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The sphere packing problem (in dimension 3)

What is the most space-efficient way to stack oranges?

How do you prove it...7

e L Johannes Kepler (1611): No packing
g: / of balls of the same radius in three dimensions
Be |= has density greater than the cannonball packing.

e

mecefitaseconcurrentecumra

Thereafter called the Kepler conjecture.

FRLERY RS
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Kepler's conjecture

1611: Kepler's conjecture is stated

1831: Partial progress (Gauss)

1900: One of Hilbert’s problems for the 20th century
1953: Fejes Téth shows that proof can be reduced

to a finite (but very large) number of calculations
1992: Hales and PhD student Ferguson reduce proof
to solving about 100'000 linear programming problems
1998: The proof is completed in around 300 pages,
over 3 GB of data, 40k lines of code. A jury of 12
experts is assigned to verify the validity of the proof
2003: Jury announces to be "99% certain” of the correctness
2005: Hales publishes a 100-pages article in the Annals on the
non-computer part of the proof

2017: Formal (computer-verifiable) proof of Kepler's conjecture
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Beyond 3 dimensions

A sphere in R”, with radius r and center xg € R", is the set of

points

Si(x0)={xeR":|x-xo|=r}

Our physical world is three dimensional but our information world

is very much higher dimensional.

» Google matrix has billions of dimensions (a googol is 101%9);
» Megapixel as points in R3000000 atc,

» Sphere packings in communication theory/coding theory:

Signal received

Error Ball 1 Error Ball 2

.
Another signal
in the vocabulary

If the agreed vocabulary of signals are too close
together, the error balls will intersect, leading to
ambiguity.

Error Ball 1 Error Ball 2

Signal received Another signal
.

in the vocabulary
. N
Signal sent

However if there is no overlap, then there is no
ambiguity.

Figure: From: Tsukerman, Communication and ball packing,-Plus-Mag:
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Higher dimensions are highly mysterious

» Stacking optimal layers of packing in dimension n—1 need not
lead to optimal packing in dimension n (Conway, Sloane 1995)

> We mostly have no idea what the densest sphere packings
look like in high dimensions...

..but in dimensions 8 and 24, we have full solutions

{ Matbermatin 185 (2017), 2011015
mp /7do1org/10.4007 annals 2017.185.3.7

The sPhere paCklng prohlem Anna]s of Mathematics 185 (2017), 1017-1033
in dimension 8 ttps://doi.org/10.4007 /annals. 2017.185.3.8

By MARYNA S. VIAZOVSKA )
The sphere packing problem
Abetract in dimension 24

rove that no

By HENRY COHN, ABHINAV KUMAR, STEPHEN D. MILLER, DANYLO RADCHENKO,
and MARYNA VIAZOVSKA
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Maryna Viazovska

1984: Birth in Kyiv, Ukraine

g 2005: BSc in Mathematics,

Taras Shevchenko National University

J 2007: MSc in Mathematics, Kaiserlauten
g 2013: PhD under Don Zagier, Bonn

The 1-2-:
of Modular Forms

2013-2017: Postdoc, Berlin
Since 2018: Professor at EPFL
2022: Recipient of the Fields Medal
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Quantamacazine Physics  Mathematics  Biology =~ Computer Science  Topics  Archive

In Times of Scarcity, War and Peace, a
Ukrainian Finds the Magic in Math

With her homeland mired in war, the sphere-packing number theorist
Maryna Viazovska has become the second woman to win a Fields Medal
in the award’s 86 -year history.
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What is... a sphere packing?
» Choose a point-configuration {x;} in R"
» At each point, center a sphere S,(x;)
> All spheres should have fixed radius r and not overlap

» The corresponding sphere packing is
P = U Br(X,')

» Problem: Find {x;} such that density of P is maximal
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Let's consider a special type of point-configuration.
Definition: A lattice in R” is the integer span

AN={mivi+-+muvplmy,... . m,eZ}

of a choice of basis {vi,...,v,} for R".

Figure: Lattice Z? generated by {e;, e}
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Definition: A lattice in R” is the integer span
AN={mvi+-+mpvp|my,... m,eZ}

of a choice of basis {vi,...,v,} for R".

Figure: Tessellation of the plane R? by the lattice Z?

Linear algebra: Volume |A| of fundamental parallelepiped for lattice
Ais |A] == |det(vi|-|vn)|
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Figure: Lattice packing associated to Z?2

The density of a (A-)lattice packing P is given by

_ vol(By2) €7 vol(By)
PO 27

where / is the length of the shortest vector v; of A.

= = wac
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Some examples of lattice packings
vol(By)

Cubic lattice: Azn = —5;
/\F<>_%>_/F//_<

—<><>< —<
<>< x%

Checkerboard lattice: D, = {(x1,...,xp) €Z": ¥ x; is even},
0=\/2,|Dy| = 2; Dp, = YXBY

2,2n/2
YOON( Y (
,‘/"\,‘/’"'\‘,‘/'\_
,J\‘w‘/,‘\ ‘/,\\7‘/‘,
AN
N/ \‘—‘/" "\—/'
)\ v )\

InR®: Eg=Dgu(Dg+(%,...,3)), €=V2, |Es|=1; Ag, = W2
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The density of a sphere packing P =U B,(x;) is

A e sy Y0P 0 B(0))
R—o0 VOI(BR)

The sphere packing constant in R" is A, = suppcrn Ap
> “Greedy” lower bound: A, >27"

¢

» When n small, best known packings often lattice packings

> When n large, 27" much greater than density of known lattice
packings

» Folklore: lattice packings not optimal in most high dimensions
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Starting point of Viazovska's proof

Annals of Mathematics, 157 (2003), 689-714

New upper bounds on sphere packings I
By HENRY CouN and NoaM ELKIES*

Abstract

We develop an analogue for sphere packing of the linear programming
bounds for error-correcting codes, and use it to prove upper bounds for the
density of sphere packings, which are the best bounds known at least for di-
mensions 4 through 36. We conjecture that our approach can be used to solve
the sphere packing problem in dimensions 8 and 24.

