (3.10)
3 3

St - d, (263,> v =0, (3.11)

P e\ —

g de?¥r +do (23,) Yy =0. (3.12)

Remark 3.1. First of all, notice that , once we impose 1) = 177y, then equations and
are one the Hermitian conjugate of the other, representing Dirac equation on a curved
background.

Secondly, contrary to the case of pure gravity, the coupling of a spinor field introduces a
torsion term, given by i(@’y[ea Y] — [e2,4]7¥), hence the connection which solves the equation
of motion is not Levi-Civita.

3.1.1 Non—degenerate case

In this section we study the boundary structure of the PCD theory in the case where the induced
metric ¢ on ¥ is non-degenerate. As usual, we employ the KT construction and restrict the
space of fields to the boundary, obtaining FE¢P = Ay x 9(81;11.21. x I'(%,S]s) x ['(%,Ss).

The presymplectic form on the space of preboundary fields is given as usual by the variation
of the boundary 1-form resulting from the variation of the action. We obtain

e

2 3
&ECD _ /E ededes + i ($70% — 8ye) de + i Suyov, (3.13)

while

ix@EP = / eXeow + |:6Xw + %e%@’yxw - wa)} de
b

— €2 e? [e?— el
+ 301 (477,/1Xe + 3")/X.Y) +1 <4¢ryxe + ?)'Xm) 0.

The kernel of the presymplectic form is hence given by the following system of equations:

2

€7 [—
eX. =0 eX, + ZZ (mm + —XE’}/’L/}) =0
e? e3 e?— e3
— — 7YX + =Xy =0 —YPyXe + =Xy = 0.
1 TVXe + 57Xy 19X+ 51Xy

We can first solve the last two equations, using that - is invertible and that W38 (0.0) g injective.

We then find X, = Xy = XE = 0 and eX,, = 0. The geometric phase space is a bundle over
QY1) with local trivialization FEOP ~ FEC x (8, S|5) x I(%,S[x).
To fix the representative of the connection, we generalize theorem [2.1] to the following.

Theorem 3.1. Suppose that g2, the metric induced on the boundary, is nondegenerate. Given
any & € QY2 there is a unique decomposition

w=w+w, (3.14)
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with w and v satisfying

ew=0 and e, {d e+ - (m[ ] — [62,1/3]71,&)] € Imw b, (3.15)
Proof. Let w € Q}f. From Lemma we deduce that there exist unique o € Q}a’l and v €
9,(1,2)
KerWW;” such that

6 [due + T 0]~ 2, 010) | = e+ el

We define w := & — v. Then w and v satisfy (3.14]) and (3.15]).
a,(1,1)

For uniqueness, suppose that & = w; + v1 = wy + vy with ev; = 0 and €,d,,;e € Im W)
for i = 1,2. Hence
_ 0,(1,1)
€ndy, € — €ndy,e = €y[v2 — v1, €] € Im W) .

Hence from Lemma and Lemma 6| (for which we need nondegeneracy of ¢?), we deduce

vy —vy =0, SIHCG’UQ*?)lEKGT'W (12) O

With the addition of a Dirac spinor, the constraints of the boundary PC become
Lch :/ c| edye + w (jvjwe37 +'7j7j763> v,
D (8- 3')
1 P —
PPCD / §L§62Fw + te(w — wp) <edwe — ﬁw (jvjye?’v + ’yjyjﬁ,es) 1/))
b "o

_|_

2 3'L£€ (w'delD dww'ﬂb)

e ,62 — -

Remark 3.2. We can rewrite LI“P to make the action of the internal symmetry group on the
fields more evident. In particular we obtain

3

LPOD = / cedye —i=—— (le; By — Ple, ¥]) | (3.16)

2-3!

while ng €D hecomes

PEOP = / %L§62Fw + te(w — wp)edye — g i3' Le€> Y (—[w — wo, Yy + Py[w — wo, ¥]) ¥
> -3l
+ Lge (imduﬂﬁ duﬂb%/’)
= (3.17)
1 3 B :
= /E 5te€” Flu + 1g(w — wo)edue — 12673, (Vytedu, () = teduy (0)711)

1 2 . 63 - wo wo (7T,
= /E iﬂge Fy 4 tg(w — wo)edye — 12-73! (7/1’7145 (¥) — Lg (w)’ﬂl)) .

Theorem 3.2. The constraints define a coisotropic submanifold with

[PCD pPCD  pPCD
c » g ’ A
respect to the symplectic structure ws. Their Poisson bmcketﬂ read

3We point out that one should not confuse L with L, which respectively indicate the constraint and the Lie
derivative
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{P§PCD7 PEPCD} — lp[g,g] _ éLiLCs?Lo (HPCD gPCDY —
(LPCD, PEPC’D} _ LPC’D (LPCD [PCDY 71sz%[)
(L7 H{OP} = P}?(a) + LR fwomwoye — HXGD
{PEP HYOPY = PYGY = Ly, + HYV G

where X = [c, \ep], Y = LZ’“ (Aen) and Z@, Z(™) are the components of Z € {X,Y} with respect
to the frame (eq, €y).

Proof. The full proof is found in [B.1.1] O

3.1.2 The BFV PCD structure

Again, the data of theorem [2.2] can be translated into the BFV formalism as explained in Section
C21

Theorem 3.3. Under Assumption[2.1], let Fpcp be the bundle

FECP 5l (,V), (3.18)
with local trivialisation on an open Us, C QL ,(3,V) x T'(E, Sy) x (X, Syx)

FEDC s x A(D) x (X, Sy) x (%, Sy) & T (92»2[1] @ X[1(2) @ coom(z)) —: Us. x Tpcp,
(3.19)
and fields denoted by e € Uy, w € A(X) in degree zero such that they satisfy the structural
constraint €, [dye + (z/ry[ ) —[e 2,@]71#)] € ImWf’(l’l) and € T'(X,Sx), ghost fields ¢ €
QY?1], € € X[1)(X) and A € Q°O[1] in degree one, k? € QgiLD*Q[fl}, M€ Qgil’D[fl] and
¢ e Qé’o[—l] ® Qg_l’D in degree minus one, together with a fixed €, € T'(V), completing the
image of elements e € Us; to a basis of V; define a symplectic form and an action functional on
fEC respectively by
2

3
e — — e’ —
wFon = who+ T (F700 — 5T10) de + 1 6000,

p)
SPCD SPCD +

=3 3, e (Yydutp — dutpy)) -

Then the triple (Fsop, wE©, SEC) defines a BFV structure on .

Proof. We follow the same strategy of [CCS21a], from which we also borrow the notation. The
only bit that we need to prove, is that the new BFV action 85 CD still satisfies the classical

master equation
PCD ¢PCD )
{S S } LQ)F%CDLQIZDCD Wpop = 0, (320)

where g is the Hamiltonian vector field of SPCD defined by 1g s = 5S§CD. In order to do
so, we can exploit the results of [CCS21a] and noticing that SPCD S;C * SDirac, Dy linearity
we get

{$§CD7 S§CD} = {5507 Sgc} + 2{8507 SDirac} + {SDiracv SDirac}~
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We have that {850,850} = 0 from Theorem [2.3l The remaining part 2{S§C,Spirac} +
{SDiracs Spirac} = 0 is instead a consequence of Theorem Indeed, the explicit computation
of the second bracket follows verbatim the computation of the brackets between the constraints
in the proof of the aforementioned theorem by just considering only the terms containing .
Nonetheless, the first bracket produces in a trivial way exactly the results of these brackets,
since Spirac does not depend on the ghost momenta. O

3.1.3 Degenerate case

In this section, we study the case where the boundary is null-like, i.e. the induced metric g
on Y is degenerate. The same consideration as in the free gravity case hold, with the caveat of
the introduction of a torsion term in the structural constraint. This also affects the degeneracy
constraint. Explicitly, the structural and the degeneracy constraints take the form

en(ay — pray) € Im le’(l’l)

(3.21)
pray = 0.
with
ay = due+ Z(Br[e, ] = [, Uly0). (3.22)
We also recall the definition of subspaces
T == KeeW®V nJ c o3 (3.23)
S = Kerle’(l’g') N Kerg™?) ¢ 912’3 (3.24)
K= Kerle’(M) N Kerp™?) ¢ Q}d’Q. (3.25)

3.1.4 Some non-recurring technical results

Before we continue, we introduce some useful lemmata containing important identities and re-
sults.

Proposition 3.1. Let 7 € §. Then, 7 = €, with 8 € 912’2[1] such that €,3 € Kerg'? and e,
defined as above.

Proof. From [2.2] in particular, we have that

pra=0 — /7'0420 VreS, (3.26)
s

for a € 922’1. Now, consider an « € 922’1 such that pra = 0 holds together with the structural
constraint €, (o — pra) = eo (notice that this subset of Q%l is in general non-trivial because we
do not require the condition « € Kerle (21 ag in , then it follows that

/Ta:/eca+enﬁoz:/ecpTca—l—ﬁeaz/ecpTca, (3.27)
by b b by

where prc is the projection onto a complement of 7. Since the right hand side of ([3.26]) must hold
for all 7 € S, if the intersection S ﬂIle2 102) Sere not trivial, we would have an absurdum. This
implies ¢ € Kerle O forall r € S , which, thanks to the injectivity of le ’(0’2), is equivalent
toc=0.

Lastly, the fact that €,3 € Kerg"? follows immediately from the definition of S. O
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Lemma 3.2. Given A € Q;z and B € le’j with 1,7 = 2,3 such that i + j < 6, then we have
B[4, ¢] = [A]yy) = (=1)AIPIAGY (B, v] - [B,¢]w). (3.28)
Proof. The proof goes by direct computation of
Byiytn A = Byy*y [va, [vp, All

= (=) ([va, Bly + (=1)"' Bya)7*y"[v6, A]

= (=1)""/([ve, Blp7" = 4(=1)/PI B)y*[wy, 4]
~([oe, [vas A7*y" = (=1)"PN([va, Blnpy*y" + 41y, B])) A
= —(—(-1)"Blyi, B —6(-1)"l.,B)A
= (=1)PU =) HIEFY A(y1,0, B + 61, B)

and
By, Ay = (=1)41E1y 5 oy, [y, Al By
= (=) PI(=1) Ay [oy, A)([va, Bly + (=1)P1r. B)
= — (=)L Ay ([oy, [va, By = (=1)P([va, Byvs — valve, B]))
= —(=)MIPIA( = 1y, By + (=1)PI(d]y, B] + 71 7alvs, B]))
= (_l)lAHBlA(L'yL'yB'Y - (_1)‘B|6L’YB)'
Then, we can conclude the proof by considering the four possible parities of A and B. O

Proposition 3.2. Let 7 € § and e be a diagonal degenerate boundary vielbein, i.e. e*n = i*g
with n = diag(1,1,1 — 1) and i*g = diag(1,1,0). Then, we have

en[T, €] = 0. (3.29)

Proof. Given a = 1,2,3,4 and let u = 1,2, + be the coordinates on the boundary ¥ such that
we can write the diagonal degenerate boundary vielbein e as

a J— a
o=l
ey =04

el =63 — 0y
€n =05 + 03.
Then, the definition of 7 € S implies the following relations

Tibc =0 Va,b,c

=0 p=1,2
=0 p=1,2
7234 _ 134

134 _ 234
1 = —To .
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The proof follows simply by computing €,[7, €] in components implementing the explicit form of
the diagonal vielbein abovd?] O

Lemma 3.3. Le Ae Q;’ with 2 < i < 4. Then, it holds
Yigin A = (1) (1 Ay + 46 = 1), A)). (3.30)
Proof.
Yiytn A = (i — 2)!7a7b’ycvabvb Ly, A
= —(i = 2)!(7"7* 7 + 20 Yvat, Lo, A
= 7(1 - 2)!(7’717767(2 + 4nab76)vabvb LUCA
(=) Ay + 4G — 1), A)).

O

Remark 3.3. This lemma introduces a relation between the action of the brackets over the Clifford
algebra and V-algebra. In particular, it is consistent a triviality condition on the bracket in the
Clifford algebra, i.e.

[A7 @71/]] = (_1)|A|$[A77]V'L/) = @’Y[A’ Wcz + [@7 A]CW%

where we occasionally added some redundancy with the labels of the specific algebras, even if
we will not use them in general.

3.1.5 The second class constraints

Now, perhaps unsurprisingly, we prove that the constraints form a second class set, under the
assumption of degenerate boundary. We first notice that we can get rid of some extra term
thanks to the following Proposition.

Proposition 3.3. Let 7 € S. Then, we have the following identity
T(Vy[e?, ¥] — [e2,d]y) = 0. (3.31)

Proof. The proof comes by applying twice Therefore, by means of we have

T(¢7[€2a¢] - [62’$]7¢) = ﬁnﬂ@W[eQﬂﬁ] - [627E]'Y¢})
= en€®(PY[8, 9] = [B, ¥]¢)

= eﬁ(@’y[ene, 'LZJ] - [fnevﬂ]’yw)
=0,

since 3 € Kerle’(l’z). O

4We refer to [CCT21| for further details about this kind of computations.
5Notice that this may be also a shifted variable, like 7 for example.
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With 7 € S[1], the constraints are given by

PCD e A -
£8P = | cedue — iz (0l = e ) (332)
3
preP — /Z %Lg(é)Fw + te(w — wo)edue — 12%' (%ng) — Lo @)w) (3.33)
A
HPOD _ / )\en(eF + e —H—(wvdww dwmzp)) (3.34)
RfCD:/wae. (3.35)
>

Theorem 3.4. Let i*g be degenerate. Then, the Poisson brackets of the constraints read

1

1 1
PCD PCD PCD PCD PCD
{L aL } = _7L[c c] {Pg 7P§ } = 7P§’§] - §LL5L5F“J0

{LPCD PPCD} LPCD

{LPCD’RPCD} _ _RII)DSC['CDT]
{RPCD HfCD} G}\'r +KPCD
{LPCD HPCD} — —PP(Q) + LPCD

X (@) (w—wp)a
{ngcD HPCD} — PCD _ LPCD

Y(a) Y (a) (w—wo)

with X = [¢, Aep], Y

with respect to eg, €y, .

Furthermore, F.., Gx; and

{H PCD HPCD} ~0
(REeP, PEOP) = RICR,,
{RPCD RPCD}

PCD
—Hyq)

zFTT

HPC’D

y(n) »

= L% (Nen) and where the superscripts (a) and (n) describe their components

KfTCD are functionals of e,w,,y, T and X

defined in the proof which are mot proportional to any other constraint.

Proof. The proof is found in [B1.2]

O

3.2 The BV PCD theory

We are now interested in investigating the BV structure of the Palatini-Cartan-Dirac theory in
the bulk. As in Chapter we look at the Hamiltonian vector fields of the constraints and their
Poisson brackets, as they provide insights in the definition of the cohomological vector field of
the BV theory, and subsequently of the BV PCD action.

We start by defining the space of fields as usual, i.e.

1](FPCD X thosts) =T [_ }( "4(
Remark 3.4. To make computations slightly easier, we will omit considering the Dirac conjugate
field ¢ as an independent field, and we will fix it as ¥ = ¥T~.

We therefore obtain antifields e? € QG3)[—-1], w? € QB [-1], ¢ € QED[-1](TISp), ¢? €
0(4,2)[-2] and ¢* € Q10[-2] ® Q4. The BV PCD symplectic form is the canonical one,

FM, =T (1) ) x QO(M,TISp) x QO2[1] x X[1)(M)).

i - _
Hon = o+ [ 50060+ 50509,
Theorem 3.5. The BV PCD is given by the data (FPop, St p, @hep, QM p), with

S¥op = S¥o+ [ 376t (rdat = i) + 55 ) = o) = 5LE0D) — e T
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Proof. A very quick computation gives, for the Hamiltonian vector field of SpL 1,

Qprcpe = Qpce Qprcpw = Qpcw
Qprcpy = L () + [c, Y] Qrcpt = LE (V) + [c, Y]
Qprpcpc= Qpcc Qprcpé = Qpcé

Qrope® = Qpoe + 26 (vt — dutyy)

Qrepw* = Qrew? + 1eile?, ] - [, 0) = 3 (et v] - [, 160
Qropt? = giebydat — 1 duert + L) — [0

%egdw% + iedee% +Lg (W) — [, ¢
Qrepe’ = Qroe® + & (17,4 — [,

Qreti = Qrotd — 5 (Fdut)s — [dt)et”).

Qpcp =

At this point it is enough to check Q% = 0 on the fields and ghosts, disregarding the antifields.
This will ensure the CME is satisfied. Setting Qpcp = Qpc + Qp, we first see Q%CD =
Q% + [Q@pc,@p] + Q%. We notice that on e,w,& and ¢ one has Qpecp = Qpc, and since
Q% =0, we only need to check Q%1 = 0.

Qbop? =Qprop(LE (V) + [c,¥]) =0,
following directly from theorem 21 in [CS19b]. O

Remark 3.5. Recall PC theory is not BV BFV extendible, the PCD theory exhibits the same
behaviour, as the introduction of the spinor fields does not cure the singularity of the pre-
symplectic form induced on the boundary.

3.3 The AKSZ PCD theory

Once again, we consider the cylindrical manifold M = I x ¥ and apply the construction of section

to the BFV theory of theorem As in section we promote the fields in F5., to

fields in FAZS5% by considering

¢e=e+ f7 w=uw

+u
p=1+67 p=1v+6° (3.36)
c=ctw 3=¢+=z
[=A+pu o? =k? 4
p? = e 4o

where we used the same letters for the boundary fields which are now promoted to fields in
Q*(I) ® Fio. In particular, if ¢ € F5., the corresponding AKSZ field becomes

B =o+ e, where ¢ €C®(I)® Fro, and ¢° € Q' -1)(I) @ Fpe.

Then, applying theorem [T.2] we obtain
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Theorem 3.6. The AKSZ data FpE2Z on M =1 x % are given by

FpEs? =T [—1)(Map(I, Fpep),

7 _ _ 7 _
@’ = wpon’ + /1 § 1€ (P09 — 3pYp)dp + ¢y 0p,
y .

Spap? =Sps%7 + / " Ppy(dip + LPp — [e,p]) + ~enle®pydup + c.c.,

where it is understood that only the terms containing fields in Q*[—1](I) should be selected in the
above expressions, to obtain a top form on I x 3.

We unravel the above expressions, to find
RS = T+ [ el hndu)ie + 1 ron)af + 1060
+ 7507 de + %lej&/;’ycSz/J + %63 (6§jfy§¢) + c.c., (3.37)
and

T LEY — [e,v])

i A w
SEER? = SEE + [ Lerige -l + 5
X

23@%@w+mﬁw+ww—mw—m¢D
) ) 30
+ qHene’Pyduth + Aenef Uy 7 3, YyOnth

+ i)\ene (B3vdop + Py[u, 9] + 9ydo,8%) + c.c. (3.38)

Now we want to compare the AKSZ PCD theory with the BV PCD theory in the bulk. To do

so, we proceed as in section and find a map ® : FA%S5% — Fpcep such that ®*(whl. ) =

wég 22 and such that the image of FAL %% under ® comc1des with the restricted space of BV

fields Fpp, defined in the following.

Definition 3.1. The restricted space of BV PCD fields is given by the subspace of Fpcp
satisfying the following structural constraints

W=l -0 - LEcn + 1,6 " € Im( (1 1)) (3.39)

@e+<m[uﬂ[%wwo—%mg<w@+%w—wewamw“%,wm>

where W(z 9 Q6d) — QUHRI+R) . o s & A @ shares the same properties of W8 9 and

X =L

(€n) — ds, (€n)E" — [C, €nl; X = ¢ X9, (3.41)

e

* Wpep = wﬁ\?/[CD(I X 2>|f;,CD§
* Spep = SpeblFy

PCD’

° Q?DCD = QPCDo
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In the following, we indicate any bulk field ¢ with the bold character ¢p. Furthermore, letting
¢ € QF(I x ), we set

¢ =0+ n, with ¢ € QF(2)@C™(I), ¢, € 1) ® (),

assuming z" to be the coordinate along I, then qin = Gpda™, with ¢, € C®(I) ® Q*~1(X). In
the same way a vector field ¢ € X(I x X) is going to be split as

¢=C+C,  with CeXx(X)ec®{), ¢ =)o x()

with Zn = 5"8,,. Furthermore, we fix ¢, € I'(M,V) such that de,, = 9n€, = 0 and such that
{€i, €} form a basis of V.

Remark 3.6. In principle one would need to show that the restricted BV PCD theory §'pcp
is a genuine BV theory, which is achieved by checking the CME. However, we will obtain it
automatically as a corollary of the next theorem.

Theorem 3.7. There exists a symplectomorphism w: (FASEZ, waB3%) = (Fhap, @pep) such

that o*(Shep) = SpESZ. This data, together with the naive BV embedding i, : §pop = Spep
gives a BV embedding ® := 1, o .

Proof. The full proof is found in [B.1.3] O
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Chapter 4

The Reduced Phase Space of
N =1, D =4 Supergravity

Supergravity is defined as the supersymmetry theory containing gravity, in which the SUSY is
realised locally (the spinor parameter x is a function of the spacetime coordinates x(z). We
investigate here the NV = 1 case, namely the case in which only one supersymmetry generator
is introduced, in 4 dimensions, as it is the starting point for further generalizations. We start
with pure gravity, and subsequently couple it with a Majorana-type spinor, which will act as the
gravitino, the superpartner of the graviton.

Let M be a spin manifold and let Pgp,i, be a principal Spin(3, 1) bundle over M. We introduce

a 4-dimensional real vector space V with a Lorentz-type metric n of signature (—,+,+,+).
Without loss of generality we can assume that n =diag(—1,1,1,1) is the Minkowski metric and
define the associated bundle (called "Minkowski bundle’) V := Pgpin X V, where A is the spin 1
representation of Spin(3,1).
Remark 4.1. Notice that the double cover [: Spin(3,1) — SO(3,1) induces a bundle morphism to
a SO(3,1) bundle [: Pspin = Pso, hence V o~ Pgp x5, V, where Ay is the vector representation
of SO(3,1), such that A = A ol. Furthermore, one can identify elements of the Lie algebra
of Spin(3,1) with the second wedge power of V, as it defines 4 x 4 antisymmetric matrices:
spin(3,1) = s0(3,1) ~ A%V.

The last ingredient we need in our setting is what is commonly known as Dirac spinor bun-
dle, namely the following associated vector bundle Sp := Pipin X4 C*, where v is the gamma
representation of the Clifford algebra C(V) restricted to its spin subgroup Spin(V) ~Spin(3, I)EI

The independent fields of the theory are:

o The coframe e (also known as vielbein or tetrad in D = 4) defined as an isomorphism
e: TM — V, inducing a metric on spacetime as g := e*(n), i.e. such that g,, = efbeﬁ’,nab,
where u = 1,2, 3,4 are curved indices on M while a = 0, 1,2, 3 are flat indices on VE] The
coframe has the advantage of being expressed as a differential form, indeed e = ej;dz"v, €
QY(M,V), where z are coordinates on M and {v,} is a basis of V.

o The spin connection w. The space of connections is denoted by A, and is locally modeled
by 1-forms on M with values in the Lie algebra so(3,1) = spin(3,1), in our notation
w = wydzhvg A vy € QH (M, AD).

IFor more details about the notations and the convention see [Fil25]
2Note that e enjoys an internal Lorentz symmetry (acting on the flat indices) on top of the usual diffeomor-
phisms.

55
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e The gravitino ¥, a spin—% Majorana spinor, i.e. a 1-form on M with values in the subbundle
of Majorana spinors Sy == {x € Sp | X := x'v0 = x!C}, where C is the charge conjugation
matrix. Furthermore, as we are dealing with a fermion, we need to reverse the parityﬂ of
S, obtaining ¢ = i, dz* € Q1 (M, IS ;).

The theory is described by the following action functionaﬁ

2

Ssc = / S 161;73%% (4.1)
M 2 3!

where F,, = dw + £[w,w] is the curvature of the connection, v is an element of V @ C(V) defined

by v = *y“va and {v,} is a basis of V. Lastly, we define d,3 = dy — %wab%bd)ﬁ having set

Yab = VaVe] = 3 [Var W)-

Remark 4.2. In general, when dealing with gamma matrices, we will omit the wedge symbol in

products of gamma matrices, so that 7% == y A -+ Ay = ¥ %y, A --- A v, will automati-

cally select the anti-symmetrized product of k£ gamma matrices. The same hold for the wedge

multiplication of k coframes.

Remark 4.3. The bracket [-,-] is defined to encode any (possibly gradedﬂ) Lie algebra actionﬂ

In the general case, if a field ¢ transforms in a representation p of the Spin group, then we have

[w, @] = p(w)(p). In the case of the gravitino field, transforming in the gamma representation,
we obtain

o8] = 700 A )W) = (00 A 00)() = = "
_1

where (v, Avp) = ﬂ%b is the image under the gamma representation of the generators of the

Lie algebra spin(3, 1

The variation of the A" = 1, D = 4 supergravity action produces a boundary term and a bulk
term containing the Euler-Lagrange equations

6Ssq = / (er + ;z/}Wdew) de+e (dwe — ;z/ryw) dow + % (;dwewVS + edwz/wg) o
M .

/ < st 36
— | Sow+ ey oy,
onr 2 3!
having used the fact thaﬂ

—%ei/_wg (6w, ] = —%e%ww- (4.2)

3The parity reversed Majorana spinor bundle is defined as IISj; and simply given by Sj; with the requirement
that the components of each spinor are Grassmann-odd.

4We omit the symbol A when multiplying differential forms and sections of the exterior algebra of V, but the
wedge product is assumed in both. Parity in the algebra is defined as the sum of the fermionic parity, the form
degree modulo 2, the degree in AV modulo 2, and the ghost number (to be introduced below) modulo 2.

5Notice in our notation we have the following relations

{va,wr=-2m {7 W}t =294,

having set yu = €}Ya-

6 Alternatively, one can define for all @ € A2V, [, ] == i’y“vaa Loy Q1) = —iw“baabw having set ty, Ve = Nac-

"In our convention, the parity of an element a € Q*(M, AJV) is defined to be |a| = 4 + j mod 2. In the same
way, a pure Majorana spinor has parity 1, so that in the case of the gravitino, )| =14 1 mod 2 = 0.

8The bracket [-,-] on A®V (encoding the action of the Lorentz group) can also be induced from the pairing in
V, indeed if for any A, B € V we define [A, B] := —(—1)!BIn(A4, B) = —(=1)IB1A2Bbn,,, then one can extend
the action bi-linearly to AFV requiring that the graded Leibniz rule holds. Furthermore, notice that the bracket
defined above is graded, i.e. [4, B] = —(—1)I4/IBI[B, A], where | - | denotes the parity.

90ne can show —1~,;, are generators of spin(3,1)

4
10This identity is quickly obtained by applying formula (A.50)).
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We then obtain the following equations of motion:

eFy+ g dut =0, (4.3)
e (dwe - ;1/771/1) -0, (4.4)
ed y3 + %dwelﬁv‘n’ =0. (4.5)

Remark 4.4. In the bulk, eq. is equivalent to d,e — %1&7@/} = implying that the
background connection has torsion, while eq. is equivalent to its complex conjugate, and can
be re-interpreted (after imposing (4.4))) as the Rarita-Schwinger equation for a massless Majorana
spinor in a curved background

. 1 - .
e’YSduﬂ/} - 1(7/)'711[))731/) = 673dw1/1 = 0.

On-shell vs off-shell supersymmetry invariance

So far we have been considering the connection as a dynamical field, in what is called the Palatini-
Cartan formalism, also known as the first-order formulation of (super)gravity, referring to the
fact that only first order derivatives appear in the Lagrangian. If we impose in the absence
of the gravitino, we obtain the torsionless condition, which, coupled with the metricity condition,
gives the Levi-Civita connection as the pullback of w by e. Applying the torsionless condition,
one obtains the Einstein—Hilbert Lagrangian, which describes the second order formulation of
gravity.

In the case of supergravity, implies the non-vanishing of torsion, which will be quadrat-
ically dependent on the Majorana field 1. Historically, the formulation of supergravity has been
performed in the second—order formalism (the so called ’half-shell’ case), i.e. after imposing the
kinematical constraint .

