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Theory of Numbers
Math 356, Rutgers

Claire Burrin
These are notes prepared for the course Theory of Numbers, taught at Rutgers in

Spring 2019. We follow the organization of Davenport’s Higher Arithmetic (Cambridge
University Press, 8th Ed.) with some additional supplements. In particular, the ma-
terial on Farey fractions is based on Rademacher’s Lectures on Elementary Number
Theory.

[...] the subject matter is so attractive that only extravagant incompetence
could make it dull.

– G.H. Hardy, E.M. Wright, Introduction to the Theory of Numbers





CHAPTER 1

Numbers and primes

1.1. The elementary operations

Arithmetic (from the Greek, arithmos, number, tike, art) is the study of numbers
and their properties under the elementary operations of adding, subtracting, multiply-
ing, and dividing.

The set of (natural) numbers1 is

N = {0, 1, 2, ...}.

This set is infinite countable, and totally ordered (i.e. for any two elements a, b ∈ N,
either a ≤ b or b ≤ a). We take for granted the following ‘laws of arithmetic’: for any
a, b, c ∈ N,

(1) addition and multiplication are commutative: a+ b = b+ a, ab = ba,
(2) addition and multiplication are associative: a+ (b+ c) = (a+ b) + c, a(bc) =

(ab)c,
(3) multiplication is distributive with respect to addition: a(b+ c) = ab+ ac.

If a, b ∈ N, then a − b ∈ N if and only if a − b ≥ 0. That is, N is not closed under
subtraction (1− 2 = −1 6∈ N). For this, we have the ring of integers

Z = {...,−2,−1, 0, 1, 2, ...}.

Similarly, a
b
∈ N if and only if a is a multiple of b. For this, we have the field of

fractions
Q = {a

b
: a ∈ Z, b ∈ N}.

We won’t introduce here the algebraic terminology of rings and fields. Just think that
a ring is a set closed under addition, multiplication, and subtraction, such that each
element has an additive inverse a+ (−a) = 0, while a field is a set closed under all four
operations, and such that each element has an additive and a multiplicative inverse
a · a−1 = 1. Other examples of fields are R and C. These are successively larger than
Q as R is also closed under taking the square root of positive integers, and C is closed
under taking all square roots (since

√
−1 ∈ C).

1.2. Divisibility

We write a|b to say a divides b.

Example 1. 1, 2, 3, 4, 6, 12, 18, 36|36, 5 6 |36.

1 Here, we will work in the French tradition of considering 0 as a number.
5



6 1. NUMBERS AND PRIMES

Note that if a, b ∈ N and a|b, there exists n ∈ N such that b = an. If a, b ∈ Z and
a|b, there exists n ∈ Z such that b = an.

Proposition 2. Take note of the following basic properties of division.
(1) If a|b, b 6= 0, then a ≤ b
(2) If a|b and b|c then a|c
(3) If a|b and a|c, then for any u, v ∈ Z, a|ub+ vc.

Proof. (1) Since b = an for n ≥ 1, b ≥ a.
(2) If b = an, c = bm, then c = (an)m = a(nm), i.e. a|c.
(3) If b = an, c = am, then for any u, v ∈ Z,

ub+ vc = u(an) + v(am) = a(un+ vm).

�

If b ≥ a but a 6 |b, then the division of b by a leaves a remainder/rest r, which is
smaller than a. This remainder is unique:

Theorem 1 (Euclid’s division algorithm). Let a, b ∈ N, with b ≥ a. Then there
exists exactly two numbers q, r ∈ N such that b = aq + r and 0 ≤ r < a.

Proof. Let r ∈ N be the smallest number of the form b− aq. Suppose for contra-
diction that r ≥ a, then

r > r − a = b− a(q + 1) ≥ 0

contradicts the minimality of r. �

1.3. Even and odd

Definition 3. We say that n is even if 2|n and odd otherwise.

In particular, any even number is of the form 2k (for some k ∈ N) and any odd
number is of the form 2k + 1. E.g. 3 = 2 + 1, 17 = 2 · 8 + 1, 14 = 2 · 7. Of course, k is
then itself either even or odd... Here are some warm-up exercises.

Proposition 4. Any odd number is either of the form 4k + 1 or 4k − 1.

Proof. Let n = 2k + 1. Then k is either odd, k = 2j − 1, or even k = 2j. Hence
either n = 4j − 1 or n = 4j + 1. �

Proposition 5. If n ∈ N is odd, then n2 is odd.

Proof. Since n is odd, n = 2k + 1 for some k ∈ N. Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

�

Proposition 6. The sum of the first n odd numbers is = n2.
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Proof. The statement is formalized by the equation
n−1∑
k=0

(2k + 1) = n2

and easily proven by induction. First, it clearly holds for n = 1. Assume it is true for
n. Then

n∑
k=0

(2k + 1) =
n−1∑
k=0

(2k + 1) + 2n+ 1 = n2 + 2n+ 1 = (n+ 1)2.

�

1.4. Prime numbers

Any n ∈ N has at least two divisors: 1 and itself. We refer to those as the trivial
divisors of n.

Definition 7. If n ≥ 2 is only divisible by 1 and n, it is prime. Otherwise we say
that n is composite.

In particular, if n is composite, there exist 1 < u, v < n such that n = uv.

Theorem 2. Any n ≥ 2 is either prime or factorizes as a product of primes, i.e.

n = p1 · · · pk.

Proof. Suppose that the statement is true up to n− 1. Suppose further that n is
composite. There exist 1 < u, v < n such that n = uv. By our induction hypothesis,
both u and v factor into a product of primes: u = p1 · · · pj, v = q1 · · · ql. Hence
n = uv = p1 · · · ql also factorizes as a product of primes. �

Example 8. 1000 = 23 · 53, 999 = 3 · 37.

The prime factorization of any number is unique (up to rearrangements); this is
called the fundamental theorem of arithmetic. We will prove this soon.

Example 9. Here are all the primes below 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

How do we check that a given number is prime ? Is there a smarter way to proceed
than just by brute force, i.e. checking that no smaller number is a divisor ? For the
moment, we only record the following observation.

Theorem 3. If n has no prime divisors ≤
√
n then n is prime.

Proof. Suppose for contradiction that n is composite. In particular, n has at
least two distinct prime factors p, q and there is a m ≥ 1 such that n = pqm. By
assumption, p, q >

√
n, hence n > nm ≥ n, which is absurd. �

Example 10. Since 2, 3, 5 6 |37, it is prime.



8 1. NUMBERS AND PRIMES

Another question is whether we can determine efficiently the prime factorization
of a given large number. Here we present a trick of Fermat for factorizing using the
‘difference of squares.’ Suppose you are given n ∈ N. Pick the smallest number a such
that a2 > n. At some point in the sequence

a2 − n, (a+ 1)2 − n, (a+ 2)2 − n, . . .
there is a perfect square b2, i.e. for some k ∈ N, (a+ k)2 − n = b2, or equivalently

n = (a+ k − b)(a+ k + b).

Let’s now see a numerical example. Let n = 10′001. It is easy to see that 1002 =
10′000 < n < 1012. Hence a = 101. Now we can quickly compute

1012 − n = 200, 1022 − n = 403, . . . , 1052 − n = 1024 = 322

leading to the factorization 10′001 = (105− 32)(105 + 32) = 73 · 137. These factors are
small enough that we can very quickly check that 73 and 137 are both primes.

1.5. The set of primes

Theorem 4 (Euclid). There are infinitely many primes.

Proof. Suppose for contradiction that there are only finitely many primes: 2, 3, 5, ..., p.
Consider

N = 2 · 3 · · · p+ 1.

By assumption, N is not prime since N > p. Since it is odd, it must have an odd prime
factor q|N . Then q is an element of our finite list of primes 2, 3, . . . , p. In particular,
q|(2 · 3 · · · p), hence

q|(N − 2 · 3 · · · p) = 1,

which is absurd. �

Now that we know that the set of primes is infinite, we may want to know how it is
distributed in N. This is not well understood, and relates to the famous (yet unproven)
Riemann hypothesis. Let us explore a first question in this direction. Apart from 2, all
prime numbers are odd. Now, we have seen that an odd number is either of the form
4k + 1 or of the form 4k − 1. Are there infinitely many primes of both forms ?

Theorem 5. There are infinitely many primes of the form 4k − 1.

Proof. We mimic Euclid’s argument: suppose that there are only finitely many
primes of the form 4k − 1: 3, 7, 11, ..., p, and consider

N = 4(3 · 7 · · · p)− 1.

By assumption N is not prime and odd. We show that not all prime divisors of N can
be of the form 4k + 1. In fact, since

(4k + 1)(4l + 1) = 4(4kl + k + l) + 1,

if all prime divisors of N were of the form 4k + 1, then N would also be of the form
4k+ 1. Hence N has a prime divisor q of the form 4k− 1. Hence q|(3 · 7 · · · p) also and
q|(3 · 7 · · · p−N) = 1, which is absurd. �
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Remark that the same argument can not be used to prove that there are infinitely
many primes of the form 4k + 1 (why ?). This is nonetheless also true, as we will
see later. Actually, a much stronger result is known; this is Dirichlet’s theorem on
arithmetic progressions.

Theorem 6 (Dirichlet). Any arithmetic progressions contains infinitely many primes.
In other words, there are infinitely many primes of the form ax+ b.

The proof of Dirichlet’s theorem is unfortunately outside of the scope of this course,
but should be studied by anyone who wants to delve deeper in number theory !

1.6. Diophantine equations

If we know that every arithmetic progressions contains infinitely many primes, we
can think of a more general question: given a polynomial f(x) = anx

n + · · ·+ a1x+ a0

with integer coefficients a0, a1, . . . , an ∈ Z, are there infinitely many primes in its image
f(Z) ? Well, currently, as soon as n > 1, nothing is known ! A reasonable guess is
that things would be easier if we have instead a polynomial with several variables,
f(x1, x2, . . . , xn)...

A Diophantine equation is a polynomial equation with at least two unknowns.
For example:

Example 11. (1) ax+ by = c. In general, a polynomial equation where all terms
have degree 1 is called a linear Diophantine equation.

(2) x2 + y2 = z2. The integer solutions to this equation are called Pythagorean
triples and have been completely described by Euclid.

(3) xn + yn = zn, for n ≥ 3. Fermat’s last theorem (proven by Wiles in 1994)
states that these have no integer solutions.

(4) x2 − ny2 = 1, (n 6= k2), is called Pell’s equation.

Cracking a nut with a sledgehammer:

Theorem 7. n
√

2 is irrational for n ≥ 3.

Proof. Suppose for contradiction that n
√

2 = a
b
. This is equivalent to 2bn =

bn + bn = an, which contradicts Fermat’s last theorem. �

Definition 12. We say that a, b ∈ N are coprime if they have no common prime
factor.

Example 13. 15 = 3 · 5 and 4 = 2 · 2 are coprime.

Theorem 8. If a, b ∈ N are coprime, then the linear Diophantine equation

ax+ by = c

has integer solutions.

Proof. Let d ≥ 1 be the smallest positive number of the form ax+ by:

d = ax0 + by0.
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We will show that d|a and d|b. Since a and b are coprime, we must have d = 1. Then
a(x0c) + b(y0c) = c is a solution. To show that d|a, we divide a by d: there are two
numbers q, r such that a = qd+ r and 0 ≤ r < d. Then

r = a− qd = a− q(ax0 + by0) = a(1− qx0) + b(−qy0)

is either 0 or contradicts the minimality of d. This proves that d|a. We can make the
exact same argument to prove d|b. �

A moment of consideration should convince you that there are solvable equations
ax + by = c where a and b are not coprime; for example, 2x + 4y = 6. You will also
notice in this example that all coefficients have 2 as a common divisor.

1.7. gcd and lcm

Definition 14 (gcd). Let a, b ∈ Z. The greatest common divisor of a and b is the
positive integer d such that

(1) d|a and d|b and
(2) for any other common divisor c of a and b, c ≤ d. The shorthand notation for

the gcd is d = (a, b).

Theorem 9. The linear Diophantine equation ax+ by = c has integer solutions if
and only if (a, b)|c.

Proof. Choose d as previously; let it be the smallest positive number of the form
ax + by. Then we have seen that d|a and d|b. Moreover, for any m such that m|a, b,
then m|ax+ by = d. Hence d = (a, b).

If d|c, there is a k such that c = dk, and a(xk) + b(yk) = dk = c is an example of
solution. Conversely, if ax+ by = c, we have that d|c since d|a and d|b. �

A very useful representation of the gcd for practical manipulations is given by the
following corollary.

Corollary 15 (Bézout’s Lemma). For any a, b ∈ Z, there exist u, v ∈ Z such that
au+ bv = (a, b).

Exercise 16. Use Bézout’s lemma to show that if c|a and c|b, then c|(a, b).

To compute the gcd of two numbers one can rely on their unique prime factorization
or on the Euclidean division algorithm.

Example 17. (36, 45) = (22 ·32, 32 ·5) = 32 = 9, (422, 7′491) = (2 ·211, 3 ·11 ·227) = 1.

Theorem 10. The gcd (a, b) is the last nonzero remainder when running the divi-
sion algorithm.

Proof. We may assume that a ≥ b. by the division algorithm, a = bq + c with
0 ≤ c < b. If d|a and d|b, then d|r = a− bq. Conversely if d|r and d|b then d|a. Hence
(a, b) = (b, c). Repeating this process a finite number of time, we have

(a, b) = (b, c) = · · · = (l,m) = (m,n)

with l = q′m+ n, 0 ≤ n < m, and m = q′′n. Hence (a, b) = (m,n) = n. �
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Example 18. 7491 = 17 · 422 + 317→ 422 = 317 + 105→ 317 = 3 · 105 + 2→ 105 =
52 · 2 + 1.

Definition 19. The least common multiplier {a, b} is the number such that
(1) a|{a, b} and b|{a, b}, and
(2) for any other common multiple a|c, b|c, {a, b} ≤ c.

Theorem 11. ab = {a, b}(a, b).

Proof. Set x = ab
(a,b)

. Note that a|a b
(a,b)

since (a, b)|b, and similarly b| a
(a,b)

b; so,
a, b|x. Let c such that a|c and b|c, and represent (a, b) as (a, b) = au+ bv. Then

c

x
= c

(a, b)

ab
= c

au+ bv

ab
=
c

b
u+

c

a
v

and since a, b|c, this is an integer, call it n. We thus conclude that c = nx, i.e. x|c.
This goes to show that x = {a, b}. �

Exercise 20. Show that if a|c and b|c, then {a, b}|c.

1.8. The fundamental theorem of arithmetic

Theorem 12 (Euclid’s lemma). If a, b are coprime and a|bc, then a|c.

Proof. By Bézout’s lemma, there exist u, v ∈ Z such that au+bv = 1. Multiplying
both sides by c yields

auc+ bcv = auc+ anv = a(uc+ nv) = c.

�

Euclid’s lemma is actually equivalent to the fundamental theorem of arithmetic. In
fact, we will prove the latter using Euclid’s lemma in the next section, but we can also
prove Euclid’s lemma with the fundamental theorem of arithmetic:

Proof of Euclid’s lemma using the fund. thm. of arithmetic. Consider
the prime factorizations b = p1 · · · pk, c = q1 · · · ql. Since a and b have no common prime
factors, none of p1, . . . , pk appear in the prime factorization of a. Hence a|c. �

Two neat consequences of Euclid’s lemma.

Theorem 13. Let (x0, y0) be a solution of the linear Diophantine equation ax+by =
1 with a, b coprime. Then the set of all solutions to ax+ by = 1 is

{(x, y) : x = x0 − bn, y = y0 + an, n ∈ Z}.

