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The sphere packing problem (in dimension 3)

What is the most space-efficient way to stack oranges?

How do you prove it...?

Johannes Kepler (1611): No packing
of balls of the same radius in three dimensions
has density greater than the cannonball packing.

Thereafter called the Kepler conjecture.
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Kepler’s conjecture

1611: Kepler’s conjecture is stated
1831: Partial progress (Gauss)
1900: One of Hilbert’s problems for the 20th century
1953: Fejes Tóth shows that proof can be reduced
to a finite (but very large) number of calculations
1992: Hales and PhD student Ferguson reduce proof
to solving about 100’000 linear programming problems
1998: The proof is completed in around 300 pages,
over 3 GB of data, 40k lines of code. A jury of 12
experts is assigned to verify the validity of the proof
2003: Jury announces to be ”99% certain” of the correctness
2005: Hales publishes a 100-pages article in the Annals on the
non-computer part of the proof
2017: Formal (computer-verifiable) proof of Kepler’s conjecture
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Beyond 3 dimensions
A sphere in Rn, with radius r and center x0 ∈ Rn, is the set of
points

Sr(x0) = {x ∈ Rn
∶ ∣x − x0∣ = r}

Our physical world is three dimensional but our information world
is very much higher dimensional.
▸ Google matrix has billions of dimensions (a googol is 10100);
▸ Megapixel as points in R3000000, etc.
▸ Sphere packings in communication theory/coding theory:

Figure: From: Tsukerman, Communication and ball packing, Plus Mag.
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Higher dimensions are highly mysterious

▸ Stacking optimal layers of packing in dimension n − 1 need not
lead to optimal packing in dimension n (Conway, Sloane 1995)

▸ We mostly have no idea what the densest sphere packings
look like in high dimensions...

▸ ...but in dimensions 8 and 24, we have full solutions
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What is... a sphere packing?
▸ Choose a point-configuration {xi} in Rn

▸ At each point, center a sphere Sr(xi)

▸ All spheres should have fixed radius r and not overlap

▸ The corresponding sphere packing is

P =⋃
xi

Br(xi)

▸ Problem: Find {xi} such that density of P is maximal
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Let’s consider a special type of point-configuration.
Definition: A lattice in Rn is the integer span

Λ = {m1v1 + ⋅ ⋅ ⋅ +mnvn∣m1, . . . ,mn ∈ Z}

of a choice of basis {v1, . . . , vn} for Rn.

Figure: Lattice Z2 generated by {e1, e2}
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Definition: A lattice in Rn is the integer span

Λ = {m1v1 + ⋅ ⋅ ⋅ +mnvn∣m1, . . . ,mn ∈ Z}

of a choice of basis {v1, . . . , vn} for Rn.

Figure: Tessellation of the plane R2 by the lattice Z2

Linear algebra: Volume ∣Λ∣ of fundamental parallelepiped for lattice
Λ is ∣Λ∣ ∶= ∣det(v1∣⋯∣vn)∣
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Figure: Lattice packing associated to Z2

The density of a (Λ-)lattice packing P is given by

∆P =
vol(Bℓ/2)

∣Λ∣
=
ℓn vol(B1)

2n∣Λ∣

where ℓ is the length of the shortest vector vi of Λ.
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Some examples of lattice packings

Cubic lattice: ∆Zn =
vol(B1)

2n

Checkerboard lattice: Dn = {(x1, . . . , xn) ∈ Zn ∶ ∑ xi is even},

ℓ =
√
2, ∣Dn∣ = 2; ∆Dn =

vol(B1)

2⋅2n/2

In R8: E8 = D8 ∪ (D8 + (
1
2 , . . . ,

1
2)), ℓ =

√
2, ∣E8∣ = 1; ∆E8 =

vol(B1)

24
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The density of a sphere packing P = ⋃Br(xi) is

∆P ∶= lim sup
R→∞

vol(P ∩BR(0))

vol(BR)

The sphere packing constant in Rn is ∆n = supP⊂Rn ∆P
▸ “Greedy” lower bound: ∆n ≥ 2

−n

▸ When n small, best known packings often lattice packings

▸ When n large, 2−n much greater than density of known lattice
packings

▸ Folklore: lattice packings not optimal in most high dimensions
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Starting point of Viazovska’s proof
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The main theoretical result behind these new upper bounds is

The Fourier transform f̂ of an integrable function f ∶ Rn → R is

f̂ (y) = ∫
Rn

f (x)e−2πi⟨x ,y⟩dx
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Proof for lattice packings with shortest vector length r :

▸ The center density is

δn ∶=
∆n

vol(B1)
=

vol(Br/2)

vol(B1)∣Λ∣
=

rn

2n∣Λ∣
.