In this setting, introducing a spinorial gauge parameter x = x(z), defined to be an even|E|
section of the Majorana spinor bundle, the infinitesimal supersymmetry transformations on the
fields read

dye = =Xy, O = dyXx,
with no need of specifying the variation of w as it is constrained and can be obtained as a function
of ¢ and e from (4.4). It is indeed very quick to check the invariance of the action under these
transformations

1 - 1 _
xS = [ —iex1uF. + (=07 ) + el dxr dut + 59 (Fon)

1, - — 1 1 -
= /E —iexyYF, + §(6w73[FW7X] - [Fwaw]V?’X]) T3 <dwe - 21/)71;[}) )273dw7/} =0,

having used the constraint (4.4), identity (A.50]), integration by parts, the Bianchi identity
dod,(-) = [F,,-] and the Fierz identity (A.62) together with the flip relation (A.54) to
show VY dupx vy = dotpVP Xy = —dutby?x Py — dupy Xy, implying PyPdaxyd =
— 3V XY dut

That is because e A - is an injective map when acting on QQ(M7 V), and it is in fact an isomorphism.

12The reason we consider an unphysical Grassmann even fermion will be clear in the following section, as it will
represent the ghost field associated to the gravitino
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If instead one keeps w unconstrained, it is necessary to introduce the corresponding local
SUSY transformation, which can be either derived by the requirement that the action remains
invariant under the local supersymmetry (postulating the same transformations for e and ), or
by the analysis of the symplectic structure of the fields on the boundary ¥ = dM. We use here
the first method, discarding the vanishing terms from the previous computations

e? 1 - 1 1- B
SxSsc = / —5 Lo (6w) - gewvg[éxw, Y- 5 (dwe ~ wa) X dotp
M ' '

from which we obtain

dye = =X, (4.6)
1_

eoyw = ZX7 dut, (4.7)

by = dux (48)

Notice that we have given only ed,w and not the explicit expression of d,w because it is not
strictly necessary, since we are sure that ed,w uniquely determines the expression for 6, w. Indeed

it suffices to notice that W' 1= e A - : QY (M, A2V) = Q2(M, A3V) provides an 1som0rphlsm.
hence dyw is uniquely defined by the above equation.
In the following, it is convenient to recall the following notation, setting > = oM,

QD = (M AY) g = OF(E,AY),

furthermore, we define the coframes e as those elements in Q! non-degenerate, hence e € Q(l 1).

4.1 Constraint analysis of N =1, D =4 SUGRA

We briefly recall the form of the action of N' = 1, D = 4 Supergravity:

2
Ssg = / —F, +—e1/ry3dwz/; (4.9)
M

The boundary term in the variation of the action depends only on the value of the fields at
the boundary. In particular, we consider only those tetrads defining non-degenerate metrics on
the boundaryE

We have

6Ssc —/ ELy — / —dw + fedry 0,

hence obtaining

w@oq = / ededw + %7,[;’}/361/}56 + %(551/;73577/1. (4.10)
> . .

13 A proof of this statement is found in [Can24]
148pecifically, we require g?j := (ej, e;) to be non denegenerate on X, i.e. either time-like or space-like.
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First reduction and structural constraint

Many of the following tools have been discusses in the previous chapters, notably in [I] and in [2}

As it turns out, @3, is closed but not non-degenerate, its kernel is given by Ker(&9,) =
{/s Xw% € X(Fy) |eX, =0, X, € ng)} In other words, any vector field acting on the
boundary connections as w +— w + v, such that ev = 0, is in the kernel of the pre—symplectic
form. We then define the geometric phase space as the quotient of the space of preboundary
fields with respect to the action of the vector fields in Ker(&2,) (i.e. consider the charachteristic
foliation of this distribution), obtaining

Fie = (0.a.(5V) x A(Z) x Q1(Z,Sur))/ ker(@8a) = U, 0. (2, V) X Asrea X Q' (Z, Syr),

where Ay yeq 1= Ax/{w ~w + v, ev = 0}.

At this point, the constraints are simply obtained by restricting the equations of motion (4.3)),
and to the boundary, defining functions on Fy. However as pointed out in [CCS21a),
the constraints are generally not invariant under the distribution defined by ker(fﬂgc)lﬂ hence
they cannot be naively extended to functions on Fy. In order to do so, we cleverly fix a repre-
sentative of [w] € Ay req (i.e. choose a v-section), such that it imposes the non-invariant part of
the constraint.

Remark 4.5. Notice that, in the bulk, the torsion equation d,e — %QZ'W/) = 0 is equivalent to
e (dwe — %?/;’WJ) = 0, but it is not the case when e is the vielbein restricted to the bound-
ary, as I/Vla 21 s not an isomorphism and in particular not injective. Indeed one finds that
e (dwe — %erw) has 6 local components, and is invariant under the action of ker(zbgG), while
the remaining part of d,e — %1;'7@/1 has another 6 local components, which will be used to fix

v e ker(Wf(l’z)).

Definition 4.1. In the following, we will denote by €, a nowhere vanishing section in I'(¥, V)
such that, if we let e = e;dx’, with i = 1,2,3, {e1,e2,e3,€,} is a local basis of V.

Remark 4.6. Notice that, in a neighborhood U C Q%,L 4. of a given tetrad e, we can choose ¢,
independently of the e’s (implying that dgeiase, = 0). In particular, we choose ¢, such that its
Lie derivative with respect to the vector field normal to the boundary vanishes.

Theorem 4.1. Assume the metric g2 induced by the boundary vielbein e is non-degenerate.
Then for any & € Qg’m there exists a unique decomposition @ = w + v such that

1-
ev=20 and €n (dwe — 2w7¢> = eo, (4.11)

15To be precise, any tangent vector field X = fz Xe% + Xw% + Xwﬁ is in the kernel of ‘fv}q’é iff eXe = 0,
673X¢ = 0 and eXy, = 0, but the first two conditions imply X. = 0 and X;, = 0.

160ne can check that, for any v € Q((,;’Q) such that ev = 0, equations (4.3) and (4.5) are invariant under
w — w + v, after applying (4.4]), hence they will only depend on [w] € Ay, yeq. In particular, one sees

1 - . 1 - 1-
Ov (er+v + g'l/)'yddervw) = —edywv — Eew'yz/)'u = —d,(ev) +e (dwe — 57,[)71/1) v =0,

where the symbol & is used to indicate an equality modulo equations of motion, i.e. an equality holding on—shell.
We also see

o (evgdw - %dwev%) =—er’lv, ] - %[U,e]v%

) 1 1
—3evyy) — elo, 7’ Iy — Sole. Y =0,

having used ev = 0 and e[v,y3]y = [ev, 3] — v]e, ¥3].
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for some o € Q(al’l). Furthermore, the constraint d, e — %@va =0 splits as

e (dwe — %1&7@/}) =0

en (due = 3i70) € (WY D) (412

1-
dwe—imwzo & {
We call €, (dwe — %1/;71/1) = eo structural constraint and e (dwe — %1/;71/1) = 0 invariant con-

straint.

Proof. We start by noticing that the splitting of the torsion constraints into structural and
invariant part is a simple consequence of lemma, Now, from lemma[AZ6] we know that there
exist o € Qg’l) and v € Ker(Wla(l’Q)) such that

€n (d@e — ;1/)71/1> =eo + €[, €.

Then one fixes w := @ — v, obtaining the desired result. The uniqueness is simply shown by
assuming there exist different splitting @ = wy + v1 = wy + vy as above, implying [e,v; — vy] €
Im(Wla(l’l)), which, by lemma and M shows v = vs. O

Constraints and the first class condition

Now we can finally define the constraints on F' gG simply as the restriction of and to
the boundary plus the invariant torsion constraint. In order to readily have them as functionals
over F@., we make use of Lagrange multiplier e Qg’l)[l], c € ng) and x € I'(Syplx),
obtaining

1 -
J, = /E p (er + mwv?’dww)

L.= / c (edwe — ;ewfyz/)>

b
gt (v gery)

My = | ox|erduy — sduer™y |.

Remark 4.7. As we will see later, the Hamiltonian vector fields are related to the gauge sym-
metries of the theory (i.e. they define the infinitesimal gauge transformations). In particular,
L. generates the internal Lorentz symmetry, M, is the generator of the supersymmetry and J,
generates the diffeomorphism symmetry. The last statement can be refined once one notices
that, since {e1, e, e3,€,} defines a local basis of V, it is possible to split u = e, + tee, with
A€ C®(X)[1] and £ € X[1](X). Then £ and A can be interpreted respectively as the gauge
parameters associated to the tangential and transversal diffeomorphisms with respect to ». The
constraint .J,, splits into

1 1 - 1 -
Pf = / 7L§(e2)Fw + 7556w73dww and Hy = / Aen | eFy + *qﬁf}/gdww .
5 2 3! = 3!

17In view of the BFV description of the theory in the following chapter, we shift the degree of the Lagrange
multiplier by one, as they will later represent the ghosts of the theory.
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Remark 4.8. Notice that L. can be rewritten in a nicer form, in particular one ﬁndﬁ
L -3
L.= | cedye+ —'61/17 [c, ).
5 3!

To further simplify the computations, we introduce a reference connection wy and use Cartan
magic formula to define, for any field ¢, the Lie derivative along £ with respect to wg as

LEJ0¢ = [LS’ dwo]¢ = Lgdde) - dw0L§¢'

Then, to make the dependence of P on the newly defined Lie derivative apparent and to make the
Hamiltonian vector field of P¢ well defined, we take into consideration the following redeﬁnitionﬂ
P — P + ng(wfwo) + Mng, yielding

1 1 -
Py = / §L§€2Fw + te(w — wo)edye — gedrygL‘godJ.
2 .

Lastly, it will be convenient to rewrite M, in the following form, obtained by integrating by
parts

1 _
M, = /Z ge(dwm% + X7 dY)

Theorem 4.2. Let ¢° be non-degenerate on ¥.. Then the functions Pe,Hy, L. and M, form a
first-class set of constraints, defining a coisotropic submanifold as their zero-locus. In particular

{Lc, L} = _%L[c,c] {Le, My} = M,y

{Le; Pe} = Lyzo. {Pe, My} = =Myzo,

(P, P} = %Pm] - %L%%Fwo {H\,Hy\} =0

{Le, Ha} = =P + Ly (w-wo) + My — Hen {M,,H\} =0

{Pe,Hy} = Py — Ly (o) — My + Hyoo
{W&J@}:%&—éLwWww—%M§¢+%wa (4.13)

where, setting {z'} local coordinates on X, one has ¢ = ei[c, \e,]%0;, ¥ = eg(Lz’(’(/\en))aai
© = el xy*x0;, while (™) = [c, \e, ], 9 = (L (Nen))™, 0™ = xy"x. Lastly, we have the
following

1
=XV dux = ea? (X, dwX) + €87 (X, dwX)

3!
eM, = eaa(enMw) + enﬂa(enMw),

where My, is the component of the Hamiltonian vector field M, along w.

18Here we used the fact that
i
2.

—seetre = e (Pl ul + 6 uY) = 200l 0]

19Redefining the constraint set as a Cw(F;g)—linear combination of the original constraints does not change
the zero-locus of such constraints, which ultimately is what we will be interested in.



62 CHAPTER 4. THE REDUCED PHASE SPACE OF N =1, D =4 SUPERGRAVITY

Proof. We begin by computing the Hamiltonian vector fields of the constraints, defined by

o _
[’xwaG = 6f.
We see

1 1/1 -
wagG = /26X66w + (eXw + ?)!XW%) de + 3 (2Xez/w?’ + eway?’) 0. (4.14)

S = [ leseletio + eduebe + gin®lesdlde + e (307°le,v] + 5L, 00))
P . !
= /Z[c, eledw + (edwc + %%3 [e, w) de + %e (697 e, ] + [e, Y1700 — Ple, 7’ ]ow)
= [felesiot (e + griPles o) se-+ ge (Iec o = Jiles v
s |
= [feccleto + (cduc-t gin®iecul) e+ 5 (glesclin® + cle. ) 0
g |

Remark 4.9. In the second step we used the fact that an element in A2V acts on ~ both in the
spinor representation and in the vector one, and they cancel each other out. Explicitly, using
the fact that A%V =~ s0(3,1) ~ spin(3,1), a basis for it is given by {—17, 7} or equivalently
by {ve A vp}. Now, since v = v*v, has values in C(V) ® V, when acting with ¢ we have
[e7] = [e3]s + [ 7] = 0, in fact?]
1 1 ab ab ab
e s 1= 21l by ellial = =2 (¢ ramy + 76 7am) = = rave = —[e v

Now, since xy" has no spinor indices (for any two arbitrary spinors x and ), [c, xyNv] =
(—=1)IXIx[c, V] 1, but at the same time the Leibniz rule for [c, -] holds, we find

e, xyV 9] = (“DNX[e AN vy = [e, vV e = ()N e g (4.15)

w w 1~ w 1 7. w I wo
P = /E ~Leedw — (LngO + LY (w — wo) + :ﬂw'y?’Lng) e — e (&mi”ng +97°Lg w)

w w 1 - w 1 wo , 7, 1 w "
= /2 7L£oe(5w — (LEFWO + L€0(w —wp) + 3!1/)’7311501/)) de — 3 (eLgowyi’» + 2L£oe¢73) o;

Hy = [ duhene)di + denFube + giAen (007 dts = 5900, 0] + 07 db)
E .

= / <dw(/\ene) - ;)\end_rﬂ/)) ow + e, F0e + % <)‘€ndw’l/_1’)/3 + ;dw(/\en)iyﬁ) o,
b

1 ) ) 1 ) ) 1 1
oM, = /E §5e(dwx731/) + X7 dut) + ge(ww,x]f’w — X7’ [w, ¥]) + 399 (eVBdwx — 2dw673><>

1 ) o 1 1
= /E §<dm3w + ¥y dut)de — iexyipow + 309 (673de — deevgx)

20We indicate the graded commutator by double square brackets [A, B] = AB — (fl)lAHB‘BA.
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This allows to extract the following vector ﬁeldsiﬂ

L. =c, €] L, =duc+ VL Ly = [c, Y]

P. = —L%¢ Pu = —tgFuy — L& (w — wo) + Vp Py = —L&¢
1 1

He = du(Nen) + Ao eH, = Xe, F,, — gHuﬂ?’w e’y3H¢ = e,y dut + 5)\0731/}
_ 1 _ _ 1 - 1

M. = —xv My = 2 (dox?* ¥ + X7 °dut)) = 507" My ey My = ey’dux — Sduer’x

(4.16)

Remark 4.10. Notice that the components along w of the Hamiltonian vector fields are defined
up to a term V € Ker( 9 (1’2)), which is fixed by requiring that X, preserves the structural
constraint [£.12] In most of the future calculations we will only need eX,,, but one can in any

) are in the image of Wpa (1’2), hence such X, always

case prove [CCS21a| that elements in Qg’?’
exists.

The discussion is analogous in the computation of Hy and My, indeed by considering ey*Xy,

one sees
A1) .
ey Xy = €y NKyeapeaVoly = i7" [e, ] Xy

Now, since Qg’o) (TISys) and Q(;’O) (IT1S)s) have the same local dimension, showing e is injective
proves that it is also an isomorphism, but that amounts to show that

[6,7])(1/, =0 = Xw = O,

or in other words that y;Xy, ;) = 0 implies Xy ; = 0, which is immediately verified by solving the
system of three equations One can then define My, such that
. 1 1 1-
ey’ M, = —gduey’x =T -5 (dwe - me) X (4.17)

The rest of the proof, which amounts to showing that the constraints form a first class set,

is found in [B:2.11 O

4.2 Towards a BFV description

Having proved that the constraints form a first-class set, under the assumption of a regular
boundary, Theorem tells us that there must exist a BFV structure on Fy. Indeed, one can
consider the bundle
]:8 Q(lvl) Ql S
sa = Dy a % Qo(Ssm)

with local trivialization on an open Us, C Qél;jv)d. X Qé(Sg,m)

Us X Asirea x TP 1] @ X[1]() @ C[1](E) @ T[1](11Sar))
(c,kT) (&,¢7) (A,AT) (x,0+)

21G8trictly speaking, in the computation of My, one would have a term proportional to ME@Z_)'yS&/J = 71/_17)(1[;7367,[),
but this one vanishes because of

22We defined ~; := Yaei, which is still an invertible matrix.

23This computation also explicitly shows that the kernel of the pre-symplectic form does not contain any
term of the kind Xwﬁ.
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where e € Qg;ll_)d_, w € As rea and Qé(Sg’m), while the antighosts of ¢, & and x are denoted
respectively by k2 € ng’Q) [-1],¢T e le,o) [—1]®Qé3’4) and 04 € QB [—1](TIS,). In particular,

generalizing [CCS21a), one defines As; ;eq as the space of connections modeled over Qg’m satis-
fying a modified version of structural constraint (4.11)), called the BFV structural constraint

1- , ,
€n (dwe - 21#71#) + (LZ’U (gn)l _ [C, €n]lX) k;f + ... = eo,

where - - - regroups possible extra terms to ensure the constraint is invariant under the action of
the cohomological vector field Q‘gg.
The canonical symplectic form is defined as

1 - 1 -
@iy = / 8¢l + 7 e + Sebin 5y + BBk + 156D + NN +i0R00s. (4.18)
E .
Now, following the discussion in [I[.:2.1] one can, as a first attempt, define the tentative BFV

action from the structure of the constraints as

S¥e =Lc+ M, + P: + Hy,

1 1
i /E (2[0, J + JteteFuy - Ls) e A CRULE

1 1 (4.19)
— 5Uead’ + ([07 Aen]" = Lg® (Aen)" + 2X7"X> A

+ ([c, Aen) — Lo (Nen)’ + ;X,ij> (¢] = (w— wo);k? —in);6.)

At this point, in order to obtain a BFV structure, one needs to show that {SEQSE }rv = 0.
However, doing so is a computationally hard task, which, when carried out full does not
yield the desired result, hence SEG needs to be complemented with terms of higher order in the
antighosts.

Introducing new variables

We know from diagram (A.32)) that w2 s surjective, therefore it is possible to rewrite

k? = ek, for (more than) a k € Qg’l). Considering the field redefiniton with k as the new
field, we immediately notice that the new symplectic form contains a term edkdc leading to a
degeneracy, in particular

eX,~€ = 0} .

To obtain a well defined symplectic form one needs to consider [k] € Qg’l) JKer(W2 7(2’1)). How-
ever, we can cleverly fix a representative thanks to the following.

5
Ker(w3g) = {Xkék X; € QY

Theorem 4.3. For all k € Qg’l) there exist a unique decomposition
k= l;: +7r
with 15,7“ € Qg’l) such that
er=0, ek =ed, (4.20)

24We spare the reader of the cumbersome details of this computation.
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for some a € Q(l D Furthermore, the ﬁeldlvc in the decomposition above only depends on the

equivalence class [k] € 9(827421
Remark 4.11. Notice that, as an immediate consequence of the first statement we obtain [k] = [k],

Proof. The decomposition is a direct consequence of lemma Now consider kl, ko € [k} then
by definition ki — ko =1 € Ker(VVea(1 2y, By |A 8 k= k‘1 + 7 and ko = kg + r9 such that

enk, enko € Im(Wea’(l’l)) and er; = erg =0, hence

];31 — ];32 =T —T7T1 — 7“/ € KeI‘(WeB(LQ))
ey — kin) € Im(W2 D),

which implies, by lemma that k1 = ko. O

At this point, we recall from remark that we altered the original constraint set (to an
equivalent one) by redefining Pe. In particular, in order to obtain nicer Hamiltonian vector fields,
we had

Pg — Pg — ng(w—wo) — ML§¢.

Following [CCS21a] it is convenient to change variables in order to get rid of the redundancies.
We introduce

d =c+e(w—wp) X =X+ Ly C,j/ =2 — (w—wo)ek? —ithebs. (4.21)

Lastly, we can define the new variable y? € Qg”:s)[—l] such that e;y? = Cfl and e,y7 = M\,
which, combined with the field redefinition k? = ek, yields (omitting the ' apex)

S§G = /E(Lge + Aep) (er + ;!1/_173dw¢> +c <edwe — ;d—rﬂ/})

X
1 1 : (4.22)
g (X = e dox — g (X — 160 duy — Suegey” — ine(Lgw — [e. )0
1
+i(Lgx — [, x])0s + ([a Aen] = Lg (Aen) + 5X/7x = Ls(XW})) y’
1 - 1 - . v
w?g _ /Eedecm i ngséw(ge + §e5¢735¢ +6c6(ek) + 6w5(L5(ek)) (4.23)

+ 365005 + 1605 (103) — 6 (Loc(e)y”) — SAen by~

This is a good starting point but, as remarked before, it is not yet the full BFV action. In order
to obtain it, one way would be to extract the Hamiltonian vector field Qgc of S§G and compute
(Qsc)?, which would allow us to algorithmically produce the extra terms in the action. Such
method, while theoretically feasible, provides many challenges. The other way to obtain a BFV
action is to induce it from the BV structure in the bulk. In the following chapter, we choose the
latter option.
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Chapter 5

The BV-BFYV description of
N =1, D =4 Supergravity

5.1 The BV N =1, D =4 Supergravity Action
A BV description of on-shell N'= 1, D = 4 supergravity has been provided in [Bau+90|, where

it was shown that the BV action is of rank 2 (i.e. quadratic in the anti-fields). However, to the
best of our knowledge, no off-shell BV description of it has been obtained.

We start here by applying the simplest procedure from section defining the space of BV
fields as
Fse =T [-1)(2) ® Ay © Q1(M, TS ) © QO [1] x X[1](M) @ T[1](M, IS yy)),
where

e c€ Qflldl), w € Ay and 1 € QY(M, TIS);) are the classical fields;

o ¢ € QO] =T[)(M,A%V) ~ T[1](M,s0(1,3)), £ € X[1)(M) and x € T[1](M,TISy,) are
the ghost ﬁeldsE] seen as odd generators respectively to the internal Lorentz symmetry, the
diffeomorphism symmetry and the local supersymmetry;

o e? € QB[] w? € QB [~1] and ¥ € QBGD[-1](M,TISy) are the field momenta,
while ¢! € Q2 [-2], &7 € QY (M)[-2] @ QY and x? € QU [—2](M,TIS),) are the ghost

moimenta.

The -1-symplectic forms reads
wsa = / Sede + Swow? 4+ idpdh? + dede? + 15667 +idxox . (5.1)
M

Our first attempt of finding a suitable BV action requires finding the vector field ()¢ describing

INote that all the ghosts have ghost number 1, yet , unlike ¢ and £, has even Grassmann parity.

67
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the symmetries of the theory. We deﬁndﬂ

Qoe = Lge — [c,e] + Xy Qow = teF, — dyc+ dyw

Quio = L — le 4] — dux Qot = 31661+ 3¢
1 1

Que = S (ictcF — [ec]) + 16hy Qox = Lgx ~[e:X] — 1ot

where edyw = —% x73d,1p and p* = xy*x. In particular, for the fields on which it is defined, one
can notice that Qo = Qpc + dy, having borrowed @ pc from [CS19b]. Since we know Q% = 0,
we obtain

QO [QPC> ] 62'

The classical action Sy is then complemented with a contribution s; linear in the anti—fields,
obtaining

2

e 1 -
S1=80+s5 = / ?Fw + geqﬁngwl/J
M .

+ / —(Lge —[c,e] + xy)e? + (ke Fy — dye + 8 w)w?
M

- Z(Lgi/f - [C, 1/_)] - dwi)wj + (ngbgF 1 [C C] + Lgtsxw)

%(L[E g+ Ltp)g -1 (LE})Z - [Cy >_<] - 2%07/_)) Xj

In principle, to check the classical master equation {S1,S1}py = 0 it is sufficient to prove
Q3 = 0 on the fields and ghosts. Proceeding by stages, we first obtain

w 1 1-
5>2<e = —fL e —|— (dwe — 2¢7¢)

2 ¥
. 1
Bt = — gL+ oot — (n(< o2 =) + 8><Lw(7dw¢)) X
82w = 1 F, L F, 13 3d v3d
edyw = —5etpFu + Sip ( eFu + 397 dut | — o 3,1/%@( )

1-. 1
- ngdx (Xﬁ(< e,ydu,1p >) + SXLﬁLﬁ(dew))

1 1
6>2<c = §L¢6xw + Lg(;iw 52)( = —§L 6>2<§ =

where 7 := "0, = ey*0,, v = [e,7] = yudz* and the map < e, — > is defined via the inverse
vielbein as

< e, — > Q(lvj) N Q(i—l,j+l)
o— van“befﬁaua

The interested reader can find the full computation of 62 in

20ne could obtain the correct SUSY transformations by inspecting the boundary structure and phase space
Hamiltonian of supergravity.
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Remark 5.1. Notice that, as expected, the square of the supersymmetry transformation is pro-
portional to the diffeomorphismﬂ with respect to the generator ¢ := x%x, plus a term which is
proportional to the equations of motion.

The full expression of Q3, whose full computation can be found in is given by

Qge = %Mp (dwe - ;WW)

1 1
ng = §chdww - (f('i(< e,ldw¢ >) + 8>_(L’?L'?('de7/})) X
1

2 . 3' 1;73’4pdw¢

1 1-
eQiw = St <er + ?)|¢73dww> +
1, [ 1
— ¥ XE(< e, vdut) >) + gxww(zdww)

1
Qe = Ftpdxw + 1eQiw Qox =0 Qp¢ =0,

This tells us that the BV description of A" = 1, D = 4 SuGra is at least of second rank, hence
we need to correct the action.

Lastly, for the sake of completeness, we also provide the expression of Qg for the anti—fields.
It is obtained by computing dge1gsS1- In particular, as we saw in section , Qo®? will be
proportional to the equations of motion for the respective fields, and for ¢’ and w? we will
have Qo = Qpc + 65,. We compute 6, as the Hamiltonian vector field of s;, namely such that
L5, Ry = 051, using

O / X,062 + 6e(Xos + Xood + eXodd) + X065 + dur(eXe, + X,
M
— 62 62
+ iX 507 4 069Xy + Excaé +de (2xé + eéXe>
+ x, 667 + LseXes + iXgdx~ + 10X Xy 4,
PC
1

Furthermore, one can also split s; = s¢ + sY, where s is the part coming from the free

3This is in line with the fact that supersymmetry squares to the translations, which in their local version are
realized by the diffeomorphisms.
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gravity BV theory. We are then left with

1 -
Que? = e+ 5 dutp + Le? — [e,e”] = st (@*D)NG + Stplves efn' ;]

1
2.31% 2

1 1
- Tg,XV duwth + Lg(X’}/ de) — Dhyw — eledyw

eQow = e (dwe - Qz/ww) — tele?, €] — dy(tew?) — efe, 0] + §de§L§cj —wlge

1 1 1 1 1 1
_ 75@/1/@ — 2'73!32[(1;,73]‘/1/, _ 5)271# (ébge + 2€L55> + .73')2[5%6 + §€L567 ,73]¢

——5le, ]x+ 1e (€2X2°X)

ng (ewmw !wév[e,ws]z/}) + %e%mx <

23'

Qv = 5 (erdun - dwevgw) — 2 @) + LE — [ v + imxe?