Proof. If (x0, y0) is a solution, then

a(x0 − bn) + b(y0 + an) = ax0 + by0 = 1

for each n ∈ Z. Conversely, suppose that ax+ by = 1. Then subtracting this equation
to ax0 + by0 = 1, we have

a(x0 − x) + b(y0 − y) = 1− 1 = 0,



12 1. NUMBERS AND PRIMES

hence a|b(y − y0) and by Euclid’s lemma, a|(y − y0). Say y − y0 = an. Then
a(x0 − x)− ban = 0

and x = x0 − bn. �

Theorem 14. A number n ≥ 2 is prime if and only if n|ab implies that n|a or n|b.

Proof. Suppose that n = p is prime. Then the claim follows directly by Euclid’s
lemma. Conversely, assume for contradiction that n is composite, i.e. n = uv for
1 < u, v < n. Then by assumption, either n|u or n|v. But since u, v < n, this is
absurd. �

Theorem 15 (Fund. theorem of arithmetic). Each n ≥ 2 is either a prime or can
be uniquely (up to rearrangement of the factors) factorized as a product of primes.

Proof. Suppose that n ≥ 2 has two prime factorizations: n = p1 · · · pk and n =
q1 · · · ql. Then p1|qq · · · ql. By Euclid’s lemma, p1|qi for some i. In fact, up to rearranging
the terms, we can suppose that p1|q1. Since q1 is prime, we conclude that p1 = q1 and
our original equality reduces to p2 · · · pk = q1 · · · ql. Repeating this argument a finite
number of times, we can conclude that k = l and primes on both sides agree. �

Observe that the argument above motivates the convention of excluding 1 from the
list of prime numbers. We note the following application of the fundamental theorem
of arithmetic, due to Euclid.

Theorem 16. Let p be prime, then √p is irrational.

Proof. Suppose for contradiction that √p = a
b
. Then pb2 = a2. Consider the

prime decomposition b = p1 · · · pk. Then b2 = p2
1 · · · p2

k has twice as many prime
factors, and in particular, has an even number of prime factors. Hence if we look at
the equation pb2 = a2, the left hand side has an odd number of prime factors, while
the right hand side has an even number of prime factors, which is absurd. �

Exercise 21. Generalize the proof above to show that if n is not a perfect square, then√
n is irrational.



CHAPTER 2

Congruences

From the fundamental theorem of arithmetic, we see that the most natural (and
interesting) properties of numbers are multiplicative. In this way, we understand small
numbers very well, yet N is infinite. In fact, given very large numbers a and b

(1) How to check that n|m ?
(2) How to compute the prime factorization of m ?
(3) How to check whether n is prime ?

The latter two questions are difficult computationally. The first one is more accessible
for the reason that the Euclidean division algorithm is very fast and efficient. Of course
a|b if and only if the rest after division is r = 0. Recall that the rest must be an element
of the finite set {0, 1, . . . , n− 1}. In this chapter, by studying systematically the finite
set of remainders, or residues of division by n, we will get some more insight on these
three essentially questions about the structures of numbers.

Fix n ≥ 1. We know that each a ∈ Z can be written (in a unique way) as a = qn+r,
where q ∈ Z, and r ∈ {0, . . . , n− 1}. In other words, when divided by n, any number
has its remainder (or residue) in the (finite) set {0, 1, . . . , n−1}. We call two numbers
a, b that have the same residue congruent. We call n the modulus.

For illustration, order all integers as follows

. . . −n− 1
−n −n+ 1 −n+ 2 . . . −2 −2
0 1 2 . . . n− 2 n− 1
n n+ 1 n+ 2 . . . 2n− 2 2n− 1
2n 2n+ 1 2n+ 2 . . . 3n− 2 3n− 1
3n . . .

then all members of a column are congruent.

2.1. Gauss’ notation for congruences

Definition 22. Let n ≥ 1. We say that a is congruent to b modulo n, written a ≡ b
(mod n), or even shorter, a ≡ b (n), if a and b differ by a multiple of n.

In other words, a ≡ b (n) if n|(b− a). Notice that n|(b− a) if and only if n|(a− b):
the equation b− a = kn is equivalent to a− b = (−k)n.

Example 23. 63 ≡ 0 (3), 64 ≡ 1 (3), 7 ≡ −1 (8), 52 ≡ −1 (13).

Exercise 24. Show that if a, b ∈ N have the same parity (i.e. are either both odd, or
both even), then a ≡ b (2).

13
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Theorem 17. Being congruent to modulus n is an equivalence relation.

Proof. Recall that∼ is an equivalence relation on a set S if it is reflexive (a ∼ a for
all a ∈ S), symmetric (a ∼ b if and only if b ∼ a for all a, b ∈ S), and transitive (if a ∼ b
and b ∼ c then a ∼ c). We only check that being congruent is transitive, and leave the
rest to the reader. Suppose a ≡ b (n) and b ≡ c (n). By definition, there exist k, l ∈ Z
such that kn = (a−b) and ln = (b−c). Hence a−c = a−b+b−c = kn+ ln = (k+ l)n.
Thus n|a− c. �

As a result, congruences to same modulus behave (mostly) like equations.

Theorem 18. Fix n ≥ 1. Suppose that a ≡ b (n) and c ≡ d (n). Then
(1) a+ c ≡ b+ d (n) and a− c ≡ b− d (n),
(2) am ≡ bm (n) for all m ∈ Z,
(3) ac ≡ bd (n).

Proof. By assumption nk = a − b and nl = c − d, for some k, l ∈ Z. Then
a + c − (b + d) = (a − b) + (c − d) = (k + l)n, which proves the first assertion in (1).
The second assertion is proven similarly. For (2), n|(b − a) and hence n|m(b − a) for
all m ∈ Z. For (3), we note that by by (2), ac ≡ bc (n) and also bc ≡ bd (n). Hence by
transitivity, ac ≡ bd (n). �

2.2. Applications

Gauss’ congruence notation is useful in devising obstructions on a number being
of a certain form. For example,

Proposition 25. If n ≡ 2 (4) or n ≡ 3 (4) then n is not a perfect square.

Proof. Let n = a2. If a = 2k, then n = 4k2 ≡ 0 (4). Id a = 2k + 1, then
n = 4(k2 + k) + 1 ≡ 1 (4). �

Proposition 26. If n ≥ 3 is odd, then n2 + 1 is not a prime.

Proof. n is odd, hence n ≡ 1 (2), hence n2 ≡ 1 (2) and n2 + 1 ≡ 0 (2). �

Another application: divisibility tests. For example,

Proposition 27. Let n ∈ N. If the sum of the digits of n is divisible by 3, then n is
divisible by 3.

Proof. Consider the decimal expansion of n; n = a0 +a1 ·10+a2 ·100+ . . . ak ·10k,
or,

n = a0 + a1 · (32 + 1) + a2(34 + 1) + . . . ak · (32k + 1)

≡ a0 + a1 + a2 + · · ·+ ak (3).

If the sum of the digits a0 + a1 + . . . ak ≡ 0 (3), then n ≡ 0 (3). �

Remark 28. The same argument works with 9 instead of 3.

Proposition 29. If the last two digits of n are divisible by 4, then n is divisible by 4.
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Proof. Consider the decimal expansion of n;
n = a0 + a1 · 10 + a2 · 102 + . . . ak · 10k

= a0 + a1 · (2 · 5) + a2 · (22 · 52) + . . . ak · (2k · 5k)
= a0 + a1 · 10 + a2 · (4 · 52) + . . . ak · (4 · 2k−2 · 5k)
≡ a0 + a1 · 10 mod 4.

�

Exercise 30. Show that if the alternating sum of the digits of n is a multiple of 11,
then n is a multiple of 11.

2.3. Arithmetic properties

One can generalize Theorem 18 to show that given ai ≡ bi (n), i = 1, . . . , k, then
a1 + · · ·+ ak ≡ c1 + · · ·+ ck (n), a1 · · · ak ≡ c1 · · · ck (n).

However the cancellation law (ab = ac =⇒ b = c) does not always hold in congru-
ence equations.

Example 31. 12 ≡ 24 (10) and 2 · 6 = 12, 7 · 6 = 42, but 2 6≡ 7 (10).

Proposition 32. If ab ≡ ac (n) and (a, n) = 1 then b ≡ c (n).

Proof. We will see that this is really only a reformulation of Euclid’s lemma.
Indeed, ab ≡ ac (n) ⇐⇒ n|a(b − c) and since (a, n) = 1, n|(b − c) and this is
equivalent to b ≡ c (n). �

And in general,

Proposition 33. If ab ≡ ac (n) then b ≡ c ( n
(a,n)

).

Proof. Let d := (a, n) and n = kd, a = ld. Then (l, k) = 1. (Why is this
true ?) With these new variables, ab ≡ ac (n) becomes ldb ≡ ldc (kd). Observe
that this is equivalent to lb ≡ lc (k). Since (k, l) = 1, the statement follows from
Proposition 32. �

We will denote by Zn the set of distinct congruences x ≡ 0, 1, . . . , n− 1 (n). (This
notation, as the discussion about to follows, will be familiar to anyone who took abstract
algebra.) We now have seen that Zn is closed under addition and multiplication. It is
easy to see that a+x ≡ 0 (n) has a solution – take x ≡ −a (n)) – and that all solutions
are congruent to it mod n. What about ax ≡ 1 (n) ? If x is a solution, then it is
necessarily congruent to one of 1, 2, . . . , n − 1. So we only have finitely many options
to check.

Example 34. Consider the following two examples.
(1) 3x ≡ 1 (5). Then 3 · 2 = 6 ≡ 1 (5) is a solution.
(2) 3x ≡ 1 (6). Here there are no solutions. Indeed, 3 6≡ 1 (6), 3 · 2 ≡ 0 (6),

3 · 3 ≡ 3 (6), 3 · 4 = 12 ≡ 0 (6), 3 · 5 ≡ 3 (6).

Proposition 35. ax ≡ 1 (n) has a (unique) solution if and only if (a, n) = 1.
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Proof. Suppose that x is a solution to ax ≡ 1 (n), and suppose for contradiction
that d := (a, n) > 1. Then since d|n and n|(ax− 1), ax ≡ 1 (d). Since d|a also holds,
ax ≡ 0 (d), and we are left with 0 ≡ 1 (d), which is absurd.

Conversely, suppose that (a, n) = 1. By Corollary 15 (Bézout’ Lemma), there exist
u, v ∈ Z such that au + nv = 1. Then au ≡ 1 (n) and u is a solution to ax ≡ 1 (n).
Suppose u′ were another solution. That is, au′ ≡ 1 (n). Then au ≡ au′ (n). Since
(a, n) = 1, we may apply cancellation, and obtain that u ≡ u′ (n). This proves that
the solution is unique. �

Exercise 36. Show that more generally, ax ≡ b (n) has a solution if and only if
(a, n)|b.

The only a ∈ Z having a multiplicative inverse, i.e. for which ax = 1 has a so-
lution, are a = ±1. And in particular, these are self-reciprocal (their own inverses).
Proposition 35 above tells us that in Zn there are

ϕ(n) = #{1 ≤ a < n : (a, n) = 1}

elements that admit a multiplicative inverse. (The function ϕ(n) is called Euler’s
totient function, and we will meet it again...)

Example 37. Check that ϕ(4) = 2, ϕ(17) = 16, and that in general ϕ(p) = p− 1.

Question: How many elements in Zn are self-reciprocal ? For the moment, we will
answer this for n = p prime. That is, how many a ∈ Zp satisfy a2 ≡ 1 (p) ? Observe

a2 ≡ 1 (p) ⇐⇒ a2 − 1 = (a− 1)(a+ 1) ≡ 0 (p) =⇒ a ≡ 1 (p) and a ≡ −1 (p),

hence there are only two self-reciprocal elements mod p: 1 and p − 1. Using this, we
can present Gauss’ proof of Wilson’s theorem:

Theorem 19 (Wilson’s theorem). p is a prime if and only if (p− 1)! ≡ −1 (p).

Proof. If p = 2, this is clear. Suppose that p > 2. Suppose that p is prime. By
the discussion above, each of 1, 2, . . . , p−1 has a (unique) multiplicative inverse among
1, ...., p − 1. Moreover, in this set, only 1 and p − 1 are self-reciprocal. Consider the
product 2 · 3 · · · (p− 2). This is a product of p− 2− 1 = p− 3, i,e, an even number of
factors. If we pair each factor with its reciprocal, we obtain that

(p− 2)! = 2 · 3 · · · (p− 2) ≡ 1 (p).

And so multiplying both sides by p− 1: (p− 1)! ≡ p− 1 ≡ −1 (p).
Conversely, assume for contradiction that p has a non-trivial divisor, d|p. Then

(p− 1)! ≡ −1 (d), but since d < p, (p− 1)! ≡ 0 (d). We are left with 0 ≡ −1 (d) which
is absurd for d ≥ 2. �

We have a new primality test ! ...but considering it requires computing a factorial,
this is rather only of theoretical value. In the next section, we see another similar
primality test – via Fermat’s little theorem – that as practical significance.
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2.4. Fermat and Euler theorems

Theorem 20 (Fermat’s little theorem (1640)). Let p be a prime, and (a, p) = 1.
Then

ap−1 ≡ 1 (p).

Proof. We present a proof of Ivory (1806): a, 2a, 3a, . . . , (p−1)a are congruent (in
some order) to 1, 2, . . . , p−1. In fact this is a one-to-one correspondence: if ja ≡ ka (p)
then since (a, p) = 1, j ≡ k (p), but 1 ≤ j, k ≤ p− 1, hence j = k.) Then

a(2a)(3a) · · · ((p− 1)a) ≡ (p− 1)! (p)

and
a(2a)(3a) · · · ((p− 1)a) = (p− 1)!ap−1.

Thus (p − 1)!ap−1 ≡ (p − 1)! (p) and since (p, (p − 1)!), we may divide (p − 1)! from
both sides. �

Remark 38. For applications (as we will see an example below), it is sometimes useful
to keep in mind that ap−1 ≡ 1 (p) ⇐⇒ ap ≡ a (p).

We next discuss two applications of Fermat’s little theorem.

(1) Primality testing. We can rule out that a large number is prime using Fermat’s
Little Theorem (how?). Conversely, a number n for which (a, n) = 1 and an−1 ≡ 1 (n)
has a good chance to be prime, but this is not sufficient. An example is 561 = 3 ·11 ·17.
We test with Fermat using repeated squaring to reduce the power to compute. First
note 560 = 2 · 280 = 2 · 2 · 140 = 23 · 70 = 24 · 35. Good enough, 235 is computable. In
fact,

235 ≡ 263 (561).

Squaring both sides,
270 ≡ 166 (561),

and repeating the process enough many times: 2140 ≡ 67 (561), 2280 ≡ 1 (561), and
from here it follows that

2560 ≡ 1 (561).

Hence 561 is a ‘false positive’. We call such numbers pseudo-primes (or Carmichael
numbers) – 561 is the smallest pseudo-prime.

(2) Solving linear congruence equations. Earlier, we have seen that the equation
ax ≡ b (p), for p prime, has a solution. Fermat’s Little Theorem gives us a simple way
of finding this solution: multiply both sides of the congruence equation by ap−2, then
using that ap−1 ≡ 1,

ax ≡ b (p) =⇒ x ≡ ap−2b (p).

Example 39. Let’s solve 5x ≡ 2 mod 17. Applying Fermat, x ≡ 5152 mod 17 is a
solution. We now want to find the remainder of 5152 when divided by 17:

515 = 257 · 5 ≡ 87 · 5 = 643 · 40 ≡ (−4)3 · 6 = −16 · 24 ≡ 1 · 7 = 7 mod 17

hence x ≡ 515 · 2 ≡ 14 mod 17.
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From this, can we infer the case of general modulus n ? This is Euler’s generalization
of Fermat’s theorem:

Theorem 21 (Euler’s theorem, 1760). If (x, n) = 1, then

xϕ(n) ≡ 1 (n),

where ϕ(n) = #{0 ≤ m < n : (m,n) = 1} is Euler’s totient function.

