
department of information engineering and mathematics

On enumeration sequences
generalising Catalan and Baxter

numbers

Author:
Veronica Guerrini

Advisor:
Prof. Simone Rinaldi,

University of Siena

Co-advisor:
Dr. Mathilde Bouvel,

University of Zurich

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

December 13, 2017



Abstract

The study carried out along this dissertation fits into the field of enumerative combina-
torics. The structures that have been investigated are families of discrete objects which
display combinatorial properties. They are mainly subfamilies of well-known combinato-
rial structures, such as lattice paths, pattern-avoiding permutations, polyominoes (more
specifically, parallelogram polyominoes), or inversion sequences. Furthermore, these combi-
natorial families are closely related to two famous number sequences known in the literature
as the Catalan and Baxter numbers.

We start defining and studying the properties of a combinatorial class whose elements
appear as tilings of parallelogram polyominoes, and thus are called slicings of parallelogram
polyominoes. This first combinatorial class results to be enumerated by Baxter numbers,
and shows relations with Catalan and Schröder numbers.

Then, we turn to two families of pattern-avoiding permutations. First, we study the
semi-Baxter permutations, which reveal a natural generalisation of the Baxter numbers.
Next, we deal with the strong-Baxter permutations, which are defined by restricting the
Baxter numbers.

Thereafter, some generalisations of Catalan numbers are presented. A first generali-
sation involves families of inversion sequences and lattice paths among the combinatorial
structures enumerated, and is shown to be related to the sequence of Baxter numbers as
well. Meanwhile, the family of fighting fish provide another generalisation of the Catalan
numbers that appears to be independent from the Baxter numbers. These objects gen-
eralise the family of parallelogram polyominoes, and display remarkable probabilistic and
enumerative properties.

In this dissertation we tackle the problem of enumerating these combinatorial classes
and exhibiting their combinatorial properties, resolving some conjectures and open prob-
lems. The methods used are rather diverse: for instance, establishing one-to-one correspon-
dences with other structures, or combining the use of generating functions and succession
rules. A succession rule is a powerful tool for counting discrete objects, and moreover it
allows to generate them exhaustively. Owing to this remarkable fact succession rules, and
equivalently generating trees, are largely used in our study of combinatorial structures.
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Riassunto

Il presente lavoro si inserisce nell’ambito della combinatoria, e più precisamente nel ramo
della combinatoria enumerativa. L’oggetto di studio sono classi di oggetti discreti carat-
terizzabili per mezzo di proprietà combinatorie. In particolare, le strutture trattate sono
sottofamiglie di note classi combinatorie quali i cammini nel piano, o le permutazioni a
motivo escluso, o i poliomini parallelogrammi. Inoltre, le strutture studiate sono stretta-
mente legate a due sequenze di numeri ben note in letteratura: i numeri di Catalan e i
numeri di Baxter.

La prima struttura combinatoria che abbiamo definito e di cui abbiamo studiato le pro-
prietà è una particolare tassellatura dei poliomini parallelogrammi, che chiamiamo slicings
of parallelogram polyominoes. Questa famiglia risulta essere contata dai numeri di Baxter,
e legata ai numeri di Catalan e di Schröder. Nel seguito presentiamo due famiglie di per-
mutazioni a motivo escluso. Dapprima studiamo le semi-Baxter permutations, che rivelano
una naturale generalizzazione dei numeri di Baxter; poi passiamo alle strong-Baxter per-
mutations che si propongono, invece, come una loro naturale restrizione. Successivamente
definiamo due diverse generalizzazioni dei numeri di Catalan. La prima generalizzazione
coinvolge alcune famiglie di inversion sequences e di cammini nel piano, e presenta relazioni
anche con i numeri di Baxter. La seconda, invece, si configura come una generalizzazione
della famiglia dei poliomini parallelogrammi, e resta indipendente dai numeri di Baxter.
Gli oggetti combinatori definiti nella seconda generalizzazione sono chiamati fighting fish e
mostrano notevoli proprietà sia probabilistiche, che combinatorie.

I problemi di enumerazione affrontati nella presente tesi dottorale utilizzano per la loro
risoluzione diversi approcci. Ad esempio, alcuni risultati sono ottenuti stabilendo corrispon-
denze biunivoche con altre strutture note, altri combinando l’uso di funzioni generatrici
con quello di regole di successione. Le regole di successione sono un potente strumento
enumerativo, che permette di generare esaustivamente gli oggetti di una data classe com-
binatoria. Per tale motivo, gli alberi di generazione, e la loro formulazione come regole di
successione, si configurano in questo lavoro come il principale strumento di enumerazione
utilizzato.
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Introduction

This dissertation fits into the field of combinatorics, also referred to as combinatorial theory
or combinatorial analysis (G. Rota [95]).

combinatorial analysis - or, as it is coming to be called, combinatorial the-
ory - is both the oldest and one of the least developed branches of mathematics.

Gian-Carlo Rota - 1969

The above statement dates back to almost 50 years ago, and since then a large amount of
research has been carried out in this field.

Combinatorics is the branch of discrete mathematics that studies discrete systems of
objects and their properties. It defines and exploits operations on these objects, as well
as ways of selection and arrangement of them. In particular, some real phenomena or
physical problems can suitably be modelled as discrete objects. Their study by means of
combinatorial techniques allows to show that they display peculiar properties, which in
turn might improve the understanding of their physical behaviour.

Moreover, there has been an increasing interest in combinatorial issues and combina-
torial arguments especially after the introduction of computers: computers need programs
with a higher and higher level of efficiency, and of a great help is the combinatorial study
of the algorithms they are based on. Then, the research activity in combinatorics has been
enhanced by the recent major concern for computer science and artificial intelligence, as
well as for applied mathematics and information technology, where combinatorial results
often find applications.

Nonetheless, combinatorial problems arise not only in application areas, such as compu-
tational biology, or statistical physics, or more recently data mining, but also in many areas
of pure mathematics. Algebra, probability theory, topology, and geometry, for instance,
have many problems of combinatorial flavour. Combinatorics can thus be subdivided into
many subfields according to the topics studied and the methods used. From above, we
can cite algebraic combinatorics, probabilistic combinatorics, topological combinatorics,
geometric combinatorics, without completing the list. This dissertation falls within the
subfield of enumerative combinatorics.

1



2 Introduction

Enumerative Combinatorics and combinatorial classes

Enumeration, or counting, is probably the oldest question that mathematicians have asked.
The problem of counting how many elements are in a given set C is formalised by

|C| =
∑
o∈C

1 .

Enumerative combinatorics is the branch of combinatorics that faces the problem of count-
ing the elements of C when they are described by combinatorial properties. To be more
precise, the object of study is an infinite sequence of sets {Cn}∞n=0 , where each set Cn
consists of combinatorial objects and n is the value that a parameter, called size, assumes
on these objects. Enumerative combinatorics is aimed at tackling the question “for each
n, how many objects are in Cn?”. The class of objects C is defined as the union of all the
subsets Cn, and is referred to as combinatorial class. The enumerative number sequence of
C is the infinite sequence given by {|Cn|}∞n=0.

Studying a combinatorial class from an enumerative point of view consists not only
in counting its elements numerically, but also among other problems in generating them
exhaustively, or in establishing size-preserving bijective correspondences with other classes.
Moreover, discovering new properties, such as finding the distribution of specific parame-
ters, or providing equivalent definitions for the same class, also fits into the field of enu-
merative combinatorics.

Some methods for enumerating a combinatorial class

In order to answer a counting problem in enumerative combinatorics, many methods have
been developed and some others are still a work in progress. Some of these methods owe
their validity to analytical studies, while some others are closer to algebraic approaches.
Among the huge variety of methods existing in literature, we choose to introduce here only
those used along this work.

The more naive method we can refer to is the bijective one, which establishes a size-
preserving one-to-one correspondence between two classes. Yet it is also the most preferable
since it displays evidently that the enumeration sequences of the two classes are the same.
Moreover, the bijective method is often useful to recognise the distribution of some statistics
on the two classes of combinatorial objects involved.

Another good strategy to count the objects of a combinatorial class is to make use
of their generating function. As the first two lines of H. S. Wilf’s book [146] state, “a
generating function is a clothesline on which we hang up a sequence of numbers for dis-
play”. In fact, generating functions are (extremely useful) tools for treating the sequence
of numbers enumerating a combinatorial class as a formal power series of type

∑
n |Cn|xn.

In the generating function approach both analytical and algebraic methods can be used,
and this is probably the richness of this approach.

Another remarkable tool, which often recurs along this dissertation, is known in the lit-
erature with the name of generating tree. The origin of this approach is due to J. West [144]
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who introduced generating trees in 1995 to generate all the permutations avoiding particu-
lar patterns. Then, in 1999 the generating tree approach was defined in a more systematic
way by the Florentine school of combinatorics. They introduced the notion of ECO op-
erator and of ECO method [13], thus formally explaining how to generate exhaustively
the objects of a combinatorial class by means of generating trees. A thorough analysis of
generating trees and their structural properties was then carried out in 2002 by C. Ban-
derier et al. [8], in which the definition of generating tree merges into the one of succession
rule. Not only are generating trees and succession rules valid tools for generating all the
objects of a given combinatorial class, but they are also extremely useful for enumeration
purposes, especially when combined with generating functions.

Our combinatorial classes

The combinatorial classes considered in our study are rather diverse. Along this disserta-
tion we encounter different combinatorial structures that display disparate properties. The
guideline we follow in presenting them is related to their interconnections with other com-
binatorial structures broadly studied in the literature, which are proved to have well-known
enumerative number sequences.

On the one hand, the combinatorial objects involved in our study fall into mainly four
well-known families of objects (precise definitions of them will be provided later):

• some lattice paths, which hold an incredibly rich tradition of works, for instance [10,
33, 62, 66, 85, 102, 115];
• pattern-avoiding permutations, whose massive study began in 1968 when D. Knuth

published a first landmark in this topic [99], and which have since then been the
subject of much subsequent research [6, 7, 22, 24, 98, 131, 137, 138];
• polyominoes, which arose in the antiquity as mathemathical recreations and games,

and later have been found useful to model physical phenomena or to approach tiling
problems [34, 51, 60, 61, 91, 117, 123, 140];
• inversion sequences, whose definition is closely related to permutations [99, 127,

134], and whose study from a pattern-avoiding standpoint has only recently been
proposed [58, 97, 108, 110].

On the other hand, there are mainly two number sequences recurring along our study:

• the rather ubiquitous sequence of Catalan numbers, which raised recent and past
interest [21, 52, 64, 66, 88, 101, 128, 133, 135];
• and the intriguing and fascinating sequence of Baxter numbers, which despite being

younger than the Catalan sequence has been extensively studied in recent times [27,
46, 48, 53, 71, 75, 142].

Detailed plan of the dissertation

In this dissertation we investigate combinatorial structures and tackle enumerative prob-
lems closely related to the sequences of Catalan and Baxter numbers.



4 Introduction

Chapter 1 provides basic and formal definitions of the main concepts: what is a
combinatorial class of objects and how to approach a counting problem. Then, we recall
some of the combinatorial methods used in enumerative combinatorics, precisely those used
along this dissertation. These have been briefly summed up earlier in this introduction
without any formal details, which instead are provided in this first chapter. Finally, the
chapter introduces the two aforementioned sequences of numbers: Catalan and Baxter.
Some historical facts are recounted in addition to their enumerative properties and their
combinatorial interpretations in terms of discrete structures. These two sections about
Catalan and Baxter numbers illustrate that although both sequences have been known to
combinatorialists for a long time, the interest in their study has never ceased.

In Chapter 2 we start studying a new family of combinatorial objects called slicings
of parallelogram polyominoes, which has been introduced in [G1] and then further studied
in [G2]. This family is proved to be enumerated by the sequence of Baxter numbers and
reveals the inclusions “Catalan in Schröder in Baxter”. Schröder numbers are introduced
in this chapter, combined with well-known results, such as formulas and combinatorial
structures they enumerate, including a new one we defined in [G3]. Baxter structures
are often visualised as generalisations either of Catalan objects, or of Schröder objects.
Then, the aim of this chapter is to reconcile at the abstract level of generating trees and
succession rules the aforementioned inclusions “Catalan in Schröder in Baxter”, and slicings
of parallelogram polyominoes allow us to reach this goal.

In Chapter 3 we turn to the study of a family of pattern-avoiding permutations that
naturally generalise the well-known family of Baxter permutations, and thus called semi-
Baxter permutations. Their definition has been provided in [G4, G5]. Since the name
Baxter numbers is actually owed to the combinatorial family of Baxter permutations,
we call semi-Baxter numbers those enumerating semi-Baxter permutations. This chapter
thus focuses on a sequence of numbers which is pointwise larger than the one of Baxter
numbers. We provide a generating tree for semi-Baxter permutations that in turn permits
us to acquire a full knowledge of semi-Baxter numbers. By using the generating function
approach, both explicit expressions and a recurrence relation are shown. We also derive
the behaviour of semi-Baxter numbers as they become larger and larger. In addition, we
show other combinatorial interpretations of semi-Baxter numbers.

In Chapter 4 we study another family of pattern-avoiding permutations that was in-
troduced in [G4, G5]. It is a restriction of the family of Baxter permutations as natural
as the generalisation of Chapter 3. We call the permutations of this family strong-Baxter
permutations, and the numbers enumerating them strong-Baxter numbers. The main re-
sult of this chapter is the succession rule for the exhaustive generation of strong-Baxter
permutations that reveals interesting properties. Indeed, this succession rule seems to be
the intersection of two different Baxter succession rules, thus motivating the name. Fur-
thermore, we show other combinatorial interpretations of these numbers in terms of lattice
paths and walks in the quarter plane. The generating function of these walks has been
studied in literature, and this allows to derive that the strong-Baxter generating function
is non D-finite. This result is remarkable especially in the pattern-avoiding permutations
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framework, where non D-finite generating functions are quite rare in the literature.

In Chapter 5 we focus on two different families of combinatorial structures: on the
one hand inversion sequences defined by pattern avoidance, on the other hand steady paths.
The reason for studying these specific families of inversion sequences is that they display
a discrete continuity from Catalan numbers to powered Catalan numbers.

Powered Catalan numbers, as the name suggests, are a generalisation of Catalan num-
bers: indeed they admit a succession rule which naturally generalises the most famous one
for Catalan numbers. The above discrete continuity involves moreover semi-Baxter and
Baxter numbers, as well as an intermediate number sequence between Catalan and Baxter.

Meanwhile, steady paths display an interpretation of the powered Catalan numbers
essentially different from the one existing in the literature, in terms of lattice paths. Indeed,
it appears as if the powered Catalan structures were divided into two different groups which
differ according to the succession rules that generate and enumerate them.

Finally, in Chapter 6 we define and study the family of fighting fish, whose first
definition was in [G6]. These combinatorial objects are namesake of the tropical fish famous
for their multiple tails, whose appearance these objects resemble. Despite their misleading
name, fighting fish arose to generalise the well-known Catalan family of parallelogram
polyominoes, and display remarkable probabilistic and enumerative properties.

Overall, also in this final chapter we deal with a generalisation of Catalan numbers. Yet
this time, the generalisation appears to be independent from the Baxter structures, and
rather involves some families of plane trees and their enumeration sequences. The combi-
natorial properties of fighting fish have subsequently been explored in [G7], yet bijective
interpretations of them are still missing in spite of underpinned conjectures.

Table of sequences

In the following table we summarise the number sequences involved in our study of combi-
natorial structures. The first column provides a precise reference for the number sequence
according to the On-line Encyclopedia of Integer Sequences (OEIS [132], for brevity); the
last column specifies in which chapter of this dissertation it appears for the first time.

Number sequence First terms Chapter

A000108 (Catalan) 1, 2, 5, 14, 42, 132, . . . 1. Introductory notions

A108307 1, 2, 5, 15, 51, 191, . . .
5. Inversion sequences and

steady paths

A281784 (Strong-Baxter) 1, 2, 6, 21, 82, 346, . . . 4. Strong-Baxter permutations

A006318 (Schröder) 1, 2, 6, 22, 90, 394, . . .
2. Slicings of parallelogram

polyominoes

A000139 1, 2, 6, 22, 91, 408, . . . 6. Fighting fish

A001181 (Baxter) 1, 2, 6, 22, 92, 422, . . . 1. Introductory notions

A117106 (Semi-Baxter) 1, 2, 6, 23, 104, 530, . . . 3. Semi-Baxter permutations

A113227 (powered Catalan) 1, 2, 6, 23, 105, 549, . . .
5. Inversion sequences and

steady paths

A006013 1, 2, 7, 30, 143, 728, . . . 6. Fighting fish
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Chapter 1

Introductory notions

1.1 Getting started

The aim of this chapter is to provide tools and notions needed for the whole comprehension
of this dissertation. First, we provide concrete examples of classes of discrete objects and
related counting problems: the two general families introduced - lattice paths and pattern-
avoiding permutations - present a rather simple combinatorial description, yet in specific
cases their enumeration appears to be complex. We choose to define these families of
objects at the very beginning since occurrences of them will frequently return along our
study. Then, the next subsection illustrates some powerful methods that are useful to count
objects and a large use of them will be made in the main body of this dissertation. Finally,
since all the combinatorial objects defined and enumerated in this work are somehow
related to Catalan and Baxter numbers, the last two sections of this first chapter are to
gather known results and properties about these two number sequences and, to define the
combinatorial structures that will be recalled in the following chapters.

1.1.1 Well-posed counting problems

A class of combinatorial objects, or combinatorial class, is any set C satisfying the following
property: C can be equipped with an enumerative parameter p : C → N, called usually size
or length, such that the cardinality of the set

Cn = {o ∈ C : p(o) = n}

is finite, for every n ∈ N. It must be stressed that the cardinality of C = ∪n≥0 Cn is not
required to be finite; on the contrary, it is generally infinite.

A well-posed counting problem for a class C consists in finding the number sequence
{cn}n≥0, where cn = |Cn|, and providing information about these numbers cn. As we will
see later, enumerative problems involve finding formulas to express cn (for instance, closed
or recursive formulas), or studying their asymptotic behaviour for large n.

7
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1.1.2 Lattice paths

As a first example of combinatorial class we exhibit the hugely studied case of lattice paths.
An accurate survey on this topic is provided in [25, Chapter 10] and for the main results
cited in this part we address to it.

A lattice path is intuitively defined as its name suggests: a path (or walk) in a lattice
in some d-dimensional Euclidean space. Our definition of lattice paths sets d = 2 and,
formally, it reads as follows.

Definition 1.1.1. A lattice path (path for short) P in the Cartesian plane starting at
(x0, y0) is a sequence P = (P1, . . . , Pn) of vectors Pi ∈ Z2, called steps, such that each Pi
joins two points (xi−1, yi−1) and (xi, yi) in Z2. The point (x0, y0) is said starting point and
(xn, yn) ending point. The length n of P is the number of its steps.

Figure 1.1(a) shows an example of lattice path in the positive quarter plane.

7
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3

2

1

P
P

P
P

P

P

P

(a) (b) (c)

Figure 1.1: (a) A path of length 7 starting at (0, 2) and ending at (6, 0); (b) a path of
length 7 made of steps in S = {(1, 2), (1, 0), (1,−1)}; (c) a path with only east and north
steps starting at (0, 0) and ending at (6, 6).

Supposing we restrict the step set S to be finite, then the number of all paths having n
steps is finite as well, for any n ∈ N. Thus, the length n ∈ N of a path P is an enumerative
parameter for the family of lattice paths.

Although steps are formally vectors, we could omit arrows in the graphical representa-
tion of a path if there can be no misinterpretations: we can draw a segment instead of a
vector, provided that the set S of steps does not contain both a vector and its opposite.
Figure 1.1(b) depicts a path with fixed step set S = {(1, 2), (1, 0), (1,−1)}.

A well-posed counting problem for paths with a given step set S could be to determine
the number of all paths starting at (0, 0) and ending at a certain point (xf , yf ) or obeying
to certain constraints. For instance, a classical example to be cited is S = {(1, 0), (0, 1)},
namely the step set is made of only two unit steps called east step and north step re-
spectively - see Figure 1.1(c). It is a standard combinatorial result that the number of
paths starting at (0, 0) and ending at (2n, 2n) is determined by the central binomial coef-
ficient

(
2n
n

)
.
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An insight into the study of generic lattice paths and its close link with Probability and
Statistics is reported in [102] and in [115], as well as a discussion about the basic methods
for counting lattice paths. In literature (see [10]), precise computable estimates are given
for the number of lattice paths under various constraints: with ending point lying on the
x-axis (bridges) or, constrained to remain in the positive quarter plane (meanders) or, both
conditions at the same time (excursions). Moreover, lattice paths confined to a particular
region of the plane have been extensively studied [16, 39, 94]. In particular, much attention
has recently been paid to a comprehensive classification of random walks in the quarter
plane with step set contained in {0,+1,−1}2 (see [33, 37, 112, 114]).

Families of lattice paths are frequently involved in our study: precisely, Table 1.1
briefly sums up our families of paths with their enumeration sequences and precise section
references.

Family of paths Number sequence Section K/N

Dyck paths A000108 (Catalan) 1.3.2 K

Schröder paths A006318 (Schröder) 2.2.1 K

Baxter paths A001181 (Baxter) 2.1.4 N

Semi-Baxter paths A117106 3.2.3 N

Strong-Baxter paths A281784 4.2 N

Valley-marked Dyck paths A113227 5.2.1 K

Steady paths A113227 5.3.1 N

Table 1.1: Families of lattice paths defined along this dissertation; the last column specifies
if the family of paths was already known in literature (K) or if it forms a new combinatorial
interpretation of the corresponding number sequence (N).

1.1.3 Pattern-avoiding permutations

Our second example of families of combinatorial objects is the case of pattern-avoiding
permutations. Recall that any permutation can be thought in one-line notation: a per-
mutation of length n is simply an ordering π = π1 . . . πn of the set of integers {1, . . . , n}.
The enumerative parameter on permutations is known to be the length n so that there are
n! permutations, for any length n ∈ N (factorial number sequence A000142 [132]).

Definition 1.1.2. A permutation π of length n contains the permutation τ , called pattern,
of length k ≤ n (equivalently, τ 4 π), if π has a subsequence of length k which is order-
isomorphic to τ , namely it has the same pairwise comparisons as τ . Else if there exists no
subsequence of π order-isomorphic to τ , the permutation π is said to avoid the pattern τ
(equivalently, τ 64 π).

For example, the subsequence 79254 of π = 371925846 is order-isomorphic to τ = 45132,
thus τ 4 π; whereas σ = 4321 is avoided by π owing to the absence of a subsequence order-
isomorphic to σ.
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Permutation containment is generally best seen by plotting the elements of a permu-
tation into a grid: let π be a permutation of length n, the set of points {(i, πi)}, for any
1 ≤ i ≤ n, forms the graphical representation of π - as shown in Figure 1.2.

(c)(b)(a)

Figure 1.2: (a) The graphical representation of π = 371925846; (b) the graphical repre-
sentation of the pattern τ = 45132 contained in π; (c) the graphical representation of the
pattern σ = 4321 avoided by π.

Permutation containment 4 is a partial order on the set of all finite permutations S.
Indeed, if a permutation π contains τ as pattern, every permutation σ containing π contains
τ as well. On the other hand, by definition every permutation contained in a permutation π
that avoids a pattern τ still avoids the pattern τ . Properties of the poset (S,4) have been
described in [139], such as, for instance, the fact that it does not contain infinite descending
chains, or that it contains infinite anti-chains (i.e. sets of pairwise incomparable elements).

According to [25, Chapter 12] pattern avoidance in permutations was first introduced by
D. Knuth [99] in his dissertation about sorting sequences by means of stacks and double-
ended queues. Then, this study gained interest and inspired many subsequent papers;
among them we cite two monographs [24, 98] and recent survey articles [137, 138].

The most natural question to address in this context is how many permutations of
length n avoid a given set of permutations. More formally, if P is a set of permutations,
we define the family

AV (P) = {π : τ 64 π, for all τ ∈ P} .

Then, let AVn(P) denote the set of all permutations of length n that avoid any permutation
in P. The question becomes which number sequence {an}n≥0 enumerates AV (P) where
an = |AVn(P)|, for every n.

Note that according to the properties of (S,4), AV (P) is a downward-closed set for
the containment order: for all π ∈ AV (P), if σ 4 π, then σ ∈ AV (P). In literature [25,
Chapter 12], any family of permutations which is a downward-closed set for the containment
order is called permutation class, or briefly class. Thus, the family AV (P) is a permutation
class, for any set P of permutations, and the converse statement holds as well.

Proposition 1.1.3 ([24]). For every permutation class C, there is a unique antichain P
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such that C coincides with AV (P). The set P consists of all the minimal permutations
(with respect to containment order) that do not belong to C and may be infinite.

The case where P is a singleton has received considerable attention: for any τ ∈ S,
the permutation class AV (τ) has been called principal class [25, Chapter 12]. In 1980,
R. P. Stanley and H. S. Wilf (independently) asked for determining the behaviour of
|AVn(τ)|, for a general permutation τ of length k and large n. They both formulated a
conjecture stating that, for every permutation τ of length k, there is a finite number L(τ)
such that limn→∞ |AVn(τ)|1/n = L(τ).

In 2004, A. Marcus and G. Tardos [109] proved the following general enumerative result.

Theorem 1.1.4 (Stanley-Wilf Conjecture, Marcus-Tardos Theorem [109]). For any per-
mutation τ , there exists a constant C depending only on τ such that, for every n,

|AVn(τ)| ≤ Cn .

From that moment on, much attention has been focused on the limit L(τ), for any
permutation τ , which is then called Stanley-Wilf limit - on the problem of establishing
general bounds to Stanley-Wilf limits see [2, 26, 54, 55, 81].

To this regard, a particular result first stated by D. Knuth [99], and then proved in
many different ways in the literature [56], is the following well-known fact.

Theorem 1.1.5 ([99, 56]). For any permutation τ of length 3,

|AVn(τ)| = 1

n+ 1

(
2n

n

)
, for every n .

In 2000, E. Babson and E. Steingŕımsson [6] introduced the notion of generalised pat-
tens, showing that this definition is intimately related to the distributions of Mahonian
permutation statistics. Generalised patterns, also known as vincular patterns, differ from
the classical ones by some additional adjacency constraints: precisely, a vincular pattern
requires the adjacency of certain elements in any occurrence of the pattern itself. Thus,
an occurrence that does not respect the adjacency rules is not valid as occurrence of the
vincular pattern: for example, 13254 does not contain the adjacent pattern 123, since there
are no three consecutive elements in increasing order. We will provide in this introduc-
tory chapter (Section 1.4.2) the formal definition of vincular pattern, since throughout this
dissertation there will be several occurrences of families of permutations avoiding vincular
patterns, as Table 1.2 summarises.

Moreover, we specify that in order not to create potential misinterpretations of classical
patterns, we prefer to adopt the notation “ ” to indicate which elements are required to
be adjacent, instead of the historical dashed notation that separates with the symbol “−”
those elements that can be non-adjacent in an occurrence of the pattern.

Vincular patterns have been studied in the last years [18, 19, 73] together with a new
notion of pattern (mesh pattern) introduced by P. Brändén and A. Claesson [43] to provide
expansions for certain permutation statistics results.
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Moreover, it is well worth noticing that in case of a set P of vincular or mesh patterns,
we cannot use the name permutation class for AV (P), since in general the property of
being a downward-closed set of S for the containment order vanishes.

Family of Name Sequence Section Y/N
permutations

AV (τ), τ ∈ S3 A000108 1.3.2 Y

AV (2 41 3, 3 14 2) Baxter permutations A001181 1.4.2 Y

AV (2 41 3, 3 41 2) Twisted Baxter permutations A001181 1.4.2 Y

AV (2413, 3142) Separable permutations A006318 2.2.1 Y

AV (2 41 3, 3 14 2, A006318 2.5.2 N
41323+, 42313+)

AV (2 41 3) Semi-Baxter permutations A117106 3.1.1 N

AV (2 14 3) Plane permutations A117106 3.2.1 N

AV (2 41 3, 3 14 2, 3 41 2) Strong-Baxter permutations A281784 4.1.1 N

AV (1 23 4) A113227 5.2.1 Y

AV (1 34 2) A113227 5.3.1 Y

AV (23 14) A113227∗ 5.3.1 open

Table 1.2: Families of pattern-avoiding permutations treated along this dissertation; the
last column specifies whether their enumeration problem was already solved in literature
(Y) or not (N), or if it is still open, and thus their enumerative number sequence (with a
superscript ∗) is only conjectured.

1.2 Methodology

In order to find a solution for a counting problem different strategies might be applied.
This rather encyclopaedic section helps to sum up some known methods we will make use
of throughout this dissertation. Many other methods though exist in literature, see for
intances the books [79, 134, 135, 146], as well as [25, Part I].

1.2.1 Bijective method

Given two families of combinatorial objects A and C, suppose that only C has been enu-
merated with respect to an enumerative parameter p : C → N and the number cn = |Cn| is
known, for every n. One way to show that A is also enumerated by the number sequence
{cn}n≥0 is first to define an enumerative parameter a : A → N and a mapping β such that
for every n, it associates an element of An = {o ∈ A : a(o) = n} to an element of Cn.
Then, show that the mapping β is onto and injective.
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Not only has this method the advantage of providing a clear proof of the fact that the
two families of objects are equinumerous, but also function β may suggest (and prove)
the equidistribution of other parameters on the same families of objects. For instance,
regarding the two permutation classes AV (321) and AV (132), in [56] the authors classify
all the bijections existing in literature between these two permutation classes and manage
to extend known results about the equidistribution of some parameters, by studying the
statistics preserved by these bijections.

1.2.2 ECO method

The ECO (Enumerating Combinatorial Objects) method was introduced in 1999 by the
Florentine school of Combinatorics [12, 13, 116] and appeared as a formalisation of an
earlier enumerative approach used by J. West in [143, 144]. It inspired many subsequent
papers, such as [51, 67, 69, 76].

This method provides a recursive construction of the objects of a combinatorial class
C according to a finite parameter p, generally called size. According to the ECO method,
starting from a unique object of minimum size, we can build up all the other objects by
performing some local expansions that increase the objects size. These possible expansions
are formally described as operations performed by an operator ϑ : C → 2C, which goes
from C to its power set and associates to an object of C all the objects resulting from those
expansions. The following result from [13] helps us to provide a formal definition of an
ECO operator ϑ.

Proposition 1.2.1. Let C be a class of combinatorial objects. For n ≥ 0, if ϑ : C → 2C

satisfies

1. for each o ∈ Cn+1, there exists o′ ∈ Cn such that o ∈ ϑ(o′),

2. for every o, o′ ∈ Cn, ϑ(o) ∩ ϑ(o′) = ∅ whenever o 6= o′,

then the family of sets {ϑ(o) : o ∈ Cn} is a partition of Cn+1.

Definition 1.2.2. An operator ϑ satisfying conditions 1 . and 2 . above is said to be an
ECO operator.

Thus, an ECO operator generates all the objects of C in such a way that each object
o ∈ Cn+1 is uniquely obtained starting from a unique object o′ ∈ Cn. This process of
generation associated with ϑ, which is unambiguous by definition, is generally called growth
of C, owing to the fact that it causes an increasing of size. So, along this dissertation, we
use equivalently the expressions “to define an ECO operator” and “to define a growth” for
a given combinatorial class C.
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1.2.3 Generating trees and succession rules

The growth performed by an ECO operator ϑ : C → 2C can be described by means of a
generating tree: an infinite rooted tree whose nodes are decorated with objects of C each
one appearing exactly once. The root of the tree corresponds to the (unique) object of C
with minimum size. The children of a node carrying o ∈ Cn are as many as the objects
belonging to ϑ(o) and carry exactly all the objects in ϑ(o). Thus, all the objects of size n
in the decorated generating tree lie at level n - with the convention that the root is at level
1. Consequently, the enumerative sequence {cn}n≥0 of the combinatorial class C is visible
by looking at the shape of the generating tree: for every n ≥ 0, cn is the number of nodes
at level n.

Of importance for enumeration purposes is the general shape of a generating tree, not
the specific objects that its nodes carry. So, in our study each time we refer to a generating
tree, we intend only its shape, without the objects of C that decorate its nodes. In this
sense generating trees become substantially useful as they could be described in an abstract
way discarding the details of the combinatorial objects.

Generating trees were rigorously defined together with the ECO method introduc-
tion [13], although the basic idea they are founded on appeared occasionally in literature,
expecially in the context of permutations with forbidden patterns [53, 70, 143, 144]. A
thorough analysis of generating trees and their structural properties was carried out in [8],
where the definition of generating trees matches the concept of succession rule.

In case the growth for a combinatorial class C is particularly regular, namely there exists
a parameter s : C → Z whose values control the number of objects generated by each object
of C, then the corresponding generating tree can be encoded in a more compact way by
what is called a succession rule. More precisely, we can label each node of the generating
tree with the value s(o), where o ∈ C is the object decorating that node. Then, the values
of the parameter s : C → Z determine uniquely the number of children of each node in the
generating tree of C and the (shape of the) generating tree depends only on how the values
of the statistics s evolve from an object to its children.

Definition 1.2.3. Given a growth for a combinatorial class C, let s : C → Z be a parameter
whose values determine uniquely the number of objects generated by each object of C. A
succession rule is the system Ω C = ((r),R),

Ω C =


(r)

(h) (h1), (h2), . . . , (hj),

where the value r, called axiom, is the value that s assumes on the minimum size object
of C and the set R, called production, describes all the values h1, . . . , hj that s assumes on
the objects generated by any object o ∈ C such that s(o) = h.

Therefore, the axiom is the label of the root in the labelled generating tree, and the
production set explains for each node which are the labels of its children.
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In general, the statistics that control the growth for a combinatorial class are likely
to be more than one. Precisely, we need to label the nodes of the corresponding generat-
ing tree with arrays of integers, whose entries evaluate those statistics each once. Then,
Definition 1.2.3 generalises as follows.

Definition 1.2.4. Given a growth for a combinatorial class C, let s1, . . . , st be t different
parameters whose values determine uniquely the number of objects of C generated by each
object. A succession rule is a system Ω C = (r,R),

Ω C =


r

k k1, k2, . . . ,kj,

where the axiom r = (r1, . . . , rt) is an array given by considering the value ri that si
assumes on the minimum size object of C, and the set of productions R describes for
each array k = (s1(o), . . . , st(o)), with o ∈ C, all the arrays ki = (s1(oi), . . . , st(oi)), for
1 ≤ i ≤ j, where o1, . . . , oj are the objects generated by o.

Thus, as described for generating trees, the enumerative sequence {cn}n≥0 of the com-
binatorial class C can be deduced directly from a succession rule ΩC by iterating its pro-
ductions and recording the total number of labels at each iteration.

As a direct consequence, two families of objects having the same succession rule are
enumerated by the same number sequence and moreover, they are trivially in bijection
(see [70, 145]). The bijection is easily established by putting in correspondence objects of
the two different combinatorial families in accordance with their position in the associated
generating tree. This bijection is clearly recursive: it follows the way along each object is
built starting from the smallest one.

On the other hand, we will notice further that there could exist different generating
trees and succession rules associated with a combinatorial class C and with a number
sequence {cn}n≥0. Therefore, given different combinatorial classes, it is not obvious to
define growths for them that correspond to a common succession rule Ω. To fix notation,
we say that a class C of combinatorial objects can be generated by a given succession rule
Ω, if can be found a growth for C that defines the succession rule Ω.

Succession rules result to be a very powerful tool for enumeration purposes: they raised
interest in the last two decades [32, 44, 47], and have been extremely useful to define
algorithms for generating uniformly and randomly words of a given language [14]. Conse-
quently, their study led to some generalisations and classifications according to shape and
features.

First, two succession rules are equivalent if they correspond to the same generating
tree. Equivalent succession rules have been studied in [44] as well as finite succession rules,
namely succession rules with a finite number of labels and finite productions.

According to the technique of coloured labels [57, 77], if some labels of a succession rule
are allowed to have different productions, then in that case we distinguish those labels with
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different productions by using some colours and the corresponding succession rule is said
coloured.

Another slight generalization of the concept of succession rule is provided by jumping
succession rules [78]. Roughly speaking, the idea is to consider a growth for the objects of
a class C which involves elements at different levels (not only at the next level).

In addition, the notion of succession rule has been translated in terms of matrices [67],
production matrices, and operators, which form its algebraic counterpart [77], in order
to encode known operations for matrices and operators on the corresponding number se-
quences.

1.2.4 Generating functions

In this section we report the basic notions of generating functions, which are probably the
most powerful tool to tackle counting problems. The majority of definitions and standard
results listed here are taken from P. Flajolet and R. Sedgewick’s book Analytic Combina-
torics [79] and part from the Chapter 1 of [25] developed by F. Ardila.

Definition of ordinary generating function

Given a combinatorial class of objects C equipped with a notion of size p : C → N, the
(ordinary) generating function of the objects of C, counted by their size, is the following
formal power series in the indeterminate x

F (x) :=
∑
o∈C

xp(o) =
∑
n≥0

cn x
n,

where cn is the number of objects of C such that p(o) = n.
There are two approaches toward power series: the analytic attitude, which treats

F (x) as an honest analytic function of x, and the algebraic approach, which treats F (x)
as a formal algebraic expression, without any concern for convergence. The last simple
idea is extremely powerful since the most common algebraic operations on power series
correspond to some of the most common operations on combinatorial classes. Indeed, as
formal power series, generating functions belong to the ring C[[x]] of formal power series
in x with coefficients in the field C, where sum and product of A(x) =

∑
n≥0 anx

n and
B(x) =

∑
n≥0 bnx

n are defined by

A(x) +B(x) =
∑
n≥0

(an + bn)xn, A(x) ·B(x) =
∑
n≥0

(
n∑
k=0

akbn−k

)
xn.

Operators on classes and on their generating functions

Let A, B and C be combinatorial classes. The following operations are defined:

1. Disjoint union (C = A+ B): any object of size n of C is either an object of size n of
A or an object of size n of B.
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2. Product (C = A× B): any object of size n of C is obtained by choosing an object of
size k of A and an object of size n− k of B, for some k.

3. Sequence (C = Seq(B) ): assume |B0| = 0, any object of size n of C is obtained by
choosing a sequence of objects of B such that their total size is n.

4. Composition (C = A ◦ B): assume |B0| = 0, any object of size n of C is obtained by
choosing a sequence of k objects of B having total size equal to n and inserting them
into an object of size k of A.

There operations on combinatorial classes have an algebraic counterpart.

Proposition 1.2.5. Let A, B and C be combinatorial classes and let A(x), B(x) and C(x)
be their respective generating functions.

1. If C = A+ B,
C(x) = A(x) +B(x) .

2. If C = A× B,
C(x) = A(x) ·B(x) .

3. If C = Seq(B) ,

C(x) =
1

1−B(x)
.

4. If C = A ◦ B,

C(x) =
∑
n≥0

an

(∑
m≥0

bmx
m

)n

= A(B(x)) .

Coefficients of generating functions

For F (x) =
∑

n≥0 cnx
n, we write

[xn]F (x) := cn and, F (0) := [x0]F (x) = c0 .

For the sake of completeness, we report here some formal power series inspired by
series from analysis that will help us to extract coefficients from generating functions. The
formal power series in the following occur frequently in applications, as well as along this
dissertation, but they are not the only: a more accurate list of these series can be found
in [146, Section 2.5]).

Let
(
α
n

)
:= α(α− 1) · · · (α− n+ 1)/n!, with α ∈ C,

(1 + x)α =
∑
n≥0

(
α

n

)
xn, and for k ∈ N,

1

(1− x)k+1
=
∑
n≥0

(
n+ k

n

)
xn.

A highly important tool that permits to extract the nth coefficient from a generating
function, is the well-known Lagrange inversion formula, which reads as follows.
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Theorem 1.2.6 (Lagrange Inversion Theorem, Appendix A.6 [79]). Let Φ(u) =
∑

k≥0 aku
k

be a power series of C[[x]] with Φ(0) 6= 0. Then, the equation y = xΦ(y) admits a unique
solution in C[[x]] whose coefficients are given by (Lagrange form)

y(x) =
∞∑
n=1

ynx
n, where yn =

1

n
[un−1]Φ(u)n . (1.1)

Furthermore, one has for k > 0 (Bürmann form)

y(x)k =
∞∑
n=1

y(k)
n xn, where y(k)

n =
k

n
[un−k]Φ(u)n . (1.2)

By linearity, a form equivalent to Bürmann’s, with g(u) an arbitrary function, is

[xn]g(y(x)) =
1

n
[un−1](g′(u)Φ(u)n) .

The ultimate aim is to provide a closed formula for cn, or an expression for the gener-
ating function F (x). In many cases, it is sufficient to find a functional equation satisfied
by the generating function F (x) to prove formulas for the numbers cn (explicit and/or
recursive).

Nature of generating functions

Another aspect of strong interest in studying generating functions is their nature. The
nature of F (x) can indeed provide information about the numbers cn and their behaviour
when n becomes larger and larger. Moreover, the unsolvability of a combinatorial problem
is strictly related to the nature of its generating function solution: in [90], for instance, is
provided a numerical method that distinguishes whether a problem is likely to be solvable
in terms of simple functions of mathematical physics or not.

A complete classification of the nature of generating functions could be found in [134,
135] as well as [90], yet in the following we report only the definitions of classes of generating
functions that will appear onwards.

A formal power series F (x) is rational if it can be written in the form

F (x) =
P (x)

Q(x)
,

where P (x) and Q(x) 6= 0 are polynomials in x with rational coefficients.

Example 1.1. The generating function of sequences 1/(1− x) =
∑

n≥0 x
n and the gener-

ating function of subsets 1/(1− 2x) =
∑

n≥0 2n xn are clearly rational.

A series F (x) is said algebraic if there exist polynomials P0(x), . . . , Pk(x) ∈ Q[x], not
all 0, such that

P0(x) + P1(x)F (x) + . . .+ Pk(x)F (x)k = 0 ,
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or equivalently, if there exists a bivariate polynomial P with rational coefficients such that
P(x, F (x)) = 0. The smallest positive integer k for which the above equation holds is
called the degree of F .

Example 1.2. The generating function F (x) =
∑

n≥0

(
2n
n

)
xn of central binomial coeffi-

cients is algebraic, since
F (x)2(1− 4x)− 1 = 0 .

Finally, the series F (x) is said D-finite of order k if there exist polynomials Q0(x), . . . ,
Qk(x), Q(x) ∈ Q[x], with Qk(x) 6= 0, such that

Q0(x)F (x) +Q1(x)F ′(x) +Q2(x)F ′′(x) + . . .+Qk(x)F (k)(x) = Q(x).

Example 1.3. The generating function F (x) =
∑

n≥0 n!xn is D-finite, as it satisfies

x2F ′(x) + (x− 1)F (x) + 1 = 0 .

These three classes of formal power series we have defined form a hierarchy: every
rational series is also algebraic and every algebraic series is D-finite.

Furthermore, given a number sequence {cn}n≥0 we make the following definitions that
are closely related to the nature of their generating functions.

A sequence {cn}n≥0 is said c-recursive if there are constants a0, . . . , ad ∈ C such that
for all n ≥ d,

a0 cn + a1 cn−1 + . . .+ ad cn−d = 0 .

A sequence {cn}n≥0 is said P-recursive if there are complex polynomials a0(x), . . . , ad(x),
with ad(x) 6= 0, such that for all n ≥ d,

a0(n) cn + a1(n) cn−1 + . . .+ ad(n) cn−d = 0 .

Note that any number sequence that is c-recursive is trivially P-recursive.

Theorem 1.2.7. The following implications hold.

F (x) is rational ⇒ F (x) is algebraic ⇒ F (x) is D-finite

m [134, Theorem 4.1.1] m [135, Proposition 6.4.3]

{cn}n≥0 is c-recursive ⇒ {cn}n≥0 is P-recursive

It is not obvious whether a given D-finite power series is algebraic or not, yet some
tools are available: Table 1.3, for instance, summarises the behaviour of the nature of
generating functions under various key operations. For example, both sum and product
of two D-finite functions are D-finite, whereas the composition is not necessarily D-finite.
In Table 1.3 the derivative function is A′(x) =

∑
n≥1 nanx

n−1; in the forth column we are
assuming A(0) 6= 0 so that 1/A(x) is well defined, and in the fifth column we are assuming
B(0) = 0 so that A(B(x)) is well defined.
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aA(x) A(x) +B(x) A(x) ·B(x) 1/A(x) A(x) ◦B(x) A′(x)
rational yes yes yes yes yes yes
algebraic yes yes yes yes yes yes
D-finite yes yes yes no no yes

Table 1.3: The nature of formal power series resulting from key operations. Each “yes”
entry means that the result preserves the nature, where the column operation is applied
to formal power series of nature according to the row.

In addition, for all the negative results showed in Table 1.3 a weaker positive statement
holds:

1. If A(x) is D-finite and A(0) 6= 0, 1/A(x) is D-finite if and only if A′(x)/A(x) is
D-finite;

2. If A(x) is D-finite and B(x) is algebraic with B(0) = 0, then A(B(x)) is D-finite.

The following result is also useful.

Theorem 1.2.8 ([25], Theorem 1.3.11). If the coefficients of an algebraic power series
F (x) =

∑
n≥0 cnx

n satisfy cn ∼ c nr αn, for nonzero c, α ∈ C and r < 0, then r cannot be
a negative integer.

Generating functions and succession rules

Now, we relate generating functions and generating trees or, equivalently, succession rules.
We can refine the generating function F (x) associated with C so that it takes into account
the labels of its corresponding succession rule. Precisely, let Ω C be a succession rule with
labels h = (h1, . . . , ht), for some t ≥ 1. By introducing additional variables, called catalytic
variables in the sense of D. Zeilberger [151], in order to keep track of the labels h, the
univariate generating function F (x) for C is refined to the function

G(x; y1, . . . , yt) =
∑
h,n≥0

dn,h y
h1
1 yh22 . . . yhtt xn, (1.3)

where the sum ranges over all the possible labels h and dn,h denotes the number of objects
of size n and label h. Depending on the form of the succession rule, we can hopefully write
and solve a functional equation whose resolution gives an expression for the univariate
function F (x) and the multivariate function G(x; y1, . . . , yt). The next sections about
Catalan and Baxter numbers (Sections 1.3.6 and 1.4.5) show examples of translation of
succession rules into functional equations.

For multivariate generating functions G(x) = G(x1, . . . , xk) the basic algebra rules work
as for the univariate case. Moreover, the definitions of rational, algebraic and D-finite
generating functions can be generalised to multivariate functions G(x) by considering in
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each definition of page 18 the vector x = (x1, . . . , xk) instead of a single variable x. To
be more precise, in the case of a multivariate D-finite generating function [106]: G(x) is
said D-finite if it satisfies a system of linear partial differential equations, one for each
i = 1 . . . k, of the form

Qi,0(x)G(x) +Qi,1(x)
∂

∂xi
G(x) +Qi,2(x)

∂2

∂x2
i

G(x) + . . .+Qi,r1(x)
∂r1

∂xr1i
G(x) = 0 .

As in the univariate case, the class of multivariate D-finite functions is closed under sum,
product, differentiation, algebraic substitutions, and also under setting some variable equal
to a constant (specialisations) [79, Theorem B.3].

Nevertheless, Theorem 1.2.7 does not hold for multivariate generating functions: a
linear recurrence with constant coefficients does not necessarily yield a rational, algebraic,
or even D-finite generating function in 2 or more variables [38].

The methods used along this dissertation to treat and solve functional equations having
as solution multivariate generating functions of a given combinatorial class can be summed
up in this chart:

• kernel method, discussed in Section 1.3.6;

• obstinate variant of the kernel method, discussed in Section 1.4.5;

• generalisation of the quadratic method, discussed in Section 6.3.2.

1.3 Introduction to Catalan structures

According to R. P. Stanley’s monograph [133, Appendix B], Catalan numbers have had a
chaotic history and for decades they remained unnamed and rather unknown compared to
other famous number sequences, such as Fibonacci numbers (sequence A000045 [132]). In
that appendix of [133] the name “Catalan numbers” is attributed to the combinatorialist
J. Riordan (1903-1988) who first used it in 1948. Despite the delay in naming them, Catalan
numbers cover a large literature - more than 450 references are registered in the research
bibliography [88] - and they show up so frequently that their combinatorial interpretations
are many and different. Our interest in Catalan numbers is thus justified by the fact that
they are “probably the most ubiquitous sequence in Mathematics” (R. P. Stanley [135])
and “the longest entry in the OEIS” (A000108 [132]). Therefore, we summarise in this
section all the (well-)known results on Catalan numbers that will be useful to the purposes
of our research.

1.3.1 Formulas

The first terms of the sequence A000108 [132] of Catalan numbers Cn are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, . . .
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The most important and transparent recurrence satisfied by Cn is

Cn+1 =
n∑
k=0

CkCn−k, with C0 = 1.

It explains many of the combinatorial interpretations of Catalan numbers, where the ob-
jects being counted have a decomposition into two parts. It was the Belgian-born mathe-
matician E. C. Catalan (1814-1894) in [52] to first provide the well-known formula

Cn =

(
2n

n

)
−
(

2n

n− 1

)
.

Theorem 1.3.1 (Explicit formula). We have for every n ≥ 0,

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
.

A combinatorial proof of Theorem 1.3.1 can be found in [133, Section 1.6], where the
explicit formula for Catalan numbers is derived by finding an equivalence relation on some
sets En with

(
2n
n

)
elements. Another proof that makes use of the so-called cycle lemma is

in [63].
Some of the properties of Catalan numbers are in [128] and in [104], as well as a proof

of their close relation with the Narayana numbers N(n, k) (sequence A001263 [132]),

Cn =
n∑
k=1

N(n, k), where N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
.

1.3.2 Structures

The monographs [133] and [135] have a comprehensive collection of families of objects
enumerated by Catalan numbers. Among the 214 different kind of objects presented, we
choose to report here the definitions of those that are relevant to our study.

Dyck paths

According to Definition 1.1.1 we define the family of Dyck paths as follows.

Definition 1.3.2. A Dyck path of semi-length n is a path P of length 2n in the positive
quarter plane that uses up steps U = (1, 1) and down steps D = (1,−1) starting at the
origin and returning to the x-axis.

Any pair UD (resp. DU) of steps in a Dyck path P is called peak (resp. valley), and
its rightmost sequence of D steps is called last descent of P .

Dyck paths are counted by Catalan numbers Cn according to their semi-length n ≥ 0;
for a proof of this result see [66]. We denote by Dn the set of Dyck paths of semi-length n
and by D = ∪nDn.
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 last descent

valley

peak

Figure 1.3: A Dyck path of semi-length 10: its first peak is coloured red, its first valley
blue and its last descent is squared.

Figure 1.3 shows a Dyck path of D10, with its first peak, and its first valley, and its last
descent highlighted.

In addition, a Dyck path P of length 2n can be encoded by a word of length 2n in
the alphabet Σ = {U,D}, so-called Dyck word. A Dyck word w ∈ Σ∗ is such that for any
prefix v, the number of occurrences of U in v is greater than or equal to the number of
occurrences of D, and they must be equal if v = w. Note that this characterisation of the
word w mirrors the constraint of the path P to remain weakly above the x-axis and to end
in a point of the x-axis. Onwards we use equivalently Dyck words to denote Dyck paths
of Definition 1.3.2. A peak (resp. valley) is thus any UD (resp. DU) factor of P .

Statistics on Dyck paths have been extensively studied in literature - for instance,
see [21, 64, 63].

Pattern-avoiding permutations

Recall the notion of pattern avoidance in permutations of Definition 1.1.2. As already
stated in Theorem 1.1.5, the principal classesAV (τ), τ ∈ S3 ={123, 132, 213, 231, 312, 321},
are equinumerous and their enumerative sequence is proved to be the Catalan number
sequence. Theorem 1.1.5, first established by D. Knuth [99], has several proofs in litera-
ture [101, 131].

Parallelogram polyominoes

According to Definition 1.1.1 of path and considering a cell the unit square in the Cartesian
plane, we define the family of parallelogram polyominoes, as follows.

Definition 1.3.3. A parallelogram polyomino is the set S of cells contained between two
non-intersecting lattice paths (P,Q). Both paths P and Q must have same length n ≥ 2,
and starting at the origin, by using north (0, 1) and east (1, 0) steps must end at the same
point without intersecting (except at the origin and at the ending point). The length of
each path is also called the semi-perimeter, or size, of the parallelogram polyomino.

Moreover, paralellogram polyominoes are defined up to translation in the Cartesian
plane - see Figure 1.4. Parallelogram polyominoes of size n+ 1 are counted by the Catalan
number Cn (see [60, 61, 119]), for n > 0. We denote by PPn the set of parallelogram
polyominoes of size n and by PP = ∪nPPn.
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Figure 1.4: A parallelogram polyomino of size 16: a column and a row are striped.

Any parallelogram polyomino as set of cells comprises columns and rows : a column
(resp. row) is the set of cells having same abscissa (resp. ordinate) - see, for instance,
Figure 1.4. By definition of parallelogram polyomino rows and columns are connected
sets of cells, therefore parallelogram polyominoes are special convex polygons (see [31] or,
staircase polygons in [91, Section 7.3]).

Non-decreasing sequences

As 78th entry of the Catalan structures list in [133, 135] it appears the following family of
integer sequences.

Definition 1.3.4. A non-decreasing sequence is any sequence a1 . . . an of integers such
that ai < i and aj ≥ ai, for all j > i.

Figure 1.5 shows the graphical representation of a non-decreasing sequence a1 . . . an,
obtained by plotting in a grid all the points (i, ai). The number of non-decreasing sequences
of length n is the Catalan number Cn, for every n ≥ 0.

Figure 1.5: The graphical representation of the non-decreasing sequence 01123556.

1.3.3 Bijections

In this part we record two bijections involving Catalan objects rather well-known in lit-
erature: these bijections link the above Catalan structures two by two. In particular,
we report the bijection between Dyck paths and parallelogram polyominoes as described
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by M. Delest and G. Viennot [61, Section 4]. This first bijection will be re-used later in
Chapter 2. The second bijection presented here is between non-decreasing sequences and
permutations avoiding 132. Its proof is folklore and we cannot find a precise reference to
address to, except for [135]. Our proof makes use of a general proposition that will be
largely used in Chapter 5.

Bijection between Dyck paths and parallelogram polyominoes

First, define a mapping β from Dn, the set of Dyck paths of length 2n, to PPn, the set of
parallelogram polyominoes of size n+ 1, for n > 0, as follows:

• Given a P ∈ Dn, with n > 0, number from left to right its peaks and its valleys. Let
k ≥ 1 be the total number of peaks (obviously, there must be k − 1 valleys);

• Let (xi, yi) ∈ N2 pinpoint the ith peak - i.e. (xi, yi) is the ending (resp. starting)
point of the U (resp. D) step of the ith peak. Similarly, let (ui, hi) ∈ N2 pinpoint
the ith valley - i.e. (ui, hi) is the ending (resp. starting) point of the D (resp. U)
step of the ith valley. Call height of the ith peak (resp. valley) the ordinate value
yi > 0 (resp. hi ≥ 0);

• For every i from 1 to k, stack a set of cells in a number equal to the height yi of the
ith peak. Note that each of these vertical bars built has at least one cell. Then they
will be used to form the columns of a parallelogram polyomino;

• Glue together all those k bars, as to form a set S of connected cells following the
heights of the valleys of P . Precisely, if hj is the height of the jth valley, with
1 ≤ j < k, then the jth bar is glued to the (j + 1)st bar so that they are edge-
connected by exactly hj + 1 cells - see Figure 1.6.

The property that the height hj of the jth valley is strictly less than the height yj of the
jth peak allows the glueing process to form a parallelogram polyomino S with k columns.
The fact that S has size n+ 1, thus S ∈ PPn, can be manually checked as the sum of the
peak heights minus the valley heights gives the semi-length n of P . For instance, the Dyck
path UD of minimum length is made correspond to the single cell, that is the parallelogram
polyomino with minimum size.

Proposition 1.3.5. Let β : D → PP be defined as above so that any Dyck path of length
2n and k peaks is associated with a parallelogram polyomino of size n + 1 and k columns,
with n, k > 0. Then, the mapping β is a bijection.

Proof. To show that the mapping β is a bijection we define a mapping γ : PPn → Dn such
that β ◦ γ (resp. γ ◦ β) is the identity.

Let S be in PPn and k be the number of its columns. Define two arrays of positive
integers Y = (y1, . . . , yk) and V = (v1, . . . , vk−1) so that Y records the column heights from
left to right and V records the edge contacts between adjacent columns from left to right -
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see Figure 1.6. Then, construct a path P in the quarter plane starting at (0, 0) and using
U and D steps as follows: draw a first sequence of U steps ending at height y1 followed by
a sequence of D steps ending at height v1 − 1, then recursively alternate a sequence of U
steps and a sequence of D steps according to the heights yi and vi − 1, for 1 < i < k. The
rightmost sequence of U steps is drawn ending at height yk and the rightmost sequence
of D steps is uniquely drawn so that it ends on the x-axis. Thus, P is a Dyck path with
exactly k peaks.

Moreover, the semi-length of P is given by the sum of the peak heights minus the valley
heights,

k∑
i=1

yi +
k−1∑
i=1

(vi − 1),

which is n, since the size n+ 1 of S is given by

k +
k∑
i=1

yi −
k−1∑
i=1

vi .

Y=(3,2,3,3,1,2)

V=(2,2,3,1,1)

0

1

2

3

height

Figure 1.6: An instance of the mapping sending a Dyck path of semi-length 10 and 6 peaks
into a parallelogram polyomino of size 11 and 6 columns.
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Bijection between non-decreasing sequences and permutations avoiding 132

The second bijection reported here comes out as a restriction of a more general bijection
between permutations and particular integer sequences. Then, in order to prove the bi-
jection between non-decreasing sequences and 132-avoiding permutations, we recall here a
known bijection denoted by T between permutations and left inversion tables, whose first
appearance was in an exercise by D. Knuth [99, Section 5.1.1].

Definition 1.3.6. Let π be a permutation of length n. If i < j and πi > πj, then the
pair (πi, πj) is said an inversion of π. For 1 ≤ i ≤ n, let ti be the cardinality of the set
{πj : j > i and (πi, πj) is an inversion}. Then, T(π) = (t1, . . . , tn) is called left inversion
table of π.

For instance, the left inversion table of π = 16482753 is T(π) = 04240210. The mapping
T is actually a bijection, since the left inversion table of a permutation π uniquely identifies
π [99].

Proposition 1.3.7. Let T be the mapping that sends a permutation of length n in its
left inversion table and R be the operation of reverse (or mirror) on sequences. Then, the
mapping R ◦ T is a bijection between the family of permutations S and integer sequences
(e1, . . . , en) such that 0 ≤ ei < i, for any i.

Restricting this bijection between permutations and sequences of integers yields the
following result.

Proposition 1.3.8. Let R◦T be defined as in Proposition 1.3.7. The restriction of R◦T to
the permutation class AV (132) is a bijection between the family of non-decreasing sequences
and the permutation class AV (132).

Proof. In order to prove this statement we show that for any n, T(π) is a weakly decreasing
sequence of length n if and only if π ∈ AV (132).

⇒) We prove the contrapositive: if 132 4 π, then T(π) = (t1, . . . , tn) is not weakly
increasing. If π contains 132, then there are three indices i < j < k such that πi < πk < πj.
We can suppose without loss of generality that there is no index i′, i < i′ < j, such that
πi′ < πi. The pair (πj, πk) is an inversion of π, while (πi, πj) is not. Thus, the number
of inversions of πi is strictly smaller than the number of inversions of πj. In other words,
there exists two indices i < j, such that ti < tj.

⇐) We prove it again by using the contrapositive. Suppose T(π) = (t1, . . . , tn) is such
that there exists an index i, with ti < ti+1. By definition of left inversion table this
inequality yields πi < πi+1: indeed, if πi > πi+1, then ti ≥ tj must hold. In addition, since
ti < ti+1, there must be a point πj, j > i+ 1, such that (πi, πj) is not an inversion, whereas
(πi+1, πj) is. Therefore, 132 4 π.
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1.3.4 Generating trees

Here is a small collection of ECO operators for Catalan structures - a thorough list can be
found in literature [13, 116].

Recall that D is the combinatorial class of non-empty Dyck paths where the size is the
semi-length. As depicted in Figure 1.3, the last descent of any P ∈ D has a number of
points equal to the number of D steps plus one. Thus, any non-empty Dyck path P has
at least two points in its last descent. We define an operator ϑD : Dn → Dn+1 as follows.

Definition 1.3.9. For n > 0, if P ∈ Dn, then ϑD(P ) is the set of Dyck paths obtained
from P by inserting a peak in any point of P ’s last descent.

The set of Dyck paths obtained by performing ϑD on a Dyck path P is depicted in
Figure 1.7.

Figure 1.7: The set of paths obtained by operator ϑD.

The operator ϑD satisfies both properties of Proposition 1.2.1. Indeed, each Dyck path
P of semi-length n+ 1 is produced by a unique Dyck path P ′ of semi-length n through the
application of ϑD: the path P ′ is obtained by removing the rightmost peak of P .

Figure 1.8: The first levels of the decorated generating tree associated with ϑD.
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Figure 1.8 depicts the first levels of the generating tree induced by the ECO operator
ϑD whose nodes are decorated with Dyck paths of semi-length at most 4. The minimum
size object labelling the root is the Dyck path UD.

Recall that PP is the combinatorial class of parallelogram polyominoes where the size
is the semi-perimeter. We define an ECO operator ϑPP as follows.

Definition 1.3.10. For n > 0, if S ∈ PPn+1 has the rightmost column of height h, then
ϑPP(S) is the set of parallelogram polyominoes obtained from S:

• either by glueing a column of height i to the topmost cells of the rightmost column
of S, for any 1 ≤ i ≤ h;

• or by glueing a single cell on top of the rightmost column of S.

Figure 1.9 shows the growth of a parallelogram polyomino S according to the definition
of ϑPP above.

Figure 1.9: The set of parallelogram polyominoes obtained by means of ϑPP .

The operator ϑPP is an ECO operator satisfying both properties of Proposition 1.2.1:
indeed, each parallelogram polyomino S of size n+1 is produced by a unique parallelogram
polyomino S ′ of size n obtained by removing either the topmost row of S, if it consists of
only one cell, or the rightmost column of S.

The first levels of the generating tree induced by the ECO operator ϑPP are shown in
Figure 1.10. Each node is decorated with a parallelogram polyomino of size at most 5.
The single cell is the minimum size object labelling the root.

The last class of objects considered is the permutation class AV (132). Given a permu-
tation π = π1 . . . πn any position between two consecutive points πi and πi+1 is said site,
for every i. If π avoids a set of patterns P, we call a site active, if the insertion of n + 1
in that position does not create any occurrence of the forbidden patterns. In the graphical
representation it is usual to mark any active site with a diamond and every non-active site
with a cross - see, for instance, Figure 1.11 where all the n+ 1 sites have been marked.

In order to define operator ϑA performing local expansions on permutations inAVn(132),
it is useful to characterise which sites are active in a permutations of AVn(132).

Definition 1.3.11. Let π ∈ Sn. A left-to-right maximum (resp. minimum) of π is any
point πi such that for every j < i, πj < πi (resp. πj > πi). A right-to-left maximum (resp.
minimum) is defined symmetrically. For brevity, we use the notation LTR maximum
(minimum) and RTL maximum (minimum).
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Figure 1.10: The first levels of the decorated generating tree associated with ϑPP .

Lemma 1.3.12. Let π be a permutation of AVn(132). A site of π is active if and only if
it is at the beginning of π or it is immediately after a RTL maximum.

Proof. In one case there is nothing to prove: π avoids 132 if and only if π′ = (n + 1) π
avoids 132. On the other hand, if π avoids 132 the addition of n + 1 in a site of π could
give rise to an occurrence of 132 provided that n+ 1 plays the role of 3 in that occurrence.
Therefore, if n+ 1 is added just after a point which is not a RTL maximum, an occurrence
of 132 is generated by definition. Conversely, suppose by contradiction that n+ 1 is added
just after a RTL maximum πi and it gives rise to an occurrence of 132. By definition of
RTL maximum, πi cannot play the role of 1 in that occurrence. Thus, there must be two
indices k < i and j > i such that πk < πj < n + 1. Hence, since πi is a RTL maximum,
πj < πi must hold contradicting the fact that π avoids 132.

Definition 1.3.13. For n > 0, if π ∈ AVn(132), then ϑA(π) is the set of permutations
obtained by inserting n+ 1 in any active site of π described by Lemma 1.3.12.

The set of permutations obtained by performing ϑA on a permutation π ∈ AV5(132) is
depicted in Figure 1.11.

The operator ϑA satisfies both properties of Proposition 1.2.1: each permutation π
of length n + 1 is uniquely obtained from a permutation π′ of length n obtained from π
by removing its maximum. The first levels of the generating tree associated with ϑA are
depicted in Figure 1.12
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Figure 1.11: The set of permutations obtained from π = 53412 by means of ϑA.

1

4 3 2 1

3 4 2 1

3 2 4 1

3 2 1 4

4 2 3 1

2 3 4 1

2 3 1 4

4 2 1 3

2 1 3 4

3 2 12 3 1 2 1 3

4 3 1 2

3 4 1 2

3 1 2 4

3 1 2

4 1 2 3

1 2 3 4

1 2 3

2 11 2

Figure 1.12: The first levels of the decorated generating tree corresponding to ϑA.

Remark 1.3.14. We point out that a growth very similar to the one performed by ϑA on
the permutation class AV (132) can be provided for the classes AV (231), AV (312), and
AV (213). Indeed, symmetrically to AV (132) an active site of a permutation in AV (231)
is either immediately before a LTR maximum or at the end of the permutation. Thus,
a growth for AV (231) can be defined symmetrically to Lemma 1.3.12 and similarly to
Definition 1.3.13.

On the other hand, the active sites of a permutation π ∈ AVn(312) (symmetrically,
AVn(213)) can be described as those immediately after a RTL maximum (symmetrically,
before a LTR maximum) of π or on the left (symmetrically, on the right) of the maximum
point n. Thus, also in these cases Definition 1.3.13 can be slightly modified to define a
growth for AV (312) as well as AV (213).