1
S'd (Cbge’}/ X+ §eL5(ny X) — §L¢Xd

2

e . T o P
5 Qo¢ = —d,w? = [e,e] + €257 x + 5ew3w ——3le, |y — *cL e® — dexvib,

8 2- 3'
Qoél = —eldye — dyeel — WIF, — (LECj).Fw 4+ .,5]5 — idwip(1p?)e
_ 1 1
+ i¢-dw¢j - i(dwi)ﬂxj + 3'66.)(’}/ dw'(/) + 3'66.)_(’}/3dw¢
Qox™ = %dew +iype’ —dop? — 367,
(5.2)
having used [AZ4] to redefine
4
e
X = X0 (53)

5.1.1 The second rank BV action

Before continuing, for computational purposes, it is convenient to redefine some of the fields. In
particular, using and looking at the diagram we notice that one can uniquely define
¢ € QZ9[—1] and & € QY [-1] such that

2
e
= 55 and w? = ew. (5.4)
With this redefinition, we then see

1 _ 1
ﬁ%((EOMw)X’Y?’w) — §L5€L¢(EOM€)

el it + ¢ (s (BOML)) + Ligt(§EOMy)

e 5 i
Qe = (BoMy) —

2.3
(&

~ S (l,d_ng (r(< erdow )+ greses 2o ) )

1
+eeq m X <Xﬁ(< e,vd,1p >) + 8xww(vdww)>
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There are still some terms that are not immediately recognizable as proportional to the
equations of motion. In order to achieve that, one needs lemmata and In
particular, setting v := [e, 7] = v, dx*, thanks to we can redefine 17 as

1
4.1 3 4
U7 = ey v,
while from [A.T3] and [A25] we have the following maps

a: QBD(MIS,) — QHO(1IS,,) B: QDTS )y) — ker (v 1))
s QEDIIS,,) — QOIS ) se: QDTS 0) — ker (17dyy)

such that for all 8 € QG and w € Q@Y one has
0 = ieya(0) + B(0), w = er(w) + sx(w).

Lastly, one can use the fact that v,vpv.v4 = €4pea Voly and (A.44]) to show that the equation of
motion for the gravitino reduces to

) 1 1 1
3 <€73dw1/1 — 2dw673¢> — ,g,yt') <f'ydw1/) — Q[dwe,’y]d)) Voly = 0.

In the end, from the terms of the kind [ ®2Q3®* inside (S1,S;), we can use (L.6) to obtain the
coefficients of the rank—2 action, obtaining S; = Sg + s1 + s2, with

1 o 1 o o 1 1- .- 'L .- . _ 7;\/7
52 = /M B (W T lec— C%e> tpe” + 1 (21#37‘*‘ a(@p)y — Flel — afCreel))y — 2cx) Lo
+ o (50000 - et — aldieed)y - o) APuolv)
43| 2O[Ld 1 2LEC O[CL;E@ 1 2C Y L(P(JJ
I U L S W .
~ 531 \ 3%+ @)y — Seed — alCeed)y | 77X < e xlw Y > (5.5)
L (L Losd ot 3 2,03
+ 531 | 7900 — 5t — alGeed)y | ¥ x < e X g >

1/ - 1. S _ y
3 (lex + g(w — el — 20bge)¢v3x> Xty s ([w, 7))

i (. - 1 vy - _
33 (zwjx + g(ebgc + 2CL56)¢73X> waa(f?/fg),

Now, letting q be the Hamiltonian vector field of so, we see Q = Qo + (, and, after a long but
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straightforward computation, we have

1 . 1 1 o
O = 5tptd = §L¢CL§€ - ZLw(eLgc)
~ 1 -
eQu = 2%6 + 13 3, b (V3)V Y + 3,1/17 v (@) — g3t XY* Y — otely gy
1
T S,wv v (yalGreed)) + 5 3,1/)7 Xr {< e X (—2721#3 =@ = Syeedy - mé?ﬁ) >}
1 T 5 . . o
+ 15 3,1#7 Xxgg | =50 %6 — [07]9 — Sl — ey
i 5 1 1 y
Qo = 2o (0) — e (0@)) — 11 (10 (E1get) + rptx — S0 (1cE0)
72j-7viv y Lo 204 it Lo x
+ fof < e, X7 Yy +ix[w — leet weec) > ) + EXXL@L@(Z Py + i@ — lee+ teed])
e2 i 1 1 PR R
T 0e =~ gt — 27 3, L (X)) — *Lgewe + g uelepe”) — mw(%z)v Lee
i ; -
t o3t ((@)y) vPeee — gbf(wbwﬁ )5 3!L§(W¢73L¢¢)

1 .
+ ke (07X < e (@Y + i9700) >) — 5pteety e (< e ([0 +ia*vg) >)

2.3
w5 arete (V7P xxess ([0,7]9 +in*p))

_ B . . 1
ety xxeats (9,90 + iv*0) — oo

L
323!
(5.6)

while one can immediately see g, = 0 and q¢ = 0.

Unfortunately, it turns out that is not yet the full rank—2 action. Indeed, one needs to
require the cohomological vector field @ along ¢ to contain terms proportional to t¢Qw. This is
not the case here as s, is missing terms quadratic in the antighost ¢.

Remark 5.2. As stated above, one can use equation (|1.6)

Q(Q)(Da _ (71)5(04‘?1)%]\4’&5 -0

to define M (®), which are exactly the coefficients appearing in the quadratic part of the action,
where the equation of motion ‘;LM is replaced by the corresponding antifield ®-. However, since
there is no equation of motion for the ghosts, and in particular no equation of motion for ¢, the
terms quadratic in ¢ have to be found by hand by checking Q? = 0, or equivalently by imposing

the consistency equations (|1.7]),(1.8]).

As it turns out, defining el(¢,&, ¢, 1) as the terms inside eq,, that contain 5E| we have the
following theorem.

Theorem 5.1. The collection (Fsg,wsa,Q,S) defines a BV structure, where

1
SZSQ+/ §CjL§|(é,£,(p71/J),
M

4For the full expression, see (B.13)
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and 1(¢,&, @, ) implicitly defined by

€l € X ) = = il it — Tt (yalGeen))

I .
— 3. 3'w'y XK {< e, X (2’7Lgc’¢ + Lg’ycw> >]

1 .
Sy + L§70¢> .

VY x4 (2

1
16 - 3!
Remark 5.3. We can significantly simplify the notation in the definition of the action by defin-
ing the combination of fields k¥ := w? — Lgcj and k7 = ek. With this, the the extra term

%chgl(é, &, ¢,1) is automatically contained in the following

1 w1 /1 - v - 1, _
So = / iejka + — (21/13 + Oé(k?l))l_ 2CX> qupj
M

T 3, (wm +a(kd)y ) 7*x < e xlk Al >

(5.7)
j— PV 3 I
+3o 3, ( (k) Zcx) Ve (k) + o 3,%77 X < e X7’y >
1 /.- S U .
-3 <wjx + B!kz/w?’x> sty ([k,219) + ﬁwjxww(fiﬁé)-
Proof. We leave the proof for section O

5.2 The BV pushforward of N =1, D =4 Supergravity

Having found a BV action for N = 1, D = 4 Supergravity raises the question on whether one
can induce a well-defined BFV structure on the boundary, following the construction of [T.2}
However, as remarked in section 2.:4.1] already in the case of Palatini-Cartan gravity — of which
supergravity is the supersymmetric extension — the boundary pre—symplectic form induced by
the BV action is singular, hence not suitable to obtain a BFV structure. By repeating the same
computations of in the SUGRA setting, one immediately sees that the singularity of the
induced pre-symplectic form is not affected by the introduction of the gravitino, which allows us
to employ the same strategy employed in PC gravity, with the appropriate distinctions.

In we saw how the authors in |[CCS21b| obtained a BV-BFV extendible theory of PC
gravity by employing the 1-dimensional AKSZ construction, considering the PC BFV theory as
the target. Such strategy is obviously not suitable for the problem at hand, as we do not yet
have a full BFV theory for SUGRA, but rather we want to induce one from the BV data in the
bulk.

The solution is then offered by the BV pushforward, which was computed for the case of
PC gravity in |[CC25b] and reviewed in m There we saw how one can "integrate out' the
components of the spin connection w responsible for the singularity of the induced boundary
symplectic form. The result of the construction is a reduced theory, on which the fields are
constrained. Originally, such constraints were found by looking at the 1-D AKSZ PC theory,
but in the case of SUGRA we need to obtain them in an independent way, which is provided by
generalising proposition starting from a generalization of constraint found in the study
of the boundary structure of SUGRA. Thanks to this, we can define the following.

Definition 5.1. Letting M = I x ¥, the reduced N' = 1, D = 4 Supergravity theory is given by
Ssa = (Fsa @sar @sar S5a), where
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o Fi is given by the the subspace of Fsq (I x X) satisfying the following constraints

en (& = 1got = enn — 5l — £8m)) = (5.8)

Qsa |:6n (03 — 1g6C — 8, 0" — - énén)) - é&} =0, (5.9)

aQ

(e

o

for some d € C®(I) ® Q((gl’l)[—ﬂ;
o Wiy = wsa(l % E)\;gc;
o Sig = Ssclr,;
e Qg = Qsac-

Remark 5.4. Carrying out some computations, (5.9)) can be expressed as
1= - _ -
€n (d@é - 2¢w> — en i dE" + 1 kT + Q = éo, (5.10)

where terms 9 are left implicitly defined by applying the terms in Qg¢ depending on the ¢ and
Y to e, k. Furthermore, we can also define 27 € (1) ® Qg’l) and y? € C>=(I) ®Q(81’2) such that

Q =ér’ +enle, v (5.11)

Lastly, we have

X =1¢(en) —do, (n)€" — ], X =, X0

Remark 5.5. As of now, we do not know if such reduced theory is a genuine BV theory, since
we did not check explicitly that (Sgq,S%;) = 0 holds. However, showing that one can recover
the reduced theory as the BV pushfoward of the supergravity hedgehog will automatically assure
that the CME holds.

The first goal is to find a symplectomorphism between §sg = (Fsag(I X X), wsa(I x X)) and
FH, = (.7:5@([ X X), wog + fle] (5176@). To do so, we follow |[CC25b], splitting the symplecto-
morphism in two steps.

Lemma 5.1. There exists a symplectomorphism ¢1: Fsa(I X X) = Fsa(I x X) such that
¢T (w.TS'G +/ 6{}(5ﬁj + (5@)5’l~}j) = WSG(I X E)
Ix%

Explicitly, we have that all the fields are preserved by the symplectomorphisrrﬂ except

61(&%) = & + ok 61(&3) = & — ok, — 1.0k

* ([~ ~ ~ ~&n g3 = ~~ L 73 ~~ * ([~ ~ ~
$1(6) =¢— Lg0 + 120 1) =¢ — Uerz b1 (ﬁn) =§,+ Lz”erL 1 (@) = @y, + 12D
Proof._The proof can be copied, mutatis mutandis, from [CC25b|, since wsg = wpc +
fM i0pop? + idxdx?, and only the field inside wpc transform under ¢;. O

5In particular we also have 91 (0) =9, ¢7(0) =0, o] (#?) = 77 and o7 (Ej) = Ej.
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Lemma 5.2. There exists a symplectomorphism ¢o: Fsa(I x X) = Fea(I x X) such that
b5 (ng + / 517617j) =wsg + / 50007 + swov.
Ix% Ix%

In particular, defining a € C°(I) ® Q(al’l) and € C*(I) ® 9(81’2) such that

dE" i = Ga + enfe; B, (5.12)

then endgnﬂj = e éa = év, where v =€, € C*(I) ® 91(91,2).

The action of ¢2 is given by

¢3(e%) =& +vk $3(0) =T +y°
¢§(@n):@n+LzV+LXﬂj (@) =wo+v
03(6) = &+ 1x i7" + v + 10E" 63(e0) = & + [en, ki)
$3(@?) = @7 + [en, k] 5(@n) = On + [ens te(k?)]
$3(0n) = by — ieny VR,

03(&0) = & + da(eni?) + ofi + 15 (kii?) — vk, — 1ovk — 273 + [eny?, 77
036 = &+ ixen i + dlenm i) + LY + wavlen, K] + (do, )k + Lg i, K]
O5(E3) = &+ &v + doen (ki) + vien, k7).

Proof. Once again, we can refer to [CC25b| and the proof therein. In particular, we notice that
the ¢y defined above is exactly the same as ¢3¢ of section except a few cases. Indeed,
defining ¢ = ¢3¢ + ¢3, we have

¢3(0) =y~ $3(Un) = —ien $3(8,) = 77 + [eny”, i)
where we recall Q = éx? + ¢,,[¢,%°]. Then, by |[CC25b|, we have

b (w;C + / 555#) = who + / 55657 + 600657 + 518 (enybii?) + 00057,
IxXE IxX%

where we have taken into account that the structural constraint that was used in [CC25b] has
been changed to take the gravitino interaction into consideration.

The term €,0¢yfi is balanced by the term % (f]xz 51[)5%1“) = ¢3(pse — wpe) while

& (wrpc+ / mﬂﬂ) - / 568( i + [eny®, 1)) + Sy 6 (enlé, 1)) = / 50677,
Ix% Ix% Ix¥®

balancing exactly the remaining term and showing the lemmaﬁ O

Proposition 5.1. Let Sga be the BV theory given by

(Féa, wda, S8a),

6We remark we have used the property that i = 0.
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where
wly = o%a + / 506052
Ix%
and )
St =S+ [ gedlo—vto— v+ o), (5.13)
Ix% 2
with
9(@) = f(v?) + (0, (T +v) + (0 +v)) T, (5.14)

having defined 0, as the supersymmetry transformation and q as the Hamiltonian vector field of

the rank-2 part of the BV action defined in (5.7) and f(9) as in ([2.51).
Then, letting ® = ¢1 o P2, we have

*(88) = Ssa-
The proposition will follow immediately from the following lemmata.

Lemma 5.3. The symplectomorphism ¢2 is such that
1 1
03 (Stot [ suatlo= vt w4 g)) = Sto+ [ Geicloil+n)
Ix% Ix%

where h(v7) = g(v?) + (Lebo + Fy, & + dgé+ 0,0 + q@)ﬁj

Lemma 5.4. The symplectomorphism ¢1 is such that
1
N (SgG +/ &[0, 0] + h(@j)> = Ssa
Ix¥
Proof. The proofs of the above lemmatas are found in [B:3.4] O

Remark 5.6. So far, we have showed that the BV theory §%, is BV-equivalent to the full BV
theory. In particular, this implies that the BV action is equivalent to the reduced BV action with
the addition of the terms depending on 7 and ©. Ultimately, we are interested in integrating
out the field ¥, which is responsible for the singularity of the pre—symplectic form induced on
the boundary by the full BV action, therefore obtaining a decoupling of S, from the dynamics
of ¥ is fundamental.

Furthermore, we can copy the content of remark to see that we have a fiber bundle
FH, — FL. whose fiber is locally given by Fy = T™*[1](ker Wéol’Q), for a reference non—degenerate
tetrad eg. We can furthermore obtain a BV bundle

H E H
]:SG JTSG

-
SG

where ]:'gG = Fgo X Fy is a product of -1-symplectic manifolds. The symplectomorphism
= is found by noticing that at any spacetime point z € M, we can find a unique orthogonal
transformation Aaﬁ such that éy = A, €, hence providing an isomorphism

ker W = (5 € Q)P | Vo € M, Ayé, b, = 0} =~ ker WH7.

"Notice that h(7?) = Qg (& + )57
8This is the content of remark
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This extends as a symplectomorphism Fy = T*[1] ker Wé(om) ~ T*[1] ker Wé(l’z). Therefore,
considering an open U C Fg, with the local trivialization of }'§IG — Fgq is given by

Fio ~U x T*[1] ker VVé(l’Q)7
u
we see that the above symplectomorphism induces = : ]—'§IG - F gg.

Theorem 5.2.
~ 1 1
Pr : Dens? (Fsg) — Dens? (Fgq)

defined by the composition
1 [ 1 H Pr. 1 r
Dens? (Fgg) — Dens? (Fgo) — Dens? (Fgq),
wehere ® = ¢o 0 ¢y as defined in proposition[5.1 and Py is the BV pushforward of the BV bundle

FH. — Fi. along the Lagrangian submanifold Ly == {(9,9?) € Fy | o = 0}.
Then

1 - L )
pi7 exp (hSéa> = Ppp? exp (thc>

1 , .
Proof. The proof amounts to showing that u;? exp (%SEG) = Pg;ﬁ exp (%Sgc;) This is a con-
sequence of the fact that on £; we have

H
SS’ G

T . ~
=SSG+/ iene[v—yj,v—yj].
Ly Ix¥

and that the quadratic form 3é,é[—, —] : Qg’2) X leﬂ) — C*(M) is non—degenerate [CC25b],
hence producing a well-defined Gaussian integral

1 ) 1~~~ 4 ~ 4
uQeXp(/ € e[v—y,v—y]>,
/Lf ! h I><22n

which contributes to Pru? exp (1SE;) just with a constant factor. O

5.2.1 The induced N =1, D = 4 Supergravity BFV action

So far, we worked on a cylinder to obtain the reduced BV action of N = 1, D = 4 supergravity.
Such theory is a suitable candidate to obtain a BF'V structure on the boundary, since the induced
boundary symplectic form is now non—degenerate, hence solving the original issue outlined at
the beginning of the previous section.

Traditionally, one would need to compute the boundary potential 1-form a¥. arising as a
boundary term from

5 5
0856 = Lay,@se + (T56)" (Vsa)

where ng : Foa — ngE is the surjective submersion to the space of boundary fields. In
particular, we notice that, from the variation of .S gg, we have
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The induced action on the boundary is obtained as the boundary term given by the (failure
of) the CME in the bulk
1

M ) >
§LQSG lQscWsg = SEG + Sf )

where SEG is exactly the boundary BFV action we are seeking, given as S?G = %LQE LOn L TsGs
while S]; can be seen as the Hamiltonian generating the gauge transformations of v, defining a
coisotropic submanifoldﬂ In particular, one sees

R s 1.
$¥ié(%ﬁ+u@%"—@ﬂ+ﬁw+ﬂ®5¥”+§m9ﬂﬁﬂ (5.15)

This is not significantly relevant at the moment, as we are are interested in S;g . In par-
ticular, we know from that a BFV structure §% = (Fag, S5o, @sg) must exist such that
Hggc (Fag) = C®(C%¢). The goal is then to find a symplectomorphsim

D, 5 5
(]'—gcvwgc) — (Fsg@sa)

and then define Sg = @ (Sgar ), as we know that it satisfies the CME by construction.

Symplectomorphism via 1-D AKSZ

In this subsection, we employ the methods from the 1-D AKSZ construction described in
to obtain the following -1-symplectic supermanifold

Fi& 57 = Map(T[1]1, Fig)
2
@i = T (@5e).
and look for a symplectomorphism ®,.: (Fhq, @ha) — (Fak 3%, wils%).

For starters we define, as in chapter 3.3} the AKSZ fields

e=e+ f? w=w+u’

p=1p+¢ p=1v+¢’

r=x+te r=Xx+e

c=cH+w 3=E+z (5.16)
l=A+p o =k?+ 7

=07 4y =07+ ¢

' =el +y7,

9Indeed by construction one has {SE,SfZ} = 0, where {—, —} is the Poisson bracket induced by w? =

J5, 8(&no)sn.
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having used the splitting F4E5Z = Q*(I) x F55. Recalling (L.10), we have

eec>( el IS5 eQW—l](I)@QS’U
we () @Y u? e Q' -1)(I) @ Q)
b e () @ QSO (TS ) ¢ e Q' =1)(I) @ Q4 O (11S )
X € C2(1) ® QF P[] IISy) e € Q'[-1)(1) ® Q)" [1)(1IS )
€ € (1) @ X[1)(D) 2 € Q-1](I) @ X[1)(D)
cec™(I) e w e Q-1)(I) ® Q"2[1]
AeC=(I) @ Cce[1(n) pe Q-1 >®C°°[ (%)
ke C(D) @ 0P [-1] ¢ € Q'-1)(1) © 0P [-1]
0 € C>=(I) ® OV [-1](TISy) X e Q-1 1<>®9<“>[ }( Sw)
€ (1) ®af 1] ! € Q'-1)(1) ® QY1)

where we have omitted the ~ symbol for boundary fields, as in this section there is not ambiguity
of meaningﬂ
The AKSZ symplectic form is then given by

1/ _ _ _
wss*? = wpel + /I .3l (7750 + dros?de + drsus f + f2o0m000)
53!
1 -
+ §e6¢736gj +i6€607 + i0Xox 7 + 16S(1se07 + 1e607)
+ i&Z (ngej + ngj + Ltsng + Lgéxj)

Proposition 5.2. There exists a symplectomorphism ®,: FLo — F4K5Z such that

®3(c) = e+ Mt f B1(e,) = pen + 126+ Aéh T
Or(w) = w— Ap~ O (w,) = w — eu’ — A,
OL(Y) =1+ e 1Y) = €= tesyag + A zs”
@;(47) = 0° B3(07) = 120" +iex, — 57— 3 S0+ T
Or(x) = X + A ees? Or(x)) =x,
Pr(c) = c— At (u?) Oi(cp) =¢
&1 () = K Di(wd) = ef + 0okt 1gc”
O (¢h) = & — A2 () = ey + fRe? — wik? + A hed + 207 — i Lty
Or(e’) =€’ ="ty (") = At

. 1 1
(D:(Qi) zegj + Liej _ Ae;y’bj + )\/j/_lfjﬂj _ gs—j,}ﬁw _ g 1§j’}/3§j
) 1 -
@:(éi) :enyj + efjg_-l + fjbgej + ujL&kj + cj)\eﬁlgf — gijz/w?’gj

1 N1 -
Q}legj’y?’gj + i< 409 — iz 1L£§jxj

10Note that, starting from ??, we will reintroduce the ~ notation, and the "untilded" fields will refer to the
bulk.
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Proof. We leave this long calculation for section [B:3.5] O
With the above isomorphism, we can define the boundary BFV action as S = (@T)*Sgg
and

§58°% =T (856) + 14,71 (0Fc).
By definition one has

1
S?G = §LQ§gszLQégszw§gsz

1
X _
SsG = 51Qu61Qs P56
but since wii % = @} (wh) and S5, = P (SEGT), then one must have Q4597 = (®,).Q%-

At the same time

AKSZ AKSZ
5SSG s = LQégSZWSG s + 7-[-*192

=) (1qr,,@s¢) + 7 Vs

Taking the variation of the above expression gives 95, — 6@} (V%) = 0, implying
2
) (wgg) = D
which is exactly the symplectomorphism we were seeking on the space of BFV boundary fields.

Remark 5.7. We notice that, in section we defined the BFV space of fields F& as the space
of boundary fields subject to the structural constraint

1-
€n (dwe - 2¢7¢) +---= €o,

where the terms (---) were left undefined to account for contribution that would render the
structural constraint invariant with respect to the cohomological vector field QEG, which was yet
to be obtained in In principle, when defining F égf SZ  the structural constraints splits into
a tangent constraint to ¥ and a part containing the transversal component along the interval I.
In order to overcome the ambiguity in the definition of F ;?I% sz, we simply define the structural
constraints to be

O (epk —ed) =0 (5.17)

T

* [en (dwe — %wa - Tjd5”> +ixk?+Q —eo| =0. (5.18)

In particular, we see that (5.17) is automatically satisfied by construction. Indeed, is
equivalent to 20 € Im( 9 (1’1)), therefore, recalling the definition (2.36)) of 207, we have

o (w,jl — tw? — el + chign) =

=efd + k7 + Lgcj — 2k — Lng — 2t 2

=ef.
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This tells us that the only relevant constraint in the space of AKSZ fields is given by (5.18]),
which in turn splits into the structural constraint of F SZ.G, simply given as

€n <dwe — ;1/171#) +ixk?+Q =eo (5.19)

1 which is given by

and the part proportional to Au~
en ([u?, €] + duf? — ys?) + (Leen + [teu” — w,en]) K + exe? + (X' 7)Y k] + =" 0+ eB,

having defined ®*(Q) = Q' + Au~'U. The above two equations then define respectively the
tangential and transversal AKSZ constraints.
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Appendix A

Spinors and spin coframes on
manifolds: a review with
technical results

Spinors are fundamental in the description of supersymmetry theories and, specifically, of su-
pergravities. Historically, mathematicians and physicists have adopted different notations for
the same objects, used in different context. In particular, the definition of supergravity theories
requires considering different kinds of spinors depending on the spacetime dimensions, which is
often a source of confusion to the uninitiated reader.

This review is an attempt to provide a self-contained account on the fundamental tools used
in the study of spinors, trying to reconcile the rigorous mathematical definitions with the less
precise physics terminology. The secondary scope of these notes is to be a repository of results
which are used by the author in forthcoming papers on supergravity, removing the necessity to
provide a series of heavy technical proofs, which are conveniently regrouped here.

The work is organized as follows: the first part of section provides all the necessary
definitions and a classification of real and complex Clifford algebras, followed by the definition
and main results on spin groups (and their Lie algebras). Furthermore, a systematic classification
of the representations of Clifford algebras is presented, with a particular interest in the Lorentzian
case, in which we provide a constructive method to obtain the so—called gamma representation,
commonly used in physics. The last part of this section is devoted to the definition of Majorana
spinors, a central object in the theories of supergravity, showing the direct correlation between
the existence of a real structure and the so—called charge conjugation matrix.

In section we employ the ideas developed in the previous chapter within the context
of differential geometry, providing a global description of spin structures and, specifically, spin
coframes, a concept which is particularly useful in supergravity. Indeed one can show that the
notion of spin coframes is equivalent to that of spin structure (and, in particular, requires the
same topological assumptions to exist), with the advantage of providing a framework which allows
to define spinor fields without the necessity of fixing a metric, which is ultimately considered as
a dynamical object in the context of physics.

Lastly, section contains some very well known identities, as well as some lesser known
ones. A full description on how to obtain Fierz rearrangements in D = 4 is presented, with a
particularly useful example in the mostly plus Lorentzian signature. Most of these results are
rephrased in the index—free notation provided by the spin coframe formalism. Finally, the last

83
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part presents a series of technical lemmata in dimension 4, which, as previously anticipated, acts
as a repository of results useful in future works of the author.

A.1 Clifford algebras and spin groups

Some of the introductory content in the following section has appeared in [CCF22| and has been
reported to have a complete discussion with a consistent notation. The remaining section on
Clifford algebras mainly follows ,|KS87a],[fatibene2018], [LM90], [RS17] and [Fig].

The parts regarding Majorana spinors and Fierz identities follow [Fig|, [CDF91a; [CDF91b|,
[FV12], [KT83], [Sch79] and [Dab8§|. References [Van85; Har90| are also recommended.

A.1.1 Clifford algebras

Let V be a real vector space of dimension D with an inner product of signature (r,s). Let 1
be the matrix diag(—1,---,—1,1,--- ;1) with » plus 1 and s minus 1, giving the inner product
on V with respect to an orthonormal basis {v,}, a =1, -+, D.

We define the Clifford algebra on V' by means of its universal property. In particular

Definition A.1 (Clifford map). A Clifford map is given by the pair (A, ¢) where A is an asso-
ciative algebra with unity and ¢ is a linear map ¢: V' — A such that Yu,v € V

P(u)d(u) = —n(u, u)la (A1)

Definition A.2 (Clifford algebra). The Clifford algebra C(V) is an associative algebra with unit
together with a Clifford map i: V' — C(V') such that any Clifford map factors through a unique
algebra homomorphism from C(V'). In other words, given any Clifford map (A4, $) there is a
unique algebra homomorphism ®: C(V) — A such that ¢ = P o4

VLA

| 4
e(v)

Proposition A.1. The Clifford algebra of V is unique up to isomorphisms.

We give a model for such an algebra. Consider the tensor algebra (V) := R@V o V2 g ..

and quotient it out by the two-sided ideal I(V') generated by v ® v + n(v,v)1, i.e.
(V)
C(V) = —=.

Indeed one can set ¢ to be the composition of the canonical projection p : T(V) — C(V)
with the inclusion V' < T'(V)). Every linear map ¢ : V — A extends uniquely to an algebra
homomorphism @ : (V) — A, which identically vanishes on I(V') by (A.1)). This implies that
® uniquely descends to a homomorphism ® : C(V) — A, satisfying

Poi=¢.

Notice that T'(V') is a Z-graded algebra. The ideal I(V') is spanned by elements that are not
necessarily homogeneous, therefore the Z—grading is lost in the Clifford algebra. However, the
generators of I(V) are even, therefore C(V') will be Zy-graded. In particular, it splits into

C(V)=Co(V) @ Cr(V).
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Another important property, for any two vectors v, w € V, is the following

2 =% +ow + wo+w? = —n(v,v)1 - n(w,w)l + {v,w}

= —n(v+w,v+w)l=—n(v,v)1 —n(w,w)l—2n(v,w)l
= {v,w}:=vw+wv=—-2n(v,w)l.