▸ Admissible here means that we can apply the Poisson
summation formula

f (0)
(2)
≥ ∑

λ∈Λ

f (λ) =
1

∣Λ∣
∑
λ∈Λ∗

f̂ (λ)
(3)
≥

f̂ (0)

∣Λ∣
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Searching for a magic function

Key: If we find f as in Thm 3.2 with r =
√
2, we prove that E8 is

optimal sphere packing in dimension 8

▸ Wlog, we can assume f is radial, f (x) = f (∣x ∣)

▸ For Λ = E8, ∣E8∣ = 1, E
∗

8 = E8, r =
√
2, we get

f (0)
(2)
≥ ∑

λ∈E8

f (λ) = ∑
λ∈E8

f̂ (λ)
(3)
≥ f̂ (0)

(1)-(3) implies f (λ) = f̂ (λ) = 0 for all λ ∈ E8, λ ≠ 0
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Magic functions and the uncertainty principle

Figure: The characteristic function and its Fourier transform
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Radial eigenfunctions of Fourier transform

Figure: The Gaussian function f (x) = e−πx
2

and its Fourier transform

Space of radial eigenfunctions for Fourier transform spanned by
(infinite countable) basis of

f (x) = ((Laguerre) polynomial)(∣x ∣)e−π∣x ∣
2

▸ Cohn–Elkies: Computer search to look for good finite linear
combinations of such functions (finite “root forcing”)

▸ Viazovska: Magic function is

f (x) = sin2(
π∣x ∣2

2
)∫

∞

0
ϕ0(it)e

−πt ∣x ∣2dt

for some linear combination ϕ0 of (quasi-)modular forms
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What is... a modular form?

Definition: A modular form f of weight k and level 1 must

1. be holomorphic on extended upper half-plane H ∪Q ∪ {∞}
2. satisfy f (z + 1) = f (z) and f (−1/z) = zk f (z) for all z ∈ H.

▸ The space Mk of all modular forms of weight k is a finite
dimensional vector space

▸ The ring of modular forms M∗ = ⊕kMk is freely generated by
Eisenstein series G4, G6, i.e., M∗ ≅ C[G4,G6]

▸ A quasimodular form is a linear combination of derivatives of
modular forms and G2

“There are five fundamental operations of arithmetic: addition,
subtraction, multiplication, division, and modular forms” (Eichler)
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Modular magic

▸ Magic function has form

f (x) = sin2(π∣x ∣
2

2 )∫

∞

0
ϕ0(it)e

−πt ∣x ∣2dt

▸ By complex analysis (Euler’s identity, contour integration)

f̂ = f ⇐⇒

⎧⎪⎪
⎨
⎪⎪⎩

ϕ(z + 1) = ϕ(z)

2ϕ(z) = ϕ( −1z−1)(z − 1)
2 + ϕ( −1z+1)(z + 1)

2 − 2ϕ(−1z )z
2

for ϕ(z) ∶= ϕ0(
−1
z )z

2

And so starts an arduous process of trial and error (informed by
many smart insights) that eventually leads Viazovska to the correct
rational function

ϕ0 =
poly(G2,G4,G6)

poly(G4,G6)
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Further reading

For more on the mathematics behind the proofs, there are two very
nice articles

▸ Thomas Hales, Cannonballs and honeycombs (2000);

▸ Henry Cohn, A conceptual breakthrough in sphere packing
(2017);

that you can easily find available online.

For an introduction to the beautiful theory of modular forms:

▸ Part 1 (Zagier) of The 1-2-3 of Modular Forms

▸ Lecture notes “L-functions and modular forms” (Chapters 4
and 5) on my website
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