Remark 40. We have already met Euler’s totient function once. For now, let’s simply
observe that if p is prime, ϕ(p) = p− 1. So this indeed generalizes Fermat’s theorem.

Proof. We apply the same argument we applied to prove Fermat’s Little Theorem.
We first list all 1 ≤ a < n satisfying (a, n) = 1 as follows:

a1, a2, . . . , ak

where k = ϕ(n), since this is by definition the number of positive integers below n that
are coprime to it. We now consider

a1 · a, a2 · a, . . . , ak · a.
These are congruent (in some order) to a1, a2, . . . , ak such that

(a1 · · · ak)ak = (a1 · a)(a2 · a) · · · (ak · a) ≡ a1 · · · ak mod n.

To cancel (a1 · · · ak) on both sides, we only need to show that (a1 · · · ak, n) = 1 and
this follows by repeated applications of Euclid’s lemma. �

The latter point in the proof is sufficiently important and general to stand as a
Lemma on its own.

Lemma 41. Let a1, . . . , ak ∈ Z such that (ai, n) = 1 for each i = 1, . . . , k. Then
(a1 · · · ak, n) = 1.

Proof. Exercise. �

2.5. Chinese remainder theorem

As we have just seen with the Fermat–Euler theorem, solving an equation of
the form ax ≡ b (mod n) reduces to finding the smallest residue x such that x ≡
aϕ(n)−1b (mod n), and an efficient way of doing division by hand is using the method
of repeated squaring. As is clear from Example 112, the smaller the modulus is, the
quickest the operation. Let’s see a numerical example with a larger modulus: What is
the remainder of (10273 + 55)37 divided by 111 ? In other words, we want the smallest
positive residue r such that r ≡ (10273 + 55)37 (mod 111). An efficient way of treat-
ing such a problem is to break it into several congruence equations of smaller prime
modulus. Here, 111 = 3 · 37. Observe that if r ≡ (10273 + 55)37 (mod 111), then

r ≡ (10273 + 55)37 (mod 3)

r ≡ (10273 + 55)37 (mod 37)

and vice versa. Let us formalize this observation:



2.5. CHINESE REMAINDER THEOREM 19

Proposition 42. Fix n ≥ 2 and consider its prime factorization n = pk11 · · · p
kl
l , where

p1, . . . , pl are distinct primes. Then X is a solution of ax ≡ b (mod n) if and only if
X is a solution of

ax ≡ b (mod pk11 )

...

ax ≡ b (mod pkll )

Proof. Exercise.. �

Coming back to our numerical example, we note that

102 ≡ 0 (3), 55 ≡ 1 (3)

hence (10273 + 55)37 ≡ 1 (3) and by Fermat’s Little Theorem,

10273 = (10236)2 · 102 ≡ 102 ≡ −9 (37)

hence 10273 + 55 ≡ 9 (37) and applying Fermat’s Little Theorem once more,

(10273 + 55)37 ≡ 9 (37)

In summary, we have the system of equation

r ≡ 1 (mod 3)

r ≡ 9 (mod 37)

Theorem 22 (Chinese remainder theorem). Let n1, n2, . . . , nk be pairwise coprime.
Then the system of congruence equations

x ≡ a1 (n1)

x ≡ a2 (n2)

...
x ≡ ak (nk)

admits a unique solution X (mod n1 · n2 · · ·nk).

Proof. The proof is by induction over k. Suppose k = 2. Then we have a system
of two congruence equations

x ≡ a (m)

x ≡ b (n)

Since (m,n) = 1, there exist u, v ∈ Z such that mu+ nv = 1 (Bézout’s Corollary 15).
Note that mu ≡ 1 (mod n) and nv ≡ 1 (mod m), hence x ≡ anv (mod m) and
x ≡ bmu (mod n). Thus, X = anv + bmu is a solution. Suppose there were another
solution X ′. Then X ≡ X ′ (mod m) and X ≡ X ′ (mod n). Hence there exists j ∈ Z
such that X − X ′ = jn and m|jn. Then since (m,n) = 1, by Euclid’s Lemma, we
conclude that m|j, and hence X ≡ X ′ (mod mn).

Suppose now the claim holds for systems of < k equations, and consider the system
above with k equations. By assumption, the first k − 1 congruence equations have a
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simultaneous solution a (mod n1 · · ·nk−1). Set m := n1 · · ·nk−1, n := nk, b := ak. Our
system therefore reduces to

x ≡ a (m)

x ≡ b (n)

If we can show that (m,n) = 1, then we’re done. Hence, suppose that p is a common
prime factor to m and n. Since p|m = n1 · · ·nk−1, by Euclid’s lemma, p|ni for some i.
Hence p is a common prime factor to ni and n = nk. This is absurd since (ni, nk) = 1.
Hence (m,n) = 1. �

Let’s conclude with a numerical application: what is the remainder of (10273 +55)37

divided by 111 ? That is, we want to find x ≡ (10273 + 55)37 (111). First note the
prime factorization 111 = 3 · 37. Applying Fermat,

(10273 + 55)37 ≡ 10273 + 55 ≡ 10273 + 18 (37)

where
10273 = 1022·37−1 ≡ 1022−1 ≡ 28 (37),

hence
(10273 + 55)37 ≡ 28 + 18 ≡ 9 (37).

The same process mod 3 yields

(10273 + 55)37 ≡ 2 (3).

Hence the remainder is the solution to the system of equation

x ≡ 9 (37)

x ≡ 2 (3).

Exercise 43. Show using the Chinese remainder theorem that x ≡ 7 (111).

2.6. Euler’s totient function

Recall Euler’s totient function

ϕ(n) = #{1 ≤ a < n : (a, n) = 1}.
This is our first example of a multiplicative function.

Theorem 23. If (m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).

Proof. Consider the sets

A = {1 ≤ a < mn : (a,mn) = 1},

B = {1 ≤ a < m : (a,m) = 1}, C = {1 ≤ a < n : (a, n) = 1}.
Note that |ϕ(mn) = |A|, ϕ(m) = |B|, ϕ(n) = |C|. Define

F : A→ B × C
by

F (a) = (a (mod m), a (mod n)).
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Our claim is that this function is a bijection (or, one-to-one correspondence). But
first we need to make sure that this map is well defined: if 1 ≤ a < mn satisfies
(a,mn) = 1, then a′ = a (mod m) satisfies (a′,m) = 1, and b = a (mod n) satisfies
(b, n) = 1. Let us check the latter claim. First, suppose that a′′ ≡ 0 (mod n) then n|a
and this contradicts (a,mn) = 1. Second, let d be a common divisor to b and n, then
since n|(b − a), d is also a common divisor to a and mn. Since (a,mn) = 1, the only
possible common divisor is d = 1, hence (b, n) = 1.

By the Chinese Remainder Theorem, for every pair (a (mod m), b (mod n)) ∈ B×C
with (a,m) = (b, n) = 1 there exists a unique 1 ≤ x < mn such that

x ≡ a (mod m)

x ≡ b (mod n).

Since (a,m) = (a, n) = 1, it follows that (x,m) = (x, n) = 1, and hence (x,mn) =
1. This shows that F is a one-to-one correspondence, and therefore its domain and
codomain must have the same cardinality: ϕ(mn) = ϕ(m)ϕ(n). �

Hence, to compute ϕ(n), we need
(1) to know the prime factorization n = pk11 · · · p

kl
l of n, and

(2) to know the value of ϕ(pk) for k ∈ N.

Proposition 44. Let p be a prime. For k ∈ N, ϕ(pk) = pk − pk−1.

Proof. We count 1 ≤ a ≤ pk such that (a, pk) 6= 1: these are a = m · p, for
m = 1, . . . , pk−1, hence ϕ(pk) = pk − pk−1. �

Combining these results,

ϕ(n) = ϕ(pk11 · · · p
kl
l ) = pk11 (1− p−1

1 ) · · · pkll (1− p−1
l ) = n

∏
p|n

(1− p−1),

where the product is taken over all prime divisors of n. This is Euler’s formula.
Finally, we take note of the beautiful identity noted by Gauss: for every n,

n =
∑
d|n

ϕ(d).

2.7. Higher order congruences

In this section

f(x) = akx
k + ak−1x

k−1 + · · ·+ a2x
2 + a1x+ a0

is a polynomial of degree k (in particular, ak 6= 0) and with integer coefficients
a0, a1, . . . , ak ∈ Z. We say call f(x) ≡ 0 (mod n) a congruence equation of order
k. So far, we have studied congruence equations of order 1, also called linear congru-
ence equations. Just as was the case then, solving higher order congruence equations
boils down to solving system of equations to prime moduli; this is the cumulative
content of the next two propositions.
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Proposition 45. Fix n ≥ 2 and consider its prime factorization n = pk11 · · · p
kl
l , where

p1, . . . , pl are distinct primes. Then X is a solution to f(x) ≡ 0 (mod n) if and only if
X is a solution to

f(x) ≡ 0 (mod pk11 )

...

f(x) ≡ 0 (mod pkll )

Proof. Adapt the proof of Proposition 42. �

Proposition 46. Let k ≥ 1, and let p be a prime. Then,
(1) if X is a solution to f(x) ≡ 0 (mod pk)
(2) if Y is a solution to f ′(X)x+ f(X)

pk
≡ 0 (mod p),

then X + pkY is a solution to f(x) ≡ 0 (mod pk+1).

Proof. By Taylor expansion,
f(X + pkY ) = f(X) + pkY f ′(X) +m · pk+1

for some integer m. By assumption f ′(X) · Y = −f(X)
pk

+ m′ · p for some integer m′.
Plugging this in the formula above:

f(X + pkY ) = (m′ +m)pk+1 ≡ 0 (mod pk+1).

�

We will study in depth quadratic congruence equations next chapter.

Exercise 47. Prove that if (4a, n) = 1, solving ax2 + bx + c ≡ 0 (mod n) can be
reduced to solving a congruence equation of the form y2 ≡ q (mod n). (Hint: multiply
ax2 + bx+ c by 4a and complete the square.)



CHAPTER 3

Quadratic reciprocity

In this chapter, p will always denote an odd prime. The set of non-zero residues
mod p is Z∗p = {1, 2, . . . , p− 1}. This set has the algebraic structure of a group.

Definition 48. A set G equipped with an operation ◦ : G×G→ G, (g, h) 7→ g ◦ h is
called a group if

(1) (G is closed under ◦) for every g, h ∈ G, g ◦ h ∈ G,
(2) (existence of identity) there exists (a unique) e ∈ G such that g ◦e = e◦g = g,
(3) (existence of inverse) for each g ∈ G, there exists (a unique) g ∈ G such that

gg = gg = e.

Proposition 49. Z∗p is a group with respect to multiplication mod p:

(k, l) ∈ Z∗p × Z∗p 7→ kl (mod p) ∈ Z∗p.

Proof. We check that (1)-(3) hold. First we show (1); that kl (mod p) ∈ {1, . . . , p−
1}. The remainder of kl divided by p is in {0, . . . , p − 1}. If kl ≡ 0 (p) then either
k ≡ 0 (p) or l ≡ 0 p, which are impossible since k, l ∈ Z∗p. We now show (2);
k · 1 = 1 · k = k for each k ∈ Z∗p, and we claim that this holds only with 1. Indeed,
using cancellation, ak ≡ k (p) reduces to a ≡ 1 (p). Finally, consider the equation
kx ≡ 1 (p). This equation has a unique solution (cf. Proposition 35). This proves
(3). �

3.1. Quadratic residues

Let p ≥ 3.

Definition 50. An integer a is called a quadratic residue mod p (QR) if

x2 ≡ a (mod p)

has a solution, and it is called a quadratic nonresidue (QNR) otherwise.

Example 51. What is the set of QR mod 5 ? First we note that the answers depends
only on a (mod p). Then

12 ≡ 1 (5), 22 ≡ 4 (5), 32 ≡ 4 (5), 42 ≡ 1 (5)

that is, 1 and 4 are QR mod 5, 2 and 3 are QNR mod 5.

In this chapter, we will seek to answer the following questions.
(1) Given p, determine the set of QR mod p
(2) Given a and p, determine quickly whether a is a QR mod p.
(3) Given a, determine the set of odd primes p such that a is a QR mod p

23
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For a number theorist, task (3) is particularly alluring because it would provide
new information about primes. Is it at all feasible? Clearly a = 1 is a QR for all p.

Theorem 24. a = −1 is a QR (mod p) if and only if p ≡ 1 (mod 4).

Proof. Suppose that x2 ≡ −1 (mod p) has a solution. (In particular, this implies
that x 6≡ 0 (mod p).) Assume for contradiction that p = 4k + 3. Then

xp−1 = x4k+2 = x2(2k+1) ≡ (−1)2k+1 = −1 (mod p),

and this contradicts Fermat’s theorem. This shows that our assumption is absurd, and
since p is odd, we must therefore have p ≡ 1 (mod 4).

For the converse, we present an argument of Lagrange. Let p = 4k+1. By Wilson’s
theorem, (p − 1)! = (4k)! ≡ −1 (p). On the other hand, 4k ≡ −1 (mod p), and so,
4k − 1 ≡ −2 (mod p), 4k − 2 ≡ −3 (mod p), etc. Thus

(4k)! = 1 · 2 · · · (2k) · (2k + 1) · · · (4k − 1) · (4k) ≡ 1 · 2 · · · (2k) · (−2k) · · · (−2) · (−1)

= (−1)2k((2k)!)2 = ((2k)!)2.

�

In the coming section, we deduce from this that there are infinitely many primes
of the form 4k + 1 (recall the discussion in Section 1.5).

Exercise 52. Why can’t the proof given to show that there are infinitely many primes
of the form 4k − 1 be also used to show that there are infinitely many primes of the
form 4k + 1 ?

3.2. Primes of the form 4k + 1

Theorem 25. There are infinitely many primes of the form 4k + 1.

Proof. Suppose for contradiction there are only finitely many such primes:

5, 9, 13, . . . , p.

Let
N = 4(5 · 9 · · · p)2 + 1.

Thus N ≡ 1 (mod 4), and since N > p, it is by assumption not a prime. In particular,
it must have an odd prime factor q|N = (2 · 5 · · · p)2 + 1. Then

(2 · 5 · · · p)2 ≡ −1 (mod q).

Thus by Theorem 24, q ≡ 1 (mod 4). Therefore q is in our list of primes of the form
4k + 1, hence q|(5 · 9 · · · p). But then

q|(N − 4(5 · 9 · · · p)2) = 1,

which is absurd. �
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Let’s see the first few examples of primes of the form 4k + 1 and 4k − 1.

p ≡ 1 (4) p ≡ −1 (4)
5 = 22 + 1 7

13 = 32 + 22 11
17 = 42 + 1 19
29 = 52 + 22 23
37 = 62 + 1 31

...
...

Exercise 53. Show that no prime of the form p ≡ −1 (mod 4) can be written as a
sum of two squares.

Lemma 54 (Fibonacci).

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2

Proof. Direct computation. �

Exercise 55. Check Euler’s identity

(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2) = (aA+ bB + cC + dD)2+

(aB − bA− cD + dC)2+(aC + bD − cA− dB)2 + (aD − bC + cB − dA)2.

With this identity, one can Lagrange showed that to show that every number can be
written as the sum of four squares, it suffices to show that every prime can be written
as the sum of four squares. This is Lagrange’s theorem.