(v +w)

Now, considering an orthonormal basis {v,} of V, setting the first s elements {v4} such that
n(va,va) = —1 and the second r elements {v;} such that n(v;,v;) = 1, we obtain {v,,vs} =
—214p1. This means that when a # b, v,v, = —vpv, and that v,v, = £1.

At this point, since every element in the tensor algebra T'(V) is a finite linear combination
of the product of finite elements in the basis of V', to obtain elements in C(V') we simply apply
the constraint {v,,vp} = —2n41. Indeed, since the elements of V' are multiplicative generators
of T'(V'), they must also generate C(V'), hence a basis of Clifford algebra is given in the form

1 vy Ugp i= VaUp Vgbe := VgUpUe -+ Vs i=U1---UD (A.2)
a<b a<b<c

The Zy-grading is now clearer, as we can interpret even (odd) elements of C(V) to be finite linear
combinations of products of an even (odd) number of elements of the basis V. In particular, the
even part Co(V) is a sub-algebra of C(V'), while the odd part C;(V') is not (it does not contain
the unity). They are both 2¢~!-dimensional, making C(V) 2¢-dimensional.

Proposition A.2. There ezists a canonical isomorphism between the Clifford algebra and the
exterior algebra of V.

a: C(V) = AV (A.3)

Proof. For any u = u®v, € V, consider the dual vector u = nabubua, where {v?} is a basis of
covectors such that v*(vy) = 5. Let 6 be the mapping

0: V — End(A°V) s.t. O(u)() =uAa+ 0,
where ¢, is the contraction with the covector of u for all @ € A*V. Then one finds

Ou)a=uAuAa+u o+ i, (uAa)+ e
=UNA L F LU N Q= UN L= LU

= n(u, u)a.

This implies, by the universal property, the existence of an algebra morphism

~

6:C(V)— End(A°V),
which, composed with with the identity element in End(A®V), yields
o:C(V)—= AV

It is immediate to check that an element wuj ---ur € C(V) is sent to ug A -+ Aup € A®V, hence
one obtains that a basis of C(V') is sent to a basis of A*V, proving that o defines an isomorphism.

Remark A.1. The highest grade basis element v, is also known as volume element, in analogy
with its image under o, defining the volume form on V.

O
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A.1.2 Classification of Clifford Algebras

We start by classifying real Clifford algebras. In this section, we denote by C(r,s) the Clifford
algebra over the D-dimensional real vector space V' endowed with a non-degenerate metric of
signature (r,s). We will also denote by K(N) the N x N matrices over the field K, while, in
view of the future definition of gamma matrices, in this section we will denote the generators of
the Clifford algebra by I',. We first consider the low-dimensional Clifford algebras, which will
provide the fundamental building blocks to obtain the higher dimensional ones.

Lemma A.1.
(i) C(1,0) ~C, (ii) C(0,1) ~R@®R, (ili)C(1,1) ~R(2),
(iv) C(0,2) ~R(2), (v)C(2,0) ~H.

Proof. In order to prove the above statements, we pick a representation of the Clifford algebra
in terms of matrices,

(i) there is only one element {v;} in the basis of V, such that I'? = —1, defining a complex
structure on T(V'), hence C(1,0) = C;

(ii) analogously, we find I'? = 1, hence C(0,1) = R® R;

(iii) following the physics notation and setting {vg,v;} as basis of V such that T3 = 1 and
I'? = —1, we can choose the following anticommuting matrices

PO =01 = <(1) (1)> and Fl = iJg = <_01 é) s (A4)

They are 2 x 2 real matrices, hence they generate C(1,1) = R(2). The even part is generated
by 1 and I'y =T'¢I'y, given by
-1 0
F*:_“3:(0 1)’

hence obtaining Cy(1,1) as the diagonal 2 x 2 real matrices;

(iv) in the case of C(0,2), we pick anticommuting matrices I'; and I's squaring to 1, which are
explicitly realized by

0 1 10
F1:0'1:(1 O> and F2203:<0 1),

as before we obtain C(0,2) = R(2), and the volume element is given by

T, = —igy — (? _01) 7

which defines a complex structure as it squares to —1. Hence the even subalgebra, being
generated by 1 and T, is Cy(0,2) = C;

(v) for C(2,0) we need two anticommuting matrices T'; and T's squaring to —1, which are
explicitly realized by

Fl = iO’l = ((3 é) and FQ = iUQ = (_01 (]j) y
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both squaring to —1, hence defining two anticommuting complex structures. The Clifford
algebra then has to coincide with the algebra of quaternions H, explicitly realized by the
identification {1,4,j,k} = {1,T'1,T3, .}, where

Iy = —io3 = <BZ (3) )

The even subalgebra is generated by 1 and I',, which again defines a complex structure,
hence obtaining Cy(0,2) = C.

O

The following lemma allows to recover higher dimensional Clifford algebras from the lower
dimensional ones

Lemma A.2. The following statements are true
1. C(d,0) ®C(0,2) ~C(0,d + 2)
2. C(0,d) ®C(2,0) ~C(d+2,0)
3. C(r,s) @C(1,1) ~C(r+1,s+1)
Proof. For (i), consider {v;}, i = 1,--- ,d and {v,}, a = d + 1,d + 2 respectively generating
C(d,0) and C(0,2). Then there are relations
v - v = —20;51 and Vg - Vg = 2043

We can define new elements {v,} ,a=1,---,d+ 2 as

V; ® V41 - Vdr2 6 <d
Vg =
1® v, a>d

A quick computation gives
Vg * Vp = 2(5(11,1,
hence proving the v,’s generate C(0,d + 2).
The case of (i7) is analogous. For (¢iz) consider {vy, -+ , Uy, Upy1,*+ ,Vrys} as a basis of R™*,
generating C(r, s), and {v{,v4} as generating C(1,1). Then we define a new set of vectors {v,},
a=1,---,d+ 2 such that

Vg @V v, 1<a<r

1®v] a=r+1
v, =
¢ Vg—1 ®@ V] - V4 r+l1<a<d+1
1® ) a=d+2
A quick computation shows that the newly defined v/;s generate C(r + 1,5+ 1). O

As a result, one can show that structure of the (r,s) real Clifford algebra has periodicity 8
in 7 — s. The following prposition allows us to classify the even Clifford subalgebras.

Proposition A.3. The even Clifford subalgebra is related to the full one in the following way
Co(r+1,s) ~C(s,7) and  Co(r,s+1) ~C(r,s), (A.5)

furthermore,

Co(r,s) = Co(s,r). (A.6)
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Taking into account the periodicity of the structure of Clifford algebras, we obtain the fol-
lowing classification

r—smod8 C(r,s) N r—smod8 Co(r,s) N
0,6 R(27) D 1,7 R(27) D-1
2,4 H(27) D—-2 35 H(27) D—
1,5 C(27) D-1 2,6 C(27) D—2
3 HR2?)®H@2Y) D-3 4 H(22)®H@2Y) D—4
7 R27)®R(2%Z) D—-1 0 R2Z)®R(2%) D-2

Table A.1: Clifford algebras and even Clifford subalgebras in various dimensions

The situation is significantly simplified when one takes into consideration the complexification
of the Clifford algebras. Consider Ve = V ®r C and define the mapping

1t VERC—C(V)BRC:u® 2z i(u)® z,
then 2(u ® 2)% = i(u)? ® 22 = —n(u,u)1 ® 22 = —n(u ® z,u ® )1, proving that
C(V)e=C(V)®rC=C(Ve). (A7)

Now, since on V¢ it is always possible to diagonalize 1 to a Euclidean metric, denoting by
C(D) the complex Clifford algebra over CP, one obtains

C(D)~C(D,0)c ~C(D—-1,1)c ~---~C(0,D)c. (A.8)
Notice also that the above statement, together with proposition implies that
Co(D) ~C(D —1). (A.9)
Proposition A.4.
C(n+2) ~C(n)®C(2), C(2k) ~ C(2"), C(2k + 1) ~ C(2%) @ C(2Y). (A.10)
Proof. Using lemma and eq. (A.8), we see that
C(n+2) ~(C(n,0) ®r C) ®c (C(0.2) ®r C) ~ C(n) ®c C(2).
By lemma and we obtain
C(l)~CaC and C(2) ~ C(2),

thanks to which, by iteration of the above result, we obtain

k k
C(2k) ~ (X) C(2) ~ End((X) C?) ~ C(2")
and

k k
C(2k+1) ~ Q) C(2) & Q) C(2) ~ C(2¥) & C(2%).

Therefore, proposition (A.9)), allows to obtain the following classification
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Dmod2 C(D) N Dmod 2 Co(D) N
0 c(2%) D 0 C(27)®C(22) D -2
1 C2¥)®cCc(2¥) D-1 1 c(2%) D-1

Table A.2: Complex Clifford algebra and even subalgebra in various dimensions

A.1.3 Pin and Spin groups

Definition A.3 (grading map). Consider the Clifford map i: V' — C(V). By abuse of notation,
this map sends v to v inside C(V'). Defining a := —i: v — C(V') : v — —wv, it has the property
that a(v)a(v) = —n(v,v)1. We can extend it to the whole C(V) as a: C(V') — C(V') by restricting
it to the identity on even elements, to minus the identity on odd elements. This map is called
grading (or parity) since it essentially defines the Zs-grading on C(V).

Clearly we have that o o @ = 1, therefore « is invertible and equal to its inverse.
Definition A.4 (transpose). Let S = ujuz---ug € C(V). We define the transpose of S to be
HS) = ugug - - -up) i= up - - - uguy =: S
It is well defined since the generators of the Clifford ideal are invariant under the transposition.

Furthermore, the transpose preserves the grading, namely *(«(S)) = a(*(S)).

It is a well known fact that not all elements in C(V') are invertible. Let us define the mul-
tiplicative subgroup C*(V) C C(V) of invertible elements. Clearly every subgroup of C(V) is
contained in C*(V).

Definition A.5 (Clifford group). The Clifford group is defined to be the Lie subgroup of C*(V'),
given by
D(V):={SeC"(V)|VueV,aSuS™ ' cV}.

The map [ : I'(V) — Aut(V) defined by a(S)(u) = a(S)uS~! is by definition a representation
of T'(V), called twisted adjoint representation.

Lemma A.3. The twisted adjoint representation is such that
1. l(a(S)) =U(S) forall S e T(V);

2. for any vector v € V' such that n(v,v) = £1, the map l(v) is a reflection about the plane
orthogonal to the unit vector v,

3. ker(l) ~ R*.
Proof. We prove each point separately:
1 1(S)(u) = —a(l(S)(u) = —a(a(S)uS™1) = Sua(S)~t = I(a(S)(u)).

2. Recalling that vv = —n(v,v)1 = —|v|?1, we have v~} = —r- Forall w € V, denote
wl = %v to be the component of w parallel to v € V. The perpendicular component

is defined as w+ := w — wll. Then

-1

a@)wr™! = —vwu™! = o] 2owy = |v] 72 (quv + Uw“v)

= o] (~ovw® — (v, wt v — [o*wl)

=wt —wl =i(v)w.
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3. Setting {v,} as the usual orthonormal basis of V, let S € ker(l), then for all u € V,
a(S)uS™t = u, implying a(S)u = uS. Splitting S = Sy + S; into even and odd part, we
obtain

USO = Sou USl = —Slu.

Without loss of generality, we can set Sy = pg + v1p1, where pg and p; are respectively
even and odd polynomials in vs,- -+ ,vp. Then, using the above equation with u = vy, we
see

V1o + 'U%pl = pov1 + v1pP1V1 = Pov1 — @%Ph

hence vp; = 0, implying p; = 0. As a consequence Sy does not contain vy, but this
procedure can be iterated for all basis elements v,, hence one must have Sy = A1 for some
A € R*. The same argument can be repeated for Sy, hence showing ker! = 1 - R*.

O

Theorem A.1. The following is a short exact sequence
1R " =>T(V)=0V)—>1 (A.11)

Proof. By point [3| of the previous lemma, ker(l) = R*, hence we just need to show [ is surjective
onto O(V). Notice

n(1(S)u, 1(S)w) = —= (I(S)ul(S)w + I(S)wl(S)u)
= —§(Z(S)ul(a(5))w +1(S)wl(a(S))u)
= —%a(S’)(uw +wu)a(S™)
= n(u,w),

hence proving that [ : I'(V) — O(V) and [ is a homomorphism.

Now, by Cartan-Dieudonne theorem, for all R € O(V), R = Ry --- Ry, for k < D = dim(V)
and R; are reflections. By point 2| we know there exist unit vectors u; € V such that R; = I(u;)
and therefore R = I(uq)---I(ug) = I(uy - - - ug), hence showing that [ is surjective.

O

One can define the further subgroup S(V) C C*(V) C C(V) of invertible elements .S whose
inverse is proportional to their transpose, namely such that SS o 1.

Definition A.6 (Pin and Spin groups). We define the Pin group Pin(V') to be the subgroup of
S(V) generated by unit vectors (i.e. such that v? = n(v,v) = £1), while the Spin group Spin(V)
is defined to be the intersection of Pin(V') with the even Clifford subalgebra C(V'). In other words
Pin(V) := {uy -~y | uf = £1} (A.12)

Spin(V) := {uy ---uy | k even and u? = +1} = Pin(V) N Co(V). (A.13)

Elements in Spin(V) are products of an even number of unit vectors, S = ujug - ugg. In
this case it is easy to find the inverse of S, as

G +1

B ‘UI‘Q c |’Uz2k|2ru{2]C ot

As an immediate consequence of the above theorem, we have the following
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Corollary A.1. The restriction of I to the Pin and Spin groups defines the following short exact
sequences

1—=2Zy; = Pin(V) = 0O(V) =1,
1—Zy — Spin(V) — SO(V) — 1. (A.14)

Lie Algebra of Spin group

Proposition A.5. Let V be a D—dimensional real vector space. Lie(Spin(V)) is a Lie subalgebra
of C(V'), given by
Lie(Spin(V)) = A%V

Proof. This can be seen by noticing that the double cover I: Spin(V) — SO(V') reduces to an
isomorphism of Lie algebras (locally their tangent space at the identity is the same)

[ spin(V) — so(V)
a— (i) = [a, ],

where, for all u € V, the [a,u] € SO(V) is given by

0
[a,u] := 5ili=0

Now, knowing that {v, A v} is a basis for so(V'), we compute a basis for spin(V).
Define vgqp 1= i[va, vp], then, for all u = uv, € V

(e”1ryet®).

Hvap)u = =[[va, vp], u] = 1[fua’ub,u]

1

4 2

1 1

=3 (VaUpU — UV, V) = 5 (VaUpU — UVLUY + VUV — VaULp)

= 1(u, va)vp — Ny, w)Va = U (8 Nac — 0%Mpe)vas

hence .
l(vab)g = 51?77% - 5g77bc = _(Mab)g
where M, are the generators of the Lorentz group SO(V) in the fundamental representation.
This implies that —1[v,, vy] defines a basis for spin(V').
O

A.1.4 Representations

Given the definition of the Pin and Spin groups seen respectively as subgroups of C(V) and
Co(V), classifying irreducible representations of C(V') and Co(V') will automatically produce a
classification of irreps of the Pin and Spin groups, which are called respectively pinor and spinor
representations.

Looking at table we can already classify the irreducible pinor representations, as H(N')
and R(N) have a unique irreducible representation given respectively by HY and RY, whereas
C(N) has two, one isormorphic to C¥ and the complex conjugate one. Therefore the number of
irreducible pinor representations is given by

_J2ifr—s=1,3 mod 4,
Prs =\ 1itr — s = 2,4 mod 4.
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Table [A-T.2] also tells us whether the representation is real, complex or quaternionic.

For the spinor representations, since Spin is a subspace of the even Clifford algebra, we only
need to look at table which implies that the number of irreducible inequivalent spinor
representations is

2if r—s=2,4 mod 4,
Sns = 1ifr—s=1,3 mod 4.

Notice that in the even dimensional case D = 2k there are two inequivalent irreducible spinor
representations (known as Weyl representations), which correspond to the Weyl spinors and can
be understood by looking at the volume element v, = vy ---vp. Being v, the product of an
even number of generators, it anticommutes with them, i.e. {vs,v,} =0 foralla =1,---,D,
but it commutes with all the elements in the even Clifford subalgebra, hence with all the group
elements in Spin(V'), which implies that it must act as a scalar in the spinor representations.
This means that the inequivalent Weyl representations can be labelled by the eigenvalues of v,.
Furthermore, a straightforward computation gives, for even D = r + s = 2k

v =(-1)7 1. (A.15)
One can classify the inequivalent spinor representation as follows

e 7 —s =0 mod 8. There are two inequivalent real spinor representations, of real dimension
D—2
27z , labeled by the eigenvalue of v, being 1 or —1;

e 7 —s = 1,7 mod 8. There is a unique spinor representation, which is real and of real
D—
dimension 277 ;
e 7—s=2,6 mod 8 There are two inequivalent complex spinor representations, of complex

dimension 2¥, labeled by the eigenvalue of v, being i or —i;

e 7—s=23,5mod 8. There is a unique spinor representation, which is quaternionic and of
C . D3
quaternionic dimension 27z ;

e 7 —s = 4 mod 8 There are two inequivalent quaternionic spinor representations, of
D—4
quaternionic dimension 27z , labeled by the eigenvalue of v, being 1 or —1;
Complex representations and the Lorentzian signature case

As it is significantly easier to deal with complex Clifford algebras, we turn our attention to
complex representations of C(D).

We recall
C(2k)~C(2%) and  C(2k+ 1) ~C(2") @ C(2"), (A.16)
which implies there are faithful representations
T2y : C(2k) = End(C?") (A.17)
T okt : C(2k + 1) = End(C*") @ End(C?"), (A.18)

where I'gf, is irreducible and I'o1 splits into two irreducible representations. These are precisely
the pinor representations of the complex Clifford algebra.

Remark A.2. The above irreducible representations are unique up to conjugacy with unitary
matrices. From now on, we drop the subscript and denote such representations just by T'.
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Proposition A.6. Let s = 1 (i.e. only one time-like direction), d := r and k = |42].
Furthermore, let {vg,vy -+ ,vq} be a basis of Vo such that in the Clifford algebra v = 1 and
vV +vv; = —20;51 for alli,j =1,--- ,d. Then there exists a choice of complex representation

T of C(d+1) on C* (called Gamma representation) such that
(i) To :=T'(vo) is hermitian;
(i) Ty :=T'(v;) is anti-hermitian for alli=1,--- . d;
(iii) To defines a hermitian for for all 1,19 € c?"as
(b1, 4ba) = ] Tohs, (A.19)

where T = (¢¥*)t denotes the canonical hermitian conjugate in c2". Such pairing is called
Dirac pairing and, upon defining the Dirac conjugate as v := T, can be redefined as

(1h1, tha) = P12hs.

Remark A.3. In the physics context, ¥ in C2" is called a Dirac spinor, although strictly speaking
k

it is a pinor, since C?" is the complex pinor representation as seen in (A.17) and (A.18). Fur-

thermore, following Dirac’s nomenclature, the matrices I, in C(2*) are called gamma matrices.

Remark A.4. The Dirac conjugate definition extends to any operator A eEnd(CQk) as
A =T, AT,
As it turns out, from the above proposition it follows
Il =TT,y VYa=0,---,d, (A.20)

and noticing that I'y L' =Ty, it is easy to see that the gamma matrices are invariant under Dirac
conjugation, i.e. I'y = T',.
k
Furthermore, it is possible to prove that the spin group representation on C2" induced by the

gamma representation is unitary. Indeed, recalhng that { 4vab} deﬁnes a basis of the Lie algebra
spin(1,d), and having defined Ty, := F(vab) F(vavb VpUg) = (F Iy — TT,), one sees

It (CaTy) Ty = Ty ' TII Ty = T3 T ' T Noly ' Ty = Ty,

therefore I' 1(Fab)TI’0 = T'po = —T'up, hence implying (expanding the exponential)

i -1
1 1 1
Fo_lexp <4wabFab> I'yg=exp (—4wabFab> = exp <4w“bfab> . (A.21)

Proof. We start by the case of D = 34 1 and prove the proposition by inductiorﬂ Consider the
Pauli matrices o, defined by

/10 (01 (0 i /10
oo = 0o 1)’ o1 = 1 0/ 02 = —i 0) 03 = 0 —1)/°

LA hermitian form on V¢ is given by an R—bilinear form (—, —) : V' x V' — C such that for all v1,v2 € V and
AecC

o (v1,Av2) = A(v1,v2);

e (vi,v2)* = (v2,v1), where (—)* denotes complex conjugation

2The cases where D = 1 and D = 2 have appeared in previous examples, while the case for D = 3 can be
derived from the D = 2 using the same induction method
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and set 69 = 0¢ and 6; = —o; for i = 1,2, 3. Then a choice of gamma matrices is given by

0 o,
e (07)

One can easily check that this choice satisfies the Clifford condition, while I'g is hermitian and
T'; antihermitian for i = 1, 2, 3.
The fact that (—, —) is a hermitian form is an immediate consequence of 'y being hermitian.
Now, assuming there exists a gamma representation for D = 2k, given by matrices I',, one
can define a gamma matrices I'), for a = 0,---, D (i.e. a gamma representation for D + 1) as
follows

T’

a

T fora <d
F:i+1 :OéF* :aPOFl---Fd

where
{1 for k even
o =

i for k odd

In a similar way, starting from gamma matrices for D = 2k, one obtains gamma matrices '/
representing the complex D + 2 Clifford algebra as

"o 0 I, oo 0 1 no_ i1 0
a<d " Fa 0 ) d+1 -— -1 0/ d+2 = 0o i1)-

A.1.5 Charge conjugation and Majorana spinors in the Lorentzian sig-
nature

O

Before giving the definition of Majorana spinors, we first notice that the sets {£I'%} define two
new (equivalent) representations of the complex Clifford algebra C(D), therefore there must exist

a unitary matrix B such that
', =nB 'I'B, (A.22)

with n = 1. By separately taking the complex conjugate and inverting the equation above we
find
't =nB*T.(B*)~! =Br,B*,

implying I', = B~ B*T',(B*)~! B, which yelds
B* =eB7 1, €= =+1.

Notice that since B is unitary, then Bf = B~ = ¢B*, implying B! = eB. In general, ¢ depends
on 7 and can be found using a method due to Scherk [Sch79; KT83]. Upon defining the charge
conjugation matrix as

C := B'T, (A.23)

from remark one can see I'l = '\, Ty, but at the same time '} = (T'%)* = n(B~)I' BY,
hence finding

I'tC =nCT,, CcCT=1 and C'=enC. (A.24)

Now, first considering D = 2k, it is clear that the set {Ta} := {1, Ty, Tap, -+ ,Tol'1 -+ - Ty},

generates the whole algebra of 2% x 2F complex matrices, as it is the image of (A.2)) under the
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gamma representation. Clearly, for all A, CT'y4 are still generators of the whole algebra and
either symmetric or antisymmetric, depending on 7 as can be seen from (A.24). The problem of
counting how many of these matrices are antisymmetric is addressed in [Sch79], and it depends

on n,e and D. However, we know that on C2" there are %(2’C — 1) independent antisymmetric
matrices. Eventually, one finds

€ = cos (%(d - 1)) — nsin (%(d - 1)) .

In the even-dimensional case one can choose either signs for n = +1, while in the case where
D = 2k + 1, one needs to require that I'y11 transforms correctly under B (i.e. as in (A.22))),
which fixes n as

k
n=(-1)"
We can now start discussing about Majorana spinors.

Definition A.7. A Majorana representation is a particular real representation (of C(V)). It
is possible to understand what types of Clifford algebras allow for such real representations by
looking at table but, in the context described above, we regard a Majorana representation
as a complex representation endowed with a real structureﬂ

The following theorem allows us to relate the real structure to the charge conjugation matrix.
Theorem A.2. Let D be such that e =1 as defined above, then
6:C*" 5y By*
defines a real structure.

Remark A.5. In this particular case, one can use the charge conjugation matrix to define a
k k
Spin(d, 1)-invariant complex bilinear form C': C*" x C*" — as

Clr, ) == - C oy, Vby ey €C7
Furthermore, there exist a choice of gamma matrices for which C is real.
Proof. Clearly ¢ is connjugate linear, while
%) = BB™ = et = .
Lastly, Spin(d, 1)-invariance amounts to checking that C is Spin(d, 1)—invariant, namely
(T Ip)!C =TITLC = i CT, = CTyT,,

implying (I'yp)!C = —CT 4, hence satisfying

1 ¢ 1
exp <4w“bFab> Cexp <4w“bFab) =C.

O

3Given a complex linear representation of a Lie group p : G —End(W) on a complex vector space W, a real
or quaternionic structure is a real linear map ¢ : W — W such that

. (p2 = idw
o ©(Av) = A*v, i.e. @ is conjugate linear;

e ¢ is invariant under p, i.e. it commutes with the image of all elements of G under p, [¢, p(g)] = 0.
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Remark A.6. When € = —1, the above proof still holds, but in this case ¢? = —id, hence defining
a quaternionic structure.

Definition A.8. Assume ¢ = 1 for some k, then a (s)pinor ¢ € c?* satisfying the reality
condition

o(y) = BY* =4, (A.25)

is said to be Majorana when 7 = —1 and pseudo-Majorana when n = 1.

Remark A.7. Tt is customary to rephrase the above condition in terms of the charge conjugation
matrix, noticing that B = eCTy, one obtains that, under the above assumptions, v is Majorana
when

CToyp" = 4.

The following table contains information on the allowed values of € and 7 in various dimen-
sions.

n=1 n=-1
e=1 D=1,2,8mod 8 | D=2,3,4mod 8
D=456mod8 | D=6,7,8 mod 8

e=—1

A.2 Spin coframe formalism, i.e. defining spinor fields on
manifolds

In the previous section, we saw the algebraic construction and classification of Clifford algebras
and spinors. This section is dedicated to investigating the local structure of such objects in the
context of differential geometry, with the goal of providing a framework that allows to treat the
definition of supergravity in the same formulation found in [CS19b; [CCS21a]. The main part
follows [LM90], [Fat+98] and [NF22] for the spin frame definition. For a detailed review of the
"bosonic" coframe formalism, reference [Tec19a] is recommended.

A.2.1 Basic notions on principal bundles

In the following, we assume M to be a pseudo-riemannian manifold of dimension D.

Definition A.9. Let G be a Lie group. A principal G-bundle 7: P — M is a fiber bundle such
that

o There exists a smooth right action R: P x G — P which is free, i.e. such that R(p,e) :=
pé = p for all p € P, letting e € G be the identity;

o m: P — M is diffeomorphic as a bundle to P — P/G.

Remark A.8. Notice that, since R is free, any orbit O, := {g € P|3g € Gst. ¢ =p-g} =
[p] € P/G is isomorphic to G. Then points & € M is in one-to-one correspondence with orbits
[p] € P/G, and each fiber is isomorphic to the group G, as 7= (z) = [p] = O, ~ G.

Definition A.10. Given a G-principal bundle P, a trivialization of P is a collection (U, ¢q ),
with « is an element of an index set I, such that

o U :={U,}acr is an open cover of M,
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o ¢o: T 1 (Uy) — Uy x G are diffeomorphisms

o letting Uypg := U,NUsg, transition functions ¢og: Uag X G — Uyp X G are given by (smooth)
functions gag: Usp — G via left action as ¢qs: (z,h) — (2, gap - h) and must respect the
cocycle identity

Gap - 9By * Gya =€, for all z € Uyg,y- (A.26)

Remark A.9. In general, a principal bundle can be recovered by pasting together its local data,
i.e. pasting the local products {U, x G} via the transition functions g,5. Indeed, it is possible
to show that any principal G—bundle P is equivalent to a pair (U, {gas}), where U is an open
cover and {gas: Uap — G} are functions satisfying the cocycle conditionﬁ

Definition A.11. Two G-principal bundles P and P’ over M are equivalent if there exists a
homeomorphism H : P — P’ such that the following diagram commutes

p—H%  ,p

N

and such that H is equivariant, i.e. H(p-g) = H(p)-g for all g € G and p € P.