In all the three different cases described (Dyck paths, parallelogram polyominoes, and
pattern-avoiding permutations), it can be checked that there exists a parameter s : C → N
that controls the number of children for each node of the generating tree. When we consider
the family of Dyck paths D the parameter s is the length of the last descent, while for the
class PP it is the height of the rightmost column and for AV (132) it is the number of RTL
maxima. As Figure 1.13 shows we can label the nodes of the generating tree using arrays
of only one entry that keeps track of these values.

1.3.5 Succession rules

All the growths defined in the previous section define a common generating tree (see
Figure 1.13) that can be encoded by a succession rule.
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(2)

(1)

(3) (4)(3)(2)(1)

(3)(2)

(2)(1)(1) (2)

(2)

(1)

(1)

(2)

(3)(2)(1)

(1)

(1)

Figure 1.13: On the left the generating tree associated with ϑD, ϑPP and ϑA up to the
fourth level; on the right the same generating tree decorated with labels, TCat.

Proposition 1.3.15. The family D of Dyck paths, and the family PP of parallelogram
polyominoes, and the class AV (132) (as well as AV (231), AV (312), AV (213)) can all be
generated by

ΩCat =


(1)

(h)  (1), (2), . . . , (h), (h+ 1).

Proof. For each class, we need to prove that, substituting the objects for their labels in
their decorated generating tree, the way in which the label spread is encoded by ΩCat.
Consider, for instance, ϑD of Definition 1.3.9. The label we assign to Dyck paths is the
length of the last descent, thus the root label is (1). Then, according to ϑD each object
having h steps in the last descent produces h+ 1 Dyck paths (as there are h+ 1 points in
the last descent). All the Dyck paths produced by inserting a peak have different lengths
of their last descent, which vary from 1 to h+ 1. Therefore, any label (h) produces labels
(1), (2), . . . , (h), (h+ 1). The same reasoning can be repeated for PP and the height of the
rightmost column and, for AV (132) (as well as AV (312)) and the number of RTL maxima.
The proof is complete noticing that by Remark 1.3.14 a growth of AV (231) (as well as
AV (213)) is completely controlled by the number of LTR maxima in the same way is the
one for AV (132) by RTL maxima.

For the sake of completeness, it must be said that there are other succession rules known
to generate Catalan numbers. For instance,

(1)

(1)  (2)
(2k)  (1)k, (4), (6), . . . , (2k), (2k + 2), if k > 0,

that has been studied in [44] and,
(1)

(2k)  (1)2k−1, (2)2k−2, . . . , (2k−2)2, (2k−1), (2k+1),

whose proof is reported in [17].
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1.3.6 Catalan generating function: the kernel method

This part describes the standard technique we use to translate a succession rule associated
with a given number sequence into a functional equation whose solution is the generating
function of that number sequence.

For the sake of clarity, we call TCat the generating tree associated with ΩCat whose
nodes are decorated with labels - see Figure 1.13.

Let y be a catalytic variable introduced to record labels in the generating tree and x
be the counting variable keeping track of levels of the nodes (i.e. the size of the under-
lying combinatorial objects). As usual, for a given node o ∈ TCat in the generating tree,
we indicate with p(o) its level and with s(o) the value of its label. Then, according to
Equation (1.3), the bivariate Catalan generating function is

GCat(x; y) :=
∑
o∈TCat

xp(o) ys(o) =
∑
h>0

Gh(x) yh,

where Gh(x) ≡ Gh is the size generating function of nodes of TCat with label (h). Then,
the definition of ΩCat yields

GCat(x; y) = xy +
∑
h>0

Gh x (y + y2 + . . .+ yh + yh+1),

where the contribute xy corresponds to the axiom (1), and the summation to the production
of the rule ΩCat in which each label (h) at level n produces h+ 1 objects at the next level
that contribute for xn+1y + xn+1y2 + · · · + xn+1yh + xn+1yh+1. Thus, the following result
holds.

Proposition 1.3.16. The bivariate generating function GCat(x; y) of Catalan numbers
satisfies

GCat(x; y) = xy +
xy

1− y
(GCat(x; 1)− y GCat(x; y)) . (1.4)

Proof. From the definition of GCat(x; y) it follows that

GCat(x; y) = xy + x
∑
h>0

Gh

(
y

1− y
− yh+2

1− y

)
= xy +

xy

1− y
∑
h>0

Gh(1− yh+1)

= xy +
xy

1− y
(GCat(x; 1)− y GCat(x; y)) .

In Equation (1.4), the term GCat(x; 1) is actually our unknown: indeed discarding the
label values, it is the generating function of Catalan numbers

∑
n>0Cnx

n. The nature
of GCat(x; 1) is known in the literature to be algebraic and, consequently, the bivariate
generating function GCat(x; y) is algebraic as well.
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In the following we apply the so-called kernel method to Equation (1.4) mainly in order
to show an application of this method and, secondly to provide a proof of the algebraicity
of these generating functions.

The kernel method appears in the “mathematical folklore” since 1970’s: D. Knuth [99]
first introduced it and, then it was rediscovered by several people and turned into a method
(see [10, 8, 38]). A collection of examples in which the kernel method is applied for
enumerative purposes is in [120] and another application is provided in [113].

The method applied to Equation (1.4) consists in coupling the variables x and y so that
the coefficient of the unknown quantity GCat(x; y) is zero. In particular, the steps to solve
Equation (1.4) by using the kernel method are:

• Write (1.4) into its kernel form by collecting terms with GCat(x; y),

GCat(x; y)KCat(x, y) = xy +
xy

1− y
GCat(x; 1), (1.5)

where the polynomial KCat(x, y) = 1 + xy2/(1− y) is called kernel.

• Solve KCat(x, y) = 0 with respect to y. Note that KCat(x, y) is quadratic in y so
that there must be two solutions Y1(x) and Y2(x) that annihilate KCat(x, y). Their
expansions as power series in 0 are

Y1(x) =
1 +
√

1− 4x

2x
= x−1 − 1− x− 2x2 − 5x3 − 14x4 − 42x5 − 132x6 +O(x7),

Y2(x) =
1−
√

1− 4x

2x
= 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + 132x6 +O(x7).

If we substitute in Equation (1.4) y for Y1(x) ≡ Y1, then KCat(x, Y1) = 0, but
GCat(x, Y1) is not a convergent power series in x.

Indeed, let GCat =
∑

nCn(y)xn, where Cn(y) is a polynomial in y of degree n (as the
maximum possible value for a label of TCat at level n is n). The polynomial Cn(Y1)
is a series in x whose lowest power of x is −n, so by using the Landau symbols it is
O(x−n). Then, Cn(Y1)xn is O(1), for any n, and thus GCat(x, Y1) is not convergent.

On the other hand, if we substitute in Equation (1.4) y for Y2 ≡ Y2(x), then not only
KCat(x, Y2) = 0, but also GCat(x, Y2) is a convergent power series in x.

Indeed, contrary to Y1, Cn(Y2) is a series in x whose lowest power of x is zero, so it
is O(1). Then, for any N , set GCat(x, Y2) =

∑
n≤N Cn(Y2)xn +

∑
n≥N+1Cn(Y2)xn,

we have that
∑

n≥N+1Cn(Y2)xn = O(xN+1). Thus, GCat(x, Y2) converges.

• Set y = Y2 so that the left-hand side of Equation (1.5) vanishes

0 = xY2 +
xY2

1− Y2

GCat(x; 1). (1.6)
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• Solve Equation (1.6) in GCat(x; 1) obtaining the well-known expressions

GCat(x; 1) =
1− 2x−

√
1− 4x

2x
, and GCat(x, y) =

y (1− 2xy −
√

1− 4x)

2 (1− y + xy2)
. (1.7)

The series expansions of GCat(x; 1) and GCat(x; y) are

GCat(x; 1) = x+ 2x2 + 5x3 + 14x4 + 42x5 + 132x6 +O(x7),

GCat(x; y) = yx+ (y + 1)yx2 + (y2 + 2y + 2)yx3 + (y3 + 3y2 + 5y + 5)yx4 + (y4 + 4y3

+9y2 + 14y + 14)yx5 + (y5 + 5y4 + 14y3 + 28y2 + 42y + 42)yx6 +O(x7) .

1.3.7 Alternative use of the kernel method

We report here another functional equation having the generating function of Catalan
numbers as solution, which is still susceptible to applying the kernel method. The reason
behind this second example is that the following functional equation does not come from
any succession rule, but from a combinatorial interpretation of its terms.

To provide this example we introduce the notion of Dyck path prefix: any path in the
quarter plane starting at the origin and using U and D steps is a Dyck path prefix. Thus,
any Dyck path prefix has length given by the number of its steps and height given by the
ordinate of its ending point.

Let D(x, s) be the generating function of Dyck path prefixes, where x marks their
length and the catalytic variable s their height. Then, it holds that

D(x, s) = 1 + x(s+ s̄)D(x, s)− xs̄D(x, 0), with s̄ = 1/s . (1.8)

Indeed, a Dyck path prefix is either the empty prefix or it is obtained from a Dyck path
prefix by adding a new final step, which is either U = (1, 1) contributing for xs or D =
(1,−1) contributing for xs̄. Moreover, we have to eliminate those Dyck path prefixes
produced by adding a final D step to a Dyck path prefix of height 0, which corresponds to
subtract the term xs̄D(x; 0).

Note that the number of Dyck paths of length 2n is given by [s0x2n]D(x, s), since we
must consider only those Dyck path prefixes of length 2n that return to the x-axis.

Therefore, we can obtain a proof of the fact that the number of Dyck path is the Catalan
number Cn, for every n ≥ 0, as follows.

Manipulating Equation (1.8), yields

−sD(x, s) + s+ x(s2 + 1)D(x, s)− xD(x, 0) = 0; (1.9)

−s̄D(x, s̄) + s̄+ x(s̄2 + 1)D(x, s̄)− xD(x, 0) = 0; (1.10)

(xs2 − s+ x)(D(x, s)− s̄2D(x, s̄)) + s− s̄ = 0; (1.11)
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sD(x, s)− s̄D(x, s̄) +
s2 − 1

xs2 − s+ x
= 0. (1.12)

Equation (1.9) is obtained from (1.8) by multiplying by s, while (1.10) is obtained substi-
tuting s̄ for s in (1.9). Equation (1.11) is obtained subtracting (1.10) from (1.9). The last
equation (1.12) has a handy form: indeed, sD(x, s) is a power series in x with polynomial
coefficients in s, in which the lowest power of s is 1, whereas s̄D(x, s̄) is a power series
in x with polynomial coefficients in s̄ whose highest power of s is −1. Hence, in order to
retrieve D(x, 0) = [s0]D(x, s), we have to consider the expansion as power series in x of
the last term of (1.12) and to take into account (in its polynomial coefficients in s and s̄)
only the coefficients of s1. Hence, an explicit expression for the number of Dyck paths of
semi-length n can be obtained by

[s0x2n]D(x, s) = [sx2n]
(
sD(x, s)− s̄D(x, s̄)

)
= [sx2n]

1− s2

xs2 − s+ x
= [s x2n]

s− s̄
1− x(s+ s̄)

= [s](s− s̄)
∑
i≥0

(
2n

i

)
s2(i−n)

=

(
2n

n

)
−
(

2n

n+ 1

)
= Cn . (n ≥ 0)

Now, we turn to apply the kernel method to Equation (1.8). Write Equation (1.8) in
its kernel form,

K(x, s)D(x, s) = 1− xs̄D(x, 0), where K(x, s) = (1− x(s+ s̄)) .

Solve K(x, s) = 0 with respect to s. Since K(x, s) is quadratic in s, there exist two
solutions σ1(x) and σ2(x) that annihilate K(x, s). The two solutions σ1(x) and σ2(x) are
such that only one of them has non-negative exponent as power series in x,

σ1(x) =
1 +
√

1− 4x2

2x
= x−1 − x− x3 − 2x5 − 5x7 +O(x9),

σ2(x) =
1−
√

1− 4x2

2x
= x+ x3 + 2x5 + 5x7 +O(x9).

From the same reasoning of the previous section, it holds that D(x, σ2) is a convergent
power series, being σ2(x) a well-defined power series in x. Thus, substituting s = σ2(x)
implies K(x, σ2) = 0 and D(x, 0) = σ2/x.

Note that the Catalan generating function D(x, 0) above is slightly different from the
function GCat(x; 1) of Equation (1.7). In fact, one can note that the series GCat(x; 1) does
not have the constant term C0 = 1. Thus, D(x, 0) = 1 +GCat(x

2; 1).
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1.3.8 Asymptotics

The behaviour of Catalan numbers as n goes to infinity is easily provided by Stirling’s
formula by using the explicit expression for Catalan numbers of Theorem 1.3.1.

Stirling’s formula is an important approximation due to the Scottish mathematician J.
Stirling (1692-1770), and it reads as

n! =
(n
e

)n√
2πn

(
1 +O

(
1

n

))
, (n→∞) .

Several proofs of this important formula can be found in [79], where its excellent quality
as asymptotic estimate is highlighted. By means of a simple calculation, Stirling’s formula
allows to write the following accurate asymptotic form for the numbers Cn,

Cn =
1

n+ 1

(2n)!

(n!)2
∼ 1

n

(2n)2ne−2n
√

4πn

n2ne−2n2πn
.

Theorem 1.3.17 (Asymptotic form). Let Cn be the nth Catalan number. Then, as n goes
to infinity,

Cn ∼
4n√
πn3

.

Thus, the growth of Catalan numbers is comparable to an exponential, 4n, modulated
by a subexponential factor, 1/

√
πn3.

1.4 Introduction to Baxter structures

Baxter numbers appeared first in order to enumerate Baxter permutations in 1977: in [53]
F. R. K. Chung et al. succeeded in finding a closed expression for the number of permuta-
tions defined in [42] as Baxter permutations (see definition in Section 1.4.2). In fact, these
permutations owe their name to G. Baxter, who first used them in the attempt to prove a
conjecture about commuting functions (see [20]): if f and g are continuous functions map-
ping [0, 1] into [0, 1] which commute under composition, then they have a common fixed
point. Eventually, this conjecture was shown to be false by W. M. Boyce who, however,
proved that Baxter permutations are of greater importance in analysis than had previously
been realised. In this section we recollect all the known results about Baxter numbers and
Baxter structures that we use along this dissertation.

1.4.1 Formulas

The number sequence enumerating Baxter permutations, which will be defined rigorously
in the next section, is known as the sequence A001181 [132] of Baxter numbers Bn, whose
first terms are

1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240, 1882960, 11140560, 67329992, . . .
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It was provided by F. R. K. Chung et al. in [53] a first explicit expression for the Baxter
numbers Bn,

Bn =
2

n(n+ 1)2

n∑
j=1

(
n+ 1

j − 1

)(
n+ 1

j

)(
n+ 1

j + 1

)
. (1.13)

As reported in [75], the summand of the above equation can be rewritten equivalently as
follows.

Theorem 1.4.1 (Explicit formula). For every n ≥ 1, we have that

Bn =
n∑
k=0

θk,n−k−1, where

θk,` =
2

(k + 1)2(k + 2)

(
k + `

k

)(
k + `+ 1

k

)(
k + `+ 2

k

)
. (1.14)

Equation (1.14) is combinatorially interpreted on several Baxter structures, as the next
section illustrates.

Moreover, a linear recurrence satisfied by the numbers Bn is pointed out in the paper
of F. R. K. Chung et al. [53] and it is attributed to P. S. Bruckman: for n ≥ 4,

(n+ 1)(n+ 2)(n+ 3)(3n− 2)Bn = 2(n+ 1)(9n3 + 3n2 − 4n+ 4)Bn−1

+(3n− 1)(n− 2)(15n2 − 5n− 14)Bn−2

+8(3n+ 1)(n− 2)2(n− 3)Bn−3,

where B1 = 1, B2 = 2 and B3 = 6. Another recursive formula satisfied by Baxter numbers
has been provided by R. L. Ollerton and inserted on [132, sequence A001181]. It reads as,
for n ≥ 2,

Bn =
7n2 + 7n− 2

(n+ 3)(n+ 2)
Bn−1 +

8(n− 2)(n− 1)

(n+ 3)(n+ 2)
Bn−2, with B0 = 0, and B1 = 1. (1.15)

1.4.2 Structures

Although the sequence of Baxter numbers is less popular than the Catalan one, it has
several disparate combinatorial interpretations. A comprehensive list of families of objects
enumerated by Baxter numbers can be found in [75], and in [86], as well as their close
connections with Hopf algebras. Among the Baxter structures we do not define in the
following, but it is well worth mentioning in passing, there are plane bipolar orientations [27,
82], and open partition diagrams with no enhanced 3-nesting, nor future enhanced 3-
nesting [48].
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Baxter permutations

The definition of Baxter permutations that we adopt is not exactly the original definition
of [42] given by W. M. Boyce. In fact, we prefer to use the notion of “reduced” Baxter
permutations introduced by C. L. Mallows in [107]. The reason for this choice is that
the permutations commonly known as Baxter permutations in the literature nowadays are
merely Mallows’ reduced Baxter permutations.

Definition 1.4.2. A permutation π = π1 . . . πn is a Baxter permutation if there are no
three indices i, j and k, with 1 ≤ i < j < j + 1 < k ≤ n, such that

πj+1 < πi < πk < πj, or πj < πk < πi < πj+1.

For instance, all permutations of length 4 are Baxter permutations, apart from 2413
and 3142.

By using the definition of generalised patterns (later called vicular patterns) introduced
in [6], Baxter permutations can be characterised as a family of pattern-avoiding permu-
tations. Then, with this aim, we provide formal definitions of vincular patterns, and of
avoidance of a vincular pattern.

Definition 1.4.3. Let τ = τ1 . . . τk be a pattern of length k. The pattern τ is called
vincular pattern if certain consecutive elements are marked by , i.e. τiτi+1 . . . τj, for some

i and j > i. A permutation π of length n ≥ k contains the vincular pattern τ (τ 4 π),
if there exists an occurrence of the pattern τ in π such that the elements marked by in
τ are consecutive elements of the permutation π1 . . . πn. Otherwise, π avoids the vincular
pattern τ (τ 64 π).

For instance, the permutation π = 41352 does not contain the vincular pattern 3 14 2,
since the only occurrence of 3142 in π, namely 4152, does not have the entries 1 and 5
adjacent.

The family of Baxter permutations can be characterised as follows.

Proposition 1.4.4 ([87]). The family of Baxter permutations coincides with the family of
permutations avoiding the two vincular pattern 2 41 3 and 3 14 2.

Therefore, there are two permutations of length 5 that contain 2413 or 3142, but avoid
2 41 3 and 3 14 2: they are 41352 (as previously shown), and 25314 (by symmetry).

There is another characterisation of Baxter permutations in terms of pattern-avoiding
permutations that involves barred patterns [121]. We do not report here the formal defi-
nition of barred pattern, since it is not central for our purposes; we rather address to [121]
where the avoidance of barred patterns is thoroughly studied. Just to mention, we precise
that Baxter permutations are the permutations avoiding two barred patterns, 253̄14 and
413̄52. In general, avoiding barred patterns is not equivalent to the avoidance of vincular
patterns. Yet in our specific case, it holds that avoiding the vincular pattern 2 41 3 (resp.
3 14 2) is equivalent to avoiding the barred pattern 253̄14 (resp. 413̄52) - see [121].
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By definition the number of non-empty Baxter permutations of length n is the Baxter
number Bn of Equation 1.13 [53]. Moreover, according to [107], the summand θk,` of
Theorem 1.4.1 is the number of Baxter permutations with k descents and ` rises (a descent
in a permutation π is an element πi such that πi > πi+1, similarly a rise is an element πi
such that πi < πi+1).

Twisted Baxter permutations

In [122] N. Reading studying sub-algebras of the Hopf algebra of permutations defined a
new family of permutations, and noticed forthwith that it is equinumerous to the family
of Baxter permutations through length n = 15.

Definition 1.4.5. A twisted Baxter permutation π is a permutation that avoids both the
vincular patterns 3 41 2 and 2 41 3.

Nevertheless, the property that twisted Baxter permutations are as many as Baxter
permutations was shown to hold by J. West in [142], and later reproved by M. Bouvel and
O. Guibert in [41].

Analogously to Baxter permutations, twisted Baxter permutations can be characterised
by the avoidance of barred patterns. We do not provide many details, except that avoiding
the vincular pattern 3 41 2 is equivalent to avoiding 453̄12, whereas as above avoiding 2 41 3
is equivalent to avoiding 253̄14. Thus, twisted Baxter permutations are those permutations
avoiding the two barred patterns 453̄12 and 253̄14.

Permutations depicted in Figure 1.14 provide two examples: a Baxter permutation that
is not twisted Baxter, as it contains 3 41 2, and a twisted Baxter permutation that is not
Baxter, because it contains an occurrence of 3 14 2.

(b)

3 1 5 4 23 5 4 1 2
(a)

Figure 1.14: (a) A Baxter permutation that is not twisted, because of 3412; (b) a twisted
Baxter permutation, which is not Baxter owing to 3152.

Triples of non-intersecting lattice paths

According to Definition 1.1.1 of paths, let (P,Q,R) be a triple of non-intersecting lattice
paths (NILPs, for brevity), where P starts at (0, 2), and Q at (1, 1), and R at (2, 0), and
P,Q and R all use the same number of north and east steps. Figure 1.15 shows an example
of a triple of NILPs.
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Figure 1.15: A triple of NILPs with 5 north steps and 6 east steps.

Then, by the Gessel-Viennot Lemma [85], it holds that θk,` defined in Equation (1.14)
counts triples of NILPs with k north steps and ` east steps (i.e. P ends at (`, k+ 2), Q at
(`+ 1, k + 1), and R at (`+ 2, k) ).

Mosaic floorplans

Mosaic floorplans are a simplified version of general floorplans defined by X. Hong et al. [92]
in the context of chip design.

Definition 1.4.6. A mosaic floorplan is a rectangular partition of a rectangle by means of
segments that do not properly cross, i.e. every pair of segments that intersect forms a T-
junction of type , , , or . Mosaic floorplans are generally considered up to equivalence
under the action of sliding segments, namely up to translating their internal segments with
continuity and without removing any T-junction.

Figure 1.16 shows two mosaic floorplans that are equivalent. Therefore, we write mo-
saic floorplan to denote an equivalence class of mosaic floorplans. So, the two objects of
Figure 1.16 are rather two representatives of the same mosaic floorplan. Mosaic floorplans
are enumerated according to the number of internal segments: we define the size of a mo-
saic floorplan as the number of its internal blocks, which are n+ 1 if n is the number of its
internal segments. B. Yao et al. [148] proved that the number of mosaic floorplan of size n
is Bn.

(b)(a)

Figure 1.16: (a) A packed floorplan with 3 internal segments; (b) a (non-packed) mosaic
floorplan belonging to the same equivalence class than the one depicted in (a).

In order to escape the inconvenience of dealing with equivalence classes, packed floor-
plans have been introduced in [4]. A packed floorplan is a floorplan whose internal segments

do not form configurations of type . In [4], it is proved that every mosaic floorplan as
equivalence class contains exactly one packed floorplan, and thus packed floorplans can be
considered as canonical representatives of mosaic floorplans.
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It follows from the enumeration of mosaic floorplans [148] that packed floorplans of size
n are counted by Bn.

1.4.3 Bijections

There exist in literature many bijections involving Baxter structures. For instance, a cor-
repondence between Baxter permutations and twisted Baxter permutations is established
in [142]. Another one between Baxter permutations and triples of NILPs is described
in [71]. Another one between triples of NILPs and plane bipolar orientations can be found
in [82]. A more extensive collection of bijections for Baxter families is gathered in [75] with
accurate bibliographic references. Some of the cited bijections are particularly interesting
because they show the equidistribution of some statistics on Baxter objects. The only bi-
jection we do report involves mosaic floorplans and Baxter permutations and was defined
by E. Ackerman et al. in [1]. We report in the following the mapping defined in [1], since
the restriction of this bijection to a particular family of floorplans yields a bijection with
a family of pattern-avoiding permutations contained into Baxter permutations, which will
be dealt in Section 2.2.1.

Given a mosaic floorplan of size n, we can obtain a mosaic floorplan of size n − 1 by
using the block deletion operation introduced by X. Hong et al. [92].

Let F be a mosaic floorplan with n > 1 blocks and let b be the block in the top-left
corner of F . We remove the block b according to its bottom-right corner: if the delimiting
segments of b give rise to a junction of type (resp. ) in its bottom-right corner, then
shift the bottom (resp. right) delimiting segment of b upwards (resp. leftwards) pulling all
the internal segments attached to it until the boundary. Figure 1.17 shows an example of
the block deletion operation.

b

Figure 1.17: Block deletion from the top-left corner.

Now, using the notion of block deletion, we define a mapping φ from mosaic floorplans
to Baxter permutations. First, note that the block deletion defined for the top-left corner
of F , can be performed symmetrically in any other corner of F .

The steps to construct φ(F ), given a mosaic floorplan F with n blocks, are rather
simple:

1. label all blocks of F with {1, . . . , n} according to their deletion order from the top-left
corner;
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2. delete the blocks of F from the bottom-left corner and read the permutation φ(F )
of length n obtained recording their labels.

An example of step 1. of the mapping φ is shown in Figure 1.18, thus the permutation
corresponding to it through φ is 2631574. In [1] it is provided the proof that φ(F ) is
a Baxter permutation, for every mosaic floorplan F . Moreover, it is proved that φ is
effectively a bijection.

1

7

4

5

6

3

2

Figure 1.18: Labelling of blocks from the top-left corner.

1.4.4 Generating trees and succession rules

In this section we collect the generating trees known in literature to enumerate Baxter
numbers providing for each of them accurate references.

First, we define an ECO operator ϑB for the family of Baxter permutations. Analo-
gously to 132-avoiding permutations, the definition of ϑB strictly depends on the charac-
terisation of the active sites of Baxter permutations. The fact that they are related to
LTR and RTL maxima was first found by S. Gire in her thesis [87] and allows to state the
following.

Definition 1.4.7. For n > 0, if π is a Baxter permutation of length n, then ϑB(π) is the
set of Baxter permutations obtained from π by inserting the point n+ 1

• either immediately before a LTR maximum of π;

• or immediately after a RTL maximum of π.

Figure 1.19 shows the set of permutations obtained by performing ϑB on a permutation
π ∈ AV6(2 41 3, 3 14 2) - as usual diamonds and crosses denote active and non-active sites
in the graphical representation of π.

We briefly supply the proof that ϑB is in fact an ECO operator. First, by removing n
from a Baxter permutation of length n > 0 we still obtain a Baxter permutation of length
n − 1, since no occurrences of 2 41 3 and 3 14 2 can be generated. Then, let π be a non-
empty Baxter permutation of length n. Let `1 < . . . < `h = n be the LTR maxima of π
and let r1 < . . . < rk = n be its RTL maxima. Because the Baxter forbidden patterns are
one reverse of the other, the situation is symmetric with respect to n, and we can consider
only insertions of n+ 1 on the left of n - the situation on the right is symmetric.
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Figure 1.19: The set of Baxter permutations obtained from π = 514623 by means of ϑB.

Suppose n+ 1 is inserted between two LTR maxima `i and `i+1 not immediately before
`i+1. Then, let πs be the point immediately after n+1. According to the definition of LTR
maximum, an occurrence of 2 41 3 has been generated by `i (n+ 1)πs `i+1.

Conversely, suppose n+ 1 is inserted immediately before `i+1. Since π contains neither
2 41 3 nor 3 14 2, the insertion of n + 1 can give rise to an occurrence of the forbidden
patterns only if it plays the role of 4. First, suppose that n + 1 plays the role of 4 in an
occurrence of 2 41 3. The point immediately after n+ 1 is `i+1, which is a LTR maximum,
and by definition of LTR maximum, `i+1 cannot play the role of 1 in 2 41 3. Therefore,
suppose that n + 1 plays the role of 4 in an occurrence of 3 14 2. Let πs be the point
immediately before n + 1. Since they give rise to an occurrence of 3 14 2, there must be
two points πa and πb, with a < s and b > s, such that πs < πb < πa. In addition, it must
hold that πa < `i+1, since the point πa is on the left of `i+1. The point πb is on the right
of `i+1, since we assume n + 1 is inserted immediately before `i+1. Then, it follows that
πaπs`i+1πb forms an occurrence of 3 14 2 in π, which is a contradiction.

Figure 1.20 depicts the first levels of the generating tree associated with ϑB.

2 1 3

1 3 4 2

3 4 1 2

3 2 1 4

3 2 4 1

3 4 2 1

4 3 2 1

2 3 1 4

2 3 4 1

2 4 3 1

4 2 3 1

2 3 1

1 2 3 4

1 2 4 3

1 4 2 3

4 1 2 3

1 3 2 4

1 4 3 2

4 1 3 2

3 1 2 4

4 3 1 2

1 2 33 1 2 1 3 2 

2 1 3 4

2 1 4 3

4 2 1 3

1

2 1 1 2

3 2 1

Figure 1.20: The first levels of the decorated generating tree corresponding to ϑB.

As Definition 1.4.7 illustrates, the growth of Baxter permutations is controlled by the
number of LTR maxima and RTL maxima. Therefore, we assign to each Baxter permuta-
tion π of length n ≥ 1 a label (h, k), where h denotes the number of its LTR maxima and
k the number of its RTL maxima. In Figure 1.21, we substitute the objects of Figure 1.20
for their labels - the minimum length permutation has indeed label (1, 1). The generating
tree of Baxter permutations decorated with the labels (h, k) in place of permutations is
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denoted by TBax.

(1,1)

(4,1)

(3,2)

(2,2)

(1,2)

(3,1)

(3,2)

(2,3)

(1,3)

(2,1)

(2,2)

(1,3)

(3,1)(2,2)(1,2)

(3,1)

(2,2)

(1,2)

(3,1)

(3,2)

(2,3)

(1,3)

(2,1)

(2,2)

(2,3)

(1,4)

(1,3) (2,1)(2,2)

(2,1)(1,2)

Figure 1.21: The first levels of the generating tree TBax associated with ϑB decorated with
labels (h, k), where h (resp. k) is the number of LTR (resp. RTL) maxima of Baxter
permutations.

The set of permutations ϑB(π) has cardinality exactly h + k. In other words, π has
precisely h+k children in the decorated generating tree corresponding to ϑB. Moreover, by
adding a maximum element in an active site of π, the positions of LTR and RTL maxima
change according to the position of the new maximum. Precisely, if n + 1 is added just
before the ith LTR maximum of π, with 1 ≤ i ≤ h, the permutation produced has i LTR
maxima and k + 1 RTL maxima, and symmetrically, if n + 1 is added just after the jth
RTL maximum of π, with 1 ≤ j ≤ k, the permutation produced has h + 1 LTR maxima
and j RTL maxima. This observation produced in [87] and reported in [32], allows to write
the growth of Baxter permutations in form of a succession rule.

Proposition 1.4.8 ([32], Lemma 2). Baxter permutations can be generated by

ΩBax =


(1, 1)

(h, k)  (1, k + 1), (2, k + 1), . . . , (h, k + 1),
(h+ 1, 1), (h+ 1, 2), . . . , (h+ 1, k).

The rule ΩBax has an intrinsic symmetry that is reflected by the majority of the known
Baxter families - for instance, Baxter permutations [87], triples of NILPs [71], mosaic
floorplans [148].

Remark 1.4.9. One should stress that Definition 1.3.13 of the operator ϑA, which provides
a growth for the permutation class AV (132), performs asymmetrically what the operator
ϑB does. Namely, ϑA inserts a maximum to the right of any RTL maximum, but not to
the left of a LTR maximum apart from the first one. In other words, one can notice that
the growth provided above for Baxter permutations is a symmetric version of the growth of
132-avoiding permutations.

This remark that ϑB is a symmetric version of ϑA extends to their corresponding suc-
cession rules as follows.
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Observation 1.4.10. The succession rule ΩBax can be considered a symmetric version of
the Catalan succession rule ΩCat, and moreover, there are four different ways of restricting
the succession rule ΩBax into the succession rule ΩCat.

Proof. Interpreting Remark 1.4.9 on the corresponding succession rules, we easily obtain a
first restriction of ΩBax to ΩCat. Indeed, by restricting the productions of the label (h, k)
according to ΩBax to labels (h+ 1, i), for 1 ≤ i ≤ k, and to label (1, k+ 1), we retrieve the
production of (k) according to ΩCat.

Furthermore, it is well worth considering also the growth of permutations of AV (312),
as described in the proof of Proposition 1.3.15. In this case, by restricting the productions
of the label (h, k) according to ΩBax to labels (h+1, i), for 1 ≤ i ≤ k, and to label (h, k+1),
we retrieve again the production of (k) according to ΩCat.

Symmetrically, by Remark 1.3.14, a growth for permutations of AV (231), or AV (213),
can be defined according to the positions of their LTR maxima. Both these growths can
be considered as restrictions of the growth performed by ϑB. Indeed, the restriction for
the class AV (231) (resp. AV (213)) corresponds to considering, in the label productions of
(h, k) according to ΩBax, only the labels (i, k + 1), for 1 ≤ i ≤ h, and the label (h + 1, 1)
(resp. (h+ 1, k)). This gives back the production of the label (h) according to ΩCat.

Therefore, not only can ΩBax be considered a symmetric version of ΩCat, but there are
essentially four different ways of restricting the Baxter succession rule ΩBax to the Catalan
succession rule ΩCat.

Moreover, there exist in the literature other succession rules associated with Baxter
numbers. We list them in the following, showing in Figure 1.22 that these succession rules
are effectively different because their corresponding generating trees are not isomorphic.

Proposition 1.4.11 ([41]). Twisted Baxter permutations can be generated by

ΩTBax =


(2, 0)

(r, s)  (2, r + s− 1), (3, r + s− 2), . . . , (r + 1, s),
(r, 0), . . . , (r, s− 1).

In 2015, the authors of [48] presented three different new classes of Baxter objects
that do not share many properties known for Baxter objects (for instance, their intrinsic
symmetry). Although combinatorial bijections link these structures two by two, the result
that they are enumerated by Baxter numbers is exclusively analytical. The succession rule
presented in [48] to generate these new Baxter structures is here denoted by ΩBax2. This
succession rule comes out as a particular case of a general result derived in [47], and its
generating tree differs from TBax starting from the first levels - see Figure 1.21(a),(c).

Proposition 1.4.12 ([48, 47]). The following succession rule, ΩBax2, generates Baxter
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numbers

ΩBax2 =



(0, 0)

(i, j)  (i, i), (i+ 1, j),
(i, j), (i, j + 1), . . . , (i, i− 1), if i > 0,
(i− 1, j), (i− 1, j + 1), . . . , (i− 1, i− 1), if i > 0,
(i, j − 1), (i− 1, j − 1), if i > 0 and j > 0.

The last succession rule for Baxter numbers is extremely recent: it was derived in [97]
and, as Figure 1.22(d) confirms, it is not equivalent to any of the previous succession rules.

Proposition 1.4.13 ([97], Lemma 4.3). The following succession rule, ΩBax3, generates
Baxter numbers

ΩBax3 =


(1, 1)

(p, q)  (1, q + 1), (2, q + 1), . . . , (p− 1, q + 1), if p > 1,
(1, q + 1),
(p+ q, 1), (p+ q − 1, 2), . . . , (p+ 1, q).

 (c)

 (b) (a)

 (d)

Figure 1.22: The first four levels of the Baxter generating trees: (a) corresponding to ΩBax;
(b) corresponding to ΩTBax; (c) associated with ΩBax2; (d) associated with ΩBax3.

1.4.5 Baxter generating function: the obstinate variant of the
kernel method

Analogously to Section 1.3.6 for ΩCat, we can readily translate the succession rule ΩBax

associated with Baxter numbers into a functional equation whose solution is their gener-
ating function. The main difference with respect to Section 1.3.6 is that the labels of ΩBax

are arrays of length two, and only one additional variable is not sufficient to keep track
of the label production of ΩBax. In D. Zeilberger’s terminology [151], the succession rule
ΩBax yields a linear equation with two catalytic variables y and z. Therefore, we are going
to show a functional equation involving a trivariate function GBax(x; y, z) and a number
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of its specializations (i.e. functions that do not depend on y and z simultaneously). This
functional equation has first been derived by M. Bousquet-Mélou in [32], exactly starting
from the rule ΩBax.

For h, k ≥ 1, let Gh,k(x) ≡ Gh,k denote the size generating function of non-empty
Baxter permutations of label (h, k).

Proposition 1.4.14 (Corollary 3, [32]). The generating function GBax(x; y, z) ≡ GBax(y, z)
=
∑

h,k≥1Gh,k y
hzk satisfies the following functional equation

GBax(y, z) = xyz +
xyz

1− y
(GBax(1, z)−GBax(y, z)) +

xyz

1− z
(GBax(y, 1)−GBax(y, z)) .

(1.16)

Proof. By using the productions of ΩBax, the generating function of non-empty Baxter
permutations counted by their length (variable x) and labels (variables y and z) can be
rewritten as follows,

GBax(y, z) = xyz + x
∑
h,k≥1

Gh,k

(
(y + y2 + · · ·+ yh)zk+1 + (z + z2 + · · ·+ zk)yh+1

)
= xyz + xyz

∑
h,k≥1

Gh,k
1− yh

1− y
zk + xyz

∑
h,k≥1

Gh,k
1− zk

1− z
yh

= xyz +
xyz

1− y
(GBax(1, z)−GBax(y, z)) +

xyz

1− z
(GBax(y, 1)−GBax(y, z)) .

It has recently been shown that the generating function solution of similar functional
equations with two catalytic variables could be algebraic, or D-finite, or even non D-
finite [33, 37, 112], in contrast with the case of only one catalytic variable which yields
always an algebraic solution (Section 1.3.6, and 1.3.7).

In order to solve Equation (1.16), we apply the same methodology as [32] that is known
with the name of obstinate kernel method. According to [32], this method was inspired by
Section 2.4 of the book of G. Fayolle, R. Iasnogorodski and V. Malyshev [74] and, among
its applications, it was largely used to count some families of walks in the quarter plane [33,
37].

The name is motivated as it is a variant of the usual kernel method: indeed, as previ-
ously seen, the kernel method allows to eliminate from the original equation the catalytic
variable by annihilating its kernel. The obstinate variant of the kernel method instead,
by means of pairs of substitutions that annihilate the kernel, allows to write a system of
equations, which relate functions involving only one catalytic variable.

More precisely, the steps to solve Equation (1.16) by means of the obstinate variant of
kernel method are listed below:

• Write Equation (1.16) into its kernel form by collecting the terms in GBax(y, z),(
1 +

xyz

1− y
+

xyz

1− z

)
GBax(y, z) = xyz +

xyz

1− y
GBax(1, z) +

xyz

1− z
GBax(y, 1) .
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Note that Equation (1.16) is symmetric in y and z, and in particular it holds that
GBax(y, 1) = GBax(1, z).

• For convenience, set y = 1+a and z = 1+b so that the kernel form of Equation (1.16)
becomes

ab− x(1 + a)(1 + b)(a+ b)

x(1 + a)(1 + b)
GBax(1 + a, 1 + b) = ab−R(b)−R(a), (1.17)

where R(a) = aGBax(1 + a, 1). The coefficient of GBax(1 + a, 1 + b) (more precisely,
only its numerator) is said kernel and denoted with KBax(a, b).

• As a polynomial in b, KBax(a, b) = −x(1 + a)b2 − (x(1 + a)2 − a)b − xa(1 + a) has
two roots β0 and β1 such that β0β1 = a,

β0(a) = (1 + a)x+ (1 + a)2

(
1 +

1

a

)
x2 +O(x3), and,

β1(a) =
a

1 + a
x−1 − (1 + a)− (1 + a)x+O(x2).

According to the usual kernel method only β0 is a legal substitution for b in Equa-
tion (1.17), since it annihilates the kernel KBax(a, b) and the term GBax(1+a, 1+β0)
is a well-defined power series in x.

Nevertheless, note that by substituting b for β0 in Equation (1.17), yields

R(a) +R(β0) = aβ0,

which is unsatisfactory to determine the unknown R(a).

• Apply the obstinate variant of the kernel method by seeking the pairs (A,B) 6= (0, 0)
of Laurent series in x such that KBax(A,B) = 0.

In this particular case, the following two involutions

Φ : (a, b)→
(
b

a
, b

)
and Ψ : (a, b)→

(
a ,

a

b

)
,

by acting on the pair (a, β0) give rise to a group of order 6 - see Figure 1.23.

(a, β0)

Φ (āβ0, β0)
Ψ

(āβ0, ā) Φ

(āβ1, ā)
Ψ

(a, β1)
Φ

(āβ1, β1)
Ψ

Figure 1.23: The orbit of (a, β0) under the action of Φ and Ψ, with ā = 1/a.
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All the 6 pairs of Laurent power series in Figure 1.23 cancel the kernel KBax(a, b). Yet
only those not involving β1 can be legally substituted for (a, b) in Equation (1.17).

• Substituting (a, β0), (āβ0, β0), and (āβ0, ā) for (a, b) in the main equation (1.17), we
obtain a system of three equations for the unknown function R(a),

R(a) +R(β0) = aβ0

R(āβ0) +R(β0) = āβ2
0

R(āβ0) +R(ā) = ā2β0.

By combining these three equations, it holds that

R(a) +R(ā) = ā2β0(a3 − aβ0 + 1) .

• Finally, R(a) = aGBax(1 + a, 1) is a formal power series in x with polynomial coeffi-
cients in a whose lowest power of a is 1, whereas R(ā) is a formal power series in x
with polynomial coefficients in ā whose highest power of a is −1.

Thus, it must hold that

aGBax(1 + a, 1) =
[
ā2β0(a3 − aβ0 + 1)

]>
, (1.18)

where by F> we denote the positive part of F in a. More precisely, if F is a
formal power series in x whose coefficients are Laurent polynomials in a, F =∑

n≥0,i∈Z f(n, i)aixn, then

F> =
∑
n≥0

xn
∑
i>0

f(n, i) ai.

Equation (1.18) provides effectively an expression for the bivariate generating function of
Baxter numbers. The generating function GBax(1 + a, 1) is known to be D-finite [32]:
Equation (1.18) shows that GBax(1 + a, 1) is D-finite being the positive part in a of an
algebraic series - see for further details [32, Section 1.4].

In addition, in [32] it is proved the following result.

Corollary 1.4.15 ([32], Corollary 5). The generating function GBax(1 + a, 1) can be ex-
pressed as

GBax(1 + a, 1) =
∑
n≥1

xn
n∑
i=0

ai(i+ 1)

n(n+ 1)2(n+ 2)

n∑
k=i

(2k + ni)

(
n+ 2

k − i

)(
n+ 1

k

)(
n+ 1

k + 1

)
.

Extracting the coefficients of a0 from GBax(x; 1 + a, 1) yields a proof of the explicit
expression of Baxter numbers of Equation (1.13).

Moreover, since the specializations of a D-finite generating function are D-finite, the
generating function of Baxter numbers GBax(x) ≡ GBax(1, 1) results to be D-finite.
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1.4.6 Asymptotics

Another remarkable fact pointed out by F. R. K. Chung et al. in [53] is the behaviour of
Baxter numbers as n goes to infinity, whose estimate is attributed to A. M. Odlyzko.

Theorem 1.4.16 (Asymptotic form, [53]). Let Bn be the nth Baxter number. Then, as n
goes to infinity,

Bn ∼
32 · 8n

π
√

3 · n4
.

Thus, the growth rate of Baxter numbers is 8, and because of the factor n−4 we can
conclude that the generating function of Baxter numbers GBax(x) =

∑
n≥1Bnx

n is D-finite,
but not algebraic - see Theorem 1.2.8.
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Chapter 2

Slicings of parallelogram polyominoes

Plan of the chapter

The objective of this chapter is to describe and explain the inclusions “Catalan in Schröder
in Baxter”. To this purpose, we introduce in Section 2.1 a new family of combinatorial
objects, called Baxter slicings of parallelogram polyominoes, whose first appearance was
in [G1]. These objects can be generated according to rule ΩBax and they have a natural
subfamily enumerated by Catalan numbers, which is described in Section 2.1.3. In addition,
in Section 2.1.4 we introduce the family of Baxter paths, that can be regarded as an
alternative way of representing Baxter slicings by means of labelled Dyck paths. To our
knowledge, it constitutes a first combinatorial interpretation of Baxter numbers as single
paths, which we believe was missing so far in the literature on Baxter numbers. In the end
of Section 2.1 we point out the problem of reconciling the Catalan and Baxter numbers
with the Schröder numbers [132, sequence A006318].

Section 2.2 is intended to collect results about the Schröder number sequence; such as
known combinatorial structures and their associated succession rules. Among the Schröder
families, we present separately in Section 2.3.1 a completely new interpretation of these
numbers, which has been introduced in [G3]. All these known and new combinatorial
interpretations of Schröder numbers are to show that the Schröder structures are either
generalisations of Catalan structures or restrictions of Baxter structures, without being
both at the same time. The only exceptions are given by some families of pattern-avoiding
permutations that display a discrete continuity from Catalan to Baxter, yet not at the
abstract level of succession rules.

The main goal of this chapter is then accomplished in Section 2.4 by defining the
family of Schröder slicings of parallelogram polyominoes. In fact, Section 2.4 shows that
a continuum from Catalan to Baxter via Schröder can be visible at the abstract level of
generating trees, and consequently succession rules. The result first established in [G1],
and then developed in [G2], consists in providing a new succession rule, associated with a
growth for Schröder slicings, that interpolates between the two known succession rules for
Catalan and Baxter numbers.
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By means of this general tool we can exhibit in Section 2.5 Schröder subfamilies of
known Baxter structures among those listed in the previous Section 1.4.2: namely a
Schröder subset of NILPs, and a Schröder subset of Baxter permutations, and a Schröder
subset of mosaic floorplans.

Finally, in the last section we define two subfamilies of Baxter slicings that have been
introduced in [G1]: the family of m-skinny slicings and the one of m-row-restricted slicings,
m ∈ N being a parameter. All these subfamilies are enumerated by intermediate number
sequences between Catalan and Baxter numbers motivating thus their study. By using
functional equations and the kernel method, we manage in [G2] to compute the generating
functions for some special cases, and to prove it is algebraic. On the other hand, for general
m, we present an underpinned conjecture about their algebraic nature.

2.1 Baxter slicings of parallelogram polyominoes

In this section we define a new family of Baxter objects that generalise parallelogram poly-
ominoes, whose characterisation is of interest for our purpose. Indeed, with respect to the
growth of Section 1.3.4 page 29 for parallelogram polyominoes, we can think of generating
parallelogram polyominoes symmetrically, by allowing at the same time insertions of a
rightmost column of any possible height, or of a topmost row of any possible width. Of
course, this process generates parallelogram polyominoes ambiguously. Yet we can elimi-
nate any ambiguity by recording the “building history” of the polyomino, that is, which
columns and rows are added during the growth process.

This observation motivates the definition of new combinatorial objects, that generalise
parallelogram polyominoes, and grow unambiguously according to rule ΩBax - see Sec-
tion 2.1.1. The objects defined result to be a reinterpretation of the well-known Baxter
family of triples of NILPs, as Section 2.1.2 shows, revealing nice combinatorial properties
for these objects.

In Section 2.1.3 we formally define the restriction of Baxter slicings to a subfamily
enumerated by Catalan numbers. This restriction is obtained by breaking the symmetry
of Baxter slicings, and returning to the usual growth for parallelogram polyominoes.

Moreover, by means of the definition of Catalan slicings in Section 2.1.4 will be pre-
sented a new combinatorial interpretation of Baxter numbers: Baxter paths. These new
objects are of interest because being a generalisation of Dyck paths they form a new oc-
currence of Baxter numbers in terms of single lattice paths.

2.1.1 Definition and growth of Baxter slicings

The objects we are going to define are parallelogram polyominoes whose interior is divided
into blocks, of width or height 1. We call these objects Baxter slicings of parallelogram
polyominoes, or Baxter slicings for short and denote their family by BS - see an example
in Figure 2.1(a).
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Definition 2.1.1. A Baxter slicing of size n is a parallelogram polyomino S of semi-
perimeter n+1 whose interior is recursively divided into n blocks as follows: one block is the
topmost row (resp. rightmost column) of S – such blocks are called horizontal (resp. verti-
cal) blocks – and the other n−1 blocks form a Baxter slicing of the parallelogram polyomino
of semi-perimeter n obtained by deletion of the topmost row (resp. rightmost column) of
S.

(a) (b)

Figure 2.1: (a) A Baxter slicing of size 11; (b) the way for determining the triple of NILPs
associated with it.

Theorem 2.1.2. Baxter slicings can be generated by rule ΩBax and, thus, are enumerated
by Baxter numbers.

Proof. In order to prove that Baxter slicings grow according to rule ΩBax, we define an
ECO operator ϑBS : BSn → BSn+1, where BSn is the family of Baxter slicings of size n.

Let S be a parallelogram polyomino with topmost row of width h and rightmost column
of height k. Then, the operator ϑBS applied to a Baxter slicing of shape S produces h+ k
Baxter slicings obtained either by adding a new horizontal block in a new topmost row, of
any width from 1 to h, or by adding a new vertical block in a new rightmost column, of
any height from 1 to k. The set of Baxter slicings produced through ϑBS entirely depends
on the two parameters: width of the topmost row and height of the rightmost column.

Thus, we label any Baxter slicing with (h, k), where h is the width of its topmost row
and k is the height of its rightmost column. Baxter slicings produced by applying ϑBS have
labels (i, k + 1), for any 1 ≤ i ≤ h, and (h + 1, j), for any 1 ≤ j ≤ k. As a consequence,
Baxter slicings are enumerated by Baxter numbers.

The set of Baxter slicings produced through the application of ϑBS to the Baxter slicing
in Figure 2.1(a) is depicted in Figure 2.2, where for each Baxter slicing the corresponding
label is indicated.

2.1.2 Bijection with triples of NILPs

Among all the Baxter structures presented in Section 1.4.2, one can be seen to be in
bijection with Baxter slicings in a very simple way: the triples of NILPs - see Figure 2.1(b).
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(4,3)(4,2)(4,1)

(3,4)(2,4)(1,4)(3,3)

Figure 2.2: The growth of Baxter slicings following rule ΩBax.

Consider a Baxter slicing of a parallelogram polyomino S, whose bottom-left corner is
assumed to be placed at coordinates (0, 0). Define the paths

• P , corresponding to the upper border of S, except the first and last steps,

• R, corresponding to the lower border of S, except the first and last steps,

• Q, going from (1, 1) to the top-right corner of S, following the lower border of every
horizontal block of the slicing, and the left border of every vertical block.

Associate the triple (P,Q,R) to the original Baxter slicing - in Figure 2.1(b) P is drawn
in red, and Q in green, and R in blue.

Theorem 2.1.3. The above construction provides a size-preserving bijection between Bax-
ter slicings and triples of NILPs.

Proof. Consider a Baxter slicing of a parallelogram polyomino S, and define P,Q and R
as above. Shifting by one the path P (resp. R) upwards (resp. rightwards) so that the
starting point is at (0, 2) (resp. (2, 0)), we want to prove (P,Q,R) is a triple of NILPs of
size n. Note that by construction each step of the path Q is inside or on the border of
the polyomino S; this immediately ensures the non-intersecting property. Moreover, by
construction all paths P,Q and R have n− 1 steps, if n+ 1 denotes the semi-perimeter of
S. Finally, we easily check that P,Q and R have the same number of east and north steps
as follows. Since the path Q separates the horizontal blocks, which remain above it, from
the vertical ones, which remain below it, each step of this path is either the right edge of
a horizontal block or the upper edge of a vertical block. Then, the paths P (resp. R) and
Q have the same number of north (resp. east) steps, as each north (resp. east) step of the
path P (resp. R) is the left (resp. lower) edge of a horizontal (resp. vertical) block.
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To prove that this construction is a bijection, we describe its inverse. Any triple
(P,Q,R) of NILPs corresponds to a unique Baxter slicing of a parallelogram polyomino
S, whose contour is defined by P and R and whose block division is obtained by Q. More
precisely, we obtain the contour of S by adding an initial and a final step to both the paths
P and R and drawing them starting at (0, 0). Let the starting point of the path Q be in
(1, 1). Then, the blocks inside S are drawn according to the steps of Q: for every east
(resp. north) step Qi of Q, 1 ≤ i ≤ n−1, draw a vertical (resp. horizontal) block whose top
(resp. right) edge is Qi and that extends downwards (resp. leftwards) until the border of S;
and finally, add the initial block consisting of one cell extending from (0, 0) to (1, 1).

Up to the simple bijective correspondence described in Theorem 2.1.3, our Theo-
rem 2.1.2 can also be seen as a description of the growth of triples of NILPs according
to succession rule ΩBax, which was alternatively described in [27]. Moreover, it follows
directly from the proof of Theorem 2.1.3 the result below.

Corollary 2.1.4. Baxter slicings of size n having k horizontal blocks and ` vertical blocks
are counted by θk,` of Equation (1.14).

2.1.3 Definition and growth of Catalan slicings

We start defining Catalan slicings recursively as it has been done for Baxter slicing. It
follows from such a definition that every Catalan slicing is indeed a Baxter slicing according
to Definition 2.1.1.

Definition 2.1.5. A Catalan slicing of size n is a parallelogram polyomino S of semi-
perimeter n+1 whose interior is recursively divided into n blocks, as follows: if the topmost
row of S contains just one cell, then this cell constitutes a horizontal block, and the other
n − 1 blocks form a Catalan slicing of the parallelogram polyomino of semi-perimeter n
obtained by deleting this cell in the topmost row of S; otherwise, the rightmost column
of S constitutes a vertical block, and the other n− 1 blocks form a Catalan slicing of the
parallelogram polyomino of semi-perimeter n obtained by deleting the rightmost column
of S.

Figure 2.3: A Catalan slicing of size 11.

As expected, because of their deterministic definition, we find exactly one Catalan
slicing for every parallelogram polyomino S. More precisely, there exists only one Baxter
slicing of shape S whose horizontal blocks all have width 1 and we call it the Catalan slicing
of shape S. For instance, the Catalan slicing corresponding to the shape S of the Baxter
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slicing of Figure 2.1(a) is depicted in Figure 2.3. Therefore, the following proposition
trivially holds.

Proposition 2.1.6. Catalan slicings are enumerated by Catalan numbers.

In terms of generating trees and succession rules the above proposition can be also
proved as follows. The growth described for Baxter slicings in Proposition 2.1.9 and de-
picted in Figure 2.2 is evident to generalise the one described for parallelogram polyominoes
that is depicted in Figure 1.9 (page 29). More precisely, the growth for parallelogram poly-
ominoes of Definition 1.3.10 (page 29) is equivalent to the growth of Catalan slicings, which
is obtained by restricting the productions of (h, k) according to ΩBax to the labels (h+1, i),
for 1 ≤ i ≤ k, and to label (1, k + 1). As pointed out by Observation 1.4.10, on page 46,
this reads as: the generating tree TBax of Baxter numbers (associated with the growth of
Baxter slicings) has a subtree isomorphic to the generating tree TCat (associated with the
growth of Catalan slicings). Figure 2.16 on page 78 will make visible this embedding.

2.1.4 Definition of Baxter paths, and their bijection with Baxter
slicings

Relying on these new notions of Baxter slicing and Catalan slicing, we define here a gen-
eralisation of Dyck paths obtained by assigning a label to some up steps, called free.

Definition 2.1.7. A free up step in a Dyck path P is any up step which does not imme-
diately follow a down step, i.e., any step U which does not appear in a DU factor. If U is
a free up step, we usually write it Ū .

Definition 2.1.8. A Baxter path of semi-length n is a Dyck path P of length 2n in which
every free up step Ū is labelled. The label assignment of any Ū is defined recursively from
left to right, as follows:

- the first free up step is labelled 1;

- any Ū , apart from the first one, is labelled with a positive integer value in the range [1, h],
where h is the rightmost label assigned to a step Ū∗, augmented by the number of
DU factors of P occurring between Ū∗ and Ū .

It follows that all the up steps of the initial sequence are free and have label 1, and that
the sequence of labels of any maximal sequence of consecutive up steps is non-increasing.
We denote by Bn the set of Baxter paths of semi-length n. Figure 2.4 depicts on the right
a Baxter path of semi-length 9. Note that Dyck paths are retrieved as that subfamily of
Baxter paths in which all the free up steps have label 1.

Proposition 2.1.9. Baxter paths can be generated by the succession rule ΩBax.
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Figure 2.4: A Dyck path of semi-length 9 whose free up step are labelled in two different
ways: the labelling on the left does not satisfy Definition 2.1.8, while the path on the right
is a Baxter path of semi-length 9.

Proof. In order to prove the above statement, we define a growth for the family of Baxter
paths very similar to the one provided for Dyck paths. Indeed, given a Baxter path B, we
insert a peak (i.e. a UD factor) with the U step possibly labelled in any point of B’s last
descent (i.e. final sequence of D steps) - see Figure 2.5. First, note that the path obtained
removing the last UD factor from a Baxter path of Bn+1 belongs to Bn.

Then, assign a label (h, k) to each Baxter path B ∈ Bn, where h is the label e assigned
to the rightmost free up step Ū of B plus the number of DU factors that follow Ū and k
is the number of D steps in the last descent of B. The Baxter path UD, in which U is
labelled with 1, has label (1, 1). Then, to any Baxter path B ∈ Bn of label (h, k) we apply
the following operations:

a) We add a peak on top of the last descent of B (i.e. just after the rightmost up step of
B). Since the up step U of the added peak is a free up step, it must receive a label i
in the range [1, h]. Then, for each value i in [1, h], we label the added up step with i
and the Baxter path obtained is of label (i, k + 1).

b) We add a peak immediately after any down step of the last descent of B. The up step
U of the added peak is not free, and hence carries no label. More precisely, denoting
B = wUDk (with this U possibly labelled), all the Baxter paths produced from B
are wUDk+1−jUDj, for any 1 ≤ j ≤ k, and their rightmost free up step is the same
as B. Thus, they have labels (h+ 1, j), for 1 ≤ j ≤ k, because of the number of DU
factors after the rightmost label has been increased by one.
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1

2
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(3,2)

(4,2)(4,1)

(1,3) (2,3) (3,3)

321
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2

Figure 2.5: The growth of a Baxter path of label (3, 2).

Baxter paths and Baxter slicings are in a size-preserving bijection since they both grow
according to ΩBax. Moreover, this recursive bijection can be directly defined on the objects
themselves in a simple way, and its restriction to the family of Baxter paths with all free
up steps labelled with 1 yields the family of Catalan slicings as image.
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Given a Baxter path B in Bn, we denote by P the Dyck path of semi-length n underlying
B. Then,

1) construct the parallelogram polyomino S ′ corresponding to P via the bijection β be-
tween Dyck paths and parallelogram polyominoes described in Section 1.3.3 on
page 24;

2) construct the unique Catalan slicing of shape S ′ and assign a label to each of its
horizontal blocks, included the initial unit square block. These labels are precisely
the labels of the free up steps of B read left-to-right, which are assigned to horizontal
blocks bottom-to-top, starting from the unit square block that indeed takes the label
1 of the first free up step of B;

3) starting from the bottom, replace any labelled horizontal block with a horizontal block
of width equal to its label. Thus, the initial unit square block labelled with 1 is
replaced by a unit square block. And, after replacing the topmost labelled horizontal
block, we obtain a shape S subdivided in horizontal and vertical blocks.

Note that the shape S is likely to be different from S ′, but they coincide if all the free
up step of the Baxter path B are labelled with 1.

1

3

3

3

2

3

1

3

3

3

2

3

Figure 2.6: The bijection between Baxter paths and Baxter slicings.

Proposition 2.1.10. The above construction is a bijection between Baxter paths and Bax-
ter slicings, whose restriction to Baxter paths with all free up steps labelled with 1 yields a
bijection with Catalan slicings.

Proof. In order to prove this statement, we first show that the labelling process at step 2)
is a proper labelling, i.e. the free up steps of P are as many as the horizontal blocks of
the Catalan slicing of shape S ′. Then, we show that the shape S obtained at the end of
step 3) is a parallelogram polyomino, and thus the object obtained is a Baxter slicing of
size n. Finally, we prove that the mapping described above has an inverse, and thus it is
a bijection.

First, recall that according to the definition of the mapping β : D → PP on page 24,
any UD factor of a Dyck path P ∈ Dn is associated with a column of the corresponding
S ′ ∈ PPn+1 determining its height, and any DU factor with a pair of columns determining
their edge connection. It follows from it that there is a link between the up steps of P and
the steps of the path Q′, where (Q′, L′) is the pair of paths defining S ′. More precisely, the



2.1. Baxter slicings of parallelogram polyominoes 61

path Q′ can be obtained directly from P by coding left-to-right any free (resp. non-free)
up step of P with a north (resp. east) step of Q′, and by adding a further final east step.

Since any north step of Q′ is the left border of a horizontal block, this encoding estab-
lishes a correspondence between the free up steps of P and the horizontal blocks of the
unique Catalan slicing of shape S ′. Therefore, the labelling process described at step 2)
makes sense.

Now, according to step 3), replacing all the labelled horizontal blocks leads to modify
the upper path Q′ defining S ′. We can argue that such a modified path and L′ still define a
parallelogram polyomino. In fact, by Definition 2.1.8 the labels of free up steps can increase
from left to right if and only if there is between them a sufficient number of DU factors:
precisely, the first free up step occurring on the right of any free up step Ū with label e can
be labelled at most e+x, being x the number of DU factors between them. This property
is translated via the bijection β in a condition on the steps of Q′, and thus on the labels of
the corresponding horizontal blocks. Let ū1 be a north step of Q′ (horizontal block with
label `) and ū2 be the north step (horizontal block with label e) that first follows ū1 in Q′.
Then, the value ` is at most e+ x, being x the number of east steps between ū1 and ū2.

Then, replacing the horizontal blocks of the Catalan slicings with horizontal blocks
of width according to their labelling corresponds to modify the path Q′ by changing the
positions of its north steps with respect to the positions of its east steps. So, let Q be the
path obtained modifying Q′ as above. The number of the north and east steps of Q is the
same as Q′ as well as its starting and ending point. The pair of paths (Q,L′) thus defines
uniquely a parallelogram polyomino of semi-perimeter n + 1, which we denote by S and
forms the shape of the Baxter slicing image of B ∈ Bn.

Finally, we prove that the mapping described above, which sends a Baxter path into a
Baxter slicing, is a bijection by showing its inverse mapping.

Given a Baxter slicing of size n and shape S, we replace top-to-bottom any horizontal
block u (included the bottommost unit square block) with a unit square block labelled with
the width of u. The shape obtained by replacing all the horizontal blocks is denoted by
S ′. By construction, S ′ is a parallelogram polyomino of semi-perimeter n+ 1 and (Q′, L′)
is the pair of paths defining it. Via the inverse mapping β−1, S ′ corresponds to a Dyck
path P ∈ Dn. In particular, the steps of Q′ read from bottom to top describe the sequence
of free and non-free up steps of P from left to right (as above). Then, we use the block
labelling order to label from left to right all the free up steps of P .

We can prove that B ∈ Bn, namely the above labelling satisfies Definition 2.1.8. The
first free up step of B is labelled with 1 as the bottommost unit square block. Then, given
a free up step Ū2 of B with label e ≥ 1, it corresponds to a horizontal block ū2 labelled e.
It holds that the label ` of the horizontal block ū1 lying in the row immediately below ū2

coincides with the label of the first free up step Ū1 of B on the left of Ū2. Then, the two
labels corresponding to the horizontal blocks ū1 and ū2 can be either e ≤ ` or ` < e. The
relation ` < e can hold as long as between ū1 and ū2 there is a number of columns x at
least e− `. Thus, it follows that e ∈ [1, `+ x]. This concludes the proof, since x according
to β−1 is the number of DU factors between Ū1 and Ū2.
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2.1.5 Baxter slicings of a given shape

One of the most basic enumerative questions that one may ask about Baxter slicings is to
determine the number of Baxter slicing whose shape is a given parallelogram polyomino
S. In the light of the bijection between Baxter slicings and triples of NILPs, this question
can be translated in terms of counting triples of NILPs having the same “external” paths
(i.e. P and R, for any triple (P,Q,R)), which are the two paths defining the shape S of
the corresponding Baxter slicing. This question is not the main focus of this chapter, so
we just give the extremal cases as observations.

Observation 2.1.11. Let S be the parallelogram polyomino of rectangular shape, whose
bounding rectangle has dimensions k × `. The number of Baxter slicings of S is

(
k+`−2
`−1

)
.

Proof. This follows from Theorem 2.1.3, since the number of Baxter slicings of S coincides
with the number of paths from (1, 1) to (k, `) using north and east steps.

Observation 2.1.12. Let S be a snake, that is, a parallelogram polyomino not containing
four cells placed as . There is only one Baxter slicing of S.

Proof. We prove that if S is a snake of size n, then its interior is unambiguously divided
in n blocks, each consisting of a single cell. Since S does not contain , then the topmost
cell in the rightmost column is the only cell in its row or the only cell in its column. In
the former (resp. latter) case, it forms a horizontal (resp. vertical) block. Removing this
block from S, the remaining cells form a snake of size n − 1, and the result follows by
induction.

2.1.6 A discrete continuity

The Catalan number sequence is point-wise smaller than the Baxter number sequence;
namely, Cn ≤ Bn, for any n > 0. These point-wise comparisons can be extended to include
Schröder numbers [132, sequence A006318], which will be treated in the next sections.
The Schröder number sequence is point-wise larger than the Catalan number sequence and
point-wise smaller than the Baxter number sequence.

