
VENTOTENE MINICOURSE:
COUNTING, EQUIDISTRIBUTION, AND SPECTRAL GAP

These notes are a transcript of the minicourse given in Ventotene, with some added refer-
ences. I have not adapted them to the formal format of a written survey but I added references
to the relevant literature. It goes without saying that all mistakes are my own; thanks for
communicating me any typo/suggestion!

1. Introduction

We start with some (very) classical examples of lattice point counting problems coming from
number theory before moving on to the hyperbolic circle problem, with the goal of illustrating
how counting and equidistribution come to be related. This first section is introductory and
can be skipped by the more advanced reader.

We then explain how equidistribution implies a regular growth asymptotic for counting
along lattice orbits in well-rounded families of sets, following Duke, Rudnick, and Sarnak
[DRS93], and how the equidistribution of circles on the modular surface (related to the hy-
perbolic circle problem) is a consequence of the mixing of the geodesic flow via Margulis’
thickening argument — a strategy that was vastly extended by Eskin and McMullen [EM93].

Harmonic analysis provides another toolbox to study counting problems. The spectral
expansion of the counting function for the hyperbolic circle problem highlights the role of
spectral gap as a measure of how well equidistributed lattice points are. We use coverings and
their Galois groups to explain two results relative to the spectral gap for a lattice in SL2(R);
that the spectral gap in general can be arbitrarily small, but that for certain families of
arithmetic lattices there is a uniform lower bound, leading to Selberg’s eigenvalue conjecture.

The best known lower bound in this direction is due to Kim and Sarnak [KS03], and builds
on results towards Langlands’ functoriality conjecture. We prove instead a weaker bound,
following the argument of Sarnak–Xue and Gamburd [SX91, Gam02]; whereas one usually
relies on spectral data to gather information towards effective equidistribution/counting, this
is one instance where counting can in turn be used to say something about spectral data.

2. Lattice point counting problems

2.1. Some lattice point counting problems in the work of Gauss. Some classical
examples of lattice point counting problems arise from taking averages of arithmetic functions.
This is the case for instance for the sum of squares function

r2(n) = #{(a, b) ∈ Z2 : a2 + b2 = n}
that counts the number of ways in which n can be represented as a sum of two squares. The
fluctuations of r2(n) make it hard to predict, but its average behaves much more regularly:

Proposition 2.1. As N →∞, we have
N∑
n=1

r2(n) = #{ξ ∈ Z2 : ‖ξ‖2 ≤ N} = #(Z2 ∩B√N ) = πN +O(
√
N).
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Proof. Tessellate the plane by unit squares: R2 =
⋃
ξ∈Z2 ([−1/2, 1/2) + ξ), whereby each

translate of the fundamental domain [−1/2, 1/2) accounts for a single point in Z2. The
difference

∣∣∣#(Z2 ∩B√N )− πN
∣∣∣ is then bounded above by the area of a (sufficiently large

but bounded) annulus around the boundary circle of radius of
√
N . Its growth order is thus

comparable to the circumference of the circle. �

It is clear that the estimate obtained for the discrepancy is very crude; one expects the over-
and undercounting across the boundary circle to showcase some cancellation. (It is relevant
here that we count within a circle. If one is to replace the circle by a square of area N ,
centered at the origin, then there is no further powersaving in the error term to be expected.)

Let’s say we expect the lattice points to be in fact randomly distributed across the bound-
ary circle. Heuristically, if we model this situation with n = d

√
Ne iid random variables

X1, . . . , Xn with uniform distribution in (−1, 1), then the sum X = X1 + · · ·+Xn is known
to have expectancy 0 and standard deviation � N1/4. The Gauss’ circle problem conjectures
that the lattice points are indeed as close to randomly distributed across the circle as possible:

Conjecture 2.2 (Gauss’ circle problem).

#(Z2 ∩B√N ) = πN +O
(
N1/4+ε

)
,

for any ε > 0.

Our second example of lattice point counting problem concerns the average of the class
number for negative discriminants. Let Q(x, y) = ax2 + bxy + cy2 ∈ Z[x, y] be an integral
binary quadratic form. What numbers does the form Q represent? The discriminant D =
b2 − 4ac determines whether Q is a product of linear forms (in which case, its study is not
particularly interesting, and this corresponds to D being a perfect square), is indefinite, i.e.,
takes both positive and negative values (D > 0), is positive definite, i.e., Q takes on only
positive values (D < 0 and a > 0), or is negative definite (D < 0 and a < 0).