Dimension | Best Packing Known | Rogers’ Bound | New Upper Bound
1 05 05 05

2 0.28868 0.28868 0.28868
3 0.17678 01847 0.18616
4 0.125 0.13127 0.13126
5 0.08839 0.09987 0.09975
6 0.07217 0.08112 0.08084
7 0.0625 0.06981 0.06933
8 0.0625 0.06326 0.06251
9 04419 0.06007 0.05900
10 0.03906 0.05953 0.05804
11 0.03516 0.06136 0.05932
12 0.03704 0.06559 0.06279
13 0.03516 0.07253 0.06870
1 0.03608 0.08278 0.07750
15 0.04419 0.09735 0.08999
16 0.0625 0.11774 0.10738
17 0.0625 0.14624 0.13150
18 0.07508 0.18629 0.16503
19 0.08839 0.24308 021202
2 0.13154 0.32454 0.27855
21 0.17678 0.44289 0.37389
22 0.33254 0.61722 0.51231
2 05 0.87767 0.71601
2 10 1.27241 1.01998
25 0.70711 1.8798 1.48001
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The main theoretical result behind these new upper bounds is

THEOREM 3.2. Suppose f: R™ — R is an admissible function satisfying
the following three conditions:

1) f(0) = f(0) >0,
(2) f(z) <0 for|z| >, and
3) f(t) >0 jor allt.
Then the center density of sphere packings in R™ is bounded above by (r/2)™.

The Fourier transform f of an integrable function f : R" - R is

f) = [, Feemibnax
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THEOREM 3.2. Suppose f : R® — R is an admissible function satisfying
the following three conditions:

1) £0) = f(0) >0,

(2) f(z) 0 for|z[ >, and

(3) F(t) >0 for all t.

Then the center density of sphere packings in R™ is bounded above by (r/2)™.

Proof for lattice packings with shortest vector length r:

> The center density is

An VO](Br/2) _ r"

Op = = = .
vol(B1) vol(By)|A]  27[A|

> Admissible here means that we can apply the Poisson
summation formula

02T v Y o)

Aeh Al \eR- A
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Searching for a magic function

Key: If we find f as in Thm 3.2 with r = /2, we prove that Eg is
optimal sphere packing in dimension 8

THEOREM 3.2. Suppose f: R™ — R is an admissible function satisfying
the following three conditions:

(1) £(0) = £(0) >0,
(2) f(z) <0 for |z|>r, and
(3) f(t) >0 for allt.
Then the center density of sphere packings in R™ is bounded above by (r/2)™.

» Wlog, we can assume f is radial, f(x) = f(|x|)
» For A= Eg, |Eg| =1, Ej = Eg, r =/2, we get

£(0) (? S ) =Y F(N) (? (0)

/\EEg )\EEg

—_

(1)-(3) implies f(A) =f(X) =0 forall Ae Eg, A#0

17/22



Magic functions and the uncertainty principle
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t
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Figure 5. A schematic diagram showing the roots of the magic function f and its Fourier transform f in eight
dimensions. The figure is not to scale, because the actual functions decrease too rapidly for an accurate plot to

be illuminating.
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Figure: The characteristic function and its Fourier transform
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Radial eigenfunctions of Fourier transform

58

. . . 2 . .
Figure: The Gaussian function f(x) = e™ and its Fourier transform

Space of radial eigenfunctions for Fourier transform spanned by
(infinite countable) basis of

—mlx?

f(x) = ((Laguerre) polynomial)(|x|)e

» Cohn-Elkies: Computer search to look for good finite linear
combinations of such functions (finite “root forcing”)
» Viazovska: Magic function is

f(x) :sinz(%X'z) fo " po(it)e ™ dt

for some linear combination ¢q of (quasi-)modular forms
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What is... a modular form?

Definition: A modular form f of weight k and level 1 must
1. be holomorphic on extended upper half-plane Hu Q U {co}
2. satisfy f(z+1) = f(z) and f(=1/z) = zZ¥f(z) for all z € H.
» The space M of all modular forms of weight k is a finite
dimensional vector space

» The ring of modular forms M, = &, My is freely generated by
Eisenstein series Gy, Gg, i.e., M, 2 C[Ga, Gg]

» A quasimodular form is a linear combination of derivatives of
modular forms and G>

“There are five fundamental operations of arithmetic: addition,
subtraction, multiplication, division, and modular forms” (Eichler)
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Modular magic

» Magic function has form
2 oo
F(x) = sin?(T55) [ go(it)e ™ e
» By complex analysis (Euler’s identity, contour integration)

o {¢<z+1>=¢<z)
2 -1\_2
26(2) = 6(F) (2= 1) + o( ) (2 + 1)2 - 26(F)z
for ¢(z) = ¢o(£)7*

And so starts an arduous process of trial and error (informed by
many smart insights) that eventually leads Viazovska to the correct

rational function
P0|Y( G2a G47 GG)
P0|Y( G47 G6)

¢o =
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Further reading

For more on the mathematics behind the proofs, there are two very
nice articles

» Thomas Hales, Cannonballs and honeycombs (2000);

» Henry Cohn, A conceptual breakthrough in sphere packing
(2017);

that you can easily find available online.

For an introduction to the beautiful theory of modular forms:
» Part 1 (Zagier) of The 1-2-3 of Modular Forms

» Lecture notes “L-functions and modular forms” (Chapters 4
and 5) on my website
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