Theorem 26 (Fermat). Every prime of the form p ≡ 1 (mod 4) can be written as
a sum of two squares, in a unique way.

Proof. Since p ≡ 1 (mod 4), −1 is a quadratic residue, and p|(x2 + 1). Choose m
to be the smallest positive integer such that mp can be represented, as the sum of two
squares, i.e.

mp = x2 + y2

for some x, y. Such m exists since for some n, pn = x2 + 1.
For contradiction, we will assume that m ≥ 2. Then we may choose −1

2
m ≤ a, b ≤

1
2
m such that a ≡ x, b ≡ y (m). Then a2 + b2 ≡ x2 + y20 (mod m); in particular, there

exists k ∈ Z such that
km = a2 + b2.

Multiplying the above two equations, and applying Fibonacci’s identity,

km2p = (a2 + b2)(x2 + y2) = (ax+ by)2 + (ay − bx)2. (3.1)

The right hand side is divisible by m2: recall that a ≡ x, b ≡ y (m);

ax+ by ≡ a2 + b2 ≡ 0 (m)

and
ay − bx ≡ ab− ba ≡ 0 (m).



26 3. QUADRATIC RECIPROCITY

Hence

kp =

(
ax+ by

m

)2

+

(
ay − bx
m

)2

.

Now recall that

km = a2 + b2 ≤ m2

4
+
m2

4
and hence k ≤ m

2
< m, contradicting the minimality of m.

We now prove the uniqueness of the representation. Let p = x2 + y2 = a2 + b2.
Since p is prime, (x, y) = (a, b) = 1.

Mod p, x2 ≡ −y2. Then

p2 = (x2 + y2)(a2 + b2) = (xa+ yb)2 + (xb− ay)2. (3.2)

Since p ≡ 1 (mod 4), −1 is a QR mod p. Let h be a solution to z2 ≡ −1 (mod p). Then
x2 ≡ −y2 ≡ (hy)2 (mod p) and a2 ≡ (hb)2 (mod p) have solutions x = hy, a = hb, and

xa+ yb = h2yb+ yb ≡ −yb+ yb = 0 (mod p), xb− ya = hyb− hyb = 0 (mod p).

In particular, both terms on the RHS of (3.2) are divisible by p2. We thus have

1 =

(
xa+ yb

p

)2

+

(
xb− ya

p

)2

.

There are only two ways to represent 1 as a sum of two squares, either (a) 1 = 02 + 12

or (b) 1 = 12 + 02.
Let’s consider case (a) first. Then xa = −yb. Since (x, y) = 1, x|b, and since

(a, b) = 1, b|x. Thus b = x. Similarly, one shows that a = y. Case (b) is left as an
exercise. �

More generally,

Theorem 27. A positive integer n ≥ 1 is a sum of two squares if and only if it is
of the form n = d2 · 2l · p1 · · · pk, where d ≥ 1, l ∈ {0, 1} and p1, . . . , pk are distinct odd
primes of the form 4k + 1.

3.3. Legendre symbol

Recall our list of tasks
(1) Given p, determine (efficiently) the set of QR mod p
(2) Given p, determine (efficiently) whether a is a QR mod p
(3) Given a, determine (completely) the set of prime moduli p such that a is a

QR mod p
In this section, we address (1) and (2).

Proposition 56. There are exactly p−1
2

QR (mod p), and p−1
2

QNR (mod p).

Proof. We have to count the number of distinct residues a2 (mod p) where a
ranges over 1, . . . , p− 1. Since

a2 ≡ (p− a)2 (mod p)
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there are at most p−1
2

distinct residues. We now show that there are exactly that many
QRs. Let a, b ∈ {1, . . . , p−1

2
}, and suppose that a2 ≡ b2 (mod p). Then

a2 − b2 ≡ 0 (p) ⇐⇒ (a− b)(a+ b) ≡ 0 (p) =⇒ a ≡ ±b (p).

Since a and b are both in {1, . . . , p−1
2
}, a = b. �

Example 57. We determine the set of QR mod 17. There will be 8, and since a2 ≡
(17− a)2 (mod 17), we only need to compute the first 8 squares to find the QR. These
are

1, 22 = 4, 32 = 9, 42 = 16, 52 ≡ 8, 62 ≡ 2, 72 ≡ 15, 82 ≡ 13.

Lemma 58. We note the following multiplicativity behavior.
(1) If a and b are QR mod p, then ab is a QR mod p,
(2) If a is a QR and b is a QNR, then ab is a QNR,
(3) If a and b are QNRs, then ab is a QR.

Proof. The first statement is easy: if x2 ≡ a (p) and y2 ≡ b (p) then (xy)2 ≡ ab (p).
For the next two statements, we list all residues mod p in function of whether they

are QRs,
r1, . . . , rk,

or QNRs,
n1, . . . , nk,

where k = p−1
2
. Let a be a QR mod p. Then

ar1, . . . , ark, an1, . . . , ank

are all distinct. By (1), the first half, namely ar1, . . . , ark are QRs, and this implies,
by Proposition 56, that the second half are QNR’s. In particular, each product of a
QR and a QNR is a QNR. This proves (2). The same argument can be used to prove
(3) (exercise). �

Thus QR behave like +1, QNR like −1; this motivates the following definition.

Definition 59 (Legendre symbol). For a ∈ Z, p an odd prime, the Legendre symbol is(
a

p

)
=

{
+1 a is a QR mod p
−1 a is a QNR mod p

and (a
p
) = 0 if a ≡ 0 (p).

Proposition 60. We record the following desired properties.

(1)
(
a
p

)
depends only on a (p),

(2)
(
ab
p

)
=
(
a
p

)(
b
p

)
,

(3) (Euler’s criterium)
(
a
p

)
≡ a

p−1
2 (p).
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Proof. For (1): Suppose that b ≡ a (p). Then if a is a QR, there exists X ∈ Z∗p
such that X2 ≡ a ≡ b (p), hence b is also a QR. Similarly, if a is a QNR, then b is a
QNR. And if a ≡ 0 (p), then b ≡ 0 (p).

The second point is simply a reformulation of Lemma 58.
To prove Euler’s criterium, suppose first that a is a QR: x2 ≡ a (mod p). By

Fermat’s Little Theorem,

a
p−1

2 ≡ xp−1 ≡ 1 (mod p)
Suppose instead that a is a QNR. For each b ∈ {1, . . . , p − 1}, we know that bx ≡ a
(mod p) has a unique solution b, and b 6= b since otherwise a would be a QR. Therefore,
we can pair each residue below with its multiplicative inverse:

(p− 1)! = 1 · 2 · · · (p− 1) ≡ a · · · a = a
p−1

2 (mod p)

and Wilson’s theorem states that (p− 1)! ≡ −1 (mod p). �

Example 61.(
72

97

)
=

(
9

97

)(
8

97

)
=

(
3

97

)2(
2

97

)3

=

(
2

97

)
≡ 248 ≡ 1 (mod 97)

3.4. Gauss’s Lemma

Example 62. By Euler’s criterion,(
−1

p

)
≡ (−1)

p−1
2 (mod p).

This is +1 if p−1
2

= 2k for some k ∈ Z, and −1 if p−1
2

= 2k + 1 for some k ∈ Z. In
other words, −1 is a QR exactly when p is of the form 4k + 1.

Proposition 63. 2 is a quadratic residue mod p if and only if p ≡ ±1 (mod 8).

Proof. By Euler’s criterium, (2
p
) ≡ 2

p−1
2 (mod p). Observe

2
p−1

2 (p−1
2

)! = 2
p−1

2 ·
[
1 · 2 · · · (p−1

2
− 1)(p−1

2
)
]

= 2 · 4 · · · (p− 3)(p− 1),

and notice that p−1 ≡ −1 (p), p−3 ≡ −3 (p), etc: regrouping even and odd numbers,
we conclude that

2
p−1

2 (p−1
2

)! ≡ (−1)ν(p−1
2

)! (mod p)
and hence

2
p−1

2 ≡ (−1)ν (mod p)
for

ν = #{k ∈ {1, . . . , p−1
2
} : p−1

2
< 2k ≤ p− 1} = #{k ∈ {1, . . . , p−1

2
} : p−1

4
< k ≤ p−1

2
}.

Let p = 4j + r, where r ∈ {1, 3}. Then
ν = #{j + r−1

4
< k ≤ 2j + r−1

2
}.
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Now if r = 1, ν = j, and if r = 3, ν = #{j < k ≤ 2j + 1} = j + 1.
If j is even, p ≡ r (8), and ν is even if and only if r = 1. If j is odd, then

p ≡ 4 + r (8). and ν is even if and only if r = 3. This establishes the claim. �

Example 64. (
72

97

)
=

(
9

97

)(
8

97

)
=

(
3

97

)2(
2

97

)3

=

(
2

97

)
= 1

since 97 ≡ 1 (mod 8).

Lemma 65 (Gauss’s lemma). Let a ∈ Z∗p. Then(
a

p

)
= (−1)ν ,

where ν is the number of residues ka (mod p), for k = 1, . . . , p−1
2

that lie in the interval
(p

2
, p).

Proof. First recall that the a, 2a, . . . , p−1
2
a have distinct residues mod p. Define

a1, . . . , ap−1
2

such that ka ≡ ak (mod p) and −p
2
< ak <

p
2
. Let

ν = #{k ∈ {1, . . . , p−1
2
} : −p

2
< ak <}.

Then

a
p−1

2 (p−1
2

)! = a(2a) · · · (p−1
2
a) ≡ (−1)ν(p−1

2
)! (mod p).

Dividing both sides by (p−1
2

)! together with Euclid’s criterion concludes. �

The application of Gauss’s lemma to the following proof is perhaps more instructive.

Proposition 66. 3 is a QR mod p if and only if p ≡ ±1 (mod 12).

Proof. Let p = 12k + r. We need to count the number n of integers b in the
interval

p− 1

2
< 3b < p ⇐⇒ p− 1

6
< b <

p

3
⇐⇒ 2k +

r − 1

6
< b < 4k +

r

3
.

Since we only care whether n is even or odd, we may remove 2k and 4k from both
sides:

r − 1

6
< b <

r

3
.

If r = ±1, n = 0. If r = 5, 7, n = 1. �

3.5. Quadratic reciprocity law

Proposition 67. If p, q are primes such that p ≡ ±q (mod 4a) then(
a

p

)
=

(
a

q

)
.
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Proof. Let p = q + 4ar, and a ∈ Z∗p. Let n be the number of integers b in the
interval

p− 1

2a
< b <

p

a
⇐⇒ 2r +

q − 1

2a
< b < 4r +

q

a
.

Let n′ be the number of integers b in the interval
q − 1

2a
< b <

q

a
.

Then n and n′ have the same parity (namely, n is even if and only if n′ is even). This,
together with Gauss’ lemma, implies that (a

p
) = (a

q
). The same argument applies when

p ≡ −q (mod 4a). �

Theorem 28 (Quadratic reciprocity law). If p and q are odd primes, then(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
=

{
−( q

p
) p ≡ q ≡ 3 (4)

+( q
p
) otherwise.

Proof. Assume that p ≡ q (mod 4). Let p = q + 4a. Then(
p

q

)
=

(
q + 4a

q

)
=

(
4a

q

)
=

(
2

q

)2(
a

q

)
=

(
a

q

)
,(

q

p

)
=

(
p− 4a

p

)
=

(
−4a

p

)
=

(
−1

p

)(
2

p

)2(
a

p

)
= (−1)

p−1
2

(
a

p

)
,

Since p ≡ q (4), by Proposition 67, (
a

q

)
=

(
a

p

)
,

and as such, if p ≡ q (4), (
q

p

)
= (−1)

p−1
2

(
p

q

)
.

Otherwise, p ≡ −q (mod 4). Let p+ q = 4a. Then(
p

q

)
=

(
4a− q
q

)
=

(
4a

q

)
=

(
a

q

)
,(

q

p

)
=

(
4a− p
p

)
=

(
4a

p

)
=

(
a

p

)
,

and again by Proposition 67, (p
q
) = ( q

p
). �

3.6. Applications

In the applications below, we use that for two odd primes (p
q
)( q
p
) = (−1)

p−1
2

q−1
2

and (−1
p

) = 1 if and only if p ≡ 1 (mod 4), and (2
p
) = 1 if and only if p ≡ ±1 (mod 8).

Exercise 68. Show that for all odd primes p, q (p
q
) = ( q

p
) except when p ≡ q ≡ 3 (mod

4), in which case, (p
q
) = −( q

p
)
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Example 69.(
164

257

)
=

(
2241

257

)
=

(
41

257

)
=

(
257

41

)
=

(
11

41

)
=

(
41

11

)
=

(
8

11

)
=

(
2

11

)
= −1.

Example 70.(
34

97

)
=

(
2

97

)(
17

97

)
=

(
17

97

)
=

(
97

17

)
=

(
12

17

)
=

(
2

17

)2(
3

17

)
=

(
3

17

)
= −1.

Example 71. We determine the set of odd primes p for which
(

5
p

)
= 1. By the

Quadratic Reciprocity Law, (5
p
) = (p

5
), which depends only on p (mod 5). We quickly

check that (
1

5

)
=

(
4

5

)
= +1,

(
2

5

)
=

(
3

5

)
= −1.

Hence (5
p
) = 1 if and only if p ≡ ±1 (mod 5) and since p is odd, this is really p ≡ ±1

(mod 10).

Exercise 72. Let p be an odd prime. Explain why (7
p
) = (−1)

p−1
2 (p

7
). The first factor

on the right hand side depends on p (mod 4) and the second on p (mod 7). Hence the
right hand side depends on p (mod 28). Determine the set of odd primes p such that
(7
p
) = 1.

Proposition 73. There are infinitely many primes of the form 5k ± 1.

Proof. To complete We give a “Euclidean proof” of this statement. Assume for
contradiction that there are only finitely many primes, p1 < . . . , < pn of the form
5k ± 1, and set

N = (p1 · · · pn)2 − 5.

Then N > pn and N ≡ 1 (mod 5). Then N is not prime, and factors as a product
of primes. Let q be an odd prime divisor of N . Then (p1 · · · pn)2 ≡ 5 (mod q). By
the example above, q ≡ ±1 (mod 5). Hence q|(p1 · · · pn)2 −N = 5, which implies that
q = 5, which is absurd. �





CHAPTER 4

Farey fractions

The field of fractions is

Q = {a
b

: a ∈ Z, b ∈ N∗}

and addition and multiplication are given by, respectively
a

b
+
c

d
=
ad+ bc

bd
,

a

c

b

d
=
ac

bd
.

Every fraction a
b
∈ Q has an additive and a multiplicative inverse:

a

b
+
−a
b

= 0,
a

b
· b
a

= 1.

Exercise 74. Prove the following statements.
(1) Q is a field
(2) Q is an infinite countable set
(3) Q is a totally ordered set with respect to the following order:

a

b
<
c

d
⇐⇒ ad < bc.

(4) Show that this order would not be well-defined if bd < 0. (This is why we
impose that the denominator of each fraction in Q be positive!)

4.1. Farey sequence

Two observations:
(1) Each real number x can be written as the sum x = bxc + {x}, where bxc

(the integral part of x) is the largest integer ≤ x, and {x} := x− bxc (the
fractional part of x). Note that {x} ∈ [0, 1). In particular each fraction in
Q is the sum of an integer and a fraction in [0, 1).

(2) Fractions are not unique in the following sense:
3

4
=

15

20
=

12

16
.

A fraction a
b
is called reduced if (a, b) = 1.

Exercise 75. Show that each fraction has a unique reduced form.

Definition 76. The Farey sequence Fn of order n is the ordered set of all fractions
0 ≤ a

b
≤ 1 in Q such that 0 < b ≤ n.

33
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Example 77.