Let n ∈ N and let Qn denote the set of positive definite quadratic forms of discriminant
−n, i.e.,

Qn = {Q : D = −n, a > 0}.
One can define an equivalence class on this set given by Q1 ∼ Q2 if Q1 ◦ γ = Q2 for some
γ ∈ SL2(Z). (In fact this is true for γ ∈ GL(2,Z) but it will be useful later on to narrow
down to SL2(Z)). The value set of Q is class invariant since we consider only invertible linear
transformations. We set N(n) to be the class number of Qn.

Proposition 2.3. Understanding N(n) amounts to a lattice point counting problem. In fact,

N(n) = #{(a, b, c) ∈ Z3 : 4ac− b2 = n,−a < b ≤ a < c or 0 ≤ b ≤ a = c}.

This implies in particular that N(n) < +∞.

Proof. Let Q ∈ Qn and consider Q(x, 1) = ax2 + bx + c = 0. This quadratic equation has a
single solution in the upper half plane H, given by

zQ =
−b+ i

√
n

2a
.

One can check that if Q′ = Q ◦ γ then zQ′ = γ−1zQ under the action of SL2(Z) on H by
Möbius transformation. The latter action of the modular group is discontinuous and we can
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tesselate the upper half plane H accordingly. So to each class [Q] we associate a point zQ in
the fundamental domain

F = {z = x+ iy : |z| > 1,−1/2 < x ≤ 1/2 or |z| = 1, 0 ≤ x ≤ 1/2}. (2.1)

This forces

−a < b ≤ a < c or 0 ≤ b ≤ a = c.

�

We can restrict further to Q∗n, the subset of primitive classes, i.e., taking (a, b, c) = 1. The
number h−n of primitive classes of positive definite forms with discriminant −n, is called the
(narrow) class number. Gauss indicated (without proof but with extensive numerical check)
that

N∑
n=1

h−n ∼
π

18ζ(3)
N3/2

as N →∞. The study of the error term was only much later initiated by Vinogradov.

2.2. The hyperbolic circle problem. We now introduce a lattice point counting problem
that combines aspects from these two classical problems. From here on, we equip H with the
hyperbolic metric

ds2 =
dx2 + dy2

y2
.

Consider BR = {z ∈ H : ρ(i, z) < R}, where ρ is the distance function induced by the
hyperbolic metric, and set O = SL2(Z)i. The orbit O is discrete, and in particular |O ∩BR|
is finite. (Actually, this is equivalent to count all A ∈ SL2(Z) with bounded Frobenius norm
‖A‖ =

√
a2 + b2 + c2 + d2, via the identity ‖γ‖2 = 2 cosh ρ(γi, i).) More generally, it is still

true that |O ∩BR| is finite if we replace SL2(Z) by any lattice in SL2(R).
What happens if we try to reproduce Gauss’ argument for the Euclidean circle problem?

We have a tessellation of H by isometric copies of the fundamental domain F given by (2.1).
We run into a problem as each of these copies has a point at infinity. What if we replace
SL2(Z) by a cocompact discrete subgroup of SL2(R)? Then the fundamental domain is a
(hyperbolic) polygon without points at infinity; we again recover the trivial bound∣∣∣∣#(O ∩BR)− area(BR)

area(F)

∣∣∣∣� circ(BR).

Now we face a new problem, due this time to the fact that we are in constant negative
curvature: area and length have comparable size. In fact,

area(BR) = 4π sinh(R/2)2 while circ(BR) = 2π sinh(R).

This means that if we want to prove the kind of regular growth observed in the Euclidean
setting, we need to establish some nontrivial cancellation along the boundary. To guide us, it
is useful to repeat our earlier heuristic; if we think of the lattice points has being statistically
independent, then we expect some error term of the form O(eR/2).
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3. From equidistribution to orbital counting

3.1. Equidistribution and mixing. Another way to measure the statistic independence
of the lattice points across the boundary circle is via equidistribution. Let SR denote the
boundary circle of BR, i.e., SR = {z ∈ H : ρ(z, i) = R}. Instead of counting the number of
copies of F that cover the interior of SR, we will “fold” SR onto F .