It is interesting to understand such definition at the level of local trivialization, which will
allow us to describe the set of inequivalent principal G-bundles over M. First of all, let P and
P’ be defined respectively by (U, {gas}) and (U, {g,z}) as in the above remark. They induce
trivializations (¢, ) and (¢.,), which allow to define

Hy:=¢,oHo¢,': Uy x G — Uy xG.

Now, since 7’ o H = 7, we must have that H,(x,g) = (z, ha(z,g)) for some h,: U, x G — G.
Now, using equivariance, we obtain

Hy(2,9- f) = Halz,9) - f = ha(x,g- f) = ha(z,9) - f,

which implies that H,(x,9) = (2, ho(z,€) - 9) = (2, ga(x) - g), having defined g, (x) := ha(z,€).
The relation between the transition functions can be understood by noticing that, by definition
of equivalence, the following diagram must commute

PBa

therefore ¢, = Hp o ¢go 0 Hy ", implying

9op =9a  Jas " 98-

4The cocycle condition is equivalent to the Cech coboundary condition, and ge, g is nothing but a Cech 1-cocycle
with coefficients in G (to be precise, with coefficients in the sheaf of germs of smooth maps to G).
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Hence (U,{gas}) and (U,{g,z}) define equivalent bundles P and P’ iff there exists a family
ga : Uy — G of smooth functions such that g/, 5= Ya ' gup - g5. Upon inspection, one realizes
that this is nothing but a Cech-coboundary condition (in the multiplicative sense), and therefore
q., 5 and gag only "differ by an exact term", where g, acts as a "Cech 0-cochain'. Therefore one
can see an equivalence class of principal G-bundles as an element of H(U;G).

Letting (U4;) be a family of open covers such that for ¢ > j U; C U;, then one can define
HY(M; Q) as the direct limit (in the categorical sense)

HY(M;G) = lim; H (U;; G).

Notice that this set is strictly speaking not a group, but contains an identity given by the trivial
principal bundle M x G. If G is abelian, then H'(M; Q) is just the first Cech cohomology group
with coefficients in G.

Definition A.12. The frame bundle LM — M is a principal GL(D, R)-bundle defined by

LM = ULmM, L,M :={e, = (e, ,eq) | (eq) is a basis of T, M }.

with trivialisation given by ¢ : 771 (U,) — Uy x GL(D,R): (z,¢e4) — (z,€#), having set pu =
0,--,d

Remark A.10. One can see that the tran81tlon functions between two charts with local coordinates

{z} and {2’} act via left action as e’} = %’;u e’

-

Assuming that M is orientable, and having chosen a Lorentzian metric ¢ on it, one can define
the orthonormal frame bundle as the subbundle of the frame bundle containing orthonormal
frames, i.e.

SO(M, g) = {ea € LM | g(eaveb) = 77ab}a
where 743 is the Minkowski metric.

Remark A.11. Notice that SO(M,g) is a principal SO(d, 1)-bundle. Furthermore, for a given
metric g, there exist more than one ON basis, as for any e, ON and for any A € SO(d, 1), also
e, = eq Ay satisfies g(el,, e;) = nqp. However, the viceversa is not true, indeed for each ON basis
e, there is a unique metric g with respect to which it is orthonormal.

As it turns out, it is particularly useful to consider the dual notion of an ON frame, namely
an ON coframe, the dual basis e” with respect to a given frame e,, i.e. such that

e’(eq) = 53.
This motivates the following definition

Definition A.13. Given a principal SO(d, 1)-bundle Pgp, a veilbein map is a principal bundle
morphism é: Pso — LM satisfying verticality and equivariance, i.e. such that the following two
diagrams commute

Pso — S LM Pso —%— LM

N vl

PSO — 5 LM

where A is an element of SO(d, 1) possibly seen as an element of GL(d + 1,R).
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Choosing a local section s, : Uy, — Pso, on the overlap of two patches U,g transition
functions Agg: Usg — SO(d, 1) act via right action as

S8 = Sa -Aaﬂ.

As it turns out, it is sufficient to know & on s,, to know it on the whole 7=1(U,), indeed é(s4(z)) =
(x, aa(x)), where e, (x) is a frame defining a basis of T,, M, then thanks to equivariance, for all
p € 7 1(U,), there exists a A € SO(d, 1) such that p = s, - A, hence é(p) = é(sq - A) = é(54) - A.

It is then clear that a vielbein map uniquely defines a family of frames differing by orthonormal
transformations on overlaps of the patches. It is also easy to see that the viceversa is true, and
as a consequence, keeping in mind remark a vielbein map uniquely defines a metric g (with
respect to which e, is ON) on M via the dual frame, i.e.

gM = e eynab

It becomes even clearer when one takes the image of Pso under ¢, finding
é(Pso) = {(z,eq) | (eq) is a basis of T, M, and g(eq, ep) = Nap} ~ SO(M, g).
This observation motivates the following definition:

Definition A.14. Let (V,7n) be a real D—dimensional vector space endowed with the Minkowski
metric, and let p : SO(d, 1) — V be the fundamental representation of the Lorentz group on V,
then the Minkwoski bundle V is the associated bundld®]

VZPSO XpV,

With this definition, it is clear that the vielbein map is in 1-to-1 correspondence with linear
isomorphisms between TM and V, as they are given by coframes (called vielbein field) dual to
the ones defined by the vielbein map. In particular, choosing a local basis {v,} of V and local
coordinates x on M, one has

. ~ _a n a K __ gca
e:TM =V, e=epdztv, st. eje; =4

A.2.2 Spin structures and the equivalence with spin (co)frames

Definition A.15. Let P; be a Spin(d, 1)-principal bundle over (M, g), a spin structure is a pair
(Ps,Y) such that ¥: P, — SO(M,g) is an equivariant principal morphism, i.e. such that the
following diagrams commute

pP,—— A 5 S0(M,yg) P, —2 5 SO(M, g)

N [, L

P, —2 S0(M, g)

where S € Spin(d, 1) and [ : Spin(d, 1) — SO(d, 1) is the double covering defined in the previous
chapter.

Remark A.12. In general it is not true that every orientable pseudoriemannian manifold admits
a spin structure, but, as we will see, there are topological requirements that need to be assumed
for it to be true.

5Here Pgo X, V is defined to be the quotient Pgo x V/ ~, where (p,v) ~ (g, w) if there exists a A € SO(d, 1)
such that ¢ =p - A and w = p(A)~1 - v
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We notice that the notion of spin structure is similar to the one of equivalence of principal
bundles, so it might be useful to rephrase the problem of understanding when a spin structure
exists in terms of equivalence of bundles.

We saw earlier that H'(M;G) is the set of inequivalent principal G-bundles. Borrowing some
results from the theory of Cech cohomology, one can prove that if

IoKS5aLa =1

is a short exact sequence of topological groups, then there is an exact sequence at the level of
cohomology, given by

1 HOM; K) 5 HOM;G) 5 HOM; &) S HY(M; K) 5 HY(M;G) & HY(M; &),

where 0 is the Cech coboundary operator and H°(M;G) is the global sections of G seen as
0—cocyclesE| It is also possible to prove, if K is abelian, that the sequence can be extended to

= H' (M;K) - H'(M;G) - H'(M;G') — H*(M; K).

Therefore, considering the short exact sequence (A.14) 0 — Zy — Spin(d, 1) EN SO(d, 1) — 0,
we can define the second Stiefel-Whitney class as the induced map ws in the exact sequence

wy : HY(M;S0(d, 1)) — H?*(M;Zy)
H*(M;Spin(d, 1)) — (M;S0(d, 1)) 2 H?(M;Z,)
Theorem A.3. (M,G) admits a spin structure if and only if wa([SO(M, g)]) = 0.

Proof. When considering the orthonormal frame bundle SO(M, g), and in particular its equiv-
alence class [SO(M,g)] € H'(M;SO(d, 1)), we see that the second Stiefel-Whitney class of
[SO(M, g)] vanishes if and only if [SO(M,g)] € Im(l.), which tells us that the orthonormal
bundle is induced by a Spin bundle, and in particular [, defines a spin structure.

To see it more explicitly, let (U, {gas}) be a cocycle representing SO(M, g), with U defined
such that each non empty U, is simply connected. We can lift the g5 to functions {§as: Uas —
Spin(d, 1)} and define Kopgy := g (Gary) ~gaﬂ|2|0n Uap~. Clearly {(Kop,) = 1 as this is exaclty
the cocycle identity for SO(M, g), implying K,p, € Z2. Furthemore, it is easy to notice that
(0K )apys = 1, hence it defines a cocycle, which represents the second Stiefel-Whitney class. In
particular we = 0 translates to

(K] = {Kapy (ONapy | Aap: Uap — Z2} =1

It is clear that [K] = 1 iff K = OA. Defining g,,5 := /\;é “ gap, it is easy to show that g, is a
cocycle (i.e. satisfy the cocycle identity), hence it is possible to reconstruct a Spin-bundle from
U, {3/,5}), showing there are no obstructions for the existence of a spin structure.

Conversely, if one assumes that a spin structure exists, then it is immediate to see [K] =1
because the lifted transition functions automatically satisfy the cocycle identity.

We are only left with showing that [K] is independent of the choice of trivialization and on
the choice of the lift. We start by showing the independence on the choice of lift of {g.s}. Let

6Indeed the cocycle identity is exactly the requirement that the local sections can be glued to a global one on
the overlap of the patches Uy,.

"Notice that this is almost a coboundary as gﬁw(gaﬂ,)*lgaﬁ = (09)apgy, however it is not because g,z does
not take values in Zg, namely g.g is not a Zz-cochain.
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Kap be some 1-cochain inducing §”ag = Jag - kag. This defines a new lift K which is in the
same equivalence class as K, as K7 = K - Ok.

Now we can choose different local sections {g/, 5} for the original SO-bundle. We have previ-
ously seen that ggﬁ = g5 gap - 95, which, after choosing a lift g, gives Kflxﬁ'y = ggl “Kapy - gs-
Now, since K&ﬁ,y € Z,, then g and its inverse are both either 1 or —1, so K’ = Ko8+-

O

As one can notice, so far we needed to fix a metric in order to define a spin strucutre. Now,
we introduce an equivalent approach that does not rely on such assumption, and therefore is
more suitable to work with theories where the metric is a dynamical field.

Definition A.16. Given a principal Spin(d, 1)-bundle Py, a spinbein map is a principal bundle
morphism é : Pg — LM satisfying verticality and equivariance, i.e. the following diagrams
commute )

P—¢ LM P, —— LM

N [+

Pso —< 5 LM

As before, the spinbein defines a moving frame on sections 8, : U, — Ps as é(8,(z)) =
(@, a(€q)), where qeq = o€#0,. On intersections the frames change by right action of an orthogo-
nal transformation seen as the image under [ of a Spin transformation S,g defining the transition
functions, i.e.
&(8s) = €(3a) - Sap = plea) = aler)lo(Sap)-
Remark A.13. Also in this case, by dualizing the frames, one can induce unquely a metric on M as
Juv = eﬁel;nab. Exactly as before, the image of P; under é turns out to be the orthogonal bundle

SO(M, g). Furthermore, lifting [ to a bundle map [: P, = Pso, it is clear that a trivialization

on P; induces one on Pgo via I , and for each family of sections §, we obtain sections s, := [os.
Equivalently, one obtains that the following diagram commutes

(A.27)

Notice that also a vielbein map e equivalent to the one introduced in the previous chapter is
introduced.

The reason for the last statement is clear when one defines the associated bundle
V=P, x;V,

where p is the vector (i.e. spin 1) representation of Spin(d, 1) on V. Notice however how every
integer spin representation A of Spin(d, 1) is the same as a representation of SO(d, 1), as it factors
through the double cover A = Aol. In particular, this tells us that V ~V and that a spin coframe

e: TM =5V

produces the same dynamics as the vielbein field. The advantage of using spin bundles is that of
being able to define associated vector bundles with respect to half-integer spin representations,
i.e. spinor bundles.
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Theorem A.4. [NF22] A spinbein map é on M exists if and only if a spin structure exists on
(M, g) for some metric g.

Proof. Given a spinbein map é: P; — LM, it induces a spin structure just by restricting the
target to the image of é, i.e.

2: Py -5 é(Py) = SO(M, g),

where in this case g is the metric induced by the coframe defined by é. Conversely, if ¥ : Py —
SO(M, g) is a spin structure, one can induce a spinbein map é := o X, where { : Pso — LM is
the inclusion in the frame bundle. O

Having proved this, it is clear that using spin coframes is allowed exactly when spin structures
exist, and viceversa, hence we can regard it as an equivalent description.
Finally, we have all the ingredients to define spinor bundles.

Definition A.17. Let V¢ be the complexification of the D-dimensional real vector space V. By
the discussion in the previous chapter, we know that, depending on the parity of D, there exist
faithful representations of the Clifford algebra C(Vc) = C(V)c. In particular, we are interested in
the gamma representation I' of proposition which allows to define the Dirac spinor bundle
as

2%
SD = PS Xr C

Sections of Sp are called Dirac spinor fields. Furthermore, when the dimension allows it, one
can also define the subbundle of Majorana spinors as

Sw = |J{(@,¢) €Sp. | CToy* = ¢}
xeM
A.2.3 Lemmata about spin coframes

As anticipated in chapter [2] throughout the thesis we will be relying heavily on the properties
of coframes. Here we provide a quick recap of some results appearing in [Can24] and some other
original ones, both in the bulk and on the boundaryﬁ

We start by defining the following spaces

QD) .= (M, ATV) Q57 = 013, A V5) (A.28)

where V is identified with V and e is a spin coframe, and maps

WD Q0 —y QUFkITR) oy b A g, (A.29)
WD Q) QI o ok A (A0

where
F=en--ANe.
——
k times
Such maps have been studied in previous papers (notably in [CS19¢; [CCS21a] and [Can24]. The
following diagram |Can24| indicates the properties of Wl(w ) and VV{9 (63 ), in particular a hooked

8There will be no distinction between the boundary and the bulk fields, as their definition will be clear from
the context.
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arrow indicates injectivity while a two—headed arrow indicates surjectivity. In the bulk we have

(0,0) Q(0,1) 0(0.2) 0(0,3) 0(0,4)
Q1,0) Q1) 01.2) Q1:3) Q(1,4)
Q2.0 Q@1 Q22) Q23) Q24 (A.31)
QO 3,0) QB 0G2) 03:3) QO 3:4)
QO 4,0) Q1) 042) Q“:3) Q44)
whereas on the boundary one obtains
Qéo,o) Q(80,1) Q((90,2) Qg)’g) Q(80,4)
Q(al,()) Q(al,l) Q(({jl,Q) Q(al,S) 9(81,4)
\ \ \ \ (A.32)
Q(BQ,O) 9(82,1) Q((92,2) 9(82,3) 91(92,4)
Q(83.,0) Q((93,1) 9(83’2) Q(as,s) Q((93,4)

Lemma A.4. [CS19¢; |(CCF22;|CF25] The following maps are isomorphisms:
1. Wi 002 5 04,
2. WiV QR0 - 2,
3. WyhD: Q0 063,
4. W0 0 g,
5. 00D QO 5 10),
6. B QB Q3.
Lemma A.5 (|CCS21a]). Let a € Qg’l. Then

wy - (A.33)

a=0 — 9
epor € Im W

Lemma A.6 ([CCS21a]). Let § € Q%’z. If g9 is nondegenerate, there exist a unique v €

Keer’(l’2) and a unique p € Qé’l such that

B =ep+eyle,v].
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Lemma A.7. Leta € Qg’z). Then

ea =10

a=0 <=
{ena € Im(W2 %)

Proof. Let I C R be an interval with {z"} coordinate on it and let M := ¥ x I. Then E :=
e+ epdax™ € T'(M, V) defines a non-degenerate vielbein on M. Let A := a+ bdz™ € Q' (M, A?V),
with b € Q%

Then the above system is equivalent to the the equation EA A = ea+ (eb— epa)dz™ = 0. By
diagram , E A - is injective, hence EA A =0 iff A =0, implying a = 0. O

Lemma A.8. For all k € Qéz’l) there exists a unique decomposition k = k+r such that
er =0, enk € Im(W2 (D),
Proof. From [AT6] we know there exists a unique decomposition

enk = el + enle, ],

v

with b € Ker(Wea’(l’Q)). Define 7 := [e,b] and k := k — r. This implies

enk = eq € Im(W2 (1) er = ele,b] = [e, eb] — [e, e]b = 0.
For uniqueness, assume there exist k= lvcl +r; = 1232 + ro such that r1,79 € Ker(Wf(m)) and
enlvﬁ, enko € Im(Wea’(l’l)). Then we obtain the following system

6n(lvfl - ]sz) =en(ra —11) € Im(Wf’(l’l))
e(ra —r1) = 0.

By lemma we have that ro = r1, implying 1251 — 1252 =r9—71 =0. O

Lemma A.9. Let O € Qg’?’). Then there exist unique o € Qéo’z) and 8 € Ker( 3(1’2)) such
that
O =ea+€,0.

Proof. Consider the map

. a1, (1,3)
p: Ker(Wo1:2)y - Qp
B enf.

Then assume 35 € Ker(Wea(l’2)) such that p(8) = €, = 0. Lemma implies that g = 0,
hence p is injective.

We can then deduce that dim(Imp)=dim( Ker( 68(1’2)) )=6. In the same way, since w202
injective, dim(Im(W2 ")) =6=dim(Q"*). Hence dim(Im(W?Z*?))+ dim(Imp)=12=dim(0}"*).

Now we just need to prove that Im(Wea(O’Q)) N Imp = {0}.

Assume 30 # 3 € Ker(Wf(1’2)) such that for some « € Qg)’Q)

€n0 = ea.

Then, by lemma@ setting a = v, we automatically obtain 8 = 0, contradicting the hypothesis.
Hence Im(VVea(O’2 )NImp = {0}, implying Qg’g) ~ ImWea(O’z) @ Imp. Uniqueness follow from the
L (0,2)

injectivity of p and We ™. O
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Definition A.18. The previous lemma allows to define maps

ap: QY = Q2 Bo: Q)% — ol
© — ay(O) © — Ba(O);

such that © = eay(0O) + €,55(0).
Lemma A.10. The map %6,,63: Q{(?o,o) — Q§93’4) s an isomorphism.

Proof. It is immediate to see that an,o) o~ 923’4) as T'(2,A*V) ~ C*°(X) upon choice of an
orientation. The same is true for QS”O) ~ Qg)’o), hence we have Qg)’o) ~ Q((;’A). Therefore
showing that the above maps are isomorphisms is equivalent to showing that they are nowhere

vanishing, which is obvious from their defininition. O

Remark A.14. If one does the computation directly, letting é be the tetrad in the bulk and
denoting the transversal (to the boundary) index by n, it’s possible to see that Voly, = %é‘* =
%é?’éndw". Restricting to the boundary, we have €, = ve,+(ce, where v € C*°(X) and ¢ € X(X).
In particular, v is a nowhere vanishing function, hence, upon restriction to the boundary, one

finds 1 1 1 1
Voly, = 3 (vene® + ic(e)e?) = gvenes = 56"63 = ;Volg,
Corollary A.2. The map

1
¢ Q00 118,,) — QY (11S )

is an isomorphism.

Proof. By direct inspection, %e?"y = %eneg"y". Since 7" is invertibleﬂ7 implies the desired
result. O

A.3 Tools and identities

A.3.1 Basic Identities on gamma matrices

Let a =0,---,d. Setting I'y,...q, := L'[q,[a, - T'q,], we present a list of well known identitieﬂ
adjusted to the mostly plus signature:

r°r, = —D; (A.34)
rer’r, = (D - 2)ré; (A.35)
DOTPT°T, = (4 — D)IPT° + 4n°°1; (A.36)
DeTPTeTIr, = (D — 6)TPTeT? — 4n°irb — 4nP°T? 4 4nbire; (A.37)
parar _ % (D@2 er _ (_1)7pezerpar) (A.38)
LT, = (=1)"H(D — 2D @ e (A-39)
par-arbiobay o (_1)TMF“1"‘GT (A.40)
{rm, 1} = 2(1m)? = —29(nn) # 0 implies (yn) ™' = —1-m

Owhich the reader can easily check by permuting the gamma matrices using their defining equations
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In D = 4, where we denote gamma matrices with {v,}, having set v° := i7%y1y242, the
following identities hold:

ab.c.d d.cab

YV Ve = 295 (A.41)
'Y v ,Y _nab,y(' nb(',ya + 77a(‘,}/b + ZEdab(’Yd’}/ : (A42)
Y= —3 Leobedy (A.43)
749" = i€ g (A.44)

Considering {v,} basis for V, we set I' := I'®y,[l]| and define the bracket [-,] to encompass the
action of spin(d, 1) =~ A%V on AJV, i.e extend by linearity and graded Leibniz (on the first and
second entries) the following

[Va,]: APV — ARV
1 1

-ap ai---ag

a= kla Vay * " " Vay Hmnama Vay * " " Vay,
we obtain
[Va, V] = N[vg, [TV "L + N(N — 1)u, V"2, N >2; (A.45)
= (-DNYNTNTID, + N(N — DIV 20,). (A.46)

Now we are interested in the cases when the expression containing spinors is real (whether
it is because it contains Majorana-type spinors or because we are dealing with real quantities
defined via Dirac spinors). In particular, in most of the relevant computations, denoting complex
conjugation by (-)*, one considers ¢4 — iA*, where A is any expression containing spinors. Here
we list some recurring expressions:

[V, TITY — (=1)N TV [v,,T] = —2Nv, N1 (A.47)

[[,0]I? —I?[,0] =4NTO V (A.48)
1

X e, ¢] = 3xv + (—1)'0“‘5%[0«73]#, (A.49)

for all & € A%V,0 € AP73V, © € ANV and even Majorana spinors x and 1/, having defined

1 1
7[’77 [77 a]]vlﬂ = _7aab'7abl/)7

[041” = 4 4

having considered the split [o, 7] = [o,7]c + [o,7]y = 0, since an element in A2V =~ spin(d, 1)
acts both via the Gamma representation and on V' via the fundamental representation.
Another important identity derived from the ones above, is the following

%l ] = 3%7a + 5 X[, I, (4.50)

which is true for all x,1 € Sy and a € A2V.

11 From now on we will omit the A symbol and automatically assume that forall B € V, BN = BA---AB € ANV,
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A.3.2 Identities on Majorana spinors
Majorana flip relations
Let D = 2k,2k+1. Given any two Majorana spinors 1) and x (for which, we recall, e = 1,n = —1)
of arbitrary parity, denoting I' = I"*v,, € End(CQk) ® V', we have the following
X = —(=D)XWlyy;
Ly = (_1)|¢|+\XI+WII><@FX;
X = (~1) Iy
{039 = —(—1) P HIXIHIV X3y

A5l
A.52
A.53

(
(
(
(A.54

)
)
)
)
In general, one finds

TN = —tn (= 1) NI IXDHRIX TNy (A.55)

where ¢y is defined from (CTN)! = —txyCT'V and is such that tyi4 = tNE The first 4
parameters read
to=1, t1=—1, to=—1, ty=1,

while the general formula is

(A.56)

Fierz identities

As stated in , one can find a basis of the Clifford algebra using products of elements of the
basis of V. In the context of the gamma representation, the Clifford product is mapped into
matrix multiplication, hence a basis is given in terms of products of gamma matrices as {F[A]} =
{1,719 ... T@aa} where [A] represents the number of factors in the basis element, also
known as the rank of the basis element. We define {I'i4)} :== {1,T4,Tbq, -+ ,Tay..ap} With
lower indices in the opposite order, as it helps with signs arising in the computations.

Starting by the even dimensional case where D = 2k, we aim at using the generators {T'[4]}
to obtain any matrix on C(2¥). Indeed, on C(2¥), one has the obvious pairing introduced by the
trace operator, i.e. VM, N € C(2¥), (M, N) := Tr(MNT).

It can be shown that, for even dimensions D = 2k, one has the following property

Tr(PAIT ) = (—1)[‘4]2]65[[2% (A.57)
[[g% =0y = 51[,?1] e 5;,1:]. The above relation
allows to expand any matrix M € C(2*) as a linear combination of products of gamma matrices,
ie.

where for a generic index set [A] = a1 - a,, 0

(-
2m

M = Zm[A]F[A] with mpa) = TI‘(MF[A])
A

Denoting by a = 1, -+ , 2% the spinor indices, following [FV12], one can consider 6@615/ as a matrix
with entries labelled by indices § and v, while @ and § are just dummy inert indices. Applying
the above formula we obtain

s _ (=D )

4 ) A ) (
0005 = " (mya)5 T2, (mpa))e = ok 5580 (Trap)} = TR
A

(T2

12A closer inspection reveals tg = t3 = —en = 1, t; = t3 = —¢,
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obtaining

86 (- 5 (PlA]NA
0085 =3~ (T @)y
A

We are interested in the decomposition of y%~, in even dimensions. We obtain

(P)8(Ta)] = (D)5 (L) 056

—1)l4l
= sy 3 S ity
A
—1)Al
-3 E i reriar, .
A

From (A.39), we see I*T'AIT, = (=1)A+1(D — 2[A])T'[4) hence obtaining
a (2[A] - D)
(T*)2(Ta)) = Z T(F[A])ﬁ(F[A])i (A.58)
A
Now we consider the case D = 4. We can use the charge conjugation matrix to lower the
indices of the gamma matrice and obtain (%), 5= C’a(g(ya)g. Furthermore, we symmetrize
the part in (8pd) obtaining

an- ar- 1 ay- ay- aben- . . .
(1)aa(7)s) = 7 | ~4Ca6Com = 200 Vas (1) = 0+ 200V ave) sy + 407 as (1)
1

= _5(7%@(5(’7&);5) =0,

Having used that C(,5) = 0, (’yabc)'(pﬁ) = 0 and that (75)'@5) = 0, as a consequence of the fact
that

(Y )ap = =t (V) par (A.59)
Then one finds
(7)o (Va)psy = 0. (A.60)
Contracting with 4 Majorana spinors \;’s (i = 1,--- ,4) of arbitary parity, we obtain
5\1’)/3)\25\3’}/>\4 = (71>|>\2H>\3‘/_\17)\35\2’YB)\4 + (*1)|A4|(‘/\2‘+‘>\3‘+1)+|)\3‘5\1’}/)\45\2’}/3)\3; (A61)

5\173)\25\37)\4 - —(_1)‘)\2H)\3|5\1’YS)\35\2’7)\4 _ (_1)\>\4|(|>\2\+|>\3|+1)+|)\3|5\1,y3)\45\2,y/\3_ (A.62)

A.3.3 Lemmata and other facts about spinor fields

The following section regroups a series of results which are cited throghout the thesis. They
involve some identities and lemmata about spinor in the spin coframe formalism in D = 4, both
in the bulk and on the boundary.

Lemma A.11. The map
00 QUOTISyH) — QEH(TISp)
L 3
b ey

18 injective.

131t is also useful to adopt this formalism when dealing with scalar quantities defined in terms of spinors. For
example, we have Yo = Xﬁca/g and Cgq 1= 66,10;.



A.3. TOOLS AND IDENTITIES 109

Proof. Using v,vpv:.0q3 = €gqpeq VOl

1 1
§€V3¢ = §€a7b6dwvavbvcvd
= gﬁabchGWdew\blv
E=3 1. 5,
B S ipeapvoly =0 & [enld =0

Now [e,7]¢» = 0 if and only if v,1),) = 0, which is uniquely solved by 1 = 0, hence proving o0
is injective. 0

Lemma A.12. The map
o0 QO(1ISsp) — QBH(TISp)

1
Y — ge’v?’w

is an isomorphism, where v := [e, ] = 7, dx*

Proof. First of all, from the previous proof we know ey® = iy%[e,y] = MSZVOIV. Then

e’yglw = i7512onlV =0 < 121/) =0 & Y, =0.