The inclusions “Catalan in Schröder in Baxter” are obvious on pattern-avoiding per-
mutations: in fact, as Section 2.2.1 shows, Schröder numbers count separable permutations
that are contained in Baxter permutations and contain any permutation class AV (τ), with
τ ∈ {132, 213, 231, 312}. Nevertheless, looking at several other combinatorial objects, it
appears that the permutation example is a little miracle, and that the unclarity of these
inclusions is rather the rule here. Table 2.1 summarises all the Schröder structures that
will be presented in Sections 2.2.1 and 2.3.1 and it compares them both to the Baxter
structures of Section 1.4.2 and to the Catalan structures of Section 1.3.2. As Table 2.1
illustrates, these inclusions remain quite obscure on all the other objects, apart from per-
mutations. Many Baxter families can be immediately seen to contain a Catalan subfamily.
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Number sequence Structures

Baxter (A001181)
Baxter
permutations

?
Triples
of NILPs

Mosaic
floorplans

?

Schröder (A006318)
Separable
permutations

Schröder
paths

?
Slicing
floorplans

Schröder
parking
functions

(Sec. 2.2.1) (Sec. 2.2.1) (Sec. 2.2.1) (Sec. 2.3.1)

Catalan (A000108)
AV (τ), with
τ ∈ {132,
213, 231, 312}

Dyck
paths

Pairs of
NILPs

?
Non-
decreasing
sequences

Table 2.1: Comparison among families of Catalan, Schröder, and Baxter objects.

For instance, the set of triples of NILPs contains all pairs of NILPs as subfamily enumer-
ated by Catalan numbers, but an intermediate Schröder family of NILPs is missing. On
the other hand, consider the family of Schröder parking functions introduced in [G3] and
proved in Section 2.3.1 to be counted by Schröder numbers: it contains as subfamily the set
of non-decreasing sequences, which is counted by Catalan numbers, leaving Baxter aside.

2.2 Schröder numbers

Schröder numbers are arguably a bit less popular compared to Catalan numbers, yet their
history appears to go back to Hipparchus during the second century B.C. according to
R. P. Stanley’s surveys [135, 136]. Their name is due to the mathematician E. Schröder
(1841-1902) for his famous work published in 1870 “Four Combinatorial Problems” (Vier
Kombinatorische Probleme, see p. 66, 213 [135]), in which these numbers first appear.

2.2.1 Formulas and known structures

The first terms of sequence A006318 [132] of (large) Schröder numbers Rn are

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, 5293446, 27297738, . . .

We specify that the Schröder numbers Rn we are interested in are those enumerating
separable permutations and Schröder paths, which are known as “large”. They are opposed
to “little” Schröder numbers Ln (sequence A001003 in [132] counting the ways to insert
parentheses in a string of n+1 symbols), for which it holds Rn = 2Ln, n ≥ 1. This equality
has widely been studied in literature giving insight of Schröder numbers: L. Shapiro and
R. Sulanke first provided a bijective proof in [130], and later E. Deutsch established another
bijective proof of this remarkable relation in [65].



64 Chapter 2. Slicings of parallelogram polyominoes

One of the most concise way to define Schröder numbers Rn, with n > 0, is in terms of
Catalan numbers Cn (see [28]),

Rn+1 =
n∑
k=0

(
2n− k
k

)
Cn−k, for n ≥ 0.

Alternatively, we can show their generating function,

FSch(x) =
∑
n≥1

Rn x
n =

1− x−
√

1− 6x+ x2

2
, (2.1)

which is known to be algebraic and to satisfy the polynomial equation F 2−(1−x)F+x = 0.

Schröder structures have widely been studied and a long list is exhibited by R. P. Stan-
ley [135, Exercise 6.39]. Nevertheless, these numbers have never stopped attracting at-
tention, since they appear in different contexts: certain polyominoes [6, 13, 140], lattice
paths [13, 28, 129], plane trees [13, 80, 89], words [126], as well as pattern-avoiding per-
mutations [87, 103, 129, 144].

We report here a more detailed description of those Schröder structures we will use to
explain the aforementioned inclusion “Catalan in Schröder in Baxter”, which resurfaces as

Cn ≤ Rn ≤ Bn, for all n > 0 .

Separable permutations

Many permutation classes are enumerated by the Schröder numbers. For instance, up to
symmetry, exactly 10 pairs (τ, σ) of patterns of length four are such that the cardinality
of AVn(τ, σ) is the nth Schröder number Rn [103]. Among them, the permutation class
AV (2413, 3142) was studied in [29] and identified with the family of separable permutations,
first defined in D. Avis and M. Newborn’s work on pop-stacks [5].

Definition 2.2.1. A separable permutation is any permutation π that can be built from
the permutation 1 by repeatedly applying two operations, known as direct sum (⊕), and
skew sum (	), which are defined on two smaller permutations τ of length k and σ of length
m by

(τ ⊕ σ)i =

{
τi if 1 ≤ i ≤ k,
σi−k + k if k < i ≤ k +m,

(τ 	 σ)i =

{
τi +m if 1 ≤ i ≤ k,
σi−k if k < i ≤ k +m.

All permutations of length 3 are separable, since they can be easily decomposed as
direct and skew sum of 12 and 1, or 21 and 1. Figure 2.7 depicts the way to construct the
separable permutation π = 312675498 from the permutation 1 by using operations ⊕ and
	.

Note that there are only two permutations of length four, 2143 and 3142, that cannot
be obtained by smaller permutations through the application of ⊕ or 	.
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Figure 2.7: The building process of the separable permutation π = 312675498 by means of
⊕ and 	.

Proposition 2.2.2 ([29]). The family of separable permutations coincides with the permu-
tation class AV (2413, 3142).

Separable permutations were enumerated by using their characterisation in terms of
pattern-avoiding permutations by J. West [144, Lemma 4.1] as well as by L. Shapiro and
A. Stephens, considering a family of permutation matrices equivalent to separable permu-
tations [129].

Moreover, note that Proposition 2.2.2 makes clear that the class of separable permuta-
tions is a subfamily of Baxter permutations of Definition 1.4.2 (page 39) and contains the
permutation class AV (τ), for τ being in {132, 213, 231, 312}, as subfamilies.

Schröder paths

In 1993, J. Bonin, and L. Shapiro, and R. Simion [28] defined and enumerated the following
new family of paths.

Definition 2.2.3. A Schröder path of semi-length n is a path T of length 2n in the
positive quarter plane that uses up steps U = (1, 1), and down steps D = (1,−1), and
double horizontal steps H = (2, 0), starting at the origin and returning to the x-axis.

 last descent

Figure 2.8: A Schröder path of semi-length 10, whose last descent is encircled.

Figure 2.8 shows an example of a Schröder path of semi-length 10. According to [28]
as well as [15], Schröder paths of semi-length n are enumerated by the Schröder number
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Rn+1, for n ≥ 0. In fact, of semi-length zero there exists only one Schröder path (the
empty path), and of semi-length one there are two paths, UD and H. We denote by SP
the family of Schröder paths, and by SPn the family of Schröder paths of semi-length
n. Then, the family D of Dyck paths defined in Definition 1.3.2 on page 22 is trivially a
subfamily of SP : any Schröder path with no H steps is a Dyck path.

Slicings floorplans

Regarding the family of floorplans introduced in Section 1.4.2 about Baxter structures, a
special kind of them are called slicing floorplans because of their definition.

Definition 2.2.4. A slicing floorplan is a particular rectangular partition of a boundary
rectangle, which is obtained by recursively subdividing each rectangle in two smaller rect-
angles either horizontally or vertically. Slicing floorplans are considered up to equivalence
under the action of sliding their internal segments.

(a) (b)

Figure 2.9: (a) A slicing floorplan with 9 internal segments; (b) a slicing floorplan equivalent
to the one in (a).

Figure 2.9 shows two equivalent slicing floorplans. Because of the above definition,
slicing floorplans are actually equivalence classes of floorplans, as mosaic floorplans are.

Moreover, any slicing floorplan is a mosaic floorplan. As stated in [1], slicing floorplans
can be characterised as those mosaic floorplans whose internal segments avoid a “pin-wheel”
structure, namely configurations of type

and .

In [148], slicing floorplans are proved to be enumerated by Schröder numbers accord-
ing to the number of internal segments: the number of slicing floorplans with n internal
segments is Rn+1, for n ≥ 0. A bijective proof of this fact appears also in [1]. Indeed, the
bijection φ described in Section 1.4.3 (page 42) between mosaic floorplans and Baxter per-
mutations can be restricted to the family of slicing floorplans yielding a bijection between
slicing floorplans and separable permutations.
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2.2.2 Generating trees and succession rules

In order to report generating trees known in literature for enumerating Schröder numbers,
we start defining a growth for the family of separable permutations, which comes from the
growth described by J. West in [144].

Analogously to Baxter permutations and permutations avoiding 132, the main point in
defining such a growth is to recognise, for every separable permutation of length n, the set
of active sites in which n+ 1 can be placed.

Therefore, let π be a separable permutation of length n. We divide it in two parts
according to the position of n and subdivide each part in blocks of consecutive elements
strictly depending on LTR maxima and RTL maxima positions as explained in the following
- see Figure 2.10.

B
 1

B
 2

B
 3

C
 1

C
 2

C
 3

Figure 2.10: The graphical representations of a separable permutation whose points have
been subdivided in blocks of consecutive elements, and of its sites classified in active (♦)
and non-active (×).

Precisely, let `1, . . . , `k+1 = n be the LTR maxima of π and suppose that `1 6= n. The
first LTR maximum `1 could have on its right some smaller points that are on the left of
n. By definition of separable permutation, the values of these points must be consecutive:
if there were a point x smaller than `1 on the right of n, and a point y smaller than `1

on the left of n such that x > y, then `1 y n x would form a 3142 occurrence. Let m1 be
the rightmost of these consecutive points (if there is any). The block B1 on the left of n
is made of all points of π between `1 (included) and m1 (included). Note that according
to the position of m1, the block B1 may contain some other LTR maxima different from
`1, which lie in a smaller position than m1. All the other blocks B2, . . . , Bh, with h ≤ k,
are iteratively formed starting from the first LTR maximum not included in any previous
block and repeating for each block the same arguments as B1.

A symmetric reasoning holds on the right of n. The first RTL maximum r1 6= n could
have on its left some smaller points that are on the right of n and, as above, their values
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must be consecutive, by definition of separable permutation: if there were a point x on left
of n such that r1 > x > y, where y is any point on the right of n smaller than r1, then
xn y r1 would form a 2413 occurrence. Then, the first block C1 on the right of n is made of
r1 and all the points on the right of n between r1 and m′1, where m′1 is the leftmost among
the smaller consecutive element on the left of r1. And, all the other blocks C2, . . . , Cm
are iteratively formed starting from the first RTL maximum not included in any previous
block and repeating for each block the same arguments as C1.

It should be noticed that all the elements within blocks B1, . . . , Bh as well as C1, . . . , Cm
are consecutive values of the permutation π: indeed, it follows easily by a reasoning similar
to the one done for each single block of π. Whence, blocks form a unimodal sequence that
increases on the left of n and decreases on its right.

Lemma 2.2.5 ([144], Lemma 4.1). Let π ∈ AVn(2413, 3142). Suppose the blocks of con-
secutive elements of π are B1, . . . , Bh on the left of n and C1, . . . , Cm on the right of n,
with h,m ≥ 0. Then, a site of π is active if and only if it is:

• immediately before any left block Bi, with 1 ≤ i ≤ h;

• immediately before, or immediately after n;

• immediately after any right block Cj, with 1 ≤ j ≤ m.

Figure 2.11 shows the growth of a separable permutation by the addition of n + 1 in
any of its active sites.

Figure 2.11: The set of separable permutations obtained from π = 216354 by adding a new
maximum point.

Proof. Let π be a non-empty separable permutation of length n. Let B1, . . . , Bh be its left
blocks and C1, . . . , Cm be its right blocks. Since the forbidden patterns are one reverse of
the other, the situation is symmetric with respect to n, and we can consider only insertions
of n+ 1 on the left of n - the insertions of n+ 1 on the right of n behave symmetrically.

If n+ 1 is added just before n, there is nothing to prove: if placing n+ 1 here created
occurrences of the forbidden patterns, then n would already play the same role in like
occurrences. Now, suppose n + 1 is inserted within a block Bi, for some i ≤ h, whose
cardinality is more than one. Let mi be the rightmost point of Bi and `s be the leftmost
point of Bi. Specify that the point `s is a LTR maximum by definition of block. Then
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`s(n + 1)min is an occurrence of 2413. Conversely, suppose n + 1 is inserted just before
Bi, for any i, and assume for the sake of contradiction that it forms an occurrence of the
forbidden patterns. First, suppose that n+ 1 gives rise to a 2413 occurrence. Then, there
are three elements x < y < z of π such that y(n+ 1)xz is a 2413 occurrence. The point y
must belong to a block Bj, with j < i, and by the definition of block a smaller point such
as x cannot be on the left of n without being within Bj. Thus, x must be on the right of n,
but y n x z would form a 2413 occurrence. On the other hand, suppose n + 1 gives rise to
a 3142 occurrence. Then, there are three elements of π, x < y < z, such that z x (n+ 1) y
is a 3142 occurrence. As above, the point z must belong to a block Bj, with j < i, and by
definition of block, a smaller point not being in Bj, such as y, cannot be on the left of n.
A contradiction is derived, since z x n y forms a 3142 occurrence.

Figure 2.12 depicts the first level of the generating tree of separable permutations.
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Figure 2.12: The first levels of the generating tree of separable permutations.

Proposition 2.2.6 ([144], Lemma 4.1). Separable permutations can be generated by

ΩSch =


(2)

(k)  (3), (4), . . . , (k), (k + 1)2.

Proof. First, by removing n from a separable permutation of length n > 0 we still obtain
a separable permutation of length n − 1, since no occurrences of 2413 and 3142 can be
generated. According to Lemma 2.2.5, the growth of each separable permutation can be
completely controlled by the number of its active sites. Thus, we can substitute each
permutation in the decorated generating tree of Figure 2.12 for a label (k), where k is the
number of its active sites - see Figure 2.13.

Then, we have that the permutation 1 has label (2), which is the axiom of ΩSch.
And, let π be a separable permutation with k ≥ 2 active sites, namely with k − 2 blocks
(see Lemma 2.2.5). It holds that both insertions of n + 1 next to n produce separable
permutations with k + 1 active sites, since a new block of one single element has been
generated by n. Now, let the blocks of π forming an unimodal sequence be numbered
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increasingly from 1 to k − 2 from bottom to top. The insertion of n + 1 just before a left
block (or just after a right block) reduces the number of active sites according to their
numeration. Precisely, if a left block Bi is numbered q, 1 ≤ q ≤ k − 2, and n+ 1 is added
just before it, then in the permutation produced π′ all blocks bigger than Bi are merged
together in a unique block of π′. Consequently, their sites become non-active in π′, which
has only q blocks and thus q+ 2 active sites. The same holds symmetrically if we consider
a right block. Hence, a separable permutation with k active sites produces k different
separable permutations with 3, 4, . . . , k, k + 1, k + 1 active sites.

Figure 2.13 shows the first levels of the generating tree associated with ΩSch decorated
with its labels.

(2)

(4) (4) (3)(5) (5) (4)(3)(3)(4)(5)(5)

(4) (4) (3)

(3) (3)

(3) (4) (4)

(5)(5)(4)(3)(3)(4) (5) (5)(3) (4) (4)

Figure 2.13: The first levels of the generating tree corresponding to ΩSch decorated with
its labels.

Proposition 2.2.7 ([13]). The family of Schröder paths can be generated by ΩSch.

Proof. We can define a growth for the family SP of Schröder paths slightly modifying the
ECO operator ϑD defined for Dyck paths on page 28. More precisely, let T ∈ SPn be
a Schröder path of semi-length n. Analogously to Dyck paths, the last descent of T is
defined as the set of steps that follows the rightmost U step of T . Thus, the first step of
the last descent can be either an H step or a D step - see Figure 2.8. In the first case,
if we remove this H step from T , we obtain a path in SPn−1. And, in the other case, if
we remove the rightmost UD factor of T , we still obtain a path in SPn−1. Therefore, we
can perform local expansions on a Schröder path of SPn by inserting either a UD factor
in any point of T ’s last descent, or an H step in the leftmost point of T ’s last descent.

Now, we label any Schröder path T with (k), where k is obtained by adding one to the
number of points of T ’s last descent. The empty path can be thought as a single point, thus
it takes label (2), which is the axiom of ΩSch. Then, by the above construction, a Schröder
path T of SPn with label (k) generates k Schröder paths of SPn+1, whose labels range
in (3), (4), . . . , (k + 1), (k + 1). The double label (k + 1) comes from the double possible
insertion (either a UD factor or an H step) in the leftmost point of T ’s last descent.

Other succession rules are known for enumerating Schröder structures [117]. These
succession rules differ from ΩSch since the first levels of their corresponding generating
trees. For instance, one of them is the following rule ΩSch2. Figure 2.14 depicts the first
levels of its corresponding generating tree that are not symmetric as the ones associated
with ΩSch.
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Proposition 2.2.8. The following succession rule, ΩSch2, generates Schröder numbers

ΩSch2 =


(2)

(2k)  (2)2k−1
, . . . , (2k−1)2, (2k)(2k+1) .

 (b) (a)

Figure 2.14: The first four levels of the Schröder generating trees: (a) corresponding to
ΩSch; (b) corresponding to ΩSch2.

Remark 2.2.9. Although the inclusions “Catalan in Schröder in Baxter transpire easily
on pattern-avoiding permutations, they remain obscure at the more abstract level of gener-
ating trees, and succession rules. More precisely, the succession rule ΩSch that is proved to
enumerate separable permutations does not appear to be a restriction of the succession rule
ΩBax for Baxter permutations, or at least not in the same manner as Observation 1.4.10
does for ΩCat and ΩBax. On the other hand, as Proposition 2.2.7 shows, ΩSch generalises
ΩCat by doubling the label (k + 1) in the production of (k). Therefore, the two generalisa-
tions, ΩBax and ΩSch, of the Catalan rule ΩCat appear to be independent, and not easily
reconciled.

2.3 A new Schröder family of parking functions

The notion of parking functions is recurring in discrete mathematics, and arises naturally
in the so-called parking problem, which can be stated as follows: there are n cars C1, . . . ,Cn
that want to park on a one-way street with ordered parking spaces 0, 1, . . . , n − 1. Each
car Ci has a preferred space ai, and the cars enter the street one at a time in the order
C1, . . . ,Cn. Any car tries to park in its preferred space; if that space is occupied, then it
parks in the next available space. If there is no space, then the car leaves the street.

Definition 2.3.1. The sequence a1 . . . an is called a parking function of length n if all the
cars C1, . . . ,Cn can park, namely no car leaves the street.

It is easy to see that a sequence a1 . . . an is a parking function if and only if it has at least
i terms strictly less than i, for each 1 ≤ i ≤ n. In particular, every parking function can be
obtained as a rearrangement of a non-decreasing sequence (see Definition 1.3.4) as proved
in [135]: a sequence a1 . . . an is a parking function if and only if there is a permutation σ
of length n such that 0 ≤ aσi < i, for each 1 ≤ i ≤ n.
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The number of parking functions of length n was analytically proved to be equal to
(n + 1)n−1 in [100], but then several combinatorial explanations of this formula were pro-
vided (see for instance [125]). Amongst them, there are also many bijections that show
remarkable connections between parking functions and other combinatorial structures, and
lead to various generalizations and applications in different fields, notably in algebra, inter-
polation theory, probability and statistics, representation theory, and geometry. A relation
between parking functions and Dyck paths has been established in [84] and it is not re-
ported here, not being needed for our purposes.

In [G3] we have introduced a new family of parking functions counted by Schröder
numbers, which directly appears as a generalisation of non-decreasing sequences (Defini-
tion 1.3.4 of Section 1.3.2).

2.3.1 Schröder parking functions

Definition 2.3.2. A Schröder parking function s of length n is a sequence s1 s2 . . . sn such
that 0 ≤ si < i, and si ≥ sj − 1, for all j < i. A fall of s is any element si such that either
si = 0 or si < sj, for some index j < i.

The sequence s = 0001433676 is a Schröder parking function of length 10 with falls
s1 = 0, s2 = 0, s3 = 0, s6 = 3, s7 = 3, s10 = 6. Whereas 0020 is not a Schröder
parking function being the rightmost element strictly smaller than 1. Obviously, according
to Definition 1.3.4, any non-decreasing sequence of length n is a Schröder parking function
of length n.

Proposition 2.3.3. Schröder parking functions are counted by Schröder numbers.

Proof. To prove that Schröder parking functions are counted by Schröder numbers, we
describe a growth for their family, and show that the succession rule associated with it
is precisely ΩSch. Given s1 . . . sn a Schröder parking function of length n, we add a new
rightmost element sn+1 to s as to form a Schröder parking function of length n + 1. The
possible additions depend on the rightmost value sn, as follows:

(a) If sn is not a fall, then the element sn+1 added to the sequence s1 . . . sn is any value
among n, n− 1, . . . , sn, sn − 1.

(b) If sn is a fall, then the element sn+1 added to s1 . . . sn is any value among n, n −
1, . . . , sn + 1, sn.

Note that operation performed in case (a) (resp. (b)) produces n+2−sn (resp. n+1−sn)
sequences of length n + 1 that satisfy Definition 2.3.2 and among them only one is such
that sn+1 is a fall: namely, in case sn+1 = sn − 1 (resp. sn+1 = sn).

Now, we check that the succession rule associated with the above growth is ΩSch. To
a sequence s = s1 . . . sn we assign the label (k), where k = n − sn + 2 if it satisfies the
condition at point (a), or k = n − sn + 1 if it satisfies the condition at point (b). The
Schröder parking function s = 0 has label (2), since it satisfies the condition at point (b).
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Then, the sequence s1 . . . sn sn+1, produced in case (a) by setting sn+1 = n (resp. n −
1, . . . , sn+1, sn, sn−1), has label (3) (resp. (4), . . . , (k), (k+1), (k+1)). While the sequence
s1 . . . sn sn+1, produced in case (b) by setting sn+1 = n (resp. n− 1, . . . , sn + 2, sn + 1, sn),
has label (3) (resp. (4), . . . , (k), (k+1), (k+1)). Thus, in both cases any label (k) produces
labels (3), (4), . . . , (k), (k + 1), (k + 1) concluding the proof.

A Schröder parking function s = s1 . . . sn can be represented uniquely as a word w =
w(s) of length n− 1 in the alphabet {a, b, c} as follows.

1. w(s1) is the empty word ε. (Note that s1 = 0, for every s.)

2. Let w′ = w(s1 . . . sn−1), with n ≥ 2. If sn is a fall, then w(s1 . . . sn) = w′a. Otherwise
w(s1 . . . sn) = w′ckb, where k is determined either by sn−sr, where sr is the rightmost
non-fall element of s1 . . . sn−1 if there is any, or by sn − 1.

In particular, note that the length n of a Schröder parking function s is given by
adding one to the number of occurrences of a and b in the word w(s), namely |w|a+ |w|b =
n− 1. For example, the Schröder parking function s = 0001433676 is encoded by the word
a a b cccb a a ccb cb a.

From the definition above, we can provide a combinatorial description for the language
LS = ∪nLS(n), where

LS(n) = {w(s) : s is a Schröder parking function of length n+ 1} .

Lemma 2.3.4. For any n, let u ∈ LS(n) and s1 . . . sn+1 be the Schröder parking function
corresponding to u. Then, |u|c = sr − 1, where sr is the rightmost non-fall element of
s1 . . . sn+1, if there is any, otherwise |u|c = 0.

Proof. First, note that if all the elements of s1 . . . sn+1 are falls, then by construction
|u|c = 0. Else if s1 . . . sn+1 has at least a non-fall element, we denote by sr the rightmost
non-fall element, where r > 1. Now, we prove by induction on n that |u|c = sr − 1.

If n = 1, the only Schröder parking function of length 2 having a non-fall element is
s = 01. Its rightmost non-fall element is s2 = 1. The one-letter word corresponding to s is
b, and it holds trivially that |b|c = 1− 1.

Now, let n > 1. We need to distinguish whether or not s1 . . . sn has a rightmost non-
fall element, and whether or not it coincides with sr. Let u′ ∈ LS(n − 1) be the word
corresponding to s1 . . . sn.

Suppose sr is such that r < n+ 1; namely both sr is the rightmost non-fall element of
s1 . . . sn and sn+1 is a fall, so that u = u′a holds. Then, the induction hypothesis yields
that |u|c = |u′|c = sr − 1.

Otherwise, it must be sr = sn+1. We need to consider whether or not s1 . . . sn has a
rightmost non-fall element. If such an element does not exist, then |u′|c = 0 by induction
hypothesis. In addition, |u|c = sr − 1 holds, since u = u′ckb with k = sn+1 − 1 by
construction. Else denoting st the rightmost non-fall element of s1 . . . sn, it holds that
|u′|c = st − 1 by induction hypothesis. Therefore, |u|c = |u′|c + k = sr − 1 holds, since
u = u′ckb, with k = sn+1 − st by construction.
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Proposition 2.3.5. A word w in the alphabet Σ = {a, b, c} belongs to LS(n) if and only if

a) for each prefix v of w, |v|c ≤ |v|a + |v|b,

b) w does not contain the factor ca,

c) the last letter is not c,

d) |w|a + |w|b = n.

Proof. ⇒) We prove that each word w ∈ LS(n) satisfies the conditions a)-b)-c)-d), for
every n. First, note that properties b)-c)-d) hold by construction of w = w(s), for
s any Schröder parking function of length n+ 1.

Now, we prove the validity of property a) by induction on n. If n = 0, the set LS(0)
comprises only the empty word ε, and property a) trivially holds.

Now, suppose n > 0. Let w ∈ LS(n) be uniquely subdivided into factors either a
or ckb, where k is maximal. By construction, there are n such factors in w. Let
v′ ∈ LS(n− 1) be the prefix of w corresponding to its first n− 1 factors from left to
right. By induction hypothesis, |v′|c ≤ |v′|a+ |v′|b and |v′|a+ |v′|b = n−1. Now, if the
nth factor of w is a or b, i.e. w = v′a or w = v′b, the property a) trivially holds for
w. Otherwise, by construction, it must be w = v′ckb, with 0 < k < n. In this case,
we should consider whether or not |v′|c = 0. If |v′|c = 0, the property a) obviously
holds for w. On the contrary, if |v′|c > 0, the Schröder parking function s1 . . . sn
corresponding to v′ has at least a non-fall element. By Lemma 2.3.4, it follows that
|v′|c = sr − 1, where sr is the rightmost non-fall element of s1 . . . sn. The validity
of a) is equivalent to |v′|c + i ≤ |v′|a + |v′|b, for all 1 ≤ i ≤ k. Therefore, to prove
this, it is enough to show that sr − 1 + k ≤ n − 1. Noticing that by construction
k = sn+1 − sr, this inequality is equivalent to sn+1 ≤ n, which trivially holds.

⇐) We prove that each word w ∈ Σ∗ satisfying properties a)-b)-c)-d) is a word of LS(n).
By properties b)-c)-d) any such word w can be subdivided uniquely in n factors
comprising either the only letter a or the sequence ckb, for some k ≥ 0. We can
proceed by induction on the number n of these factors that subdivide w, to show
that w ∈ LS(n).

First, let n = 1. There are only two words that are composed of only one factor and
satisfy a)-b)-c)-d), namely the one-letter words a and b. Both letters are in LS(1),
since they encode the two Schröder parking functions 00 and 01.

Then, let n > 1. By induction hypothesis the first n − 1 factors from left to right
form a word u ∈ LS(n − 1). Now, the nth factor can be either a or ckb, for some k
such that |u|c+k ≤ n−1 (by property a)). In both cases w ∈ LS(n): more precisely,
there exists a Schröder parking function s = s1 . . . snsn+1 corresponding to w, where
s1 . . . sn is the Schröder parking function corresponding to u. Indeed, in case w = ua,
it holds that w = w(s) if we set the element sn+1 is a fall, and sn+1 = sn − 1 if sn
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is a non-fall element, otherwise sn+1 = sn. Whereas, if w = uckb, we set sn+1 is a
non-fall element of s, and precisely sn+1 = k + |u|c + 1. By Lemma 2.3.4, |u|c can
be either sr − 1, where sr is the rightmost non-fall element of s1 . . . sn if there is any,
or 0, and thus either sn+1 = k + sr or sn+1 = k + 1 yields. Hence, s is a Schröder
parking function such that w = w(s).

To our knowledge, the language LS of Proposition 2.3.5 provides a new occurrence of
Schröder numbers. We describe a bijective proof of this fact in the next section.

2.3.2 Bijection between Schröder parking functions and Schröder
paths

In this section we describe a bijective way to pass from a word w of LS(n), encoding a
Schröder parking function of length n+ 1, to a Schröder path of semi-length n.

In order to define a mapping from LS(n) to the family of Schröder paths SPn of semi-
length n, we graphically represent each word w of LS(n) in the Cartesian plane as a labelled
path of length n+ |w|c. Such a path starts at the origin and ends at (|w|c, n), and encodes
the word w as follows: each letter a (resp. b) is a north step (0, 1) labelled a (resp. b), and
each letter c is an east step (1, 0) labelled c. From now on, we will use words of LS(n) and
their graphical representations indifferently.

Another definition we need is the closure w of a word w ∈ LS(n). Given a path w of
LS(n) we define its closure w as the smallest path ending at (n, n) and containing w as
prefix, namely w = w ch, where h = n− |w|c ≥ 1. Therefore,

LS(n) = {w : w ∈ LS(n)} .

Clearly LS(n) and LS(n) are in bijection. The graphical representations of the word
w = a a b c c c b a a c c b c b a and its closure w are shown in Figure 2.15(a),(b).
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Figure 2.15: The graphical representation of: (a) the word w = a a b c c c b a a c c b c b a; (b)
its closure w = a a b c c c b a a c c b c b a c c c, where dotted lines match each pair (a, c) (resp.
(b, c)); (c) the Schröder path of semi-length 9 corresponding to w through χ.
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Now, by means of the graphical representation of w, for w ∈ LS(n), we define some
matchings among letters of w needed to define our mapping.

Given a north step labelled a (resp. b) in a path w ∈ LS(n), there exists a unique east
step labelled c such that it is the first step encountered by drawing from a (resp. b) a line
parallel to the main diagonal. We say that the pair (a, c) (resp. (b, c)) forms a matching,
and a (resp. b) matches c. Note that by Proposition 2.3.5, each a (resp. b) is matched to
a unique c, and vice versa (see Figure 2.15(b)).

Then, we define the function χ : LS(n)→ SPn, according to the following decomposi-
tions for w,

(1) w is the empty path,

(2) w = a v′ c v, where (a, c) is a matching, and v′, v′′ ∈ LS,
(3) w = b v′ c v, where (b, c) is a matching, and v′, v′′ ∈ LS.

Observe that in cases (2) and (3) owing to the definition of words in LS(n) we have that
v′′ is either the empty path or

v′′ = b g1 c b g2 c . . . b gk c,

where, for i ≥ 1, any gi is in LS and the pair (b, c), with b gi c, forms a matching. According
to this decomposition, the function χ is defined as follows:

(1) χ(ε) = ∅ ;

(2) χ(a v′ c v′′) = χ(v′)H χ(v′′) ;

(3) χ(b v′ c v′′) = U χ(v′)Dχ(v′′) .

where, as usual, ε is the empty word and ∅ denotes the empty Schröder path, U (resp.
D) denotes an up (resp. down) step, while H denotes a double horizontal step.

The Schröder path χ(w) obtained from the word w = a a b c c c b a a c c b c b a of Fig-
ure 2.15(a) is UDHHUHHUDUHDD and is depicted in Figure 2.15(c).

Proposition 2.3.6. The above defined function χ : LS(n) → SPn is a bijection. Thus,
there exists a bijective correspondence between Schröder parking functions of length n + 1
and Schröder paths of semi-length n.

Proof. To prove the main statement it is sufficient to define the function ψ : SPn → LS(n)
and prove that, for all words w ∈ LS(n), ψ(χ(w)) = w. So, for T a Schröder path of
semi-length n, the function ψ is defined differently according to the final step of T by

ψ(T ) =


ε if T = ∅
aψ(P ) c if T = P H

ψ(P ) b ψ(P ′)c if T = P U P ′D ,

where P and P ′ are Schröder paths. Let us now prove that ψ(χ(w)) = w, by induction on
the length of w.
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Basis. If w = ε, ψ(χ(ε)) = ε.

Inductive step. Let w = b v′ c v′′ (resp. w = a v′ c v′′), where b (resp. a) matches c.

If v′′ = ε, then ψ(χ(w)) = ψ(χ(b v′ c)) = ψ(U χ(v′)D) = b ψ(χ(v′)) c = b v′ c,
(resp. ψ(χ(w)) = ψ(χ(a v′ c)) = ψ(χ(v′)H) = aψ(χ(v′)) c = a v′ c).

Else if v′′ = b g1 c . . . b gk c, with k ≥ 1, then by applying χ recursively it holds

χ(v′′) = U χ(g1)D . . . U χ(gk)D.

Therefore, if w = b v′ c v′′ (resp. w = a v′ c v′′), then

ψ(χ(w)) = ψ(U χ(v′)DU χ(g1)D . . . U χ(gk)D)

= ψ(U χ(v′)DU χ(g1)D . . . Uχ(gk−1)D) b ψ(χ(gk)) c = . . .

= b ψ(χ(v′)) c b ψ(χ(g1)) c . . . b ψ(χ(gk)) c = b v′ c b g1 c . . . b gk c.

(resp. ψ(χ(fw)) = ψ(χ(v′)H U χ(g1)D . . . U χ(gk)D)

= ψ(χ(v′)H U χ(g1)D . . . Uχ(gk−1)D) b ψ(χ(gk)) c = . . .

= ψ(χ(v′)H) b ψ(χ(g1)) c . . . b ψ(χ(gk)) c = a v′ c b g1 c . . . b gk c ).

2.4 Schröder slicings

Our first interest in this section is to define a family of objects enumerated by Schröder
numbers, that lies between parallelogram polyominoes (or more precisely, Catalan slicings)
and Baxter slicings. Furthermore, this Schröder family of slicings grows according to a suc-
cession rule that generalizes ΩCat while specializing ΩBax. As Remark 2.2.9 of Section 2.2.2
points out, none among the different succession rules shown for Schröder numbers has this
property.

2.4.1 A new Schröder succession rule

Let us consider the following succession rule,

ΩNewSch =



(1, 1)

(h, k)  (1, k + 1), (2, k + 1), . . . , (h, k + 1),

(2, 1), (2, 2), . . . , (2, k − 1),

(h+ 1, k) ,

whose associated generating tree decorated with labels is denoted by TSch and shown in
Figure 2.16.
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Figure 2.16: The first levels of the generating trees for rules ΩCat, ΩNewSch and ΩBax. Bold characters are used to indicate
the first vertices of TBax that do not appear in TSch.
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Theorem 2.4.1. The enumeration sequence associated with rule ΩNewSch is that of Schröder
numbers.

Proof. From [144] and Section 2.2.2, we know that the succession rule ΩSch is associated
with Schröder numbers. We claim that rules ΩNewSch and ΩSch produce the same generating
tree. Indeed, replacing each label (h, k) in rule ΩNewSch by the sum h + k of its elements
immediately gives rule ΩSch.

The rule ΩNewSch can be immediately seen to generalize rule ΩCat, in the same fash-
ion rule ΩBax does - see Observation 1.4.10 of the previous chapter. More precisely, in
rule ΩNewSch, looking only at the productions (2, 1), (2, 2), . . . , (2, k − 1), (h + 1, k) and
(1, k + 1) of a label (h, k), and considering the second component of the labels, we recover
rule ΩCat.

What is further interesting with rule ΩNewSch is that rule ΩBax for Baxter numbers
generalizes it. In other words, it holds that:

Theorem 2.4.2. TSch is (isomorphic to) a subtree of TBax.

Our proof of this theorem exhibits one subtree of TBax isomorphic to TSch. We call
this subtree “canonical”, since it is obtained by mapping the productions in rules ΩBax

and ΩNewSch in the obvious way.

Proof. Note first that the only difference between rules ΩBax and ΩNewSch is that labels
(h + 1, i) for 1 ≤ i ≤ k − 1 in the production of rule ΩBax are replaced by (2, i) in
rule ΩNewSch. With this remark, we can prove the following statement by induction on
the depth of the vertices in the generating trees: for any h, k, and h′ ≥ h, there exists
an injective mapping from the vertices of the generating tree produced from root (h, k) in
rule ΩNewSch to the vertices of the generating tree produced from root (h′, k) in rule ΩBax,
which preserves the depth, and such that for any vertex labelled (i, j), its image is labelled
(i′, j) for some i′ ≥ i. Indeed, it is enough to map vertices of the generating trees along
the productions of rules ΩBax and ΩNewSch as follows:

(h, k)  
NewSch

(1, k + 1), . . . , (h, k + 1), (2, 1), . . . , (2, k − 1), (h + 1, k).y y y y y
(h′, k)  

Bax
(1, k + 1), . . . , (h, k + 1), (h′ + 1, 1), . . . , (h′ + 1, k − 1), (h′ + 1, k).

(h + 1, k + 1), . . . , (h′, k + 1),

The proof is then concluded by applying the statement for h = h′ = k = 1.

To our knowledge, this is the first time three succession rules for Catalan, Schröder and
Baxter numbers are given, which are each a generalization of the previous one. The first
levels of the generating trees for rules ΩCat, ΩNewSch and ΩBax are shown in Figure 2.16.
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2.4.2 Definition of Schröder slicings, and their growth

We want to define Schröder slicings so that they form a subset of the Baxter slicings, that
is enumerated by the Schröder numbers, and whose growth is described by rule ΩNewSch.
To do that, recall that a “canonical” subtree of TBax isomorphic to TSch was built in the
proof of Theorem 2.4.2. From there, it is enough to label the vertices of TBax by the
corresponding Baxter slicings, and to keep only the objects which label a vertex of this
“canonical” subtree. With this global approach to the definition of Schröder slicings, the
problem is to provide a characterization of these objects that would be local, i.e. that
could be checked on any given Baxter slicing without reconstructing the whole chain of
productions according to rule ΩBax that resulted in this object.

For the sake of clarity, we have chosen to reverse the order in the presentation of
Schröder slicings: we will first give their “local characterization”, and then prove that
they grow according to rule ΩNewSch. It will be clear in the proof of this statement (see
Theorem 2.4.5) that Schröder slicings correspond to the “canonical” subtree of TBax on
Baxter slicings described earlier.

Definition 2.4.3. Given a Baxter slicing of a parallelogram polyomino S, let u be any of
its horizontal blocks. We denote by `(u) the width of u. The projection X(u) of u on the
lower border of S is the lower-most point of this border whose abscissa is that of the right
edge of u. We now define r(u) to be the number of horizontal steps on the lower border of
S to the left of X(u) before an up step (or the bottom-left corner of S) is met.

N
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X(u)
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r(u)

(a)

k  (E )
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QP

(b)

Figure 2.17: (a) Illustration of Definition 2.4.3; (b) an example of a Schröder slicing; (c)
illustration of Definition 2.5.1 and Theorem 2.5.3.

Definition 2.4.4. A Schröder slicing is any Baxter slicing such that for any horizontal
block u, the following inequality holds:

`(u) ≤ r(u) + 1. (`r)

Figure 2.17(a),(b) illustrates the definitions of `(u) and r(u), and shows an example of
Schröder slicing.

Theorem 2.4.5. Schröder slicings can be generated by ΩNewSch.
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Proof. Like Baxter slicings, Schröder slicings grow adding vertical blocks on the right and
horizontal blocks on top, but the width of these horizontal blocks is restricted as to satisfy
condition (`r).

To any Schröder slicing S, let us associate the label (h, k) where h (resp. k) denotes
the maximal width (resp. height) of a horizontal (resp. vertical) block that may be added
to S, without violating condition (`r). Note that if a horizontal block of width i may be
added, then for all i′ ≤ i, the addition of a horizontal block of width i′ is also allowed.
Consequently, we may add horizontal blocks of width 1 to h to S. Notice also that k denotes
the height of the rightmost column of S (since condition (`r) introduces no restriction on
vertical blocks), and that columns of any height from 1 to k may be added to S.

Figure 2.18 illustrates the three cases discussed below in the growth of Schröder slicings
according to rule ΩNewSch.

 h

kk
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kk
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Figure 2.18: The productions of a Schröder slicing of label (h, k) following rule ΩNewSch.

For any i ≤ h, consider the Schröder slicing P ′ obtained by adding a horizontal block u
of width `(u) = i. We claim that the label of P ′ is (i, k + 1). Obviously, the height of the
last column of P ′ is k+ 1. Moreover, if we were to add a further horizontal block u′ of any
width `(u′) = i′ ≤ i, u′ would satisfy condition (`r), since X(u) = X(u′) and r(u) = r(u′).

Next, consider the Schröder slicing P ′ obtained by adding a column of height k to S.
We claim that it has label (h+ 1, k). Of course, the rightmost column of P ′ has height k.
Moreover, the horizontal blocks u′ that may be added to P ′ are of two types: either the
block u′ is made of one single cell on top of the rightmost column of P ′, or u′ is exactly
the same as a horizontal block that could be added to S, except that it is augmented of
one cell on the right. In this latter case, condition (`r) is indeed satisfied since both `(u′)
and r(u′) increase by 1, when going from S to P ′.

Finally, for any j < k, the Schröder slicing P ′ obtained by adding a column of height j
to S has label (2, j). Indeed, the rightmost column of P ′ has height j, and only horizontal
blocks u′ of width 1 or 2 may be added to P ′ without violating condition (`r), since
r(u′) = 1.

2.5 Other Schröder restrictions of Baxter objects

For any Baxter class C, whose growth according to rule ΩBax is understood, it is immediate
to define a Schröder subclass of C. Indeed, we can consider the full generating tree of
shape TBax associated with C, its “canonical” subtree isomorphic to TSch, and keep only
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the objects of C associated with a vertex of TSch. This method has the advantage of being
systematic, but it does not a priori provide a characterization of the objects in the Schröder
subclass which does not refer to the generating trees.

In this section, we give three examples of Schröder subclasses of Baxter classes, that are
not obtained with the above general method, but for which we provide a characterization
of the Schröder objects without referring to generating trees.

2.5.1 A Schröder family of NILPs

From Theorem 2.1.3, we have a simple bijection between triples of NILPs and Baxter
slicings. In Section 2.4, we have seen a subset of Baxter slicings enumerated by the Schröder
numbers. A natural question, which we now solve, is then to give a characterization of the
triples of NILPs which correspond to Schröder slicings via the bijection of Theorem 2.1.3.

Definition 2.5.1. Let (P,Q,R) be a triple of NILPs. A pair (NP , NQ) of north steps of
P and Q is matched if there exists i such that NP (resp. NQ) is the ith north step of P
(resp. Q). Similarly, a pair (EQ, ER) of east steps of Q and R is matched if there exists i
such that EQ (resp. ER) is the ith east step of Q (resp. R).

Moreover, for any north step NP in P (resp. NQ in Q), we denote by hP (NP ) (resp.
hQ(NQ)) the number of east steps of P (resp. Q) that occur before NP (resp. NQ). And
for any east step ER in R, we denote by kR(ER) the largest k such that Ek is a factor of
R ending in ER.

Figure 2.17(c) on page 80 should help understand these definitions.

Definition 2.5.2. A Schröder triple of NILPs is any triple (P,Q,R) of NILPs such that
for any north step NP of the path P , denoting NQ the north step of Q such that (NP , NQ)
is matched, EQ the last east step of Q before NQ, and ER the east step of R such that
(EQ, ER) is matched, the following inequality holds

hP (NP )− hQ(NQ) ≤ kR(ER). (2.2)

Theorem 2.5.3. Schröder slicings are in one-to-one correspondence with Schröder triples
of NILPs by means of the size-preserving bijection described in Theorem 2.1.3.

Proof. We prove that the image of the class of Schröder slicings under the bijection given
in Theorem 2.1.3 coincides with the class of Schröder triples of NILPs of Definition 2.5.2.
This will follow since condition (2.2) on triples of NILPs is equivalent to condition (`r)
on Baxter slicings.

Let (P,Q,R) be the image of a Baxter slicing S. By construction (see also Fig-
ure 2.17(c)), every horizontal block w of S is associated with a pair (NP , NQ) of matched
north steps of P and Q, which correspond to the left (for NP ) and right (for NQ) edges of
w. Similarly, every vertical block of S is associated with a pair (EQ, ER) of matched east
steps of Q and R, corresponding to the upper and lower edges of the block.
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Consider a horizontal block w in S, and let (NP , NQ) be the associated pair of matched
steps. Denote by EQ the last east step of Q before NQ, and by ER the east step of R such
that (EQ, ER) is matched. This is the situation represented in Figure 2.17(c). We claim
that w satisfies condition (`r) if and only if NP , NQ and ER satisfy condition (2.2). On
the one hand, note that the width `(w) of w is also expressed as hQ(NQ)+1−hP (NP ). On
the other hand, it is not hard to see that r(w) = kR(ER). Indeed, the projection X(w) of
w on the lower border of S is the ending point of the step ER in R, so that both r(w) and
kR(ER) denote the maximal number of east steps seen when reading R (that is to say, the
lower border of S) from right to left starting from X(w). It follows that `(w) ≤ r(w) + 1
if and only if hP (NP )− hQ(NQ) ≤ kR(ER), which concludes the proof.

Remark 2.5.4. Note that by restricting the size-preserving bijection described in Theo-
rem 2.1.3 to the family of Catalan slicings yields a bijection between Catalan slicings and
pairs of NILPs. This follows from the fact that each triple of NILPs (P,Q,R) image of a
Catalan slicing is such that P = Q up to translation. Furthermore, any triple of NILPs
(P,Q,R) such that P and Q share the same sequence of north and east steps satisfies
Definition 2.5.2.

2.5.2 Another Schröder subset of Baxter permutations

Although we have not been able to explain the growth of separable permutations according
to rule ΩNewSch, by restricting the growth of Baxter permutations according to rule ΩBax,
we are able to describe a new subset of Baxter permutations, enumerated by the Schröder
numbers, and whose growth is governed by rule ΩNewSch.

As explained at the beginning of this section, a Schröder subset of Baxter permutations
can be obtained by considering the “canonical” embedding of TSch in TBax. Doing so, the
two Baxter permutations of length 5 that are not obtained are 13254 and 23154, which
correspond to the vertices of TBax shown in bold characters in Figure 2.16. Although
this subset of Baxter permutations is easy to define from the generating tree perspective,
we have not been able to characterize the permutations it contains without referring to
the generating trees, which is somewhat unsatisfactory. On the other hand, the subset of
Baxter permutations studied below is not as immediate to define from the generating trees
themselves, but has a nice characterization in terms of forbidden patterns.

The definition (in a special case) of bivincular patterns is useful to define the subset
of Baxter permutations we are considering: a permutation σ avoids the pattern 41323+

(resp. 42313+) when no subsequence σiσjσkσ`σm of σ satisfies σj < σ` < σk (resp. σ` <
σj < σk), σm = σk + 1, and σm < σi.

Theorem 2.5.5. Let A be the subset of Baxter permutations defined by avoidance of the
(bi)vincular patterns 2 41 3, 3 14 2, 41323+ and 42313+. The family A can be generated by
rule ΩNewSch, and consequently A is enumerated by the Schröder numbers.

Note that the two Baxter permutations of length 5 that are not in A are 51324 and
52314.
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Proof. First, note that if σ ∈ A, then the permutation obtained by removing the maximal
element of σ also belongs to A. So we can make permutations of A grow by insertion of
the maximum point.

Second, observe that A is a subset of Baxter permutations. So the active sites (i.e. po-
sitions where the new maximum can be inserted while remaining in the class) is a subset
of the active sites in the growth of Baxter permutations according to rule ΩBax, that are
the sites immediately to the right of RTL maxima, and the sites immediately to the left
of LTR maxima. In particular, the two sites surrounding the current maximum are always
active.

We claim that the active sites of σ ∈ A are the following, where n denotes the length
of σ:

• the sites immediately to the right of RTL maxima, and

• for any LTR maximum σi, the site immediately to the left of σi, provided that the
sequence σi+1 . . . σn contains no pattern 212+ where 2 is mapped to a value larger
than σi.

More formally, the condition above on σi+1 . . . σn is expressed as follows: there is no sub-
sequence σaσbσc of σi+1 . . . σn such that σa > σi, σb < σa and σc = σa + 1.

For the first item, it is enough to notice that the insertion of n + 1 to the right of n
cannot create a 41323+ or 42313+ pattern (if it would, then n instead of n+ 1 would give
a forbidden pattern in σ).

For the second item, consider a LTR maximum σi. The insertion of n+ 1 immediately
to the left of σi creates a 41323+ or 42313+ pattern if and only if it creates such a pattern
where n+ 1 is used as the 4.

Assume first that the sequence σi+1 . . . σn contains a pattern 212+ where 2 is mapped
to a value larger than σi. Then together with n + 1 and σi, we get a 41323+ or 42313+

pattern: such insertions do not produce a permutation in A.
On the other hand, assume that the sequence σi+1 . . . σn contains no pattern 212+ where

2 is mapped to a value larger than σi. If the insertion of n + 1 immediately to the left of
σi creates a 41323+ or 42313+ pattern, say (n+ 1)σaσbσcσd, then σbσcσd is a 212+ pattern
in σi+1 . . . σn, and by assumption σb < σi. This implies that σi is larger than all of σa,
σb, σc and σd, so that σiσaσbσcσd is a 41323+ or 42313+ pattern in σ, contradicting the
fact that σ ∈ A. In conclusion, under the hypothesis that the sequence σi+1 . . . σn contains
no pattern 212+ where 2 is mapped to a value larger than σi, then the insertion of n + 1
immediately to the left of σi produces a permutation in A.

To any permutation σ of A, associate the label (h, k) where h (resp. k) denotes the
number of active sites to the left (resp. right) of its maximum. Of course, the permutation 1
has label (1, 1). We shall now see that the permutations produced inserting a new maximum
in σ have the labels indicated by rule ΩNewSch, concluding our proof of Theorem 2.5.5.

Denote by n the length of σ. When inserting n+ 1 in the ith active site (from the left)
on the left of n, this increases by 1 the number of RTL maxima. Moreover, no pattern 212+

is created, so that all sites to the left of n that were active remain so, provided they remain
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LTR maxima. The permutations so produced therefore have labels (i, k+ 1) for 1 ≤ i ≤ h.
Similarly, when inserting n+ 1 immediately to the right of n, no 212+ is created, and the
subsequent permutation has label (h+ 1, k). On the contrary, when inserting n+ 1 to the
right of a RTL maximum σj 6= n, a pattern 212+ is created (as nσj(n+ 1)). Consequently,
there are only two LTR maxima such that there is no pattern 212+ after them with a 2 of a
larger value: namely, those are n and n+ 1. If σj was the ith RTL maximum of σ, starting
their numbering from the right, then the resulting permutation has label (2, i).

Remark 2.5.6. Note that any permutation class AV (τ), for τ being in {132, 213, 231, 312},
is a subfamily of the family of permutations A.

2.5.3 A Schröder family of mosaic floorplans

In this section, we explain the growth of mosaic floorplans according to rule ΩBax, i.e. along
the generating tree TBax. Then, we define a subfamily of mosaic floorplans enumerated by
Schröder numbers, which we call Schröder floorplans, and prove that they grow according
to ΩNewSch.

In order not to deal with equivalent mosaic floorplans, to our purposes we prefer to use
the notion of packed floorplan introduced in Section 1.4.2 and here formally recalled.

Definition 2.5.7. A packed floorplan (PFP, for short) of dimension (d, `) is a partition
of a rectangle of width ` and height d into d + ` − 1 rectangular blocks whose sides have

integer lengths such that the pattern is avoided, i.e. for every pair of blocks (b1, b2),
denoting (x1, y1) the coordinates of the bottom rightmost corner of b1 and (x2, y2) those of
the top leftmost corner of b2, it is not possible to have both x1 ≤ x2 and y1 ≥ y2.

The size of a PFP of dimension (d, `) is n = d+ `− 1.

Figure 2.19(a) shows an example of packed floorplan, while Figure 2.19(b) shows another
(non-packed) representative of the same mosaic floorplan.

(a) (b)

Figure 2.19: (a) An example of packed floorplan of dimension (3, 3), (b) a non-packed
representative of the same mosaic floorplan.

It results from [4] that the cardinality of the set of PFPs of size n is the Baxter number
Bn. Moreover, we can prove the following result.

Theorem 2.5.8. The family of PFPs can be generated by rule ΩBax.

Observe that a generating tree for PFPs is presented in [4] (via a procedure called
InsertTile for adding a new block in PFPs). Considering only the first few levels of this
generating tree, it appears immediately that it is not isomorphic to TBax. Therefore, to
prove Theorem 2.5.8, we need to define a new way of adding a block to a PFP.
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Proof. Consider a PFP F of dimension (d, `) and size n. Let h (resp. k) be one greater
than the number of internal segments of F (i.e. segments that are not part of the bounding
rectangle of F ) that meet the right (resp. upper) border of the bounding rectangle of F .
We define a growth for PFPs that builds h + k children of size n + 1 for any PFP F , as
follows.

The first h, of dimension (d, `+ 1), are obtained by adding a new block b on the right
of the north-east corner of F : the left side of b then forms a new internal segment that can
reach the bottom border of the floorplan or stop when meeting any segment s incident with
the right border of F (note that there are h − 1 such segments). The segments reaching
the right border of F which are below s (and the corresponding blocks) are then extented
to reach the right border of the wider rectangle (d, `+ 1).

The other k, of dimension (d+1, `), are obtained by adding a new block b on top of the
north-east corner of F : similarly, the bottom side of b then forms a new internal segment
that can reach the left border of the floorplan or stop when meeting any segment s incident
with the upper border of F (note that there are k−1 such segments). Again, the segments
reaching the upper border of F which are to the left of s (and the corresponding blocks)
are extented to reach the upper border of the higher rectangle (d+ 1, `).

With h and k defined as above, and giving label (h, k) to PFPs, it is clear that the
children of a PFP with label (h, k) have labels (i, k + 1) for 1 ≤ i ≤ h (insertion of a new
block on the right of F ) and (h+ 1, j) for 1 ≤ j ≤ k (insertion of a new block on top of F ).
Moreover, the unique packed floorplan of size 1 (having dimension (1, 1)) has no internal
segment, so its label is (1, 1).

To prove that PFPs grow according to rule ΩBax, it is then enough to show that the
above construction generates exactly once each PFP.

First, we prove by induction that this construction generates only PFPs. The relation
between the number of blocks and the dimensions of the bounding rectangle is clearly
satisfied. So we only need to check that, if F is a PFP, then all of its children avoid
the pattern . Consider a child F ′ of F obtained by adding a new block b on the right
(resp. on top) of the north-east corner of F . The bottom right (resp. top left) corners of
the existing blocks may only be modified by being moved to the right (resp. in the upper
direction). So those cannot create any pattern . And the new block b cannot create any
such pattern either, since it has no block strictly above it nor strictly to its right.

Next, we prove by induction that all PFPs are generated. Consider a PFP F of size
n ≥ 2. Let b be the block in the north-east corner of F and s (resp. t) be the left

(resp. bottom) side of b. Their graphical configurations can be either
s

t or
s

t .

In the first (resp. second) case, define F ′ by deleting the part of F on the right of the line
on which s lies (resp. the part of F above the line on which t lies). Since by Definition 2.5.7
F does not contain , it follows that in both cases the only block removed is b. So F ′ is
indeed a PFP of size one less than F , and F is by construction one of the children of F ′.

Finally, it remains to prove that no PFP is generated several times. Obviously, the
children of a given PFP are all different. So we only need to make sure that the parent of
a PFP F is uniquely determined. Looking again at the block b in the north-east corner of
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F , and at the type of the T-junction at the bottom-left corner of b, we determine whether
b was added on top or on the right of the north-east corner of its parent. By construction,
the parent is then uniquely determined: it is necessarily obtained from F by deleting the
parts of F described above.

Figure 2.20 shows the growth of a packed floorplan of dimension (3, 3) having label
(3, 2).

;

.,

(4,2)(4,1)

(3,3)(2,3)(1,3)(3,2)

, ,

Figure 2.20: The growth of packed floorplans following rule ΩBax.

Definition 2.5.9. A Schröder PFP is a PFP as in Definition 2.5.7, whose internal segments
avoid the following configuration:

.

Figure 2.21 shows some packed floorplans that contain the forbidden configuration of
Definition 2.5.9 and so, they are not Schröder PFPs.

(b) (c)(a)

Figure 2.21: (a)-(b) The two packed floorplan of size 5 which are not Schröder PFPs; (c)
a non-Schröder packed floorplan of size 6.

Remark 2.5.10. In Section 2.2.1, we described the subfamily of mosaic floorplans enu-
merated by Schröder numbers: slicing floorplans. They are defined by the avoidance of the

configurations and . Our Schröder floorplans are also defined by a forbid-

den configuration of segments – see Definition 2.5.9. However, slicing floorplans do not
coincide with our Schröder floorplans. Nevertheless, both slicing floorplans and Schröder

floorplans avoid the configuration , and the similarity of the forbidden configurations

is striking. We leave open the problem of explaining this similarity combinatorially, for



88 Chapter 2. Slicings of parallelogram polyominoes

instance by describing an explicit bijection between slicing floorplans and Schröder floor-
plans. Note that we were not able to describe a growth of slicing floorplans that follows
rule ΩNewSch.

Theorem 2.5.11. The generating tree obtained by letting Schröder PFPs grow by insertion
of a new block as in the proof of Theorem 2.5.8 is TSch. More precisely, they grow following
rule ΩNewSch.

Proof. Let F be a PFP, and b be the block in the north-east corner of F . Recall that the
parent F ′ of F was described in the proof of Theorem 2.5.8. It follows immediately that if
F is a Schröder PFP, then F ′ is also a Schröder PFP. Consequently, we can make Schröder
PFPs grow by addition of a new block either on the right of the north-east corner or above
it, as in the proof of Theorem 2.5.8.

Let F be a Schröder PFP. We consider all its children following the growth of PFPs
described in the proof of Theorem 2.5.8, and we determine which of them are Schröder
PFPs. Let b be a new block added to F . Note first that the addition of b may only
create forbidden configurations involving the sides of b. Moreover, if such a forbidden
configuration is created, the sides of b are necessarily the segments shown in bold line on

the following picture: . In particular, the T-junction at the bottom left corner of b

is of type .
If b is added above the north-east corner of F , then by construction the bottom side

of b reaches the left border of F or forms a T-junction of type with a segment meeting
the upper border of F . So the forbidden configurations cannot be created, and all PFPs
obtained by adding blocks above the north-east corner of F are Schröder PFPs.

On the contrary, if b is added on the right of the north-east corner of F , then the
T-junction at the bottom left corner of b is of type , so a forbidden configuration may
be created. More precisely, the forbidden configuration is generated if and only if the
following situation occurs: the segment corresponding to the left side of b reaches an
internal segment meeting the right border of F , which in turn is below another internal
segment that is incident with the right border of F and that forms a T-junction of type

with some internal segment. So, to determine which children of F are Schröder PFPs,
among those obtained by adding b on the right of the north-east corner of F , it is essential
to identify the topmost internal segment, denoted pF , which meets the right border of F
and which forms a T-junction of type with some internal segment of F . Then, adding b
to F , a Schröder PFP is obtained exactly when the bottom side of b is either the bottom
border of F or an internal segment meeting the right border of F which is above pF (pF
included).

With the above considerations, it is not hard to prove that Schröder PFPs grow ac-
cording to rule ΩNewSch. To any Schröder PFP F , we assign the label (h, k) where h is
one greater than the number of internal segments meeting the right border of F above pF
(included) and k is one greater than the number of internal segments meeting the upper
border of F . Of course, the only (Schröder) PFP of size 1 has label (1, 1). Following the
growth previously described, a Schröder PFP F of label (h, k) produces:
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• h Schröder PFPs obtained by adding a block b on the right of the north-east corner
of F . The left side of b may reach the bottom border of F , and then a Schröder
PFP of label (1, k+ 1) is obtained. It may also reach any internal segment s incident
with the right border of F that is above pF (included), and Schröder PFPs of labels
(2, k + 1), . . . , (h, k + 1) are obtained in this way.

• k Schröder PFPs obtained by adding a block b above the north-east corner of F . The
bottom side of b may reach the rightmost segment incident with the upper border
of F , and then a Schröder PFP of label (h + 1, k) is obtained. But if it reaches any
other segment incident with the upper border of F (left border of F included), then a
T-junction of type is formed with at least one internal segment meeting the upper
border of F . By definition, for the Schröder PFP F ′ produced, we therefore have
that pF ′ is the segment that supports the bottom edge of b. Consequently, the labels
of the Schröder PFPs produced are (2, k − 1), . . . , (2, 1).

This concludes the proof that Schröder PFPs grow with rule ΩNewSch, and so along the
generating tree TSch.

To illustrate the growth of Schröder PFPs with rule ΩNewSch, note that, seen as a
Schröder PFP, the object whose growth is depicted in Figure 2.20 has label (2, 2) and it
has only four children (the middle object of the first line is not produced, and indeed it is
not a Schröder PFP).

Figure 2.22 shows an example of the growth of a Schröder PFP F of dimension (4, 2)
having label (3, 1). The segment pF (the topmost internal segment of F which meets the
right border and forms a T-junction of type with an internal segment of F ) is highlighted
in bold line.

F

(4,1)(3,2)(2,2)(1,2)(3,1)

,, .,
p

Figure 2.22: The growth of Schröder PFPs following rule ΩNewSch.

Remark 2.5.12. In the same fashion, we can define a subfamily of PFP enumerated by
the Catalan numbers, and prove that they grow according to rule ΩCat. A Catalan PFP
would be a PFP as in Definition 2.5.7, whose internal segments avoid the configuration .
The proof that they grow according to rule ΩCat is omitted, but the one of Theorem 2.5.11
is alike.
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2.6 Generalisation of Schröder and Catalan slicings

With the Schröder slicings, we have seen one way of specializing the succession rule ΩBax.
In this section, we are interested in other specializations of rule ΩBax, which allow to define
m-skinny slicings and m-row-restricted slicings, for any integer m ≥ 0. Section 2.6.5 will
explore the properties of their generating functions.

2.6.1 Skinny slicings

We have seen in Definition 2.4.4 that Schröder slicings are defined by condition (`r), that
is to say, `(u) ≤ r(u) + 1, for any horizontal block u. Figure 2.17(a) on page 80 shows
which quantities are to be checked for satisfying the above condition.

A rough idea to characterize a Schröder slicings of a parallelogram polyomino S is:
every corner of the lower path defining S must have above only horizontal blocks that do
not exceed more than one cell leftwards its x-coordinate. Therefore, this condition (`r)
can be naturally generalized for number m ≥ 0 of cells: for any horizontal block u,

`(u) ≤ r(u) +m. (`rm)

Definition 2.6.1. An m-skinny slicing is a Baxter slicing such that for any horizontal
block u, the inequality (`rm) holds.

Note that an m′-skinny slicing, with m′ ≤ m, is an m-skinny slicing as well; Fig-
ure 2.17(a) depicts an m-skinny slicing, for any m ≥ 3.

Theorem 2.6.2. The family of m-skinny slicings can be generated by the following suc-
cession rule

Ωm-Sk =



(1, 1)

(h, k)  (1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h+ 1, 1), . . . , (h+ 1, k − 1), if h < m,

(m+ 1, 1), . . . , (m+ 1, k − 1), if h ≥ m,

(h+ 1, k).

Proof. The proof follows the exact same steps as the proof of Theorem 2.4.5, which corre-
sponds to m = 1. The only difference is that the maximal width of the horizontal block
that may be added in the third case is min(h+ 1,m+ 1) instead of 2.

Considering the case m = 0, we obtain a family of Baxter slicings which is intermediate
between Catalan slicings (for which `(u) = 1, for all horizontal blocks u) and Schröder
slicings (i.e. 1-skinny slicings). The first few terms of the enumeration sequence of 0-skinny
slicings are

1, 2, 6, 21, 80, 322, 1347, 5798, 25512, 114236, 518848, 2384538, 11068567, . . . .
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These terms appear to match the sequence A106228 [132]. This sequence, and a curious
enumerative result relating to it, are further explored in Section 2.6.5.

2.6.2 Row-restricted slicings

Conditions (`rm) naturally generalize the condition that defines Schröder slicings, but it
is not the most natural restriction on horizontal blocks of Baxter slicings one may think
of. Indeed, for some parameter m ≥ 1, we could simply impose that horizontal blocks
have width no larger than m. In what follows, we study these objects under the name of
m-row-restricted slicings.

Note that, taking m = 1, we recover Catalan slicings, and that the case m = 0 is
degenerate, since there is only one 0-row-restricted slicing of any given size: the horizontal
bar of height 1 and width n divided in (vertical) blocks made of one cell only.

Theorem 2.6.3. The family of m-row-restricted slicings can be generated by the succession
rule

Ωm-RR =



(1, 1)

(h, k)  (1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h+ 1, 1), (h+ 1, 2), . . . , (h+ 1, k), if h < m

(m, 1), (m, 2), . . . , (m, k). if h = m

Proof. Again, the proof is similar to those of Theorem 2.1.2 and 2.6.2, and when a slicing
has label (h, k), h (resp. k) indicates the maximal width of a horizontal block that may
be added (resp. the maximal height of a vertical block that may be added). In the case of
m-row-restricted slicings, when a vertical block is added to the right, the maximal width of
a horizontal block that may be added afterward increases by 1, except if it was m already,
in which case it stays at m.

2.6.3 Functional equations for skinny and row-restricted slicings

In this subsection we will set out the functional equations satisfied by the generating func-
tions of m-skinny slicings and m-row-restricted slicings. The solutions of these functional
equations will then be discussed in the following two subsections.