Actually, to make the distinction between the interior and exterior of SR precise and help
parametrize the expansion of SR as R → ∞, we pass to the unit tangent bundle T 1H of H
equipped with the Riemannian metric. Elements of T 1H are points p = (z, v), where z ∈ H
represents the position of p and v ∈ TzH ∼= C, with ‖v‖z = |v|

y = 1, represents the direction
of p. The action of Γ on H by Möbius transformation extends to T 1H by taking derivatives:

γ(z, v) = (γz, γ′(z)v) =

(
az + b

cz + d
,

v

(cz + d)2

)
. (3.1)

We fix S̃R ⊂ T 1H to be the boundary circle with unit outward normal vector at each
position. We use the geodesic flow to expand S̃R in R. We have the following convenient
algebraic parametrization. Let

G = SL2(R),

N = {nx = ( 1 x
0 1 ) : x ∈ R} ,

A =
{
at =

(
et/2 0

0 e−t/2

)
: t ∈ R

}
,

K = SO(2) = StabG(i).

The Iwasawa decomposition G = NAK yields the identification G(i, ↑) = T 1H, implying
Γ\G = Γ\T 1H, where on the left the action is by left multiplication and on the right the
action is given by (3.1). Further, we have the parametrization S̃R = KaR. (Check that
at(i, ↑) = (eti, ↑) and ρ(ati, i) = t.)

Theorem 3.1. The expanding orbits (Γ∩K)\KaR become equidistributed in Γ\G as R→∞.
That is, for every f ∈ Cc(Γ\G), we have

lim
R→∞

 
Γ∩K\K

f(kaR)dk =

 
Γ\G

f(g)dg.

(The barred integrals are used to denote that we integrate against the normalized probability
Haar measure on the designated quotient.)

Proof. We will show that this follows from the (strong) mixing of the geodesic flow; namely
that for any f1, f2 ∈ L2(Γ\G), we have 

Γ\G
f1(gaR)f2(g)dg →

 
Γ\G

f1

 
Γ\G

f2.

To use mixing to prove equidistribution, we apply the following “thickening” trick (that
goes back to Margulis’ thesis). Let f ∈ Cc(Γ\G) and let ε > 0. By the uniform continuity of
f , there exists a small neighborhood U of e ∈ G such that

|f(g)− f(gu)| < ε.

We use that the geodesic flow normalizes the horocycle flow; explicitly, this is given by the
algebraic relation atnxa−t = nxet . This allows to choose a small enough neighborhood V ⊂
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AN such that

KV aR ⊂ KaRU (3.2)

for all R > 0. Then for every k ∈ K, v ∈ V , and R > 0, we have

|f(kvaR)− f(kaR)| < ε.

Hence∣∣∣∣∣
 

Γ∩K\KV
f(kvaR)dkdv −

 
Γ∩K\K

f(kaR)dk

∣∣∣∣∣ ≤
 
V

 
Γ∩K\K

|f(gkvaR)− f(kaR)|dkdv < ε.

We now apply mixing to the annulus Γ ∩K\KV . Let χ denote the characteristic function
supported on V . For R sufficiently large, we have

 
Γ∩H\KV

f(kvaR)dkdv =
µ(Γ\G)

µ(ΓKV )

 
Γ\G

f(gaR)χ(g)dg =

 
Γ\G

f(g)dg +O(ε).

We conclude by letting ε→ 0. �

The relation (3.2) is a simple instance of what is called the wavefront lemma in action.
Observe this is the only geometric input in the proof. Eskin and McMullen established the
wavefront lemma in the context of affine symmetric spaces, by building on an extension of
the Cartan decomposition G = KAK for Riemannian symmetric spaces [EM93].

3.2. A more general setup. Let G be a locally compact group and let H be a closed
subgroup of G. Recall that if G contains a lattice Γ, it is necessarily unimodular.1 We assume
that Γ ∩H is a lattice in H for the same reason.

Take (BT )T>0 ⊂ H\G to be a continuous family of compact well-rounded sets such that
vol(BT )→∞ as T →∞. Well-rounded has the following precise meaning.