The latter is a system of 4 equations whose solution (due to invertibility of the gamma matrices)
is uniquely given by ¢, = 0. This shows that @(71’0) is injective, but since dim Q1% = dim QG4

and 92{1,0) is linear, by the rank theorem dim Im(@fyl’o)) = dim QG4 hence it is also surjective.
O

Remark A.15. By the same reasoning (or just by taking the Dirac conjugate of the above ex-
pression), one finds that also the map

1
Y e’y
is an isomorphism.

Lemma A.13. For all 6 € QGY(IISy,) there ewist unique o € QUO(TISy) and B €
QGY(TIS ) such that
0 =ieya+ f8 and ¥3B = 0. (A.63)

Proof. We start by considering the map (ey)(,0): QL0 5 QG o — eya. We see that
eya = 0 implies ya + 0 due to injectivity of We(l’O)ICanM]7 while

ya=0 < =0 < «a,=0,

hence implying that (ey)(1,0y is injective.
Now, defining (7%)(3,1): Q&Y — QG4 8 423, we notice that 433 = Voly [y, 8]y, hence
ker((v%)(a,1)) = {8 € Q®Y [ [y, 8] = 0}. We have

['77 B] = ’Yaﬁzyp =0,
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which is a system of 4 independent equations, implying dim(ker((v*)(3,1))) = dim(Q31)—4 = 12.
Now, since (e7)(1,0) is injective, it is immediate to see that

dim(Q®Y) = 16 = dim(Im((e7) (1,0))) + dim(ker((v*)3,1))) = dim(Q"?) + dim(ker((7*)3,1)))-

The claim is then proved once we show that Im((ey)1,0))Nker((v%)(3,1)) = {0}. This is immediate
since, by lemma, for all o« € Q1.0

’y?’ela:O & a=0.

Lemma A.14. Let n € N and 17&].) be the map
RATE Q) o it gy "B
Then, for all € QN (TISy) there exist unique o € QIO (TISyy) and B € kery70, 1) such that
0 =ea+ f.
Proof. We see dim Im(Wl(l’O)) = dim Q19 = 4 as Wl(l’o) is injective. On the other hand,
from we see QG4 = 61739(1’0), implying in particular that 17?2,1) is surjective, hence

71)) = dim QY — dim QG4 = 20. Now, since dim Q> = dimIm(Wl(l’O)) +
1)), we just need to prove that Im (W5 Nker(y7(, 1)) = {0}. Choosing a € Q(1.0),

dim ker('wf’2
3

dim ker(y77,
we see
eq € ker(lvéﬁl)) & e’a=0 & a=0.

For uniqueness, assume there exist aj, a0 € Q19 and By, 8, € ker(lvé 1)) such that 6 =

eay + 1 = eas + P, then
e(ar — ag) = fa — B1 € ker(vyy1)),
which implies a; — s = 0, and By — 31 = 0. O
Lemma A.15. For all \,v¢,x € Sy such that |x| =0 and || = 1, the following identities hold
MIxx =0, xnMPU =0  and  Apxxy’v =0.

Proof. The proof of the above identity rely on subsequent applications of Fierz identities

(A.61) and (A.62) and Majorana flip relations. In particular MY MXXy2 Y +
(—D)PIMypxy3x = Myxxy34, having used (A.54). At the same time
T - (A-54) - N
Sty BED (LMD 383y
(A-61) R - X
2 () MIVED) (1) Mgy + (1) Py

(A.52) (A.54) T - - 3
BRI _ (1) Ran gy + (1) e,

hence showing that when |¢| =1, X7XxM31 = 0. Now at the same time we have

Y v -
Mexxve =" =2 x — (=)D,

hence M3 xxy1) = —%(—1)“"‘5\731/1)27)( = 0. Lastly, we saw that Ayxx7*¢ = M3xxyy =0. O
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A.4 Proofs of section [A.3

We now list the proofs of equations in [A73]

o (A.45) and (A.46]). We prove this by induction, first showing it holds for N = 2,3 and then
proving the inductive step, having set Ty := 15, I'° = [v,, .
[Vq,T?] =T, =TT, = ToT — D0 T4 = Lol 4+ 0000y 4 20° 00000 = 20,1 + 20,
= 20T, vy 4 20q = —2TT g — 40 naevy + 20q = —2IT, — 20,

[Va, T3] = [va, 2T + I°T, = —2I°TT*n,qv.0 — 20,0 + 2T,
= 20T T, quovy + 400D vy + 200, + 12T, = 3121, + 6Tv,
=T,I% —T'v,, %] =T, T2 - 2I'T,T — 2T,
=T,I'? 4 2T, qupve + 41 naal P vpve + 20,T
= 30,2 + 6v,I.

Now assume (|A.45) and (A.46) hold for N — 1, then

[0, V] =TTV =1 — D, TV =T, V! — (N = 1)IT, V2 — (N — 1)(N — 2)T'p, V3
= N[, IV 4 2(N = 10,0V 72 4 (N = 1)(N — 2)0, TV 2
= NI, V! 4+ N(N — 1)y, TV 2
— [UG,FN_l]F 4 (—1)N_1FN_1Fa
= ()N (N = 1)V 20, (N — 1)(N — 2)IV 39,0 + (-1)V-IrV-1p,
= (=D YNTNID, + N(N — DTV 20,);

o ([A.47) follows immediately by subtracting (A.45)) from (A.46) applied to TV +1:
« (A43). Consider © = =0 "y, - v, , then

[T,0er? = w@‘““z‘”“”v ) LT T vy,
) (N —1)! az anTaia bUc
—D)'ON e
- ((N)—l)!@am N0 UhVay -+ Vay aya (=47 TC + TTT?)

=TI?I",0] +4NT6;

. Consider a € A2V with parity |a|, then for any Dirac spinor (of any parity) x and
¥ we have xv3[a, 9] = i)’(’y?"yawb[va, [vp, &), so
7?7 [va, [vp, @]] = ~[va, 73 [vs, allv*y” + (377 + 67va)[vb, o]y
= ~[va, (37" + 670s)7"7"a] — 697, 0]y
= —6v*[y, alv + [va, 1270090
= —67°[y,alv + 367a + (—1)!*11290n" @ neava

= —12ya + (1)!*167%[a, 7]y
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Now, since [a, v%]y = 3v%[a, 7]y — (1)!*112ya, one has that
VY [va, 05, @]] = (1)112[a, 4%y + 1274,
hence
%l 9] = 3430 + (<)l X[, 1 v
(A.51)). We use the fact that C* = —C, hence
= Xaca[ﬂbﬁ - (_1)|Xllw\¢ﬁcaﬁxa - _(_1)\Xllw|wﬁcﬁaxa - _(_1)|XH¢\J}X;

(A.52). We denote by (I'*),; := ag(l"“)% and by (I')ag = dac(I'*)5. Then, using
CT* = —(I'*)C, we have

(T)s = Cap(T®)§ = 0acC5(I*)] = —0ac(T™)5CY = —(I")0pCY

= —(1)5aCy = —(T)505C) = —Ces (), = Cs(T*)5,
= (Fa);SOH
hence finding
Cap(T?)y = —Cs(I")5 = Cs5(I")5. (A.64)

Now we have
XY = (= D)PIRCap (D)5 1 v, = (1P (1), 59 v
- (_1)|w|+\w\|xl¢ﬁ(pa)baxava - (_1)\x|+\w|+\w\\x|¢jpx;

(A53). Recall 1% :=rlertl = 112 T't]. Now

(TT?) 5 = (0)0s(T)5 = (1")50(T")3 = Cse(T)&(T)5
= —Ces(T)G(T")5 = =) (T = (") 5(T)
= *(Fbra).ﬁ(w

implying (F“b)'aB = —(Fb“)'ﬁa = (I‘ab)'ﬁa, finding
X2 = X () g vawy = (=)L), X vaw, = (~1)VINYT2y;
. Again T'%¢ = DleTbre | and
(DUT'T€), = (DUT°) 5 (T9)5 = —(D'T%)50 (D)5 = —Coe(T'T*)5,(I°)5

= Ces(TPT)5 (1)) = (T9),5(T'T*)5, = (T) 5 (T°T*)S,
= (T°T’T) 34,

implying (F“bc)aﬁ = —(Fabc)'ﬁa, which in turn gives

X3 = (=) Iy (1), g vgupve = —(= 1)1V Tabe) oy vy,
_ _(_1)Iw|+\x|+\wllx\djp3x;
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o (A.55)). In order to prove the general formula, we first have to prove
(000, = 1y (D)

In particular, we want to show that ¢, = (—1) LTTHJ We know this is true for r =0,1,2,3
as we showed explicitly the values of ¢, in these cases. Now we prove the inductive step.

Consider

(D er Do)y = (D) (D) = —(=D) L ey (oo
= (- 1)L Fleg ooy rea)g = (~)LF ey o)y
= (-plF ooy,

implying

(Fal‘..ar+1)‘ 5= (_1)|_iJ (Farﬂal )Ba _ (_1)|_T2ij +r(1—\a1~~ar+1)~ﬁ

[e3 [0

Iy,

r+2

5 J+T+1(Fa1'“ar+1)'ﬂa = —(—1)|~

showing that t,,1 = (—1 2] as expected'4] With this formula, we can now easily show
+

)ZFN"(/) = (71)N\w\xa((l—wa1-~a1\z)- ﬁwﬁvm o VUan
= _tN( )lel—i_‘wllﬂwﬁ(ral aN) aX Ual te "UaN
— (=D NEFXD RN TN

o (A.61) and (A.62). We consider four Majorana spinors \; of arbitrary parity. First we see
that

MY Aoy Ay = —(—1)PRelHRaly ybed\o XanaX v, upv004
= —41(—1)PelFRal X 4 bodxo Xan @ N y€abeatiovivavs

—4li(~1)

= 4'1(71) ‘)\2|+‘)\3|5\1’)/a’)/5)\25\3’ya>\41)01}11)21)3,

‘>‘2|‘H>‘3|5\1757(1)\25\3’ya)\4’l}01}1’02’03

having used {7°,79%} = 0.. Redefining N, := 7y and A} := A\7° and setting v* =
VU123, We obtain
MY Aadgy Ay = —4li(—1) A2 F ey X Xgy 2 a0 (A.65)
= Ai(=1)P2FRsIX X Ngy 2 N0t (A.66)
We now apply to the expressions containing y*v,. Explicitly
BNTARNAT (Y Va5 () sy = NN MAT((Y )i (Y)ios + (7 )p (V)35 + (7 )as () 3)
= X7 A2 A37a s + (= 1) IN v A5 om0 A

+ (—1)|>\4‘(M2|+M3‘)5\11’7a)\45\2’7a)\3
= 07

n n+1
14Here we used the fact that (—1)L5J7Ln = (—I)L 2 J , as one can easily check by separating the cases for
n =2k, 2k + 1.
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substituing in (A.65)) gives

5\1’}/3)\25\3’}//\4 = —4- 4!(—1)|>\2‘+|>\3‘[(—1)‘/\2‘+‘>\3‘/_\1’y5’}/a)\35\2’}/a>\4
+ (_1)I)‘4‘("\2|+"\3|)5\175’Ya)\45\ﬂa)\3]v4
_(_]_)|/\2H>\3|5\1,y3>\35\2,y>\4 _ (_1)|/\3H—I/\4\(\)\2|+\)\3|+1)5\1py3)\45\27>\3.

(A.61)) is recovered in the same way applying (A.60]) to (A.66)).



Appendix B

Lengthy computations

B.1 Proofs of chapter

B.1.1 Theorem

Proof of theorem[3.9 We first compute the Hamiltonian vector fields of the constraints. To
make the notation lighter, we get rid of the apex PCP as its use is implied in the following
computations.

SL. = /E[c, eledw + (edwc + iez (Vvle, ] — [c,z/z]m/z)) de
7" [08le, ¥l — dyle, 60] + [, 56l + [e, Ulyov]
Y /E[c, eledw + (edwc + %62 (Yvle, ] — [c,zb]wb)) de

3

+

53

+ Zg,i' [[e, )70y + dy[e, 9] — ;-63!

= /E[c, eledw + (edwc + iez ([e, Y]y + ¥ye, w])> de

[51;[67 VY + 77;[67 ’ﬂ&ﬁ]

' — /(1 — 1-
+ 556 0% (3lentu 4 atecul) + (1o - 3ite) 0w
where in the last passage we used that

Dle, 39 = Ple, 10y — e, d]yoy (B.1)
(e, 39)yp = 89y [e, 9] — e, 7)o (B.2)

which can easily be proved using the following identity

JIneY = =VJyJr € — 4jye = —Vjyjyc + 4le, 7). (V)

115
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We also get

o= [ ede (1220~ 0k, e (P10 - 1@
3

— L (e)edw + 0 (— e- S,VLZ)O (¢)> +

ie3
2-3!

S VYLE (69)
ie3

- S G - S L @)
= /E —ede (LZ’“ (w—wo) + teFyy — 3e (JVLZJO () - LZ)O (¢)’Y¢))

10 (e)edio — ww(g,vwow) Tl @)

3 —
~i (G @+ g 3)«@7) o,

SHy = / Aen [Fw N L (vydutp — dwww)} de + du, (Aepe)dw
. 2 2
P ] — [, w]w]
= / Aén, {Fw + %eZ + if (Yydotp — dwll)’}/w):l oe + d,, (Aepe)dw
>
+ i1 [)\en ydup — d,, (Aeniwﬂ
2 e2_
duﬂM + dw <>\€n 41117)] 57/}

. e
+1 {/\en4
o=, ..
+ 76 M (v (€n€®)y = Vs (€ne?)) diw.
We are then left with

LECD = [¢, ¢] Lch = [, Y]
LECD — dc 4V, LoCP = [e, )]
PrCD — 120 PP = —L¢(v)
prep — —L¢(w —wo) — 1k, +Vp P§CD =-Lg* ().

P— o
HECD — d,(Nep) + Ao + 1V Unrendyey = Viyenjve) ¥

A A n s,
eHECD — e, (Fw + 2e2> - z’%e(w’vdw — dupry)

e? €n Aen i — . .
gvaZCD = e’ vdut — —Feduerth + o Ae [§ (riy (€ne®)y = Vivdy (6ne®)) ¥] 19

en )\n . — .. ..
ey = Sy + T edueiy - 4Aewv [ (G157 (€n€®)y = Virdn (€ne?)) V]
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The Poisson brackets of the constraints are:

{LcaLc} = /Z)( : ) - 362 (iﬂ}j’y]”yc’ﬂj) + iqzb’Yj'yj’yC?/}) [Ca 6]

+ 2l Thle, v

= /E( " ) + ﬁ@(]"y]"ycﬁ/ - ’Yj’yj’yc)w[ca 63]

i
16 - 3!

* )= 5o (el = Blev]) e’

+ oy iy €Y Gy Gy

3!
e3—

+ oY (=YIyInCIvine + 4le, Vv dne = GyiyCiviyey + 4dyiycle, 7))

= [+ 5o (Pl feo il = e e W)

1 1
:/E—i[c,c]edwe+4_3!e3 ([le, d,

Py — Pyl o], 9]

1
= *iL[c,c]a
where in last few steps we used the graded Jacobi identity to prove
1
[Cv [Ca 7M = _5[[05 C]a ¢]

and the fact that
'Yj'yj’ycj'yj'yc = j’yj’ycj’yj'yC'Y + 4j’yj'ycj’yc + 4j'ycj’yj'yc'

(L} = () = 5o (18 TILEw =T (b)) + L2 (e Ty + LT e vl

e G Rty

Z/E(“-)— 2?3!63([0,@]%2%+L§°@7[cvw] — [, ] + Pyle, Loy

~ L6 Tl — [ L) - 5 le Sl — LT

= [ = g (T + L Trlenv] - TrlL e vl + (L2 T

— [e, YIVLE Y — Ple, ML — L[e, 7] — L yry[e, ¥

+ e, VLY + L‘g"@[c, V]e)

7

= /E Lgocedwe - 2.73!63([]:’2)007@]’71/} - JW[LZJOC7 1/}])

= Lyeoe,
where in the second to last passage we used that
Ble, L] = —[e, L — BleyILE
e, LE Gl = LEB[e, 114 + L Prfe, ¥]-
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{LC7 H)\} = LC(H)\) = /Z( . ) + AEn{i[C, 62]@7%1/} - dw@ﬁ’lﬁ) + 262([07 @]dew
— Pydole, ] + du([e, V)71 + dutyle, ¢]

P, ¥ — [due, Ble) }

L6 = el e @rdow = di) - 1252 = Blenldu - dilenlv
+ Y[e, ydowyp — Yyle, dutp] + [due, Vv — [e, duly + [e, dutplyep
Bl + Brlducs Y] — [dues By — Brlducs ¥] + Bl dm}

v

- / —[es Aen] (eF + %eQ + ie%%doﬂ/} — duy))
P

= —Pee )@ = Hiene, )@ + L xe, 1@ (w—wo) o)

having used the following identities, which can be easily found

dwby[e, ¥] = [e, duPlyb + dytble, Y],
e, ¥]yd Y = ¥[e,7]du — ¥y[e, duth].

¢ { — L yLgy

1 w - Tw wo /. v
{P57 Pf} — /E( )+ ﬁL§0(63)(w’7L£0’(/J - L§O¢V¢) T 9. 3!
+ UILELE W — LELEPyy — LEPaLgow)
S{LEPyh + TALELE — L L Pysp + Loy

:/E("')_ 2. 3!
— gLy + UL Ly — L L Py — LUyl v}

- /E () = 3¢ (BILELEY — L L )

[y v 3
_/2( T
63([L§L£mem7¢*E’Y[%L&Fwoﬂ/’])

(PILE g — Ligg¥ny)

n i
2-3!

1 1
= g Heq = 5 LteteFus
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{P£7 H/\} / + )\En{ - iL?O (62)(@7(10.11/} - dw@’ﬂ/} + 262 [ - L(go@'}’dww
+Pyd L0 — d LEPy — dyhy L

= PyleeFl, + L (w — wo), ¥ + [t Floy + Lg° (w — wo), ¥ ]v¢] }

Aen "
= /Z () L (Aen) & (wwdww dwmw)ﬂ—e?{mL O d, 1

— L d Py + wwdez’“w — d L&Y
— [t Fuy + LE° (@ — wo), ] + [te Fusg + L (0 — wo), Py}

& [+l ) G @B = dur) + 122 (T L, 0] ~ (L7, T
— Py[te Fug + L (0 —wo), ¥] + [t Fly + Lg% (w — wo), Plye }
= /2(. ) 4 aLg? (/\En)GZQ (Vydutp — dopyy)) + i%€2 {¥y[Lwo — teFlg, ]
— [Leowo — teFug, Y179}
= /Z L0 (Aen) <eF + ﬁe + fe *(Yydutp — dwmw))
= Preoae,y@ + Hizo e,y = Lrzo (e, w—wo)»
where we used that L‘g“wo — 1eF,y = —digwo and the following identity:
LE ) = —du Lg% + L2, . #)
Furthermore, recalling that d,,,v = 0, it is quite easy to see that

a’}/[dbfw()a ¢] - [dbﬁcUOa@]’yw = _[deb‘-}Oa@fyw] = 0.

Now, before computing { Hy, Hy}, we first notice that the Hamiltonian vector field associated
to H) can be rewritten as

evHy = 3Xepyd ) — §)\U'yw + ﬁ)\ﬁ

2 8
_ 3_ 3 —
eHW = 3hendvy + 51/17)\0 — gz)\ﬁ,

with g := E(j.yenjﬂ,efy — ’yj,yenjpye)fﬂ/), hence

| Aen 1 ey,
{H\,H\} = /Ez [QHweQdew — fdw()\en)eQHmw — 2dweeHmw]

+i [()\en d, + d ()\en)w) e2yHy, + /\;deewe’yH4

:/ ﬁdw(kn)k@w; [E(j’Yj’Y(eneQ)V _'Y.j’yj'y(enQZ))'(/)}
z

3
132

where all the remaining terms vanish because they are either proportional to A2 = 0or €2 = 0. O

oy (N ) ANV [ (151 (€n€2)y — Vv (€n€?)) 0] =0,
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B.1.2 Theorem [3.4]

Proof of[3.4 First, we notice that the contraction of the symplectic form with a vector field
X € X(FLECP) is given by

= /eX ow + [BX + 3e (P yXy — X ’yz/;)] (B.3)
o2 o3

— (€?— el
+ 09 (471/}Xe + 3!7X¢,) +1 <4w7Xe + 3!Xw’y) 0.

Then, we start giving the Hamiltonian vector fields of the constraints. For LZP and PFCP,
from the non—degenerate case, we have

LPCD [C 6] LPCD _ [07 ,(/}]
LPCD _ d c LPCD [C w]
PPCD cwo P’ECD — _Etg}o (w)
PPCD /J“’“ (W —wp) — teFy, chD = —LZ’“ (¥).

Whereas, for H f\b, we have

HY = d,(\e,) + Ao + i)@ (tyly€n€Y — Yiyly€ne) Y

eHY = Xen (Fw + 1;62) — i)‘%e@vduﬂl) — dyyi))

3 A A
GH = S yday — St eduery

i _
+ a/\e [1// (L7L7(€n€2)’Y - 'YLWLv(enez)) 7/’] "
_Ae — A€ =
2 HYy = 2 —
i H, e do, )y + 1 edy ey
i — N
— @)\ezb’y [¢ (LA,LA,(En€2)"Y - ’)’M“r(eneQ)) 1/’] J

where o € le’l. Lastly, the Hamiltonian vector fields of RECP | are given by

RPCD [T, €]

eRPCD — (;—Td e+d,T

RPCD RPCD _ 0

since they coincide with the ones of the Palatini-Cartan theory of 2.4] Notice that, instead of
using the function g = g(7,e,w), we preferred expressing the variation of 7 with respect to e by

-
means of the functional derivative 5o However, we have the relation
e
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Now, we are ready to compute the Poisson brackets of the constraints. From the non—degenerate
case, we have already knowledge of the following Poisson brackets

(PEOP PPOP) = SPEGP - SLECR. (B3 HY) =0

(LPCP, PgPCD} _ Lzzg(‘ji) (LPCD [PCDY _%Lig]p
{Lrer, H;p} = _P)J(D<Ca>D + Lig)D(w—wo)a - H;ﬂam

{P§PCDa H}\b} = Pfg)D - L{i(caf)(w_w())a + H;ﬁ(n)a

with X = [c,Ae,] and Y = LE°(Ae,) as above. Therefore, we are left with computing the
remaining constraints. First, we notice that
PCD 7 PCD PCD
{RT 7Lc } = {RTa LC} = _RPS[CxT] = T psle,r]
Similarly, we can also compute the bracket
{RfCD,ngcD} — {RT,Pg} = Rpsll‘gf’r — RPCD

PsﬁgoT'

Now, we move on to compute the brackets {RFCP RFCP} and {RFCP HPCPY. The first
bracket is simply given by

{R“P,RI“P} ={R,,R,} ~ F.,

with F, defined in Theorem 30 of [CCT21| and which is in general non-vanishing on the con-
straint submanifold. Whereas, for the second one, we obtain

{RfCD,Hf}z/Z(en‘(zfdwe+dw(enﬂ)) (dw()\en)—k)\a
— NG lenc, V]~ lenc, UI0))

FW el el (B + 56

— Dene(Trdut) — dT))

~ [ —idsden (Brlene. ] lene. o)
- i[enﬂv 6])‘611 (@’ydw'(b - dw@’)’w)

+ G)rra

where, in the last passage, we used and the fact that €2 = 0. Moreover, the quantity G, is
defined in Theorem 30 of [CCT21|. Now, we can notice that, thanks to we can write

)‘ﬂdwfn(@’y[ene,w] - [Gne,@]’ﬂ/’) =
= Aenedwen(a’-}/[ﬂaw] - [ﬂv@]’yw)

= Aeﬂ(a’}/[endwenv 1/)] - [fndwﬁn,m’ﬂb)
-0,
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obtaining

(RECP 1} ~ o, = [ {lenfelhen (Bt = d70),
Finally, we can write the integral as

{RfCDu H;\p} ~ G)\T - / i)"r[En’ é] (@’de'l/) - de’Y@[J)’

)

where we implemented again and also the relatiorﬂ
enlT, €] = Tlen, €] (B.4)

with é defined as é := e — € (see [2.18)). More specifically, using the definition of the independent
components of 7, we have

{RPCD Hw} G)\T—FKPCD

with
KPOD — /z,\(Zyﬂ Gnd,, J¢ Z 2 (gnd. J¢) )
= pu=1 m#uz 1
where g, = [e,,¢] € O30 and dJy = do, (7)) € Q%'

This final result completes the proof. O

B.1.3 Theorem

Proof of[3.7 We start by noticing that on M = I x ¥ one has the following splitting

e=¢+¢, w=w+w,
el=¢'4¢ w? =o’ + @,
P =1 =0,
c=¢ c? = ci

sz =4
E=E£+8, g=+&

If € C(I) ® QF(X) denotes the field in Fpep(I x ), we denote by ¢ the corresponding field
in the BFV space of fields Fpq .

Remark B.1. Since by hypothesis we have that {€;, €, } form a basis of V, which is equivalent to
asking that € define a non-degenerate metric on the boundary, we can decompose ¢€,, = ¢.€+ e,
where 2% := & and u = é". Notice also that p # 0 necessarily, otherwise e would not define a
non—degenerate metric on M, which is required by assumption.

11t simply comes from the definition of S.
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We define ¢ on the above fields by

0" (@) = e+ AL 0" (E,) = Hen + 126+ Aep [
P* (@) = w — A P (@) = w— teu’ — Ay
O () =+ M0 W, )= gvﬁj - %eQFWJ + %Au‘leﬂ'yé’j
¢ (&) = ¢ = te(Au"u?) ¢ (&) =
P (@) = k* P (@) = ef T+ ik + e
() = & — A1y 90*(5) =ey’ + e’ —ulk? +
o (e = e — Aty @ (&) =t

(@) = eu + 17 = Ay + N U = 262 ) — ST 0% — e fA 0 v + e

n

0 (€)= (Hen + o)y + efPud + fle? + ik + Ay — %ye3éj79j - ilejéjw +c.c.
We remark that, after setting ¢» = 0 and 62 = 0, the ¢ defined above coincides with the one
defined in the PC AKSZ theory in |[CCS21b] appearing in :2.13 This implies that, if one splits
o =M, + @M and SM., = SM, + SM, by theorem one has

@ (wyc) =

i { _
—pT [ L) (s 80960) — 180w a0
Ix% 1 2

2 -3

7 7
= 200w f2e? (001, + 0100, ) + w8 F26(e) v

5

5(e*)3(u~1)0%0
8

by Cicpd 2 (spd 4 i
+ ATl af e <5Q Y+ 0 751/;7) + 55

i _ i _ _
—gé(e?’))\,u 150 ~6" —&-15()\/1 Hswu1e207v6?
: 9

10

i _ 1. _ _
_56()\;4 b [2/\u 15(e2)02767  + 162(59j’}/9j12:| (B.5)

11

= IO 207007 + (A )6 (e®) oty
4 13 2-3! 14

1 _ ) _
+ 500 NEH0? — 260w () f20% 0, + 2or°0%yv,)

) _
+ 200w (0%, + €2 F20"00 )
7

= 20(e?) [S0u™)f0 v, — ()30, |

~L5(e%) [ ST 0, + QT ] + e

where "c.c." encapsulates all the complex conjugates of the above terms except the real ones (e.g.
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100v06). One also finds

(M) = / L s )6(0" D)

— 7/ 3 ~ _1 4 1 | 7/ 3 . p . |
_/fxzﬁé(e )8 (30, + 80w, ~ AuT'96% ) + oty (u, + S0, — wutow’, )

7 — _ _ 7 — _ _

— 2o(E) (6_¢7+6(/\u 6%, Au 159j9) — 2o f iy (6_1/)10+5(/\u DAY 159d12)
i 2 pd¢.7 —1\p4d —1 4 i —1 2 EVE| —1\p4d

+ e 00 (04, + 000" = Au'067 ) — Sl e 7 (80,5 + 00w 16" )
i ) i B

- Dwteriet (%SM(AM 1)9519) + DAl fA00™ (%OM(AM 1)9ﬂ21)

) _ _ _
+ 200w e ey (0, + 000", — Au~1068°,, ) +c.c.

(B.6)

We now proceed to show that (3.37) coincides with ¢* (M. p,). We see

+ The terms (B.5|[I) + (B-6Ji) + (B.6|4) (B.6|7) + (B.6|[10) + (B.6l[L3) exactly reproduce the

terms inside ([3.37)).