We begin by treating separately the set of 0-skinny slicings. From Theorem 2.6.2,
0-skinny slicings grow according to rule Ω0-Sk,

Ω0-Sk =



(1, 1)

(h, k)  (1, k + 1), (2, k + 1) . . . , (h, k + 1),

(1, 1), (1, 2), . . . , (1, k − 1),

(h+ 1, k).
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Now let F0-Sk(u, v) be the generating function of 0-skinny slicings,

F0-Sk(x;u, v) ≡ F0-Sk(u, v) =
∑
α

xn(α)uh(α)vk(α)

where α ranges over all 0-skinny slicings, and the variable x takes into account the size
n(·) of the slicing, while u and v mark the labels h and k of the object. The rule Ω0-Sk can
be translated into the following functional equation

F0-Sk(u, v) = xuv +
xuv

1− u
[F0-Sk(1, v)− F0-Sk(u, v)]

+
xu

1− v
[vF0-Sk(1, 1)− F0-Sk(1, v)] + xuF0-Sk(u, v). (2.3)

Next, recall that 1-skinny slicings are exactly Schröder slicings, whose generating function
is given by FSch(x) in Equation (2.1).

Therefore, fix some m ≥ 2. For any i < m (resp. i = m), let Fi(x;u, v) be the trivariate
generating function of m-skinny slicings whose label according to rule Ωm-Sk is of the form
(i, ·) (resp. (j, ·) for any j ≥ m),

Fi(x;u, v) ≡ Fi(u, v) =
∑
α

xn(α)uh(α)vk(α),

where α ranges over all m-skinny slicings such that h(α) = i (resp. h(α) = j, with j ≥ m).
Then, for any m ≥ 2, the trivariate generating function of m-skinny slicings is given by

Fm-Sk(x;u, v) ≡ Fm-Sk(u, v) =
∑
i

Fi(u, v),

and the rule Ωm-Sk translates into the following system of functional equations,

F1(u, v) = xuv + xuv [F1(1, v) + F2(1, v) + . . .+ Fm(1, v)]
...

Fi(u, v) =
xuiv

1− v
[Fi−1(1, 1)− Fi−1(1, v)] + xuiv [Fi(1, v) + . . .+ Fm(1, v)]

... for 1 < i < m,

Fm(u, v) =
xumv

1− v
[Fm−1(1, 1)− Fm−1(1, v)] +

xum+1

1− v
[vFm(1, 1)− Fm(1, v)]

+ xuFm(u, v) +
xuv

1− u
[
um−1Fm(1, v)− Fm(u, v)

]
.

(2.4)

(2.5)

(2.6)

Note that by definition Fi(u, v) = uiFi(1, v) for all i < m, but this does not hold for i = m.

Lastly, we consider m-row-restricted slicings. As previously mentioned, m = 0 leads to
a trivial combinatorial class, while m = 1 yields the family of Catalan slicings, whose size
generating function is reported in Section 1.3.6 on page 33 in Equation (1.7).
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We thus fix some m ≥ 2. The succession rule Ωm-RR yields a system of functional
equations satisfied by the generating function of m-row-restricted slicings. More precisely,
for any i ≤ m, let Gi(x;u, v) be the trivariate generating function of m-row-restricted
slicings whose label according to rule Ωm-RR is of the form (i, ·),

Gi(x;u, v) ≡ Gi(u, v) =
∑
α

xn(α)uh(α)vk(α),

where α ranges over all m-skinny slicings such that h(α) = i. Also in this case, for any
m ≥ 2, the trivariate generating function of m-row-restricted slicings is given by

Gm-RR(x;u, v) ≡ Gm-RR(u, v) =
∑
i

Gi(u, v).

Note that Gi(u, v) = uiGi(1, v) for all i ≤ m, which makes the variable u unnecessary.
Rule Ωm-RR translates into the following system,

G1(u, v) = xuv + xuv [G1(1, v) +G2(1, v) + . . .+Gm(1, v)]
...

Gi(u, v) =
xuiv

1− v
[Gi−1(1, 1)−Gi−1(1, v)] + xuiv [Gi(1, v) + . . .+Gm(1, v)]

... for 1 < i < m,

Gm(u, v) =
xumv

1− v
[Gm(1, 1)−Gm(1, v) +Gm−1(1, 1)−Gm−1(1, v)] + xumvGm(1, v),

or equivalently, written without u in Hi(v) ≡ Gi(1, v),

H1(v) = xv + xv [H1(v) +H2(v) + . . .+Hm(v)]

...

Hi(v) =
xv

1− v
[Hi−1(1)−Hi−1(v)] + xv [Hi(v) + . . .+Hm(v)] for 1 < i < m,

...

Hm(v) =
xv

1− v
[Hm(1)−Hm(v) +Hm−1(1)−Hm−1(v)] + xvHm(v).

(2.7)

(2.8)

(2.9)

2.6.4 The special case of 0-skinny and 2-row-restricted slicings

In this subsection we prove the following surprising result, for which we presently have no
bijective explanation.

Theorem 2.6.4. The number of 2-row-restricted slicings is equal to the number of 0-skinny
slicings, for any fixed size.

We first solve the case of 2-row-restricted slicings, and obtain the following.
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Theorem 2.6.5. The generating function H(x) of 2-row-restricted slicings satisfies the
functional equation

H(x) =
x(H(x) + 1)

1− x(H(x) + 1)2
. (2.10)

Proof. The succession rule associated with the growth of 2-row-restricted slicings is

Ω2-RR =


(1, 1)

(h, k)  (1, k + 1), . . . , (h, k + 1),

(2, 1), (2, 2), . . . , (2, k)

and the corresponding system of functional equations is
H1(v) = xv + xv(H1(v) +H2(v))

H2(v) =
xv

1− v
(H2(1)−H2(v) +H1(1)−H1(v)) + xvH2(v).

(2.11)

The quantity we wish to solve is the generating function of 2-row-restricted slicings, given
by H(x) ≡ G2-RR(x; 1, 1) = H1(1) +H2(1). Cancelling H1(v) between (2.11), we arrive at

K(v)H2(v) =
xv

1− v

(
−xv

1− xv
+H1(1) +H2(1)

)
where

K(v) = 1− xv +
xv

1− v
+

x2v2

(1− v)(1− xv)
.

This equation is susceptible to the kernel method (see Section 1.3.6 on page 33). The
equation K(v) = 0 is cubic in v, and one of the three roots has a power series expansion
in x (the other two are not analytic at x = 0). Letting λ(x) ≡ λ denote this root, we then
have

H(x) = H1(1) +H2(1) =
xλ

1− xλ
.

It follows that

λ =
H

x(H + 1)
,

and the condition K(λ) = 0 rewrites as

xH3 + 2xH2 + (2x− 1)H + x = 0 , (2.12)

or equivalently, Equation (2.10).

Remark 2.6.6. It follows that the sequence for 2-row-restricted slicings is (up to the first
term) the same as sequence A106228 in [132]. Indeed, the generating function S of sequence
A106228 is characterized by xS3−xS2+(x−1)S+1 = 0 [3], and with (2.12) it is immediate
to check that H + 1 satisfies this equation.
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Proof of Theorem 2.6.4. The generating function F0-Sk(u, v) of 0-skinny slicings satisfies
Equation (2.3), and this equation can also be solved via the kernel method. However,
things are somewhat more complicated here, due to the presence of two catalytic variables.
First, we rearrange the equation into the kernel form

L(u, v)F0-Sk(u, v) = xuv + xu

(
v

1− u
− 1

1− v

)
F0-Sk(1, v) +

xuv

1− v
F0-Sk(1, 1)

where
L(u, v) = 1− xu+

xuv

1− u
.

The equation L(u, v) = 0 is quadratic in u, and one of the two roots is a power series in x
with coefficients in Z[v] (the other is not analytic at x = 0). We denote this root by

µ(x, v) ≡ µ(v) =
1 + x− xv −

√
1− 2x− 2xv + x2 − 2x2v + x2v2

2x
.

It follows that

M(v)F0-Sk(1, v) = v +
v

1− v
F0-Sk(1, 1) where M(v) =

1

1− v
− v

1− µ(v)
.

Now the kernel method can be applied again – the equation M(v) = 0 is (after rearrange-
ment) quartic in v, namely, it is 4xv(1−v+xv−xv2 +xv3) = 0. One of the three non-zero
roots of this equation has a power series expansion in x. Denoting by κ(x) ≡ κ this root,
we finally have F0-Sk(1, 1) = κ− 1. Some elementary manipulations in Maple show that
F0-Sk(1, 1) also satisfies (2.10).

We point out that D. Callan indicates in [132] that F0-Sk ≡ F0-Sk(1, 1) is also the
generating function of Schröder paths with no triple descents, i.e. having no occurrences of
the factor DDD. It would be interesting to provide a bijection between Schröder slicings
and Schröder paths whose restriction to 0-skinny slicings yields a bijection with Schröder
paths having no triple descents.

Remark 2.6.7. It does not hold in general that there are as many m-skinny slicings as
(m+2)-row-restricted slicings: already for m = 1, there are 91 3-row-restricted slicings but
90 Schröder ( i.e. 1-skinny) slicings of size 5. More precisely, out of the 92 Baxter slicings

of size 5, only is not 3-row-restricted, but both and are not Schröder slicings.

2.6.5 Generating functions of m-skinny and m-row-restricted slic-
ings for general m

In this final subsection, we outline an approach for solving the generating functions of
m-skinny and m-row-restricted slicings, for arbitrary m. While this method is provably
correct for small m, we do not know how to prove that all of the steps always work, and
the following thus remains a conjecture.



96 Chapter 2. Slicings of parallelogram polyominoes

m 0 1 2 3 4 5
m-row 1/(1− x) GCat(x; 1) Eq. (2.10) Eq. (2.17) Eq. (2.18) Eq. (2.19)
-restricted §2.6.2 §1.3.6 Thm 2.6.5 p.99 p.99 p.99
m-skinny Eq. (2.10) FSch(x) Eq. (2.20) Eq. (2.21)

Thm 2.6.4 Thm 2.5.11 p.100 p.100

Table 2.2: For small values of m, the statement of Conjecture 2.6.8 holds. Each cell of the
table gives the corresponding generating function and/or an equation characterizing it.

Conjecture 2.6.8. For all finite m ≥ 0, the generating functions of m-skinny and m-row-
restricted slicings are algebraic.

Table 2.2 summarizes the cases for which we know that the above statement holds,
either from previous results in this paper, or from the method described below.

We will mostly focus on m-row-restricted slicings, and briefly explain at the end how to
modify the method to solve m-skinny slicings. In the following it is assumed that m ≥ 3.

Generating functions of m-row-restricted slicings

The method used to treat the case of m-row-restricted slicings can be summarised as
follows:
Step 1. Note that the system (2.7)–(2.9) can be rewritten in the form of a matrix equation

Km(v)Hm(v) = Bm(v)Hm(1) + Cm(v), (2.13)

where

Hm(v) =

H1(v)
...

Hm(v)

 , Km(v) =



1− xv −xv −xv −xv · · · −xv
xv

1−v 1− xv −xv −xv · · · −xv
0 xv

1−v 1− xv −xv · · · −xv
...

. . . . . . . . . . . .
...

0 0 · · · xv
1−v 1− xv −xv

0 0 0 · · · xv
1−v 1− xv + xv

1−v


,

Bm(v) =



0 0 0 0 · · · 0
xv

1−v 0 0 0 · · · 0

0 xv
1−v 0 0 · · · 0

0 0 xv
1−v 0 · · · 0

...
...

. . . . . . . . .
...

0 0 0 · · · xv
1−v

xv
1−v


and Cm(v) =


xv
0
...
0

 .

Step 2. The determinant |Km(v)| is a rational function of x and v which can be shown
to be not identically zero for any m. It follows that, in general, Km(v) has an inverse.
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Write K∗m(v) = |Km(v)|K−1
m (v) (the transpose of the matrix of cofactors of Km(v)). It can

further be shown that none of the elements of the last row of K∗m(v) are identically zero.

Step 3. Multiply (2.13) on the left by K∗m(v) to give

|Km(v)|Hm(v) = K∗m(v) [Bm(v)Hm(1) + Cm(v)] . (2.14)

This can be viewed as a system of m kernel equations, where the kernel (namely |Km(v)|)
is the same for each. The left-hand side of the m-th equation of (2.14) is |Km(v)|Hm(v),
while the right-hand side is a linear combination of all the m unknowns H1(1), . . . , Hm(1).
Furthermore, note that in (2.7)–(2.9), the unknowns Hm−1(1) and Hm(1) only appear
together as Hm−1(1) + Hm(1). Writing this latter quantity as H(m−1)+m(1), we now see
that there are really only m− 1 unknowns on the right-hand side of (2.14).

Step 4. The equation |Km(v)| = 0 can be shown to have m − 2 roots (in the variable v)
which are Puiseux series in x. Denote these roots by ν1(x), . . . , νm−2(x).

Step 5. Substitute v = νi(x) into the first of the m equations comprising the system (2.14),
for i = 1, . . . ,m− 2. This yields a system of m− 2 linear equations in m− 1 unknowns.

Step 6. To obtain one more equation, set v = 1 in (2.7) (again combining Hm−1(1)+Hm(1)
as H(m−1)+m(1)).

Step 7. Solve this entire linear system of m− 1 equations with m− 1 unknowns, and add
all solutions together to obtain H(x).

It is the validity of Step 7 which we are unable to verify in general, as further discussed
in Remark 2.6.12. The validity of Steps 1 to 6 is explained below. Theorem 2.6.9 and 2.6.10
are used to justify Step 2, while Corollary 2.6.11 is needed for Step 4.

Theorem 2.6.9. For m ≥ 3, the determinant |Km(v)| of Km(v) satisfies the recurrence

|Km(v)| = (1− xv)|Km−1(v)|+ xv

m−2∑
j=2

(−1)j
(

xv

1− v

)j−1

|Km−j(v)|

+ (−1)m+1xv(1− xv)

(
xv

1− v

)m−2

(2.15)

with
|K2(v)| = 1− 2xv + x2v2 +

xv

1− v
.

Moreover, for m ≥ 3, |Km(v)| is of the form

|Km(v)| = (1− v)m−2 + Pm(x, v)

(1− v)m−2
, (2.16)

where Pm(x, v) is a non-trivial polynomial in x and v satisfying Pm(0, v) = 0, and with
(1− v) not being a factor of Pm(x, v).
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Proof. These results about the determinant of Km(v) come from its almost-triangular
structure.

First, to prove Equation (2.15), expand the determinant of Km(v) through its first row.
The (1, 1) minor is |Km−1(v)|. For j = 2, . . . ,m − 2, the (1, j) minor can be expanded a
further j − 1 times to eventually yield |Km−j(v)|. The (1,m − 1) and (1,m) minors are
determinants of upper triangular matrices, and they can be combined to give the final term
in (2.15).

Note that, comparing the expressions of |Km(v)| and |Km−1(v)| obtained from (2.15),
the same equation can be rewritten as a three-term recurrence, namely

|Km(v)| = 1

1− v
((

1− v − 2xv + xv2
)
|Km−1(v)|+ xv|Km−2(v)|

)
,

with initial conditions

|K1(v)| = 1− v + xv2

1− v
, and K2(v)| = 1− 2xv + x2v2 +

xv

1− v
.

From that, Equation (2.16) can be proved by induction on m.

Theorem 2.6.10. None of the elements of the last row of K∗m(v) are identically zero.

Proof. From Theorem 2.6.9, |Km(v)| is not identically zero. So, proving this theorem
amounts to showing that none of the elements of the last row of K−1

m (v) are identically
zero, which in turn means that none of the cofactors Ci,m of Km(v) are zero, for 1 ≤ i ≤ m.

Let K̂m−1(v) be the matrix obtained by deleting the last row and column of Km(v).
Similarly to the proof of Theorem 2.6.9, we can see that |K̂m(v)| is of the form Q/(1− v)p

with Q a polynomial and p some non-negative integer. Moreover |K̂m(0)| = 1. We can
conclude that |K̂m(v)| is not identically zero for any m.

It is straightforward to recursively expand the cofactors of Km(v); one obtains

C1,m = (−1)m+1

(
xv

1− v

)m−1

C2,m = (−1)m(1− xv)

(
xv

1− v

)m−2

Ci,m = (−1)m+i

(
xv

1− v

)m−i
|K̂i−1(v)| for 3 ≤ i ≤ m.

It follows that none of these terms are identically zero.

Corollary 2.6.11. For m ≥ 3 the equation |Km(v)| = 0 has m − 2 solutions in v which
can be expressed as Puiseux series in x with no negative powers; that is, there are m − 2
roots in v which are finite at x = 0.
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Proof. The fact that (1− v) does not divide Pm(x, v) means that nothing cancels between
the numerator and denominator of Equation (2.16), so finding roots of |Km(v)| devolves
to finding roots of the numerator

Nm(x, v) = (1− v)m−2 + Pm(x, v).

The fact that Pm(0, v) = 0 means that Nm(x, v) → (1 − v)m−2 as x → 0. If Pm(x, v) has
degree p in v, then Nm(x, v) is a polynomial of degree max(m − 2, p). Since the roots of
any polynomial are continuous functions of the coefficients of the polynomial, it follows
that as x → 0, we must have m − 2 roots which approach 1. If p > m − 2 there will be
p −m + 2 remaining roots; these cannot approach any finite complex number, and since
they are algebraic functions of x, they must each diverge like cx−α for some complex c and
real α > 0.

Remark 2.6.12. It is important to note that the m − 2 solutions to |Km(v)| = 0 of
Corollary 2.6.11 and denoted by ν1(x), . . . νm−2(x) in Step 4 have not been shown to be
distinct. In order to prove the correctness of our method for arbitrary m, we would need
to show that those m − 2 roots, viewed as functions (or Puiseux series) of x, are linearly
independent. Of course linear independence would automatically imply distinctness.

Moreover, as to prove the validity of Step 7, it would be also necessary to show that the
(m− 1)-th equation obtained in Step 6 is independent of those obtained in Step 5.

Although the above method is not proved for general m, it has been verified manually
for m ≤ 5.

The series expansion of the generating function of 3-row-restricted slicings is

x+2x2+6x3+22x4+91x5+405x6+1893x7+9163x8+45531x9+230902x10+O(x11). (2.17)

With some help from Mathematica, and here specifically from M. Kauers’ “Guess”
package, one finds that this generating function is a root of the cubic polynomial

x+ 2x2 + x3 + (−1− 2x+ 2x2 + 3x3)H + (2− 2x2 + 3x3)H2 + (−1 + 3x− 2x2 + x3)H3.

The generating functions for m = 4 and m = 5 have the respective series expansions

x+2x2+6x3+22x4+92x5+421x6+2051x7+10449x8+55023x9+297139x10+O(x11), (2.18)

x+2x2+6x3+22x4+92x5+422x6+2073x7+10724x8+57716x9+320312x10+O(x11). (2.19)

By construction these functions must be algebraic, but as the order of the kernel equation
|Km(v)| = 0 increases with m, we have been unable to determine precisely the polynomials
satisfied by these generating functions.
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Generating functions of m-skinny slicings

We now briefly turn to m-skinny slicings. The method is largely the same, with some
minor differences. Firstly, an additional step is required at the start.

Step 0∗. Substitute u = µ(v) into (2.6), where µ(v) is the power series root of L(u, v)
as defined in the proof of Theorem 2.6.4, eliminating the term Fm(u, v), leaving an equa-
tion relating Fm−1(1, 1), Fm−1(1, v), Fm(1, 1) and Fm(1, v). Meanwhile, the variable u is
unnecessary in Equations (2.4) and (2.5) for 1 ≤ i < m, so set it to 1.

The remaining steps (Steps 1-7) can then be adapted to this system of equations, with
Fi(1, v) taking the place of Hi(v). One key difference is that Fm−1(1, 1) and Fm(1, 1) cannot
be combined, so there are m unknowns that need to be solved instead of m− 1. However,
this time the kernel (again the determinant of a matrix) has m − 1 Puiseux series roots
instead of m− 2, which exactly compensates for this problem.

When m = 2 the desired solution F1(1, 1) + F2(1, 1) has the form

x+2x2+6x3+22x4+92x5+419x6+2022x7+10168x8+52718x9+279820x10+O(x11). (2.20)

This generating function is a root of the quintic polynomial

x3 − x2(1− 6x)F − 3x2(2− 5x)F 2 + x(2− 13x+ 19x2)F 3 + x(5− 12x+ 12x2)F 4

− (1− 3x+ 4x2 − 3x3)F 5.

When m = 3 the desired solution F1(1, 1) + F2(1, 1) + F3(1, 1) has the form

x+2x2+6x3+22x4+92x5+422x6+2070x7+10668x8+57061x9+314061x10+O(x11). (2.21)

By construction it is certainly algebraic, but we make no attempt to write down the
polynomial of which it is a root.



Chapter 3

Semi-Baxter permutations

Plan of the chapter

In this chapter we aim to enumerate a family of pattern-avoiding permutations, introduced
in [G4, G5] as semi-Baxter permutations owing to their close relation with the two Baxter
families of Baxter and twisted Baxter permutations. Indeed, in Section 3.1 we define semi-
Baxter permutations the permutations avoiding the vincular pattern 2 41 3, and we call
semi-Baxter numbers the numbers enumerating them. Then, we provide a tool to establish
if a combinatorial class is equinumerous to the family of semi-Baxter permutations: it is
the semi-Baxter succession rule of Section 3.1.2, which first appeared in [G4].

In Section 3.2, by using this tool other combinatorial structures, apart from the semi-
Baxter permutations, are proved to be enumerated by semi-Baxter numbers. In particular,
in Section 3.2.1 we tackle the problem of enumerating plane permutations (permutations
avoiding 2 14 3), which was set as an open problem by M. Bousquet-Mélou and S. But-
ler [35]. The number sequence enumerating plane permutations, registered as sequence
A117106 on [132], coincides with the semi-Baxter number sequence. This result was first
established in [96], yet in [G4] we provide another alternative proof of this fact. Moreover,
there were several conjectures related to sequence A117106 [22, 23, 110] that we will be able
to prove along this chapter. One of them is shown in Section 3.2.2, and involves another
family of combinatorial objects called inversion sequences. Whereas, in Section 3.2.3 we in-
troduce a completely new occurrence of semi-Baxter numbers in terms of lattice paths [G5],
more precisely in terms of labelled Dyck paths extending the definition of Baxter paths of
Chapter 2.

By means of standard tools, in Section 3.3, we translate the succession rule of Sec-
tion 3.1.2 into a functional equation whose solution is the generating function of semi-
Baxter numbers. Then, the functional equation is solved using an obstinate variant of the
kernel method, which ensures that the generating function solution is D-finite. Moreover,
in Section 3.3.2 we give an expression for that generating function which will allow us to
provide a closed formula for its coefficients by using the Lagrange inversion (Section 3.4.1).

In fact, Section 3.4 collects different expressions for the semi-Baxter numbers. By means
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of the first explicit formula provided we find a recurrence relation applying the method
of creative telescoping, which is described in Section 3.4.2. In addition, some other closed
formulas that had been conjectured in [23] are proved to be the semi-Baxter numbers in
Section 3.4.4. Eventually, careful estimates of binomial coefficients occurring in the closed
formulas for the semi-Baxter coefficients give their asymptotic behavior, as discussed in
Section 3.5.

3.1 Semi-Baxter numbers

We start defining the sequence of semi-Baxter numbers as the enumerative sequence of a
particular family of pattern-avoiding permutations. Although the first terms of this number
sequence have been known in literature as sequence A117106 on [132], no closed formulas or
recurrence were proved for these numbers. Nonetheless, the succession rule of Section 3.1.2
generating semi-Baxter numbers enables us to solve completely this enumerative problem
in the next few sections.

3.1.1 Definition of semi-Baxter permutations, and context

According to the definition of vincular pattern (Definition 1.4.3), we define semi-Baxter
permutations as follows.

Definition 3.1.1. A semi-Baxter permutation is a permutation that avoids the pattern
2 41 3.

Definition 3.1.2. The sequence of semi-Baxter numbers, {SBn}n≥1, is defined by taking
SBn to be the number of semi-Baxter permutations of length n.

The name “semi-Baxter” has been chosen because 2 41 3 is one of the two patterns whose
avoidance defines the family of the Baxter permutations - namely, the patterns 2 41 3 and
3 14 2 as defined in Section 1.4.2. It is well worth noticing that up to symmetry, we could
have defined semi-Baxter permutations by the avoidance of 3 14 2, and still obtained the
same number sequence enumerating semi-Baxter permutations. Nevertheless, the pattern
2 41 3 is also one of the two patterns whose avoidance defines the family of twisted Baxter
permutations - namely, 2 41 3 and 3 41 2 as described in Section 1.4.2 - which also are enu-
merated by the Baxter number sequence. Therefore, the family of permutations avoiding
2 41 3 contains both families of Baxter and twisted Baxter permutations as subfamilies,
motivating the name of semi-Baxter permutations.

The family of semi-Baxter permutations has already appeared in the literature, at least
on a few occasions. Indeed, it is an easy exercise to see that the avoidance of 2 41 3 is
equivalent to that of the barred pattern 253̄14, which has been studied with a quite exper-
imental perspective as one case among others by L. Pudwell in [121]. As already specified
the definition of barred patterns is not essential to our work, so we address to [121] for a
more precise definition. In addition, in that paper L. Pudwell suggests that the enumer-
ative sequence of semi-Baxter permutations and the one of permutations avoiding 2 14 3
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coincide, which was not expected. Her conjecture first formulated by means of enumera-
tion schemes, has later been proved in [96, Corollary 1.9(b)] as a special case of a more
general statement. Then, the sequence enumerating permutations avoiding 2 14 3, which
is registered on the OEIS [132] as sequence A117106, results to be our number sequence
{SBn}n≥1. We will provide later, in Section 3.2.1, an alternative and self-contained proof
that semi-Baxter permutations and permutations avoiding 2 14 3 are indeed equinumerous.

The first terms of the sequence A117106 [132] of semi-Baxter numbers SBn are

1, 2, 6, 23, 104, 530, 2958, 17734, 112657, 750726, 5207910, 37387881, 276467208, . . .

D. Bevan in [22, Theorem 13.1] first provided a functional equation whose solution
is the generating function of permutations avoiding 2 14 3. Although this solution is not
known, by iterating the functional equation D. Bevan computed up to 37 terms (determined
in twelve hours) of the number sequence A117106 [132]. Moreover, no formula (closed
or recursive) are proved in [22] for the semi-Baxter numbers SBn. There is however a
conjectured explicit formula related to Apéry numbers, which, in addition, conjectures
information about their asymptotic behavior (see Remark 3.5.2 in Section 3.5).

Another recursive formula for SBn has been conjectured by M. Martinez and C. Savage
in [110], in relation with inversion sequences avoiding some patterns (definition and precise
statement are provided in Subsection 3.2.2). Finally, some other closed formulas for SBn

have been conjectured by D. Bevan in [23].

All the above partial and conjectured results on the semi-Baxter number sequence will
be resolved along this chapter thanks to the succession rule for semi-Baxter permutations
provided in the next subsection.

3.1.2 Semi-Baxter succession rule

Throughout this and the following chapters we define growths for family of permutations
by performing “local expansions” on the right of any permutation π. More precisely, when
inserting a ∈ {1, . . . , n + 1} on the right of any π of length n, we obtain the permutation
π′ = π′1 . . . π

′
nπ
′
n+1 where π′n+1 = a, π′i = πi if πi < a and π′i = πi + 1 if πi ≥ a. We use the

notation π · a to denote π′. For instance, 1 4 2 3 · 3 = 1 5 2 4 3. This is easily understood
on the graphical representation of permutations: a local expansion corresponds to adding
a new point on the right of the grid, which lies vertically between two existing points (or
below the lowest, or above the highest), and finally normalizing the picture obtained - see
Figure 3.1.

Proposition 3.1.3. Semi-Baxter permutations can be generated by the following succession
rule

Ωsemi =


(1, 1)

(h, k)  (1, k + 1), . . . , (h, k + 1)
(h+ k, 1), . . . , (h+ 1, k).
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Proof. First, observe that removing the last point of a permutation avoiding 2 41 3, we
obtain a permutation that still avoids 2 41 3. So, a growth for semi-Baxter permutations
can be obtained with local expansions on the right. For π being a semi-Baxter permutation
of length n, the active sites are by definition the points a (or equivalently the values a)
such that π · a is also semi-Baxter, i.e., avoids 2 41 3. Necessarily, all the other points
a ∈ {1, . . . , n+ 1} are called non-active sites.

An occurrence of 2 31 in π is a subsequence πjπiπi+1 (with j < i) such that πi+1 < πj <
πi. Obviously, the non-active sites a of π are characterized by the fact that a ∈ (πj, πi]
for some occurrence πjπiπi+1 of 2 31. We call a non-empty descent of π a pair πiπi+1 such
that there exists πj that makes πjπiπi+1 an occurrence of 2 31. Note that in the case where
πn−1πn is a non-empty descent, choosing πj = πn + 1 always gives an occurrence of 2 31,
and it is the smallest possible value of πj for which πjπn−1πn is an occurrence of 2 31.

To each semi-Baxter permutation π of length n, we assign a label (h, k), where h (resp.
k) is the number of the active sites of π smaller than or equal to (resp. greater than) πn.
Remark that h, k ≥ 1, since 1 and n+ 1 are always active sites. Moreover, the label of the
permutation π = 1 is (1, 1), which is the axiom in Ωsemi.

Consider a semi-Baxter permutation π of length n and label (h, k). Proving Proposi-
tion 3.1.3 amounts to showing that permutations π · a have labels (1, k + 1), . . . , (h, k +
1), (h+ k, 1), . . . , (h+ 1, k) when a runs over all active sites of π. Figure 3.1, which shows
an example of semi-Baxter permutation π with label (2, 2) and all the corresponding π · a
with their labels, should help understanding the case analysis that follows.

(1,3)(2,2) (2,3) (3,2) (4,1)

Figure 3.1: The growth of a semi-Baxter permutation. Active sites are marked with ♦,
non-active sites by ×, and non-empty descents are represented with bold blue lines.

Let a be an active site of π. Assume first that a > πn (this happens exactly k times),
so that π · a ends with an ascent. The occurrences of 2 31 in π · a are the same as in π.
Consequently, the active sites are not modified, except that the active site a of π is now
split into two actives sites of π · a: one immediately below a and one immediately above.
It follows that π · a has label (h+ k+ 1− i, i), if a is the ith active site from the top. Since
i ranges from 1 to k, this gives the second row of the production of Ωsemi.

Assume next that a = πn. Then, π · a ends with a descent, but an empty one. Similar
to the above case, we therefore get one more active site in π · a than in π, and π · a has
label (h, k + 1), the last label in the first row of the production of Ωsemi.

Finally, assume that a < πn (this happens exactly h − 1 times). Now, π · a ends with
a non-empty descent, which is (πn + 1)a. It follows from the discussion at the beginning
of this proof that all sites of π · a in (a + 1, πn + 1] become non-active, while all others
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remain active if they were so in π (again, with a replaced by two active sites surrounding
it, one below it and one above). If a is the ith active site from the bottom, it follows that
π · a has label (i, k + 1), hence giving all missing labels in the first row of the production
of Ωsemi.

3.2 Other semi-Baxter structures

This section shows that semi-Baxter numbers are not solely the enumerative sequence of
semi-Baxter permutations. As already mentioned in Section 3.1, they form the enumerative
sequence of another family of pattern-avoiding permutations (Section 3.2.1), as well as of a
special family of inversion sequences (Section 3.2.2). A last occurrence of these numbers is
presented in Section 3.2.3 in terms of lattice paths: the semi-Baxter paths defined in [G5]
provide a completely new combinatorial interpretation of the semi-Baxter number sequence
and naturally extend the definition of Baxter paths of Section 2.1.4.

3.2.1 Plane permutations

Definition 3.2.1. A plane permutation is a permutation that avoids the vincular pattern
2 14 3 (or equivalently, the barred pattern 213̄54).

The enumeration of plane permutations has received a fair amount of attention in
the literature. The problem first arose as an open problem in [35], where permutations
avoiding 213̄54 were identified as a superset of forest-like permutations investigated in [35].
A forest-like permutation is any permutation whose Hasse graph is a forest - the Hasse
graph of π ∈ Sn is constructed on the vertex set {1, . . . , n} by joining i and j if and only
if π(i) < π(j), with i < j, and there is no k, i < k < j, such that π(i) < π(k) < π(j).
In [35] a characterisation of forest-like permutations is provided in terms of pattern-avoiding
permutations, from which it follows that the Hasse graph of a permutation avoiding 213̄54
is plane (i.e. non-crossing). Hence, the authors of [35] named plane permutations those
avoiding 213̄54 and called for their enumeration.

Now, we go further in enumerating plane permutations proving that there exists a
growth for plane permutations, which yields Ωsemi as succession rule.

Proposition 3.2.2. Plane permutations can be generated by Ωsemi.

Proof. The proof of this statement follows applying the same steps as in the proof of
Proposition 3.1.3. First, observe that removing the last point of a permutation avoiding
2 14 3, we obtain a permutation that still avoids 2 14 3. So, a generating tree for plane
permutations can be obtained with local expansions on the right.

For π a plane permutation of length n, the active sites are by definition the values a
such that π · a avoids 2 14 3. An occurrence of 2 13 in π is a subsequence πjπiπi+1 (with
j < i) such that πi < πj < πi+1. Note that the non-active sites a of π are characterized
by the fact that a ∈ (πj, πi+1] for some occurrence πjπiπi+1 of 2 13. We call a non-empty
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ascent of π a pair πiπi+1 such that there exists πj that makes πjπiπi+1 an occurrence of
2 13. As in the proof of Proposition 3.1.3, if πn−1πn is a non-empty ascent, πj = πn−1 + 1
is the smallest value of πj such that πjπn−1πn is an occurrence of 2 13.

Now, to each plane permutation π of length n, we assign a label (h, k), where h (resp.
k) is the number of the active sites of π greater than (resp. smaller than or equal to) πn.
Remark that h, k ≥ 1, since 1 and n+ 1 are always active sites. Moreover, the label of the
permutation π = 1 is (1, 1), which is the axiom in Ωsemi. The proof is concluded by showing
that the permutations π · a have labels (1, k + 1), . . . , (h, k + 1), (h + k, 1), . . . , (h + 1, k),
when a runs over all active sites of π.

If a ≤ πn, π · a ends with a descent, and it follows as in the proof of Proposition 3.1.3
that the active sites of π · a are the same as those of π (with a split into two sites). This
gives the second row of the production of Ωsemi (the label (h + k + 1 − i, i) for 1 ≤ i ≤ k
corresponding to a being the ith active site from the bottom).

If a = πn + 1, π · a ends with an empty ascent, and hence has label (h, k + 1) again as
in the proof of Proposition 3.1.3.

Finally, if a > πn + 1 (which happens h− 1 times), π · a ends with a non-empty ascent.
The discussion at the beginning of the proof implies that all sites of π · a in (πn + 1, a]
are deactivated while all others remain active. If a is the ith active site from the top, it
follows that π · a has label (i, k + 1), hence giving all missing labels in the first row of the
production of Ωsemi.

(3,1)(1,4) (3,2)(2,3)(2,2)

Figure 3.2: The growth of a plane permutation. Active sites are marked with ♦, non-active
sites by ×, and non-empty ascents are represented with bold blue lines.

Because the two families of semi-Baxter and plane permutations grow according to the
same succession rule, we obtain the following.

Corollary 3.2.3. Semi-Baxter permutations and plane permutations are in bijection. Thus,
SBn is also the number of plane permutations of length n.

Indeed, the two generating trees for semi-Baxter and for plane permutations which both
are encoded by Ωsemi are of course isomorphic. This provides a size-preserving bijection
between these two families. However, it is not defined directly on the objects themselves,
but only referring to the generating tree structure. So we leave open the problem of
describing a direct bijection between the family of semi-Baxter permutations and the one
of plane permutations.
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3.2.2 Inversion sequences In(>,≥,−)

In line with the study of patterns in permutations, the authors of [58] started studying a
similar notion of pattern in inversion sequences.

Definition 3.2.4. An inversion sequence of size n is an integer sequence (e1, e2, . . . , en)
satisfying 0 ≤ ei < i, for all i ∈ {1, 2, . . . , n}.

Given a word q = q1 . . . qk, an inversion sequence contains the pattern q, if there exist
k indices i1 < . . . < ik such that the word ei1 . . . eik is order-isomorphic to q.

The notion of pattern in inversion sequences was further analysed in [110], where the
authors considered the following generalisation of pattern avoidance.

Definition 3.2.5. Let (ρ1, ρ2, ρ3) be a triple of binary relations. The set In(ρ1, ρ2, ρ3) is
defined as the set of all inversion sequences (e1, e2, . . . , en) of size n such that there are no
three indices i < j < k, for which it holds ei ρ1 ej ρ2 ek and ei ρ3 ek.

For instance, the inversion sequence (0, 1, 1, 2) does not belong to I4(=, <,<), because
e2 = e3 < e4. The authors of [110] attempted to provide a comprehensive classification
of all the possible number sequences {in}n≥0, where in = |In(ρ1, ρ2, ρ3)|, for any triple
(ρ1, ρ2, ρ3) of relations in the set {<,>,≤,≥,=, 6=,−}.1

In this framework many conjectures arise [110, Table 2], and one of them involves
the family of inversion sequences avoiding the triple (>,≥,−), which is thought to be
equinumerous to the family of plane permutations [110, Section 2.27]. Thanks to the
succession rule of Section 3.1.2 this conjecture can be easily proved by showing that this
family of inversion sequence can be generated by Ωsemi.

In addition, in [110, Section 2.27] it is proved that the set In(>,≥,−) is equinumerous
to the sets In(−, <,≥), and In(≥, >,−), and In(−,≤, >). Thus, proving that semi-Baxter
numbers enumerate inversion sequences avoiding the triple of relations (>,≥,−) implicitly
solves the enumeration problem of exactly four cases of [110, Table 2].

The set of inversion sequences In(>,≥,−) is proved in [110] to coincide with the set of
inversion sequences of size n avoiding both patterns 210 and 100. Based on the results pre-
viously established in [58] for the family of inversion sequences avoiding 210, the following
properties and formulas are proved in [110].

Let a weak left-to-right maximum of an inversion sequence e = (e1, e2, . . . , en) be any
entry ei satisfying ei ≥ ej, for all j ≤ i. Every inversion sequence e can be decomposed
in etop, which is the (weakly increasing) sequence of weak left-to-right maxima of e, and
ebottom, which is the (possibly empty) sequence of the remaining entries of e.

Proposition 3.2.6 ([110], Observation 10). An inversion sequence e avoids 210 and 100
if and only if etop is weakly increasing and ebottom is strictly increasing.

1The relation − on a set S coincides with S × S.
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The enumeration of inversion sequences avoiding 210 and 100 is solved in [110, Theorem
32], with a summation formula reported in Proposition 3.2.7 below. The first terms pro-
duced by iterating the following equation (3.1) had been seen to match those enumerating
plane permutations produced by D. Bevan in [22].

Let top(e) = max (etop) and bottom(e) = max (ebottom). If ebottom is empty, the conven-
tion is to take bottom(e) = −1.

Proposition 3.2.7 ([110], Theorem 32). Let Qn,a,b be the number of e ∈ In(>,≥,−) with
top(e) = a and bottom(e) = b. Then,

Qn,a,b =
b−1∑
i=−1

Qn−1,a,i +
a∑

j=b+1

Qn−1,j,b ,

with initial conditions Qn,a,b = 0, if n ≤ a, and Qn,a,−1 = n−a
n

(
n−1+a

a

)
. Hence,

|In(>,≥,−)| =
n−1∑
a=0

a−1∑
b=−1

Qn,a,b =
1

n+ 1

(
2n

n

)
+

n−1∑
a=0

a−1∑
b=0

Qn,a,b. (3.1)

We prove the following conjecture stated in [110], thus showing that Equation (3.1)
generates semi-Baxter numbers.

Theorem 3.2.8. There are as many inversion sequences of size n avoiding 210 and 100
as plane permutations of length n. In other words, |In(>,≥,−)| = SBn.

Proof. We prove the statement by showing a growth for the family ∪nIn(>,≥,−) according
to Ωsemi. Given an inversion sequence e ∈ In(>,≥,−), we define this growth by adding a
new rightmost entry.

Let a = top(e) and b = bottom(e). From Proposition 3.2.6, it follows that f =
(e1, . . . , en, p) is an inversion sequence of size n + 1 avoiding 210 and 100 if and only if
n ≥ p > b.

Moreover, if p ≥ a, then f top comprises p in addition to the elements of etop, and
f bottom = ebottom; else if b < p < a, then f top = etop and f bottom comprises p in addition
to the elements of ebottom. Now, we assign to any e ∈ In(>,≥,−) the label (h, k), where
h = a− b and k = n− a.

The sequence e = (0) has label (1, 1), which is the axiom of Ωsemi, since a = top(e) = 0
and b = bottom(e) = −1. Let e be an inversion sequence of In(>,≥,−) with label (h, k).
The labels of the inversion sequences of In+1(>,≥,−) produced adding a rightmost entry
p to e are

• (h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k) when p = n, n− 1, . . . , a+ 1,

• (h, k + 1) when p = a,

• (1, k + 1), . . . , (h− 1, k + 1) when p = a− 1, . . . , b+ 1,

which concludes the proof that ∪nIn(>,≥,−) grows according to Ωsemi.
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3.2.3 Semi-Baxter paths

To our knowledge, only families of restricted permutations and inversion sequences are
known to be counted by the semi-Baxter numbers. Here, we provide a new occurrence of
these numbers in terms of labelled Dyck paths, that generalises the family of Baxter paths
of Section 2.1.4.

To this purpose, we recall that according to Definition 2.1.7 a free up step of a Dyck
path P is any up step of P not forming a DU factor.

Definition 3.2.9. A semi-Baxter path of semi-length n is a Dyck path of length 2n having
all its free up steps labelled according to the following constraint: the leftmost free up step
is labelled 1 and for every pair of free up steps (U ′, U ′′), with U ′ occurring before U ′′ and
no free up step between them, the label of U ′′ is in the range [1, h], where h ≥ 1 is the sum
of the label of U ′ with the number of D steps between U ′ and U ′′.

A semi-Baxter path can be obtained from a Dyck path by properly labelling its free
up steps as shown by the path on the left in Figure 3.3. Whereas the labelled path on
the right in Figure 3.3 is not a semi-Baxter path, because the last free up step is labelled
by 6, which is here a value outside of the range of Definition 3.2.9. One can notice that
semi-Baxter paths generalise Baxter paths comparing the following picture to Figure 2.4
(page 59).

Observe that as in any Baxter paths, the sequence of labels corresponding to consecutive
free up steps of a semi-Baxter paths has to be non-increasing.

3

633

1

1

1

1

3

5

Figure 3.3: A Dyck path of semi-length 9 whose free up step are labelled in two different
ways: the path on the left is a semi-Baxter path of semi-length 9, while the labelling on
the right does not satisfy Definition 3.2.9.

Let SBn denote the set of semi-Baxter paths of semi-length n. With Proposition 3.2.10
below, we prove that SB = ∪nSBn is enumerated by the sequence of semi-Baxter numbers.

Proposition 3.2.10. Semi-Baxter paths can be generated by rule Ωsemi.

Proof. Similarly to the growths of Dyck paths and Baxter paths, we make semi-Baxter
paths grow by insertion of a peak in any point of the last descent, as shown in Figure 3.4.
To any S ∈ SBn, denoting e the label of its rightmost free up step Ū (which always exists,
since the first step of the path is always a free up step), we assign the label (h, k), where
h is equal to e plus the number of down steps between Ū and the rightmost up step of
S (they might coincide) and k is the number of steps of the last descent of S. With this
labelling, we shall see that the growth of semi-Baxter paths can be encoded by Ωsemi.
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The unique semi-Baxter path in SB1 receives the label (1, 1), which is the axiom of
Ωsemi. From any S ∈ SBn of label (h, k), we perform two kinds of insertions, which we
shall see correspond to all productions of (h, k) in Ωsemi.

a) We add a peak at the beginning of the last descent of S. This means that the added
U step follows another up step and hence is free, while the number of down steps in
the last descent increases by one. Moreover, U receives a label, which can be any
value in the range [1, h]. If i is the label assigned to U , for 1 ≤ i ≤ h, then the path
produced has label (i, k + 1).

b) We add a peak immediately after any down step of the last descent of S. In this case
the added step U is not free, and hence carries no label. Denoting S = w · UDk

(with this U possibly labelled), the children of S so produced are w · UDjUDDk−j

for 1 ≤ j ≤ k, so they have labels (h+ j, k + 1− j).

3

1

11

1

1

1

1

11

1

11

1

11

1

1

(3,2)

(5,1)

(1,3)

(4,2)

(2,3) (3,3)

1 2

1

Figure 3.4: The growth of a semi-Baxter path of label (3, 2).

Observation 3.2.11. The set Bn of Baxter paths of semi-length n forms a subset of SBn,
for every n.

Proof. It holds that the label range for Baxter paths of Definition 2.1.8 on page 58 is always
contained into the label range of Definition 2.1.8, because any valley consists of exactly
one D step.

Moreover, note that by restricting the growth of Proposition 3.2.10 to the family of
Baxter paths we retrieve the growth provided in the proof of Proposition 2.1.9.

3.3 Generating function

In this section, we first translate the succession rule Ωsemi provided for enumerating semi-
Baxter permutations into a functional equation whose solution is the (multivariate) gen-
erating function of semi-Baxter numbers. Then, we approach the problem of solving the
resulting functional equation by using some variant of the kernel method, which has already
been used in Section 1.4.5 to solve the Baxter case. From it, a lot of information can be
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derived about the generating function of semi-Baxter numbers, and about these numbers
themselves. The results we obtain are shown in the next sections, and a Maple worksheet
recording the computations of the following proofs has been reported in Appendix A.

3.3.1 Functional equation

For h, k ≥ 1, let Sh,k(x) ≡ Sh,k denote the generating function of semi-Baxter permutations
having label (h, k). The rule Ωsemi translates into a functional equation for the generating
function S(x; y, z) ≡ S(y, z) =

∑
h,k≥1 Sh,k y

hzk.

Proposition 3.3.1. The generating function S(y, z) satisfies the following functional equa-
tion

S(y, z) = xyz +
xyz

1− y
(S(1, z)− S(y, z)) +

xyz

z − y
(S(y, z)− S(y, y)) . (3.2)

Proof. Starting from the growth of semi-Baxter permutations according to Ωsemi we write

S(y, z) = xyz + x
∑
h,k≥1

Sh,k
(
(y + y2 + · · ·+ yh)zk+1 + (yh+kz + yh+k−1z2 + · · ·+ yh+1zk)

)
= xyz + x

∑
h,k≥1

Sh,k

(
1− yh

1− y
y zk+1 +

1−
(
y
z

)k
1− y

z

yh+1zk

)

= xyz +
xyz

1− y
(S(1, z)− S(y, z)) +

xyz

z − y
(S(y, z)− S(y, y)) .

3.3.2 Semi-Baxter generating function

The aim of this subsection is to establish the nature of the function S(y, z), which denotes
the multivariate generating function of semi-Baxter permutations, where y (resp. z) takes
into account the first (resp. second) entry of each label of a semi-Baxter permutation.

From the previous section, S(y, z) satisfies Equation (3.2) that is a linear functional
equation with two catalytic variables, y and z, in the sense of Zeilberger [151]. A similar
functional equation has been given for Baxter permutations in Section 1.4.5 on page 48.
Nevertheless, Equation (3.2), and thus its solution S(y, z), is not symmetric in y and
z; hence, it differs substantially from the Baxter functional equation, although its shape
resembles it. This similarity however allows us to apply the obstinate variant of the kernel
method presented in Section 1.4.5 in order to solve Equation (3.2).

First, it is convenient to set y = 1 + a and collect all the terms having S(1 + a, z) in
them, obtaining the so-called kernel form of Equation (3.2):

K(a, z)S(1 + a, z) = xz(1 + a)− xz(1 + a)

a
S(1, z)− xz(1 + a)

z − 1− a
S(1 + a, 1 + a), (3.3)

where the kernel is

K(a, z) = 1− xz(1 + a)

a
− xz(1 + a)

z − 1− a
.
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For brevity, we refer to the right-hand side of Equation (3.3) by using the expression
R(x, a, z, S(1, z), S(1 + a, 1 + a)), where

R(x0, x1, x2, w0, w1) = x0x2(1 + x1)− x0x2(1 + x1)

x1

w0 −
x0x2(1 + x1)

x2 − 1− x1

w1.

The kernel function K(a, z) is quadratic in z, thus equation K(a, z) = 0 has two
solutions in z. Denoting Z+(a) and Z (a) the solutions of K(a, z) = 0 with respect to z,
we have

Z+(a) =
1

2

a+ x+ ax−Q
x(1 + a)

= (1 + a) + (1 + a)2x+
(1 + a)3(1 + 2a)

a
x2 +O(x3),

Z (a) =
1

2

a+ x+ ax+Q

x(1 + a)
=

a

(1 + a)x
− a− (1 + a)2x− (1 + a)3(1 + 2a)

a
x2 +O(x3),

where Q =
√
a2 − 2ax− 6a2x+ x2 + 2ax2 + a2x2 − 4a3x.

The kernel root Z is not a well-defined power series in x, whereas the other kernel
root Z+ is a power series in x whose coefficients are Laurent polynomials in a. So, setting
z = Z+, the function S(1 + a, z) is a convergent power series in x and the right-hand side
of Equation (3.3) is equal to zero,

R(x, a, Z+, S(1, Z+), S(1 + a, 1 + a)) = 0.

At this point following the usual kernel method approach (see Section 1.3.6 or Sec-
tion 1.3.7), we are stuck and cannot find a suitable expression for the solution S(1+a, 1+a),
because of the unknown term S(1, Z+).

Therefore, we follow the steps of the obstinate variant of the kernel method (Sec-
tion 1.4.5) and attempt to eliminate the term S(1, Z+) by exploiting transformations that
leave the kernel, K(a, z), unchanged. Examining the kernel shows that the transformations

Φ : (a, z)→
(
z − 1− a

1 + a
, z

)
and Ψ : (a, z)→

(
a,
z + za− 1− a
z − 1− a

)
leave the kernel unchanged and generate a group of order 10 - see Figure 3.5.

(a , z )

Φ
(
z−1−a

1+a
, z

)
Ψ

(
z−1−a

1+a
, z−1

a

)
Φ

(
z−1−a
az

, z−1
a

)
Ψ
(
z−1−a
az

, 1+a
a

)
Φ(

1
z−1

, 1+a
a

)
Ψ
(
a , (z−1)(1+a)

z−1−a

)
Φ
(

a
z−1−a ,

(z−1)(1+a)
z−1−a

)
Ψ
(

a
z−1−a ,

z
z−1−a

)
Φ
(

1
z−1

, z
z−1−a

)
Ψ

Figure 3.5: The orbit of (a, z) under the action of Φ and Ψ.
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Among all the elements of this group we consider the pairs (f1(a, z), f2(a, z)) such
that f1(a, Z+) and f2(a, Z+) are well-defined power series in x with Laurent polynomial
coefficients in a. More precisely, they are exactly the four pairs (f1(a, z), f2(a, z)) of the
first line of Figure 3.5, in addition to the pair (a, z). Consequently, these pairs share the
property that S(1 + f1(a, Z+), f2(a, Z+)) are convergent power series in x.

Hence, it follows that substituting each of these pairs for (a, z) in Equation (3.3) and
z = Z+, we obtain a system of five equations and with six overlapping unknowns, whose
left-hand sides are all equal to 0,



0 = R
(
x, a, Z+, S(1, Z+), S(1 + a, 1 + a)

)
0 = R

(
x,
Z+ − 1− a

1 + a
, Z+, S(1, Z+), S

(
1 +

Z+ − 1− a
1 + a

, 1 +
Z+ − 1− a

1 + a

))
0 = R

(
x,
Z+ − 1− a

1 + a
,
Z+ − 1

a
, S

(
1,
Z+ − 1

a

)
, S

(
1 +

Z+ − 1− a
1 + a

, 1 +
Z+ − 1− a

1 + a

))
0 = R

(
x,
Z+ − 1− a

aZ+

,
Z+ − 1

a
, S

(
1,
Z+ − 1

a

)
, S

(
1 +

Z+ − 1− a
aZ+

, 1 +
Z+ − 1− a

aZ+

))
0 = R

(
x,
Z+ − 1− a

aZ+

,
1 + a

a
, S

(
1,

1 + a

a

)
, S

(
1 +

Z+ − 1− a
aZ+

, 1 +
Z+ − 1− a

aZ+

))
.

(3.4)

Now, by eliminating all unknowns except S(1+a, 1+a) and S(1, 1+ ā), where as usual
ā denotes 1/a, System (3.4) reduces (after some work) to the following equation,

S(1 + a, 1 + a) +
(1 + a)2x

a4
S (1, 1 + ā) + P (a, Z+) = 0, (3.5)

where

P (a, z) =
(−z + 1 + a)

za4(z − 1)

(
− za4 + z2a4 − za3 + z2a3 − z3a2 − 2a2 + z2a2 + za2 − 4a

+ 5az − 3az2 + z3a+ 3z − z2 − 2
)
.

Note that the coefficient of S(1, 1 + ā) in (3.5) results to be equal to (1 + a)2xā4 only after
setting z = Z+ and simplifying the expression obtained. This coefficient is remarkable
since the function S(1, 1 + ā) is multiplied by a polynomial in which the highest power of
a is −2.

Then, the form of Equation (3.5) allows us to separate its terms according to the power
of a:

• S(1 + a, 1 + a) is a power series in x with polynomial coefficients in a whose lowest
power of a is 0,
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• S(1, 1 + ā) is a power series in x with polynomial coefficients in ā whose highest
power of a is 0; consequently, since (1+a)2xā4 = x(a−4 +2a−3 +a−2), we obtain that
(1 + a)2x ā4S(1, 1 + ā) is a power series in x with polynomial coefficients in ā whose
highest power of a is −2.

Then, when we expand the series −P (a, Z+) as a power series in x, the non-negative
powers of a in the coefficients must be equal to those of S(1 + a, 1 + a), while the negative
powers of a come from (1 + a)2x ā4S(1, 1 + ā).

In order to have a better expression for the series P (a, z), we perform a further substi-
tution setting z = w + 1 + a. More precisely, let W ≡ W (x; a) be the power series in x
defined by W = Z+− (1+a). We have the following expression for F (a,W ) := −P (a, Z+),

F (a,W ) = −P (a,W + 1 + a) = (1 + a)2 x+

(
1

a5
+

1

a4
+ 2 + 2a

)
xW

+

(
− 1

a5
− 1

a4
+

1

a3
− 1

a2
− 1

a
+ 1

)
xW 2

+

(
1

a4
− 1

a2

)
xW 3. (3.6)

Since the kernel function annihilates if z = W + 1 + a, namely K(a,W + 1 + a) = 0, the
function W is recursively defined by

W = xā(1 + a)(W + 1 + a)(W + a), (3.7)

Therefore, by using Equation (3.6) and Equation (3.7), we can express the generating
function of semi-Baxter permutations as follows.

Theorem 3.3.2. Let W (x; a) ≡ W be the unique formal power series in x such that

W = xā(1 + a)(W + 1 + a)(W + a).

The series solution S(y, z) of Equation (3.2) satisfies S(1 + a, 1 + a) = [F (a,W )]≥, where
[F (a,W )]≥ stands for the formal power series in x obtained by considering only those terms
in the series expansion that have non-negative powers of a, and the function F (a,W ) is
defined by

F (a,W ) = (1 + a)2 x+ (ā5 + ā4 + 2 + 2a) xW

+ (−ā5 − ā4 + ā3 − ā2 − ā+ 1) xW 2 + (ā4 − ā2) xW 3.

Note that in Theorem 3.3.2, W and F (a,W ) are algebraic series in x whose coefficients
are Laurent polynomials in a. It follows, as in [32, page 6], that S(1+a, 1+a) = [F (a,W )]≥

is D-finite, and hence also its specialisation S(1, 1).
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3.4 Semi-Baxter formulas

In this section we provide some explicit closed formulas for semi-Baxter numbers, as well
as a recurrence relation. The first explicit formula is shown in Section 3.4.1 and is obtained
directly from Theorem 3.3.2 by applying the Lagrange inversion formula. This expression is
rather complicated, yet hides a simple and nice recurrence presented in Section 3.4.3. Other
expressions are presented in Section 3.4.4: they were initially thought for enumerating plane
permutations though without any proof, and now, thanks to the recurrence of Section 3.4.3,
we are able to prove them. Appendix A.2 shows the calculations performed in this section.

3.4.1 Explicit closed formula

Using the Lagrange inversion formula of Theorem 1.2.6 on page 18, we can obtain from the
expression of S(1 + a, 1 + a) of Theorem 3.3.2 an explicit, though complicated, expression
for the coefficients of the semi-Baxter generating function S(1, 1).

Corollary 3.4.1. The number SBn of semi-Baxter permutations of length n is, for all
n > 1,

SBn= 1
n−1

∑n
j=0

(
n−1
j

)[(
n−1
j+1

) [(
n+j+1
j+5

)
+ 2
(
n+j+1

j

)]
+ 2
(
n−1
j+2

) [
−
(
n+j+2
j+5

)
+
(
n+j+1
j+3

)
−
(
n+j+2
j+2

)
+
(
n+j+1

j

)]
+ 3
(
n−1
j+3

) [(
n+j+2
j+4

)
−
(
n+j+2
j+2

)]]
.

Proof. The nth semi-Baxter number, SBn, is the coefficient of xn in S(1, 1), which we
denote as usual [xn]S(1, 1). Note that this number is also the coefficient [a0xn]S(1+a, 1+a),
and so by Theorem 3.3.2 it is the coefficient of a0xn in F (a,W ), namely

SBn = [a0xn−1]
(

(1 + a)2 +
(
ā5 + ā4 + 2 + 2a

)
W +

(
−ā5 − ā4 + ā3 − ā2 − ā+ 1

)
W 2

+
(
ā4 − ā2

)
W 3
)
.

This expression can be evaluated from [asxk]W i, for i = 1, 2, 3. Precisely,

SBn =[a5xn−1]W+ [a4xn−1]W+ 2[a0xn−1]W+ 2[a−1xn−1]W− [a5xn−1]W 2− [a4xn−1]W 2

+[a3xn−1]W 2− [a2xn−1]W 2− [a1xn−1]W 2+ [a0xn−1]W 2+ [a4xn−1]W 3− [a2xn−1]W 3.

The Lagrange inversion (Theorem 1.2.6) together with Equation (3.7) then prove that

[asxk]W i =
i

k

k−i∑
j=0

(
k

j

)(
k

j + i

)(
k + j + i

j + s

)
, for i = 1, 2, 3.
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We can then substitute this into the above expression for SBn and so, for n ≥ 2, express
SBn as

SBn =
n−1∑
j=0

FSB(n, j), where

FSB(n, j) =
1

n− 1

(
n− 1

j

)[(
n− 1

j + 1

)[(
n+ j + 1

j + 5

)
+ 2

(
n+ j + 1

j

)]

+2

(
n− 1

j + 2

)[
−
(
n+ j + 2

j + 5

)
+

(
n+ j + 1

j + 3

)
−
(
n+ j + 2

j + 2

)
+

(
n+ j + 1

j

)]

+3

(
n− 1

j + 3

)[(
n+ j + 2

j + 4

)
−
(
n+ j + 2

j + 2

)]]
. (3.8)

3.4.2 Creative telescoping

In this section we report a strategy that allows us to prove several expressions for semi-
Baxter numbers: a recurrence relation in Section 3.4.3 and different explicit formulas in
Section 3.4.4.

The method we are using was developed by D. Zeilberger [150], and it is known as the
method of creative telescoping. We report here the main guidelines of this method and a
rather simple example that explains how the method works. For a detailed description, we
refer to the book [118, Chapter 6].

The object of interest is the sum

fn =
∑
k

F (n, k),

where F (n, k) is a hypergeometric term in both arguments, namely F (n + 1, k)/F (n, k)
and F (n, k+1)/F (n, k) are both rational functions of n and k, and k runs over all integers.
The method of creative telescoping provides a recurrence relation for the term fn, starting
from a recurrence relation for the summand F (n, k). The name telescoping associated with
it is motivated by the way in which the recurrence for F (n, k) is determined.

More precisely, let N (resp. K) denote the forward shift operator in n (resp. k), i.e.
Ng(n, k) = g(n + 1, k) and Kg(n, k) = g(n, k + 1). In [118, Theorem 6.2.1] it is proved
that if F (n, k) is a hypergeometric term, then F satisfies a non-trivial recurrence

p(n,N)F (n, k) = (K − 1)G(n, k),

where p(n,N) = a0(n) + a1(n)N + a2(n)N2 + . . . + aJ(n)NJ with ai(n) polynomials for
every 1 ≤ i ≤ J , and G(n, k)/F (n, k) a rational function.
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In other words, Theorem 6.2.1 in [118] proves the existence of a “telescoped” recurrence
of type

J∑
j=0

aj(n)F (n+ j, k) = G(n, k + 1)−G(n, k), (3.9)

where G(n, k) = R(n, k)F (n, k) for a rational function R(n, k). From it, we can obtain a
recurrence relation for the sum fn. Indeed, since the coefficients on the left-hand side of
Equation (3.9) are independent of k, we can sum (3.9) over all interger values of k and
obtain

J∑
j=0

aj(n)fn+j = 0, (3.10)

provided that G(n, k) has compact support in k for each n, namely the summand G(n, k)
vanishes automatically if k < 0 or k > n.

In [118, Section 6.3] it is shown how Zeilberger’s algorithm of creating telescoping
works, namely how to build the recurrence for F (n, k) and the function G(n, k), which is
the certificate that (3.10) holds.

We report here only a few lines of a simple example of the application of this method:
in fact, according to [118], very few examples can be worked out by hand. Along this
dissertation to do all the hard computations we use the Maple package SumTools where
the method of creative telescoping has been implemented: the command Zeilberger on
input F (n, k) gives as output the recurrence relation in (3.10) and the certificate function
G(n, k).

Example 3.1. Given the summand F (n, k) =
(
n
k

)
, Zeilberger’s algorithm in [118, Section

6.3] proves that the sum fn =
∑

k F (n, k) satisfies a recurrence of order J = 1.

Indeed, the algorithm first proves that F (n, k) satisfies a recurrence in telescoped form
of order J = 1, which is

−2F (n, k) + F (n+ 1, k) = G(n, k + 1)−G(n, k), (3.11)

where the function G(n, k) is expressed by

G(n, k) =
k

k − n− 1

(
n

k

)
.

Then, we sum the recurrence (3.11) over all integers k. The right-hand side collapses to 0
and we find that

−2fn + fn+1 = 0, for n ≥ 1, and f0 = 1 .

Note that this recurrence is exactly the well-known relation
∑

k

(
n+1
k

)
= 2

∑
k

(
n
k

)
.



118 Chapter 3. Semi-Baxter permutations

3.4.3 Recursive formula

The explicit closed formula for SBn in Corollary 3.4.1 is extremely complicated, yet by
means of the method described in Section 3.4.2 we can obtain from it a very simple recur-
rence.

Proposition 3.4.2. The numbers SBn are recursively defined by SB0 = 0, SB1 = 1 and
for n ≥ 2

SBn =
11n2 + 11n− 6

(n+ 4)(n+ 3)
SBn−1 +

(n− 3)(n− 2)

(n+ 4)(n+ 3)
SBn−2. (3.12)

Proof. From Corollary 3.4.1, we can write SBn =
∑

j FSB(n, j), where the summand
FSB(n, j) given by Equation (3.8) on page 116 is hypergeometric, and prove the announced
recurrence using the method of creative telescoping. More precisely, in the following we
show the results of the calculation performed by Maple, where this approach has been
implemented. By using FSB(n, j) as input, Zeilberger’s method proves that

(n+ 5)(n+ 6)FSB(n+ 2, j)− (11n2 + 55n+ 60) FSB(n+ 1, j)− n(n− 1)FSB(n, j)

= GSB(n, j + 1)−GSB(n, j), (3.13)

where the expression of the certificate function GSB(n, j) is quite cumbersome and we do
not report it here - it can be read from the Maple worksheet associated2.

To complete the proof of the recurrence it is sufficient to sum both sides of Equa-
tion (3.13) over j, j ranging from 0 to n+ 1. Since the coefficients on the left-hand side of
Equation (3.13) are independent of j, summing it over j gives

(n+ 5)(n+ 6)SBn+2 − (11n2 + 55n+ 60)SBn+1 − n(n− 1)SBn

− (11n2 + 55n+ 60)FSB(n+ 1, n+ 1)− n(n− 1) (FSB(n, n) + FSB(n, n+ 1)) (3.14)

Summing the right-hand side over j gives a telescoping series, and simplifies as GSB(n, n+
2) − GSB(n, 0). From the explicit expression of FSB(n, j) and GSB(n, j), it is elementary
to check that

FSB(n+ 1, n+ 1) = FSB(n, n) = FSB(n, n+ 1) = GSB(n, n+ 2) = GSB(n, 0) = 0.

Summing Equation (3.13) therefore gives

(n+ 5)(n+ 6)SBn+2 − (11n2 + 55n+ 60)SBn+1 − n(n− 1)SBn = 0.

Shifting n 7→ n− 2 and rearranging finally gives the recurrence of Proposition 3.4.2.

2See Appendix A.2
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3.4.4 Alternative formulas

From the recurrence of Proposition 3.4.2, we can in turn prove closed formulas for semi-
Baxter numbers, which have been conjectured in [23]. These are much simpler than the one
given in Corollary 3.4.1 by the Lagrange inversion, and also very much alike the summation
formula for Baxter numbers of Section 1.4.1 on page 38.

Theorem 3.4.3. For any n ≥ 2, the number SBn of semi-Baxter permutations of length
n satisfies

SBn =
24

(n− 1)n2(n+ 1)(n+ 2)

n∑
j=0

(
n

j + 2

)(
n+ 2

j

)(
n+ j + 2

j + 1

)

=
24

(n− 1)n2(n+ 1)(n+ 2)

n∑
j=0

(
n

j + 2

)(
n+ 1

j

)(
n+ j + 2

j + 3

)

=
24

(n− 1)n2(n+ 1)(n+ 2)

n∑
j=0

(
n+ 1

j + 3

)(
n+ 2

j + 1

)(
n+ j + 3

j

)
.