F1 = {0, 1}, F2 = {0, 1
2
, 1}, F3 = {0, 1

3
, 1

2
, 2

3
, 1}, F4 = {0, 1

4
, 1

3
, 1

2
, 2

3
, 3

4
, 1}, . . .

Proposition 78. For each n ∈ N∗,

Fn = Fn−1 ∪ { an : (a, n) = 1}.

Proof. By definition,
Fn = {a

b
∈ [0, 1] : 0 < b ≤ n} = {a

b
∈ [0, 1] : 0 < b ≤ n− 1} ∪ { a

n
: (a, n) = 1}.

�

Corollary 79.

|Fn| = 1 +
n∑
k=1

ϕ(k).

Proof. By recursion,

|Fn| = |Fn−1|+ ϕ(n) = |F1|+
n∑
k=2

ϕ(k) = 1 +
n∑
k=1

ϕ(k)

for the convention ϕ(1) = 1. �

Proposition 80. If a
b
< c

d
are fractions in Q, then we call a+c

b+d
the mediant, and

a

b
<
a+ c

b+ d
<
c

d
.

Proof.
a+ c

b+ d
<
c

d
⇐⇒ (a+ c)d < (b+ d)c ⇐⇒ ad < bc

and this is true by assumption. The other inequality is proven the same way. �

Definition 81. Two consecutive fractions a
b
< c

d
in a Farey sequence are called Farey

neighbors.

Example 82. 1
4
and 1

3
are Farey neighbors in F4, 0, 1

3
are Farey neighbors in F3 but

not in F4.

Theorem 29. If a
b
< c

d
are Farey neighbors, then cb− ad = 1.

Proof. We prove the statement by induction over n, the order of the Farey se-
quence. For n = 1, 0

1
< 1

1
are the only Farey neighbors, and 1 − 0 = 1. Suppose the

assertion holds for all Farey neighbors in Fn. Let x
y
be a reduced fraction that is not

in Fn. Then one can find two Farey neighbors in Fn such that
a

b
<
x

y
<
c

d
.

Let
α = xb− ay, β = cy − dx.

By the inequalities above, α, β ≥ 1. We now solve this linear system of equations.
x = x ⇐⇒ αd+ ady = cby − βb ⇐⇒ y = αd+ βb,
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where we used that cb− ad = 1 (our induction hypothesis). Similarly, we show that

x = βa+ αc.

Hence every reduced fraction between a
b
and c

d
can be written as

x

y
=
βa+ αc

αd+ βb
.

The next reduced fraction to appear between a
b
and c

d
in the Farey sequence is, by

defintion, the one with smallest denominator, and this happens for α = β = 1, i.e.
x

y
=
a+ c

b+ d

the mediant of a
b
, c
d
. Since all other x

y
have higher denominator, they will only appear

in later Farey sequences, and our new Farey neighbors are a
b
< a+c

b+d
< c

d
. We now easily

check that they satisfy

(a+ c)b− a(b+ d) = cb− ad = 1, c(b+ d)− d(a+ c) = cb− ad = 1.

�

Corollary 83. The fractions that belong to Fn+1 but not Fn are mediants of fractions
in Fn.

Exercise 84. Show that if |cb − ad| = 1, then a
b
, c
d
must be Farey neighbors in some

Farey sequence.

4.2. Geometry of Farey fractions

Definition 85 (Ford circle). The Ford circle Ca
b
associated to the reduced fraction a

b

is the circle with center at (
a

b
,

1

2b2

)
and radius 1/2b2.

Hence each Ford circle Ca
b
"lies on" the x-axis, and is tangent to it exactly at x = a

b
.

Below we see the Ford circles for all Farey fractions in F5.

Theorem 30. The interiors of two distinct Ford circles are disjoint. Moreover, two
distinct Ford circles Ca

b
and C c

d
are tangent if and only if a

b
and c

d
are Farey neighbors

(in some Farey sequence).

Proof. Let D denote the distance between the centers of Ca
b
and C c

d
, that is

D2 =
(a
b
− c

d

)2

+

(
1

2b2
− 1

2d2

)2

.

Let R denote the sum of the radii of Ca
b
and C c

d
, that is

R =
1

2b2
+

1

2d2
.
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Figure 1. From Wikimedia Commons

The interiors of the two circles intersect if D < R, they are disjoint if D ≥ R. This is
easily checked:

D2 −R2 =
(a
b
− c

d

)2

− 1

b2d2
=

(ad− bc)2 − 1

b2d2
.

Since Ca
b
6= C c

d
, a
b
6= c

d
, hence ad − bc 6= 0. Therefore (ad − bc)2 − 1 ≥ 1 − 1 = 0.

Moreover, D = R if and only if the two circles are tangent if and only if |ad− bc| = 1
if and only if they are Farey neighbors in some Farey sequence (see Exercise 84). �

Exercise 86. Let Ca
b
, C c

d
be two tangent Ford circle. Then their point of tangency is

given by (
ab+ cd

b2 + d2
,

1

b2 + d2

)
.

4.3. Some simple proofs using fractions

Proposition 87. Let a, b ∈ N∗ such that (a, b) = 1. There exist u, v ∈ Z such that
au− bv = 1.

Proof. Suppose that a < b. Then a
b
is a Farey fraction in Fb. Let v

u
< a

b
be its

Farey neighbor, then by Theorem 29, au− bv = 1. �

Proposition 88 (Gauss).
n =

∑
d|n

ϕ(d)
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Proof. Consider the set S = { 1
n
, . . . , n−1

n
, n
n
}. Among the n fractions of this set

ϕ(n) are reduced. Suppose k
n
is not reduced. Then there is a divisor d|n such that

k
n

= k′

d
and (k′, d) = 1. There are ϕ(d) fractions in S that, in reduced form, have

denominator k′. Hence
n = |S| = ϕ(n) +

∑
d|n
d6=n

ϕ(d).

�





CHAPTER 5

Continued fractions

5.1. Rationals and finite continued fractions

We expand 67
24

in a continued fraction. First note 67
24
≈ 2.79. Hence b67

24
c = 2 and

{67
24
} = 67

24
−2. We can express the fractional part more precisely using Euclid’s division

algorithm:

67

24
=

2 · 24 + 19

24
= 2 +

19

24
= 2 +

1
24
19

= 2 +
1

1·19+5
19

= 2 +
1

1 + 1
19
5

= 2 +
1

1 + 1
3+ 1

1+1
4

.

The right hand side is called a continued fraction expansion, its terms 2, 1, 3, 1, 4 are
called its partial quotients. These are precisely the quotients appearing in the Eu-
clidean division algorithm. In fact, compare the latter continued fraction expansion
to

67 = 2 · 24 + 19

24 = 1 · 19 + 5

19 = 3 · 5 + 4

5 = 1 · 4 + 1

4 = 4 · 1.

We call 67
24
, 24

19
, 19

5
, 5

4
the complete quotients. However, the partial quotients determine

the continued fraction expansion, and this motivates the following notation

a0 +
1

a1 + 1
a2+ 1

...+ 1
an

= [a0, a1, . . . , an].

Here are a few additional facts about the partial quotients we can deduce from
Theorem 1 and Theorem 10 that

(1) a0 ∈ N, a1, . . . , an ∈ N∗.
(2) If we expand using the division algorithm as above a

b
= [a0, a1, . . . , an] then

an > (a, b) ≥ 1, i.e. an > 1.
(3) However note that

[a0, a1, . . . , an] = [a0, a1, . . . , an − 1, 1]

39
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Example 89.
67

24
= 2 +

1

1 + 1
3+ 1

1+1
4

= 2 +
1

1 + 1
3+ 1

1+ 1

3+1
1

,
1

2
= 0 +

1

2
= 0 +

1

1 + 1
1

Theorem 31. A rational a
b
∈ Q has a unique continued fraction expansion whose

last partial quotient is > 1.

Proof. Suppose that a
b
had two continued fraction expansions:

[a0, a1, . . . , am] = [b0, b1, . . . , bn].

Taking the integral part of a
b
, we see that ba

b
c = a0 = b0. Hence canceling a0 out on

both sides, we are left with

[a1, . . . , am] = [b1, . . . , bn].

Repeating this argument, we see that m = n, and ai = bi for i = 0, . . . , n. �

Our convention will be to use the continued fraction whose last partial quotient
is > 1.

Examples 90. Some examples:
(1) 17

11
= [1, 1, 1, 5]

(2) 11
31

= [0, 2, 1, 4, 2]

(3)
√

2 = 1 + (
√

2 − 1) = 1 + 1
1+
√

2
= [1, 2, 2, . . . ]. Here there is obviously a

convergence issue we need to take care of, but we will see that this infinite
continued fraction expansions does indeed represent

√
2.

5.2. Convergents

Consider a continued fraction, finite or infinite, [a0, a1, ...].

Definition 91. Its kth convergent is [a0, . . . , ak].

Example 92. We already computed that
67

24
= [2, 1, 3, 1, 4].

Its convergents are

[2] = 2

[2, 1] = 2 +
1

1
= 3

[2, 1, 3] = 2 +
1

1 + 1
3

= 2 +
3

4
=

11

4

[2, 1, 3, 1] = 2 +
1

1 + 1
3+1

= 2 +
4

5
=

14

5
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and, finally, [2, 1, 3, 1, 4] = 67
24
. So the successive convergents are

2, 3,
11

4
,

14

5
,

67

24
.

And if we order them by size,

2 <
11

4
<

67

24
<

14

5
< 3.

In fact, each further convergent is closer to 67
24
, with even convergents on its left, and

odd convergents on the right. We will later see that this phenomenon is always true.

Following the definition, the first few convergents of [a0, a1, a2, a3, . . . ] are given by
the formulas

[a0] = a0

[a0, a1] = a0 +
1

a1

=
a0a1 + 1

a1

[a0, a1, a2] = a0 +
1

a1 + 1
a2

= a0 +
1

[a1, a2]
= a0 +

a2

a1a2 + 1
=
a0a1a2 + a0 + a2

a1a2 + 1

[a0, a1, a2, a3] = a0 +
a2a3 + 1

a1a2a3 + a1 + a3

=
a0a1a2a3 + a0a1 + a0a3 + a2a3 + 1

a1a2a3 + a1 + a3

etc. Looking at these (and further) computations, you can observe that there is a
discernable, recursive pattern in the determination of the convergents. Of course, this
only works in the above fractions are already in reduced forms. We settle these two
points at once with the following lemma.

Lemma 93. Given a continued fraction (finite or infinite) [a0, a1, . . . ], define p−1 :=
1, q−1 := 0, p0 := a0, q0 := 1, and

pk := akpk−1 + pk−2

qk := akqk−1 + qk−2

for k ≥ 1. Then pkqk−1 − pk−1qk = (−1)k+1.

Proof. We can immediately check that p0q−1 − p−1q0 = −1. Suppose that the
relation holds for k. Then

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= −(pkqk−1 − pk−1qk) = −(−1)k+1 = (−1)k.

�

Corollary 94. For each k ≥ 0, (pk, qk) = 1.

Proof. If d is a positive divisor of both pk and qk, then by the previous lemma, it
also divides (−1)k+1. Hence d = 1. �
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Corollary 95. Given a continued fraction (finite or infinite) [a0, a1, . . . ], its conver-
gents are

[a0, . . . , ak] =
pk
qk

with pk, qk defined as in Lemma 93.

Proof. We again proceed by induction. Suppose this holds for kth convergents.
Formally,

[a0, . . . , ak−1, ak] = [a0, . . . , ak−1 + 1
ak

] =
(ak−1 + 1

ak
)pk−2 + pk−3

(ak−1 + 1
ak

)qk−2 + qk−3

=
akak−1pk−2 + akpk−3 + pk−2

akak−1qk−2 + akqk−3 + qk−2

=
akpk−1 + pk−2

akqk−1 + qk−2

.

�

Exercise 96. Compute the convergents of 67
24

using the recursion formulas given by
Lemma 93.

Corollary 97. Given a (finite or infinite) continued fraction [a0, a1, . . . ] where ak ≥ 1
for k ≥ 1, then the convergent’s denominators (qk) form a strictly increasing sequence
from k ≥ 1 on, and

qk ≥ k

for each k ≥ 0.

Proof. We immediately note that q0 = 1, q1 = a1 ≥ 1, q2 = a2a1 +1 ≥ 2. Suppose
that the statements hold for all denominators of convergents up to k, with k ≥ 3. Then

qk = akqk−1 + qk−2 ≥ qk−1 + qk−2 ≥ qk−1 + 1 > qk−1

and
qk ≥ qk−1 + qk−2 ≥ k − 1 + k − 2 ≥ k.

�

5.3. Solutions to ax+ by = 1

Recall that by Bézout’s lemma, for any two coprime numbers a, b, there exist x, y ∈
Z such that

ax+ by = 1.

We saw two proofs of this result. The first one used a minimality argument that did not
provide us with a construction of the solutions. The second one used Farey fractions
and showed that the solution can be constructed with Farey neighbors. Here, we use
continued fractions to construct solutions even more quickly : Since a, b are coprime,
a
b
is in reduced form, and let [a0, . . . , an] be its continued fraction expansion. The last

convergent is
pn
qn

=
a

b
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and since aqn−1 − bpn−1 = (−1)n+1, the second to last convergent provides an explicit
solution to the equation ax+ by = 1 !

Example 98. If a = 67 and b = 24, then the second to last convergent is p3
q3

= 14
5
and

aq3 − bp3 = −1, hence
67(−5) + 24(14) = 1.

We can also use this to compute the multiplicative inverse of an integer a (mod n)
(where (a, n) = 1). In fact, if (a, n) = 1, then there exist x, y ∈ Z such that ax+by = 1.
If a

n
= [a0, . . . , ak], then aqk−1 − npk−1 = (−1)k+1, and thus

a((−1)k−1qk−1) ≡ 1 (mod n).

Example 99. To find the multiplicative inverse of 13 (mod 76), we solve the congruence
equation 13x ≡ 1 (mod 76). We first compute the continued fraction expansion

13

76
= [0, 5, 1, 5, 2].

Its convergents are

0,
1

5
,
1

6
,

6

35
,
13

76
.

Then
13(−35) ≡ 13(41) ≡ 1 (mod 76).

5.4. Irrationals and infinite continued fractions

Recall that we saw
√

2 = 1 +
1

1 +
√

2
= 1 +

1

2 + 1
1+
√

2

= 1 +
1

2 + 1
2+ 1

2+

...
1+
√
2

= [1, 2, 2, . . . , 2, 1 +
√

2],

but does the infinite continued fraction [1, 2] eventually converge to
√

2 ? Let pn
qn

denote
the last rational convergent in the finite expansion above, i.e. pn

qn
= [1, 2, 2, . . . , 2]. Then∣∣∣∣√2− pn

qn

∣∣∣∣ =

∣∣∣∣∣(1 +
√

2)pn + pn−1

(1 +
√

2)qn + qn−1

− pn
qn

∣∣∣∣∣
=

∣∣∣∣ pn−1qn − pnqn−1

((1 +
√

2)qn + qn−1)qn

∣∣∣∣
=

1

((1 +
√

2)qn + qn−1)qn

≤ 1

n2
.

From this, we conclude that √
2 = lim

n→∞

pn
qn
,

where pn
qn

are the convergents of the infinite continued fraction [1, 2].
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More generally, let α be an irrational number. We can decompose α into its integral
and fractional parts, α = bαc+ {α}. Let

a0 := bαc, α1 :=
1

{α}
=

1

α− a0

.

Note that a0 ∈ Z, α1 > 1, and α1 6∈ Q (prove these facts!). Then

α = a0 +
1

α1

.

Now let

a1 := bα1c, α2 :=
1

{α1}
=

1

α1 − a1

.