« (B3R) + (B.ARE) + (B.520) + (B.6[17) = 0
(B.9B) + (B.3|18) =0

o (BHMA) + (BHMI) + (B-6[14) + (BHL9) =0
B3 + (B.521) =0

- (B + (B.O[12) =0
B.50) + (B.618) =0

- (BAR) + B4 =0
B3P + (BHR) =0

(BHM0) + (B-6R3) =0

o (BALI) + (B.6L) =0
(BAL2) + (B-6R4) =0

(BH3) + (B9 =0
(BA15) + (B.GE) =0

o (BALY) + (BGLI) =0

(BH7) + (B =0

(BAR2) + (B-69) =0

- (B5R3) + (B.6LE) =0
(B-6I15) + (B-620) = 0.
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We now move to show that ¢*(SM.,) = SAKS%. We start by computing the terms inside

©*(SM.) that depend 1 and 67, which appear in ¢*(¢7) and ¢*(&;). We use the following

P (LEe + dy, e€" + &,dE" — [2,8)) =

=Lge+ LA™ f7) = a7 (e) — A 'L O™ ) f7 + du (A eze
AT O + AT 0, AT P A AT w, €] — AT M eeu, €]
+dAp N (pen 4 tae — A7t f7) = [e €] + AT e, £,

(L2 + do, 56" — [2,4]) =

=Ly + Le (A '07) — A 'L (v) — Au 'L (Ap 1)
AT Ot + AT 0 (A0 + AT w, 9] — AT e, 9]
— e, Y] + A" Ye, 67,

and that ¢ ([€,&" = L (A1) — A~ 1L yi1)) + L Oy ), (L2 (i),
We then find

o' (SH) = SHES4

‘ g’ w - —lyw — — —
B Y S Vi e Vs SV eV

? ~4 Wiy — lrwiy — - -
+ 1O ), = AT L Q)+ AT 0, () )

(YL w w —1 ¢4 —1l7w —1lTw —1y ¢4
+ 1680 (Lge +LE O 2 = 'L — T LE D )

T 9-d _ _ _ _ _ _
+ ieQQ ~i (d()\,u 1)Lze11 + A\ 1ane12 + A0, (A 1)fj13 + A\ 1[w,e]14 — i 1[L5uj,e]15)

T 54 _ _ _
+ 50 (d(/\u D(pen, g +eey, = A"t f? ) = [ece] A e, fj]m)

i — 7 w w — — —
M et 6’ (Lem +LE DS, — dOw sy + AT ) (peny, + tze55) = [cr€] 6]26)

T, _ ~ w _ _
+ Z)\'u L2 f397 ) ( ge,. — d(Ap 1)Lze28 +d(Au 1)(M€n29 +ze5) = [c, 6]31) +c.c.
(B.7)
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We also have

* * i = 7
e (SH) =¢ / 1 G et +
IxY

1
23!

527/:17%”1/3 + iij,n(Lgi/; +dg, PE" — [6,9))

= [ e (Prldest, + A0, )) + Phene® (ot + o 01,) + B2ty + A0,

Le” [1/77(du/}7 + dw()\/flaj)g — A, ¥l,) + )\M_léjv(dwww + d()\/fl)ﬁjn)]

o

23!
i - _ 1 - _

+ ZAulLE(J FY(duty + A0 ) + FAen Fvdot,, +dOnhe? )

+

+

i 4 _ _ _
2. 3!€3¢7 (Qn(gle + M17) +w g+ M19] - [Lﬁuj’%zo + )‘M—mjm])

7 - _ ) 4 37 _
5ai¢ VA [t WL, g AT 0@ty + OO+ [w ], — w0, )

+ T F (D, + DO+ [, 0], — e v, )

_|_

i 357 w w —1p4 —lyw 17w — 4 -
50y (Mg, +LEMT0Y) = M LEw, — AL Qw0+ AT o)

T a4 _ _ _ _ _
0y (M 0 0+ A ], = M e ) — e ]+ e e, 6 )

i n w w — —lrw —ltw — —

— Sy ((Lew, +LEOwT0) = AT L, — T L )0+ 0,0, )
) - _ _ _ _ _

— 5y (/\u L0, (A0 M w, ) = AT w0~ e 9]+ T e 9j]50)

i — 0, w w —
oy (L +LET )~ [ev],,) + e

(B.8)
We confront the above with equation and see
« (B8B1) + (B-8139) + (B-77) + (B.71) = — 553077 (Le — [¢,¢]) — 55€*Py(Lg0 — [c, 0])

« all the other terms inside (3.38)) are given by (B.8[16) + (B.8Ji8) + (B-820) + (B.841) +
B3).

The remainder in and must vanish. Indeed

o (B0 + (B.721) + (B.7L3) + (B-8p2) = 0

« (B7R) + (B122) + (B729) + (B3I + (BB + +(B3F2) =0

- (B1B) + (B:8124) + (B.8B6) =0

« (B7MA) + (B7R) + (B7R7) + (B-822) + (B-8H42) + (B-8B1) + (B-8HA3) =0
B7E) + (B.710) + (B.718) + (B.728) + (B-7B0) + (B-813) + (B.8f4) =0
B.76) + (B7L3) + (B-8p8) + (B-8B6) =0
B7p) + (B-711) + (BAL7) + (B-88) + (B8L0) + (B-8B3) =0
(B.7M2) + (B-817) + (B.8B3) + (B.823) =0
(B.714) + (B.823) + (B.8B7) + (B-8L9) = 0
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. (A0 + 32D + (EIE) + [EIM) + +[E3E) — o0
. (M0 + 30 + (B30 + (B 0

) + (B8 + (BIF0) + (BIFI) = 0

. (B2 + (B3P - 0

. (B7E9) + [E3Em) - 0

. (B2 + [E3E) -0

B3 + (BgR2) =0

B3 + (B3R =0

B3R7) + (B3E5) =0

B3PI + (BIET) = 0

- (B3BO) + (B-g48) =0
AKSZ AKSZ

So far we have proved that defining ¢ : FaE57 — Fpep is such that *(wh, ) = wpE5? and
©*(SM. ) = SAES%. However, we also notice that the image of ¢ is given by the restricted BV
PCD fields, i.e. ¢(FAS5%) = Fheop. Indeed

o' (W) = " (@ — et — 1207~ E1E") = ef ! € Im(W2CD)
and in the same way
7 ( (d@é + 1 vl - [eww) — e Wi H(W)AE" + 15 (@51 — aié”))
=e(o+ "' B),

for some ¢ and B. This concludes the proof.

B.2 Proofs of chapter

B.2.1 Theorem

proof of [{.2 Having obtained the Hamiltonian vector fields of the constraints, we can compute
their Poisson brackets. The pure gravity sector has been computed in [CCS21a|, we refer to it
for the details, and concentrate on the Rarita-Schwinger sector.

Remark B.2. In the following, instead of the definition via the symplectic form {F,G} =
X txe @, we use the equivalent formulation {F, G} = Xp(G)(= ix,0G = ixptxe@)-
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(Lo} = [ ~lesclede + gleselin’le o] + gre (et v] + %l e )
= /ZJ _[07 C]edwe + %6 (_15[07 ’73]11[07 1/J] + ’(Z}[Cv 73]‘/[67 ¢] + 21/;73[07 [07 ’(/}]])

— [ ~lescledue + gedn® e, vl
g 3!
= / [e, e <dw6 - 17/;71/’> = —Lica;
b 2 7

(Lo M} = 55 [ lnel(daxn® + 00 dow) + elldcs X0+ duir o] = 0o ] + 00 )

1
Bl
_ L
-3 s

having used Leibniz rule and an expression analogous to (4.15]).

/E e(duxle, Vv — xle, Vlvdut + [due, X170 — duxle, VP lv e — (e, duX]y? e — X7 [e, du))

e(dw [C, )a’yg'(/} - [C, X]Vdez/)) = M[c,x]7

(Lo P} = [ geedue = gledGrLe ) = e (e T L + 0912 e )
1 /- _ _
= [ Lercedue = gre (Bl Lg il + 9 L0 d] = 9l L)
1 - 1-
= /ZL‘EOcedwe - 561&73 [L¢le ] = /Eszoce (dwe - 21/}71&)
= LLEOC;
1 T3 T3 T3
(Lot} = [ =leAealeF + gixen (i duts = 59 ldue, ] + 90l
= [ “leale + gren (e il dow - 57k duv)
= / 7[03 /\en]er + %)\Enﬂ_}[C, VB]dew
s |
- / ~[e, Ay (er + ;m‘”’dw)
E .

=—Px + LLx(wfu)()) + MLX'L[) — Hxn,

where, letting {z'} be coordinates on ¥, we have X = ¢ [c, \e,,](P0; and X(™ = [c, Ae,,]™,
having set efzeg = 6;

1 ) _ -
{Pe, M, } = /E — gL e(du Xy’ + X duth) — iexy P lee Fu + Lg% (w — wo))
1 — 3T wo =3 wo
= 5y e(doX L — Xy duLgY)

* 1 wo — wo , 7,
[ b (i - i) = i,
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where we have used integration by parts and

[Le°, doltp = [teFuy + L (w — wo), Y] (%)

w 1 wo T, n wo n wo
(P, Hy) = /E L (hen)eF. — gihen (Le 07 duth = 97 e Py + L (@ — w0), ¥] + 977 duL"v)

* 1 -

= Lwo(/\en)er + Lwo(/\en)l[}’)/gdww
s ¢ 317¢

= PY - Lby(wfw(]) - MLyw + HY(ﬂ)v

where ¥ = el L% (A, ) D0, ¥ () = L (Ae,)™.

1 1
{My, My} = 5/ XXy + X7 duth) — eMuxyY + de’deX
3

1

——d,xduey’x + *em 3Fu.x] +

1 3 e
T2 3' 3! 31X duMy

3!

1 _ 1 _ .
31Xy duX + 3X7° [Foo x] + ?dwede’YSX + gdweX "My,

=l ;
/

! ’YXGF
1 1- o 1-
35X xvxeF, —ea®(x,dux) | dwe — F¥rY — 87X, dwx) | dwe — F¥rY
1 1
5 2LL¢(W wo) ZMLW\[, =+ Hga"

where ' ;= yy®xel and ¢" := Yy%xe”, having used that M7, o< x, hence )’('ySMfL x xv2x = 0.

1 W w
{Pg, PE} = /Eedweb[é’g] (w — wo) + ib[g’f] (ez)Fw — edwer0 + 3'L 06’(/}7311 o¢
wo 3 3T woT wWo
+ e (Levy e + oLy
1 w
= / edyeve ¢ (w —wo) + Ue8) (e*)F, 67#’7314[505 P

- ed ero + ﬂ/ﬂ’ [[’ﬁl’ﬁmed]]
= Pleg — Lbsbsto’

having used

LOLYOA = L“’O A+ 1[L§L§FWO,A]. (B.9)

[€.€]

1 - 1-
= / dw(Aen) <)\€an - 1,/}’}/3H¢> + Aep <dwe - 7/”)“/’) H.
D 3! 2
1 _
+ gpAen (Hgr duty + 97 duHy)

1 -
:/)\eHwoJrf)\enz/ry?’Hlb:/)\2(...):07
b 3 b
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having used the fact that A = €2 = 0 and that d,,(\e,)Ae, = 0;
{M,, Hx} = My (Hx)

1 1 — 1 -
= / —Aen XYY F, + dw()‘ene)Mw + *)\endwj(’ygdwd} - iAEnwvaw + *')\en'l/ryg[Fwa X]
b !

3! 3

1- 1 -
= /2 —Aen XYY F, + Aep (dwe - 2¢W1/)) M., + g)fn (?/173[wa] + X“YB[Fwﬂ/)])

[ e (e~ 20) = [ ea?00) +as?00) (due — 3574

= Laa(enMw)

having used the structural constraint and that e3?(y,v) = 0.

B.3 Proofs of chapter

B.3.1 Computing 4?7

To obtain the full expression of 63(, we start by the simpler case of (Sie. We have

1 - 1 1 1-
52e =0y (x1Y) = —5te¥Y + Xydot = —idw(fwx) + 5% (—2ww)

1, 1 1-
= 7§L“”6 + Sl <dwe — 21/17@&) ,
For the computation of 631, we have

1 1, 1
5>2<¢ = 6)((_de) = _[5XW7X] - idegow = _[6Xwa X] - §L¢¢ + ibtpdww~

We now need the explicit form of dyw. In order to obtain it, we rewrite d.,7 in the veilbein basis,

i.e. define 1 1
dyt == Epabeaeb = i[vaa [Uba 62”pabv

hence obtaining

1 1

eaxw = _m)_([vaa [Uba 62]]73pab = —mfé ([’Ua7 62[”1)773” - [Ubv 62][1}(1773])
(1 1 1 o\ ab
=€x 5%17 €p = YVaCl + 16’717'711’7 + ieva'}/ P

Recalling the definitions of 4 := y*e#0,, € X(M), and of the mapﬂ

<e,->: Q) QUL+

o — van“deg Lo, o,

we have

1 1 1
Opw = 5)’(@(72@)7,/)) — X7 < e dyy > +Ze>@@b@(7dww) — ie)@@ <e,dy>. (B.10)

2Notice that, with this definition, [e, < &, dyt) >] = 2dw.
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For computational reasons, rather than [0,w, x] it is easier to compute éel'yi3 [0yw, ], since the
multiplication by %6173 provides an isomorphism from lemma Furthermore, without loss

of generality we can contract the expression with a generic Majorana spinor A. Using (A.50)), we
find

1 - 1
56)\173[&(%)(] = f)\fy’yxeéxw + 5. e)ry[éxw Yx

—— M XX dutd + —= 7P x[e, Syw]

2. 3'
(E19)

= 7 3,Aw xle, dyw].

23'

Now, a rather long but straightforward computation gives
_ _ _ 1
[6, 5xw] = 5X’7dww + X'Ybﬁ(ldww) +x < €,jdu¢ > +Z€Xb&b&(jdw¢)-

We notice that in leysx[e, dyw] all the terms containing x7(-) vanish because of lemma
Hence, eliminating the arbitrary spinor A, we are left with

1 1 _
377 10w, x = o 3,77 XX < €,9dut) > + —ery XXy by (ydut))

3! 8- 3'
7 1
=" —ey7’x (Xﬁ(< e,vdutp >) + bevbv(de'@[]))

]

3!
hence showing
] = (< €200 2) + gxiais o) ) x
and

1
02y = —7L‘”w + w dutp — (xm(< e, ydwt) >) + waw(vdu@) X

We notice that computing eéiw defines 5iw uniquely due the fact that the map e A - is an

(172)

isomorphism on €2 . Hence we obtain

_ 1_ _
eéiw = 0y (edyw) — XYPoyw = &y (—3,)(73%;77/1) — XYdw
1 _ 1 1. ~
= ﬁ%(¢)’¥3dww - gxf’ (0w, ¥] + ng?’ [Fuu, X] = X7¥dyw
= L (Lt d [0
= 5%@ gw’)’ Wy 5. 3,¢L<p('7’ W) + 3!X'7 [y w, Y]

1. _
+ 5 Fuxx = xyddyw

1 1
=—cel by, + ¢

D) 5 ¢ch (7 dy,1)

Lo
Lo (er + ng dww) 5 3l

1 _
+ §x73 [y w, Y] — XYdyw.

Now we can use (A.50) to see

_ 1_ 1 _
NYYoyw = ngg[t&w,w] - g[éxw,xh‘%
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hence

1 - 1 1 -
eéiw =— 2€L¢F + 2@, (eF + !wvgdww) ~ 3 3!wL¢('deww) — ng?’[%w’)d

1 1 - 1
GL@F + 5t (eF + |z/w3dw1/)) - 2'3,1#%(73%1/1)

— g%iax (Xﬂ(< e, ydu >) + éxwaa(vdww)) :

B.3.2 Computing Q2

The detailed computation of Q3 goes as follows: we start by using Q2 = [QpC, 0y] +5>2<, obtaining

Qie = Qprc(X 1Y) + 0y (Lee — [c¢]) — 5Lg;e + 5t Ly (EoM,,)

— ]' w
= LExy = [e, X —xyLgy + xale, v + SLge + [tewy. o]
e 1 1
= L (Gevy) — ledyw, x] + le, xv9] = SLge + 5 e (EoMo)
1
= §L¢ (EOMO_,) 5
similarly, we have

Qv = Qo(Lgy — [c, ¥] — dux)
=3 eg¥+ LZZUJ + [tere Fuo, ] — [LE e, ] + [1edyw, 1]

- Lg 20+ Tl ¥] + Ldux + lles o] — 3 icte Fon 0]
= [edyw, ¥] + [e, LEY] = e, [e, 9] = [e, dux] + 630
— [teFuo, x] + [-Lge, x] + du (—LEx — [e, X))
= %Lwdw’& - (Xli(< e, vdwy >) + ;XL@L@('ydww)) X
having noticed the following
o sLit ¥+ leteFu, ] — LELEY — 3ligteFu, o] = 0;
o Lgdux +doLgx — [eFlu, x| = 0, since [L¢, dy] = [1e F, | on any field;

o 3lle.d,¥] = [e, [e,¢]] = 0 using graded Jacobi identity.

For the connection, we see
eQu(6yw) = ;,Q (P dut) — (Lge — [, e]) by + 82w
= — X~ 6 At + 0 P — duc U
- ?%Wd (L9~ e, 9]) — (Lo~ [e, el + i

1
**Lw( Y dp) + [C XV dut] — (Lee — [c, €])dyw + efaw
=e(Lgdw —[c, 5Xw]) + eéiw,
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hence obtaining

eQiw = eQo(1e Fyy — dyc + 6,w)

1

— §€L@Fw — eLed, 0w — e[0yw, ¢] + edytedyw + el dyw

— ele, oy w] + eéiw
1

23!

1 - 1
- gy (R(< 2 >) + prusss ()

szga(’)/gdww)

1
= ibw (EOMe) —

For ¢, x and &, we can do the computations of Q3 right away, obtaining

1 1
Qic = Qpc(tedyw) + 6y <2L§L§Fw - 5[6’ o+ Lgéxw)

1 1 1
= 5%)5]5,@ + 1L dyw — tefe, 6 w] + §L§L¢Fw — §L§L5dw5xw

1
— [tedyw, c] + §L¢(5Xw + Lgéiw

1
= 5%‘5)&" + LéQ(QJWa

having used the fact that %L[g,g] Oyw + teLgdyw — %Lgbgdwéxw =0.

For Q3¢, we see

Q) = 5Q0(I6,8 + ) = 516,61 + 5Qu(Tr"xel)?,

1 _ _ 1 - 1,
= 5169l + LECO)Y*X0 — e X" X0y — 517" X0u + 5X7* X Qo(€6) -

Now, since egez = 6%, we have Qo(e!) = —e’e}' Qo(e?), obtaining

1 1 -
Q5(8) = 51, €] + L (D" X0y — les XIN"Xp = 52607 X

1 — v w —

- ieZX’y X <(L§ e)1b/ - [Ca el/]b + X’wau) au
1 _ _ 1 -

= =56 Pl + LEOY Xy — [es X7 X0 — L9y X0

_ 1_ | —
+ 5X[e Y X0 — 5XY 10, + SXLE (19X

1.,
L¢ (@) + 5Lg (0r"x8,) = 0.

N = o~ N
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Notice also that this tells us that Qop = L¢ (¢) = [§, ¢]. Lastly,

1
Qix = Qo <L2)X —le,x] - 2%/1)

LK gx + LgaX + [teteFuo, X] — [L‘gq X] + [tedyw, x] — L?LZJX
1 1
+Lw[c x|+ Lg Lo — [L§L£FM7X] 2[[07 cl, x| = [L§6XW7X]
1 1
+ [C, LE)X] - [Ca [Ca X]] [C Ltpdj] 5 <P]¢ + (L?d’ - [67 w] - de)

=0.

B.3.3 Showing the CME

Proof of [5.1, We start by considering the variation of The full computation is long and
tedious, hence we do not provide the details. However, carefully carrying it out yields the
following Hamiltonian vector fields

1 1

. y 1 .
Oe = 5ptd — §L¢¢:Lge ~ 1t o(eLed)
1 1 .- 3 I
eQu = §L<pe + T 3,L¢(w07)7 v+ 3,w7 to (@) = g3t Y — ey gt
7 . 1 .
1 3'1/17 L (ya(Cee)) + 5 3'w'y XK {< e, X <_2721/)6‘ — [0, 7]y — §1LEC¢ - Lg’}@?/)) >}
1 iy 1 .
+ 16 3,1/)7 XXeaty | =50 %0 = [09]Y = Sated — 1eatd
) . 1 1
Qo = 11 (9) — T (0(0) — b1y (aergen)) + rpx— grplicit)
1 .
+ an (< e, )’(f@/}é +aix[w — %Lgée + 1eed] >> + TGXXL?YL?)/(12'¢)S +ifw — %Lgée + 1eec])
e? T_ oy 1 1 5 1 -4\ 3
ch = —gxbgﬂ/} 3. 3, (WX’Y ) — *Léehpe + - 1 Le(etpe”) — mbw(@/’olh Leey
1 . 1 .-
b it (@) Y icet — Srelipt?) — core@7 )
- - . 1 - e .
+ grte (07X < e (@28 + 19795) >) — geeety e (< e ([0, + iv*0g) >)
1 - _ . , 1 - _ . )
+ 35 g teey XXy ([0, 719 + 0°05) — g5 e (Vv xxests (0,910 +i945))

while the full vector field ) is obtained by summing Q = Qg + q, @x = Qox and Q& = Q€.

Now, to keep the discussion somewhat contained, we explicitly compute Q%e and show it
vanishes, as similar computations and arguments work for the other fields and ghosts too.

Before we begin, we remark that eq; = —&(, and éqe = —eQ.¢. We then start by computing
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A() = Xxv*xa(e%)dy, obtaining

(") = —elel v xa(e)

. 1 . 1 . 1 v
X7’ X <2(L¢w)l; - §(wc)y%eb - 4(L¢(6bL£c))V>

765
1 1 1
= —e} (2%@,&1!’ - iwag,éLgeb - 4@@,(6%56)) =0,

since ¢, is odd. Now we have

Q%e = Qe + Qoe + qQoe + ge.

Notice that g%e is quadratic in the anti-fields, while the other terms are at most linear, hence

we proceed to show g%e = 0 separately. Notice first that from lemma we can equivalently
2

compute %QQe, obtaining

622 e2 1 1 . 1 (cted)
—O°e =—0 | =t — —t,Cee — =1, (eLeC
2q 2q ole o letle g le\Cle

e? 1 1 1 1 . 1 1 .
=5 |~ gtels + Slelatge + lelle | Fletd — Stplige — Z%(e%c)

_|_1 ( )_|_1 > 1 ) } > 1 ( ")
1l etels 1o | el ( Glew — lpliee — Tipleted

e 1_ 1_ e? e e?
= 1%(6%) + ZX“YXeqUB - ZX’YX% (2%> + ZLsaLE <2Qé>
e [1 | .1 . 1_ .. 1 .
+ 5 Lﬁ“”aﬁ%w — ZLWC%L(FCL&@ + gX’YXchCLE%C — gLWCL%,Lgc%e

1 (1 .1 1 .
+gtetel | Sle — lplice — ZLg,(eLgC) .

Making the expressions containing s and Qg explicit is quite a cumbersome challenge. The
reader will excuse us for not providing all the steps, however, when the dust settles, we are left
with

e? 1 _ . . . N 1 N .
Sate =k, (w%(ec) — &P = (1P + Jrelee() + e%gc)?)

1 _ . . . . 1 . .
— ELV, [XVX (wbg(ec) — % - (L§€)202 + Zbg(e2)L5(02) + 62(L§C)2):| =0.

To show that %qu = 0, first consider any Z € Q(*2), then the expression above is of the type
XTVXE € Q43) - Now, thanks to lemma |A.4l6] and we can see that there must exist a
0 € Q10)(Sy,) such that

- 1 g
XEx = gle, exv*10).
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Similarly, using 5, there must exist a 6 € Q%1 such that = [e, §], hence finding
o 1 _ 3 =
Lo (XIXE) = grtele, exv*20)]

! —le;exy* v [xrx. 8]

1. _ ~
= o[ exy’ro] - 30

1
30 e, X" XX7 0] +
: _/_/

3! [
0 from

1 1
= =gl v exyall0 = —5les [Xvx, exy* 0 o

As it turns out, after some manipulation involving a mixture of Leibniz rule and Fierz identities,
we have [e, [Yyx, ex7*70"]] = 3[e, xyxx7?7%6"], while, thanks to (A.50),

o 1_ 5 15 0 =
XXXV 70" = X [0 X] = g0y Y XX evay 6" (B.11)
Ee) 1 _ 5, _ Eesny 1_5, _ 4,
= — X7 0" XX B2 —3Xr e
&= 1 @D 1 _
X7 X0 X X7 Y0 X Ve

(a6
="~y =0,

. 2
hence showing %qze =0.
We now consider the remaining terms of Q?e, which, after some rearranging, read

_ 1 . 1 1
q (Lge — [e,e]e+ X’y@[)) + Qo (L@w — plelige — 4L¢(Lgce)> =

_ 1 1 .
=[t¢tuw, €] = [Ge, €] = X7y — 564(Qod) + 5 (Qolree) + Jep(eteQoc)
1 o1 . 1 . 1 . 1 o
+ §L¢L?w — §L¥,L?CL£€ — glelUege — gletig gl + SHEEEXTX (B.12)
1 e 1 T 1. .1
_ Ze%LELg ¢+ ZLng EXTX ~ 5o [e, 0] — FXIXC + 5%09(7%1/’

1 . 1
+ ZL¢L£CX71[} - ZL&CX7L¢¢.
A few remarks are in order. First of all, notice that the term f%Lonw contains a term (propor-
tional to the equations of motion) that cancels out exactly the non zero part of QZe. Secondly,
we notice that, in order to obtain @Q%e = 0, we need to implement some terms in q. to balance
out 1¢0., in particular we are missing all the terms proportional to ¢é. Explicitly, eq., contains

1 .73
g gV Y — o 3,1#7 Lo (ya(Crgery))

1 1 .
~ 3 3'¢7 Xk {< e, X (2%501/1 + LE’}/C’(/)> >] (B.13)

el(é7€aX7w) =

1 - B 1 Y

hence, to cancel them in the computation of Q3e (and in general Q3), we need to addE| to Q.
terms of the kind ¢¢l(¢, &, ¢, ), resulting in a correction term in so

1 y
ichgl(C,f7 ®, 11[})

3Similarly to adding Lgdxw to Qoc
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Hence, in the computation of %([aqu, e] — [Qc, €]) we are left with
2 2

%([Lﬁth 6] - [qcv 6]) :[67 %qC] + %[e,equge] - %[6, eLE(eqw)]

__ ¢ <on3 1 “on3
—m[% (LoXV°) €] — 6.3 [Leery,CXY°1), €]
i 1 L
- g[xw €] + ﬁ[w(wm V), e].

Similarly, when computing —%LLPQQ(I) + %LonéLge + %Lw (ete@Qoc), we notice that a lot of the
terms in Quw are canceled out by LEQQéH In particular, after noticing that

62

. e . 1_ .
— o le@ow = —wa(erw) + XTXEQo@

and

2 /1 1 1 2
% <2L¢Q05L§€ + 4%(&5@05)) = Z%Lg < ro> - fxfyXLg <62Qoé> ,

one finds that the remaining terms are

(k00 + Liootice + 1 (ere0) ) =
5 5leQow + StpQolice + ip(eteQof) | =
2

e e 1_
=— ZL¢E0MW + Eupdw%wj — vaxdw%wj —

L€
e, Lpw] — ng(dengcj + tetedy,c?)
1 2

3

w 1 — v, 1 —Iv 3
vxnge . 1t <2X7ww+ PRl }w)

,N._. |

1 e
+ §)27x(de5LEcj + Lngdij) + Z%(UDL?e)
4

5
1 /1 1 e . . . 1 X

- ZX’YX 5)(71/100 + TS!X[W/Y 1)+ 1k §X’Y¢ <L§60+ 5%0) - ﬁX[(%GCJF 2L§C) Y 1Y
1 1 1

- ZXVX [QX“W (%654' §L£é> - 2.73!5([(’/660‘*' 2L§C> 73]¢]

— S (Letdini — sidale I ) + 21 sedin — s dinle v
1t | 3e%077Xx — 57 3, ol T 5% — 5 3, ole 7’ Ix

e 1 . 1_ 1. . e _ . 1_ _ .
- ke (QL?(62)0> + XX <2L5 (62)6) = Jtote(Xyved) + XX (Xyibed)
7 8

€ 4 1 4
_ zbwadww ) + iLgdww

)

10

(B.14)

where we added terms proportional to Lgbgdwcj, which vanish since d,c? = 0.
Now we notice that

o (B4 + (B.142) + (B.145) + (B.14J6) + (B.14)9) + (B.14]10) = — S v Ly
« using the identity

1 1 1
§L[§a§]A = _§bgbgde + LgdegA - EdeELgA

4All the terms in Qo coming from the variation in Sy of Lg() with respect of w are exactly canceled by the
ones in t¢Qo¢ coming from the variation of [c, -] with respect to c
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and the fact that ngcj = —dwbgcj, then

(B14B) + (B14[) + (B14[7) + (B-14R) =

e (1 1 o1 oo 1 1 we, € s
=3 | gletege T gelotiegl T Gleetole €+ SXXUegC+ PXVXLLEC+ Jrptelec ).