Proof. For each of the summation formulas given in Theorem 3.4.3, we apply the method of
creative telescoping, as in the proof of Proposition 3.4.2. In all three cases, this produces a
recurrence satisfied by these numbers, and every time we find exactly the recurrence given
in Proposition 3.4.2.3 Checking that the initial terms of the sequences coincide completes
the proof.

There is actually a fourth formula that has been conjectured in [23], namely

SBn =
24

(n− 1)n(n+ 1)2(n+ 2)

n∑
j=0

(
n+ 1

j

)(
n+ 1

j + 3

)(
n+ j + 2

j + 2

)
.

Taking the multiplicative factors inside the sums, it is easy to see (for instance going back
to the definition of binomial coefficients as quotients of factorials) that it is term by term
equal to the second formula of Theorem 3.4.3.

As indicated in Section 3.1.1, in addition to the formulas reported in Theorem 3.4.3
above, other conjectural formulas for SBn have been proposed in the literature, in different
contexts.

The first one has already been shown in Proposition 3.2.7 and its validity results as a
consequence of Theorem 3.2.8.

The second one is attributed to M. Van Hoeij and reported by D. Bevan in [22]. The
conjecture is an explicit formula for semi-Baxter numbers that involves Apéry numbers

an =
∑n

j=0

(
n
j

)2(n+j
j

)
(sequence A005258 on [132]). We will prove the validity of this

3For further details see Appendix A.2
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conjecture using the recursive formula for semi-Baxter numbers (Proposition 3.4.2) and
the following recurrence satisfied by the Apéry numbers, for n ≥ 1,

an+1 =
11n2 + 11n+ 3

(n+ 1)2
an +

n2

(n+ 1)2
an−1, with a0 = 1 and a1 = 3. (3.15)

Proposition 3.4.4 ([22], Conjecture 13.2). For n ≥ 2,

SBn = 24
(5n3 − 5n+ 6)an+1 − (5n2 + 15n+ 18)an

5(n− 1)n2(n+ 2)2(n+ 3)2(n+ 4)

Proof. For the sake of brevity we write A(n) = 5n3 − 5n + 6 and B(n) = 5n2 + 15n + 18
so that the statement becomes

SBn =
24(A(n) an+1 −B(n) an)

5(n− 1)n2(n+ 2)2(n+ 3)2(n+ 4)
. (3.16)

The validity of Equation (3.16) is proved by induction on n: for n = 2, 3, it holds that
SB2 = (A(2)a3 − B(2)a2)/(2000) = (36 · 147 − 68 · 19)/(2000) = 2 and SB3 = (A(3)a4 −
B(3)a3)/(23625) = (126 · 1251− 108 · 147)/(23625) = 6.

Then, suppose that Equation (3.16) is valid for n − 1 and n − 2. In order to prove it
for n, consider the recursive formula of Equation (3.12) and substitute in it SBn−1 and
SBn−2 by using Equation (3.16). Now, after some work of manipulation and by using
Equation (3.15) we can write SBn as in Equation (3.16).

Remark 3.4.5. With Corollary 3.4.1, Theorem 3.4.3 and Proposition 3.4.4, we get five
expressions for the nth semi-Baxter number as a sum over j. Note that although the
sums are equal, the corresponding summands in each sum are not (this is readily checked
for n = 8 and j = 5 for instance). Therefore, Corollary 3.4.1, and Theorem 3.4.3, and
Proposition 3.4.4 give five essentially different ways of expressing the semi-Baxter numbers.

3.5 Asymptotics of the semi-Baxter numbers

From the first (or any) of the formulas provided in Theorem 3.4.3, we can derive the
dominant asymptotics of SBn, revealing that their generating function cannot be algebraic.

Corollary 3.5.1. Let ϕ = 1
2
(
√

5− 1). It holds that

SBn ∼ A
µn

n6
,

where A = 12
π

5−1/4ϕ−15/2 ≈ 94.34 and µ = ϕ−5 = (11 + 5
√

5)/2.

Remark 3.5.2. We point out that the result stated in Corollary 3.5.1 can altenatively
be derived by considering Equation (3.16) combined with the asymptotic expansion of the
Apéry number an, which has been studied by McIntosh in [111].
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Proof of Corollary 3.5.1. From Theorem 3.4.3, and letting

A(n; j) ≡ A(j) =
24

(n− 1)n2(n+ 1)(n+ 2)

(
n

j + 2

)(
n+ 2

j

)(
n+ j + 2

j + 1

)
,

we have that for all n ≥ 2, SBn =
∑n

j=0 A(j). From this expression, the proof of Corol-
lary 3.5.1 follows the same strategy as in [40, Section 2.6]. We first show that the summands
A(j) form a unimodal sequence, and we identify the value j0 where A(j) is maximal. Sec-
ond, we find an estimate of A(j) when j is close to j0 (in an interval of width O(n1/2+ε)).
We next split the sum

∑n
j=0 A(j) into two parts: the terms for j outside of this interval,

and those for j inside. The third step is to prove that the first part is negligible with
respect to the second part. And the fourth step is to estimate the second part of the sum,
using the estimate of A(j) when j is close to j0.

This is achieved in a series of four lemmas below. Combining Lemmas 3.5.6 and 3.5.7,
it then follows immediately that, for any ε ∈ (0, 1/6), we have

SBn = Aµnn−6
(
1 +O

(
n3ε−1/2

))
,

where ϕ = 1
2
(
√

5− 1), A = 12
π

5−1/4ϕ−15/2 ≈ 94.34 and µ = ϕ−5 = (11 + 5
√

5)/2. And this
completes the proof of Corollary 3.5.1.

Remark 3.5.3. The computations presented in the lemmas below are actually simpler than
those in [40, Section 2.6], because we are interested in the dominant asymptotics only. But
following [40] more closely and keeping higher order terms in our expansions, one could
establish further subdominant terms in the asymptotic expansion of SBn.

Lemma 3.5.4. For large enough n, the numbers A(j) form a unimodal sequence. More-
over, the maximum of this sequence occurs at j = ϕn+O(1), for ϕ = 1

2
(
√

5− 1).

Proof. Let R be the ratio R ≡ R(j) = A(j)/A(j + 1) = (j + 1)(j + 2)(j + 3)/((n + 2 −
j)(n − j − 2)(n + j + 3)). Rewrite it as R = F · G · H, where F = (j + 1)/(n − j − 2),
G = (j+ 2)/(n− j+ 2) and H = (j+ 3)/(n+ j+ 3). Computing the derivatives in j of F ,
G and H, we check that each of them is an increasing function of j, thus R is increasing
with j. Moreover, for n large enough, it holds that R(0) ≤ 1 and R(n− 3) ≥ 1. Therefore,
A(j) is a unimodal (and actually log-concave) sequence and there exists j0 ∈ [0, n−3] such
that R(j0) = 1.

To find this value j0 where A(j) reaches its maximum, we simply set R = 1 and solve
it for j. The equation R = 1 is quadratic in j and we choose the only solution lying
in the range [0, n − 3]. Expanding it in n gives j0 = ϕn − 3

2
+ 3

10

√
5 + O(n−1), with

ϕ = 1
2
(
√

5− 1).

Lemma 3.5.5. Let ε ∈ (0, 1/6) and j = ϕn+ r, with r = s
√
n and |s| ≤ nε. Then:

A(j) =
24√
8π3
· ϕ−5n−9 · n−13/2 · e−(1/ϕ3+1/2)·s2 (1 +O

(
n3ε−1/2

))
.

Moreover, this estimate is uniform in j.
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Proof. We start with an estimate of each of the binomial coefficients occurring in A(j),
obtained using expansions of the Gamma function.

First, recall the Stirling expansion Γ(n + 1) = nn ·
√

2πn · e−n ·
(
1 +O

(
1
n

))
- see

Section 1.3.8. Hence, with j = ϕn+ r and r = s
√
n, we also have

Γ(j + 3) = (j + 2)j+2 ·
√

2π · √ϕn
(
1 +O(nε−1/2)

)
· e−(j+2) ·

(
1 +O

(
1

j + 2

))
= (j + 2)j+2 ·

√
2πϕn · e−(j+2) ·

(
1 +O(nε−1/2)

)
,

and similarly Γ(n− j − 1) = (n− j − 2)n−j−2 ·
√

2π(1− ϕ)n · e−(n−j−2) ·
(
1 +O(nε−1/2)

)
.

Note that the above expansions for Γ(j + 3) and Γ(n − j − 1) are both uniform in j.
This will also be the case for the other expansions obtained later in this proof, but we will
not remark on it every time.

We further expand

log nn

(j+2)j+2(n−j−2)n−j−2 = n log n
n−j−2

− (j + 2) log j+2
n−j−2

= n log

(
1

1−ϕ ·
1

1− s
(1−ϕ)

√
n
− 2

(1−ϕ)n

)
−(j + 2) log

(
ϕ

1−ϕ ·
1+ s

ϕ
√
n

+ 2
ϕn

1− s
(1−ϕ)

√
n
− 2

(1−ϕ)n

)
= n

(
log 1

1−ϕ + s
(1−ϕ)

√
n

+ s2

2(1−ϕ)2n
+ 2

(1−ϕ)n
+O(n3ε−3/2)

)
−(j + 2)

(
log ϕ

1−ϕ + s
ϕ(1−ϕ)

√
n

+ s2(2ϕ−1)
2ϕ2(1−ϕ)2n

+ 2
(1−ϕ)n

+O(n3ε−3/2)
)

= n log 1
1−ϕ + s

√
n

(1−ϕ)
+ s2

2(1−ϕ)2
+ 2

(1−ϕ)
+O(n3ε−1/2)

−(j + 2) log ϕ
1−ϕ −

s
√
n

(1−ϕ)
− s2

2ϕ(1−ϕ)2
− 2

(1−ϕ)
+O(n3ε−1/2)

= n log 1
1−ϕ − (j + 2) log ϕ

1−ϕ + s2

2(1−ϕ)2

(
1− 1

ϕ

)
+O(n3ε−1/2).

So, exponentiating, we obtain

nn

(j + 2)j+2(n− j − 2)n−j−2
=

(
1

1− ϕ

)n(
1− ϕ
ϕ

)j+2

· e−s2/2ϕ(1−ϕ)
(
1 +O

(
n3ε−1/2

))
.

This gives our estimate for the binomial coefficient
(
n
j+2

)
= Γ(n+1)

Γ(j+3)Γ(n−j−1)
occurring in

A(j):(
n

j + 2

)
=

1√
2πϕ(1− ϕ)n

·
(

1

1− ϕ

)n(
1− ϕ
ϕ

)j+2

· e−s2/2ϕ(1−ϕ)
(
1 +O

(
n3ε−1/2

))
.

We need to compute similar estimates for the other two binomial coefficients occurring



3.5. Asymptotics of the semi-Baxter numbers 123

in A(j), namely
(
n+2
j

)
and

(
n+j+2
j+1

)
. Skipping the details, we obtain

(
n+ 2

j

)
=

1√
2πϕ(1− ϕ)n

·
(

1

1− ϕ

)n+2(
1− ϕ
ϕ

)j
· e−s2/2ϕ(1−ϕ)

(
1 +O

(
n3ε−1/2

))
and

(
n+ j + 2

j + 1

)
=

√
1 + ϕ

2πϕn
· (1 + ϕ)n+j+2ϕ−(j+1) · e−s2/2

(
1 +O

(
n3ε−1/2

))
.

Consequently, since ϕ2 = 1− ϕ and 1 + ϕ = 1/ϕ, we obtain(
n

j + 2

)(
n+ 2

j

)(
n+ j + 2

j + 1

)
=

1√
8π3
· ϕ−9 · ϕ−5n · n−3/2 · e−(1/ϕ3+1/2)·s2 (1 +O

(
n3ε−1/2

))
.

This finally gives us our claimed estimate for A(j) = 24
(n−1)n2(n+1)(n+2)

(
n
j+2

)(
n+2
j

)(
n+j+2
j+1

)
:

A(j) =
24√
8π3
· ϕ−5n−9 · n−13/2 · e−(1/ϕ3+1/2)·s2 ·

(
1 +O

(
n3ε−1/2

))
.

Lemma 3.5.6. Let ε ∈ (0, 1/6). Then for all m ≥ 0,∑
|j−ϕn|>n1/2+ε

A(j) = o(ϕ−5nn−m).

Proof. Let j+ = bϕn + n1/2+εc and j− = dϕn − n1/2+εe. By Lemma 3.5.4 (unimodality),
we have ∑

|j−ϕn|>n1/2+ε

A(j) ≤ (ϕn− n1/2+ε) · A(j−) + (n− ϕn− n1/2+ε) · A(j+).

Moreover, by Lemma 3.5.5, it holds that

A(j±) =
24√
8π3
· ϕ−5n−9 · n−13/2 · e−(1/ϕ3+1/2)·n2ε ·

(
1 +O

(
n3ε−1/2

))
.

It follows that for every m ≥ 0,

(ϕn− n1/2+ε)A(j−) = o(ϕ−5nn−m) and (n− ϕn− n1/2+ε)A(j+) = o(ϕ−5nn−m).

Lemma 3.5.7. Let ε ∈ (0, 1/6). Then,∑
|j−ϕn|≤n1/2+ε

A(j) = Aµnn−6
(
1 +O

(
n3ε−1/2

))
,

where A = 12
π

5−1/4ϕ−15/2 ≈ 94.34 and µ = ϕ−5 = (11 + 5
√

5)/2.
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Proof. The estimate of Lemma 3.5.5 being uniform in j, we can write∑
|j−ϕn|≤n1/2+ε

A(j) =
∑

|j−ϕn|≤n1/2+ε

24√
8π3
· ϕ−5n−9 · n−13/2 · e−(1/ϕ3+1/2)·(j−ϕn)2/n ·

(
1 +O

(
n3ε−1/2

))
=

24√
8π3
· ϕ−5n−9 · n−13/2 ·

(
1 +O

(
n3ε−1/2

)) ∑
|j−ϕn|≤n1/2+ε

e−(1/ϕ3+1/2)·(j−ϕn)2/n.

Using the Euler-Maclaurin formula, we rewrite this sum as an integral as follows:∑
|j−ϕn|≤n1/2+ε

e−(1/ϕ3+1/2)·(j−ϕn)2/n =
√
n ·
∫ ∞
−∞

e−(1/ϕ3+1/2)s2ds+ o(n−m)

=
√
n ·

√
2πϕ3

√
5

+ o(n−m).

In this formula, m is any positive integer (since the error term in the Euler-Maclaurin
formula is smaller than any polynomial in n). Note also that the leading

√
n comes from

changing integration variables from j to s (with j = ϕn + s
√
n). The estimate given in

Lemma 3.5.7 finally follows by elementary computations.



Chapter 4

Strong-Baxter permutations

Plan of the chapter

In this chapter we deal with the enumeration of another family of pattern-avoiding permu-
tations introduced in [G4, G5] under the name of strong-Baxter permutations. This family
is closely related to Baxter and twisted Baxter permutations, like the family of semi-Baxter
permutations of Chapter 3. More precisely, in Section 4.1 the family of strong-Baxter per-
mutations is defined as the intersection between the family of Baxter permutations and
the family of twisted Baxter permutations, and their enumerative sequence is called the
sequence of strong-Baxter numbers. Thus, we now turn to a sequence point-wise smaller
than the Baxter one [132, A001181], whereas Chapter 3 was about a sequence point-wise
larger than the Baxter one (semi-Baxter permutations contain both Baxter and twisted
Baxter permutations). The main result of Section 4.1 is a succession rule for generating
strong-Baxter numbers. To our knowledge, these numbers has not appeared first in the
literature, and they had not been recorded on [132].

Furthermore, strong-Baxter permutations do not form the only occurrence of strong-
Baxter numbers: Section 4.2 illustrates that also a family of paths is enumerated by it.
More precisely, we can provide an interpretation of these numbers in terms of labelled Dyck
paths which form a subfamily of Baxter paths introduced in Chapter 2.

Finally, in Section 4.3 we study the functional equation obtained from the succession
rule of Section 4.1.1. The solution of this functional equation is the generating function
of strong-Baxter permutations, and a very surprising fact is that it results not to be D-
finite. More precisely, in Section 4.3.2 we relate the solution of the strong-Baxter functional
equation to the solution of an enumerative problem involving walks in the quarter plane [33,
37, 30]. This relation, and in particular the results of [30], allow us to conclude that the
generating function of strong-Baxter permutations is not D-finite. Examples of non D-
finite generating function are quite rare in the literature of pattern-avoiding permutations,
see the analysis in [3, 83], thus providing a major reason for their study.

Lastly, we precise that the sequence of strong-Baxter numbers is now registered on [132]
as sequence A281784.

125
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4.1 Strong-Baxter numbers

Strong-Baxter numbers are defined in Section 4.1.1 in association with a family of pattern-
avoiding permutations, which we call strong-Baxter permutations. In Section 4.1.1 we
provide a succession rule for enumerating strong-Baxter permutations, and thus for gener-
ating the sequence of strong-Baxter numbers.

Eventually, in Section 4.1.2 we highlight a remarkable combinatorial property that this
number sequence displays, and establish a close link among the sequences of semi-Baxter,
Baxter and strong-Baxter numbers.

4.1.1 Definition and growth of strong-Baxter permutations

Definition 4.1.1. A strong-Baxter permutation is a permutation that avoids all three
vincular patterns 2 41 3, 3 14 2 and 3 41 2.

Definition 4.1.2. The sequence of strong-Baxter numbers is the sequence that enumerates
strong-Baxter permutations.

The pattern-avoidance definition makes it clear that the family of strong-Baxter permu-
tations is the intersection of the two families of Baxter and twisted Baxter permutations.
In that sense, such permutations “satisfy two Baxter conditions”, hence the name strong-
Baxter.

A succession rule for strong-Baxter permutations is given by the following proposition.

Proposition 4.1.3. Strong-Baxter permutations can be generated by the following succes-
sion rule

Ωstrong =


(1, 1)

(h, k)  (1, k), . . . , (h− 1, k),
(h, k + 1),
(h+ 1, 1), . . . , (h+ 1, k).

Proof. As in the proofs of the previous chapter, we define a growth for strong-Baxter per-
mutations performing local expansions on the right, as illustrated in Figure 4.1. Note that
this is possible since removing the rightmost point from any strong-Baxter permutation,
the permutation obtained still avoids all the three forbidden patterns.

Let π be a strong-Baxter permutation of length n. Recall that when inserting a ∈
{1, . . . , n+1} on the right of any π of length n, we obtain the permutation π′ = π′1 . . . π

′
nπ
′
n+1

where π′n+1 = a, π′i = πi if πi < a and π′i = πi + 1 if πi ≥ a, and we use the notation
π · a to denote π′. By definition, the active sites of π are the points a such that π · a is a
strong-Baxter permutation.

By definition, any non-empty descent (resp. ascent) of π is a pair πiπi+1 such that
there exists πj that makes πjπiπi+1 an occurrence of 2 31 (resp. 2 13). Then, the non-
active sites a of π are characterized by the fact that a ∈ (πi+1, πi] (resp. a ∈ (πi, πj] ),
for some occurrence πjπiπi+1 of 2 31 (resp. 2 13). Note that in the case where πn−1πn is a
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non-empty descent (resp. ascent), choosing πj = πn + 1 (resp. πj = πn − 1) always gives
an occurrence of 2 31 (resp. 2 13), and it is the smallest (resp. largest) possible value of πj
for which πjπn−1πn is an occurrence of 2 31 (resp. 2 13).

To the strong-Baxter permutation π we assign the label (h, k) , where h (resp. k) is
the number of active sites that are smaller than or equal to (resp. greater than) πn. The
permutation 1 has label (1, 1), which is the axiom of Ωstrong. Now, we need to show that
the labels of the permutations π ·a, when a runs over all active sites of π, are (1, k), . . . , (h−
1, k), (h, k + 1), (h+ 1, 1), . . . , (h+ 1, k). So, let a be such an active site.

If a < πn, then π · a ends with a non-empty descent, which is (πn + 1)a. Recall that
the site a of π is split into two sites of π · a, one immediately above the point a and one
immediately below. Then, all sites of π ·a in (a, πn+1] become non-active. All other active
sites of π remain active in π · a. Hence, a running over all active sites, π · a has label (i, k),
with 1 ≤ i < h being such that a is the ith active site from the bottom. Thus, the first
line of the production of Ωstrong is obtained.

If a = πn, no site of π becomes non-active, giving the label (h, k+ 1) in the production
of Ωstrong.

Finally, if a > πn, π · a ends with an ascent, which is πna. Because of the avoidance of
3 14 2, all sites of π · a in (πn, a− 1] become non-active, while others remain active if they
were so in π (with a split into two active sites, one above and one below). Hence, when
a runs over all the active sites of π, the permutations π · a give the missing labels in the
production of Ωstrong: (h+ 1, i) for 1 ≤ i ≤ k, where i indicates that a is the ith active site
from the top.

(3,1)(2,3)(1,2)(2,2) (3,2)

Figure 4.1: The growth of a strong-Baxter permutation. Active sites are marked with ♦,
non-active sites by ×, and non-empty descents/ascents with bold blue lines.

The first few terms of the sequence of strong-Baxter numbers are obtained by iterating
the rule Ωstrong and they are

1, 2, 6, 21, 82, 346, 1547, 7236, 35090, 175268, 897273, 4690392, 24961300, . . .

As we pointed out this number sequence had not been registered in the On-line Encyclo-
pedia of Integer Sequences before, so we have recorded it and now its reference is [132,
sequence A281784].
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4.1.2 A restriction of two Baxter succession rules

In this section we investigate further the connection between strong-Baxter numbers and
Baxter numbers.

It is clear from their definition in terms of pattern avoidance that the families of Baxter
and twisted Baxter permutations are supersets of the family of strong-Baxter permuta-
tions. Nevertheless, more evidence of these inclusions can be visualised by comparing their
corresponding succession rules. Indeed, the strong-Baxter succession rule Ωstrong can be
defined by restricting the succession rules for both Baxter permutations and twisted Baxter
permutations described below.

Proposition 4.1.4. Baxter permutations can be generated by inserting a new rightmost
point, and this growth yields ΩBax as succession rule.

Proof. To prove the above statement we recall that Baxter permutations are invariant
under the 8 symmetries of the square [86]. Therefore, the growth provided in Proposi-
tion 1.4.8 on page 45 by means of a 90 degree clockwise rotation inserts a new rightmost
point in any Baxter permutation. Then, Baxter permutations grow by insertion of a new
rightmost point according to ΩBax, where h counts the number of RTL maxima, and k
counts the number of RTL minima.

Turning to twisted Baxter permutations, we obtain the following.

Proposition 4.1.5. Twisted Baxter permutations can be generated by

ΩTwBax =


(1, 1)

(h, k)  (1, k), . . . , (h− 1, k),
(h, k + 1),
(h+ k, 1), . . . , (h+ 1, k).

Proof. As in the proof of Proposition 4.1.3, we let twisted Baxter permutations grow by
performing local expansions on the right, as illustrated in Figure 4.2. This is possible
since removing the rightmost element in a twisted Baxter permutation produces a twisted
Baxter permutation.

Let π be a twisted Baxter permutation of length n. By definition an active site of π
is an element a such that π · a avoids both 2 41 3 and 3 41 2. Analogously to the proof of
Proposition 4.1.3, we consider any non-empty descent of π, namely a pair πiπi+1 such that
there exists πj that makes πjπiπi+1 an occurrence of 2 31. Then, the non-active sites a of
π are characterized by the fact that a ∈ (πi+1, πi], for some occurrence πjπiπi+1 of 2 31.

Then, as usual, we assign to π a label (h, k), where h (resp. k) is the number of active
sites smaller than or equal to (resp. greater than) πn. As in the proof of Proposition 4.1.3,
the permutation 1 has label (1, 1) and now we describe the labels of the permutations π · a
when a runs over all the active sites of π.

If a < πn, then π · a ends with a non-empty descent, which is (πn + 1)a and, all sites of
π in the range (a, πn + 1] become non-active. More precisely, due to the avoidance of 2 41 3



4.1. Strong-Baxter numbers 129

(resp. 3 41 2), all sites of π in the range (a + 1, πn + 1] (resp. (a, πn]) become non-active.
All other active sites of π remain active in π · a. Hence, the permutation π · a gives the
label (i, k), with 1 ≤ i < h, when a is the ith active site from the bottom. Thus, the first
line of the production of ΩTwBax is obtained.

If a = πn, no sites of π become non-active, giving the label (h, k + 1).

If a > πn, then π · a ends with an ascent and no site of π become non-active. Hence,
we obtain the missing labels in the production of ΩTwBax, which are (h+ k + 1− i, i), for
1 ≤ i ≤ k. Indeed, the permutation π · a has label (h + k + 1 − i, i) if a is the ith active
site from the top.

(3,1)(2,2)(1,1)(2,1)

Figure 4.2: The growth of a twisted Baxter permutation (same notation as Figure 4.1).

We note that ΩTwBax is not precisely the succession rule presented in [41] for twisted
Baxter permutations, and reported in Proposition 1.4.11 of Section 1.4.4. Nonetheless, it
is an obvious variant of it: starting from the rule ΩTBax of [41], it is enough to replace
every label (r, s) by (s+ 1, r − 1) to recover ΩTwBax.

Now, we show how the succession rule Ωstrong can be obtained by combining the two
Baxter rules ΩBax and ΩTwBax. In fact, not only is the rule Ωstrong associated with the
intersection of the two families of pattern-avoiding permutations, but it can be obtained
simply by taking in the production of ΩBax and ΩTwBax the label with minimum entries,
as shown in the following representation:

ΩBax : (h, k) → (1, k + 1) . . . (h− 1, k + 1) (h, k + 1) (h+ 1, 1) . . . (h+ 1, k)

ΩTwBax : (h, k) → (1, k) . . . (h− 1, k) (h, k + 1) (h+ k, 1) . . . (h+ 1, k)

Ωstrong : (h, k) → (1, k) . . . (h− 1, k) (h, k + 1) (h+ 1, 1) . . . (h+ 1, k).

This is easily explained. Note first that in all three cases h (resp. k) records the
number of active sites below (resp. above) the rightmost element of a permutation. Then,
it is enough to remark that among the active sites of a permutation avoiding 2 41 3, the
avoidance of 3 41 2 deactivates only sites above the rightmost element of the permutation,
while the avoidance of 3 14 2 deactivates only sites below it.

This remark then allows us to enlarge the above chart as to include also the semi-Baxter
succession rule of Chapter 3:
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Ωsemi : (h, k) → (1, k + 1) . . . (h− 1, k + 1) (h, k + 1) (h+ k, 1) . . . (h+ 1, k)

ΩBax : (h, k) → (1, k + 1) . . . (h− 1, k + 1) (h, k + 1) (h+ 1, 1) . . . (h+ 1, k)

ΩTwBax : (h, k) → (1, k) . . . (h− 1, k) (h, k + 1) (h+ k, 1) . . . (h+ 1, k)

Ωstrong : (h, k) → (1, k) . . . (h− 1, k) (h, k + 1) (h+ 1, 1) . . . (h+ 1, k).

Indeed, the growth of semi-Baxter permutations according to Ωsemi provided in Sec-
tion 3.1.2 can be restricted to each of the above growths for Baxter and twisted-Baxter per-
mutations, deactivating sites either below (for Baxter permutations) or above (for twisted
Baxter permutations) the rightmost element of a permutation. Note that, similarly to
Ωstrong, the rule Ωsemi can be obtained simply by taking in the production of ΩBax and
ΩTwBax the label with maximum entries.

On the one hand, this property reinforces the idea of Chapter 3 that the generalisation
of Baxter numbers to semi-Baxter numbers is natural; on the other hand, it shows that
the two Baxter specialisations are somehow “independent”.

4.2 Another occurrence: strong-Baxter paths

Like we did for the Baxter and semi-Baxter numbers, we can provide a family of labelled
Dyck paths which is enumerated by the strong-Baxter numbers. To do this, we recall that
free up steps of a Dyck path are those not forming a DU factor.

Definition 4.2.1. A strong-Baxter path of semi-length n is a Dyck path of length 2n
having all its free up steps labelled according to the following constraint: the leftmost free
up step is labelled 1 and for every pair of free up steps (U ′, U ′′), with U ′ occurring before
U ′′ and no free up step between them, the label of U ′′ is in the range [1, k], where k ≥ 1 is
the sum of the label of U ′ with the number of UDU factors between U ′ (included) and U ′′.

It follows immediately from their definition that the family of Baxter paths (and, hence
in turn that of semi-Baxter paths) contains strong-Baxter paths as subfamily (see also
examples in Figure 4.3).

Our goal is to prove that they are enumerated by strong-Baxter numbers, which is
immediate from the following proposition.

Proposition 4.2.2. Strong-Baxter paths can be generated by Ωstrong.

As usual, we provided a growth for strong-Baxter paths by insertion of a peak in the last
descent. There is however a subtlety in the way this growth is encoded in the labels (h, k)
with respect to the growth provided for Baxter paths in Chapter 2 and for semi-Baxter
paths in Chapter 3.

First, remark that ΩBax is completely symmetric in h and k. Therefore, interchanging
the interpretation of the two entries in each label, the same growth for Baxter structures
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3

21

1

5

1

1 2

3 4

(c)

(b)(a)

1

1 2

3

3

Figure 4.3: Labelling of the same Dyck path: (a) a strong-Baxter path; (b) a Baxter path,
which is not a strong-Baxter path; (c) a semi-Baxter path, which is neither a Baxter path,
nor a strong-Baxter path.

would also be encoded by ΩBax. More precisely, with respect to Proposition 2.1.9, inter-
changing the interpretation of each label (h, k) by taking h to be the number of steps of
the last descent and k to be the label of the rightmost free up step plus the number of
DU factors after it, the same growth for Baxter paths would also be encoded by ΩBax

(Proposition 2.1.9). This “interchanged” interpretation of labels is the appropriate one to
prove that the growth in Proposition 4.2.2 is a restriction of the one in Proposition 2.1.9.

Proof of Proposition 4.2.2. Similarly to Proposition 3.2.10 on page 109, we make strong-
Baxter paths grow by insertion of a peak in the last descent, as shown in Figure 4.4. To
any strong-Baxter path S, denoting e the label of its rightmost free up step U , we assign
the label (h, k), where h is the number of steps of the last descent of S and k is equal to e
plus the number of UDU factors occurring after U (included).

The unique strong-Baxter path of semi-length 1, UD with U labelled 1, has label (1, 1),
which is the axiom of Ωstrong.

Let S be a strong-Baxter path of label (h, k). The insertions of a peak in the last
descent of S produce the following strong-Baxter paths, whose labels correspond to the
production of Ωstrong.

a) We add a peak at the beginning of the last descent of S. The added U step is free,
and receives a label which is any value in the range [1, k]. Denoting by i the label
assigned to U , the produced path has label (h+ 1, i).

b) We add a peak immediately after any down step of the last descent of S. The added
U step following a down step, it carries no label. Therefore, if S = w · UDh (with
this U possibly labelled), the children of S are w · UDjUDDh−j for 1 ≤ j ≤ h.
When j = 1, one UDU factor is created after the rightmost free up step of S, and
the obtained path has label (h, k + 1). Otherwise, no such factor is created, and the
obtained paths have labels (h− j + 1, k) for 1 < j ≤ h.
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(2,3)
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1
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(3,3)

1

(2,4)

(3,2)(3,1)

(1,3)

1

Figure 4.4: The growth of a strong-Baxter path of label (2, 3).

4.3 Strong-Baxter generating function

In this section we tackle the problem of studying the generating function of strong-Baxter
permutations. First, in Section 4.3.1 we derive a functional equation whose solution is
their generating function, by means of the succession rule given in Section 4.1.1. Then,
we establish a link between this functional equation and a particular equation studied by
A. Bostan et al. in [30] regarding some families of walks in the quarter plane. This link
enables us to conclude the remarkable fact that the generating function of strong-Baxter
permutations is not D-finite. Moreover, in Section 4.3.3 it allows us to provide information
about the growth rate of strong-Baxter numbers.

4.3.1 Functional equation

Let Ih,k(x) ≡ Ih,k denote the generating function of strong-Baxter permutations having
label (h, k), with h, k ≥ 1, and let I(x; y, z) ≡ I(y, z) =

∑
h,k≥1 Ih,k y

hzk.

Proposition 4.3.1. The generating function I(y, z) satisfies the following functional equa-
tion

I(y, z) = xyz +
x

1− y
(y I(1, z)− I(y, z)) + xz I(y, z) +

xyz

1− z
(I(y, 1)− I(y, z)). (4.1)

Proof. From the growth of strong-Baxter permutations according to Ωstrong we write

I(y, z) = xyz + x
∑
h,k≥1

Ih,k
(
(y + y2 + . . .+ yh−1)zk + yhzk+1 + yh+1(z + z2 + . . .+ zk)

)
= xyz + x

∑
h,k≥1

Ih,k

(
1− yh−1

1− y
y zk + yhzk+1 +

1− zk

1− z
yh+1 z

)
= xyz +

x

1− y
(y I(1, z)− I(y, z)) + xz I(y, z) +

xyz

1− z
(I(y, 1)− I(y, z)) .

In order to study Equation (4.1), we write it in the kernel form

K(y, z) I(y, z) = xyz +
xy

1− y
I(1, z) +

xyz

1− z
I(y, 1) ,
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where the kernel is

K(y, z) = 1 + x

(
1

1− y
− z +

yz

1− z

)
. (4.2)

We perform the substitutions y = 1 + a and z = 1 + b so that Equation (4.2) is rewritten
as

K(1 + a, 1 + b) = 1− xQ(a, b), where Q(a, b) =
1

a
+

1

b
+
a

b
+ a+ 2 + b. (4.3)

We could look for the birational transformations Φ and Ψ in a and b that leave the kernel
unchanged, trying to apply the obstinate variant of the kernel method of Section 3.3.2.
These transformations are

Φ : (a, b)→
(
a,

1 + a

b

)
, and Ψ : (a, b)→

(
− b

a(1 + b)
, b

)
.

One observes, using Maple for example, that the group generated by these two transfor-
mations is not of small order and it is likely to be of infinite order preventing us from using
the obstinate kernel method to solve Equation (4.1).

Nevertheless, after the substitution y = 1 + a and z = 1 + b, the kernel we obtain in
Equation (4.3) resembles kernels of functional equations associated with the enumeration
of families of walks in the quarter plane [37]. In order to make this link precise, in the next
section we turn to the problem of counting walks in the quarter plane.

4.3.2 The case of walks confined in the quarter plane

In recent years a fair amount of attention has been paid to the problem of enumerating
walks constrained in the quarter plane N2, see for instance [30, 33, 37, 112, 114] and their
references. In particular, some of the cases analysed raised interest since their generating
function appear not to be D-finite [30, 112, 114].

In order to study the nature of the generating function I(1, 1) of strong-Baxter numbers
defined in Equation (4.1), we first consider one of the aforementioned problems that involves
a particular family of walks in the quarter plane, whose set of steps is in {0,±1}2, and
not contained in a half-plane. More precisely, we are interested in walks confined in the
quarter plane N2 that use S1 = {(−1, 0), (0,−1), (1,−1), (1, 0), (0, 1)} as step set - see
Figure 4.5.

Proposition 4.3.2. Let W (t; a, b) ≡ W (a, b) be the generating function of walks confined
in the quarter plane and using S1 as step set, where t counts the number of steps and a
(resp. b) records the x-coordinate (resp. y-coordinate) of the ending point. The function
W (a, b) satisfies the following functional equation

W (a, b) = 1 + t

(
1

a
+

1

b
+
a

b
+ a+ b

)
W (a, b)− t

a
W (0, b)− t(1 + a)

b
W (a, 0). (4.4)
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(a) (b) (c)

Figure 4.5: (a) The step set S1; (b) a walk in the quarter plane using S1 as step set; (c)
an excursion in the quarter plane using S1 as step set.

Proof. To prove Equation (4.4) we repeat a reasoning similar to the one used for Dyck
prefixes in Chapter 1 (Section 1.3.7 on page 35). Indeed, let WS1 be the family of walks
in the quarter plane using S1 as step set. We can add a final step to any walk of WS1 of
length n and obtain a walk of WS1 of length n+ 1, provided that the added step is in S1

and the constraint to remain in the quarter plane is not violated.

Thus, any walk of WS1 is either the empty walk, which gives the contribute 1 in
Equation (4.4), or obtained from a walk of WS1 of smaller length by adding a final step.
Owing to the steps of S1, all the possible additions of a final step to a walk of WS1 give
the contribution t(ā+ b̄+ ab̄+ a+ b)W (a, b), where as usual ā denotes 1/a (resp. b̄ = 1/b).

Yet we have to eliminate some walks from those obtained: precisely, the walks whose
final step infringes the constraint to remain in N2. In particular, we should not consider
the additions of the step (−1, 0) to the walks ending on the y-axis, giving the correction
term −tāW (0, b), and neither the additions of the steps (0,−1), (1,−1) to the walks ending
on the x-axis, giving the correction term −t(b̄ + ab̄)W (a, 0). This concludes the proof of
Equation (4.4).

In the right-hand side of Equation (4.4), the coefficient of W (a, b) is, up to a t factor,
a Laurent polynomial in a and b. Such a polynomial is defined for any step set S, as
χS(a, b) :=

∑
(i,j)∈S a

i bj and it is called characteristic polynomial of the step set S. It
appears that

χS1(a, b) =
1

a
+

1

b
+
a

b
+ a+ b,

which resembles the polynomial Q(a, b) of Equation (4.3). And, moreover, the kernel of
Equation (4.4) strictly depends on the polynomial χS1 , as it reads simply as 1− tχS1(a, b),
that if compared to Equation (4.3) motivates our choice of the step set S1.

In addition, in [37] all the characteristic polynomials χS(a, b), for every step set S ⊆
{0,±1}2, have been classified according to the cardinality of the group generated by the
rational transformations that leave invariant χS(a, b).

It results that our step set S1 forms one case among the 51 classified in [37] - and
reported in [30, Table 1] - such that the group of rational transformations that leave
invariant the characteristic polynomial has infinite order. Thus, the application of the
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obstinate variant of the kernel method, as done in Section 3.3.2, appears to fail to solve
Equation (4.4).

Nevertheless, we can say which is the nature of the generating function W (a, b) of
Equation (4.4) thanks to the following remarkable result by A. Bostan et al. in [30].

Theorem 4.3.3 (Theorem 1, [30]). Let S ⊆ {0,±1}2 be any of the 51 step sets in N2 such
that the group of rational transformations that leave invariant its characteristic polynomial
χS(a, b) has infinite order, and let FS(t; a, b) denote the generating function of walks in the
quarter plane using S as step set, where t marks the number of steps, and a (resp. b) the
x-coordinate (resp. y-coordinate) of the final step. Then, the generating function FS(t; 0, 0)
of S-excursions is not D-finite. In particular, the full generating function FS(t; a, b) is not
D-finite.

From Theorem 4.3.3 it follows that the full generating function solution of Equa-
tion (4.4), W (a, b), is not D-finite: indeed, our step set S1 forms the 23rd entry of Table 1
in [30, Appendix] listing all the 51 cases.

Moreover, in Table 1 of [30, Appendix] it has been calculated also the asymptotic
behaviour of the coefficients of the generating function W (0, 0) of S-excursions (i.e. walks
having the origin as ending point - see Figure 4.5(c) ). In particular, such an estimate is
obtained starting from a result of D. Denisov and V. Wachtel [62] that is stated in [30] as
follows.

Theorem 4.3.4 (Theorem 4, [30]). Let S ⊆ {0,±1}2 be the step set of a walk in the
quarter plane N2, which is not contained in a half-plane. Let en denote the number of
S-excursions of length n using only steps in S. Then, there exist constants K, ρ and α
which depend only on S, such that:

• if the walk is aperiodic, en ∼ K ρn nα,

• if the walk is periodic (then of period 2), e2n ∼ K ρ2n (2n)α, e2n+1 = 0.

Corollary 4.3.5 (Table 1-2, [30]). The growth constant associated with the coefficients of
W (0, 0) is an algebraic number ρW , whose minimal polynomial is

x3 + x2 − 18x− 43.

The numerical value for ρW is 4.729031538.

Now, we take inspiration from the above literature on walks confined in the quarter
plane for solving Equation (4.1).

4.3.3 Strong-Baxter generating function, and the growth rate of
its coefficients

In this section we exploit the link between Equation (4.1) having the generating function of
strong-Baxter permutations as solution and Equation (4.4) provided for S1-walks confined
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in the quarter plane. Indeed, modifying the step set considered in Equation (4.4), we can
arrange that the kernel K(1 + a, 1 + b) of Equation (4.3) is exactly the kernel arising in
the functional equation for enumerating a particular family of walks.

Let S2 be the step (multi-)set {(−1, 0), (0,−1), (1,−1), (1, 0), (0, 1), (0, 0), (0, 0)}. The
difference with the step set of Proposition 4.3.2 is that we have added to the step set two
copies of the trivial step (0, 0), which are distinguished (they can be considered as coun-
terclockwise and clockwise loops for instance). An example of walk confined in the quarter
plane using S2 as step set is depicted in Figure 4.6, where we highlight the distinction
between the two possibilities for the step (0, 0) by using different colours.

Figure 4.6: A walk in the quarter plane using S2 as step set.

Lemma 4.3.6. Let W2(t; a, b) be the generating function of walks confined in the quarter
plane and using S2 as step (multi-)set, where t counts the number of steps and a (resp. b)
records the x-coordinate (resp. y-coordinate) of the ending point. The generating functions
W (t; a, b) of Proposition 4.3.2 and W2(t; a, b) are related by

W2(x; a, b) = W

(
x

1− 2x
; a, b

)
1

1− 2x
. (4.5)

Moreover, writing J(x; a, b) := I(x; 1+a, 1+b) the generating function of strong-Baxter
permutations, it holds that

J(x; a, b) = (1 + a)(1 + b)xW2(x; a, b). (4.6)

Proof. First, S2-walks can be described starting from S1-walks as follows: a S2-walk is a
(possibly empty) sequence of trivial steps, followed by a S1-walk where, after each step,
we insert a (possibly empty) sequence of trivial steps. This simple combinatorial argument
proves Equation (4.5).

Next, consider the kernel form of the original equation (4.1) for the strong-Baxter
generating function, after substituting y = 1 + a and z = 1 + b, which is

(1−xQ(a, b))J(x; a, b) =

x(1 + a)(1 + b)− x 1 + a

a
J(x; 0, b)− x (1 + a)(1 + b)

b
J(x; a, 0). (4.7)

Compare it to the kernel form of Equation (4.4)

(1− t(Q(a, b)− 2))W (t; a, b) = 1− t

a
W (t; 0, b)− t (1 + a)

b
W (t; a, 0). (4.8)
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Substituting t with x
1−2x

in (4.8), and multiplying this equation by (1 + a)(1 + b)x, we
see that (1 + a)(1 + b)xW2(x; a, b) satisfies (4.7), proving our claim.

Now, by using Theorem 4.3.3, this easily gives the following result.

Theorem 4.3.7. The generating function I(1, 1) of strong-Baxter permutations is not D-
finite. The same holds for the refined generating function I(a+ 1, b+ 1).

Proof. With the notation of Lemma 4.3.6, our goal is to prove that J(x; a, b) and J(x; 0, 0)
are not D-finite. Recall from Equation (4.6) that J(x; a, b) = (1 +a)(1 + b)xW2(x; a, b), so
J(x; 0, 0) and W2(x; 0, 0) (resp. J(x; a, b) and W2(x; a, b)) coincide up to a factor x (resp.
(1 + a)(1 + b)x). Therefore, proving that W2(x; 0, 0) and W2(x; a, b) are non D-finite is
enough.

Since by Theorem 4.3.3 it is proved that neither W (t; a, b) nor W (t; 0, 0) are D-finite,
and being 1

1−2x
and x

1−2x
rational series, it follows from Equation (4.5) that both W2(x; a, b)

and W2(x; 0, 0) are not D-finite.

Moreover, some information on the asymptotic behaviour of the number of strong-
Baxter permutations can be derived starting from Corollary 4.3.5. Indeed, by Corol-
lary 4.3.5 the growth constant ρW associated with the generating function W (t; 0, 0) is
an algebraic number. Then, we show below that the growth constant of strong-Baxter
numbers is closely related to the number ρW .

Corollary 4.3.8. The growth constant for the strong-Baxter numbers is

ρW + 2 ≈ 6.729031538.

Proof. From Lemma 4.3.6, it follows that

I(x; 1, 1) = xW2(x; 0, 0) = xW

(
x

1− 2x
; 0, 0

)
1

1− 2x
.

By Corollary 4.3.5, 1/ρW is the radius of convergence of W (t; 0, 0). Whereas the radius of
convergence of g(x) = x/(1− 2x) is 1

2
, and limx→1/2

x<1/2
g(x) = +∞ > 1

ρW
.

So, the composition W (g(x); 0, 0) is supercritical (see [79, p. 411]), and the radius of
convergence of W ( x

1−2x
; 0, 0) is

g−1

(
1

ρW

)
=

1

ρW + 2
. (4.9)

Since 1/(ρW + 2) is smaller than the radius of convergence of 1/(1− 2x), which is 1/2, the
radius of convergence of

xW

(
x

1− 2x
; 0, 0

)
1

1− 2x
= I(x; 1, 1),

is equal to the one reported in Equation (4.9) proving our claim.
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Chapter 5

Inversion sequences and steady paths

Plan of the chapter

This chapter can be divided in two parts according to the combinatorial objects treated.
The first part (Section 5.1) focuses on inversion sequences, in particular on some of the
families introduced in the literature in [58, 110]. The second part (Sections 5.2 and 5.3) is
dedicated to the combinatorial structures enumerated by the sequence A113227 on [132].
The link between the two parts is a particular family of inversion sequences among those
listed in the first part that has been proved in [110] to be enumerated by this sequence.

In Section 5.1 we show some families of inversion sequences that have been introduced
in [110], and whose enumeration was set as an open problem. In particular, two of them
have been conjectured to be enumerated by the recurring Catalan and Baxter numbers,
motivating our choice to study them. We succeed in resolving different cases conjectured
in [110], and specifically those whose associated families form a hierarchy if ordered by in-
clusion. Moreover, we discover that not only is this hierarchy visible on these combinatorial
objects, but also it is mirrored by a chain of succession rules that are provided for enumer-
ating each of these families. Nonetheless we have not been able to generate the family at
the top of this hierarchy by means of a succession rule of the chain (Section 5.1.5). This
family has, however, a major role in this chapter being its enumeration sequence A113227.

Section 5.2 provides general results on sequence A113227 [132]. The numbers of this
sequence have been called in this dissertation powered Catalan numbers, because of the
succession rule provided in Section 5.1.5. Section 5.2.1 collects combinatorial structures
enumerated by A113227 and results about this sequence already known in the literature [19,
49]. On the other hand, Section 5.2.2 shows a new result about the enumeration of per-
mutations avoiding the vincular pattern 1 23 4, which provides a second succession rule
generating powered Catalan numbers.

In Section 5.3 we provide a new occurrence of the sequence of powered Catalan num-
bers in terms of lattice paths, and we relate it to the combinatorial structures presented
in Section 5.2. More precisely, we introduce in Section 5.3.1 the family of steady paths,
proving that they are enumerated by the powered Catalan numbers. Then, Sections 5.3.2
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and 5.3.3 are to establish a link between the new combinatorial interpretation of the pow-
ered Catalan numbers and the already known objects of Section 5.2.1. For some of them
we prove a one-to-one correspondence with steady paths, and for some others we only
succeed in conjecturing it. It may appear as if there are two different kinds of powered
Catalan structures, as we point out in Section 5.3.4. Finally, in Section 5.3.5 we generalise
the definition of steady paths and find out two super families of lattice paths of non-trivial
enumeration.

5.1 A hierarchy of inversion sequences

In this section we introduce a hierarchy of families of inversion sequences that are related to
well-known number sequences occurring along this work. Figure 5.1 depicts a chain that
involves inversion sequences ordered by inclusion and their corresponding enumeration
sequences. It is well worth recalling that the families of inversion sequences of Figure 5.1
were first introduced in [58, 110], yet the majority of them were only conjectured in [110]
to be counted by these numbers.

avoiding

101, 100, 000

201, 210, 110

In(≥,−,≥)

seq. A000108

(Catalan)

In(≥,≥,≥)

avoiding

100, 000

210, 110

seq. A108307

In(≥,≥, >)

avoiding

100

210, 110

seq. A001181

(Baxter)

In(≥, >,−)

avoiding

210, 110

seq. A117106

(semi-Baxter)

In(=, >,>)

avoiding

110

seq. A113227

(powered Catalan)

Figure 5.1: A chain of inversion sequences ordered by inclusion, with their characterisation
in terms of pattern avoidance, and their enumerative sequence.

Moreover, we recall that inversion sequences have already been introduced in Chapter 3
as a particular occurrence of the semi-Baxter number sequence following the conjectures
in [110]. In this section we investigate further the families of inversion sequences conjectured
in [110] to be counted by the recurring Catalan, Baxter, and semi-Baxter numbers. To
this purpose, we recall here the formal definition of inversion sequence and the notion of
pattern containment, as defined in Section 3.2.2 on page 107.

By Definition 3.2.4 and 3.2.5 of Section 3.2.2, an inversion sequence of size n is an
integer sequence (e1, e2, . . . , en) satisfying 0 ≤ ei < i, for all i ∈ {1, 2, . . . , n}. Given a word
q = q1 . . . qk ∈ {0, . . . , k−1}k, an inversion sequence contains the pattern q, if there exist k
indices i1 < . . . < ik such that the word ei1 . . . eik is order-isomorphic to q. Given a triple of
relations (ρ1, ρ2, ρ3), the set In(ρ1, ρ2, ρ3) comprises all inversion sequences (e1, e2, . . . , en)
of size n such that there are no three indices i < j < k, for which it holds ei ρ1 ej ρ2 ek and
ei ρ3 ek.

The objective of the section is twofold: on the one hand we provide (and/or collect)
enumerative results about the families of inversion sequences of Figure 5.1, on the other
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hand we aim to treat all these families in a unified way. More precisely, in each subsection
we first provide a simple combinatorial characterisation for the corresponding family of
inversion sequences, and then we show a recursive growth that yields a succession rule.

The main noticeable property of the succession rules provided in Sections 5.1.1, 5.1.2,
5.1.3, and 5.1.4 is that they reveal the hierarchy of Figure 5.1 at the abstract level of
succession rules.

More precisely, the recursive construction (and consequently the succession rule) pro-
vided for each family of these sections is obtained by extending the construction (and thus
the succession rule) of the immediately smaller family. We start from In(≥,−,≥) in Sec-
tion 5.1.1, and by defining a growth for this family of inversion sequences we provide a
new succession rule for Catalan numbers. Then, by progressive generalisations we achieve
a succession rule for the family of inversion sequences ∪nIn(≥, >,−).

Nevertheless, an important remark involves the set In(=, >,>), the rightmost element
of the chain of Figure 5.1. Indeed, although its combinatorial characterisation appears
to generalise naturally the family In(≥, >,−), we do not have a growth for In(=, >,>)
that generalises the one of In(≥, >,−), motivating the study of its enumerative sequence
separately in Section 5.2.

5.1.1 Inversion sequences In(≥,−,≥)

The first family of inversion sequences considered is I(≥,−,≥) = ∪nIn(≥,−,≥). This fam-
ily of inversion sequences is conjectured in [110] to be counted by the well-known sequence
of Catalan numbers [132, A000108]. It is well worth specifying at the very beginning of
this section that this enumerative result has recently been proved independently from us
by D. Kim and Z. Lin in [97]. Nevertheless, we will provide another proof of this fact in
Proposition 5.1.3 by showing that there exists a growth for I(≥,−,≥) according to the
well-known Catalan succession rule ΩCat. Consequently, there exists a (recursive) bijec-
tion between the family I(≥,−,≥) and any other Catalan family that can be generated
according to ΩCat.

Then, we show a direct bijection between I(≥,−,≥) and a family of pattern-avoiding
permutations, which results thus enumerated by Catalan numbers. Finally, we provide
a growth for the family I(≥,−,≥) that yields a succession rule different from ΩCat, yet
appropriated to be generalised in the following sections.

The family I(≥,−,≥) has a simple characterisation in terms of inversion sequences
avoiding patterns of length three.

Proposition 5.1.1. An inversion sequence is in I(≥,−,≥) if and only if it avoids 000,
100, 101, 110, 201 and 210.

Proof. The proof is rather straightforward, since containing ei, ej, ek such that ei ≥ ej, ek,
with i < j < k, is equivalent to containing the listed patterns.

In addition to the above characterisation, we remark the following combinatorial de-
scription of In(≥,−,≥), as it will be useful to define a growth according to the Catalan
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succession rule ΩCat.

Proposition 5.1.2. Any inversion sequence e = (e1, . . . , en) is in In(≥,−,≥) if and only
if for any i, with 1 ≤ i < n,

if ei forms a weak descent, i.e. ei ≥ ei+1, then ei < ej, for all j > i+ 1.

Proof. One direction is clear. The other direction can be proved by contrapositive. More
precisely, suppose there are three indices i < j < k, such that ei ≤ ej, ek. Then, if ej = ei+1,
then ei forms a weak descent and the fact that ei ≥ ek concludes the proof. Otherwise,
since ei ≥ ej, there must be an index i′, with i ≤ i′ < j, such that ei′ forms a weak descent
and ei′ ≥ ek. This concludes the proof.

Proposition 5.1.3. The family I(≥,−,≥) can be generated by ΩCat,

ΩCat =


(1)

(k)  (1), (2), . . . , (k), (k + 1).

Proof. We prove the statement by showing a growth for the family I(≥,−,≥) according to
ΩCat. Given an inversion sequence e = (e1, . . . , en), we define the inversion sequence e� i
as the sequence (e1, . . . , ei−1, i− 1, ei, . . . , en), where the entry i− 1 is inserted in position
i, for some 1 ≤ i ≤ n + 1, and the entries ei, . . . , en are shifted rightwards by one. By
definition of inversion sequence, i − 1 is the largest possible value that the ith entry can
assume. And moreover, letting e′ := e � i, it holds that e′j = ej−1 < j − 1, for all j > i;
namely the index i is the rightmost index such that e′k = k − 1. For example, if i = 4 and
e = (0, 0, 1, 3, 4, 5), then e� i = (0, 0, 1, 3, 3, 4, 5).

Then, given an inversion sequence e ∈ In(≥,−,≥) by removing from e the rightmost
entry whose value is equal to its position minus one, we obtain an inversion sequence that
is in In−1(≥,−,≥). Note that e1 = 0 for every e ∈ In(≥,−,≥), thus such an entry always
exists.

Now, we can describe a growth for the family I(≥,−,≥) by inserting an entry i − 1
in position i. By Proposition 5.1.2, since the entry i − 1 forms a weak descent in e � i,
the inversion sequence e � i is in the set In+1(≥,−,≥) if and only if ei+1, . . . , en > i − 1.
Then, we call active positions all the indices i, with 1 ≤ i ≤ n + 1, such that e � i is in
In+1(≥,−,≥). According to this definition, n+1 and n are always active positions: indeed,
both e� (n+ 1) = (e1, . . . , en, n) and e� n = (e1, . . . , n− 1, en) are in In+1(≥,−,≥).

We label an inversion sequence e ∈ In(≥,−,≥) with (k), where k is the number of its
active positions decreased by one. The smallest inversion sequence has label (1), which is
the axiom of rule ΩCat.

Now, we show that given an inversion sequence e ∈ In(≥,−,≥) with label (k), the labels
of e� i, where i ranges over all the active positions, are precisely the label productions of
(k) in ΩCat.

More precisely, let i1, . . . , ik+1 be the active positions of e from left to right. Note that
ik = n and ik+1 = n + 1. We argue that, for any 1 ≤ j ≤ k + 1, the active positions of
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the inversion sequence e� ij = (e1, . . . , ij − 1, eij , . . . , en) are i1, . . . , ij−1, n+ 1 and n+ 2.
Indeed, on the one hand any position which is non-active in e is still non-active in e� ij.
On the other hand, by Proposition 5.1.2, the index ij becomes non-active in e � ij, since
the entry eij < ij by definition. Similarly, any position ih, with ij < ih < n + 1, which is
active in e becomes non-active in e� ij. Indeed, by Proposition 5.1.2, the index ih is active
in e� ij if and only if eih , . . . , en > ih. Since eih < ih by definition, the active positions of
e� ij are i1, . . . , ij−1, n+1 and n+2. Hence, e� ij has label (j), for any 1 ≤ j ≤ k+1.

An interesting result is the characterisation of the set In(≥,−,≥) as the set of left
inversion tables of some pattern-avoiding permutations of length n. In particular, it results
that the family of pattern-avoiding permutations AV (1 23, 2 14 3) forms a new occurrence
of the Catalan numbers. In order to prove it, the following lemma is useful.

Lemma 5.1.4. Let T be the mapping of Definition 1.3.6. Let π ∈ Sn, and T(π) =
(t1, . . . , tn). For every i < j, if πi > πj, then ti > tj.

Proof. It follows straightforward by the definitions of inversion and left inversion table of
π (Definition 1.3.6 on page 27).

Proposition 5.1.5. For any n, the set In(≥,−,≥) and the set AVn(1 23, 2 14 3) are in
bijection.

Proof. We prove our statement by using the mapping R ◦ T, which is a bijection between
the family of permutations and integer sequences (e1, . . . , en) such that 0 ≤ ei < i - see
Proposition 1.3.7 in Section 1.3.3 on page 27. Then, we will show that the restriction
of the bijection R ◦ T to the family AV (1 23, 2 14 3) yields a bijection with the family
I(≥,−,≥). Precisely, we want to prove that for every n, an inversion sequence is in the
set {(R ◦ T) (π) : π ∈ AVn(1 23, 2 14 3)} if and only if it is in In(≥,−,≥).

⇒) We prove the contrapositive: if e 6∈ In(≥,−,≥), then π = (R ◦ T)−1(e) contains 1 23
or 2 14 3. Let t = (t1, . . . , tn) = (en, . . . , e1). Then, t is the left inversion table of a
permutation π ∈ Sn, i.e T(π) = t. Since e 6∈ In(≥,−,≥), there exist three indices,
i < j < k, such that ti ≤ tk and tj ≤ tk.

Without any loss of generality, we can suppose that there is no index h, such that
j < h < k and ti ≤ th and tj ≤ th. Namely tk is the leftmost entry of t that is greater
than both ti and tj. Then, we have two possibilities:

1. either j + 1 = k,

2. or j + 1 6= k, and in this case it holds that tj > tk−1 or ti > tk−1.

First, by using Lemma 5.1.4 it follows from ti ≤ tj and ti ≤ tk that πi < πk and
πj < πk.

Now, we prove that both in case 1. and in case 2. above we have π 6∈ AVn(1 23, 2 14 3).
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1. Let us consider the subsequence πiπjπj+1. We have πi < πj+1 and πj < πj+1. If
also πi < πj, then it forms a 1 23.

Otherwise, it must hold that πi > πj, and thus tj < ti ≤ tj+1. Since the pair
(πi, πj) is an inversion of π and ti ≤ tj+1, there must be a point πs on the right
of πj+1 such that (πj+1, πs) is an inversion and (πi, πs) is not. Thus, πiπjπj+1πs
forms a 2 14 3.

2. First, if tj > tk−1, consider the subsequence πiπjπk−1πk. It follows that tk−1 < tk,
since tj ≤ tk, and by Lemma 5.1.4 πk−1 < πk. In addition, we know that πj < πk.
Then, πjπk−1πk forms an occurrence of 1 23 if πj < πk−1. Otherwise, it must
hold that πj > πk−1. As in case 1. the pair (πj, πk−1) is an inversion, and tj ≤ tk.
Therefore, there must be an element πs on the right of πk such that (πk, πs) is
an inversion and (πj, πs) is not. Hence πjπk−1πkπs forms a 2 14 3.

Now, suppose tj ≤ tk−1, and consider the subsequence πiπjπk−1πk. According
to case 2. it must be that ti > tk−1, and since ti ≤ tk, it holds that tk−1 < tk.
By Lemma 5.1.4 both πj < πk−1 and πk−1 < πk hold. Thus, πjπk−1πk forms an
occurrence of 1 23.

⇐) By contrapositive, if a permutation π contains 1 23 or 2 14 3, then e = (R ◦ T)(π) is not
in In(≥,−,≥).

- If 1 23 4 π, there must be two indices i and j, with i < j, such that πiπjπj+1 forms
an occurrence of 1 23. We can assume that no points πi′ between πi and πj are
such that πi′ < πi. Otherwise we consider πi′πjπj+1 as our occurrence of 1 23.

Then, two relations hold: ti ≤ tj+1 and tj ≤ tj+1, and thus e 6∈ In(≥,−,≥).

- If 2 14 3 4 π, and 1 23 64 π, there must be three indices i, j and k, with i <
j < j + 1 < k, such that πiπjπj+1πk forms an occurrence of 2 14 3. We can
assume that no points πi′ between πi and πj are such that πi′ < πi. Indeed,
in case πi′ < πj held, πi′πjπj+1 would be an occurrence of 1 23; whereas, if
πj < πi′ < πi, we could consider πi′πjπj+1πk as our occurrence of 2 14 3.

Then, as above tj ≤ tj+1, and ti + 1 ≤ tj+1 because (πi, πj) is an inversion of π.
Nevertheless, (πj+1, πk) is an inversion of π as well, and πi < πk. Thus, ti ≤ tj+1

and e 6∈ In(≥,−,≥).

We specify that although inversion sequences are actually a coding for permutations,
it is not easy to characterise the families I(ρ1, ρ2, ρ3) = ∪nIn(ρ1, ρ2, ρ3) in terms of families
of pattern-avoiding permutations. In fact, the above example is the unique one provided
in this section, and to our knowledge in the literature, about the families I(ρ1, ρ2, ρ3).

Corollary 5.1.6. The family AV (1 23, 2 14 3) is enumerated by Catalan numbers.

Furthermore, we can provide a new succession rule for generating the family I(≥,−,≥):
the growth we provide in the following is remarkable as we will show to allow generalisa-
tions.
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Proposition 5.1.7. The family I(≥,−,≥) can be generated by

ΩI(≥,−,≥) =


(1, 1)

(h, k)  (0, k + 1)h,
(h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k).

Proof. We prove the statement by showing a growth for the family I(≥,−,≥) that defines
the succession rule ΩI(≥,−,≥). Given an inversion sequence e = (e1, . . . , en), we define this
growth by adding a new rightmost entry. Obviously, it is different from the one provided
in the proof of Proposition 5.1.3.

Let max(e) be the maximum value among the entries of e. And let mwd(e) be the
maximum value of the set of all entries ei that form a weak descent of e; if e has no weak
descents, then mwd(e) := −1. By Proposition 5.1.1, since e avoids 100, 201 and 210, the
value max(e) is en−1 or en. In particular, if max(e) = en−1 ≥ en, then max(e) = mwd(e).

By proposition 5.1.2, it follows that f = (e1, . . . , en, p) is an inversion sequence of
In+1(≥,−,≥) if and only if mwd(e) < p ≤ n. Moreover, if mwd(e) < p ≤ max(e),
then en forms a new weak descent of f , and mwd(f) becomes the value en; whereas, if
max(e) < p ≤ n, then mwd(f) = mwd(e) since the weak descents of f and e coincide.

Now, we assign to any e ∈ In(≥,−,≥) the label (h, k), where h = max(e) − mwd(e)
and k = n−max(e). In other words, h (resp. k) marks the number of possible additions
smaller than or equal to (resp. greater than) the maximum entry of e.

The sequence e = (0) has no weak descents, thus it has label (1, 1), which is the axiom
of ΩI(≥,−,≥). Let e be an inversion sequence of In(≥,−,≥) with label (h, k). The labels of
the inversion sequences of In+1(≥,−,≥) produced by adding a rightmost entry p to e are

• (0, k + 1), for any p ∈ {mwd(e) + 1, . . . ,max(e)},

• (h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k), when p = n, n− 1, . . . ,max(e) + 1,

which concludes the proof that I(≥,−,≥) grows according to ΩI(≥,−,≥).

It is well worth noticing that although the above succession rule ΩI(≥,−,≥) generates
the well-known Catalan numbers, we do not have knowledge of this succession rule in the
literature. Figure 5.2 compares the first levels of the two generating trees respectively
associated with rules ΩCat (on the left) and ΩI(≥,−,≥) (on the right).

 (a)  (b)

Figure 5.2: The first four levels of the Catalan generating trees: (a) corresponding to ΩCat;
(b) corresponding to ΩI(≥,−,≥).
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5.1.2 Inversion sequences In(≥,≥,≥)

Following the hierarchy of Figure 5.1, the next family of inversion sequences we turn to
is I(≥,≥,≥) = ∪nIn(≥,≥,≥). This family was conjectured in [110] to be counted by
sequence A108307 on [132], which is defined as the enumerative sequence of set partitions
of {1, . . . , n} that avoid enhanced 3-crossings [40]. In [40, Proposition 2] it is proved that
the number E3(n) of these set partitions is given by E3(0) = E3(1) = 1, and by the
recursive relation

8(n+ 3)(n+ 1)E3(n) + (7n2 + 53n+ 88)E3(n+ 1)− (n+ 8)(n+ 7)E3(n+ 2) = 0 , (5.1)

which holds for all n ≥ 0.
Thus, the first terms of sequence A108307 according to recurrence (5.1) are

1, 1, 2, 5, 15, 51, 191, 772, 3320, 15032, 71084, 348889, 1768483, 9220655, 49286863, . . .

This section is aimed at proving that the enumerative sequence of the family I(≥,≥,≥)
is indeed the sequence A108307 [132]. To our knowledge, we provide the first proof of this
result conjectured in [110], and we succeed in this goal by means of a succession rule that
generalises the one in Proposition 5.1.7.

To start, we provide a combinatorial description of the family I(≥,≥,≥), which will
be used later to define a growth in the proof of Proposition 5.1.10. Then, with the aim
of enumerating completely the family I(≥,≥,≥), we solve the functional equation that
the succession rule of Proposition 5.1.10 yields. The method we use to treat this func-
tional equation is the so-called obstinate kernel method (Section 1.4.5). And, in Propo-
sition 5.1.15 we successfully prove that the enumerative sequence of family I(≥,≥,≥) is
A108307 on [132].