Here, a1 ∈ N∗, α2 > 1, and α2 6∈ Q. Then

α = a0 +
1

a1 + 1
α2

.

Iterating this process over n steps yields

α = [a0, a1, . . . , an−1, αn],

where
• a0 ∈ Z
• ak ∈ N∗ for k = 1, . . . , n− 1,
• αn > 1 and αn 6∈ Q,
• the first n convergents pk

qk
= [a0, . . . , ak] ∈ Q,

•
[a0, . . . , αn] =

αnpn−1 + pn−2

αnqn−1 + qn−2

.

Exercise 100. Prove these statements, and conclude that

α = lim
n→∞

pn
qn
.

Theorem 32. Let (pn
qn

) be the sequence of convergents of a (finite or infinite) con-
tinued fraction x = [a0, a1, . . . ]. Then all even convergents lie in increasing order to
the left of the final value a

b
and all odd convergents lie in decreasing order to its right,

p0

q0

<
p2

q2

< · · · < x < · · · < p3

q3

<
p1

q1

.

Moreover, each convergent is closer to the final value x than the previous one, that is∣∣∣∣pnqn − x
∣∣∣∣ < ∣∣∣∣pn−1

qn−1

− x
∣∣∣∣ .

Proof. Consider
pn+2

qn+2

− pn
qn

=
an+2pn+1 + pn
an+2qn+1 + qn

− pn
qn

=
an+1(pn+1qn − pnqn+1)

qn+2qn
=
an+2(−1)n+1

qn+2qn
.
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The RHS is positive if n is odd, and negative if n is even. This shows that even
convergents form an increasing sequence, and odd convergents, a decreasing one. Write

x = [a0, . . . ] = [a0, . . . , an, y] with y = [an+1, . . . ].

Here note that y > 1. Then

x =
ypn + pn−1

yqn + qn−1

which is equivalent to

y(xqn − pn) = pn−1 − xqn−1.

Dividing both sides by yqn,

x− pn
qn

=
pn−1 − xqn−1

yqn
=
qn−1

yqn

(
pn−1

qn−1

− x
)
.

Since
qn−1

yqn
<
qn−1

qn
< 1,

taking absolute values on both sides yields the last assertion. �

Theorem 33. Let [a0, a1, . . . ] be an infinite continued fraction, where a0 ∈ Z and
ai ∈ N∗ for all i ≥ 1. Then

lim
n→∞

pn
qn

exists

and is irrational.

Proof. Note that for each convergent pn
qn
, n ≥ 0,

p0

q0

≤ pn
qn
≤ p1

q1

.

Moreover, the subsequence (
pn
qn

)
n even

is increasing and bounded by above, while the subsequence(
pn
qn

)
n odd

is decreasing and bounded below. Hence both subsequences have a limit, and since∣∣∣∣pn+1

qn+1

− pn
qn

∣∣∣∣ =
1

qnqn+1

≤ 1

n(n+ 1)
≤ 1

n2
→ 0

as n→∞, these two limits coincide. �
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5.5. Quadratic irrationals

Quadratic irrationals are irrational solutions of a quadratic polynomial

ax2 + bx+ c = 0,

with a, b, c ∈ Z. Let d = b2 − 4ac denote the discriminant of this equation, recall that
for d > 0, the equation has two solutions, explicitly given by

α =
−b+

√
d

2a
, α =

−b−
√
d

2a
,

where α is called the conjugate of α.

Exercise 101.
√

2, 1 +
√

2 are quadratic irrationals. Find the polynomials for which
they are roots.

We already have seen that
√

2 = [1, 2]. Or in other words,
√

2 = 1 +
1

[2]

and this is equivalent to
√

2 + 1 = [2]. Such a continued fraction is called purely
periodic, while the continued fraction expansion of

√
2 is eventually periodic.

Examples 102. (1) √
19 = [4, 2, 1, 3, 1, 2, 8]

(2)

α = [1, 2] = 1 +
1

2 + 1
α

= 1 +
α

2α + 1
=

3α + 1

2α + 1

and this is equivalent to

2α2 − 2α− 1 = 0.

Solving this equation, we find the positive solution

α =
1

2
+

√
3

2
.

We will see a special case of the following theorem of Lagrange: every quadratic
irrational has an eventually periodic continued fraction expansion.

Definition 103. We call a quadratic irrational α is reduced if α > 1 and −1 < α < 0.

Examples 104. (1) α = 1
2

+
√

3
2

is a reduced quadratic irrational.
(2) α =

√
n is a quadratic irrational (α2−n = 0) but not reduced: α = −

√
n ≤ −1.

(3) However α =
√
n+b
√
nc is a reduced quadratic irrational. In fact, α ≥ 1+1 =

2, and
α = −

√
n+ b

√
nc = −{

√
n} ∈ (−1, 0).

Theorem 34 (Galois). A quadratic irrational α is reduced if and only if α has a
purely periodic continued fraction expansion α = [a0, a1, . . . , an].
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Proof. Suppose that α is reduced. Let α = −b+
√

∆
2a

. Observe that since α is
reduced,

0 < a <
√

∆, −
√

∆ < b < 0.

(Exercise.) More generally, this shows that there are only finitely many reduced qua-
dratic irrationals to discriminant ∆.

Consider α1 in

α = a0 +
1

α1

.

Since α > 1, a0 ≥ 1, and α1 > 1 is also a quadratic irrational to discriminant d. Indeed,

α1 =
1

α− a0

=
2a

−(b+ 2aa0) +
√

∆
=

2a(b+ 2aa0 +
√

∆)

∆− (b+ 2aa0)2
.

Set
b1 = −b− 2aa0,

and

a1 =
∆− (b+ 2aa0)2

4a
= −c− a0 − aa2

0 6= 0.

Then α1 is written

α1 =
−b1 +

√
∆

2a1

and its conjugate is

α1 =
−b1 −

√
∆

2a1

=
1

α− a0

.

In particular, since α ∈ (−1, 0), α1 ∈ (−1, 0). Hence, every new quadratic irrational
arising in the continued fraction expansion of α is itself a reduced quadratic irrational
to discriminant d. Since there are only finitely many reduced quadratic irrationals to
discriminant d, the continued fraction expansion must be eventually periodic. That is,

α = [a0, . . . , an, αn+1]

and there is some m ≤ n for which αn+1 = αm. Since αn+1 = αm, their conjugates are
also equal: αn+1 = αm. Set

βn = − 1

αn
> 1.

Then
αn = an +

1

αn+1

⇐⇒ βn+1 = an +
1

βn
.

We conclude that an = bβn+1c. In particular, if βn+1 = βm then an+1 = am and
βn = βm−1. This in turns implies that αn = αm−1. This shows that

α = [a0, . . . , an−m, α] = [a0, . . . , an−m].

Suppose now that α has the completely periodic continued fraction expansion

α = a0 +
1

a1 + 1

... 1

an+ 1
α
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Then
α =

αpn + pn−1

αqn + qn−1

=⇒ qnα
2 + (qn−1 − pn)α− pn−1 = 0.

The discriminant of this equation is

d = (qn−1 − pn)2 + 4qnpn−1 = (pn + qn−1)2 + 4(−1)n.

In particular, d > 0 and is not a perfect square. Hence α is a quadratic irrational.
We still have to check that it is reduced. Since the expansion is purely periodic,
a0, . . . , an ≥ 1, and since a0 = bαc, we have that α > 1. Then we note that

α + α =
pn − qn−1

qn
, αα = −pn−1

qn
.

The second equation establishes that α and its conjugate have opposite signs. From
the first one, we get

α =
pn
qn
− α− qn−1

qn
>
pn
qn
− α− 1

and this converges to −1 as n→∞. �

We do not know anything about the structure of continued fraction expansions for
other algebraic irrational than the quadratic ones.

Example 105. We compute the value of α = [1]. We first note the recurrence relation

α = 1 +
1

α
.

This is equivalent to the quadratic equation α2 − α− 1 = 0. The positive solution is

α =
1 +
√

5

2
,

the golden mean.

5.6. Pell’s equation

Let N ≥ 1. Then
x2 −Ny2 = 1

is called a Pell’s equation. We wish to find integer solutions x, y ∈ Z to this equation.
If N is a perfect square, meaning that N = k2 for some k ∈ N, then

x2 −Ny2 = (x− ky)(x+ ky) = 1

and this has integer solutions if and only if

x− ky = x+ ky = ±1.

But this only holds for y = 0, x = ±1.
From here on, we will assume that N is not a perfect square. We nonetheless have

the factorization
x2 −Ny2 = (x−

√
Ny)(x+

√
Ny) = 1.

The continued fraction expansion of
√
N is of the form

√
N = [a0, a1, . . . , ak, 2a0].



5.6. PELL’S EQUATION 49

(Exercise.) Let
√
N = [a0, a1, . . . , ak, αk+1] =

αk+1pk + pk−1

αk+1qk + qk−1

. (5.1)

Note that here
αk+1 = [2a0, a1, . . . , ak] = a0 +

√
N.

Plugging this in (5.1), we obtain
√
N(a0qk + qk−1) +Nqk = a0pk + pk−1 +

√
Npk.

and this implies

pk−1 = Nqk − a0pk, (5.2)
qk−1 = pk − a0qk. (5.3)

Exercise 106. Prove that if a+ b
√
N = c+ d

√
N . then a = c and b = d.

Recall that the k-th (k − 1)-th convergents are related by

pkqk−1 − pk−1qk = (−1)k−1.

Plugging (5.2) in :

pk(pk − a0qk)− (Nqk − a0pk)qk = p2
k −Nq2

k = (−1)k−1.

Hence if k is odd, then
p2
k −Nq2

k = 1.

If k is even instead, we have p2
k − Nq2

k = −1. Squaring both sides of the equation
yields

(p2
k +Nq2

k)
2 −N(2pkqk)

2 = 1.

Example 107. Let N = 21. Then
√

21 = [4, 1, 1, 2, 1, 1, 8].

The first few convergents are

4, 5,
9

2
,
23

5
,
32

7
,
55

12
=
p5

q5

.

Hence
p2

5 − 21q2
5 = 552 − 21 · 122 = 1.

Example 108. Let N = 29. Then
√

29 = [5, 2, 1, 1, 2, 10].

The convergents are

5,
11

2
,
16

3
,
27

5
,
70

13
=
p4

q4

.

Hence
(p2

4 + 29q2
4)2 − 29(2p4q4)2 = 98012 − 29(1820)2 = 1.
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The parity of ”k” in the continued fraction expansion of
√
N is rather mysterious.

In fact, we do not have a characterization of N for which k is even (or odd).
The equation

x2 −Ny2 = −1

is called the negative Pell’s equation. Note that if N is such that k is even, then
the negative Pell’s equation is soluble. Otherwise this is not necessarily the case.

Example 109. We show that x2 − 21y2 = −1 is not soluble. In fact, if it were, then
x2 ≡ −1 (mod 21) would be soluble and in particular x2 ≡ −1 (mod 3) would be soluble.
But this is not the case.

The next fact are not harder to prove but we will omit its proof.

Fact 110. All solutions to the Pell equations x2−Ny2 = ±1 arise from the convergents
of
√
N . In particular,

x2 −Ny2 = −1 is soluble ⇐⇒ k is even.

Moreover, (pk, qk) (rec. (p2
k + Nq2

k, 2pkqk)) is the smallest solution to x2 − Ny2 = 1,
and every other solutions is given by

(xn, yn) = (pk+n(k+1), qk+n(k+1))

[TO FIGURE OUT]

5.7. On the shape of
√
N

Proposition 111. Let α = [a0, . . . , an] and β = [an, . . . , a0]. Then

− 1

β
= α.

Example 112. Consider α = [1, 2]. Then

α = [1, 2, α] =
3α + 1

2α + 1

and this is equivalent to
2α2 − 2α− 1 = 0,

which has solution

α =
1 +
√

3

2
.

Similarly β = [2, 1] leads to the quadratic equation

β2 − 2β − 2 = 0,

which has solution
β = 1 +

√
3.
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Proof. Let
α = [a0, . . . , an, α] =

αpn + pn−1

αqn + qn−1

which yields the quadratic equation

qnα
2 + (qn−1 − pn)α− pn−1 = 0. (5.4)

Similarly

β = [an, . . . , a0, β] =
βp′n + p′n−1

βq′n + q′n−1

yields
q′nβ

2 + (q′n−1 − p′n)β − p′n−1 = 0.

Given Lemma 113 below, the LHS here is equal to

pn−1β
2 + (qn−1 − pn)β − qn = 0. (5.5)

Comparing (5.4) and (5.5), we remark that there is a symmetry in the coefficients of
the two quadratic equations. In fact, if we divide both sides of (5.5) by − 1

β2 , we obtain

−pn−1 − (qn−1 − pn)/β + qn/β
2 = 0

which is equivalent to

qn

(
− 1

β

)2

− (qn−1 − pn)

(
− 1

β

)
− pn−1 = 0.

Hence the equation qnx
2 + (qn−1 − pn)x − pn−1 = 0 has two solutions: α and −1/β.

Since α 6= −1/β, we must have that −1/β = α. �

Lemma 113. Let
pn
qn

= [a0, . . . , an],
p′n
q′n

= [an, . . . , a0].

Then
pn
pn−1

=
p′n
q′n
,

qn
qn−1

=
p′n−1

q′n−1

.

Proof. Recall the recurrence relation pn = anpn−1 + pn−2. Applying it repeatedly,
we can write

pn
pn−1

= an +
1

pn−1

pn−2

= an +
1

an−1 + 1
pn−2
pn−3

= ... = an +
1

an−1 + 1

...+ p0
p−1

=
p′n
q′n
.

Similarly,

qn
qn−1

= an +
1

qn−1

qn−2

= ... = an +
1

an−1 + 1

...+ q1
q0

= [an, . . . , a1] =
p′n−1

q′n−1

.

�
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Let
√
N = [a0, a1, . . . , ak, 2a0]. Note that

α =
√
N + a0 = [2a0, a1, . . . , ak]

is purely periodic. Hence by Proposition 111,

α =
−1

[ak, . . . , a1, 2a0]
.

On the other hand α = a0 −
√
N . If we compare both expressions,

[ak, . . . , a1, 2a0] =
1√

N − a0

=
1

[0, a1, . . . , ak, 2a0]
= [a1, . . . , ak, 2a0].

Since continued fraction expansions are unique, we conclude that

ak = a1, ak−1 = a2, ak−2 = a3, . . . .

This proves that if k is even, then
√
N = [a0, a1, . . . , am, am, . . . , a1, 2a0],

and if k is odd, then √
N = [a0, a1, . . . , am, . . . , a1, 2a0]

where the single term am is called the central term.

Examples 114.
√

7 = [2, 1, 1, 1, 4]
√

14 = [3, 1, 2, 1, 6]
√

21 = [4, 1, 1, 2, 1, 1, 8]
√

29 = [5, 2, 1, 1, 2, 10]

5.8. Back to sums of squares

Suppose that the continued fraction expansion of
√
N has no central term. In other

words, it is of the form
[a0, a1, . . . , am, am, . . . , a1, 2a0].

Let us write it formally as a finite continued fraction,
√
N = [a0, a1, . . . , am, α],

where α is necessarily irrational and has continued fraction expansion

α = [am, . . . , a1, 2a0, a1, . . . , am].

Observe the symmetry: not only is α purely periodic, but it is also a palindrome with a
central term. Gathering what we have learned so far, α must be a reducible quadratic
irrational, hence is of the form

α =
a+
√
N

b
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for some integers a, b ∈ Z, b 6= 0, and its algebraic conjugate, then

α =
a−
√
N

b
,

must satisfy α = − 1
α

Exercise 115. Why does it need to be of the form a+
√
N

b
?