Definition 3.2. We say that the sets (BT )T>0 ⊂ H\G are well-rounded if for every ε > 0
there is a small enough neighborhood U of e ∈ G such that for

B+
T =

⋃
BT g B−T =

⋂
g∈U

BT g

we have that
vol(B+

T \B
−
T )

vol(BT )
< ε.

Theorem 3.3. Let x = H ∈ H\G. If the orbits (Γ ∩ H)\Hg become equidistributed as
g →∞, we have

NT = #(xΓ ∩BT ) ∼ µ(Γ ∩H\H)

µ(Γ\G)
vol(BT )

as T →∞.

1The proof is as follows: Since Γ is discrete, we have Γ ⊂ ker ∆G ⊂ G. Then the Haar measure of
ker ∆G\G ⊂ Γ\G is finite and this implies that ker ∆G\G is compact and as such isomorphic to a compact
subgroup of R+. We conclude that G = ker ∆G.
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Proof. Let NT (g) = #(xΓg ∩BT ). The Haar measures obey Fubini-type relations so that we
can fold and unfold the following integral against any test-function ϕ ∈ Cc(Γ\G):ˆ

Γ\G
NT (g)ϕ(g)dg =

ˆ
Γ\G

∑
γ∈Γ∩H\Γ

1BT
(xγg)ϕ(g)dg

=

ˆ
Γ∩H\G

1BT
(xg)ϕ(g)dg

=

ˆ
H\G

ˆ
H∩Γ\H

1BT
(xhg)ϕ(hg)dhdg

=

ˆ
H\G

1BT
(xg)

(ˆ
H∩Γ\H

ϕ(hg)dh

)
dg.

If the orbits H ∩ Γ\Hg become equidistributed as g → ∞ (leaving every compact set), then
by dividing both sides by vol(BT ) and chasing Haar measure normalizations we arrive to

lim
T→∞

1

vol(BT )

 
Γ\G

NT (g)ϕ(g)dg =
µ(Γ ∩H\H)

µ(Γ\G)

 
Γ\G

ϕ(g)dg.

To derive from this approximation an asymptotic for the precise count NT = NT (e), we
rely on the definition of well-roundedness. Fix ε > 0. Since (BT ) is a well-rounded family, we
can construct set B±T such that

vol(B+
T /B

−
T )

vol(BT )
< ε.

Let N+
T = #(xΓ ∩B+

T ). By definition, for any g ∈ U , we have

NT ≤ N+
T (g)

Hence choosing ϕ ≥ 0, supported on U , we have
NT

volBT

 
G/Γ

ϕdg ≤ 1

volBT

 
G/Γ

N+
T (g)ϕ(g)dg < (1 + ε)

1

volB+
T

 
G/Γ

N+
T (g)ϕ(g)dg

so that

lim sup
T→∞

NT

volBT
≤ (1 + ε)

µ(H/Γ ∩H)

µ(G/Γ)
.

One can reproduce the same argument to obtain the lower bound

lim inf
T→∞

NT

volBT
≥ (1− ε)µ(H/Γ ∩H)

µ(G/Γ)
.

Since ε > 0 can be chosen arbitrarily small, we conclude that

lim
T→∞

NT

volBT
=
µ(H/Γ ∩H)

µ(G/Γ)
.

�

Coming back to the hyperbolic circle problem, we find that

#(O ∩BR) ∼ area(BR)

area(F)

as R→∞.
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4. Spectral expansions and spectral gap

Fix z, w ∈ H. This time we are going to approach the (extended) hyperbolic circle problem

NR(z, w) = #{z′ ∈ Γz : ρ(z′, w) ≤ R} = ?

using harmonic analysis.