As Figure 5.1 shows, the family I(≥,≥,≥) includes I(≥,−,≥) as subfamily. For in-
stance, the inversion sequence (0, 0, 1, 1, 4, 2, 6, 5) is both in I8(≥,−,≥) and in I8(≥,≥,≥),
while (0, 1, 0, 1, 4, 2, 3, 5) is not in I8(≥,−,≥) despite being in I8(≥,≥,≥). The following
characterisation makes explicit this fact.

Proposition 5.1.8. An inversion sequence belongs to I(≥,≥,≥) if and only if it avoids
000, 100, 110 and 210.

Proof. The proof is a quick check that containing ei, ej, ek such that ei ≥ ej ≥ ek, with
i < j < k, is equivalent to containing the above patterns.

Recalling that I(≥,−,≥) coincides with the family of inversions sequences that avoid
000, 100, 101, 110, 201 and 210, the inclusion of I(≥,−,≥) in I(≥,≥,≥) is now clear. In
addition, Proposition 5.1.8 proves the following property stated in [110, Observation 7].

Remark 5.1.9. Let any inversion sequence e = (e1, . . . , en) be decomposed in two subse-
quences eLTR, which is the increasing sequence of left-to-right maxima of e ( i.e. entries
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ei such that ei > ej, for all j < i), and ebottom, which is the (possibly empty) sequence
comprised of all the remaining entries of e.

Then, an inversion sequence e is in the set I(≥,≥,≥) if and only if it eLTR and ebottom

are both strictly increasing sequences.

Proposition 5.1.10. The family I(≥,≥,≥) can be generated by

ΩI(≥,≥,≥) =


(1, 1)

(h, k)  (0, k + 1), (1, k + 1), . . . , (h− 1, k + 1),
(h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k).

Proof. We prove the statement by showing a growth for the family I(≥,≥,≥) according
to ΩI(≥,≥,≥), that extends the growth of Proposition 5.1.7. Then, as in Proposition 5.1.7,
we define a growth by adding a new rightmost entry.

Let last(e) be the rightmost entry of ebottom, if there is any, otherwise last(e) := −1. By
Remark 5.1.9, it follows that f = (e1, . . . , en, p) is an inversion sequence of In+1(≥,≥,≥)
if and only if last(e) < p ≤ n. Moreover, if last(e) < p ≤ max(e), where max(e) is the
maximum value of e, then p cannot be a left-to-right maximum and last(f) becomes p;
whereas, if max(e) < p ≤ n, then last(f) = last(e) since p is a left-to-right maximum of f .

Now, we assign to any e ∈ In(≥,≥,≥) the label (h, k), where h = max(e) − last(e)
and k = n − max(e). Note that the label interpretation extends the one in the proof of
Proposition 5.1.7.

The sequence e = (0) of size one has label (1, 1), which is the axiom of ΩI(≥,≥,≥). Let
e be an inversion sequence of In(≥,≥,≥) with label (h, k). The labels of the inversion
sequences of In+1(≥,≥,≥) produced by adding a rightmost entry p to e are

• (0, k + 1), . . . , (h− 1, k + 1), when p = max(e), . . . , last(e) + 1,

• (h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k), when p = n, n− 1, . . . ,max(e) + 1,

which concludes the proof that I(≥,≥,≥) grows according to ΩI(≥,≥,≥).

Now, we turn to a functional equation whose solution is the generating function for the
family I(≥,≥,≥).

By using the usual standard technique, we can translate the succession rule ΩI(≥,≥,≥)

into a functional equation.
For h, k ≥ 0, let Ah,k(x) ≡ Ah,k denote the size generating function for inversion

sequences of the family I(≥,≥,≥) having label (h, k). The rule ΩI(≥,≥,≥) translates into a
functional equation for the generating function A(x; y, z) ≡ A(y, z) =

∑
h,k≥0Ah,k y

hzk.

Proposition 5.1.11. The generating function A(y, z) satisfies the following functional
equation

A(y, z) = xyz +
xz

1− y
(A(1, z)− A(y, z)) +

xyz

z − y
(A(y, z)− A(y, y)) . (5.2)
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Proof. Starting from the succession rule ΩI(≥,≥,≥) we write

A(y, z) = xyz + x
∑
h,k≥0

Ah,k
(
(1 + y + · · ·+ yh−1)zk+1 + (yh+kz + yh+k−1z2 + · · ·+ yh+1zk)

)
= xyz + x

∑
h,k≥0

Ah,k

(
1− yh

1− y
zk+1 +

1−
(
y
z

)k
1− y

z

yh+1zk

)

= xyz +
xz

1− y
(A(1, z)− A(y, z)) +

xyz

z − y
(A(y, z)− A(y, y)) .

Equation (5.2) is a linear functional equation with two catalytic variables, y and z, in
the sense of Zeilberger [151]. An extremely similar functional equation has been solved in
Section 3.3 on page 111 about semi-Baxter permutations.

Such a similarity thus allows us to repeat the same steps of the procedure of Section 3.3
for finding the generating function of semi-Baxter permutations. In other words, we are
going to use the obstinate variant of the kernel method to provide an expression of the
generating function for I(≥,≥,≥).

First, set y = 1 + a and collect all the terms with A(y, z) of Equation (5.2) to obtain
the kernel form

K(a, z)A(1 + a, z) = xz(1 + a)− xz

a
A(1, z)− xz(1 + a)

z − 1− a
A(1 + a, 1 + a), (5.3)

where the kernel is

K(a, z) = 1− xz

a
− xz(1 + a)

z − 1− a
.

For brevity, we refer to the right-hand side of Equation (5.3) by using the expression
H(x, a, z, A(1, z), A(1 + a, 1 + a)), where

H(x0, x1, x2, w0, w1) = x0x2(1 + x1)− x0x2

x1

w0 −
x0x2(1 + x1)

x2 − 1− x1

w1.

The kernel equation K(a, z) = 0 is quadratic in z, and thus it has two roots. As usual,
we denote Z+(a) and Z (a) the two solutions of K(a, z) = 0 with respect to z,

Z+(a) =
1

2

a+ x− a2x−
√
a2 − 2ax− 2a3x+ x2 − 2a2x2 + a4x2 − 4a2x

x

= (1 + a) + (1 + a)2x+
(1 + a)4

a
x2 +

(a2 + 3a+ 1)(1 + a)4

a2
x3 +O(x4),

Z (a) =
1

2

a+ x− a2x+
√
a2 − 2ax− 2a3x+ x2 − 2a2x2 + a4x2 − 4a2x

x

=
a

x
− (1 + a)a− (1 + a)2x− (1 + a)4

a
x2 − (a2 + 3a+ 1)(1 + a)4

a2
x3 +O(x4) .
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Note that the kernel root Z is not a well-defined power series in x. Whereas, the
other kernel root, Z+, is a well-defined power series in x, whose coefficients are Laurent
polynomials in a. Then, the function A(1 + a, Z+) is a well-defined power series in x and
the right-hand side of Equation (5.3) is equal to zero by setting z = Z+, i.e.

H(x, a, Z+, A(1, Z+), A(1 + a, 1 + a)) = 0.

As in Section 3.3, we follow the steps of the obstinate variant of the kernel method and
exploit the birational transformations that leave K(a, z) unchanged.

Examining the kernel shows that the transformations

Φ : (a, z)→
(
z − 1− a

1 + a
, z

)
and Ψ : (a, z)→

(
a,
z + za− 1− a+ a2 + a3

z − 1− a

)
leave the kernel unchanged and generate a group of order 12 - see Figure 5.3.1

(a , z )

Φ
(
z−1−a

1+a
, z

)
Ψ
(
z−1−a

1+a
, z(−1+z+a2)

a(1+a)2

)
Φ
(
z−1−a
a(1+a)

, z(−1+z+a2)
a(1+a)2

)
Ψ
(
z−1−a
a(1+a)

, −1+z+a2

a2

)
Φ(

1
a
, −1+z+a2

a2

)
Ψ . . . Φ . . . Ψ . . . Φ . . . Ψ . . . Φ . . . Ψ

Figure 5.3: The action of Φ and Ψ on the pair (a, z).

Among all the elements of this group we consider those pairs (f1(a, z), f2(a, z)) such
that f1(a, Z+) and f2(a, Z+) are well-defined power series in x with Laurent polynomial
coefficients in a. More precisely, we consider the pairs (f1(a, z), f2(a, z)) depicted in Fig-
ure 5.3.

Consequently, these pairs share the property that A(1 + f1(a, Z+), f2(a, Z+)) is a con-
vergent power series in x. Whence, substituting each of these pairs for (a, z) in Equa-
tion (5.3), we obtain a system of six equations whose left-hand sides are all equal to 0 by
setting z = Z+,

0 = H(x, a, Z+, A(1, Z+), A(1 + a, 1 + a))

0 = H
(
x, Z+−1−a

1+a
, Z+, A(1, Z+), A

(
1 + Z+−1−a

1+a
, 1 + Z+−1−a

1+a

))
0 = H

(
x, Z+−1−a

1+a
, Z+(−1+Z++a2)

a(1+a)2
, A
(

1, Z+(−1+Z++a2)
a(1+a)2

)
, A
(

1 + Z+−1−a
1+a

, 1 + Z+−1−a
1+a

))
0 = H

(
x, Z+−1−a

a(1+a)
, Z+(−1+Z++a2)

a(1+a)2
, A
(

1, Z+(−1+Z++a2)
a(1+a)2

)
, A
(

1 + Z+−1−a
a(1+a)

, 1 + Z+−1−a
a(1+a)

))
0 = H

(
x, Z+−1−a

a(1+a)
, −1+Z++a2

a2
, A
(

1, −1+Z++a2

a2

)
, A
(

1 + Z+−1−a
a(1+a)

, 1 + Z+−1−a
a(1+a)

))
0 = H

(
x, 1

a
, −1+Z++a2

a2
, A
(

1, −1+Z++a2

a2

)
, A
(

1 + 1
a
, 1 + 1

a

))
.

(5.4)

1Appendix B.1 shows all the elements of this group.
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Now, by eliminating all unknowns except for A(1 + a, 1 + a) and A(1, 1 + ā), where as
usual ā denotes 1/a, System (5.4) reduces to the following equation,

(1 + a)3A(1 + a, 1 + a)− (1 + a)3

a4
A (1, 1 + ā) + P (a, Z+) = 0, where (5.5)

P (a, z) =
(−z + 1 + a)(a− 1)

a6

(
a8 + 4a7 + 7a6 + a5z + 8a5 − z2a4 + 2za4 + 8a4 + 3za3

+ 7a3 − a3z2 + 6a2z + 4a2 − 3z2a2 + a+ az3 − 4z2a+ 6az − z2 + 2z
)
.

Appendix B.1 shows in detail how to obtain the above reduction.
Now, as in Section 3.3, the form of Equation (5.5) allows us to separate its terms

according to the power of a:

• (1 + a)3A(1 + a, 1 + a) is a power series in x with polynomial coefficients in a whose
lowest power of a is 0,

• A(1, 1+ā) is a power series in x with polynomial coefficients in ā whose highest power
of a is 0; consequently, since (1 + a)3ā4 = a−4 + 3a−3 + 3a−2 + a−1, we obtain that
(1 + a)3 ā4A(1, 1 + ā) is a power series in x with polynomial coefficients in ā whose
highest power of a is −1.

Then, when we expand the series −P (a, Z+) as a power series in x, the non-negative
powers of a in the coefficients must be equal to those of (1 + a)3A(1 + a, 1 + a), while the
negative powers of a come from −(1 + a)3 ā4A(1, 1 + ā).

In order to have a better expression for the series P (a, z), we perform a further substi-
tution setting z = w + 1 + a. More precisely, let W ≡ W (x; a) be the power series in x
defined by W = Z+− (1+a). We have the following expression for Q(a,W ) := −P (a, Z+),

Q(a,W ) = −P (a,W + 1 + a) =

(
− 1

a6
− 3

a5
− 3

a4
− 1

a3
+ 1 + 3a+ 3a2 + a3

)
W

+

(
1

a5
+

1

a4
− 1

a
− 1

)
W 2

+

(
1

a6
− 1

a4
+

1

a3
− 1

a

)
W 3

+

(
− 1

a5
+

1

a4

)
W 4. (5.6)

Since the kernel annihilates if z = W + 1 + a, namely K(a,W + 1 + a) = 0, the function
W is recursively defined by

W = xā(W + 1 + a)(W + a+ a2) . (5.7)

Therefore, by using Equation (5.6) and Equation (5.7), we can express the generating
function for I(≥,≥,≥) as follows.
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Theorem 5.1.12. Let W (x; a) ≡ W be the unique formal power series in x such that

W = xā(W + 1 + a)(W + a+ a2).

The series solution A(y, z) of Equation (5.2) satisfies

A(1 + a, 1 + a) =

[
Q(a,W )

(1 + a)3

]≥
,

where the function Q(a,W ) is defined by Equation (5.6), and the notation [Q(a,W )/(1 +
a)3]≥ stands for the formal power series in x obtained by considering only those terms in
the series expansion of Q(a,W )/(1 + a)3 that have non-negative powers of a.

Note that in Theorem 5.1.12, W and Q(a,W ) are algebraic series in x whose coefficients
are Laurent polynomials in a. It follows that A(1 + a, 1 + a) is D-finite, as stated in
Section 3.3 for the semi-Baxter generating function. Hence, the specialisation A(1, 1),
which is the generating function for I(≥,≥,≥), is D-finite as well.

Then, we can obtain from the expression of A(1+a, 1+a) of Theorem 5.1.12 an explicit,
yet very complicated, expression for the coefficients of the generating function A(1, 1), i.e.
[xn]A(1, 1) = [xna0]A(1 + a, 1 + a). In order to do this, we need to calculate first the
coefficients [xnai]W j, for j = 1, 2, 3, 4.

Lemma 5.1.13. Let W (x; a) ≡ W be the unique formal power series in x such that
Equation (5.7) holds. Then, for r ≥ 1

[xnas]W r =
r

n

n−r∑
k=0

(
n

k

)(
n

k + r

)(
n+ r

k − s+ 2r

)
. (5.8)

Proof. It follows straightforward from Equation (5.7) by applying the Lagrange inversion
formula (Theorem 1.2.6 on page 18).

Proposition 5.1.14. The number of inversion sequences of the set In(≥,≥,≥), for all
n ≥ 1, is given by

∑n
k=0 I(n, k), where

I(n, k) = 1
n

(
n
k

)[(
n
k+1

) [
−
(
n+1
k−4

)
− 3
(
n+2
k−2

)
−
(
n+1
k−1

)
+
(
n+1
k+2

)
+ 3
(
n+2
k+4

)
+
(
n+1
k+5

)]
+2
(
n
k+2

) [(
n+3
k

)
−
(
n+3
k+4

)]
+ 3

(
n
k+3

) [(
n+3
k

)
−
(
n+3
k+2

)
+
(
n+3
k+3

)
−
(
n+3
k+5

)]
+4
(
n
k+4

) [
−
(
n+4
k+3

)
+
(
n+4
k+4

)]]
.

Proof. The number of inversion sequences of In(≥,≥,≥) is the coefficient of xn in A(1, 1),
which in turn is the coefficient of xna0 in A(1 + a, 1 + a). Note that this number is also
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the coefficient [xna0](1 + a)3A(1 + a, 1 + a), and so by Theorem 5.1.12 it is the coefficient
of xna0 in Q(a,W ) as expressed in Equation (5.6), namely

[xna0]Q(a,W ) =−[xna6]W − 3[xna5]W − 3[xna4]W − [xna3]W + [xna0]W + 3[xna−1]W

+ 3[xna−2]W + [xna−3]W + [xna5]W 2 + [xna4]W 2 − [xna]W 2 − [xna0]W 2

+ [xna6]W 3 − [xna4]W 3 + [xna3]W 3 − [xna]W 3 − [xna5]W 4 + [xna4]W 4.

Then, by Lemma 5.1.13 we can substitute into the above expression the coefficients of
[xnas]W i, for each s and i = 1, 2, 3, 4. Therefore, we obtain the following expression for
the number of inversion sequences of In(≥,≥,≥), proving Proposition 5.1.14,

[xna0]Q(a,W ) =
∑n

k=0
1
n

(
n
k

)[(
n
k+1

) [
−
(
n+1
k−4

)
− 3
(
n+2
k−2

)
−
(
n+1
k−1

)
+
(
n+1
k+2

)
+ 3
(
n+2
k+4

)
+
(
n+1
k+5

)]
+2
(
n
k+2

) [(
n+3
k

)
−
(
n+3
k+4

)]
+ 3

(
n
k+3

) [(
n+3
k

)
−
(
n+3
k+2

)
+
(
n+3
k+3

)
−
(
n+3
k+5

)]
+4
(
n
k+4

) [
−
(
n+4
k+3

)
+
(
n+4
k+4

)]]
.

Although Proposition 5.1.14 shows a rather complicated expression for the number
of inversion sequences of In(≥,≥,≥), Zeilberger’s method of creative telescoping [118,
150] illustrated in Section 3.4.2 allows us to provide a recursive formula satisfied by these
numbers and to prove that they are indeed the sequence A108307 on [132].

Proposition 5.1.15. Let an = |In(≥,≥,≥)|. The numbers an are recursively defined by
a0 = a1 = 1 and for n ≥ 0,

8(n+ 3)(n+ 1)an + (7n2 + 53n+ 88)an+1 − (n+ 8)(n+ 7)an+2 = 0 .

Thus, {an}n≥0 is sequence A108307 on [132].

Proof. From Proposition 5.1.15, we can write an =
∑n

k=0 I(n, k), where the summand
I(n, k) is hypergeometric. Then, we prove the announced recurrence using the method
of creative telescoping - see Appendix B.2. The Maple package SumTools includes the
command Zeilberger, which implements this approach. On input I(n, k) it shows that

−(n+ 9)(n+ 8)(n+ 6)I(n+ 3, k) + (464n+ 6n3 + 776 + 92n2)I(n+ 2, k)

+(n+ 2)(15n2 + 133n+ 280)I(n+ 1, k) + 8(n+ 3)(n+ 2)(n+ 1)I(n, k)

= G(n, k + 1)−G(n, k), (5.9)

where the certificate function G(n, k) has an expression extremely complicated and is not
reported here. Nevertheless, it can be checked that G(n, 0) = G(n, n+ 9) = 0.
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Thus, to complete the proof it is sufficient to sum both sides of Equation (5.9) over k,
k ranging from 0 to n+ 9. Since the coefficients on the left-hand side of Equation (5.9) are
independent of k, summing Equation (5.9) over k gives

−(n+ 9)(n+ 8)(n+ 6)an+3 + (464n+ 6n3 + 776 + 92n2)an+2

+(n+ 2)(15n2 + 133n+ 280)an+1 + 8(n+ 3)(n+ 2)(n+ 1)an = 0 . (5.10)

Now, it is straightforward to check that the sequence defined in Proposition 5.1.15 also
satisfies the above P -recursion.2 Indeed, Equation (5.10) can be obtained by applying the
operator (n+2)+(n+6)N to the recursion of Proposition 5.1.15, where as in Section 3.4.2
N denotes the shift operator. The proof is completed by checking that the recursion of
Proposition 5.1.15 coincides with Equation (5.1) on page 146.

5.1.3 Inversion sequences In(≥,≥, >)

The next family of inversion sequences according to the hierarchy of Figure 5.1 on page 140
is I(≥,≥, >) = ∪nIn(≥,≥, >). Indeed, the family I(≥,≥, >) includes I(≥,≥,≥), as the
following characterisation makes evident.

Proposition 5.1.16. An inversion sequence is in I(≥,≥, >) if and only if it avoids 100,
110 and 210.

Proof. The proof is a check, as usual. By definition an inversion sequence e = (e1, . . . , en)
is in In(≥,≥, >) if and only if there are no three indices i < j < k such that ei ≥ ej ≥ ek,
and ei > ek. Thus, any inversion sequence e is in In(≥,≥, >) if and only if it avoids 100,
110 and 210.

For example, the inversion sequence (0, 1, 0, 1, 4, 1, 2, 4) is in I8(≥,≥, >), yet it contains
an occurrence of 000 and thus it is not in I8(≥,≥,≥) . Another characterisation can be
provided for the family I(≥,≥, >), as follows.

Proposition 5.1.17. Let e = (e1, . . . , en) be an inversion sequence. As in Proposi-
tion 5.1.9, we call an entry ei a LTR maximum (resp. RTL minimum), if ei > ej, for
all j < i (resp. ei < ej, for all j > i).

An inversion sequence e is in I(≥,≥, >) if and only if for every i and j, with i < j and
ei > ej, both ei is a LTR maximum and ej is a RTL minimum.

Proof. The proof in both directions is straightforward by considering the characterisation
of Proposition 5.1.16.

This family of inversion sequences was conjectured in [110] to be counted by the se-
quence A001181 [132] of Baxter numbers. This conjecture has recently been proved in [97,

2This calculation can be found in Appendix B.2, as well.
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Theorem 4.1], by means of analytical tools: precisely, in [97, Lemma 4.3] it has been pro-
vided a succession rule for enumerating I(≥,≥, >) that results analytically to generate
Baxter numbers. Despite this proof, no bijections involving any of the Baxter families of
Section 1.4.2 are known, or equivalently no Baxter families are proved to grow according
to this succession rule.

Moreover, we precise that the succession rule of [97, Lemma 4.3] is the same as ΩBax3

reported in Section 1.4.4 on page 43 among the known Baxter succession rules. Despite
this known result, we choose to report here a proof of [97, Lemma 4.3], since it displays
that there exists a growth for the family I(≥,≥, >) that generalises the growth for the
family I(≥,≥,≥) provided in Proposition 5.1.10.

Proposition 5.1.18. The family I(≥,≥, >) can be generated by

ΩBax3 =


(1, 1)

(h, k)  (1, k + 1), . . . , (h− 1, k + 1),
(1, k + 1),
(h+ k, 1), . . . , (h+ 1, k).

Proof. We prove the statement by showing a growth for the family I(≥,≥, >) according
to ΩBax3, which extends the growth of Proposition 5.1.10, as well as Proposition 5.1.7. As
previously, we define this growth by adding a new rightmost entry.

As in the proof of Proposition 5.1.10, let last(e) be the value of the rightmost entry of
e, which is not a LTR maximum, if there is any. Note that last(e) is also the largest value
not being a LTR maximum, since e avoids 210 by Proposition 5.1.16. Otherwise, if such
an entry does not exists, we set last(e) equal to the smallest value of e, i.e. last(e) := 0.

Moreover, if there exists this rightmost entry of e, which is not a LTR maximum, it can
either form an inversion (i.e. there exists an entry ei on its left such that ei > last(e)) or
not. We need to distinguish two cases in order to define the addition of a new rightmost
entry to e:

(a) Suppose either all the entries of e are LTR maxima, or the rightmost entry of e, which
is not a LTR maximum, does not form an inversion.

(b) Suppose the rightmost entry of e, which is not a LTR maximum, does form an inver-
sion.

Then, according to Proposition 5.1.18 we have that

(a) The sequence f = (e1, . . . , en, p) is in In+1(≥,≥, >) if and only if last(e) ≤ p ≤ n.
Moreover, if last(e) ≤ p < max(e), where as usual max(e) is the maximum value of e,
then last(f) = p and f falls in case (b). Else if p = max(e), then again last(f) = p,
yet f falls in case (a). While, if max(e) < p ≤ n, p is a LTR maximum of f , which
thus falls in the same case (a) of e, and last(f) = last(e).
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(b) The sequence f = (e1, . . . , en, p) is in In+1(≥,≥, >) if and only if last(e) < p ≤ n. In
particular, if last(e) < p < max(e), then last(f) = p and f falls in case (b). Else if
p = max(e), then again last(f) = p and f falls in case (a). While, if max(e) < p ≤ n,
as above p is a LTR maximum of f , which thus falls in the same case (b) of e, and
last(f) = last(e).

Now, we assign to any e ∈ In(≥,≥, >) a label according to the above distinction: in
case (a) (resp. (b)) we assign the label (h, k), where h = max(e) − last(e) + 1 (resp.
h = max(e)− last(e)) and k = n−max(e).

The sequence e = (0) of size one falls in case (a), thus it has label (1, 1), which
is the axiom of ΩBax3. Now, let e be an inversion sequence of In(≥,≥, >) with label
(h, k). Following the above distinction, the inversion sequences of In+1(≥,≥, >) produced
by adding a rightmost entry p to e have labels:

(a) • (1, k + 1), . . . , (h− 1, k + 1), when p = max(e)− 1, . . . , last(e),

• (1, k + 1), for p = max(e),

• (h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k), when p = n, n− 1, . . . ,max(e) + 1,

(b) • (1, k + 1), . . . , (h− 1, k + 1), when p = max(e)− 1, . . . , last(e) + 1,

• (1, k + 1), for p = max(e),

• (h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k), when p = n, n− 1, . . . ,max(e) + 1,

which concludes the proof that I(≥,≥, >) grows according to ΩBax3.

5.1.4 Inversion sequences In(≥, >,−)

The next family of inversion sequences according to the hierarchy of Figure 5.1 is the family
I(≥, >,−) = ∪nI(≥, >,−). The following proposition clarifies the inclusion of the family
I(≥,≥, >), considered in the previous section, into the family I(≥, >,−).

Proposition 5.1.19. An inversion sequence is in I(≥, >,−) if and only if it avoids 110
and 210.

The proof of the above statement is elementary, and we omit it. Yet it shows clearly that
the inversion sequences of family I(≥, >,−) avoid only two of the three patterns avoided
by the inversion sequences of I(≥,≥, >) (see Proposition 5.1.16 for a comparison). For
example, the inversion sequence (0, 1, 0, 0, 1, 4, 2, 2) is in I8(≥, >,−), but not in I8(≥,≥, >).

Moreover, the following characterisation is an extension of that provided in Proposi-
tion 5.1.17 for the family I(≥,≥, >).

Proposition 5.1.20. Let e = (e1, . . . , en) be an inversion sequence. As in proposi-
tion 5.1.17, we call an entry ei a LTR maximum, if ei > ej, for all j < i, and we say
that ei and ej form an inversion, if i < j and ei > ej.

An inversion sequence e is in I(≥, >,−) if and only if for every ei and ej that form an
inversion, ei is a LTR maximum.
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Proof. Equivalently to the proof of Proposition 5.1.17, the above statement follows imme-
diately by considering that e is an inversion sequence of I(≥, >,−) if and only if it avoids
110 and 210.

This family of inversion sequences was conjectured in [110] to be counted by the se-
quence A117106 [132] of the semi-Baxter numbers SBn. It is well worth specifying that
we have already proved this conjecture in [G4], and reported its proof in Section 3.2.2 on
page 107. Indeed, according to [110] for every n, inversion sequences of In(>,≥,−) are as
many as those of In(≥, >,−), and in Section 3.2.2 we proved that |In(>,≥,−)| = SBn.

For the sake of completeness, we choose to report here a proof of the fact that the
family I(≥, >,−) can be generated by the rule Ωsemi. Indeed, the growth of the family
I(≥,≥, >) in the proof of Proposition 5.1.18 can be easily generalised to a growth for the
family I(≥, >,−).

Proposition 5.1.21. The family I(≥, >,−) can be generated by

Ωsemi =


(1, 1)

(h, k)  (1, k + 1), . . . , (h, k + 1),
(h+ k, 1), . . . , (h+ 1, k).

Proof. As previously, we define a growth for the family I(≥, >,−) according to Ωsemi, by
adding a new rightmost entry.

As in the proof of Proposition 5.1.18, let last(e) be the value of the rightmost entry
of e which is not a LTR maximum, if there is any. Otherwise, last(e) := 0. Note that
differently from Proposition 5.1.18, here we do not need to distinguish cases depending on
whether or not the rightmost entry of e not being a LTR maximum forms an inversion.

According to Proposition 5.1.20, it follows that f = (e1, . . . , en, p) is an inversion se-
quence of In+1(≥, >,−) if and only if last(e) ≤ p ≤ n. Moreover, if last(e) ≤ p ≤ max(e),
where as usual max(e) is the maximum value of e, then last(f) = p; if max(e) < p ≤ n,
then last(f) = last(e), since p is a LTR maximum.

Now, we assign to any e ∈ In(≥, >,−) the label (h, k), where h = max(e)− last(e) + 1
and k = n−max(e).

The sequence e = (0) of size one has label (1, 1), which is the axiom of Ωsemi, since
last(e) = 0. Let e be an inversion sequence of In(≥, >,−) with label (h, k). The labels of
the inversion sequences of In+1(≥, >,−) produced adding a rightmost entry p to e are

• (1, k + 1), . . . , (h, k + 1), when p = max(e), . . . , last(e),

• (h+ k, 1), (h+ k − 1, 2), . . . , (h+ 1, k), when p = n, n− 1, . . . ,max(e) + 1,

which concludes the proof that I(≥, >,−) grows according to Ωsemi.
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5.1.5 Inversion sequences In(=, >,>)

The family of inversion sequences I(=, >,>) = ∪nIn(=, >,>) is depicted as the ultimate
element of the chain in Figure 5.1. Indeed, among the inversion sequences of I(=, >,>) we
can find the inversion sequences of I(≥, >,−) (and consequently of I(≥,≥, >), I(≥,≥,≥),
and I(≥,−,≥)). The following characterisation will express distinctly this inclusion.

Proposition 5.1.22. An inversion sequence is the set I(=, >,>) if and only if it avoids
110.

Proof. It follows from the definition of the set In(=, >,>). Indeed, any inversion sequence
e = (e1, . . . , en) in In(=, >,>) is such that if there are ei and ej, with i < j and ei = ej,
then ek cannot be smaller than ej, for every k > j. Thus, e is in In(=, >,>) if and only if
it avoids 110.

An example of inversion sequence of the set I8(=, >,>) that does not belong to the set
I8(≥, >,−) is (0, 1, 0, 0, 1, 4, 3, 2).

Thanks to the characterisation of Proposition 5.1.22, the family I(=, >,>) was com-
pletely enumerated in [58, Theorem 13]. Its enumerative number sequence is registered
on [132] as sequence A113227, whose first terms are

1, 1, 2, 6, 23, 105, 549, 3207, 20577, 143239, 1071704, 8555388, 72442465, 647479819, . . .

In [49] it is proved that the nth number pn of the sequence A113227 can be obtained
as
∑n

k=0 cn,k, where the term cn,k is recursively defined by
c0,0 = 1,

cn,0 = 0, for n ≥ 1

cn,k = cn−1,k−1 + k
∑n−1

j=k cn−1,j, for n ≥ 1, and 1 ≤ k ≤ n .

(5.11)

Proposition 5.1.23 (Theorem 13, [58]). For n ≥ 1 and 0 ≤ k ≤ n, the number of inver-
sion sequences of In(=, >,>) having k zeros is given by the term cn,k of Equation (5.11).
Thus, |In(=, >,>)| = pn, for every n ≥ 1.

The recursive formula (5.11) and Proposition 5.1.23 can be translated into the following
result.

Proposition 5.1.24. The family I(=, >,>) can be generated by

ΩpCat =


(1)

(k)  (1), (2)2, (3)3, . . . , (k)k, (k + 1).

Remark 5.1.25. The succession rule ΩpCat is encoded by the recursive formula (5.11).
Indeed, for n ≥ 1 and k ≥ 1, the number of nodes at level n that carry the label (k) in the
generating tree associated with ΩpCat is precisely the quantity cn,k given by Equation (5.11).
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Proof of Proposition 5.1.24. We prove the above statement by showing a growth for the
family I(=, >,>). Let e = (e1, . . . , en) ∈ In(=, >,>). Suppose e has k entries equal to 0,
and let i1, . . . , ik be their indices.

Then, we define a growth that changes the number of the 0 entries of e, as follows:

a) first, increase by one all the entries of e that are greater than 0; namely e′ =
(e′1, . . . , e

′
n), where e′i = ei, if i = i1, . . . , ik, otherwise e′i = ei + 1. Note that

e′1 = e1 = 0.

b) insert a new leftmost 0 entry; namely e′′ = (0, e′i, . . . , e
′
n). Note that e′′ is an inversion

sequence of size n+1, and moreover it has k+1 zeros at positions 1, i1 +1, . . . , ik+1.

c) build the following inversion sequences, starting from e′′.

(1) Replace all the zeros at positions i1 + 1, i2 + 1, . . . , ik + 1 by 1; namely e(1) =
(0, e∗1, . . . , e

∗
n), where e∗i = ei + 1, for all i. Note that e(1) has only one zero.

(j) For all 1 < j < k + 1, replace all the zeros at positions ij+1 + 1, . . . , ik + 1 by 1,
and furthermore replace by 1 only one entry among i1 + 1, . . . , ij + 1. There are
thus j different inversion sequences e(m) = (0, e∗1, . . . , e

∗
n), with 1 ≤ m ≤ j, such

that e∗i = ei + 1 except for the indices i1 + 1, . . . , im−1 + 1, im+1 + 1, . . . , ij + 1.
Note that e(m) has exactly j zeros, for any 1 ≤ m ≤ j.

(k+1) Set e(k+1) = e′′.

Note that all the inversion sequences of size n + 1 produced at step c) avoid 110, since
the initial inversion sequence e avoids 110. Thus, in each of the above cases we build an
inversion sequence of In+1(=, >,>).

Moreover, given any inversion sequence f ∈ In+1(=, >,>), it is easy to retrieve the
unique inversion sequence e ∈ In(=, >,>) that produces f according to the operations of
c): it is sufficient to replace all the entries equal to 1 by 0, remove the leftmost 0 entry,
and finally decrease by one all the entries greater than 0. This procedure is in fact a) - b)
- c) backwards.

Finally, if we label an inversion sequence e of In(=, >,>) with (k), where k is its number
of 0 entries. It is straightforward, and the above itemised list suggests it, that the inversion
sequences of In+1(=, >,>) produced by e following the construction at step c) have labels
(1), (2)2, (3)3, . . . , (k)k, (k + 1).

The family I(=, >,>) = ∪nIn(=, >,>) deserves attention mainly for two reasons. On
the one hand, we have not been able to write a succession rule for the family I(=, >,>) that
generalises the one of Proposition 5.1.21, thus provoking a rift in the chain of succession
rules according to Figure 5.1. On the other hand, the enumerative sequence of the family
I(=, >,>), (sequence A113227 [132]), is extremely rich of combinatorial interpretations, as
the following sections will illustrate.

Of particular interest is indeed the similarity between the Catalan succession rule ΩCat

of Section 1.3.4 and the succession rule shown in Proposition 5.1.24 to generate the family
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I(=, >,>). In other words, the rule ΩCat has the production

(k) (1), (2), . . . , (k), (k + 1) ,

while the succession rule ΩpCat has

(k) (1), (2)2, . . . , (k)k, (k + 1) .

It looks as if the succession rule ΩpCat is the weighted version of the Catalan succession
rule ΩCat. In the next section, the above observation will allow us to call the numbers pn
of sequence A113227 [132] powered Catalan numbers.

Remark 5.1.26. We point out that apparently there is no information about the ordinary
generating function FpCat(x) =

∑
n≥0 pnx

n. On the contrary, the exponential generating
function EpCat(x) =

∑
n≥0 pnx

n/n! has been studied in [72], as well as in [49], where by
means of the recurrence (5.11) a refined version of this exponential generating function is
provided.

5.2 Powered Catalan numbers

This section is to collect combinatorial results about the number sequence A113227 on [132],
which we call the sequence of powered Catalan numbers.

Definition 5.2.1. Let pn =
∑n

k=0 cn,k, where cn,k is defined by Equation (5.11), i.e.
c0,0 = 1,

cn,0 = 0, for n ≥ 1

cn,k = cn−1,k−1 + k
∑n−1

j=k cn−1,j, for n ≥ 1, and 1 ≤ k ≤ n .

(5.11)

We call pn the nth powered Catalan number, and the number sequence A113227 on [132]
the sequence of powered Catalan numbers.

Table 5.1 shows the terms cn,k, for n ≥ 0 and 0 ≤ k ≤ n.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 0 1

n = 1 0 1

n = 2 0 1 1

n = 3 0 2 3 1

n = 4 0 6 10 6 1

n = 5 0 23 40 31 10 1

n = 6 0 105 187 166 75 15 1

Table 5.1: The first terms generated by the recursive formula (5.11).
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The name is clearly motivated by the similarity noticed earlier between the well-known
Catalan succession rule ΩCat and the rule ΩpCat of Section 5.1.5.

Now, in Section 5.2.1 we collect some combinatorial structures known to be counted by
the powered Catalan numbers. Next in Section 5.2.2 we provide another succession rule
that generates powered Catalan numbers.

5.2.1 Combinatorial structures enumerated by the powered Cata-
lan number sequence

Valley-marked Dyck paths

This family of paths first defined in [49, Section 7] generalises the well-known family of
Dyck paths - see Figure 5.4.

Definition 5.2.2. A valley-marked Dyck path of semi-length n is a Dyck path P of length
2n in which, for each valley (i.e. DU factor), one of the lattice points between the valley
vertex and the x-axis is marked. In other words, if (i, k) pinpoints any valley of P , then
a valley-marked Dyck path associated with P must take a mark in a point (i, j), where
0 ≤ j ≤ k.

Figure 5.4: A valley-marked Dyck path.

Valley-marked Dyck paths are enumerated by powered Catalan number according to
their semi-length and, moreover, the parameter k of Table 5.1 can be interpreted on them
as follows.

Proposition 5.2.3. The number of valley-marked Dyck paths of semi-length n having k
down steps in the last descent is given by the term cn,k of Equation (5.11), for every n ≥ 0
and 0 ≤ k ≤ n.

Proof. We prove the above statement by showing a growth for valley-marked Dyck paths
according to ΩpCat. Indeed, to provide a growth according to ΩpCat is equivalent to provide
an interpretation of the term cn,k of Equation (5.11) by Remark 5.1.25.

The growth we provide is a slight modification of the one known for Dyck paths (see
Section 1.3.4). Let P be a Dyck path of semi-length n with k down steps in its last descent.
By adding a rightmost UD factor in any point of its last descent, we obtain the Dyck paths
P (1), . . . , P (k+1) with 1, . . . , k + 1 down steps in the last descent, respectively. Note that
P (k+1) has as many valleys as P , whereas P (1), . . . , P (k) have a new rightmost valley.
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Then, let V be a valley-marked Dyck path of semi-length n with k down steps in the
last descent. The path V is by definition a Dyck path P of semi-length n with some marks.
Then, V produces the following paths:

• for any 1 ≤ j ≤ k, the path P (j) with the rightmost valley marked at (2n+ 1− j, i),
for any 0 ≤ i ≤ j, and all the other valley-marks as V ,

• P (k+1) with all the valleys marked as V .

Now, we label each valley-marked Dyck path V with (k), where k is the number of steps in
its last descent. The path UD of semi-length 1 has label (1), which is the axiom of ΩpCat.
Then, given a valley-marked Dyck path V of label (k), the labels of the paths produced
by V are (1), (2)2, (3)3, . . . , (k)k, (k + 1), concluding the proof.

Increasing ordered trees

Another family of objects described in [49] to be counted by sequence A113227 is formed
by labelled ordered trees.

Definition 5.2.4. An increasing ordered tree of size n is a plane tree with n + 1 labelled
vertices, the standard label set being {0, 1, 2, . . . , n}, such that each child exceeds its par-
ent. An increasing ordered tree has increasing leaves if its leaves, taken in pre-order, are
increasing.

Figure 5.5 shows two increasing ordered trees, the first has increasing leaves, while the
second does not.
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Figure 5.5: Two increasing ordered trees: (a) with increasing leaves; (b) with non-
increasing leaves.

The number of increasing ordered trees of size n is given by the odd double factorial
(2n− 1)!! [50]. If we require the additional constraint of having increasing leaves, then the
number of these increasing ordered trees of size n results to be the nth powered Catalan
number.

Proposition 5.2.5 (Section 2, [49]). The number of increasing ordered trees with increas-
ing leaves of size n and root degree k is given by the number cn,k of Equation (5.11).

A proof of the above statement can be also provided similarly to Proposition 5.2.3, by
showing a growth according to ΩpCat for increasing ordered trees with increasing leaves.
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Pattern-avoiding permutations

Some families of pattern-avoiding permutations are known to be counted by the sequence
of powered Catalan numbers. Indeed, sequence A113227 is actually registered on [132] as
the enumerative sequence of permutations avoiding the generalised pattern 1 23 4.

The family AV (1 23 4) has been completely enumerated by D. Callan in [49]. Indeed,
he shows in [49] a bijection between AV (1 23 4) and labelled ordered trees with increas-
ing leaves. Therefore, the number |AVn(1 23 4)| satisfies Definition 5.2.1, although the
interpretation of the parameter k is rather complicated on 1 23 4-avoiding permutations.

Furthermore, in [18], some other families of pattern-avoiding permutations are presented
as related to the sequence A113227 [132]. In particular, in [18] and subsequent papers,
the families AV (1 32 4), and AV (1 34 2), and AV (1 43 2) are proved to be equinumerous to
1 23 4-avoiding permutations. It has been conjectured in [19] that also the family AV (23 14)
is equinumerous to AV (1 23 4). We attempted to prove this conjecture by defining a growth
for the family AV (23 14) according to ΩpCat. This fact leads us to refine this conjecture as
follows.

Conjecture 5.2.6. The number of permutations of AVn(23 14) with k RTL minima is
given by cn,k as defined in Equation (5.11).

Although we have a little evidence of the above fact (only up to n ≤ 9), we suspect
that a growth for 213-avoiding permutations according to ΩCat, where the parameter k
marks the number of RTL minima, could be generalised as to obtain one for 23 14-avoiding
permutations according to ΩpCat. Nevertheless, we have not been able to find such a growth
up to now.

5.2.2 A second succession rule for powered Catalan numbers

In this section we provide a second succession rule different from ΩpCat for the powered
Catalan number sequence A113227 [132]. We are able to provide it by showing a growth
for the family of permutations AV (1 23 4).

According to D. Callan [49], permutations avoiding 1 23 4 have a simple characterisation
in terms of LTR minima and RTL maxima, as follows.

Proposition 5.2.7. A permutation π of length n belongs to AV (1 23 4) if and only if for
every index 1 ≤ i < n,

if πiπi+1 is an ascent (πi < πi+1), then πi is a LTR minimum or πi+1 is a RTL maximum.

Proof. The proof is straightforward. In fact, suppose there exists an index i, 1 ≤ i < n,
such that πi < πi+1, and neither πi is a LTR minimum nor πi+1 is a RTL maximum. Then,
there exists an index j < i such that πj < πi, and an index k > i+ 1 such that πk > πi+1.
Thus, πjπiπi+1πk forms an occurrence of 1 23 4. Conversely, if π contains an occurrence of
1 23 4, by definition of pattern containment there exists an index i, 1 ≤ i < n, such that
πi < πi+1, and neither πi is a LTR minimum nor πi+1 is a RTL maximum.
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We show now a recursive growth for the family AV (1 23 4) that yields a succession rule
whose labels are arrays of length two.

Proposition 5.2.8. Permutations avoiding 1 23 4 can be generated by the following suc-
cession rule

Ω1 23 4 =



(1, 1)

(1, k)  (1, k + 1), (2, k), . . . , (1 + k, 1),

(h, k)  (1, h+ k), (2, h+ k − 1), . . . , (h, k + 1),
(h+ 1, 0), . . . , (h+ k, 0), if h 6= 1.

Proof. First, observe that removing the rightmost point of a permutation avoiding 1 23 4,
we obtain a permutation that still avoids 1 23 4. So, a growth for the permutations avoiding
1 23 4 can be obtained with local expansions on the right. By using the notation introduced
in Chapter 3, we denote by π·a, where a ∈ {1, . . . , n+1}, the permutation π′ = π′1 . . . π

′
nπ
′
n+1

where π′n+1 = a, and π′i = πi, if πi < a, π′i = πi + 1 otherwise.
For π a permutation in AVn(1 23 4), the active sites of π are by definition the points a

(or equivalently the values a) such that π · a avoids 1 23 4. The other points a are called
non-active sites.

An occurrence of 1 23 in π is a subsequence πjπiπi+1 (with j < i) such that πj <
πi < πi+1. Note that the non-active sites a of π are the values larger than πi+1, for some
occurrence πjπiπi+1 of 1 23. Then, given π ∈ AVn(1 23 4), we denote by πsπt−1πt the
occurrence of 1 23 (if there is any), in which the point πt is minimal. Then the active
sites of π form a consecutive sequence from the bottommost site to πt, i.e. they are [1, πt].
Figure 5.6 should help understanding which sites are active (represented by diamonds, as
usual). If π ∈ AVn(1 23 4) has no occurrence of 1 23, then the active sites of π are [1, n+1].

Now, we assign a label (h, k) to each permutation π ∈ AVn(1 23 4), where h (resp. k)
is the number of its active sites smaller than or equal to (resp. greater than) πn. Remark
that h ≥ 1, since 1 is always an active site. Moreover, h = πn: indeed, let πsπt−1πt be the
occurrence of 1 23 with πt minimal. There must hold that πt > πn, otherwise πsπt−1πtπn
would form an occurrence of 1 23 4.

The label of the permutation π = 1 is (1, 1), which is the axiom in Ω1 23 4. The proof
then is concluded by showing that for any π ∈ AVn(1 23 4) of label (h, k), the permutations
π · a have labels according to the productions of Ω1 23 4 when a runs over all active sites of
π. To prove this we need to distinguish whether πn = 1 or not.

If πn = 1, no new occurrence of 1 23 can be generated in the permutation π · a, for
any a active site of π. Thus, the active sites of π · a are as many as those of π plus one
(since the active site a of π splits into two actives sites of π · a). Then, since πn = 1,
permutation π has label (1, k), for some k > 0 (at least one site above 1 in active), and
permutations π · a, for a ranging over all the active sites of π from bottom to top, have
labels (1, k + 1), (2, k), . . . , (1 + k, 1), which is the first production of Ω1 23 4.

Otherwise, we have that π has label (h, k), with h > 1, and πn = h. In this case a
new occurrence of 1 23 is generated in the permutation π · a, for every a > πn: indeed,
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1πna forms an occurrence of 1 23, and moreover is such that a is minimal. Else if a ≤ πn,
no new occurrence of 1 23 can be generated in the permutation π · a. Thus, permutations
π · a have labels (1, h + k), (2, h + k − 1), . . . , (h, k + 1), for any active site a ≤ πn, and
labels (h + 1, 0), (h + 2, 0), . . . , (h + k, 0), for any active site a > πn. Note that this label
production coincides with the two lines of the second production of Ω1 23 4 concluding the
proof. Figure 5.6 shows an example of the above construction.

(4,0) (4,1)(3,2)(2,3)(1,4)

Figure 5.6: The growth of a permutation of label (4, 0).

5.3 The family of steady paths

In the last section we provide a further combinatorial interpretation of powered Catalan
numbers in terms of lattice paths. This new occurrence reveals an interesting pecularity
of sequence A113227: indeed, it appears that the combinatorial structures enumerated by
powered Catalan numbers could be subdivided into two groups according to the succession
rule that generates them, as Section 5.3.4 describes.

In Section 5.3.1 we start by defining this new family of paths, called steady paths, and
provide a growth for them. The succession rule defined by this growth proves that steady
path are equinumerous to 1 23 4-avoiding permutations, since both families grow according
to the same succession rule. Thus, there is a recursive bijection between these two families.

In Section 5.3.2, we show another bijection, which is direct and extremely simple,
between the family of steady paths and the family AV (1 34 2). Whereas, in Section 5.3.3,
we investigate what could be a bijection between the family of steady paths and the family
of valley-marked Dyck paths, showing a possible equidistribution of some statistics.

Last, in Section 5.3.5, we show two different generalisations of steady paths, for which we
are able to provide a succession rule, yet not to study their ordinary generating functions.

5.3.1 Definition, and growth of steady paths

Definition 5.3.1. We call steady path of size n a lattice path T confined to the cone
C = {(x, y) ∈ N2 : y ≤ x}, which uses U = (1, 1), D = (1,−1) and W = (−1, 1) as steps,
but without any factors WD nor DW , starting at (0, 0) and ending at (2n, 0), such that:

(S1) for any factor UU , the suffix of T following this UU factor lies weakly below the line
parallel to y = x passing through the UU factor;
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(S2) for any factor WU , the suffix of T following this WU factor lies weakly below the
line parallel to y = x passing through the up step of the WU factor.

We call edge line of T the line y = x− t, with t ≥ 0 even integer, passing through the up
step of the rightmost occurrence of either UU or WU .

The name “steady” is motivated by the two restrictions (S1) and (S2), which force these
paths to remain weakly below a line that moves rightwards and conveys more stability to
the mountain range the path would represent. Figure 5.7 (a) shows an example of a steady
path whose edge line coincides with y = x, whereas the edge line of the steady path
depicted in Figure 5.7 (b) is y = x− 6. Figures 5.7 (c),(d) show two different examples of
paths confined to C that are not steady paths.

(a) (d)(c)(b)

Figure 5.7: (a) An example of a steady path T of size 8 with edge line y = x; (b) An
example of a steady path T of size 8 with edge line y = x− 6; (c) a path in C that violates
(S1); (d) a path in C that violates (S2).

Remark 5.3.2. By Definition 5.3.1, the size of a steady path T is equal to the number of
its U steps. Moreover, any steady path T of size n is uniquely determined by the set of
positions of its up steps U (1), . . . , U (n) recorded from left to right: precisely, by the set of
starting points (ik, jk) for any U (k). Indeed, since neither WD nor DW can occur, there is
only one way to draw a steady path given the set of positions {(0, 0) = (i1, j1), . . . , (in, jn)}
of its up steps from left to right.

Furthermore, let a set of points {(i1, j1), . . . , (in, jn)} in C be such that for every index
1 ≤ k ≤ n, jk = k − 1− ik. This set uniquely defines a steady path of size n provided that
for every 1 < k ≤ n, if ik ≤ ik−1 + 1, then all the points (i`, j`), with ` > k, lies weakly
below the line parallel to y = x passing through the point (ik, jk).

We are able to provide a succession rule for the family of steady paths that results in
the following proposition.

Proposition 5.3.3. The family of steady paths can be generated by

Ωsteady =


(0, 2)

(h, k)  (h+ k − 1, 2), . . . , (h+ 1, k),
(0, k + 1), . . . , (0, h+ k + 1).
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Proof. The proof of the above statement is provided by showing a growth for the family
of steady paths that defines the succession rule Ωsteady. Analogously to other families of
paths occurring along this dissertation, we provide a growth for steady paths by adding a
new rightmost occurrence of an up step that makes increase the size by one.

By Remark 5.3.2, given a steady path T of size n, we still obtain a steady path of size
n− 1 by removing its rightmost point (in, jn), namely the rightmost up step of T .

Now, let T be a steady path of size n, and (0, 0) = (i1, j1), . . . , (in, jn) be the positions
of its up steps. We describe in which position (in+1, jn+1) a new rightmost up step can
be inserted so that the path obtained is still a steady path. In particular, according to
Definition 5.3.1 if the edge line of T is y = x− 2t, with t a non-negative integer, then the
point (in+1, jn+1) must remain weakly below this line, which is jn+1 ≤ in+1− 2t. Then, we
add a new rightmost up step at any position (2n, 0), (2n− 1, 1), (2n− 2, 2), . . . , (2n− s, s),
where s = n− t. By Remark 5.3.2, there exists a unique path of size n+1 corresponding to
(0, 0) = (i1, j1), . . . , (in, jn), (in+1, jn+1), where (in+1, jn+1) is any point among (2n, 0), (2n−
1, 1), (2n− 2, 2), . . . , (2n− s, s), and it is steady by construction.

Moreover, the positions (2n, 0), (2n − 1, 1), (2n − 2, 2), . . . , (2n − s, s) can be divided
into two groups: the positions that are ending points of D steps of the last descent of T ,
and those which are not. This distinction is crucial. Indeed, when we insert a U step in an
ending point of a D step of T ’s last descent no factors WU or UU are generated. On the
contrary, denoting (2n − r, r) the topmost point of the last descent of T , when we insert
the new rightmost U step at position (2n−r, r), a UU factor is formed, and when we insert
it in any point (2n− i, i), with r < i ≤ s, a WU factor is formed. In both cases, the edge
line of the obtained steady path must pass through the point (2n− r, r) (resp. (2n− i, i),
for r < i ≤ s). Then, the edge line may move rightwards as to include this point.

Now, we assign the label (h, k) ≡ (h, r+1) to any steady path T of size n and edge line
y = x− 2t, where r ≥ 1 is the number of steps in the last descent of T and h = (n− t)− r.
In order words, the label interpretation is such that h counts the positions that do not
belong to the last descent of T , in which we insert a new rightmost U step.

The steady path UD of size 1 has edge line y = x. Thus its label is (0, 2), which is
the axiom of Ωsteady. Given a steady path T of size n, edge line y = x − 2t, and label
(h, k) ≡ (h, r+1), we now prove that the labels of the steady paths obtained by inserting a
U step at positions (2n, 0), . . . , (2n−s, s), with s = n−t, are precisely the label productions
of Ωsteady. Indeed, by inserting the U step at positions (2n, 0), . . . , (2n− (r− 1), r− 1) the
edge line does not change and the paths obtained have labels (h+ k− 1, 2), . . . , (h+ 1, k),
respectively. Whereas, by inserting the U step at position (2n− i, i), for every r ≤ i ≤ s,
the edge line becomes (or remains) y = x − 2(n − i) and the path has label (0, i + 2).
Thus, we obtain the labels (0, k + 1), . . . , (0, h + k + 1), which are the second line of the
production of Ωsteady, completing the proof.

Figure 5.8 depicts the growth of a steady path of size n with edge line y = x − 2; for
any path, the corresponding edge line is drawn.

Although at a first sight the succession rule Ωsteady does not resemble the rule Ω1 23 4 of
Proposition 5.2.8, the following result follows by the fact that Ωsteady and Ω1 23 4 actually
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(3,3)

(0,7)

(0,4)

(0,6)

(4,3)

(0,5)

(5,2)

Figure 5.8: The growth of a steady path according to rule Ωsteady.

define the same generating tree.

Proposition 5.3.4. The number of steady paths of size n is equal to the number of per-
mutations in AVn(1 23 4), thus is the nth powered Catalan number.

Proof. We prove the above proposition by showing that the succession rule Ω1 23 4 provided
for the family AV (1 23 4) is isomorphic to the rule Ωsteady.

First, recall the production of the label (1, k) according to Ω1 23 4, which appears as

(1, k) (1, k + 1), (2, k), . . . , (1 + k, 1) . (5.12)

The same succession rule Ω1 23 4 yields that the label (h, 0) produces according to

(h, 0) (1, h), (2, h− 1), . . . , (h, 1) . (5.13)

Now, consider the generating tree defined by Ω1 23 4 and replace all the labels (1, k) by
(k + 1, 0). According to the production (5.12) the children of the node with a replaced
label are

(k + 1, 0) (k + 2, 0), (2, k), . . . , (1 + k, 1) ,

namely
(h, 0) (h+ 1, 0), (2, h− 1), . . . , (h, 1) ,

which is exactly the production (5.13) after substituting (1, h) for (h + 1, 0) in it. This
substitution allows us to rewrite the succession rule Ω1 23 4 as follows

(2, 0)

(h, k)  (h+ k + 1, 0),
(2, h+ k − 1), . . . , (h, k + 1),
(h+ 1, 0), . . . , (h+ k, 0).

It is straightforward to check that the growth provided for steady paths in Proposition 5.3.3
defines the above succession rule by exchanging the interpretations of the two parameters
h and k with respect to Ωsteady.
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5.3.2 Bijection with some pattern-avoiding permutations

Proposition 5.3.4 establishes a recursive bijection between steady paths and permutations
of the family AV (1 23 4). Here we provide a more natural and simple bijection between
steady paths and another family of pattern-avoiding permutations counted by the powered
Catalan number sequence.

Theorem 5.3.5. The family of steady paths and AV (1 34 2) are in bijection.

Proof. By Remark 5.3.2, any steady path T of size n is uniquely determined by the positions
of its up steps, namely by the points (0, 0) = (i1, j1), . . . , (in, jn). These points that encode
a unique steady path can in turn be encoded from right to left by a sequence (t1, . . . , tn) of
integers that records the Euclidian distance between these points and the main diagonal
y = x. More precisely, the entry tk is the distance between the point (in+1−k, jn+1−k) and
the line y = x, for any 1 ≤ k ≤ n. Note that tn = 0, because the point (0, 0) belongs to
the main diagonal. Moreover, for any 1 ≤ k ≤ n, the entry tk is in the range [0, n − k],
since steady paths are constrained into the cone C = {(x, y) ∈ N2 : y ≤ x}. For instance,
the steady path depicted in Figure 5.7(a) is encoded by the sequence (5, 3, 0, 4, 1, 0, 1, 0).

Then, we have that any steady path of size n is defined by a particular sequence
(t1, . . . , tn), for which 0 ≤ tk ≤ n− k, for every k. Certainly, the set of all these particular
sequences of size n forms a subset of the set {T(π) : π ∈ Sn} of the left inversion tables of
permutations of length n. Our aim is to prove that a left inversion table t = (t1, . . . , tn),
with 0 ≤ tk ≤ n − k, defines a steady path of size n if and only if t ∈ {T(π) : π ∈
AVn(1 34 2)}.

⇒) We prove the contrapositive. Suppose t = (t1, . . . , tn) is the left inversion table of a
permutation π 6∈ AVn(1 34 2). Then, since 1 34 2 4 π, there must be three indices
i, j, `, with i < j < j + 1 < `, such that πi < π` < πj < πj+1. Moreover, we can
suppose without loss of generality that there are no points πs between πi and πj such
that πs < πi. Otherwise, we could take πsπjπj+1π` as our occurrence of 1 34 2.

Then, by definition of the left inversion table t = T(π), since πj < πj+1 and πj > π`,
we have that 0 < tj ≤ tj+1. In addition, since there are no points πs between πi and
πj such that πs < πi, and πj > π` > πi, it holds that ti < tj. From this it follows
that t cannot encode a steady path T . Indeed, assuming such a path T would exists,
ti (resp. tj, resp. tj+1) must be the distance between the line y = x and an up step
U (i) (resp. U (j), resp. U (j+1)), where U (j+1), U (j), and U (i) appear in this order from
left to right. Since tj+1 ≥ tj, the up step U (j) must form either a UU factor or WU
factor. Note that the line parallel to the main diagonal passing through U (j) cannot
be y = x, since tj > 0. Let this line be y = x−g, with g even positive number. Then,
from 0 ≤ ti < tj it follows that the suffix of T containing the up step U (i) exceeds
the line y = x− g passing through U (j).

⇐) Conversely, suppose for the sake of contradiction that there exists a left inversion table
t = (t1, . . . , tn) which encodes a non-steady path T of size n.
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By definition of steady path, there must be in T an up step U (j) not lying on the
main diagonal such that it forms a factor UU or WU , and an up step U (i), which is
on the right of U (j), lying above the line parallel to y = x and passing through U (j).
This means that 0 < tj ≤ tj+1, where U (j+1) is the up step which U (j) immediately
follows, and 0 ≤ ti < tj, with i < j. Thus, let π = T−1(t). By Lemma 5.1.4 on
page 143, we have that πi < πj < πj+1. In addition, from 0 ≤ ti < tj it follows that
there exists at least a point π`, with j < `, such that (πj, π`) is an inversion of π and
(πi, π`) is not. Consequently, πiπjπj+1π` forms an occurrence of 1 34 2.

5.3.3 Relation with valley-marked Dyck paths

In this section we seek for a bijection between steady paths and valley-marked Dyck paths.
Although both families are comprised of lattice paths confined to the region C, it is not
obvious to establish a bijection between the two families, and we still do not have such a
correspondence. We believe that a direct bijection between these two families of lattice
paths may be of help as to show the relation between the succession rule Ωsteady, according
to which steady paths grow, and the rule ΩpCat, according to which valley-marked Dyck
paths grow.

Moreover, one should stress that every Dyck path is a steady path, thus Dyck paths
of semi-length n form a subset of the set of steady paths of size n. In addition, given a
Dyck path P of semi-length n, if we fix a “default” marking for each valley (for instance,
each valley is marked at height 0), then P with standard marks is a valley-marked Dyck
paths of semi-length n. Therefore, both families come out as generalisations of the Catalan
family of Dyck paths.

We could think of establishing a bijection that extends the trivial bijection between
steady paths that are Dyck paths and Dyck paths whose valleys are all marked at height
0. To this purpose, we conjecture the following equidistribution of parameters.

Figure 5.9: Steady paths and valley-marked Dyck paths with n = 4, m = 2 and t = 1.
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Conjecture 5.3.6. Steady paths of size n having m U steps lying on the main diagonal
and t W steps are as many as valley-marked Dyck paths of semi-length n having m D steps
in the last descent and t being the total sum of the valley-mark heights.

For instance, Figure 5.9 depicts on the left all the steady paths of size n = 4 with
m = 2 U steps on the main diagonal and t = 1 W step, and on the right valley-marked
Dyck paths of semi-length n = 4 with m = 2 D steps in the last descent and total height
t = 1 of the valley-marks.

Conjecture 5.3.6 is supported by numerical evidence calculated by means of the two
generating functions

S(x; y, z) =
∑

n,m,t≥0

sn,m,t x
nymzt; and V (x; y, z) =

∑
n,m,t≥0

vn,m,t x
nymzt ,

where sn,m,t (resp. vn,m,t) is the number of steady paths of size n having m U steps lying
on the main diagonal and t W steps (resp. valley-marked Dyck paths of semi-length n
with m D steps in the last descent and total height t of the valley-marks). Indeed, by
specialising the growth for both families, provided in Proposition 5.3.3 for steady paths
and Proposition 5.2.3 for valley-marked Dyck paths, we can generate the first terms of
S(x; y, z) and V (x; y, z) and check (by using Maple, for instance) that sn,m,t = vn,m,t, for
any m, t, and n ≤ 22. Table 5.2 displays the terms sn,m,t, for n = 5, 6 and any possible
value of m, t.

n = 5 t = 0 t = 1 t = 2 t = 3 t = 4

m = 1 14 7 2

m = 2 14 16 8 2

m = 3 9 10 8 3 1

m = 4 4 3 2 1

m = 5 1

n = 6 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

m = 1 42 36 20 6 1

m = 2 42 64 49 24 7 1

m = 3 28 43 45 29 15 5 1

m = 4 14 18 18 14 7 3 1

m = 5 5 4 3 2 1

m = 6 1

Table 5.2: The number sn,m,t of steady paths of size n having m U steps lying on the main
diagonal and t W steps, for n = 5, 6 and any possible value of m, t.

The first specialisation which allows us to state Conjecture 5.3.6 involves valley-marked
Dyck paths, and comes from a refinement of the succession rule ΩpCat.
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Proposition 5.3.7. The number of valley-marked Dyck paths of semi-length n with m D
steps in the last descent, and t being the total sum of the valley-mark heights is given by
the number of labels (m, t) at level n in the generating tree defined by

(1, 0)

(m, t)  (1, t), (2, t), . . . , (m, t), (m+ 1, t),
(2, t+ 1), . . . , (m, t+ 1),

. . .
...

(m, t+m− 1).

Proof. The proof of the above statement follows straightforward by considering the growth
of Proposition 5.2.3.

The second specialisation we show involves steady paths and a refinement of the suc-
cession rule Ωsteady. It needs more parameters than those entailed by the refinement of
Proposition 5.3.7. For this reason, we admit the possibility of considering all the possible
values for some parameters, and we denote it by ∗.

Proposition 5.3.8. The number of steady paths of size n with m U steps on the main
diagonal, and t W steps is given by the number of labels (∗, ∗,m, t, ∗) at level n in the
generating tree defined by

(0, 2, 1, 0,>)

(h, k,m, t,>)  (h+ k − 1, 2,m, t,>), . . . , (h+ 1, k,m, t,>),
(0, k + 1,m, t,⊥), . . . , (0, h+ k,m, t+ h− 1,⊥),
(0, h+ k + 1,m+ 1, t+ h,>),

(h, k,m, t,⊥)  (h+ k − 1, 2,m, t,⊥), . . . , (h+ 1, k,m, t,⊥),
(0, k + 1,m, t,⊥), . . . , (0, h+ k,m, t+ h− 1,⊥),
(0, h+ k + 1,m, t+ h,⊥).

Proof. The proof of the above statement is obtained by considering the growth provided
in Proposition 5.3.3 and labelling each steady path with (h, k,m, t, q), where h, k have the
same interpretation as Ωsteady, m marks the number of U steps on the main diagonal, t the
number of W steps, and q = > (resp. ⊥) marks steady path whose edge line is (resp. is
not) y = x.

5.3.4 Two different families of powered Catalan structures

The above section and the general difficulty in finding a simple bijective relation between
valley-marked Dyck paths and steady paths, or between valley-marked Dyck paths and
1 23 4-avoiding permutations, leads us to classify powered Catalan structures into two
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AV (23 14)
Conjecture 5.2.6

Valley-marked
Dyck paths
Section 5.2.1

ΩpCat I(=, >,>)

Section 5.1.5

Increasing ordered
trees

Section 5.2.1

ΩpCat

AV (1 23 4)
Section 5.2.2

[49]

Steady
paths

Section 5.3.1

Ωsteady AV (1 34 2)

Section 5.3.2

Thm. 5.3.5

Figure 5.10: All the structures known or conjectured to be enumerated by the powered
Catalan numbers and their relations: a solid-line arrow indicates a bijection (either recur-
sive, or direct), while a dashed-line arrow indicates a missing bijection.

groups. In fact, among all the structures known or conjectured to be enumerated by
the powered Catalan number sequence [132, A113227], we distinguish two types:

• those that appear as a rather simple generalisation of Catalan structures, for which
a growth according to the rule ΩpCat can be found easily;

• those that generalise Catalan structures, but for which a growth according to ΩpCat

is not immediate, and the parameter k of Equation (5.11) is not clearly understood.