Now we can finally compute the full Q?e, taking into consideration the full expression of Xvdy,

from (B.12)
Q%=

veetolT e — LRt e+ e [ @Y ), €]

1 1
[te (1o@XY°Y) ] — ]
¢ (e ) . 16-3! , 8 ,  8-3l .

_°
16 - 3!
2 2

e . e 1 . 1 ..
- §L¢L£ w5 - Z[C, Lsow]s + 4 (2X71/M + MX[W773]1/J>

7

e /1 | 1 . 1 W 1_ . 1_ W e W
+ = | Tlelliege + gelplie gl + steetoLf ¢+ oXIXLe ¢+ oXYXelEe + Tipte L
2 \4 g 8 9 2 0 8 n 4 12 4 13

1_ 1_ . 1 _. 3 e |1_ . oe 1 /7 . e . 3
— XX <2xww + ﬁx[w,v ]dﬂ) . + gt [QXW (L§60+ 5&56) LT ﬁx[(bgec + 5%0)16,7 ]1/1}

1 1
— —XYX [2)(71/) (l{eé + §L§é> . — 2.—?)!)’([(%65 + gbéé) 18773]1/)]

1
2 -3l

1
2 -3l

NG Y

i - 1_ i - _
Ly (zewéwx — wév[emg]x) + X <26wéwx - Pole. ﬂx)
19 20

— %Lw (104(&5 ew)) QJ

2

_ . 1_ _ . e“_ |1 7 .
— Jhete(ed) + Txvxee(rved) — Xy [4L¢(W€) — 1t (va(@y))
21 22 23 24

B y 1 . 7 _ . T .
XY |:L¢CX — §L¢(Lgc¢) + X << 67X12w328 +ixX[Wag — glece + L§€C31,”)/]1/J >)]
26 27 — - — )]

3

1 N 5 2 /1 1
-y (16XXL4{L4/(’7 1/1032 + i[Wgq — §L§¢3634 + Lgec%,'y]w)) + 5 ZL“,Lgcx*ﬂ/;% - ZLECX’Ywa?ﬂ

e

2

62

2

2

e 1 1 1 1 1

C (il — ZiLlhee — cipluege  — —lotiegle  + legdx

+ 92 2L<F £w38 2L‘P 13 Lg 39 4[’49 L[gvf] 10 8L<FL[§’5] " + 8L[575]6X7X42>

2

e

2

1 o 1 e 1 . 1_ . 1
*ieLWﬁLEC + ZLng EXTIX  — Zlple W] — SXYXLC  F SlplXYed ).
43 14 2 45 8 16 2 47
(B.15)

We can regroup the above terms to show that the total sum is zero. We immediately see

. ‘B.15|' + (B1538) = 0,

. (B.IBHD + (B.1545) = 0,

o (BI5R) + (B-1540) = 0,

o (B159) + (B-1541) =0,

. (BI50) + (B15B9) = o,

. (EM) + EEE) = o,

. (EE) + @EEE) - o,
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« (BI5M3) + (B-1543) = 0,

« (B15|26) + (B-1546) = 0,

For the remaining terms there is a recurring pattern which we explicitly show just once. Consider
for example (B.15/13) + (B.15019) + (B.15}20) + (B.15123)) + (B.15/28) + (B.15l32), we have, after
expanding the terms

o (B.153) = ge (3777t (795) + exvp (195))
e (B.15[19) + (B.15[20) = 5 et (V517X + saeva v s YPIx — saxvxviyle v¥x

o the term (B.15|28) + (B.1532) presents an added difficulty, which can be resolved once
one notices that, backwards engineering the methods used to compute 6>2<1/J in the previous
sectionEl it can be rewritten as

2

e e ~

(B.1528) + (B.15I32) = ey {(sz?))) ! (g,xvg’wﬁé) ,xvx]
__E v i—?)wj_ i —3wj[e— ]
= =3 | X706 X Y0 | — g X ¥ le XX

N
o

I P R S i 313
=3 [mx, 317 7%] + ggixle v Tavoxx-
it is a simple matter of algebra to see (B.153) + (B.15]19) + (B.1520) + (B.1523) +
(B-1528) + (B1532) = 0.

As previously anticipated, one can analogously show the following terms vanish

1) + (B-15|2) + (B-15)2) + (B-15|[15) + (B-15)16) + (B-15|17) + (B-15|18) + (B.1521) +
22) + (B.15125) + (B.15127) + (B15B0) + (B-15I31) + (B-15B4) + (B15]33) +
36) + (B-15]37) + (B.15JA7) = 0

B.15

IZAE

o (B15H) + (B.15][7) + (B.15)[14) + (B.15|29) + (B.15l33) = 0

Now, in order to show that Q% = 0 when computed on the other fields and ghosts, one needs
to perform similar manipulations as in the case of Q2%e, but we think that explicitly carrying
them out, while equally (if not more) challenging, does not provide any further insight. O

B.3.4 BYV pushforward computations
Proof. Proof of Adapting the proof from |[CC25b|, one can easily see that, considering the

5In this particular case, it suffices to notice that (B.15/28) + (B.15l32) is exactly equal to

1 [ ’ ]
Y& )
X X

which is easily seen after comparing it with the expression of [dyxw, x]. One then just substitutes dw1 in dyw with
ilzng to find that « is such that ea = éX’YSjibg- Then the above expression becomes

82 82
—wa[a, Xl = Yy [, Xvx]-
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extra terms inside the supergravity structural constraint, we have
PC\* s 1 ~ [ 4 - 9 o -
(62°) | Spe+ —E, 60—y, 0 -y’ + g9(v7) | = Spe +
Ixs 2 ;

+/ L?émjﬁj —en[L?e,yj]ﬂj
IxX 1

&, e[, 9] + hpc(v7)

N | =

X2

v, 35 @ 7~ oo, Nimd 5 7
—enle, LEy |0+ enlg (W) + SLE (en)'fii ey
3 4 2 5

1 i ~dfn T £n ~ cn o~
+§(d@n€n)lﬂf§ Yy + (dg,e)§ xjﬂj7+€n[dwn€7yj]§ Mjg
6
1

~ - = ~ Nn - 1 - = ~ - = ~
+ enle, do, IS = enda, PYPE T, + SEv Py SeLvPyY
11

12

- énxjdgn/ljlg + €nlén, yj]dgnﬂjm + Lzyjdgnﬁjw — €nlé, w]’ﬂﬁﬂjm

. o R 1, = - )
J]ij - e, yj]vdlg —[e, e}xjﬂjlg _ 5[c, €n) ,uijew'yz/) +M2
= 20

+ e[l €]y .

(B.16)

where hpo(9?) = f(v?) + (LeFo + Fy "+ d,¢)o7. We also easily see that

(B.17)

We immediately see

- (B17P) + (B16[1) = 0.
« (BI17B) + (B163) = 0.
- (B17H) + (B.16[§) = o0.
« (B.170) + (B.16[9) = 0.
- (B.17[6) + (B16[14) = 0.
« (B17[7) + (B16[15) = 0.
« (BI178) + (B16]20) = 0.
- (B170) + (B.16[19) = 0.
« (B.1710) + (B.16[3) = 0.
- (B17M) + (B.16[) = 0.
(B1712) + (B.16]18) = 0.
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We are left with computing ¢3(s;, + s3), where s is given by (5.7) and

1
e [ (@ et + e, e, G+ )

— X7, & — Xvdén — %5@3 (dgniﬁ + da@n) - S,XW 3y bk,
i (L2 + do, 8" + Yud” — 7, zZ] —dg :) o
—1 (Lgén + LQJEJJ - d (wngn) -6 n )i()

—(@idmwumﬂ—

1 1= _
iL ¢ wn@"

1 ~n

5 f + f .

Notice that ¢3(k?) = 0, hence we obtain
5 (s + 55) = o+ 53

:/I Z; (€n¢’y v, 9], +61Zw3[v,1/?]2+é1;73[azu + i, 9], + ev3[v, ¥nl )

el i 450 (dalent”), + 0B+ kury + ok, g (R, )

12) (‘Tjﬂj12 + En[év yj]13> + )ZCIYJJnlélzl - ?12)’73 ([M15 + Lf(/ljuiaw} + [Vv 1;”]17) ];

iy
Gl i S0+ (120, dan 08, + D, e, ) i

18

X7’
v ~1 74 1 ~ Q’~j
—en (Mg + [y, x]zs) YOI = iltatyg + Lg iy X7 + Sigv (inzg +M29)

+ %L¢(en)k¢u3 + 2<p (L)”(Erjlﬂj + d(EnTjﬂj) o T Lzéiuw + L.v]en, Ié[f]%)

+ " ( 9., €n ) K LT Lxi en, ku ) % ( (enfi?) 6T U[I,j37 +@38 —&-@39) L@ij
+%(L)~((lcc ) + 270 41+en[e y ) I:c %(dw enu L/]j44+@45+LZVZJ46> l:cngbn
+%(LX(13ﬁj) a2 ety ]49)7@ +% kit gk

= 50
(B.18)

We can then see

- (B18[) + (B.16[12) = 0.

« (B18R) + (B.13p) + (B.18p1) = 0.

» (B18B) + (B.16[13) = 0.

- (B18[) + (B.16[8) + (B.16[7) + (B.I621) = 0.
» (B.18R0) + (B.I6[) = 0.

+ (B18R1) + (B.IGTI) = 0.
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. (B1323) + (BI8T7) — o.

Therefore, noticing that S5 = Spe + sy, + 85, we have

é,¢[0,0] + f(0°) + ((6>~< + )0 +Mﬁ) o

el R XY (dolenfi™), + 0, + kv, + tovky + o5 (k). )

I

~ 7 ~ ~ ~ - 1 ol ~ 7
+ 590 (25 + enlesy], ) + Xoduky, — X7’ (leavy, + g, 0]+ 1,0l )
= Ol =il X, (doX, s + X1, ) 708"

_ i[LZyls + Lxﬂjlg,):(]’lpj + §L¢V (@20 + [en; kﬂj]m)

o "

1 1 . - .
+ §L¢(en)k,u + 2s0 (L)"(Ci/ij + d(e,i? ) .t chnz/24 + v [en,k,uj]%)
1 3 <
55 ( wnen +LX/’L ['fmk/i ]27) +§ (dw(EnM ) +0-,U/ 99+k v +Lzl/k ) k
1 2 ~ < 1 <
+§ ( X(kuj)32+xiuj33+en[e7y ]34) L¢k+§ (dw(enﬂ ) + o 36+k V., + vk )
1o 5 44 E S B
t3 (Lx(ku )go + 200+ enlEy ]41) kn@" + Svkighn K
(B.19)

We are therefore left with showing that all the underlined terms above exacltly correspond to

(65 + q)0v?. We already remarked that we only know e(d; + q) and not the full expression.
However, we notice

(03 + Q)0D” = en[(d5 + A, €]

It is then enough to apply the operator (d; + @) to the constraint (5.10]), and isolate the term we
need exactly. In particular, we see that

1= ~ 4 T~ ~
(0g +0) {en (d@é - iw’yw + (ky, — sz)df”) +ugk? +ér? + e,y —éo|p?=0

yields the relevant term €, [(d5 + )@, €] ﬁjﬁ We apply the operator to each addend one by one,

6We have used that 77 = ]zn — LZI:c + a and that e,a = 0.
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obtaining

enl(dx + Q) (@ +v), i =

+

2 -~ 1 T 3
=n 4~4 = =n 4| ~4
(L¢k+kn<p 25) T+ e [xw% t5 <L¢k+kn<p 27) Y } fi
1

+ enlé, (5x + q)yj]ﬁj% + Mzg + 2 (Mgo) g

len, ki) @™ 5 i

- _ 1 g 1 S
— v, x|vvenis g §L¢V[en,k;/ﬁ] _ ibzy[en’k“jhpn B ;
(B.20)

32 33

where we have used the definition of §, and q from (5.6 and (5.2 E| Furthermore, we have used
the fact that @ + v = ¢(Q) to compute €,u°[€, (6, + q)v] = (6, + q)vv-.
We are just left with checking that all the terms in (B.20]) appear in (B.19). We notice

. = (B-20)28);

. = (B-20[4);

. + (B-19][16) = having used integration by parts;
. (B190) = (B-2029):;

(B19E) + (B-1914) = (B-20/6);

"For completeness, we compute explicitly the terms en((sxl:cn + Lzélsc)dénﬂj. The computation works for q
equivalently. We know from (5.2)) that in the bulk

eduk = Xk — Xl X~ epe. (B.21)
Selecting the component along dz™, we obtain
Endyhk + &0y hon = 12 (B0 k) + pendyk + E(Bxkin — 1203 k),
hence, using endé"uj = év, with e,v = 0, we have
en(Oxken + 120k)dEM i = VE(Sykm — 1203 k)
=v (énaxfc &by — Lz(éaxé)) ,

which gives the desired result, as énéxlvc + édxlvcn and édxl:: can be found respectively as the transversal and
tangential components of (B.21]).
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- (B19[) + (B1911) = (B-20[9);
- (B19[0) = (B-2021);
(B.19[9) = (B-20]26));
« (B19[0) + (B.1913) = (B-20F):
« (B:19[12) = (B-20L7);
o (BI915) = (B:20[7);
o (B1917) = (B-20[31);
« (BI9[18) = (B-20/[10);
o (B.1919) = (B-20[19);
. (B.19R0) = (B-208);

B.192T) = (B.2032));
o (B19R2) = (B-20|[15);
« (B19R3) = (B20[18) + (B-20][14);
= (B-20/[11);
. (B.19P5) = (B-2033));
o« (B19R6) = (B-20][16);
- (B19R7) = (B-20134);
« (B19p8) + (B1935) = (B-202) + (B-20)3);
(B.19129) + (B.19136) = (B.20]30);
« (B-19B0) + (B-19H2) = (B-20/12):;
(B.19B1) + (B.19B8) = (B-20/13):
- (B19B2) + (B1939) = (B-20123) + (B-20024);
« (B19B3) + (B1940) = (B-20125);

(B19134) + (B.1941) = (B.2027):

. l ) = 0, because lvc% = 0, since it is an odd quantity,

which concludes the proof. O

TEEELEEELE
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Proof of[5.4} We start by noticing that all the terms of the quadratic part sy of Sg¢ are left

unchanged by ¢1, except for the term 1kL4P 4. Therefore, letting

2 1 -
Asci= [ Rt gyt - (e~ [e.e]+ xr)e’
+ (tgFo — dwc + dyw)w” —i(LgP — [e, 9] — duX)¥”

1 1 1
+ <2L£L5Fw - 5[6, C] + L§52w> Cj + §L[£’€]£j + §L4p€j

) _ _ 1 - 1/, . e
—1 (Lz’x —le,x] — 2@1/)) x>+ 3 (w — €€ — §L£C) e,

we just have to show that

¢’{( gG+/Mee[ 3 + h(o >>=Asc.

In order to do so, we start by looking at the proof of the corresponding lemma for the pure PC

theory in [CC25b|, we see that, with the new definition of structural constraints, we have

o1 (s;c + [ gedloil+ h(@j)) = Srct [ Soneniri-opQ (0@ + 8) + o + ) 7.
Ix3 Ix%

At this point, we see

Asc = Spo + / L e duts — Xy + Sy

I><E3

— (L2 — [, ] — doX)P? + tebrwe?
1 s I

+ el i (Lg x — le.x] — 2L<p1/)> X’

Jrl(v ., € ) 4
— (W —1ge€C — —1gC ) L€
92 3 25 '

obtaining

r  _ QT 1 3 3
So=Spot [ g7 (Bt et 26,00 + Er°da, 5+ e dww)

- o~ -~ 1. - Ns 1.
o Xy%néj - )271/@;1 - a)_(’}/:s (d@niﬁ + d@,%n> k— 3—
i (LE0 + o, 0€" + " — [7,0] - daX) 97,

—1 (L?ﬁn + ly 577; d (wngn) - [ ’1;71} —dg i)
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and
Asc = Sre =Asg —Spo+ [ 51 (60,8, +80,0%00,0), + 60203, )
Ix% 2
1 o~ .Y o~y .= o~ >4
+ /;XE _EX’Y ([U7%n}k + [Ua Wﬁns -1 ([Lévvw]G - [U7X]7) w—n
—i(legv,6,] )97 =i (10, X)) 2, + (0@ +0) + (@ + ) 77,
(B.22)
Using (A.50)), we see that l ) = %@fn}yw, and that 1 ) + l D give
1 =~ o~ = o~ = ~
5 (2,770,901 + @07 [5,0,]) o @00, 79 = 0.
A straightforward computation gives, for equation (77?)
* r r 1 T ~ ~ ~
01 (56— Spo) + [ gomentinid — op = (Bl + ) + 9(0+ 9)
Ix%
1 T ~ 7 =~ 7 Nc =~ T~ =~ 7 ~:
= Asg = Spc + / € 0,9) = Xy, Ok + XyYik,, , + X0k
Ixx 3! 1 n_2 3 4
1. _ Y _ = -4 g a7 g =T
— §X73[L£v,1p]k — gD, w]¢n6 - z[Léuan,d? +ifey ’X]sz (B.23)
! 5 e A
- 1 1 1z s <
~ =1~ ~ ~4 ~~4 ~n ~ %5
- ’L[Lé?),)dxng — 50 + 08" ik%(vkn + 1,0k)

10 11 12

1¢ < < 1 ~
sk (16(0F) = (120R)F")  + Sopeniyd —opQ
2 13 2 = 14 ——15

We are then only left to show that equations (B.23]) and (B.22)) coincide. We start by noticing
the following terms match:

o (B231) + (B2314) BV L1 e + e, )i = (B2
. [B220) - E20).

. B9 - B30
. (B.22|.|[) = 1B.23|.|8

Before we proceed, we need to find an explicit expression of Q. Indeed, recall that it was defined

in (5.9) as the part of ng(enlvs —é&d) = 0 depending on ¥ and 1. We start by computing eQsgk
in the bulk as in the proof of proposition ??. It is a quick computation to see

- 1- - - 1
eQsck =e (dwe — itpmb +Lgk — [c, k] — 2L¢(eé)>
T F PP o
DX TR A = g X — Sk

In particular, one has

Q=c, (Qsc:(fc) —dgé+ %szz? ~LZE+ ;2]> .
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The only term inside £ which can be easily found is given by —%Gn (f('y)zg), as the terms pro-
portional to € can be reabsorbed in the right hand side of the structural constraint (5.9). In
particular, we can define

B =0+ %en (X7x€) .

Unfortunately, finding Qsck and extracting ng(lvc) as the part not proportional to dx™, is not
convenient in our case, as it involves cumbersome computations. It is however more convenient
to consider the part along dz™ inside eQgq(k), which is given by &, Qsq (k) + éQsa(k,). As in
the computation of the BV pushforward we are only interested in u9L, we notice that

<

0] (énQSG(k) + éQSG(En)) f)énQSG(ff) = —g@Eancjf - Lg@éQSG(é)a

having used é0 = 0. At this point, discarding all the terms that do not depend on x and v, we

obtain the term (B.23|l15) as

i) = [v (éanc(l?:) + éQSG(En)) + LiﬁéQSG(é)} L _
s X

In particular, inside eQgck, what we are interested in are the terms
[ B i - 1. .
_eibw(ec) - ZX’VQU%V]@[’ - ZW;ZZWZX - 5’“90"’-

We carry out the computation term by term:
. —e%hp (eé€). As previously anticipated, this gives —%en ():(75{5). We obtain

1 = s 1 SO
~pte, (YYXC) = — §U(§" — 1,6)(Lp€ + En@™)

aQ

2
1 (E088) — 2125 ( S1p(€2)E+ B0 g
==Vl e €eC) — <LV =1 e )C een C
gVt lEn 2tz \ 2 14
11
= 5“@(25{) - §Lgvci<ﬁ )

having used the fact that & = &, é¢ 4+ 1€2¢, and that é6 = 0 repeatedly. We see that the

terms above exactly cancel out (B.23[[10) + (B.23|[11]).

o —1ixy?[k,~]p. We have
~ 1 = g 7 1 =~ ¢ 7 1 ~ ¢
0\ =X [ - 4x72[k,7]wn) — 540X [k A
A-50,. jad ~5 jad ~5 1: ~ ~ ¥ ~ 7 v ~ ~5 1: ~ ~ 5
= 0 (X\¥k,, + xka) - X ([ud)]kns + 0,9 1k ) — OOk + ZX7 2, vk

(B.24

2
We see that (B.24][1) + (B-242) + (B.24p) + (B.24]6) + (B.232) + (B-23|3) + (B-23][4) +
(B:23|5) = 0, while (B24]3) = (B22[) and (B.24H4) = (B.22]4)

o —i4p3+?92x. Before carrying out the computation, we notice that —Zitpgy?y?x =

—i[@[;j,x], where the action on x is given only by the part in V of 4?. Using Leib-
niz and the Majorana flip relations, we then have

:j fad
— il ¥ — itz0[, X

e = o4 o =y (B.25)
:Ml—’_wg'
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We see (B.25l|2) + (B.23lI8) = 0, while (B.25[2) = (B.227)), which tells us that (B.23)

contains all the terms in (B.22). We are then left to show that (B.23)) does not contain

extra terms.

%kns,l;:. We have simply

Lk ", (B.26)

since kigk = %L@(k’2) = 0 because there are no 4-forms on ¥ and since k2 = 0 because of

parity. It is easy to see that equation (B.26) exactly cancels out (B.23|[12)) + (B.23|[13).

The above computation tells us that eq. (B.23) is equal to eq. (B.22)), hence showing

1
qs*;( rot / L elo,7] —I—h(ﬂj)) — Asc,
Ix® 2

B.3.5 AKSZ Symplectomorphism

We now want to show the proof of proposition We start by recalling the form of the AKSZ
symplectic form:

§j735w5€1 + 1;’73(5£j5€2 + 1;736w5f‘3 + f‘é@[iv‘gédzll)

| =
/N

AKSZ _ _AKSZ
Wsg "~ =wWpc +/ ,
Ix¥ 9

1 T3 4 e E| o — E| N E| 4 B.27
g e0Uy 057 +i0edt” + iOXOX’ +i05(1ac” + 16007 ) (B.27)

o 4 4 4 4
+ 10y (L559 10 + 1200 11 T+ loeX 12 +iedx 13)

The reduced BV form is given by

Wea = Wpeo —i—/ i(@néwj + i&ﬁégﬁ + 152552
Ix%
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Notice that, as it happened in chapter [3.3] we have
@ (wpe) = HET+

1- _ 1 1
+/ de | =< v?’éw T T T VT )ij?’cj + A6y
s \BIE 31 , 3l 3 ,

_ 1 1
+6(Au‘1)fj( 5 7361# + ,wv?’gj LI St +3Au_15<j73<j>
. J 7 8

_>\ 15fj< §j 35w 4 '&,YSSj _55()\ )§j’y3§j >
d 10 d 11

+iLse0s20?  + ugggjé@jw FisO Y (uzagﬂajM + uzgd(sejw)

it (iL5255j9j16 * Z‘L‘gzgj&gjl?) 7M18

T (S S ngc‘jdfm) s (50D, + iy )

. -1 1 -4 ~1, o -1 4 4 4
+ 30 (Ap )()\,u IS 5&23 + AT 1.8 X24) + (A )(L(;EC 9j25 + 0,68 9j26 — 1. 59j27)

l -1 4,743 -3 4¢3 4  _ p3d5. .35 4 -4.3 4 ~34.3¢ 4
+ 570 )(5i¢7<28+i5w7<29 iw75<30+56<7531+26<v5£32)

—id(Aut) (5(>\u’1)tz<‘j533 AT 0N+ AT e oy /\uflbszijx%) 7

(B.28)
and
o (if@n%j + 0Py + za;zdle)
- %511_1 (27 gjée +er’s 1/)5f ij’YSCWJ SO A j )\ufl(sfj’y%jﬁ)
- %M7 + 55(/\M_1)€ (273<j56 +2ev%0¢7 — wéf fj735¢ +%
_ %5()#_1)? ()\u_léfﬁy?’gdlg - )\u_lfﬁy?’&giu) 3’)\# S (27 ode _+er’s i )

Ly s 4.3 —1y 4.3 4 . 4 4
T ﬁA’u 6 <7M18 + Mlg) + i8¢ (ngé) 20" 200 21)

. —1y =4 4 4 oy =154 4 4 - 4 4
+i6(Ap"7)S (ngﬁ " + 1,00 23) — AT (L@G o + 1,60 25) + 167 (L(;EX ” +1edx 27)

. —1y=3 4 40\ _ oy, 154 4 E N , —1y, =dg 4
+id0(Ap"7)S (L&gx 28+L55X 29) IAp” 08 (L(;gx 30+L55X 31) +1idx6x 32+z5()\,u JLeS X "
~1 —1

— i L5§§j(5ijg4 — i Lgafjaf% + 08807 — ises 007 — itgdS507  + (A )en5007

- Mu—l&f(sejm — i/\u_ngég_j(S@j“ — i/\u_l&i(k_jé@j@

(B.29)
We can then see that the following terms inside ®(w?%) add up to wikS%:
. F + F - G2
: _ =)
: _ =)

y
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. (B.29H) = (B.27]4)
. (B.29P) = (B.27]5)

(B29B6) = (B-276)
- (B:2982) = (B:277)
- (B292) = (B278)
(B29p38) = (B.279)
(B.29120) + (B.29]21) = (B.27[10) + (B.27|[11)
« (B2926) + (B-2927) = (B-2712) + (B-2713)
while the remaining terms in ®}(w§) add up to zero
« (B28p) + (B28B1) + (B29E) =0
o (B.28H) + (B.29015) =0
« (B:28p) + (B:28B1) + (B-29F) + (B29R9) =0
- (B:286) + (B28p0) =0
(B29[7) + (B-29f8) = 0
(B28) + (B-29[14) + (B-2919) =0
- ([B:2809) + (B:29[6) = 0
« (B:28[10) + (B29[17) =0
- (B29[10) + (B29[13) = 0
- (B29[) + (B29[18) =0
- ([B:299) + (B:2908) =0
« (B:29010) + (B-2828) = 0
o (B.29)]16) = 0 because of (A.54) and the parity of §¢~
- (B29p2) + (B282R) =0
« (B:2923) + (B2939) + (B-2815) + (B-2827) =0
« ([B:2929) + (B-28J16) = 0
« (B29p9) + (B2938) = 0
- (B29B7) + (B2813) =0
. (B29A) + (B28[7) =0
- (B:23019) + (B.2826) = 0
« (B2928) + (B2918) = 0
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« (B2929) + (B2933) = 0
« (B29B0) + (B2819) =0
« (B29B1) + (B293%) =0
« (B2939) + (B2820) = 0
- (B23p1) + (B2833) = 0
- (B23p2) + (B2 =0
- (B29p3) + (2835 = 0
(B29p24) + (B2836) = 0
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