Hence

α =
a+
√
N

b

a−
√
N

b
=
a2 −N
b2

= −1,

which is equivalent to
N = a2 + b2,

that is N can be written as the sum of two (explicitly computable) squares. Of course,
this construction is conditional on the continued fraction expansion of

√
N having no

central part. Recall from the previous two sections that
√
N has no central part ⇐⇒ x2 −Ny2 = −1 is soluble.

Hence we have just proven that

Theorem 35. If x2 − Ny2 = −1 is soluble, then N can be written as a sum of
(explicitly computable) squares, N = a2 + b2.

We know that every prime p ≡ 1 (mod 4) can be represented as a sum of two
squares. Thanks to the following proof of Legendre, we now have an explicit way of
constructing this representation. (Skip the proof to see numerical examples.)

Theorem 36 (Legendre). If p ≡ 1 (mod 4), then x2 − py2 = −1 is soluble.

Proof. Let (a, b) be the smallest solution to Pell’s equation x2 − py2 = +1. Then

a2 − pb2 ≡ a2 − b2 ≡ 1 (mod 4). (5.6)

Recall that a square mod 4 can only satisfy a2 ≡ 0, 1 (mod 4) (depending on whether
a is even or odd). Hence (5.6) implies that a must be odd and b must be even. Write
b = 2k. Then

pk2 =
(a− 1)

2

(a+ 1)

2
.

We leave the following general fact as exercise: Let n, a, b ∈ N. If n2 = ab and
(a, b) = 1, then a = u2 and b = v2 for some u, v ∈ Z.

Since
a+ 1

2
− a− 1

2
= 1, (5.7)

the two terms are coprime, and hence by the general fact cited above, one of two things
is true:

(1) either a−1
2

= pu2 and a+1
2

= v2,
(2) or a−1

2
= u2 and a+1

2
= pv2.
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Let’s consider case (1) first. Equation (5.7) implies that
a+ 1

2
− a− 1

2
= v2 − pu2 = 1.

That is, (v, u) is a solution to Pell’s equation. Note that a2 = pb2 + 1 > 1 and hence

v =

√
a+ 1

2
<

√
2a

2
=
√
a < a.

This is absurd since a is the minimal x-solution to Pell’s equation x2− py2 = 1. Hence
case (1) can not occur.

Instead, in case (2),
a+ 1

2
− a− 1

2
= pv2 − u2 = 1,

and this is equivalent to u2− pv2 = −1. We have thus found a solution to the negative
Pell equation. �

Example 116. Take p = 677. This is very easy to represent as a sum of two squares
if you observe that 262 = 676, but let’s pretend we didn’t notice this. The continued
fraction expansion of

√
677 is [26, 52]. Hence the purely periodic palindrome part is here

simply α = [52], which we need to write down as a quadratic irrational. The quadratic
equation α satisfies is

α = 52 +
1

[52]
= 52 +

1

α
⇐⇒ α2 − 52α− 1 = 0.

Computing the positive solution to x2 − 52x− 1 = 0, we find that

α = 26 +
√

677.

Hence 677 = 262 + 12.

Example 117. Take this time p = 1009. This prime is ≡ 1 (mod 4); how can we write
it as a sum of two squares? We proceed exactly as above:

√
1009 = [31, 1, 3, 3, 1, 62],

and we find that

α = [3, 1, 62, 1, 3] =
28 +

√
1009

15
.

Hence
1009 = 282 + 152.



CHAPTER 6

Diophantine approximation

Theorem 37. The set Q is ε-dense in R. That is, for any α ∈ R and ε > 0, there
exists a

b
∈ Q such that ∣∣∣α− a

b

∣∣∣ < ε.

Proof. Pick b large enough such that 1
b
< ε. There exists a ∈ Z such that

a

b
< α <

a+ 1

b
.

Then ∣∣∣α− a

b

∣∣∣ < 1

b
< ε.

�

You can see this quite easily knowing continued fractions: let pn
qn

be the convergents
of α, in particular,

α = lim
n→∞

pn
qn
.

By the definition of a limit, for any ε > 0, there exists N > 0 such that for all n ≥ N ,∣∣∣∣α− pn
qn

∣∣∣∣ < ε.

Diophantine approximation studies the approximation of irrationals by rationals. For
instance, given α, what is the best rational approximation of α in Fn and how good is
it ?

6.1. Dirichlet’s theorem and best approximants

We denote by R \Q the set of all irrational numbers in R. Recall Dirichlet’s box
principle: given N boxes and N + 1 objects that are randomly distributed among the
boxes, there is one box that will contain at least 2 objects.

Theorem 38 (Dirichlet’s approximation theorem). Let α ∈ R \Q, N ∈ N∗. Then
there exists a

b
∈ FN such that ∣∣∣α− a

b

∣∣∣ < 1

bN
.

Remark 118. If a
b
, c
d
∈ FN are distinct Farey fractions, then∣∣∣a

b
− c

d

∣∣∣ =
|ad− bc|

bd
≥ 1

bd
≥ 1

bN
.

55
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Proof. Consider the fractional parts
0 < {α}, {2α}, . . . , {Nα} < 1,

and the intervals
[0, 1

N
), [ 1

N
, 2
N

), . . . , [N−1
N
, 1).

One of two things can happen: either one of the fractional parts above, say {mα}, is
in the first subinterval [0, 1

N
), or [0, 1

N
) contains none of the N fractional parts above.

In the first case, we have

{mα} = mα− bmαc < 1

N

and dividing both sides of this equation: α − bmαc
m

< 1
mN

. In this case, b = m and
a = bmαc yields the inequality we wanted.

If instead, [0, 1
N

) contains none of {α}, {2α}, . . . , {mα}, then by Dirichlet’s box
principle, one of the other subintervals, say [ k

N
, k+1
N

), contains {mα}, {nα} withm 6= n.
Then

|{nα} − {mα}| = |(n−m)α− (bnαc − bmαc)| < 1

N
.

In this case, take b = n−m, a = bnαc − bmαc. �

Corollary 119. Let α ∈ R \ Q. Then there exists an infinite sequence an
bn
∈ Q of

rational approximants such that ∣∣∣∣α− an
bn

∣∣∣∣ < 1

b2
n

.

Proof. For each N ≥ 1, Dirichlet’s approximation theorem states that there exists
a
b
∈ Q such that ∣∣∣α− a

b

∣∣∣ < 1

bN
≤ 1

b2
.

�

In the rest of this section, we will examine how the most effective rational approx-
imations are provided by convergents to α. First recall that

Lemma 120. ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1

Proof. Consider the following formal finite continued fraction expansion for α:

α = [a0, . . . , an, αn+1] =
αn+1pn + pn−1

αn+1qn + qn−1

.

Then ∣∣∣∣α− pn
qn

∣∣∣∣ =

∣∣∣∣αn+1pn + pn−1

αn+1qn + qn−1

− pn
qn

∣∣∣∣ =
|pn−1qn − pnqn−1|
(αn+1qn + qn−1)qn

=
1

(αn+1qn + qn−1)qn
<

1

qn+1qn

since αn+1 = an+1 + {αn+1} > an+1 and an+1qn + qn−1 = qn+1. �
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We can use this bound to give effective proofs of the two results we have seen so
far.
Proof that Q is ε-dense in R. Choose n large enough such that 1

n2 < ε. Using that
qn ≥ n, we see that ∣∣∣∣α− pn

qn

∣∣∣∣ < 1

qnqn+1

≤ 1

n(n+ 1)
<

1

n2
< ε.

�
Proof of Dirichlet’s approximation theorem. Choose n such that qn ≤ N < qn+1.
Then ∣∣∣∣α− pn

qn

∣∣∣∣ < 1

qnqn+1

<
1

qnN
.

�

Example 121. We wish to find a rational number a
b
such that |π− a

b
| < 0.01. Consider

the first two convergents of π, p1
q1

= 22
7
, p2
q2

= 333
106

. Then∣∣∣∣π − 22

7

∣∣∣∣ < 1

742
< 0.01.

In fact, the convergents of α ∈ R \Q provide the best possible approximants to α:

Theorem 39 (Best approximation theorem). Let n ≥ 2, α ∈ R \Q. Let (pk
qk

) be
the convergents to α. Then for any a

b
6= pn

qn
with b ≤ qn,∣∣∣∣α− pn

qn

∣∣∣∣ < ∣∣∣α− a

b

∣∣∣ .
Proof. Suppose first that 0 < b < qn. We can find two integers u, v such that

a = pnu+ pn−1v

b = qnu+ qn−1v (6.1)

Then
bα− a = u(qnα− pn) + v(qn−1α− pn−1).

Since convergents approximate α from below and above alternatively (see Theorem 32),
we know that

qnα− pn = −(qn−1α− pn−1).

On the other hand, it follows from (6.1) and the assumption that 0 < b < qn that if
u > 0, then v < 0 and if u < 0, then v > 0. Note that if u = 0 then a

b
= pn−1

qn−1
and the

inequality to prove holds by Theorem 32. We will suppose henceforth that u 6= 0. We
conclude that u(qnα− pn) and v(qn−1α− pn−1) have the same sign, therefore:

|bα− a| = |u||qnα− pn|+ |v||qn−1α− pn−1| > |u||qnα− pn| ≥ |qnα− pn|.
To conclude, we use that 0 < b < qn and divide both sides of the latter inequality by b:∣∣∣α− a

b

∣∣∣ < 1

b
|qnα− pn| <

1

qn
|qnα− pn| =

∣∣∣∣α− pn
qn

∣∣∣∣ .
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The remaining case to prove, namely b = qn is proved using the triangle inequality.
Indeed, observe that∣∣∣α− a

b

∣∣∣ ≥ ∣∣∣∣ab − pn
qn

∣∣∣∣− ∣∣∣∣α− pn
qn

∣∣∣∣ =
|a− pn|
qn

−
∣∣∣∣α− pn

qn

∣∣∣∣ ≥ 1

qn
−
∣∣∣∣α− pn

qn

∣∣∣∣ > 1

qn
− 1

qnqn+1

.

Since n ≥ 2, qn+1 > q1 > q0 = 1, hence

1

qn
− 1

qnqn+1

>
1

qn
− 1

2qn
=

1

2qn
>

1

qnqn+1

>

∣∣∣∣α− pn
qn

∣∣∣∣ .
�

Example 122. The first few convergents of π are 3, 22
7
, 333

106
, 355

113
, 103993

33102
. They have,

respectively, the same 0,2,4,6,9 digits as π.

6.2. Hurwitz’s theorem

Proposition 123. Let ϕ = 1+
√

5
2

, and 0 < c < 1. There exist only finitely many a
b
∈ Q

such that ∣∣∣ϕ− a

b

∣∣∣ < c√
5b2

.

Proof. Suppose that a
b
satisfies the inequality above. We will show that there is

only a finite number of choices for the integer parameter b. Recall that

x2 − x− 1 = (x− ϕ)(x− ϕ).

Plugging in a
b
and taking the absolute value gives us the relation∣∣∣∣a2

b2
− a

b
− 1

∣∣∣∣ =
∣∣∣a
b
− ϕ

∣∣∣ ∣∣∣a
b
− ϕ

∣∣∣ < c√
5b2

∣∣∣a
b
− ϕ

∣∣∣ .
Multiplying both sides by b2 and applying the triangle inequality,

|a2 − ab− b2| < c√
5

(∣∣∣a
b
− ϕ

∣∣∣+ |ϕ− ϕ|
=
√

5

)
<

c√
5

(
c√
5b2

+
√

5

)
The LHS is a non-zero integer, hence implies the inequality

1 <
c2

5b2
+ c ⇐⇒ b2 <

c2

5(1− c)
.

Since c is fixed, there are only finitely many integers b that satisfy this inequality. �

Theorem 40 (Hurwitz, 1891). For any α ∈ R\Q, there exists an infinite sequence
an
bn
∈ Q such that ∣∣∣∣α− an

bn

∣∣∣∣ < 1√
5b2
n

.

One can prove this theorem using that among a triplet of successive convergents
(pn
qn
, pn+1

qn+1
, pn+2

qn+2
), at least one satisfies the inequality above. Instead, we will give a

geometric proof.



6.2. HURWITZ’S THEOREM 59

Proof. Fix α ∈ R \Q. Let Lα be the vertical line in the plane passing through
(α, 0). That is, L = {(α, t) : t ∈ R}. Then L intersects infinitely many of the triangular
interstices in the Farey–Ford packing, see Figure 1 in Section 4.2.

Each triangular region is completely determined by its three vertices, and these are
the tangency points of neighboring Ford circles. The coordinates of these tangency
points are rational (see Exercise 86). For instance, the tangency point of the Ford
circles Ca

b
and C c

d
is (

ab+ cd

b2 + d2
,

1

b2 + d2

)
. (6.2)

In particular, if T is a triangular interstice through which Lα passes, then Lα must
pass through the interior of T , since the x-coordinates of the vertices are rational, but
α ∈ R \Q.

Let T be the triangular region between the Ford circles C1 = Ca
b
, C2 = C c

d
and

C3 = Ca+c
b+d

. Its vertices are then

A = C1 ∩ C2 = (a1, a2) =

(
ab+ cd

b2 + d2
,

1

b2 + d2

)
(6.3)

B = C1 ∩ C3 = (b1, b2) =

(
ab+ (a+ c)(b+ d)

b2 + (b+ d)2
,

1

b2 + (b+ d)2

)
(6.4)

C = C2 ∩ C3 = (c1, c2) = exercise. (6.5)

WLOG, we assume that C2 is the largest circle, or in other word, that

d < b.

Using the computations above, one may check that c1 > b1, c1 > a1, and

b1 − a1 =
s2 − s− 1

d2(s2 + 1)(2s2 + 2s+ 1)
=

(s− ϕ)(s− ϕ)

d2(s2 + 1)(2s2 + 2s+ 1)
,

where s := b
d
, and ϕ = 1+

√
5

2
is the golden ratio. Since by assumption s = b

d
> 1, we

easily see that
b1 − a1 = (s− ϕ) · (something positive).

We will consider the following two cases separately:
(1) b1 < a1 ⇐⇒ s < ϕ ⇐⇒ b1 < α < c1

(2) b1 > a1 ⇐⇒ s > ϕ ⇐⇒ a1 < α < c1

In Case (1), we will approximate α by a+c
b+d

. Since by assumption, C2 is larger than
C1, we have that c2 > b2 and hence that

a+ c

b+ d
− b1 > c1 −

a+ c

b+ d
.

(A drawing helps figuring this out.) Then∣∣∣∣α− a+ c

b+ d

∣∣∣∣ < ∣∣∣∣b1 −
a+ c

b+ d

∣∣∣∣ =
1

(b+ d)2
· s(s+ 1)

s2 + (s+ 1)2
<

1√
5(b+ d)2

.

We leave it to the reader to check the steps of this computation.
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In Case (2), the shape of T (draw it!) indicates that the circle C2 must be rather
large, and hence that α must be closed to the fraction c

d
. Then

c

d
− α < c

d
− a1 =

c

d
− ab+ cd

b2 + d2
=

s

d2(s2 + 1)
<

1√
5d2

.

In fact, for the last inequality, we need to show that s2 −
√

5s+ 1 > 0. Factoring it,

s2 −
√

5s+ 1 = (s− ϕ)(s+ ϕ).

The second factor is always positive, and by assumption (Case (2)), the first factor is
as well.