Valley-marked Dyck paths are the emblem of the first group; while, steady paths as well as
1 23 4-avoiding permutations rather belong to the second group of structures. Figure 5.10
shows a map with all the powered Catalan structures of this chapter.

5.3.5 Generalisations of steady paths

In this section we describe two families of lattice paths that come out as natural generali-
sations of steady paths, when only one of the two conditions (S1) and (S2) is kept.

Definition 5.3.9. A UU-constrained path of size n is a lattice path P confined to the
cone C = {(x, y) ∈ N2 : y ≤ x}, which uses U = (1, 1), D = (1,−1) and W = (−1, 1) as
steps, but without any factors WD or DW , starting at (0, 0) and ending at (2n, 0), such
that:

(S1) for any factor UU , the suffix of T starting at this UU factor lies weakly below the
line parallel to y = x passing through this UU .



5.3. The family of steady paths 173

Definition 5.3.10. A WU-constrained path of size n is a lattice path P confined to the
cone C = {(x, y) ∈ N2 : y ≤ x}, which uses U = (1, 1), D = (1,−1) and W = (−1, 1) as
steps, but without any factors WD or DW , starting at (0, 0) and ending at (2n, 0), such
that:

(S2) for any factor WU , the suffix of T starting at this WU factor lies weakly below the
line parallel to y = x passing through the up step of this WU .

(a) (b)

Figure 5.11: (a) A UU -constrained path which is not a steady path; (b) A WU -constrained
path which is not a steady path.

Figure 5.11 (a) depicts a UU - but not WU -constrained path, while 5.11 (b) depicts a
WU - but not UU -constrained path. It is clear that every steady path is both a UU - and a
WU -constrained path (see Figure 5.7 (a)). Moreover, from the growth provided for steady
paths in the proof of Proposition 5.3.3, we can easily obtain recursive constructions both
for UU -constrained paths and for WU -constrained paths.

Proposition 5.3.11. The family of UU-constrained paths can be generated by

ΩUU =


(0, 2)

(h, k)  (h+ k − 1, 2), . . . , (h+ 1, k),
(0, k + 1), (h− 1, k + 2), . . . , (0, h+ k + 1).

Proof. The proof of the above statement is provided simply by generalising the growth for
the family of steady paths according to Ωsteady (see Proposition 5.3.3). Indeed, as steady
paths do, UU -constrained paths are uniquely determined by the positions of their up steps,
and thus a growth can be defined by adding a new rightmost up step.

Observe that the first line production is the same as Ωsteady, while all the label pro-
ductions of the second line (except for the first and the last one) differ from Ωsteady. By
iterating the rule ΩUU , we have been able to obtain the first terms of the sequence enu-
merating UU -constrained paths, which are

1, 2, 6, 23, 107, 586, 3706, 26683, 216221, 1952669, 19483879, 213160098, 2539536946, . . .

Yet this number sequence does not match any entry on OEIS [132].

Now, we turn to a recursive construction for WU -constrained paths.
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Proposition 5.3.12. The family of WU-constrained paths can be generated by

ΩWU =


(0, 2)

(h, k)  (h+ k − 1, 2), . . . , (h+ 1, k),
(h, k + 1), (0, k + 2), . . . , (0, h+ k + 1).

Proof. As UU -constrained paths, WU -constrained paths are uniquely determined by the
positions of their up steps, and thus a growth can be defined by adding a new rightmost
up step. The proof of the above statement is obtained by generalising the growth of
Proposition 5.3.3, analogously to Proposition 5.3.11.

Observe that ΩWU differs from Ωsteady only for the first label of the second line produc-
tion. By successive iterations of the rule ΩWU , we have been able to obtain the first terms
of their enumerative sequence, which are

1, 2, 6, 24, 118, 676, 4362, 31012, 239294, 1982336, 17487348, 163236860, 1604203376, . . .

Again the above number sequence does not match any entry on OEIS [132].
We tried to study the functional equation obtained by translating the succession rule

ΩUU (resp. ΩWU), yet without finding any expression for the ordinary generating function
of UU -constrained paths (resp. WU -constrained paths). Nevertheless, we believe that a
“nice” recurrence like (5.11) might control the coefficients related to UU -constrained (as
well as WU -constrained) paths, although we do not have any hints about it.



Chapter 6

Fighting fish

Plan of the chapter

The aim of this chapter is to introduce and study the properties of a new class of branch-
ing surfaces that appears as a generalisation of parallelogram polyominoes. These objects
called fighting fish because of their appearance, display remarkable probabilistic and enu-
merative properties and are strictly related to another well-known combinatorial structure:
the family of plane trees. Fighting fish have been introduced for the first time in [G6] and,
then their combinatorial properties have been developed in [G7].

This chapter starts in Section 6.1 with a basic definition of fighting fish as a finite set
of cells. Then, Section 6.2 continues providing alternative models of the same objects,
among them a recursive description called master decomposition [G6]. Another recursive
decomposition for fighting fish is shown in Section 6.5 and is called the wasp-waist decom-
position [G7]. The master decomposition and the wasp-waist decomposition are comple-
mentary in the sense that they allow us to study the family of fighting fish according to
different parameters.

Thanks to these two recursive definitions of Section 6.2 and Section 6.5, two different
functional equations having the (multivariate) generating functions of fighting fish as re-
spective solutions can be written down. Then, they are solved respectively in Section 6.3.3
and Section 6.5.3, by using a generalisation of the kernel method described in Section 6.3.2.
This shows that the size generating function of fighting fish is algebraic, as well as both
multivariate generating functions.

Both equations are useful for enumerative purposes since they provide information on
fighting fish according to different parameters. Section 6.4 is a collection of explicit formulas
for fighting fish obtained from the master decomposition: the formula for the number of
fighting fish (sequence A000139 [132], Section 6.4.1) and for the number of fighting fish
with a marked tail (sequence A006013 [132], Section 6.4.2). In Section 6.5.4 we show other
remarkable formulas for these objects using the wasp-waist decomposition, rather than the
master decomposition.

All the explicit formulas derived for fighting fish are somehow related to plane trees and
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in Section 6.6 we exploit the link between fighting fish and plane trees, and try to explain
combinatorially some of the properties analytically proved.

6.1 Basic definitions

As reported in the Encyclopædia Britannica “the
Siamese fighting fish (Betta splendens) is a freshwater
tropical fish of the family Osphronemidae (order
Perciformes), noted for the pugnacity of the males
toward one another. The Siamese fighting fish, a
native of Thailand, was domesticated there for use in
contests. Combat consists mainly of fin nipping and
is accompanied by a display of extended gill covers,
spread fins, and intensified colouring”.

Figure 6.1: Siamese fighting fish.

We are going to introduce a simple model for these objects, which has been inspired on
the one hand by the rich literature on polyominoes brilliantly discussed in the recent book
“Polygons, Polyominoes and Polycubes” edited by T. Guttmann [91], and on the other
hand by the aquatic creatures commonly called fighting fish (see Figure 6.1).

We start giving a first description of our combinatorial fighting fish that consists of
glueing together unit squares of paper along their edges in a directed way. More precisely,
as illustrated by Figure 6.2, we consider 45 degree tilted unit squares, which we call cells,
and view them as made of two triangular halves, which we briefly call left scale and right
scale. All four edges of each square are distinguished and we refer to them as left upper
edge, left lower edge, right upper edge and right lower edge.

scale

b

a

scale

c

a
b

d

b

a

(b)(a)

cell

left right

Figure 6.2: (a) The left and right scales of a cell; (b) the three ways to add a cell.

In a fighting fish we define free any edge of a cell which is not glued to the edge of
another cell. A vertex is any point of incidence between two (or more) edges. Then, all
fighting fish can be obtained starting from an initial cell, whose both left edges are free,
by attaching cells one by one in exactly one of the following ways (see Figure 6.2(b)):
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• Let a be a cell in the fish whose right upper edge is free; then glue the left lower edge
of a new cell b to the right upper edge of a.

• Let a be a cell in the fish whose right lower edge is free; then glue the left upper edge
of a new cell b to the right lower edge of a.

• Let a, b and c be three cells in the fish such that b (resp. c) has its left lower (resp.
upper) edge glued to the right upper (resp. lower) edge of a, and b (resp. c) has its
right lower (resp. upper) edge free; then simultaneously glue the left upper and left
lower edges of a new cell d respectively to the right lower edge of b and to the right
upper edge of c.

Figure 6.3: One way to construct a fighting fish from an initial cell by using operations of
Figure 6.2(b).

Since this description is iterative and an object could be obtained more than once
by glueing cells together, in our definition of fighting fish we are interested only in the
objects produced disregarding the order in which the cells are added. Indeed, as shown in
Figure 6.3 the same object can be constructed by inverting the second and the third cell
additions or by anticipating the last cell addition, as that cell is attached only to the right
lower edge of the initial cell.

Definition 6.1.1. A finite set of cells glued together edge by edge is a fighting fish if and
only if it can be obtained by the iterative process above or it is empty.

We call the head of any fighting fish the left scale of the unique cell with both its left
edges free - which is precisely the initial cell of the above construction; whereas, a tail is
the right scale of any cell having both the right edges free. A branching point is any vertex
between a free upper edge and a free lower edge, where by travelling the fish boundary
from the head counterclockwise the free upper edge precedes the free lower one. According
to this definition, the number of branching points in any fighting fish is exactly one less
than its number of tails. Figure 6.4(a) shows a fighting fish with two branching points,
which are encircled; while the head and the tails of the fighting fish are shaded.

Remark 6.1.2. According to the cell additions described above and illustrated by Fig-
ure 6.2(b), no holes can be generated following this glueing process. Thus, any fighting fish
has no holes: Figure 6.4(a) depicts a fighting fish without holes, although its projection
onto the plane gives rise to a two-cells hole.

In addition, starting from the fish head and travelling counterclockwise its boundary, all
the free edges of the fighting fish are encountered, thus forming a cycle.
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Now, we introduce some parameters on fighting fish: we define the size of a fighting
fish as the number of its free lower edges and the area as the number of its cells.

We observe that vertical edges dividing cells of a fighting fish into scales form vertical
segments that cut the fish into vertical strips each one consisting of an alternating sequence
of connected left and right scales, which start with a free (left or right) lower edge and end
with a free (left or right) upper edge.

Remark 6.1.3. For any fighting fish, the number of its free lower edges is equal to the
number of its free upper edges. Indeed, each vertical strip cutting the fighting fish connects
a free lower edge to a free upper edge, and no free edges are out of the vertical strips
decomposition. Thus, the size of a fighting fish can be equivalently calculated by counting
the number of its free lower (resp. upper) edges as well as the number of its vertical strips.

A simple example of fighting fish is given by parallelogram polyominoes: in particular,
parallelogram polyominoes - up to a 45 degree clockwise rotation - are precisely those
fighting fish that have only one tail.

d

b

d

c

(c)

head
tails

(a) (b)

a

b

c

a

Figure 6.4: (a) A fighting fish which is not a polyomino; (b) a fighting fish with one tail;
(c) two different representations of the unique fighting fish with area 5 not fitting in the
plane.

Proposition 6.1.4. Fighting fish with one tail are in one-to-one correspondence with par-
allelogram polyominoes.

Proof. Consider a parallelogram polyomino as a set of cells glued together: any parallel-
ogram polyomino is definitely a fighting fish with one tail up to a 45 degree clockwise
rotation. Indeed, any parallelogram polyomino can be built by glueing cells column by
column, as follows. The cells of the first column are glued together bottom-to-top by iter-
atively using the first cell addition of Figure 6.2(b), the bottommost cell being the head of
the fighting fish. Then, we attach all the cells of the second column by using the second cell
addition of Figure 6.2(b) for glueing its bottommost cell to the first column, and the third
and first cell additions of Figure 6.2(b) for glueing all the other cells. Finally, recursively
repeat this process for the other columns of the parallelogram polyomino from left to right.

Conversely, given a fighting fish having only one cell with both its right edges free, it
is not hard to associate a pair of paths that results to define a parallelogram polyomino
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with it. More precisely, start from the head and end at the unique tail: the upper path is
coded by writing a north (resp. east) step for every left (resp. right) free upper edge and
the lower path by writing an east (resp. north) step for every left (resp. right) free lower
edge. By definition of fighting fish these two paths do not intersect except for the starting
and the ending point, thus define a parallelogram polyomino.

According to the cell additions described in Figure 6.2(b) other important classes of
polyominoes can be intuitively constructed: directed convex polyominoes and simply con-
nected (i.e. without holes) directed polyominoes - in the sense of [91].

Proposition 6.1.5. Directed convex polyominoes, and more generally, simply connected
directed polyominoes are fighting fish.

Nevertheless, other important classes of polyominoes are not fighting fish: for instance,
convex polyominoes, or directed polyominoes, see [91, Chapter 3].

One should stress also the fact that fighting fish are not necessarily polyominoes because
they are not constrained to fit in the plane, as illustrated by Figure 6.4(c).

The smallest fighting fish not fitting in the plane is obtained by glueing a cell a to the
right upper edge of the head, a cell b to the right lower edge of the head, a cell c to the
right upper edge of b, and a cell d to the right lower edge of a: in the natural projection
of this fighting fish onto the plane R2, cells c and d have the same image. Observe that
we do not specify whether c is above or below d; rather we consider that the surface has a
branching point at the head vertex between its right upper edge and its right lower edge
(see Figure 6.4(c)). A list of all fighting fish of area at most 4 is given in Figure 6.5.

Figure 6.5: Fighting fish of area at most 4.

6.2 Alternative definitions

According to the previous definition fighting fish could remain objects rather mysterious:
we cannot recognise a fighting fish without decomposing it and the way to reconstruct it is
not unique. In order to present the combinatorial objects subject of this chapter in a clearer
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way, the following subsections are addressed to provide different equivalent definitions of
them.

6.2.1 Topological definition

We can provide an alternative topological definition of fighting fish that follows closely the
intuitive definition of the previous section: we construct a branching surface by glueing
triangular pieces together. More precisely, let us consider triangular pieces of bicoloured
paper (green on one side, and red on the other). If the boundary of the triangle is oriented
counterclockwise (resp. clockwise) around the green side of the paper, we call it left (resp.
right) triangle. The three edges of each triangle are distinguished and conventionally called
the upper, lower and vertical edge, in such a way that the upper edge follows the vertical
edge in the boundary circuit - see Figure 6.6.

vertical

upper

lower

(a)

vertical

upper

lower

(b)

Figure 6.6: A left triangle (a) and a right triangle (b) with their edges named.

We claim that a non-empty fighting fish is a branching surface obtained by glueing
together left and right triangles along their oriented edges in such a way that the following
conditions are satisfied:

Finiteness condition: The total number of glued triangles is finite.

Local smoothness condition: Each vertical edge of a left triangle is glued to a vertical
edge of a right triangle (and conversely), thus forming a unique oriented vertical edge.
Each upper (resp. lower) edge of a right triangle can be either free (i.e. not glued to
anything) or glued to a lower (resp. upper) edge of a left triangle (and conversely).

Local triangular lattice geometry condition: Each vertex is incident to at most one
outgoing and one incoming vertical edges.

Simple connectedness condition: The resulting surface is simply connected and the
set of free edges forms a unique (non oriented) boundary cycle.

Directedness condition: There is only one left triangle with both the upper and the
lower edges free, which is called the head of the fish. Any triangle is connected to the
head by an inner path that alternately crosses vertical and non-vertical edges. Any
right triangle with both the upper and the lower edges free is called tail.
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By such a definition a non-empty fighting fish is topologically equivalent to a properly
coloured disc (with a green side and a red side, for instance).

The definition of fighting fish given in the previous section (Definition 6.1.1) is consistent
with the above description: let us think of the left and right triangles above as the left and
right scales in which each cell of a non-empty fighting fish can be divided, and associate any
such a branching surface described above with a fighting fish of Definition 6.1.1. Hence,
there is no abuse of notation in naming the edges of a triangle upper, and lower, and
vertical.

More precisely, analysing the above conditions we can notice straightforward corre-
spondences. The finiteness condition on triangles number corresponds to the fact that any
fighting fish is a finite set of cells. The local smoothness combined with the local triangular
lattice geometry condition ensures that left and right triangles are united to form a cell
and two different cells can be glued together only by edges, joining the right upper (resp.
right lower) edge of one to the left lower (resp. left upper) edge of the other. The simple
connectedness condition means that the surface obtained has no holes, which is a necessary
condition to be a fighting fish. The property of being directed is hidden in the iterative
construction of fighting fish. Indeed, according to Definition 6.1.1 we start constructing a
fighting fish by a single cell, whose left scale has both its upper and lower edges free. By
using the iterative construction of Figure 6.2(b) there is no way to glue a new cell whose
left scale has both the upper and the lower edges free. Moreover, by construction any
inner path between the head and any other scale of the fighting fish can be continuously
transformed, without exiting from the fighting fish, into any other inner path linking these
two scales. Thus, any triangle is connected to the head by an inner path that alternately
crosses vertical and non-vertical edges.

6.2.2 Recursive definition: the master decomposition

For enumerative purpose it is useful to give a recursive description of fighting fish. In order
to do this we define the set of fish tails and their heights inductively as follows:

Basis. The empty fish is the unique fish tail with height 0.

Inductive step. We define three operations:

Operation u: Given two fish tails T1 of height ` ≥ 0 and T2 of height k ≥ 0, then a
new fish tail T of height `+ 1 + k is obtained by glueing a vertical strip of `+ 1
right scales and ` left scales to T1 and by attaching this strip to the topmost
point of the leftmost vertical segment of T2 - see Figure 6.7(a).

Operations h, h′: Given two fish tails T1 of height ` ≥ 1 and T2 of height k ≥ 0,
then a new fish tail T of height ` + k is obtained by glueing a vertical strip of
` right scales and ` left scales to T1 and by attaching this strip to the topmost
point of the leftmost vertical segment of T2. Observe that there are two ways in
which this operation can be performed and they depend on whether the added
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Figure 6.7: Recursive construction of fish tails: (a) operation u, (b) operation h, (c)
operation h′, (d) operation d.

strip starts with a right scale (operation h in Figure 6.7(b)) or with a left scale
(operation h′ in Figure 6.7(c)).

Operation d: Given two fish tails T1 of height ` ≥ 2 and T2 of height k ≥ 0, then a
new fish tail T of height `− 1 + k is obtained by glueing a vertical strip of `− 1
right scales and ` left scales to T1 and by attaching this strip to the topmost
point of the leftmost vertical segment of T2 - see Figure 6.7(d).

Note that any operation, apart from u, admits the empty fish tail as T2, but not as T1.
There exists a unique fish tail obtained by applying operation u to two empty fish tails: it
is a right scale, and it has height 1, and we usually refer to it simply as tail.

Proposition 6.2.1. Every fish tail is uniquely obtained by using operations u, h, h′, and d.

Proof. Given a fish tail T , the proof follows by induction on the numbers of scales which
T consists of. There is a unique empty fish tail. Suppose T is non-empty. By definition,
T is produced starting from two smaller fish tails T1 and T2 and using at least one of the
four operations u, h, h′ and d. Since each of these operations results in different shapes of
the leftmost and topmost vertical strip, T is uniquely obtained from T1 and T2 by checking
the shape of the connected vertical strip which is the topmost among the leftmost. The
result follows by induction on T1 and T2.

Observe that, like fighting fish, fish tails of any height are not constrained to fit into
the plane - see, for instance, the fish tails in Figure 6.8(a),(c).

In order to understand better this recursive definition we describe how to decompose
the fish tail T of Figure 6.8(a): T is uniquely obtained by operation d with T ′1 of height
2 and T ′2 empty. Then, we decompose T ′1, which is obtained as well as by operation d
with L1 of height 3 and L2 empty, and in turn L1 by operation h′ starting from a fish tail
L′1 of height 1 and a fish tail L′2 of heigth 2 - as depicted in Figure 6.8(b). The fish tail
L′1 is obtained from the right scale called tail by a sequence of operations h and h′, each
time setting the fish tail T2 as empty. Whereas, the fish tail L′2 is the result of applying
operation u to a fish tail of height 1, which in turn is obtained by applying operation d to
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(b) (c)(a)

Figure 6.8: (a) Fish tail of height 1, which corresponds to the fighting fish of Figure 6.4(a);
(b) fish tails L′1 (above) and L′2 (below); (c) a fish tail of height 5 produced by using
operation h starting from two smaller fish tails T1 of height 2 and T2 of height 3.

two fish tails S1 and S2. Finally, both S1 and S2 result from the tail by iterating operation
h, each time setting T2 empty.

In the following we retrieve the family of fighting fish as a subfamily of fish tails.

As previously defined, we call free any edge of a scale that is not glued to another edge
and size of a fish tail its number of free lower edges.

Theorem 6.2.2. Fighting fish of size n+1 are in one-to-one correspondence with fish tails
having height 1 and size n, for any n ≥ 0.

Proof. In order to establish such a correspondence we define, for every k, a set Tk of objects
that are built from an initial sequence of k right scales, whose vertical edges are attached
along a vertical segment one by one, by glueing to them cells according to the three types
of additions of Figure 6.2(b).

We show that the set of fish tails is exactly T =
⋃
k Tk and the set of elements of Tk

having n free lower edges coincides with the set of fish tails having height k and size n.
Then, obviously the elements of T1 are in one-to-one correspondence with the family of

fighting fish: given a fighting fish, its corresponding element of T1 is obtained by removing
the left scale of its head. Then, any element of T1 having n free lower edges corresponds
uniquely to a fighting fish of size n+ 1.

Now, we proceed by induction on the number of free lower edges of an object of T
to show that the set of fish tails having height k and the set of elements of Tk having n
free lower edges coincide. First, observe that the empty fish tail can be identified with the
empty sequence of right scales, that is the unique element of T0.

Then, given an element T of Tk having n > 0 free lower edges, we show that T is indeed
a fish tail of height k and size n. Let us define the cut point x0 belonging to the initial
vertical segment of T : given the lowest right scale such that any two consecutive right
scales are glued to a common cell by means of the third addition rule of Figure 6.2(b), the
cut point x0 is its bottommost vertex. If all the pairs of consecutive right scales are glued to
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a common cell or there is only one right scale attached to the initial vertical segment, then
the cut point x0 is clearly the bottommost point of the initial vertical segment. Suppose
x0 occurs before 1 ≤ ` ≤ k right scales: by definition, any two consecutive right scales
among them have been glued to a common left scale and a vertical strip S of height ` has
originated. Now, we use S to decompose T into two disconnect objects T1 and T2. The
shape of S determines uniquely the number of right scales attached to the initial vertical
segment of T1, which could be either ` − 1, or `, or ` + 1, whereas T2 has always k − `
right scales attached to its initial vertical segment. Note that T2 is empty if the cut point
x0 is the bottommost point of the initial vertical segment, while T1 is empty if the vertical
strip S consists only of a right scale. Moreover, since T1 and T2 are disconnected from each
another, we claim that the sequence of cell additions that produces T can be split into a
sequence s1 of cell additions that produces S and T1, and a sequence s2 of cell additions
that produces T2, and again the sequence s1 can be split in s′1 and s′2, with s′2 producing
T1 from an initial sequence of m right scales. Then, T1 ∈ Tm with n1 free lower edges and
T2 ∈ Tk−` with n2 free lower edges, where n1 + n2 + 1 = n. By inductive hypothesis T1

is a fish tail of height m and size n1 and T2 is a fish tail of height k − ` and size n2, and
thus T is the fish tail of height k uniquely obtained from T1 and T2 by applying one the
operations u, h, h′ or d suggested by the shape of S.

Conversely, let T be a fish tail of height k and size n obtained using operation u, h,
h′ or d from two fish tails T1 and T2 of smaller size n1 and n2, respectively. Then, by the
inductive hypothesis there are sequences of cell additions s1 and s2 producing T1 and T2,
such that T1 has n1 free lower edges and T2 has n2 free lower edges. Then, sequences s1

and s2 can be combined together to form a sequence of cell additions applied to the k right
scales of the initial vertical segment of T . This implies that T belongs to Tk and has n free
lower edges concluding the proof.

Note that the fish tail in Figure 6.8(a) corresponds to the fighting fish of Figure 6.4(a)
whose size is 19.

6.2.3 Fish bone tree

Recall that any parallelogram polyomino is a fighting fish according to Definition 6.1.1.
For the sake of clarity, we precise that any parallelogram polyomino is considered as 45
degree tilted, and so the two paths defining its border can be thought to be with up steps
(1, 1) and down steps (1,−1), see Figure 6.4(b).

Now, we propose an alternative characterization of fighting fish based on a well-known
correspondence between parallelogram polyominoes and bicoloured Motzkin words (see [11]).
More precisely, let Σ = {u, d, h, h′} be a four letter alphabet and δ be the morphism
(Σ∗, ·)→ (Z,+) defined by δ(u) = 1, δ(d) = −1 and δ(h) = δ(h′) = 0. A word w on Σ is a
bicoloured Motzkin word if and only if δ(w) = 1 and δ(v) ≥ 1, for all factorisations w = zv
where v is any suffix of length greater than 0.

Proposition 6.2.3. There is a bijection between parallelogram polyominoes of size n + 1
and bicoloured Motzkin words of length n.
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Proof. Let (P,Q) be the pair of paths defining a parallelogram polyomino of size n + 1,
and Pi (resp. Qi) be the ith step of P (resp. Q). The word w = w1 . . . wn corresponding
to (P,Q) is built so that each wi ∈ Σ describes the pair (Pi+1, Qi+1), for any 1 ≤ i ≤ n.
Precisely, the letter wi is defined as follows:

• wi = u if Pi+1 is a down step and Qi+1 is an up step. In this case the width of the
polyomino increases by one from right to left: δ(d) = +1;

• wi = h (resp. wi = h′) if both Pi+1 and Qi+1 are up steps (resp. down steps). In this
case the width of the polyomino remains the same: δ(wi) = 0;

• wi = d if Pi+1 is an up step and Qi+1 is an down step. In this case the width of the
polyomino decreases by one from right to left: δ(u) = −1.

It is straightforward that δ(v) ≥ 1, for all factorisations w = zv where v is of length greater
than 0, and δ(w) = 1. Conversely, given a Motzkin word w of length n we construct a
parallelogram polyomino of size n + 1 simply drawing its boundary (P,Q): the first step
of P (resp. Q) is up (resp. down) and all the other steps are encoded in w as specified
above.

In order to extend this correspondence to fish tails, we introduce certain trees that can
be regarded as an extension of bicoloured Motzkin words.

A fish bone tree is a rooted plane tree B where each edge is labelled by a letter of Σ
such that:

• the sum of δ(e) for all edges e of B is positive, where δ(e) stands for δ applied to the
label of e;

• let e be an edge of B of nodes i, j, with i parent of j; then, the sum of δ(f), where
f is running over all edges in the subtree rooted at j, plus δ(e) is positive.

u

d
h

dhhh
h

u

dh’h’h’h

d

h
h’u

Figure 6.9: The fish bone tree corresponding to the fighting fish in Figure 6.4 (a).

We define the weight δ(B) of a fish bone tree B as the sum of δ(e) for all edges e of B,

δ(B) =
∑
e∈B

δ(e).
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Proposition 6.2.4. Fish tails of height k and size n are in one-to-one correspondence
with fish bone trees with weight k and n edges, and in particular, fighting fish of size n+ 1
are in one-to-one correspondence with fish bone trees with weight 1 and n edges.

Proof. Given a fish tail T , we construct an abstract rooted plane tree B whose edges
correspond to the vertical strips of T . Then, the number of edges of the rooted plane tree
is the same as free lower edges (i.e. the size) of the fish tail. Let i, j be nodes of B such that
j is parent of i and (j, i) be their corresponding edge. If the edge (j, i) is associated with
a non-empty vertical strip S of connected right and left scales of T and S ′ is the unique
non-empty vertical strip on the left of S that shares a vertical segment or part of it with S
(S ′ is the vertical strip immediately on the left of S), then there exists a node k parent of
j such that the edge (k, j) is associated with S ′. The label of each edge of B is determined
by the shape of its corresponding vertical strip of T , according to the representation given
in Figure 6.7. It is easy to check that by using this labelling the height of the fish tail T
corresponds to the weight of the fish bone tree B. For instance, any right scale that is a
fish tail of height one is associated with a single edge labelled u, which is a fish bone tree
of weight one.

Conversely, given a fish bone tree we construct a fighting fish by glueing vertical strips
starting from the leaves of the fish bone tree (which correspond to the tails of the fish
tail to be constructed) and proceeding bottom-up in the tree by applying operations in
Figure 6.7. If the fish bone tree has weight k and n edges, then the fish tail has height k
and size n.

In the special case of fighting fish with one tail, we recover the one-to-one correspon-
dence of Proposition 6.2.3 between parallelogram polyominoes and bicoloured Motzkin
words, here presented as a chain (linear fish bone tree) of height 1.

6.3 A first functional equation

In the following we determine and solve a functional equation for the size generating
function of fighting fish. This equation is briefly called master equation, since it is related
to the master decomposition: the first recursive description provided for fighting fish in
terms of fish tails (see Section 6.2.2).

6.3.1 The master equation

The parameters on fish tails we take into account are:

• the size, or the total number of free lower edges,

• the number of tails, or right scales having both their right edges free,

• the height, as inductively defined on page 181,
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• the area, intended as the total number of left and right scales.

Then, let R(v, q) ≡ R(t, x; v, q) denote the generating function of fish tails with variables
t, x, v and q respectively marking size, number of tails, height, and area. The following
proposition immediately follows from the inductive definition of fish tails of Section 6.2.2.

Proposition 6.3.1. The series R(v, q) is the unique power series in t satisfying

R(v, q) = 1 + tvq R(v, q) (R(vq2, q)− 1 + x) + 2t R(v, q) (R(vq2, q)− 1) +

t

vq
R(v, q)

(
R(vq2, q)− 1− vq2 S(q)

)
,

(6.1)

where we have denoted S(q) = [v]R(v, q).

Proof. According to the recursive definition of fish tails given in Section 6.2.2, each term of
Equation (6.1) for R(v, q) is retrived. The unique fish tail with height 0 is the empty fish
tail that gives contribution 1, whereas every non empty fish tail is obtained by applying
one of the operation u, h, h′ and d to two fish tails. For each of these operations applied
we have a different contribution to the expression of R(v, q):

operation u : The contribution is given by the term tvq R(v, q) (R(vq2, q)− 1 + x). In
fact, a fish tail T obtained from two fish tails T1 and T2 of smaller size by operation
u has its size (resp. height) given by the sum of the sizes (resp. heights) of T1 and
T2 plus 1. Similarly, the area of T is given by summing areas of T1 and T2 plus the
number 2`+ 1 of scales glued to T1, supposing ` is the height of T1. Thus, substitute
v := vq2 in the factor accounting for T1 and multiply it by q. Finally, the number of
tails of T is given by the sum of the tails of T1 and T2, apart from the case where
T1 is empty. In this case, the number of tails of T is given by the number of tails of
T2 plus 1, as expressed by replacing in the expansion of R(vq2, q) as power series the
constant term 1 for x.

operations h, h′ : Their total contribution is given by the term 2t R(v, q) (R(vq2, q)− 1).
With the same reasoning as above: any fish tail T obtained from two fish tails T1 and
T2 of smaller size by operation h or h′ has its height given by the sum of the heights
of T1 and T2 and the factor t comes from the added vertical strip, which T1 is glued
to. Similarly, the area of T is given by summing areas of T1 and T2 plus the number
2` of scales glued to T1, supposing ` > 0 is the height of T1. Thus, since the fish tail
T1 is not allowed to be empty, first substitute v := vq2 in the factor accounting for
T1, and then subtract 1 from it.

operation d : The contribution is given by the term t
vq
R(v, q) (R(vq2, q)− 1− vq2 S(q)).

The arguments are similar to above: any fish tail T obtained from two fish tails T1

and T2 of smaller size by operation d has its height given by the sum of the heights
of T1 and T2 minus 1 and the factor t comes from the added vertical strip, which T1

is glued to. Similarly, the area of T is given by summing areas of T1 and T2 plus the
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number 2`− 1 of scales glued to T1, where ` > 1 is given by the height of T1. Thus,
since the height of T1 is not allowed to be smaller than 2, first substitute v := vq2 in
the factor accounting for T1, and then subtract 1 + v [v]R(vq2, q) from it. Note that
v [v]R(vq2, q) corresponds to the case where T1 has height equal to 1, which can be
rewritten also as vq2[v]R(v, q).

As explicited in Proposition 6.3.1, the function S(q) of Equation (6.1) indicates the
generating function of fish tails of height 1 according to size, area and number of tails.
Therefore, we point out that our ultimate aim is to study the function S(q), which is
indeed the generating function of fighting fish according to size, area and number of tails.
For this purpose, we rewrite Equation (6.1) in polynomial form as

M(R(v, q), R(vq2, q), S(q), t, v, q) = 0, (6.2)

where M(w1, w2, w3, t, v, q) ≡M(x;w1, w2, w3, t, v, q) reads explicitly

−vqw1 + vq + tv2q2w1 (w2 − 1 + x) + 2t vqw1 (w2 − 1) + t w1

(
w2 − 1− vq2w3

)
.

To the best of our knowledge, this type of polynomial catalytic q-equation (6.1) has only
been considered in the linear case, and we did not manage to solve it. We will use it in
the next Section 6.4 to provide enumerative results about the total and average area of
fighting fish.

Nevertheless, by setting q = 1 in (6.1) it results a polynomial equation such as those
studied by M. Bousquet-Mélou and A. Jehanne in [36]. In this work the authors provide
a recipe to solve special functional equations with one catalytic variable that we are going
to describe in the next section.

6.3.2 Recipe

The general case studied in [36] assumes that a (k + 1)-tuple (G(u), A1, . . . , Ak) of power
series in t, with A1, . . . , Ak not depending on variable u, is completely determined by a
polynomial equation of the form

P(G(u), A1, . . . , Ak, t, u) = 0.

According to D. Zeilberger’s terminology, such an equation is said a polynomial equation
with one catalytic variable. Indeed, G(u) is generally a power series in t with polyno-
mial coefficients in u and each Ai is a specialisation of G(u), which often coincides with
[ui−1]G(u), and thus it does not contain the variable u.

The authors of [36] provide a strategy that allows us to conclude that all the k+1 series
are algebraic and, as a consequence, to compute the polynomial equations they satisfy. The
steps of this strategy are listed below as a “recipe” to follow:

1) Start from the non-trivial polynomial equation in k + 3 variables

P(G(u), A1, . . . , Ak, t, u) = 0, (6.3)
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which is equal to the general expression P(w0, w1, . . . , wk, t, u) = 0 and uniquely
defines the (k+1)-tuple (G(u), A1, . . . , Ak). Note that if the polynomial equation (6.3)
is combinatorially founded, the (k + 1)-tuple (G(u), A1, . . . , Ak) is uniquely defined.

2) Look for the series Ui ≡ Ui(t) that annihilate the derivative of P with respect to the
first variable w0 evaluated at (G(u), A1, . . . , Ak)

∂P
∂w0

(G(u), A1, . . . , Ak, t, u) = 0. (6.4)

Let us suppose we can prove the existence of k such distinct series Ui, 1 ≤ i ≤ k.

3) Derive the original equation (6.3) with respect to u

∂P
∂w0

(G(u), A1, . . . , Ak, t, u) · ∂G
∂u

+
∂P
∂u

(G(u), A1, . . . , Ak, t, u) = 0.

Since each Ui is a fractional power series in t, the series G(Ui) is a well-defined
fractional power series in t, for every i. Hence, substituting each Ui into (6.4) the
first term of the previous expression vanishes and for every 1 ≤ i ≤ k, yields

∂P
∂u

(G(Ui), A1, . . . , Ak, t, Ui) = 0.

4) We build a system of 3k polynomial equations in the 3k unknowns U1, . . . , Uk, G(U1), . . . ,
G(Uk), A1, . . . , Ak:

P(G(Ui), A1, . . . , Ak, t, Ui) = 0,

∂P
∂w0

(G(Ui), A1, . . . , Ak, t, Ui) = 0, for every 1 ≤ i ≤ k.

∂P
∂u

(G(Ui), A1, . . . , Ak, t, Ui) = 0,

(6.5)

If this system has only a finite number of solutions, it characterises completely the
3k unknown series and proves that they are algebraic under the assumption that the
series U1, . . . , Uk are distinct.

The method presented above is shown to work in [36, Section 4], where under a mild
hypothesis on the form of Equation (6.3) it is proved that the System (6.5) characterises
completely the 3k unknowns it involves. Thus, the specialisations A1, . . . , Ak are proved
to be algebraic as well as the complete series G(u). We do not need this general theorem
to solve and examine the specific case of fighting fish, thus for the sake of brevity we
do not report it here. Nevertheless, it is well worth noticing that this general strategy
encapsulates the two well-known cases called kernel method and quadratic method. In fact,
if the polynomial P is linear in G(u) our recipe and the kernel method coincide - see for
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instance the case of Dyck paths as a specialisation of Dyck prefixes shown in Section 1.3.7.
On the other hand, the so-called quadratic method, which was developed by W. G. Brown
around 1965, allows to solve in a systematic way all the equations of type (6.3) that are
quadratic in G(u) and involve only one specialisation A1.

6.3.3 The algebraic solution of the master equation

The above recipe can be applied to a specialisation of the polynomial equations (6.1) in
order to prove that the size generating function of fighting fish is algebraic, as well as their
multivariate generating function.

Let us start with the master Equation (6.1) and set the variable q = 1, since we do not
take into account the area parameter. It holds that

F (v) = 1 + tv F (v) (F (v)− 1 + x) + 2t F (v) (F (v)− 1)+
t

v
F (v) (F (v)− 1− v F1) , (6.6)

where F (v) ≡ R(v, 1) and F1 ≡ [v]R(v, q)|q=1, namely F1 = [v]F (v). Equivalently, the
polynomial Equation (6.2) reduces to

M̃(x;F (v), F1, t, v) ≡ M̃(F (v), F1, t, v) = 0,

where M̃(w0, w1, t, v) ≡ M̃(w0, w0, w1, t, v, 1), or in explicit form is

−vw0 + v + tv2w0 (w0 − 1 + x) + 2t vw0 (w0 − 1) + t w0 (w0 − 1− v w1) .

Equation M̃(F (v), F1, t, v) = 0 is now a polynomial equation with one catalytic variable
v, which uniquely defines the pair (F (v), F1), and according to the recipe of Section 6.3.2,
it admits an explicitly computable algebraic solution.

Theorem 6.3.2. Let V ≡ V (t, x) be the unique power series solution of the equation

V = t ·
(

1 + V + x · V 2

1− V

)2

. (6.7)

Then, the bivariate generating function of fighting fish according to their size and number
of tails is algebraic

F1 ≡ F1(t, x) = x · V − x2 · V 3

(1− V )2
. (6.8)

Proof. To prove this result we apply step by step the recipe:

• Upon differentiating M̃(F (v), F1, t, v) = 0 with respect to w0 we obtain

∂M̃
∂w0

(F (v), F1, v) =
(
(1 + v)2 · (2F (v)− 1) + xv2 − vF1

)
· t− v = 0.

Then, v = t ·Q(F (v), F1, v, x), with Q(w0, w1, v, x) = (1 +v)2 · (2w0−1) +xv2−vw1,
and this equation admits a unique power series solution V ≡ V (t, x).
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• Now, we differentiate with respect to v

∂M′

∂w0

(F (v), F1, t, v) · F ′(v) +
∂M′

∂v
(F (v), F1, t, v) = 0.

Since V is a well-defined power series in t, both series F (V ) and F ′(V ) are well-defined
power series in t, and under the substitution v = V it holds

∂M′

∂v
(F (V ), F1, t, V ) = 0.

• Then the series V ≡ V (t, x), F1 ≡ F1(t, x) and F (V ) ≡ F (V, t, x) are solutions of the
system of polynomial equations

M̃(F (V ), F1, t, V ) = 0,

V = t ·Q(F (V ), F1, V, x),

∂M̃
∂v

(F (V ), F1, t, V ) = 0.

Solving the system for t, F1 and F (V ) by elimination, we find that the algebraic
curve (t, V, F1, F (V )) admits the following parametrisation{

t =
V · (1− V )2

(1− (1− x) · V 2)2
, F1 = x · V − x2 V 3

(1− V )2
, F (V ) = 1 + x

V 2

1− V 2

}
(6.9)

From (6.9) the result follows straightforward.

An expression for F (v) now follows by Equation (6.6).

6.4 Enumerative results for fighting fish

The next subsections are devoted to provide explicit formulas for the number of fighting
fish according to some statistics. Size and number of tails are discussed in Section 6.4.1,
where it turns out that fighting fish of size n+1 are enumerated by sequence A000139 [132]
and those having only one tail are counted by Catalan numbers (sequence A000108 [132]).
Fighting fish with a marked tail are studied in Section 6.4.2 and result to be related to an-
other quite famous number sequence (A006013 [132]), which counts some families of plane
trees. Finally, we study fighting fish regarding their area. In Section 6.4.4, we asymptoti-
cally estimate the average area of a uniform random fighting fish and discover an unusual
property for these objects. In fact, fighting fish result to belong to a different universality
class if compared to uniform random polyominoes whose results are summarised in [123].
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6.4.1 Explicit formulas with respect to size and number of tails

Thanks to the solution of the master equation given in Theorem 6.3.2, we are now in
position to prove that fighting fish are enumerated according to their size by sequence
A000139 in [132], whose first terms are

1, 2, 6, 22, 91, 408, 1938, 9614, 49335, 260130, 1402440, 7702632, 42975796, . . . .

Therefore, these objects are equinumerous to other known combinatorial structures, such as
West two-stack sortable permutations on n letters [145, 149], rooted non-separable planar
maps with n edges [45, 93, 141], and left ternary trees having n nodes [59].

Theorem 6.4.1. The number fn of fighting fish with size n+ 1 is

fn =
2

(n+ 1)(2n+ 1)

(
3n

n

)
. (6.10)

Proof. Let us set x = 1. Theorem 6.3.2 reads

F1(t, 1) = V (t, 1)− V (t, 1)3

(1− V (t, 1))2
, with V (t, 1) = t · 1

(1− V (t, 1))2,

so that we can apply the Lagrange inversion formula to determine [tn]F1(t, 1), which gives
the number of fighting fish of size n+ 1, owing to Theorem 6.2.2.

For F1(t, 1) = ψ(V (t, 1)), where V (t, 1) = tφ(V (t, 1)), the Lagrange inversion formula
states that

[tn]F1(t, 1) =
1

n
[vn−1]ψ′(v) · φ(v)n, for all n.

This yields

[tn]F1(t, 1) =
1

n
[vn−1]ψ′(v) · φ(v)n =

1

n
[vn−1]

∂

∂v

(
v − v3

(1− v)2

)
· 1

(1− v)2n

=
1

n
[vn−1]

1− 3v

(1− v)3
· 1

(1− v)2n
=

1

n
[vn−1]

1

(1− v)2n+3
− 3

n
[vn−2]

1

(1− v)2n+3

=
1

n

(
3n+ 1

2n+ 2

)
− 3

n

(
3n

2n+ 2

)
=

4 (3n)!

n! (2n+ 2)!
.

Since both Theorems 6.3.2 and 6.5.3 prove that the generating function of fighting fish
is algebraic, according to [79, Section VII.7] an asymptotic form of type C ·An ·nγ must hold
for the coefficients fn. Stirling’s formula (see Section 1.3.8) provides it by a straightforward
calculation.

Proposition 6.4.2. Let fn be the number of fighting fish with size n+ 1, Then, as n goes
to infinity,

fn =
2

(n+ 1) · (2n+ 1)
· (3n)!

(2n)! · n!
∼
√

3

2
√
π
·
(

27

4

)n
· n−5/2. (6.11)
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This particular asymptotic behaviour explicitly calculated tells something more about
fighting fish.

Observation 6.4.3. Fighting fish cannot be generated by an unambiguous context-free
grammar.

Proof. The above statement is a consequence of C. Banderier and M. Drmota’s result
in [9, Proposition 7]. In our particular case, it reads as: if the power series

∑
n≥0 cnt

n

is N-algebraic and cn ∼ C Annγ, then the critical exponent γ cannot be −5/2. Because
of Equation (6.11), the generating function of fighting fish is not N-algebraic, and thus it
does not correspond to a generating function of a context-free grammar by the Chomsky-
Schützenberger Theorem (see [79, Section I.5.4]).

The number of fighting fish of size n+ 1 that have only one tail can be also derived by
using the Lagrange inversion formula applied to Equations (6.7) defining the series V and
Equation (6.8) defining the generating function F1.

It holds that

[x tn]F1 =
1

n
[x vn−1]

∂

∂v

(
xv − x2 v3

(1− v)2

)
·
(

1 + v + x
v2

(1− v)2

)2n

=
1

n
[x vn−1]

(
x(1− v)3 − 3x2v2 + x2v3

(1− v)3

)
·
(

1 + v + x
v2

(1− v)2

)2n

=
1

n
[vn−1] (1 + v)2n =

(2n)!

n! (n+ 1)!
.

As expected the coefficient of x tn in F1 is equal to Cn = 1
n+1

(
2n
n

)
, which is the nth Catalan

number. Indeed, as stated in Proposition 6.1.4, fighting fish of size n+ 1 with only one tail
are in one-to-one correspondence with parallelogram polyominoes of semi-perimeter n+ 1.

More generally, in view of the definition of V in Equation (6.7), the coefficient V` of
x` in V is rational in the Catalan generating function V0 = [x0]V , where V0 is the unique
power series solution of V0 = t(1 + V0)2. In addition, thanks to the definition of F1 of
Equation (6.8), the same holds for the generating function of fighting fish with ` tails.
However, explicit expressions are not particularly simple to express.

6.4.2 Fish with a marked tail

Alternatively, one can consider the total number of tails of a fighting fish and choose to
mark one of them - see Figure 6.12(b). The resulting number sequence has been registered
on OEIS [132] as A006013 and establishes a further link between fighting fish and plane
trees, which will be developed in Section 6.6.1. Indeed, pairs of ternary trees with n nodes
as well as bicoloured ordered trees having n nodes are known to be enumerated by sequence
A006013, whose first terms are

1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, 142498692, . . . .
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Theorem 6.4.4. The number mn of fighting fish of size n+ 1 with a marked tail is

mn =
1

n

(
3n− 2

n− 1

)
. (6.12)

Proof. In order to obtain the exact number of fighting fish with a marked tail, we calculate
the function ∂F1

∂x
and then, we use again the Lagrange inversion formula to compute

mn = [tn]
∂F1

∂x
(t, 1) .

Let us recall System (6.9){
t =

V · (1− V )2

(1− (1− x) · V 2)2
, F1 = x · V − x2 V 3

(1− V )2
, F (V ) = 1 + x

V 2

1− V 2

}
,

where both functions F1 and V depend on t and x.

Differentiating the first and second equations with respect to x and then setting x = 1,
we obtain a system of two equations in two unknowns ∂V

∂x
≡ ∂V

∂x
(t, 1) and ∂F1

∂x
≡ ∂F1

∂x
(t, 1)



∂V

∂x
=

2 t ·
(
∂V
∂x

+ V (t, 1)2 − V (t, 1)3
)

(1− V (t, 1))3

∂F1

∂x
=

∂V
∂x
·
(

1− 3V (t, 1)
)

+ V (t, 1) ·
(

1− 3V (t, 1)
)

+ V (t, 1)3 ·
(

1 + V (t, 1)
)

(1− V (t, 1))3
.

(6.13)

By substituting t = V (t, 1)·(1−V (t, 1))2 in the first equation, we simplify System (6.13)
that reduces to 

∂V

∂x
=

2V (t, 1)3(1− V (t, 1))

1− 3V (t, 1)

∂F1

∂x
= V (t, 1).

Therefore, the Lagrange inversion formula reads

[tn]
∂F1

∂x
= [tn]V (t, 1) =

1

n
[vn−1]φ(v)n

=
1

n
[vn−1]

1

(1− v)2n
=

1

n

(
3n− 2

2n− 1

)
.

To conclude, we consider the average number of tails per fighting fish of size n+ 1 that
is simply obtained calculating the ratio between mn (total number of tails in fighting fish
of size n + 1) and fn (number of fighting fish of size n + 1). It results the following nice
formula for any n.
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Corollary 6.4.5. The average number of tails of a uniform random fighting fish of size
n+ 1 is

(n+ 1)(2n+ 1)

3 (3n− 1)
.

6.4.3 Total area

The master equation of Section 6.3.1 is needed furthermore in order to consider the area
statistic on fighting fish. Remind that the area of any fighting fish has been defined as the
number of its cells, whereas the area of a fish tail as the number of its left and right scales.
Since a pair of left and right scales gives rise to a cell and fighting fish are nothing else but
fish tails of height 1, in the following we choose to consider the “double” area, namely the
total number of left and right scales of a fighting fish.

The generating function of the total area of fighting fish is the series A ≡ A(t, x) given
by

A =
∂(qS(q))

∂q

∣∣∣
q=1

= S(1) +
∂S

∂q
(1),

which counts fighting fish weighted by their area. Recalling that S(q) counts fish tails
of height 1 by their area, the correction factor q needs to take account of the head of the
fighting fish which is not included in any fish tail. The series ∂S

∂q
(1) appears in the derivative

of the master Equation (6.2) with respect to q

∂
∂q
M(R(v, q), R(vq2, q), S(q), t, v, q) =

∂R
∂q

(v, q)∂M
∂w1

(R(v, q), R(vq2, q), S(q), t, v, q)

+
(
∂R
∂q

(vq2, q) + 2vq ∂R
∂v

(vq2, q)
)
∂M
∂w2

(R(v, q), R(vq2, q), S(q), t, v, q)

+∂S
∂q

(q)∂M
∂w3

(R(v, q), R(vq2, q), S(q), t, v, q) + ∂M
∂q

(R(v, q), R(vq2, q), S(q), t, v, q) = 0.

Indeed, for q = 1 this equation can be rewritten as

∂
∂q
M(R(v, q), R(vq2, q), S(q), t, v, q) |q=1= (6.14)

∂R
∂q

(v, 1)∂M
∂w1

(F (v), F (v), F1, t, v, 1)

+
(
∂R
∂q

(v, 1) + 2v ∂F
∂v

(v)
)
∂M
∂w2

(F (v), F (v), F1, t, v, 1)

+∂S
∂q

(1)∂M
∂w3

(F (v), F (v), F1, t, v, 1) + ∂M
∂q

(F (v), F (v), F1, v, 1) = 0,

where F (v) ≡ R(v, 1) and F1 ≡ S(1), as previously defined.
Recall that the series V introduced in Theorem 6.3.2 is the unique power series solution

of
∂M
∂w1

(F (v), F (v), F1, t, v, 1) +
∂M
∂w2

(F (v), F (v), F1, t, v, 1) = 0.
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Thus upon setting v = V , a simplification occurs as the coefficient of ∂R
∂q

(v, 1) is precisely

the defining equation for V . Equation (6.14) becomes

2v ∂F
∂v

(V )∂M
∂w2

(F (V ), F (V ), F1, t, V, 1)

+∂S
∂q

(1)∂M
∂w3

(F (V ), F (V ), F1, t, V, 1) + ∂M
∂q

(F (V ), F (V ), F1, t, V, 1) = 0. (6.15)

In order to obtain an equation for ∂S
∂q

(1) we need to determine ∂F
∂v

(V ).

The derivative of the master Equation (6.2) with respect to v is

∂F
∂v

(v) ·
[
∂M
∂w1

(F (v), F (v), F1, t, v, 1) + ∂M
∂w2

(F (v), F (v), F1, t, v, 1)
]

+∂M
∂v

(F (v), F (v), F1, t, v, 1) = 0. (6.16)

Now, one cannot simply set v = V in Equation (6.16) to obtain ∂F
∂v

(V ) because of the
coefficient of ∂F

∂v
(v) that vanishes by definition of V . Then, expand Equation (6.16) at

v = V to the second order,

∂F
∂v

(V ) ·
[
∂M
∂w1

(.) + ∂M
∂w2

(.)
]

+ ∂M
∂v

(.)︸ ︷︷ ︸
=0

+(v − V ) ·
(
∂2F
∂v2

(V ) ·
[
∂M
∂w1

(.) + ∂M
∂w2

(.)
]

︸ ︷︷ ︸
=0

+∂F
∂v

(V ) ·
[
∂F
∂v

(V ) ·
(

∂
∂w1

+ ∂
∂w2

)
+ ∂

∂v

] (
∂M
∂w1

+ ∂M
∂w2

)
(.)

+
([

∂F
∂v

(V ) ·
(

∂
∂w1

+ ∂
∂w2

)
+ ∂

∂v

]
∂M
∂v

)
(.)
)

= O((v − V )2),

where (.) stands for the evaluation at (F (V ), F (V ), F1, t, V, 1). Since the coefficients are
zero at all orders in this expansion at v = V , the coefficient of (v − V ) yields a quadratic
equation, which turns out to uniquely define ∂F

∂v
(V ) in terms of V and x. Indeed, there is

a polynomial

R(w, v, x) = −2v(1− v2)2(1 + v)2w2 + 2(1− v2)2(1− v2 + xv2)w − 2xv(1− v2 + xv2),

quadratic in w, such that ∂F
∂v

(V ) is the unique power series solution of

R
(
∂F
∂v

(V ), V, x
)

= 0 . (6.17)

Together with Equation (6.15) it allows us to obtain by elimination a quadratic equation
satisfied by ∂S

∂q
(1) over Q(V, x). Using the expression of F1 in terms of V (as stated in

Theorem 6.3.2) a similar result is obtained for the series A.
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Proposition 6.4.6. The generating function A ≡ A(t, x) for the total area of fighting fish
is algebraic of degree 2 over Q(V, x) and satisfies

−V (1− V )2A2 + 2(1− V )2(1− V 2 + xV 2)A− 4xV (1− V 2 + xV 2) = 0. (6.18)

Note that extracting the coefficient of x in Equation (6.18) yields

2(1− V0)2(1− V 2
0 )A1 − 4V0(1− V 2

0 ) = 0,

where V0 = [x0]V and A1 = [x1]A. According to the definition of V given in Theorem 6.3.2,
it holds that

V0 = [x0]V = t(1 + V0)2,

from which we recover the generating function A1 for the total area of parallelogram poly-
ominoes, viewed as fighting fish with only one tail

A1 =
2V0

(1− V0)2
=

2t

1− 4t
.

The simplification to a rational function of t is a well-known feature of parallelogram poly-
ominoes [147]. Observe that it implies that the average area of parallelogram polyominoes
of size n is 4n/Cn, that is of order n3/2.

In general upon extracting the coefficient of x` in Equation (6.18) and again using the
rationality of coefficients of xi in V we obtain that the generating function of the total
area of fighting fish with ` tails as a rational function of the Catalan generating function
V0, the unique power series solution of V0 = t(1 + V0)2.

6.4.4 Average area

Now we turn to the estimate of the average area an of a fighting fish of size n+ 1, proving
that it grows like n5/4. Such a result is worth comparing with Table 11.1 in [91]: the area of
uniform random polyominoes with perimeter n in all classical non-trivial solvable models
of polyominoes behaves like n3/2 [123]. Fighting fish thus belong to a different universality
class.

Theorem 6.4.7. Let an denote the average area of uniform random fighting fish of size
n+ 1. Then, as n goes to infinity,

an ∼
33/42

√
2π

Γ
(
−1

4

) · n5/4.

Proof. The series V (t, 1) is by definition the unique power series solution of the equation

V = t φ(V ), where φ(x) =
1

(1− x)2
.
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Standard results in analytic combinatorics [79, Theorem VI.6, p. 404] enable us to estimate
coefficients defined implicitly by an equation of the form y(z) = tφ(y(z)). Indeed, it holds
that φ(x) is analytic at x = 0 and satisfies

φ(0) 6= 0, [xn]φ(x) ≥ 0, and φ(x) 6≡ φ0 + φ1x.

In addition, within the open disc of convergence of φ at 0, |z| < R, there exists a positive
solution Vc to the characteristic equation

φ(x)− xφ′(x) =
1− 3x

(1− x)3
= 0. (6.19)

Then, by [79, Proposition IV.5, p. 278] the radius of convergence of V is the positive value
ρV obtained from

ρV =
Vc

φ(Vc)
.

Therefore, it holds that the radius of convergence ρV of the series V is finite and its
numerical value is 4/27, since Vc = 1/3 is the positive root of (6.19).

Then, by [79, Theorem VI.6] the singular expansion of V near ρV is of the generic
square root type

V = Vc − γ
√

1− t/ρV +O(1− t/ρV ), (6.20)

where

γ :=

√
2φ(Vc)

φ′′(Vc)
=

√
4

27
=

2

3
√

3
.

Equation (6.18) for x = 1 reads

V (1− V )2A2 − 2(1− V )2A+ 4V = 0,

or, equivalently,

A =
1

V
−
√

(1 + V )(1− 3V ))

V (1− V )
.

Since A has positive coefficients, by Pringsheim’s Theorem [79, Theorem IV.4, p. 240] it
has a positive dominant singularity, which is obtained at t = ρV , that is for Vc = 1/3. From
the above expression in terms of V and Expansion (6.20), we have the singular expansion

A = 3−

√
4
3
· 3 2

3
√

3

√
1− t/ρV )

2/9
+O(

√
1− t/ρV )

= 3− 35/4
√

2(1− t/ρV )1/4 +O((1− t/ρV )1/2).

Standard function scale ([79, Theorem VI.1, p. 381]) and transfert Theorem ([79, Theorem
VI.3, p. 390]) yield

[tn]A ∼
n→∞

35/4
√

2

Γ(−1
4
)
n−5/4ρ−nV .
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Now, return to the coefficient of tn in F1, as calculated in Theorem 6.4.1,

[tn]F1 ∼
n→∞

√
3

2
√
π
· n−5/2 · ρ−nV .

The average area of fighting fish of size n is the ratio of the above two coefficients which,
as n goes to infinity, is equivalent to

33/4 2
√

2π

Γ(−1
4
)
· n5/4.

6.5 The Wasp-waist decomposition

This section is devoted to providing an alternative description of fighting fish that is self-
contained: it does not characterise them as a special case of a larger family of objects,
such as fish tails described in Section 6.2.2 or, equivalently, fish bone trees of Section 6.2.3.
The description presented allows us to construct these objects recursively - but without
ambiguity - only by using fighting fish themselves; indeed, according to the so-called wasp-
waist decomposition a fighting fish is decomposed into fighting fish of smaller size. In
addition, owing to this decomposition it will become possible to refine the enumeration of
fighting fish and to discover important properties of these objects.

6.5.1 The wasp-waist definition

In order to describe how to decompose a fighting fish, we introduce a new enumerative
parameter: the fin of a fighting fish. The fin is the path that starts with the lower edge of
its head, follows its border counterclockwise, and ends at the right lower edge of the first
tail it meets. The length of the fin is given by the number of steps (or edges) it is made
of. In Figure 6.10 the fin of a sketched fighting fish has been emphasized.

Theorem 6.5.1. Let P be a non-empty fighting fish. Then, exactly one of the following
cases (A), (B1), (B2), (C1), (C2) or (C3) occurs:

(A) P consists of a single cell;

(B) P is obtained from a fighting fish P1 of smaller size:

(B1) by glueing the right lower edge of a new cell to the left upper edge of the head
of P1 (Figure 6.10 (B1));

(B2) by glueing every left edge of the fin of P1 to the right upper edge of a new cell,
and glueing the right lower edge and the left upper edge of all pairs of adjacent
new cells (Figure 6.10 (B2));

(C) P is obtained from two fighting fish, P1 and P2, of smaller size:
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P2

1P

1P

P2

1P
P2

1P

1PP += +

+ +

(A) (B1) (B2)

(C3)(C1) (C2)

fin

Figure 6.10: The wasp-waist decomposition.

(C1) by performing to P1 the operation described in (B2) and then glueing the right
lower edge of the lowest tail of P1 to the left upper edge of the head of P2 (Figure
6.10 (C1));

(C2) by choosing a right edge r on the fin of P1 (tail excluded) and glueing every
left edge of the fish fin preceding r to the right upper edge of a new cell and,
as above, glueing the right lower edge and the left upper edge of every pair of
two adjacent new cells; Then, glueing the left upper edge of the head of P2 to r
(Figure 6.10 (C2));

(C3) by choosing a left edge ` on the fin of P1 and glueing every left edge of the fish
fin preceding ` (included) to the right upper edge of a new cell and, as above,
glueing the right lower edge and the left upper edge of every pair of adjacent new
cells; Then, glueing the left upper edge of the head of P2 to the right lower edge
of the cell glued to ` (Figure 6.10 (C3)).

Observe that Cases (A), (B1) and (B2) could be alternatively considered as degenerate
cases of Case (C1) where P1 or P2 were allowed to be empty.

Proof. The operations above produce valid fighting fish: indeed, inductively given incre-
mental growths of P1 and P2 we obtain a valid incremental growth of P upon starting from
the new head, and making grow P1 from the head interleaving its steps with insertions of
the new grey cells (each new cell is to be inserted just before the fin cell it will be attached
to); when this has been done, the head of P2 can be glued to P1 and the incremental growth
of P2 can start. It thus remains to show that every fighting fish of size greater than 2 can
be uniquely obtained by applying one of the operations (B) or (C) to fish of smaller size.

In order to prove the result let us describe how to decompose a fish P which is not
reduced to a cell. In order to do this we need two further definitions: a cut edge of P is
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any common edge e of two cells of P such that cutting P along e yields two connected
components. Second, let the set of fin cells of P be the set of cells incident to a left edge
of the fin: the head of P is always a fin cell and the other fin cells have non-free left upper
edges (since their left lower edges are free and they must be attached by a left edge).

Now the decomposition is as follows:

• First mark the head of P as removable and consider the other fin cells iteratively
from left to right: mark them as removable as long as their left upper edge is not a
cut edge of P . Let R(P ) be the set of removable cells of P .

• If all fin cells are marked as removable then removing these cells yields a fighting
fish P1 = P \ R(P ), and applying the construction of Case (B2) to P1 gives P back.
Conversely any fish produced as in Case (B2) has all its fin cells removable.

• Otherwise let c be the first fin cell which is not removable. Upon cutting the left
upper edge e of c, two components are obtained: let P2 be the component containing c
and let P̄1 be the other component, which contains by construction all the removable
cells of P . Using the incremental construction of fighting fish one can easily check
that P1 = P̄1\R(P ) is a (possibly empty) fighting fish, and P2 is a non-empty fighting
fish.

– If P1 is empty, then only one cell is in R(P ) and applying the construction of
Case (B1) to the non-empty fighting fish P2 yields P back, and conversely all
fish produced as in Case (B1) have only one cell removable (i.e. the head) and
admit a decomposition with P1 empty.

– Otherwise the edge e corresponds to the right lower edge of a cell c̄ of P̄1. If this
cell is in R(P ), then the right upper edge of c̄ is a right lower edge ē on the fin
of P1. Thus, applying the construction of Case (C3) to P1 and P2 by choosing
the edge ē on the fin of P1 yields P back. Conversely, all fish produced as in
Case (C3) admit a decomposition with P1 non-empty and the left upper edge of
the head of P2 glued to a removable fin cell. Else if c̄ is not in R(P ), then c̄ is in
P1 and e is an edge (resp. the rightmost edge) on the fin of P1. Thus, applying
the construction of Case (C2) (resp. (C1)) to P1 and P2 by choosing the edge e
on the fin of P1 yields P back. Conversely, all fish produced as in Case (C2) or
(C1) admit a decomposition with P1 non-empty and the left upper edge of the
head of P2 glued to a fin cell of P1.

Observe that parallelogram polyominoes are exactly the fighting fish obtained using
only Cases (A), (B1), (B2) and (C1), as proved in [91, Chapter 3].

Figure 6.11 shows the wasp-waist decomposition of the fighting fish of Figure 6.4 whose
fin has been re-marked and has length 8. Note that any fighting fish P that is a parallelo-
gram polyomino and has a bar shape is iteratively decomposed either by Case (B1) or by
Case (B2) according to the bar direction, as visible in Figure 6.11.
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2PP1
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(C3)
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Figure 6.11: The wasp-waist decomposition of the fighting fish of Figure 6.4(a) whose fin
length is 8.
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6.5.2 A second functional equation

According to the wasp-waist decomposition we can easily write a functional equation whose
solution is the generating function of fighting fish. The parameters we choose to take into
account in this second decomposition are:

• the size, or the total number of free lower edges,

• the number of tails,

• the right size, or the number of free right lower edges,

• the left size, or the number of free left lower edges,

• the fin length.

Our aim is now to determine the generating function P (u) ≡ P (t, x, a, b;u), with vari-
ables t, x, a, b and u respectively marking size, number of tails, right size, left size, and fin
length, all parameters being decreased by one. Thus, the smallest fighting fish com-
posed of only one cell gives contribution tu. The reason for decreasing all the parameters
is to obtain the neat functional equation showed in the following proposition.

Proposition 6.5.2. The generating function P (u) of fighting fish satisfies

P (u) = tu(1 + aP (u))(1 + b P (u)) + txabuP (u)
P (1)− P (u)

1− u
. (6.21)

Proof. The wasp-waist decomposition of Theorem 6.5.1 is readily translated into the fol-
lowing functional equation - see Figure 6.10:

P (u) = tu+ tub P (u) + tuaP (u) + tuab P (u)2+

+ txab P (u)
∑
P1

tsize(P1)−1xtails(P1)−1arsize(P1)−1blsize(P1)−1
(
u+ . . .+ ufin(P1)−1

)
=

= tu(1 + aP (u))(1 + b P (u)) + txabuP (u)
P (1)− P (u)

1− u
,

where the only difficult point lies in the discrete derivative that comes from Cases (C2)
and (C3). In fact, given a pair (P1, P2) of non-empty fighting fish such that P1 has its fin
of length k + 1 and P2 of length m, Cases (C2) and (C3) together produce k fighting fish
of fin length 2 +m, 3 +m, . . . , k + 1 +m respectively.