4.1. Elementary harmonic analysis. To fix notation and some important ideas, we quickly
review some very classical harmonic analysis, namely the decomposition of the periodic func-
tions of L2(T) into harmonics. We have a countable orthonormal basis for L2(T) given by
{ϕn}n∈Z, ϕn(x) = e2πinx. (One easily checks that this is an orthonormal family with respect
to the standard inner product on L2(T), and by an application of Stone–Weierstrass, one can
deduce that this family is dense in L2(T).) This allows to write

f =
∑
n∈Z
〈f, ϕn〉ϕn =

∑
n∈Z

f̂(n)ϕn,

where the equality holds in the L2 sense. To have a pointwise equality, we need the Fourier
coefficients to decay sufficiently. By integration by parts, one immediately has

f̂(n) =

ˆ 1

0
f(x)ϕn(x)dx =

f̂ (k)(n)

(2πin)k

for each k ≥ 0, meaning that the rate of decay of f̂ depends on the rate of decay of the
derivatives of f . Ideally, we would want f to be a smooth function with rapidly decreasing
derivatives, such as a Schwartz function. In fact, the space of Schwartz functions is preserved
by the Fourier transform.

4.2. Asymptotics for the hyperbolic circle problem. We will admit (purposefully leav-
ing the issue of convergence aside) that on the orbit space Γ\H the counting function NR(z, w)
has spectral expansion

NR(z, w) =
∑
j≥0

h(λj)ϕj(z)ϕj(w) +
∑ 1

4π

ˆ ∞
−∞

h(r)E(z, 1
2 + ir)E(w, 1

2 + ir)dr. (4.1)

From right to left, we have Eisenstein series E(·, 1
2 +it), cusp forms ϕj , and the Selberg/Harish-

Chandra transform h. We refer the reader to the textbook of Iwaniec [Iwa02] for precise
definitions of these terms. For our discussion, we will only need that

• the functions ϕj form a complete orthonormal family in L2(Γ\H) of solutions to the
spectral problem (∆ + λj)ϕj = 0, where ∆ denotes the hyperbolic Laplacian

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
,

and where the eigenfunctions ϕj are ordered according to

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞.

The eigenvalue λ0 = 0 is realized since constant functions belong to L2(Γ\H), and it
can be shown, by the maximum principle, to have multiplicity 1; this is encoded by
the first strict inequality. The size of λ1 is accordingly called the spectral gap.
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• the Selberg/Harish-Chandra transform can be computed explicitly from the LHS of
(4.1). More precisely, it is expressed as the inverse Fourier transform of a function
that is completely determined by the LHS, something like Fourier coefficients in our
previous model. The point is that the pointwise convergence of the RHS depends on
the regularity of the function on the LHS.

Here the function on the LHS is an average over a characteristic function:

NR(z, w) =
∑
γ∈Γ

1R(ρ(γz, w)), where 1R(ρ) =

{
1 ρ ≤ R,
0 ρ > R.

As a result, if we were to compute the Selberg transform h of NR(z, w) explicitly, the spectral
expansion (4.1) would yield an expression of the form

NR(z, w) =
area(BR)

area(M)
+

∑
0<λj<

1
4

cjϕj(z)ϕj(w)eR(
1
2 +

√
1
4−λj) +O(eR/2S)

where the constants cj are explicit and nonzero, and the term S, uniform in R, is composed of
an infinite sum and an integral that diverge as a consequence of Weyl’s law. It is nonetheless
interesting to note that as area(BR) ∼ πeR (as R → ∞), the next growth term is not given
by eR/2+o(1) but by eR(1/2+

√
1/4−λ1) (provided that the spectral gap satisfies 0 < λ1 < 1/4

and that ϕ1(z)ϕ1(w) 6= 0). We come back to this point in the next section.
To give sense to such a spectral expansion, one needs to replace the characteristic func-

tion 1R by a smooth approximation. Applying spectral expansion and controlling for the
approximation yields

Theorem 4.1 (Delsarte, Huber, Selberg, 1950s).

NR(z, w) =
area(BR)

area(M)
+

∑
0<λj<

1
4

cjϕj(z)ϕj(w)eR(
1
2 +

√
1
4−λj) +O(e2R/3) (4.2)

Idea of proof. Fix ε > 0. We replace the characteristic function 1R by a smooth approximation
1̃R,ε by convolution with a mollifier. As a result, the Selberg transform is rapidly decaying and
the spectral expansion for the mollified counting function ÑR,ε(z, w) holds pointwise with an
error term on the RHS that depends on R and ε. On the LHS, one can bound the discrepancy
between NR(z, w) and ÑR,ε(z, w) again in terms of R and ε. It remains to choose ε = ε(R)
to optimize the error term. A detailed proof of this process is transcribed in the PhD thesis
of Cherubini [Che18]. �

As can be seen from the argument of proof, the constant factor of 2
3 appearing in the error

rate is an artefact of the mollification process; in other words, it is the price to pay for the
regularization of the counting function. By analogy to the Euclidean circle problem, one
expects the true state of affairs to involve the error term O(eR/2+ε). The asymptotic (4.2)
has never been improved.