Since Lα intersects infinitely many triangles such as T , and we have just seen that
for each such triangle, we can find a fraction k

l
such that

∣∣α− k
l

∣∣ < 1√
5l2
, the statement

is proved. �



CHAPTER 7

Applications and Outlook

7.1. Billards

In our model, our billiard table is a square, with unit area, our ball is a point, and
there is no friction. In particular, once the ball rolls, it never slows down. We start
with an initial position on the table and an initial direction in which we shoot. We will
call this data the initial vector. Once shot, the ball will eventually hit an edge of the
square table, at which point it bounces back with angle of reflection equal to angle of
incidence. (For simplicity, we ignore here the case where one shoots directly in one of
the four corners.) And so on, and so on, ad nauseam.

We call the trajectory periodic if after some (finite) time, it starts repeating itself
exactly. If it never does, we say that the trajectory is chaotic.

Theorem 41. If the line passing through the initial vector has rational slope, then
the trajectory is periodic. If instead the slope is irrational, then the trajectory is chaotic.

Proof. “Unfold” the billiard: namely, instead of bouncing back against the “walls”
of the table, develop the ball’s trajectory into a straight line in the plane, and consider
the plane as a union of identical copies of the unit square glued side by side.

The ball’s trajectory now has a line equation

L : y = ax+ b.

We may assume that b < 0, a > 0. Under this identification, record xn for which

2n+ 1 = axn + b,

for each n ≥ 0. Set bn = {xn} = {2n+1−b
a
} for each n ≥ 0. The sequence bn parametrizes

exactly the consecutive places of the table’s edge [(0, 1), (1, 1)] where the ball bounces.
Suppose that the slope of L is rational, i.e. a = a1

a2
∈ Q. Then bn is periodic.

Indeed, ba1 = {a2(1−b)
a1
} = b0, ba1+1 = b1, etc. Dynamically, this means that the ball

keeps bouncing against the top edge at exactly the same points over and over again.
The trajectory must then be periodic. Conversely, if (bn) is periodic, say bm = bn, then
for some l ∈ Z,

2m+ 1− b
a

=
2n+ 1− b

a
+ l ⇐⇒ a =

2(m− n)

l
∈ Q.

�

To approximate a chaotic trajectory, approximate the “irrational angle”!
61
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7.2. Public key cryptography – RSA

We describe here the RSA algorithm, named after Rivest, Shamir, Adlemann
(1977). This algorithm concerns one-way secure transmission of messages, and uses
a public key, openly available, and a secret, private key.

For the public key, take two primes p, q, large (∼ 2512) and chosen at “random”;
the security of the algorithm relies of n = p · q being hard to factor. Then choose a
number e such that (e, ϕ(n)) = 1. Recall that ϕ(n) = ϕ(pq) = (p− 1)(q − 1) and note
that the computation of ϕ(n) relies on the factorization of n. Then find d such that
de ≡ 1 (mod ϕ(n)).

Definition 124. The data (n, e) is called the public key. The data (n, d) is called the
private key.

Remark 125. (1) Hint: e stands for “encryption”, d for “decryption”.
(2) Even though (n, e) is public, one needs to know the factorization of n to com-

pute d. Hence, (n, d) is indeed “private”.
(3) The arithmetic condition (e, ϕ(n)) = 1 ensures that the equation de ≡ 1 (mod

ϕ(n)) has a unique solution.

To understand how this works, let’s say that Bob wants to send Alice the message
HELLO. Bob first encodes his message according to some agreed upon protocol. For
example, using the ASCII standard, where H = 072, E = 101, L = 108, O = 111, so
that his message is

a = 07210110811.

The message needs to be shorter that the public key’s modulus n. Hence Bob might
need to chop up a in smaller blocks a1, a2, . . . , ak, each < n. For additional security,
Bob might also use some prescribed permutation on the digits of each block to make
sure his message is not too easy to decode. Henceforth, Bob’s message is encoded as
a < n. To encrypt his message, Bob computes

b ≡ ae (mod n)

using Alice’s public key, and then sends Alice the encrypted message b.
Using her private key, Alice will decrypt b by computing

x ≡ bd (mod n).

In fact, de = 1 + kϕ(n) for some integer k and

x ≡ bd ≡ (ae)d ≡ a · (aϕ(n))k ≡ a (mod n)

by Euler’s theorem. Since a < n, x = a.
The security of the algorithm therefore relies essentially on the following two prob-

lems being hard: factoring large numbers and taking large modular roots.

7.3. The distribution of primes

The larger a number n is, the more possible divisors it can have. We thus expect
that primes become sparser as we consider sets of large numbers. Fix x > 0, and let

π(x) = #{p ≤ x : p is prime}
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count the number of primes below x. E.g. π(10) = 4, π(1000) = 168, etc.

Theorem 42 (Prime Number Theorem (PNT) (1896)). As x→∞,

π(x) ∼ x

log(x)
. (7.1)

The asymptotic notation above means the following. Given two functions f(x),
g(x), we say that f(x) ∼ g(x) if

lim
x→∞

f(x)

g(x)
= 1.

In words, f(x) and g(x) have the same order of growth. The asymptotic (7.1) was
conjectured by Gauss, Legendre, Riemann,... but finally proved, independently, by
Hadamard and de la Vallée-Poussin in 1896. The proof uses complex analysis, so
instead we will see Chebyshev’s proof (1850) of the following weaker statement.

Theorem 43 (Weak PNT (1850)). For x sufficiently large,

0.66
x

log x
< π(x) < 1.7

x

log x
.

Remark 126. Actually, with some more careful analysis, Chebyshev proved the above
with 0.89 instead of 0.66 and 1.11 instead of 1.7, thus proving the PNT correct with a
relative error of 11%.

Proof. The proof argues by using divisibility properties of binomial coefficients(
n

k

)
=

n!

k!(n− k)!
.

By the fundamental theorem of arithmetic,(
n

k

)
=
∏
p≤n

pm,

where pm is the largest power of the prime p dividing
(
n
k

)
.

For the lower bound, we rely on the following lemma

Lemma 127. Let p be a prime, and pm the largest power of p that divides
(
n
k

)
. Then

pm ≤ n.

Then (
n

k

)
≤
∏
p≤n

n = nπ(n).

On the other hand, by the binomial theorem,

(1 + 1)n =
n∑
k=0

(
n

k

)
,

hence 2n ≤ (n+ 1)nπ(n). Since log is monotonic increasing, we have
n log(2) ≤ log(n+ 1) + π(n) log(n).
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Here, log 2 ≈ 0.69, and we can show that for n > 200,

π(n) ≥ log 2
n

log n
− log(n+ 1)

log n
>

2

3

n

log n
.

For the upper bound, we will use that π(x) < 1.7 x
log x

is true for x < 1200 and
proceed by induction to prove that for n > 1200, both π(2n) and π(2n + 1) have the
correct upper bound. Again by the binomial theorem,(

2n

n

)
<

2n∑
k=0

(
2n

k

)
= (1 + 1)2n = 4n.

Each prime n < p ≤ 2n appears in the numerator of(
2n

n

)
=

(n+ 1) · (n+ 2) · · · 2n
1 · 2 · · ·n

and never appears in the denominator. Hence each prime n < p ≤ 2n divides
(

2n
n

)
, and

therefore ∏
n<p≤2n

p |
(

2n

n

)
.

Then

nπ(2n)−π(n) ≤
∏

n<p≤2n

p ≤
(

2n

n

)
< 4n

and (π(2n)− π(n)) log n < log 4n ≈ 1.39n. By our induction hypothesis,

π(2n) < 1.39
n

log n
+ π(n) < 3.09

n

log n

and, as above, we can show for n > 1200 that

π(2n) < 3.09
n

log n
< 1.7

2n

log(2n)
.

For π(2n+ 1), we note that π(2n+ 1) ≤ π(2n) + 1, and similarly,

π(2n+ 1) < 3.09
n

log n
+ 1 < 1.7

2n+ 1

log(2n+ 1)

for n > 1200. �

The PNT suggest that we can use x
log x

to approximate π(x). This tells us that the
probability for a large number n to be prime is roughly 1

log(n)
.

Exercise 128. Explain why the probability that a large number with 2n digits is prime
is 1/2 the probability that a large number with n digits is prime.

In fact, there are better approximations of π(x). Observe first for any constant c,
π(x) ∼ x

log x−c as x → ∞. In turns out that taking c = 1 yields a consistently better
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approximation of π(x) than c = 0. For illustration, here are a (very) few values.

x π(x) x
log x

x
log x−1

R(x)

103 168 145 169 168
105 9′592 8′686 9′512 9′587
108 5′761′455 5′428′681 5′740′304 5′761′552

The function on the very right, which gives the better approximation, was intro-
duced by Riemann and can be expressed as

R(x) = 1 +
∑
n≥1

1

nζ(n+ 1)

(log x)n

n!
,

where ζ is the Riemann ζ-function

ζ(s) =
∑
n≥1

1

ns
= 1 +

1

2s
+

1

3s
+ . . . .

Here s ∈ C is a parameter controlling the convergence of the infinite series. If s is a
positive integer ≥ 2, then clearly ζ(s) converges, while if s = 1, this is the harmonic
series, which diverges. More generally,

|ζ(s)| ≤
∑
n≥1

1

|ns|
=
∑
n≥1

1

nσ
<∞

if and only if σ > 1, where ns = nσ+it = nσeit logn. Riemann could prove that ζ(s) has
an analytic continuation to all of s ∈ C, which we also denote ζ(s). To understand
why it is not so surprising to see the Riemann ζ-function appear in relation to primes,
one needs only to look at Euler’s proof of the infinitude of primes.

Euler’s proof that there are infinitely many primes. Let us consider the following
formal manipulation using the fundamental theorem of arithmetic:∑

n≥1

1

n
=
∑
n≥1

1

pk11 · · · p
kl
l

=
∏
p

∑
k≥0

1

pk
=
∏
p

1

1− 1
p

.

If there are only finitely many primes, then this product is necessarily finite, and hence
the harmonic series converges, which is absurd. �

Remark 129. The product expansion above, called an Euler product, also holds for
the ζ-function, namely

ζ(s) =
∑
n≥1

1

ns
=
∏
p

(1− p−s)−1,

whenever σ > 1. In particular, since ζ can be expressed as an infinite product, the
function has no zeros in the part of the plane where σ > 1.
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Instead of ζ(s), we can consider the completed ζ-function

ξ(s) =

{
1
2
s(s− 1)πs/2Γ( s

2
)ζ(s) if σ > 0

ξ(1− s) if σ ≤ 0

where the Γ-function is defined by

Γ(s) =

∫ ∞
0

e−tts−1dt

for σ > 0.

Exercise 130. Show that the Γ-function extends the classical notion of factorial:

Γ(n) = (n− 1)!.

This is a nicer function: the Riemann ξ-function is entire, which means that it
is complex-analytic (and in particular well-defined) for all s ∈ C. Moreover, it has not
only no zeros for σ > 1, but also by symmetry for σ < 0. The vertical strip 0 < σ < 1
of the complex plane where ξ can have zeros is called the critical strip. In the critical
strip, the zeros of ξ are exactly the zeros of ζ.

Although Riemann couldn’t prove the PNT, he stated the following exact formula

π(x) = R(x)−
∑
ρ

R(xρ),

where the sum is taken over the set of all zeros of the Riemann ξ-function. This means
that the fluctuations of π(x) depend on the location of the zeros of ξ. The Riemann
Hypothesis states that all of them lie exactly on the vertical line passing through
σ = 1/2. In turns, this implies that primes have the nicest distribution one can hope
for.

7.4. Gaussian integers

AGaussian integer is a complex number of the form a+ib where a, b ∈ Z. (Recall
here that i is the imaginary unit, namely it is the solution to the equation x2 + 1 = 0,
and so i2 = −1.) The set of all Gaussian integers,

Z[i] = {u = a+ ib : a, b ∈ Z},
can be thought of as a square grid in the complex plane C. To understand Gaussian
integers, let’s compare them to integers in Z. An integer a in Z has “size” |a|, this is
the natural number that measures it’s difference/distance to 0. Similarly, the norm of
a Gaussian integer,

N(a+ ib) = a2 + b2

is the natural number that measures the distance of a+ ib to the origin of the complex
plane. Also similarly to the absolute value, the norm is multiplicative, i.e. for any
complex numbers u, v ∈ C,

N(uv) = N(u)N(v).

Exercise 131. Use polar coordinates to prove the multiplicativity of the norm. Show
also that N(z) ≥ 0 and that N(z) = 0 if and only if z = 0.
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In Z, we write a|b to say that there exists an integer m ∈ Z such that b = ma.
In Z[i], we write u|v to say that there exists a Gaussian integer w ∈ Z[i] such that
v = wu. Further,

Theorem 44. Let u, v ∈ Z[i]. There exists q, r ∈ Z[i] such that v = qu + r with
0 ≤ N(r) < N(u).

Proof. For each point p of the square grid Z[i], place a unit square (that is, a
square whose sides have length 1) on the complex plane such that its center is at p. In
this way, the complex plane is covered by unit squares whose interiors are disjoint and
who are connected at their sides. (Draw the picture.) Consider the v

u
∈ C. Then v

u
lies

in at least one unit square (two if it is on a side, four if it is on a corner). Let q ∈ Z[i]
be the Gaussian integer closest to v

u
. (Note that if v

u
is on a side, there might be two

choices for q, and if v
u
is on a corner, there will be four choices for q.) The distance of

v
u
to q is maximized if v

u
lies on a corner; in that case, by Pythagoras theorem

N( v
u
− q) =

1

4
+

1

4
=

1

2
.

Set r := v − qu. Then

N(r) = N(v − qu) = N(u( v
u
− q)) = N(u)N( v

u
− q) < N(u).

�

With the Division Theorem in hand, one can prove all results of Chapter 1 for Z[i].
In particular, any Gaussian integer factors in an ‘essentially’ unique way as a product
of Gaussian primes.

Definition 132. A Gaussian integer u ∈ Z[i] is called a Gaussian prime if it can not
be written as a product u = v · w of two Gaussian integers v, w ∈ Z[i] with N(v),
N(w) < N(u).

Proposition 133. Let u ∈ Z[i]. If N(u) is prime, then u is a Gaussian prime.

Proof. Suppose instead that u factors as a non-trivial product, u = vw, then
N(u) = N(v)N(w) also factors as a product of smaller numbers. �

Each prime p ∈ Z can also be seen as an element of Z[i], since Z ⊂ Z[i]. Not every
prime is a Gaussian prime however. For instance,

2 = (1 + i)(1− i)

and if p ≡ 1 (mod 4), then p can be written as a sum of two squares, and

p = a2 + b2 = (a+ ib)(a− ib).

However, primes that are ≡ 3 (mod 4) are never sums of squares, and therefore also
primes in Z[i].

Example 134. Consider u = 10 + 7i. Then N(u) = 100 + 49 = 149 is prime, hence
u is a Gaussian prime.
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Example 135. Consider u = 9 + 7i. Then N(u) = 130 = 2 · 5 · 13. We have seen that
2 = (1 + i)(1− i) and in particular, N(1± i) = 2. Since 5 and 13 ≡ 1 (mod 4), these
primes also “split” over Z[i]:

5 = 22 + 12 = (2 + i)(2− i)
13 = 32 + 22 = (3 + 2i)(3− 2i)

Hence N(u) = N(1± i)N(2± i)N(3± 2i). To find the correct factorization of u, one
needs to figure the correct signs out. We end up seeing that

(1 + i)(2 + i)(3− 2i) = 9 + 7i = u.

Gauss studied the arithmetic of Z[i] in connection to the study of quartic residues,
and stated a quartic reciprocity law for Z[i].

Theorem 45 (Quartic reciprocity). Let u, v be distinct Gaussian primes, and
(u
v
)4 = 1 if x4 ≡ u (mod v) has a solution in the Gaussian integers, and = −1,±i

otherwise. Then (u
v

)
4

(v
u

)
4

= (−1)
N(u)−1

4
N(v)−1

4 .
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