4.3. Two theorems on the spectral gap. Recall our ongoing heuristic: if we believe the
lattice points in Γz to be uniformly distributed, then we expect a square-root cancellation
leading to an error term of the form O(eR/2+ε). Theorem 4.1 shows this is possible only as
so far as we don’t have small eigenvalues 0 < λj < 1/4. In this sense, the spectral gap can
be seen as a measure of the equidistribution of the lattice points in Γz around the boundary
circle of BR. Unfortunately (perhaps), the spectral gap can be arbitrarily small.
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Theorem 4.2. For any ε > 0, there is a lattice Γ < SL2(R) such that λ1(Γ) < ε.

The idea is to build sufficiently high (finite degree) regular covers

Γn\Hy
Γ\H

Observe that the discrete spectrum of Γn\H contains the discrete spectrum of Γ\H. (Each
L2 solution f to the eigenvalue problem (∆ +λ)f = 0 that is Γ-invariant is automatically Γn-
invariant. Equivalently, these solutions can be seen as eigenfunctions in L2(Γn\H) on which
the Galois group Γ/Γn of the covering acts trivially.) On the other hand, each L2 solution to
(∆ + λ)f = 0 on which the Galois group Γ/Γn acts nontrivially produces “new” eigenvalues.
The goal is to produce small eigenvalues in this way.

Proof of Theorem 4.2, after Selberg. Choose Γ torsionfree (this can always be achieved via
Selberg’s lemma) with nonvanishing first Betti number. Hence there is some n ≥ 1 such that
the character group of Γ is

Γ̂ = Hom(Γ,T) = Hom(Γ/[Γ,Γ],T) ∼= Hom(Zn,T) ∼= Tn.

Fix Θ ∈ Tn and let χΘ denote the associated character. We consider the following modified
eigenvalue problem: find solutions f : H→ C for

(∆ + λ)f = 0

f(γz) = χΘ(γ)f(z) for each γ ∈ Γˆ
Γ\H
|f(z)|2dµ(z) <∞.

(4.3)

We will rely on the following results of Selberg.
• The spectral problem (4.3) admits a complete resolution with discrete spectrum

0 ≤ λ0(Θ) ≤ λ1(Θ) ≤ λ2(Θ) ≤ . . . ;
• λ0(Θ) = 0 if and only if Θ = 0;
• The bottom eigenvalue λ0(Θ) is continuous in Θ.

Fix ε > 0. We can choose Θ such that
(1) Θ 6= 0;
(2) Θ is small enough so that λ1(Θ) < ε;
(3) Θ ∈ (Q/Z)n.

Let ΓΘ = ker (χΘ : Γ→ T) . By (3), the image of χΘ is finite; we have a finite cyclic covering
ΓΘ\H of Γ\H. Let f be a solution of (4.3) for the eigenvalue λ = λ0(Θ) > 0. Then f is
ΓΘ-invariant, and thus a solution of the usual eigenvalue problem for ΓΘ. This means that
λ0(Θ) belongs to the discrete spectrum for the usual eigenvalue problem for ΓΘ, i.e.,

0 = λ0 < λ1 ≤ · · · ≤ λ1(Θ) < ε.

�

On the other end, one of the most important open problem in the subject is Selberg’s
eigenvalue conjecture, which states that

Conjecture 4.3 (Selberg, 1965). For N ≥ 1, we have λ1(Γ(N)) ≥ 1/4.
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The groups Γ(N) are the principal congruence subgroups

Γ(N) = ker(SL2(Z)→ SL2(Z/NZ))

= {A ∈ Γ(1) = SL2(Z) : A ≡ I (mod N)}.

The current best bound towards the conjectural 1/4 is due to Kim and Sarnak [KS03], while
1/4 was recently verified for N ≤ 226 by Booker, Lee, and Strömbergsson [BLS20].

We might explain the uniform spectral gap appearing here as follows. Take N = p prime.
The regular covering under consideration is

Γ(p)\Hy
Γ(1)\H

with Galois group Γ(1)/Γ(p) ∼= SL2(Fp). This group has “many more symmetries” than the
finite cyclic Galois group that appeared in Selberg’s construction. This is more precisely
expressed in the language of representation theory: If Γ(1)/Γ(p) acts nontrivially on an eigen-
function f on Γ(p)\H (meaning that f is not the lift of a function living on Γ(1)\H) then
the dimension of the eigenspace containing f is ≥ p−1

2 . In other words, the corresponding
“new” eigenvalue has multiplicity ≥ p−1

2 . (For comparison, the dimension of each nontrivial
representation of a finite cyclic group is 1.) The uniform lower bound for λ1(Γ(N)) manifests
some arithmetic rigidity safeguard against a rapid accumulation of small eigenvalues with
high multiplicity as one lets p→∞.

We close with the proof of the following weaker bound, following Gamburd’s execution of
the strategy of [SX91] in the noncocompact case [Gam02], which is deduced from counting
bounds for the hyperbolic circle problem.

Theorem 4.4. For all primes p sufficiently large, we have λ1(Γ(p)) ≥ 5/36.

Sketch of proof, after Gamburd. LetX(p) = Γ(p)\H. Let f ∈ L2(X(p)) satisfy (∆+λ1(p))f =
0. Suppose first that f is Γ/Γ(p)-invariant. Then λ1(p) belongs to the spectrum of X(1) and
we have

λ1(p) ≥ λ1(1) >
1

4
.

The latter lower bound2 was first established by Roelcke using the Fourier coefficients of cusp
forms [Roe56].

Suppose instead that Γ/Γ(p) acts nontrivially on f and that λ1 := λ1(p) < 1/4. Recall
that λ1 has multiplicity m1 ≥ p−1

2 . We will use the hyperbolic circle problem to force a lower
bound on the spectral gap. If X is compact, we have the L2-equality¨

X×X
|NR(z, w)|2dzdw =

∑
j≥0

|h(λj)|2 +
∑ 1

4π

ˆ ∞
−∞
|h(t)|2dt ≥ m1|h(λ1)|2.

Although here X(p) is noncompact, Gamburd shows that upon replacing X(p) by its compact
core we nonetheless recover the geometric upper bound

m1|h(λ1)|2 = O

(
area(Xp)e

R

ˆ R

0
e−tNetdt

)
,

2It has since been numerically verified that λ1(1) ≈ 91.14; see [Hej92, BSV06, BS07].
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where Net = #{γ ∈ Γ(p) : ‖γ‖ ≤ et}. We can compute explicitly that |h(λ1)| � eRs with

s = 1
2 +

√
1
4 − λ1(p). We also know that area(X(p)) = area(X(1))[Γ : Γ(p)] ∼ p3. However

we cannot apply the counting asymptotic (4.2) since it itself depend on the mulitplicity of
λ1. We need an upper bound on NT that does not involve harmonic analysis. This is here
possible as the counting problem reduces to the following “elementary” lattice point counting
problem

NT = #{γ ∈ Γ(p) : ‖γ‖ ≤ T}
≤ #{(a, b, c, d) ∈ Z4 : ad− bc = 1, a ≡ d ≡ 1, b ≡ c ≡ 0 (mod p), |a|, |b|, |c|, |d| ≤ T}.

Observe that a + d ≡ 2 (mod p2). There are O(T/p2) choices of ξ ≡ 1 (mod p2), |ξ| ≤ 2T
and O(T/p) + 1 choices of a ≡ 1 (mod p) and |a| ≤ T , so that we have O(T 2/p3) choices
for a and d. This completely determines ξ = ad − 1 and the trivial divisor bound yields
d(T 2) = Oε(T

2ε) possibilities for the pair b, c. Hence for p sufficiently large, we have

NT �
T 2(1+ε)

p3
+
T (1+ε)

p2
+ 1.

Fixing T = p3, we have, for p large enough,
p− 1

2
≤ m(λ1,Γ(p))� p6(

1
2−

√
1
4−λ1)+ε.

Comparing exponents yields the lower bound λ1 ≥ 5/64. �
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