The above equation is a combinatorially funded polynomial equation with one catalytic
variable: indeed, Equation (6.21) can be rewritten in a polynomial form as

W(P (u), P (1), t, u) = 0,
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where W(w0, w1, t, u) ≡ W(x, a, b;w0, w1, t, u) reads explicitly

(u− 1)w0 − tu(u− 1)(1 + aw0)(1 + bw0)− txabuw0(w0 − w1).

The function P (1) is a series in t, which does not depend on the catalytic variable u. This
class of equations was thoroughly studied by M. Bousquet-Mélou and A. Jehanne in [36],
as already described previously in Section 6.3.2.

6.5.3 The algebraic solution of the wasp-waist equation

Now, we turn to solve Equation (6.21) that in polynomial form reads

(u− 1)P (u)− tu(u− 1)(1 + aP (u))(1 + b P (u))− txabuP (u) (P (u)− P1) = 0, (6.22)

where P1 ≡ P (1). Since it is a polynomial equation in one catalytic variable u that uniquely
defines the pair of series (P (u), P1), we make use of the recipe presented in Section 6.3.2
also in this second case in order to solve (6.22). It is well worth stressing that the function
P (u) enumerates fighting fish not only with respect to their size and their number of tails,
but also with respect to their left and right size and their fin length. This provides further
enumerative results on this family of objects, which will be examined in the next sections.
Therefore, it results useful to provide the algebraic equations P (u) and P1 satisfy.

Theorem 6.5.3. Let B ≡ B(t;x, a, b) denote the unique power series solution of the
equation

B = t ·
(

1 + x
abB2

1− abB2

)2

(1 + aB)(1 + bB). (6.23)

Then the generating function P1 ≡ P (t;x, a, b, 1) of fighting fish can be expressed as

P1 = B − xabB3(1 + aB)(1 + bB)

(1− abB2)2
. (6.24)

Proof. We apply the recipe, starting from the polynomial equation (6.22) with polynomial
W(w0, w1, t, u) given by

(u− 1)w0 − tu(u− 1)(1 + aw0)(1 + bw0)− txabuw0(w0 − w1).

• By differentiating W(w0, w1, t, u) = 0 with respect to the first variable w0 and eval-
uating at (P (u), P1, t, u), we obtain

(u− 1)− tu(u− 1)(a+ b+ 2abP (u))− txabu(2P (u)− P1) = 0,

which has a unique well-defined power series solution U ≡ U(t, x, a, b) defined by

U = 1 + tU(U − 1)(a+ b+ 2abP (U)) + txabU(2P (U)− P1). (6.25)
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• By differentiating W(P (u), P1, t, u) = 0 with respect to u, it holds

∂W
∂u

(P (u), P1, t, u) +
∂W
∂w0

(P (u), P1, t, u) · ∂
∂u
P (u) = 0,

which explicitly reads as

P (u)− t(2u− 1)(1 + aP (u))(1 + bP (u))− txabP (u)(P (u)− P1)

= − ∂

∂u
P (u) · (u− 1− tu(u− 1)(a+ b+ 2abP (u))− txabu(2P (u)− P1)) .

Now, by substituting u = U the right-hand side vanishes, and then U must cancel
the left-hand side. So it holds that

P (U) = t(2U − 1)(1 + aP (U))(1 + bP (U)) + txabP (U)(P (U)− P1). (6.26)

• Finally, for u = U Equation (6.22) reads

(U −1)P (U) = tU(U −1)(1 +aP (U))(1 + bP (U)) + txabUP (U)(P (U)−P1). (6.27)

Equations (6.25), (6.26), and (6.27) form a system that admits as series solutions U ,
P (U), and P1.

Now, we prove that the power series B in the statement of Theorem 6.5.3 is indeed the
power series P (U), which allows us to write an expression for the generating function of
fighting fish P1 in terms of the series B.

By comparing Equation (6.27) and Equation (6.26) multiplied by U , a simpler relation
is immediately deduced

P (U) = tU2(1 + aP (U))(1 + bP (U)). (6.28)

Then, comparing Equation (6.27) and Equation (6.25) multiplied by P (U), up to cancelling
a factor tU , yields

(U − 1)(1 + (a+ b)P (U) + abP (U)2) = (U − 1)P (U)(a+ b+ 2abP (U)) + xabP (U)2,

that is

U = 1 + x · abP (U)2

1− abP (U)2
. (6.29)

In view of Equations (6.28) and (6.29), the function P (U) is thus the unique formal power
series solution of the equation

P (U) = t

(
1 + x · abP (U)2

1− abP (U)2

)2

(1 + aP (U))(1 + bP (U)). (6.30)

Then, by setting B := P (U) Equation (6.23) and Equation (6.30) coincide.
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Now, we are able to provide an expression for the generating function P1, which involves
only the formal power series B and the variables x, a and b.

We use Equation (6.29) rewritten as

U − 1 = x · abB2

1− abB2
,

to eliminate the factors (U − 1) in Equation (6.27), and after cancelling a factor xabB, it
yields

B2

1− abB2
= t U

B

1− abB2
(1 + aB)(1 + bB) + tU(B − P1).

Equation (6.28) is used to expand a factor B in the left-hand side, and after cancelling a
factor t U , the previous equation becomes

B U(1 + aB)(1 + bB)

1− abB2
=

B

1− abB2
(1 + aB)(1 + bB) + (B − P1).

In other words,

B − P1 = (U − 1)
B(1 + aB)(1 + bB)

1− abB2

and again using Equation (6.29),

B − P1 =
xabB3(1 + aB)(1 + bB)

(1− abB2)2
.

Finally,

P1 = B − xabB3(1 + aB)(1 + bB)

(1− abB2)2
.

The full generating function P (u) ≡ P (t, x, a, b;u) of fighting fish, where the variable
u marks the fin length decreased by one, results to be algebraic of degree at most 2 over
Q(x, a, b, u, B) by Equations (6.22) and (6.24). It admits, in fact, a parametrisation directly
extending the one of the Theorem 6.5.3, which will be visible later in Corollary 6.6.11
(Section 6.6.4).

6.5.4 Enumerative results: left and right size

In this section we specialise the explicit formulas determined for fighting fish in Section 6.4
by taking into account the more accurate statistics of left and right size. Note that in order
to deal with the area of fighting fish by using the wasp-waist decomposition, one should
refine Equation (6.21) introducing new parameters for counting the fish area. Nonetheless,
we have already studied such a statistic on fighting fish thoroughly by using the master
equation in Section 6.4.3 and Section 6.4.4 and we do not refine Equation (6.21) here.

Thanks to the wasp-waist decomposition and the generating function given in Theo-
rem 6.5.3, we are able to enumerate fighting fish according to their number of left (resp.



6.5. The Wasp-waist decomposition 207

right) free lower edges - i.e. left (resp. right) size. Such a specialisation on the number of
fighting fish can similarly be seen as the way Narayana numbers refine Catalan numbers,
as Proposition 6.5.5 illustrates.

Moreover, the following results confirm the apparently close relation between fighting
fish and other well-studied combinatorial structures enumerated by sequence A000139 [132].
In fact, the explicit formula given in Theorem 6.5.4 is known to count rooted non-separable
planar maps with respect to vertices and faces [45, 93, 141], or West two-stack sortable
permutations with respect to ascents and descents [145, 149], or left ternary trees with
respect to nodes with even and odd abscissa [59], as will be developed in Section 6.6.3.

Theorem 6.5.4. The number of fighting fish of left size j and right size i is

1

ij

(
2i+ j − 2

j − 1

)(
2j + i− 2

i− 1

)
. (6.31)

Proof. Our aim is to derive the explicit formula for fighting fish of size n, and left and
right size j and i, respectively, where n = i + j. Then, let us implicitly set x = 1 in
all functions, and in order to apply the bivariate Lagrange inversion formula, rewrite
Equation (6.24) for P1 in terms of the series

R̄ =
aB(1 + bB)

1− abB2
, and S̄ =

bB(1 + aB)

1− abB2
. (6.32)

Indeed, it results that

B = t
(1 + aB)(1 + bB)

(1− abB2)2
= t(1 + R̄)(1 + S̄), (6.33)

so that R̄ and S̄ satisfy {
R̄ = ta(1 + R̄)(1 + S̄)2

S̄ = tb(1 + R̄)2(1 + S̄).
(6.34)

From (6.32) and (6.33), Equation (6.24) rewrites as

P1 = B − abB3 (1 + aB)(1 + bB)

(1− abB2)2
= t(1 + R̄)(1 + S̄)(1− R̄S̄). (6.35)

Given a system {A1 = a1Φ1(A1, A2), A2 = a2Φ2(A1, A2)} the bivariate Lagrange Inversion
theorem [124] states that for any function F (x1, x2),

[an1
1 a

n2
2 ]F (A1, A2) =

1

n1n2

[xn1−1
1 xn2−1

2 ]

(
∂2F (x1, x2)

∂x1∂x2

Φ1(x1, x2)n1Φ2(x1, x2)n2

+
∂F (x1, x2)

∂x1

∂(Φ1(x1, x2)n1)

∂x2

Φ2(x1, x2)n2

+
∂F (x1, x2)

∂x2

∂(Φ2(x1, x2)n2)

∂x1

Φ1(x1, x2)n1

)
.
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In other words, [an1
1 a

n2
2 ]F (A1, A2) = 1/(n1n2)

[
xn1−1

1 xn2−1
2

]
Φ1(x1, x2)n1Φ2(x1, x2)n2H, where

H =
∂2F (x1, x2)

∂x1∂x2

+n1
∂F (x1, x2)

∂x1

∂Φ1(x1, x2)

∂x2

1

Φ1(x1, x2)
+n2

∂F (x1, x2)

∂x2

∂Φ2(x1, x2)

∂x1

1

Φ2(x1, x2)
.

Then, by setting t = 1 and applying the bivariate Lagrange inversion formula to the
function P1(R̄, S̄) in Equation (6.35), where R̄ = aΦ1(R̄, S̄) and S̄ = bΦ2(R̄, S̄) as defined
in System (6.34), yields

[ai−1bj−1]P1 =
1

(i− 1)(j − 1)
[R̄i−2S̄j−2]

(
(1 + R̄)i+2j−3(1 + S̄)2i+j−3 (−4 + 4R̄S̄

+ 2i(1− 2R̄S̄ − S̄)

+2j(1− 2R̄S̄ − R̄))
)
.

By extracting coefficients of R̄i−2S̄j−2 yields

[ai−1bj−1]P1 =
1

(i− 1)(j − 1)

[
2(i+ j − 2)

(
2j + i− 3

i− 2

)(
2i+ j − 3

j − 2

)
− 4(i+ j − 1)

(
2j + i− 3

i− 3

)(
2i+ j − 3

j − 3

)
−2j

(
2j + i− 3

i− 3

)(
2i+ j − 3

j − 2

)
−2i

(
2j + i− 3

i− 2

)(
2j + i− 3

j − 3

)]
.

Manipulating and summing all the binomial coefficients, it results

[ai−1bj−1]P1 =
1

ij

(
2j + i− 2

i− 1

)(
2i+ j − 2

j − 1

)
.

Proposition 6.5.5. Fighting fish of size n+ 1 and right (or, equivalently, left) size k that
have only one tail are counted by Narayana numbers

1

n

(
n

k

)(
n

k − 1

)
.

Proof. The generating function of fighting fish with only one tail is easily obtained by set-
ting x = 0 in Equation (6.24) defining P1. Hence, it yields [x0 tn ak−1]P1 = [x0 tn ak−1]B (or,
equivalently, [x0 tn bk−1]P1 = [x0 tn bk−1]B ). Since the series B defined in Equation (6.23)
is symmetric in a and b, we only prove the statement of Proposition 6.5.5 by calculating
the number of fighting fish of size n+1 and right size k, and discard the variable b in Equa-
tion (6.23) by setting b = 1. Then, by substituting x = 0 and b = 1 in Equation (6.23), it
holds that

B(t, 0, a, 1) = t
(

1 + aB(t, 0, a, 1)
)(

1 +B(t, 0, a, 1)
)
.

Now, simply by applying Lagrange inversion formula, it holds that

[tn ak−1]B(t, 0, a, 1) =
1

n
[yn−1 ak−1] (1 + ay)n · (1 + y)n

=
1

n

(
n

k − 1

)
[yn−k] (1 + y)n =

1

n

(
n

k

)(
n

k − 1

)
.
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(a) (b)

Figure 6.12: Fish with marked points: (a) branching point, (b) tail.

Now, we specialise the result of Theorem 6.5.4 for fighting fish with a marked tail. To
this purpose, let P< ≡ P<(t, x, a, b) (resp. P> ≡ P>(t, x, a, b)) denote the size generating
function of fighting fish with a marked branching point (resp. with a marked tail). Fig-
ure 6.12 shows an example of markings of the same fighting fish: a branching point (on
the left) and a tail (on the right).

It holds that

P> =
x∂

∂x
(xP1), P< =

x∂

∂x
P1, and P> − P< = P1.

Moreover, differentiating with respect to x Equation (6.22) coming from the wasp waist
decomposition, it yields

−tuabP (u)

(
P (u)− P1 −

x∂

∂x
P1

)
=

− ∂

∂x
P (u) · (u− 1− tu(u− 1)(a+ b+ 2abP (u))− txabu(2P (u)− P1)) .

The right-hand side of the above equation annihilates if u = U , where U has been defined
in the proof of Theorem 6.5.3. Therefore, under u = U the left-hand side must vanish and
it holds that

P (U)− P1 −
x∂

∂x
P1 = 0,

which means that
P (U)− P1 − P< = P (U)− P> = 0.

Then, the generating function P>(t, x, a, b) of fighting fish with a marked tail and the
power series B(t, x, a, b) as defined in Theorem 6.5.3 coincide. A bijective proof of this fact
will be shown in Section 6.6.2.

As in the univariate case, fighting fish with a marked tail satisfy a nice bivariate formula.

Theorem 6.5.6. The number of fighting fish of left size j and right size i having a marked
tail is

(2i+ 2j − 3)

(2i− 1)(2j − 1)

(
2i+ j − 3

j − 1

)(
2j + i− 3

i− 1

)
. (6.36)
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Proof. In order to prove this result, we use the same parametrisation of Theorem 6.5.4 so
as to apply the Lagrange inversion formula. Thus, from Equation (6.33)

B = t(1 + R̄)(1 + S̄),

where R̄ and S̄ are defined in System (6.34). Setting t = 1 and applying the bivariate
Lagrange inversion formula to the function B(R̄, S̄), with R̄ and S̄ defined by System (6.34),
yields

[ai−1bj−1]B =
1

(i− 1)(j − 1)
[R̄i−2S̄j−2]

(
(1 + R̄)i+2j−3(1 + S̄)2i+j−3(2i+ 2j − 3)

)
=

(2i+ 2j − 3)

(i− 1)(j − 1)

(
2j + i− 3

i− 2

)(
2i+ j − 3

j − 2

)
=

(2i+ 2j − 3)

(2i− 1)(2j − 1)

(
2j + i− 3

i− 1

)(
2i+ j − 3

j − 1

)
.

6.6 Bijective interpretations

The final section of this chapter is a summary of all the existing relations investigated
between fighting fish (with or without a marked tail) and plane trees. Some of them have
only an analytic explanation and lack a bijective interpretation that seems to remain quite
obscure.

6.6.1 Fish with a marked tail and bicoloured ordered trees: the
tails/cherries relation

In Section 6.4.2 we anticipated that fighting fish with a marked tail are equinumerous to
pairs of ternary trees, or equivalently, bicoloured ordered trees - all three families being
enumerated by sequence A006013 [132]. Now, we strengthen this relation between these
families by proving that there exist some statistics on trees sharing the same distribution
as the number of tails in fighting fish with a marked tail.

First, recall the definition of a ternary tree - as in Figure 6.13(a).

Definition 6.6.1. A plane tree is called ternary tree, if it is either empty or contains a
root and three disjoint ternary trees called the left, middle and right subtree of the root.

The above definition has a straightforward consequence: let T ≡ T (t) be the generating
function of ternary trees according to the number of nodes, T satisfies

T = 1 + t T 3. (6.37)

Now, consider pairs of ternary trees and enumerate them according to the total number
of nodes and right branches : a right branch of a ternary tree is given by a maximal non-
empty sequence of consecutive right edges. Figure 6.13(b) depicts a pair of ternary trees
with 2 right branches for each tree.
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T TT ,

(a) (b) (c)

Figure 6.13: (a) The decomposition of a non-empty ternary tree; (b) a pair of ternary trees
with 18 nodes and 4 right branches; (c) the bicoloured ordered tree corresponding to the
pair in (b).

Proposition 6.6.2. The generating function Ptt ≡ Ptt(t, x) of pairs of ternary trees, where
t counts the number of nodes and x the number of right branches, satisfies

Ptt =

(
1 + t Ptt +

t2 P 2
tt x

1− t Ptt

)2

.

Proof. It follows from a refinement of Equation (6.37). Indeed, each ternary tree of the
pair is either empty (providing the contribution 1) or it has a root and, possibly, subtrees.
We divide the second case in two subcases: if the root has or not its right subtree. If it
does not have a right subtree, then it contributes t Ptt, where Ptt is the contribution for the
left and the middle subtrees of the root (they might be empty). On the other hand, the
case in which the root has a non-empty right subtree contributes t Ptt · t Ptt x/(1 − t Ptt),
where in addition to the factor t Ptt for the root it is counted a non-empty sequence of
consecutive right edges each one carrying its left and middle subtrees contributing for
t Ptt x/(1− t Ptt).

The first terms of the series expansion of Ptt confirm that pairs of ternary trees without
any right branches - that are trivially in bijection with pairs of binary trees - are counted
by Catalan numbers

Ptt = 1 + 2 t+ (5 + 2x) t2 + (14 + 16x) t3 + (42 + 92x+ 9x2) t4 +O(t5).

A pair of ternary tree can be easily mapped into a plane tree whose edges have been
coloured in a specific way - this representation appears to be more compact and for this
reason we prefer it and use it in the remainder of this subsection.

A bicoloured ordered tree is a plane tree with gray and black edges ordered so that in
any node a gray edge cannot be on the right of a black edge. A cherry of a bicoloured
ordered tree is a set of edges that all start from the same node and share the same colour
provided that for each node the set is maximal and counts at least two edges; for instance,
the bicoloured ordered tree in Figure 6.13(c) has 2 cherries of each colour.

Proposition 6.6.3. Pairs of ternary trees with n nodes and k right branches are in bijec-
tion with bicoloured ordered trees with n+ 1 nodes and k cherries.
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Proof. To simplify the description of this bijection, we can think of a bicoloured ordered
tree as a compound of two subtrees: a bicoloured tree can indeed be split at the root so
that one tree has only gray edges starting from the root and the other only black edges.
By merging their roots we obtain a unique bicoloured ordered tree, since in any node gray
edges must precede black edges.

Then, the idea is to encode the ternary trees forming a pair separately. Each ternary
tree is mapped in a bicoloured ordered tree having the same colour in all the edges starting
from its root, and we choose to map the ternary tree on the left (resp. right) into a
bicoloured ordered tree having all gray (resp. black) edges starting from the root.

The encoding used to map a ternary tree τ into a bicoloured ordered tree β is a gener-
alisation of the one known to map binary trees into ordered trees:

- if τ is empty, then β has only one node;

- if τ has root r, then β has an edge starting from the root. The colour of this edge is
determined according to which ternary tree of the pair is being encoded.

- Let τ1, τ2 and τ3 be the left, middle and right subtrees of a node s in τ and e be the edge
of β corresponding to s. Then, τ1, τ2 and τ3 are recursively encoded by pre-order
visiting as follows: a node s′ left (resp. middle) child of s is mapped into a gray
(resp. black) edge child of e, whereas a node right child of s is mapped into a twin
of e, namely an edge that shares colour and origin with e, and lies on its right.

This mapping can be reversed with ease - an example is shown in Figure 6.13(b),(c).
Note that the pair of empty ternary trees corresponds to the unique bicoloured ordered

tree with only one node, and any right branch is mapped into a cherry, and vice versa.

Proposition 6.6.4. Fighting fish with a marked tail of size n + 1 and k + 1 tails are as
many as bicoloured ordered trees with n nodes and k cherries.

Proof. First of all, recall that the generating function P>(t, x, a, b) of fighting fish with a
marked tail coincides with function B(t;x, a, b) defined in Theorem 6.5.3 - a bijective proof
will be given in the next subsection.

The proof of our statement is analytical: the bivariate generating function B(t;x, 1, 1)
of fighting fish with a marked tail and the bivariate generating function Fbt(t, x) := t ·Ptt of
bicoloured ordered trees satisfy the same functional equation. Indeed, by Proposition 6.6.2
and 6.6.3 the generating function Fbt ≡ Fbt(t, x) satisfy

Fbt = t ·
(

1 + Fbt + x · F 2
bt

1− Fbt

)2

= t ·
(

1 + x · F 2
bt

1− F 2
bt

)2

· (1 + Fbt)
2,

which is exactly Equation (6.23) by substitution a = b = 1.

As previously noticed, bicoloured ordered trees without cherries are counted by Cata-
lan numbers (sequence A000108 [132]) as well as fighting fish with a unique marked tail.
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(a) (b)

Figure 6.14: (a) All the bicoloured ordered trees with 5 nodes and 2 cherries; (b) all the
fighting fish with a marked tail of size 6 having 3 tails.

Proposition 6.6.4 calls for a direct bijection between these two families - see Figure 6.14 -
that despite the proved equidistribution still appears unclear.

A further remarkable result is stated in the following proposition, that unfortunately
misses an interpretation on fighting fish with a marked tail. This fact makes even more
intriguing finding a direct bijection between fighting fish and bicoloured ordered trees.

Proposition 6.6.5. Bicoloured ordered trees can be generated by the following succession
rule

Ωtrees =


(2)

(h) (3), (4), . . . , (h+ 2).

Proof. In order to describe a possible growth according to Ωtrees, we define the rightmost
path of a bicoloured ordered tree as the branch that starts from the root and, by choosing
the rightmost child among all the children of each node it meets, stops when it reaches a
leaf.

Note that by removing the last edge of the rightmost path, whichever colour it has, we
obtain a unique bicoloured ordered tree.

We perform edge additions to the nodes of the rightmost path of a bicoloured ordered
tree as follows: if the node is a leaf or it has only gray edges as children, both a gray and
a black edge can be added as a new child, otherwise only a black edge can be added. For
brevity, a leaf or a node without black children is said to have power 2, while a node with
at least a black child to have power 1.

We assign to a bicoloured ordered tree a label (h) given by summing the powers of
all the nodes in its rightmost path. The one-node tree has only one leaf in the rightmost
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path, so it has label (2). Assume τ is a bicoloured ordered tree with label (h) and such
that its root has no black children. Then, by adding a new black edge to the root of τ
a bicoloured ordered tree with label (3) is generated, whereas by adding a new gray edge
to its root we generate a bicoloured ordered tree with label (4). Going on visiting all the
nodes of the rightmost path and adding edges we generate bicoloured ordered trees with
labels (5), . . . , (h+ 1), (h+ 2). In particular, the label (h+ 1) (resp. (h+ 2) ) is assigned to
that bicoloured ordered tree obtained by adding a black (resp. gray) edge as first child of
the last node visited - which is a leaf of τ . A similar reasoning can be repeated supposing
the root of τ has at least one black child completing the proof.

6.6.2 A bijective proof of P> = P (U)

In Section 6.5.4, it has analytically been proved that P> = P (U) = B, where

B = t

(
1 + x · abB2

1− abB2

)
(1 + aB)(1 + bB).

Although we are not able to combinatorially describe the validity of the above formula
for P>, we can give a combinatorial explanation of P> = P (U) by providing a bijection
between fighting fish with a marked tail and objects counted by P (U).

To this purpose, we need a combinatorial interpretation of the power series U , which
has been defined in the proof of Theorem 6.5.3. Returning to Equation (6.22) and differ-
entiating it with respect to t, yields

xabuP (u)

(
P (u)− P1 −

t∂

∂t
P1

)
+ u(u− 1)(1 + bP (u))(1 + aP (u)) =

− ∂

∂t
P (u) · (u− 1− tu(u− 1)(a+ b+ 2abP (u))− txabu(2P (u)− P1)) .

By definition of the power series U , the right-hand side of this equation annihilates, if
u = U . Then, by setting u = U the left-hand side must vanish and, after manipulating it,
it results

xabP (U)
t∂

∂t
P1 + U(1 + aP (U))(1 + bP (U))(1− U) = 0.

Now, eliminating P (U) from the above expression by means of Equation (6.28), yields

U ·
(

1− txabt∂
∂t
P1

)
= 1. (6.38)

The derivative of P1 with respect to t can be combinatorially interpreted, as t is the variable
counting the fish size minus one. Then, the function t∂P1/∂t is the generating function
of fighting fish having a mark on their boundary: we choose to mark the end point of a
free upper edge travelling the boundary counterclockwise, apart from the upper edge of
the fish head - see Figure 6.15. It is well worth noticing that fighting fish with a marked
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tail are not contained in this family, whereas those with a marked branching point form a
subfamily in it (Figure 6.12). Hence,

t∂

∂t
P1 = P< + P−,

where by difference P− is the generating function of fighting fish with a marked flat point
(i.e. a point of a free upper edge that is neither a branching point, nor the tip of the head
or of the tails) - see Figure 6.15(b)(c).

(a) (b) (c)

Figure 6.15: (a) An unauthorised marking for a fighting fish; (b)-(c) possible markings for
the same fighting fish.

Then, according to (6.38), the series U satisfies

U =
1

1− txab (P< + P−)
.

In terms of fighting fish with a marked point, U ≡ U(t;x, a, b) is the generating function
counting sequences of fighting fish having a flat or a branching point marked, where the
variables t, x, a, b exactly mark their size, number of tails, left and right size, respectively.

We are now able to describe combinatorially objects counted by P (U) and establish a
bijection with those counted by P>.

Proposition 6.6.6. There is a bijection between

1. fighting fish with a marked tail having left size j + 1, and right size i+ 1, and h+ 1
tails,

2. and pairs (P, S) where P is a fighting fish with fin length k + 1 and S is a k-tuple
(U1, . . . , Uk) of sequences Ui = (Vi,1, . . . , Vi,ji) of fighting fish having a flat point or
a branching point marked, such that the total number of free left lower edges (resp.
right lower edges, tails) of P and S is j + 1 (resp. i+ 1, h+ 1).

Proof. Let (P, S) be a pair as described in 2 . (see Figure 6.16(a),(b)). Starting from
the head and travelling along the boundary of P counterclockwise, mark the first tail
encountered. Then, slice P along the vertical segments starting at the end of each free
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lower edge of its fin and stopping at the first free upper edge incident the vertical segment.
There are k of these vertical cuts, which are numbered left-to-right and each one has its
own height hi, with i = 1, . . . , k, given by the number of vertical edges chopped.

Now, consider S and, in particular, the fighting fish Vi,1, for some i. Cut the boundary
of Vi,1 first at its marked point and then, on the tip of its head. Inflate it vertically by
adding auxiliary left and right scales so as to reach the height hi in both cut-points -see
Figure 6.16(c). Glue the inflated fighting fish to the right border of the ith vertical cut of
P matching its height and, repeat this proceeding for all fighting fish Vi,j, where 1 < j ≤ ji.
We precise that not only is the last fighting fish of the sequence Vi,ji glued to the inflated
fish Vi,ji−1 on the right, but also to the left border of the ith vertical cut of P on the left -
see Figure 6.17. The fact that the marked point of each Vi,j is a flat point or a branching
point ensures that the inflated fish forms a branching point with the boundary of P once
they are glued together.

Then, for all i, sequences Ui are inserted into P producing a fighting fish with a marked
tail and left (resp. right) size j + 1 (resp. i+ 1).

(c)(a) (b)

,

fin

O7 =U

=

=

532 U ==U=1U U =

,U4

U6

Figure 6.16: (a) A fighting fish P of fin length 8, whose vertical cuts have heights left-
to-right 1, 2, 3, 2, 1, 1, 1; (b) a sequence S = (U1, U2, U3, U4, U5, U6, U7); (c) fighting fish
V4,1, V4,2, V6,1 inflated according to h4 = 2 and h6 = 1.

Figure 6.17: The fighting fish with a marked tail coming from P of Figure 6.16(a) and
sequence S of Figure 6.16(b).
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Conversely, let M be a fighting fish with a marked tail. We choose to decompose M
both by travelling along its boundary and its spine: by definition of fighting fish, there
exists a sequence of connected left/right scales that links the marked tail of M to its head
and we call it spine.

Then, starting from the marked tail of M , after removing its mark, travel the boundary
clockwise and cut M in slices as follows:

1. name xi the end point of the free lower edge encountered clockwise by travelling
step-by-step the boundary of M . Note that at the beginning x1 is the end point of
the free lower edge of the tail;

2. if xi is not a branching point (namely it is followed by a free lower edge), step forward
and go back to point 1., setting i := i+ 1;

3. if xi is a branching point, then let hi be the height of the vertical cut Ci starting
from xi. Now, set j := 1 and travel the spine of M as follows:

(a) check right-to-left the heights of the vertical segments on the left of Ci - note
that at least one must have height hi;

(b) let Dj be the rightmost vertical segment that returns to value hi and x̄j its
starting point. We remove all the part of M included between Dj and Ci and
deflate it by hi. The ending point of Dj and x̄j joint give rise to the head of a
fighting fish Ei,j that carries a mark in place of Ci. Note that Ei,j is marked at
the end of a free upper edge because of xi being a branching point;

(c) consider the point x̄j of M . If it is a branching point of M , then resume at point
3.(a) and set j := j+ 1. Otherwise, the factor (Ei,1, . . . , Ei,j) is completed, thus
step forward and go back to point 1., setting i := i+ 1;

4. if xi is the tip of the head, then stop. The fighting fish remaining has fin length
s := i. Call it P and Ui := (Es−i,1, . . . , Es−i,js−i

), for any 1 ≤ i < s.

Then, the pair (P, S), where S is (U1, . . . , Us−1), is as described in 2 . - see Figure 6.18.
The proof that the above constructions are inverse one another is not hard to verify.

6.6.3 Fighting fish and left ternary tree: the fin/core relation
and a refined conjecture

In this subsection we try to give an explanation of the relation existing between fighting
fish and left ternary trees - both families are counted by sequence A000139 [132].

Any ternary tree (see Definition 6.6.1) can be naturally embedded in the plane in a
deterministic way: the root has abscissa j and the left (resp. middle, right) child of a node
in abscissa i ∈ Z takes abscissa i − 1 (resp, i, i + 1) - see Figure 6.19(a). A j-positive
tree is defined as a ternary tree whose nodes all have nonnegative abscissa; 0-positive trees
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Figure 6.18: Decomposition of a sketched fighting fish with a marked tail into a fighting
fish P and sequences of fighting fish marked in a flat or a branching point.

were first introduced in the literature with the name of left ternary trees [59, 93] and in
order to be coherent with their notation we choose to orient the x-axis toward the left -
see Figure 6.19(b).

It is known that left ternary trees with i nodes at even abscissas and j nodes at odd
abscissas are enumerated by the explicit formula (6.31) of Theorem 6.5.4 on page 207
(see [59, 93]), which is the formula counting fighting fish according to their left and right
size.

It turns out that this equidistribution can be refined further upon considering a new
parameter on ternary trees: the core size. Let the core of a ternary tree be the largest
subtree including its root and consisting only of its left and middle edges. The size of
the core is given by the number of nodes belonging to the core. Equivalently, the core
of a ternary tree can be obtained by removing all its right edges and their corresponding
subtrees - see Figure 6.19(c).
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j

(a) (b) (c)

0 0

Figure 6.19: (a) A ternary tree embedded in the plane - at point (j + 1, 4) there are two
nodes; (b) a 0-positive tree, or a left ternary tree; (c) the core of the left ternary tree
depicted in (b).

Therefore, the relevant parameters we take into account in a left ternary tree are:

• number of nodes (i.e. size),

• number of nodes belonging to its core (i.e. core size),

• number of right branches (i.e. maximal sequences of right edges),

• number of non-root nodes in an even (resp. odd) abscissa.

All these parameters appear to share their distribution with those found on fighting fish.

Conjecture 6.6.7. The number of fighting fish with size n + 1, fin length k + 1, having
h+ 1 tails, of right size i+ 1 and left size j + 1 is equal to the number of left ternary trees
with n nodes, core size k, having h right branches, with i non-root nodes in even abscissa
and j nodes in odd abscissa.

This conjecture naturally calls for a bijective proof, however we have not been able to
provide such a proof yet - see Figure 6.20. Instead, we are able to prove a weaker version
of Conjecture 6.6.7 that involves the distribution of the core size and of the fin length: the
number of left ternary trees of size n and core size k and the number of fighting fish of size
n+ 1 and fin length k + 1 coincide.

Theorem 6.6.8. The number of fighting fish with size n+ 1 and fin length k + 1 is equal
to the number of left ternary trees with n nodes, k of which are accessible from the root
using only left and middle edges.

The proof of the above theorem, which is postponed at the end of the next subsection, is
analytical and follows from checking that the generating function of left ternary trees with
respect to their size and their core size coincides with the generating function of fighting
fish with respect to their size and their fin length up to a constant term given by the empty
tree.

Enumerating left ternary trees had been a hard problem tackled in [59, 93, 105]. Let
Fj ≡ Fj(t;x, a, b, u) denote the generating function of ternary trees such that, when the
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(a) (b)

Figure 6.20: (a) All left ternary trees of size 4 and core size 3; (c) all fighting fish of size 5
and fin length 4.

root is embedded at abscissa j, all nodes have non negative abscissa, where t marks the
number of nodes, x the number of right branches, a (resp. b) the number of non-root
nodes in an even (resp. odd) abscissa, and u the core size. The generating function of
left ternary trees F0(t; 1, a, b, 1) was first computed bijectively in [59, 93], and the more
general generating function Tj ≡ Fj(t; 1, 1, 1, 1) was computed by M. Kuba [105] following
the educated guess and check approach by P. Di Francesco [68], as the following subsection
illustrates.

Remark 6.6.9. Although we proved the weaker version of Conjecture 6.6.7 in Theo-
rem 6.6.8, we do not have this result combinatorially explained. The only combinatorial
interpretation we have for formulas of the next subsection is in terms of ternary trees.

In fact, in the next subsection we will make use of a function D(u) ≡ D(t;x, a, b, u),
which is defined as the unique power series solution of

D(u) = tu

(
1 + aD(u) + xaD(u)

bB(1 + aB)

1− abB2

)(
1 + bD(u) + xbD(u)

aB(1 + bB)

1− abB2

)
,

where B = D(1). Although D(u) has not been interpreted in terms of fighting fish, apart
from the case D(1) = B (see Section 6.6.2), it results that D(u)/tu is the generating
function of pairs of ternary trees with respect to the announced parameters. More precisely,
D(u)/tu is the generating function of pairs of ternary trees, where t marks the number of
nodes, x the number of right branches, a (resp. b) the number of nodes in an even (resp.
odd) abscissa, and u the core size, assuming that for any pair the ternary tree the one
on the left (resp. right) has root in an even (resp. odd) abscissa. Then, following the
decomposition in Proposition 6.6.2, each factor corresponding to one ternary tree of the
pair comprises the contribution 1 of the empty ternary tree and the contributions given
by a non-empty ternary tree. A non-empty ternary tree whose root has no right edges
gives contribution aD(u) (resp. bD(u)) if it is the tree on the left (resp. right) of the
pair. Whereas, a non-empty ternary tree whose root has a right branch gives contribution
xaD(u)(bB+abB2)/(1−abB2) (resp. xbD(u)(aB+abB2)/(1−abB2)), where we distinguish
the two cases in which the sequence of right edges ends in an even or odd abscissa.
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6.6.4 Analytic proof of the fin/core relation: Theorem 6.6.8

Let B1 ≡ B(t, 1, 1, 1) be the specialisation of the unique power series solution of Equa-
tion (6.23) for x = a = b = 1, so that

B1 =
t

(1−B1)2
.

Let furthermore T ≡ T (t) = 1/(1− B1) and X ≡ X(t) be the unique formal power series
solution of the equation

X = (1 +X +X2)B1.

The series T satisfies T = 1 + tT 3, thus there is no abuse of notation since it is the size
generating function of ternary trees.

Building on P. Di Francesco’s educated guess and check approach [68], M. Kuba ob-
tained a formula for the generating functions of j-positive trees:

Theorem 6.6.10 ([68, 105]). The generating functions Tj ≡ Tj(t) of j-positive trees with
respect to the number of nodes is given for all j ≥ 0 by the explicit expression:

Tj = T
(1−Xj+5)(1−Xj+2)

(1−Xj+4)(1−Xj+3)
.

Now, the generating function of ternary trees is easily refined to take into account the
number of nodes in the core. Let

J(u) = 1 +D1(u)T and D1(u) = tuJ(u)2,

where J(1) = T and J(u) is the generating function of ternary trees according to the
size and the number of nodes in the core. One could compare the definition of the series
D1(u) to the specialisation for x = a = b = 1 of the generating function D(u) defined in
Remark 6.6.9 and notice that D1(u) ≡ D(t, 1, 1, 1, u).

Furthermore, the full generating function of fighting fish P (u) ≡ P (t, x, a, b;u) yields
the following striking parametrisation.

Corollary 6.6.11. Let D(u) ≡ D(t;x, a, b, u) be the unique power series solution of equa-
tion

D(u) = tu

(
1 + aD(u) + xaD(u)

bB(1 + aB)

1− abB2

)(
1 + bD(u) + xbD(u)

aB(1 + bB)

1− abB2

)
(6.39)

so that D(1) = B, as defined in Theorem 6.5.3, then

P (u) = D(u)− xabD(u)2B
(1 + aB)(1 + bB)(1− abB2 + xabB2)

(1− abB2)2(1− abD(u)B + xabD(u)B)
.
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Proof. From Theorem 6.5.3 the generating function P (u) is algebraic of degree at most
2 over Q(x, a, b, u, B). The above parametrisation can be obtained extending the one of
Theorem 6.5.3.

As revealed in advance in Remark 6.6.9, the function D(u) has not been interpreted
combinatorially on fighting fish, except for D(1) = B = P> in Section 6.6.2.

Then, the generating function of fighting fish according to the size and the fin length,
given by Corollary 6.6.11, can be written as

P (t, 1, 1, 1, u) = D1(u)−D1(u)2 B1

(1−B1)2
= D1(u)−D1(u)2B1T

2

= (J(u)− 1)(1−B1)− (J(u)− 1)2B1

= J(u)(1 +B1)− J(u)2B1 − 1. (6.40)

By refining Theorem 6.6.10, we can prove a formula for the generating function of j-positive
trees with respect to the number of nodes and the core size, which involves the function
J(u). Hence, by comparing Equation (6.40) and the expression obtained for 0-positive trees
(i.e. left ternary trees) we are able to prove the equidistribution stated in Theorem 6.6.8.

Theorem 6.6.12. The generating functions Jj(u) ≡ Jj(t, u) of j-positive trees with respect
to the number of nodes and size of the core is given for j ≥ −1 by

Jj(u) = J(u)
Hj(u)

Hj−1(u)

1−Xj+2

1−Xj+3
(6.41)

where for all j ≥ −2,

Hj(u) = (1−Xj+1)XJ(u)− (1 +X)(1−Xj+2).

Proof. In order to prove the theorem it is sufficient to show that the series given by the
right-hand side of Equation (6.41) satisfies for all j ≥ −1 the equation

Jj(u) = 1 + tuJj+1(u)Jj(u)Tj−1 (6.42)

where Tj is given by Theorem 6.6.10, with the convention that T−2 = 0. Indeed, the system
of Equations (6.42) clearly admits the generating function of j-positive ternary trees as its
unique power series solution. The case j = −1 is immediate, since

J−1(u) = J(u)
H−1(u)

H−2(u)

1−X
1−X2

= 1,

where by definition, H−1 = −(1 +X)(1−X) and H−2(u) = (X − 1)J(u). Let now j ≥ 0,
then the right-hand side of Equation (6.42) reads

1+tu

(
J(u)

Hj+1(u)

Hj(u)

1−Xj+3

1−Xj+4

)(
J(u)

Hj(u)

Hj−1(u)

1−Xj+2

1−Xj+3

)
T

1−Xj+4

1−Xj+3

1−Xj+1

1−Xj+2

=
Hj−1(u)(1−Xj+3) + (J(u)− 1)Hj+1(u)(1−Xj+1)

Hj−1(u)(1−Xj+3)
(6.43)
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and we want to show that this expression is equal to the right-hand side of Equation (6.41),
which has the same denominator as (6.43). Then, expanding the numerator of Equa-
tion (6.43), the following terms are obtained

Hj−1(u)(1−Xj+3) = (1−Xj+3)(1−Xj)XJ(u)− (1 + X)(1−Xj+1)(1−Xj+3),

−Hj+1(u)(1−Xj+1) = −(1−Xj+1)(1−Xj+2)XJ(u) + (1 + X)(1−Xj+3)(1−Xj+1),

J(u)Hj+1(u)(1−Xj+1) = (1−Xj+1)(1−Xj+2)XJ(u)2 − (1 + X)(1−Xj+3)(1−Xj+1)J(u),

while the numerator of Equation (6.41) reads as

J(u)Hj(u)(1−Xj+2) = (1−Xj+2)(1−Xj+1)XJ(u)2 − (1 +X)(1−Xj+2)2J(u).

The coefficients of J(u)2 and J(u)0 in the numerators of (6.43) and of (6.41) are clearly
matching. Upon expanding all contributions to the coefficient of J(u) in these numerators
in powers of X, the various terms are seen to match as well completing the proof.

Theorem 6.6.12, together with Corollary 6.6.11 as rewritten in Equation (6.40), directly
implies Theorem 6.6.8.

Proof of Theorem 6.6.8. We want to show that the generating function J0(u) of left ternary
trees according to the size and the number of nodes in the core is equal to the generating
function P (t, 1, 1, 1, u) of fighting fish according to the size and the fin length up to a
constant term

J0(u) = 1 + P (t, 1, 1, 1, u).

From Theorem 6.6.12,

J0(u) = J(u)
H0(u)

H−1(u)

1−X2

1−X3
,

and by definition H−1 = −(1 +X)(1−X) and H0(u) = (1−X)XJ(u)− (1 +X)(1−X2),
so that

J0(u) = J(u)
XJ(u)− (1 +X)2

−(1 +X +X2)
= −J(u)2B1 + J(u)(1 +B1),

which coincides with Equation (6.40) up to a constant term given by the empty left ternary
tree.
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Appendix A

Semi-Baxter permutations

A.1 Generating function of semi-Baxter permutations

The semi-Baxter functional equation and its kernel form:

> Eq:= -S(y,z) + x*y*z + x*y*z*(S(1,z)-S(y,z))/ (1-y) + x*y*z*(S(y,z) -

S(y,y))/ (z-y);

> Ker:=-(coeff(collect(%,S(y,z)),S(y,z)));

> EqK:=Ker*S(y,z)=x*z*y+x*z*y*S(1,z)/(1-y)-x*z*y*S(y,y)/(z-y);

Eq := −S (y, z) + xyz +
xyz (S (1, z)− S (y, z))

1− y
+
xyz (S (y, z)− S (y, y))

z − y

Ker :=
xyz

1− y
+ 1− xyz

z − y

EqK :=

(
xyz

1− y
+ 1− xyz

z − y

)
S (y, z) = −xyzS (y, y)

z − y
+ xyz +

xyzS (1, z)

1− y

Substitution y = 1 + a:

> Kera:=subs(y=1+a,Ker);

> EqA:=subs(y=1+a,EqK);

> Ker1:=collect(subs(a=A,Kera),x,factor):

> Ker2:=collect(subs(z=Z,Kera),x,factor):

Kera := −x (1 + a) z

a
+ 1− x (1 + a) z

z − 1− a

EqA :=

(
−x (1 + a) z

a
+ 1− x (1 + a) z

z − 1− a

)
S (1 + a, z) =

−x (1 + a) zS (1 + a, 1 + a)

z − 1− a
+ x (1 + a) z − x (1 + a) zS (1, z)

a
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Kernel symmetry transformations generate a group of order 10:

> solve(Ker1/Kera=1,A);

> solve(Ker2/Kera=1,Z);

a, −−z + 1 + a

1 + a

z, −−a+ az + z − 1

−z + 1 + a

> [a,z];
> factor([(%[2]-1-%[1])/(1+%[1]),%[2]]);
> factor([%[1],(1+%[1]-%[2]-%[1]*%[2])/(1+%[1]-%[2])]);
> factor([(%[2]-1-%[1])/(1+%[1]),%[2]]);
> factor([%[1],(1+%[1]-%[2]-%[1]*%[2])/(1+%[1]-%[2])]);
> factor([(%[2]-1-%[1])/(1+%[1]),%[2]]);
> factor([%[1],(1+%[1]-%[2]-%[1]*%[2])/(1+%[1]-%[2])]);
> factor([(%[2]-1-%[1])/(1+%[1]),%[2]]);
> factor([%[1],(1+%[1]-%[2]-%[1]*%[2])/(1+%[1]-%[2])]);
> factor([(%[2]-1-%[1])/(1+%[1]),%[2]]);
> factor([%[1],(1+%[1]-%[2]-%[1]*%[2])/(1+%[1]-%[2])]);

[a, z][
−−z + 1 + a

1 + a
, z

]
[
−−z + 1 + a

1 + a
,
z − 1

a

]
[
−−z + 1 + a

az
,
z − 1

a

]
[
−−z + 1 + a

az
,
1 + a

a

]
[
(z − 1)−1 ,

1 + a

a

]
[
(z − 1)−1 ,− z

−z + 1 + a

]
[
− a

−z + 1 + a
,− z

−z + 1 + a

]
[
− a

−z + 1 + a
,−(z − 1) (1 + a)

−z + 1 + a

]
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[
a,−(z − 1) (1 + a)

−z + 1 + a

]
[a, z]

Kernel root Z+:

> collect(Kera,x,factor);

> [solve(Kera=0,z)]:

> factor(series(%[2],x,10)) assuming a>0;

> sol:=%%[2];

1 +
z (z − 1) (1 + a)x

a (−z + 1 + a)

1 + a+ (1 + a)2 x+
(1 + a)3 (2 a+ 1)

a
x2 +

(5 a2 + 5 a+ 1) (1 + a)4

a2
x3

+
(7 a2 + 7 a+ 1) (1 + a)5 (2 a+ 1)

a3
x4 +

(42 a4 + 84 a3 + 56 a2 + 14 a+ 1) (1 + a)6

a4
x5

+
(66 a4 + 132 a3 + 84 a2 + 18 a+ 1) (1 + a)7 (2 a+ 1)

a5
x6

+
(429 a6 + 1287 a5 + 1485 a4 + 825 a3 + 225 a2 + 27 a+ 1) (1 + a)8

a6
x7

+
(715 a6 + 2145 a5 + 2431 a4 + 1287 a3 + 319 a2 + 33 a+ 1) (1 + a)9 (2 a+ 1)

a7
x8 +O

(
x9
)

sol := −1

2

−a− x− ax+
√
a2 − 2 ax− 6 a2x+ x2 + 2 ax2 + a2x2 − 4 a3x

x (1 + a)

Check that all the substitutions are well-defined power series in x if z = Z+:

> factor(series(subs(z=sol,-(-z+1+a)/(1+a)),x,6)) assuming a>0;

> factor(series(subs(z=sol,(z-1)/a),x,6)) assuming a>0;

> factor(series(subs(z=sol,-(-z+1+a)/(1+a)),x,6)) assuming a>0;

x (1 + a) +
(1 + a)2 (2 a+ 1)x2

a
+

(5 a2 + 5 a+ 1) (1 + a)3 x3

a2

+
(7 a2 + 7 a+ 1) (1 + a)4 (2 a+ 1)x4

a3
+O

(
x5
)

1 +
(1 + a)2 x

a
+

(1 + a)3 (2 a+ 1)x2

a2
+

(5 a2 + 5 a+ 1) (1 + a)4 x3

a3

+
(7 a2 + 7 a+ 1) (1 + a)5 (2 a+ 1)x4

a4
+O

(
x5
)
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x (1 + a) +
(1 + a)2 (2 a+ 1)x2

a
+

(5 a2 + 5 a+ 1) (1 + a)3 x3

a2

+
(7 a2 + 7 a+ 1) (1 + a)4 (2 a+ 1)x4

a3
+O

(
x5
)

System of 5 equations and 6 overlapping unknowns that results in a unique equation Eq8
(Equation (3.5)):

> EqA:

> Eq1:= collect(rhs(EqA),S,factor);

> Eq2:= collect(subs({a=-(-z+1+a)/(1+a)}, Eq1), S, factor);

> Eq3:= collect(subs({a=-(-z+1+a)/(1+a), z=(z-1)/a}, Eq1), S, factor);

> Eq4:= collect(subs({a=-(-z+1+a)/(a*z), z=(z-1)/a}, Eq1), S, factor);

> Eq5:= collect(subs({a=-(-z+1+a)/(a*z), z=(1+a)/a}, Eq1), S, factor);

> collect(Eq1-B*Eq2-C*Eq3-D*Eq4-E*Eq5, S, factor):

> {coeff( %, S(1,z) ),coeff( %, S(1-(-z+1+a)/(1+a),1-(-z+1+a)/(1+a)) ),

coeff(%, S(1,(z-1)/a) ), coeff( %, S(1-(-z+1+a)/(a*z),1-(-z+1+a)/(a*z)) )}:
> subs(solve(%, {B, C, D, E}), %%):

> Eq6:= collect(%, S, factor);

> Eq7:= collect(%*(-z+1+a)/((1+a)*z*x), S, factor);

> coeff(%, S(1, (1+a)/a)):

> factor(expand(radsimp(subs(z =sol, %), ratdenom)));

> Eq8:= collect(%*S(1,(1+a)/a)+S(1+a,1+a)+Eq7-(coeff(Eq7,S(1,(1+a)/a)) *

S(1, (1+a)/a)), S, factor);

> P:=Eq8-S(1+a,1+a)-coeff(Eq8,S(1, (1+a)/a))*S(1, (1+a)/a);

Eq1 := −x (1 + a) zS (1, z)

a
+
x (1 + a) zS (1 + a, 1 + a)

−z + 1 + a
+ x (1 + a) z

Eq2 :=
z2xS (1, z)

−z + 1 + a
− zxS

(
1− −z + 1 + a

1 + a
, 1− −z + 1 + a

1 + a

)
a−1 +

z2x

1 + a

Eq3 :=
zx (z − 1)

a (−z + 1 + a)
S

(
1,
z − 1

a

)
+

zx (z − 1)

(−z + 1 + a)
S

(
1− −z + 1 + a

1 + a
, 1− −z + 1 + a

1 + a

)
+
zx (z − 1)

(1 + a) a

Eq4 :=
(z − 1)2 (1 + a)x

a (−z + 1 + a)
S

(
1,
z − 1

a

)
+
x (z − 1) (1 + a)

a (−z + 1 + a)
S

(
1− −z + 1 + a

az
, 1− −z + 1 + a

az

)
+

(z − 1)2 (1 + a)x

za2
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Eq5 :=
(1 + a)2 (z − 1)x

a (−z + 1 + a)
S

(
1,

1 + a

a

)
− x (z − 1) (1 + a)

a
S

(
1− −z + 1 + a

az
, 1− −z + 1 + a

az

)
+

(1 + a)2 (z − 1)x

za2

Eq6 := −(1 + a)2 x

a3 (z − 1)
S

(
1,

1 + a

a

)
+
x (1 + a) z

−z + 1 + a
S (1 + a, 1 + a) +

1

(z − 1) a4

(
x (1 + a) (−za4

+z2a4 − a3z + z2a3 − 2 a2 − z3a2 + z2a2 + za2 − 4 a+ 5 az − 3 az2 + z3a− z2 + 3 z − 2)
)

Eq7 := −(−z + 1 + a) (1 + a)

za3 (z − 1)
S

(
1,

1 + a

a

)
+ S (1 + a, 1 + a) +

(−z + 1 + a)

z (z − 1) a4

(
−za4

+z2a4 − a3z + z2a3 − 2 a2 − z3a2 + z2a2 + za2 − 4 a+ 5 az − 3 az2 + z3a− z2 + 3 z − 2
)

(1 + a)2 x

a4

Eq8 :=
(1 + a)2 x

a4
S

(
1,

1 + a

a

)
+ S (1 + a, 1 + a) +

(−z + 1 + a)

z (z − 1) a4

(
−za4 + z2a4 − a3z

+z2a3 − 2 a2 − z3a2 + z2a2 + za2 − 4 a+ 5 az − 3 az2 + z3a− z2 + 3 z − 2
)

P :=
1

z (z − 1) a4

(
(−z + 1 + a)

(
−za4 + z2a4 − a3z + z2a3 − 2 a2 − z3a2 + z2a2

+za2 − 4 a+ 5 az − 3 az2 + z3a− z2 + 3 z − 2
))

Substitution z = Z+:

> subs(z = sol, -P):

> factor(series(%, x, 8)) assuming a > 0;

> map(coeff, %, a, 0);

(1 + a)2 x+
(2 a5 + 1) (1 + a)3

a5 x2
+

(5 a6 + a5 − a4 + a3 − a2 + a+ 1) (1 + a)4

a6 x3

+
(14 a7 + 7 a6 − 5 a5 + 3 a4 − a3 − a2 + 3 a+ 1) (1 + a)5

a7 x4
+O

(
x5
)

x+ 2x2 + 6x3 + 23x4 +O
(
x5
)

Further substitution to apply Lagrange inversion:

> collect(subs(z=W+1+a,Kera),x,factor);

> factor(subs(z=W+1+a,-P));
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> collect(%/W*(W+1+a)*(1+a)*(W+a)*x/a,{x,W},expand);
> factor(subs(W = sol-1-a,%)):

> factor(series(%, x, 20)) assuming a > 0:

> map(coeff, %, a, 0);

1− (W + 1 + a) (1 + a) (W + a) x

aW

−W (−a5 − a6 +W 2 − a4W 2 − 2 a5W + 2 a3W 2 + a2W 3 − a2W 2 − aW 3 −W )

(W + 1 + a) (W + a) a4

(
− 1

a2
+

1

a4

)
xW 3 +

(
1

a3
− 1

a2
− 1

a
+ 1− 1

a5
− 1

a4

)
xW 2 +

(
2 + 2a+

1

a5
+

1

a4

)
xW

+(1 + 2a+ a2)x

x+ 2x2 + 6x3 + 23x4 + 104x5 + 530x6 + 2958x7 + 17734x8 + 112657x9 + 750726x10+

5207910x11 + 37387881x12 + 276467208x13 + 2097763554x14 + 16282567502x15 +O (x16)

A.2 Formulas for semi-Baxter numbers

Applying Langrange inversion formula:

> (2*binomial(n+j,j)+2*binomial(n+j,j-1)+binomial(n+j,j+4)+binomial(n+j,

j+5)) * binomial(n-1,j+1) + ( -binomial(n+2+j,j+2)+binomial(n+2+j,j+4)) * 3

* binomial(n-1,j+3) + (binomial(n+1+j,j)-binomial(n+1+j,j+1)-binomial(n+1+j,

j+2) + binomial(n+1+j,j+3) - binomial(n+1+j,j+4) - binomial(n+1+j,j+5)) * 2

* binomial(n-1,j+2):

> simplify(%):

> factor(expand(%)):

> %/(n-1)*binomial(n-1,j);

> F:= unapply(%,n,j):

(−n+ 1 + j) (−n+ j) (n+ 1 + j)

n (j + 1)2 (n+ 1) (j + 4) (j + 3)2 (j + 2)2 (j + 5) (n− 1)

(
n

j

)(
n+ j

j

)(
n− 1

j

)
(−720

+792n− 1524 j − j6 + n6j + j6n− 113n4j + 2n3j4 − 2n5j2 − 15n5j + 311n2j3

+965n2j2 − 2n4j3 + 16n3j3 + 9n3j + 1456n2j − 30n4j2 + 38n3j2 + 1710 jn

+1481 j2n+ 160 j4n+ 660 j3n+ 20 j5n+ 3 j5n2 + 49 j4n2 − 135n4 − 45n3

−147 j4 − 27n5 − 593 j3 − 19 j5 + 9n6 − 1316 j2 + 846n2
)
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> sb := n-> add(F(n,j),j=0..n-1);
> seq(sb(k),k=2..30);

2, 6, 23, 104, 530, 2958, 17734, 112657, 750726, 5207910, 37387881, 276467208,

2097763554, 16282567502, 128951419810, 1039752642231, 8520041699078, 70840843420234,
596860116487097, 5089815866230374, 43886435477701502, 382269003235832006,
3361054683237796748, 29808870409714471629, 266506375018970260798,
2400594944788679086246, 21775140746921451807813, 198809340676892441106504,
1826282268703405468306242

Applying the method of creative telescoping:

> with(SumTools[Hypergeometric]):

> Zeilberger(F(n,j),n,j,En):

> rec:= add( factor(coeff(%[1],En,k))*c(n+k),k=0..2);

> cert := factor(%[2]);

rec := − (n− 1)nc (n) +
(
−11n2 − 55n− 60

)
c (n+ 1) + (n+ 6) (5 + n) c (n+ 2)

cert :=
j (n+ 1 + j)

(j + 2)2 (j + 4) (n+ 1) (j + 1)2 (3 + n) (−n− 1 + j) (n+ 2) (−n+ j) (j + 3) (n+ 4)(
n

j

)(
n+ j

j

)(
n− 1

j

)(
−69120− 8493 j4n5 − 189504n+ 22684n7j − 214272 j + 649 j2n8

− 88n10 + 43041 j5n2 − 11638 j4n2 + 5854 j2n7 + 24 j8 − 13012n7 + 1008 j7 − 7024n8

− 1286n9 − 64 j3n7 + 33248n6 + 12096 j6 + 114491n6j + 17460 j6n+ 264656n4j

− 74382n3j4 − 3590n5j2 + 290827n5j − 610362n2j3 − 1542088n2j2 − 217328n4j3

− 532024n3j3 − 387636n3j − 1161024n2j − 307195n4j2 − 1052152n3j2

− 945552 jn− 916304 j2n+ 163194 j4n− 160440 j3n+ 90096 j5n+ j8n3 + 7014n3j5

+ 633n2j7 + 21838n6j2 − 37715n4j4 − 45610n5j3 − 11 jn10 + 28 j2n9 + 11 j3n8

− 36 j4n7 − 23 j5n6 + 9 j6n5 + 9 j7n4 + 9 j8n2 + 26 j8n− 906 j4n6 + 1344 j7n+ 2008 jn8

− 11 jn9 + 126n3j7 + 2217 j6n3 + 241 j6n4 − 282 j5n5 − 538 j5n4 + 465576n4 + 400600n3

+ 157896 j4 + 222818n5 + 9197 j6n2 + 140832 j3 + 63792 j5 − 92256 j2 + 2784n2

−4371 j3n6)

Check Equation (3.13):

> factor(expand(subs(c(n)=F(n,j),c(n+1)=F(n+1,j),c(n+2)=F(n+2,j),rec))):
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> factor(expand( subs(j=j+1,cert)-cert)):

> factor(%%-%);

0

Check sum over j:

> factor(expand(simplify( F(n+1,n+1) ))) assuming n>0;

> factor(expand(simplify( F(n,n+1) ))) assuming n>0;

> factor(expand(simplify( F(n,n) ))) assuming n>0;

> factor(expand(simplify( subs(j=0,cert) ))) assuming n>0;

> factor(expand(simplify( subs(j=n+2,cert) ))) assuming n>0;

0

0

0

0

0

Shift n→ n− 2:

> f{collect(subs(n=n-2,rec),c,factor),c(0)=0,c(1)=1};
> SB:= rectoproc(%,c(n),remember):

> seq(SB(k),k=0..20);{
(n+ 4) (3 + n) c (n)− (n− 3) (n− 2) c (n− 2) +

(
−11n2 − 11n+ 6

)
c (n− 1) ,

c (0) = 0, c (1) = 1}

0, 1, 2, 6, 23, 104, 530, 2958, 17734, 112657, 750726, 5207910, 37387881, 276467208,
2097763554, 16282567502, 128951419810, 1039752642231, 8520041699078,
70840843420234, 596860116487097

Explict expressions of Theorem 3.4.3 and Proposition 3.4.4:

> 24 / (n-1) / n^2 / (n+1) / (n+2) * binomial(n,j+2) * binomial(n+2,j) *

binomial(n+j+2,j+1);

> A:= unapply(%,n,j):

> An:= n-> add(A(n,j),j=0..n+1):

> seq(An(k),k=2..10);

> 24 / (n-1) / n^2 / (n+1) / (n+2) * binomial(n,j+2) * binomial(n+1,j) *

binomial(n+j+2,j+3);

> A2:= unapply(%,n,j):

> A2n:= n-> add(A2(n,j),j=0..n+1):

> seq(A2n(k),k=2..10);

> 24 / (n-1) / n^2 / (n+1) / (n+2) * binomial(n+1,j+3) * binomial(n+2,j+1)

* binomial(n+j+3,j);
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> A3:= unapply(%,n,j):

> A3n:= n-> add(A3(n,j),j=0..n+1):

> seq(A3n(k),k=2..10);

24

(n− 1)n2 (n+ 1) (n+ 2)

(
n

j + 2

)(
n+ 2

j

)(
n+ j + 2

j + 1

)

2, 6, 23, 104, 530, 2958, 17734, 112657, 750726

24

(n− 1)n2 (n+ 1) (n+ 2)

(
n

j + 2

)(
n+ 1

j

)(
n+ j + 2

j + 3

)

2, 6, 23, 104, 530, 2958, 17734, 112657, 750726

24

(n− 1)n2 (n+ 1) (n+ 2)

(
n+ 1

j + 3

)(
n+ 2

j + 1

)(
n+ j + 3

j

)

2, 6, 23, 104, 530, 2958, 17734, 112657, 750726

> 24 * ( (5*n^3-5*n+6)*binomial(n+1,j)^2*binomial(n+1+j,j) - ((5*n^2+
15*n+18)*binomial(n,j)^2*binomial(n+j,j))) / (5*(n-1)) / (n^2*(n+2)^2) /
((n+3)^2*(n+4));
> Ap:= unapply(%, n, j):
> Apn:= n->add(Ap(n,j),j=0..n+1):
> seq(Apn(k),k=2..10);

24

5

(5n3 − 5n+ 6)
((

n+1
j

))2 (
n+1+j

j

)
− (5n2 + 15n+ 18)

((
n
j

))2 (
n+j
j

)
(n− 1)n2 (n+ 2)2 (3 + n)2 (n+ 4)

2, 6, 23, 104, 530, 2958, 17734, 112657, 750726

> Zeilberger(F(n,j),n,j,En)[1];
> Zeilberger(Ap(n,j),n,j,En)[1];
> Zeilberger(A(n,j),n,j,En)[1];
> Zeilberger(A2(n,j),n,j,En)[1];
> Zeilberger(A3(n,j),n,j,En)[1];

En2
(
n2 + 11n+ 30

)
+
(
−11n2 − 55n− 60

)
En − n2 + n(

−n2 − 11n− 30
)

En2 +
(
11n2 + 55n+ 60

)
En + n2 − n(

−n2 − 11n− 30
)

En2 +
(
11n2 + 55n+ 60

)
En + n2 − n(

−n2 − 11n− 30
)

En2 +
(
11n2 + 55n+ 60

)
En + n2 − n
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(
−n2 − 11n− 30

)
En2 +

(
11n2 + 55n+ 60

)
En + n2 − n

A.3 Asymptotics of the semi-Baxter numbers
> unapply(A(n,j),j);
> Ratio:=simplify(expand(%(j)/%(j+1)));
> simplify(diff((j+2)/(n+2-j),j));
> simplify(diff((j+1)/(n-2-j),j));
> simplify(diff((j+3)/(n+j+3),j));

j 7→ 24

(n− 1)n2 (n+ 1) (n+ 2)

(
n

j + 2

)(
n+ 2

j

)(
n+ j + 2

j + 1

)

Ratio :=
(j + 2) (j + 1) (j + 3)

(−n− 2 + j) (−n+ j + 2) (n+ j + 3)

n+ 4

(−n− 2 + j)2

n− 1

(−n+ j + 2)2

n

(n+ j + 3)2

> solve(Ratio=1,j):
> series(%[1],n=infinity,5);(

1/2
√

5− 1/2
)
n− 3/2 + 3/10

√
5 +
−3 + 4

25

√
5

n
+

9− 162
125

√
5

n2
+O

(
n−3
)

Expansions of the logarithms involved in the proof of Lemma 3.5.5:

> log(1/(1-s/(1-phi)/(sqrt(n))-2/(1-phi)/n));
> gdev(%,n=infinity,2):
> map(simplify,%):
> map(X -> factor(expand(radsimp(X,ratdenom))), %);
> collect(simplify(convert(%,polynom)*n),n,factor);

ln

((
1− s

(1− φ)
√
n
− 2

1

(1− φ)n

)−1
)

− s√
n (−1 + φ)

− 1/2
−s2 − 4 + 4φ

(−1 + φ)2 n
+O

(
n−3/2

)
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− s
√
n

−1 + φ
− 1/2

−s2 − 4 + 4φ

(−1 + φ)2

> log((1+s/sqrt(n)/phi+2/phi/n)/(1-(s/sqrt(n)/(1-phi))-2/(1-phi)/n));
> gdev(%,n=infinity,2):
> map(simplify,%):
> map(X -> factor(expand(radsimp(X,ratdenom))), %);
> collect(simplify(convert(%,polynom)*(n*phi+s*sqrt(n)+2)),n,factor);

ln

((
1 +

s√
nφ

+ 2
1

φn

)(
1− s

(1− φ)
√
n
− 2

1

(1− φ)n

)−1
)

− s

φ (−1 + φ)
√
n
− 1/2

s2 − 4φ+ 4φ2 − 2 s2φ

φ2 (−1 + φ)2 n
+O

(
n−3/2

)
− s
√
n

−1 + φ
− 1/2

−s2 − 4φ+ 4φ2

φ (−1 + φ)2 − 1/2
s (s2 − 8φ+ 8φ2 − 2 s2φ)

φ2 (−1 + φ)2√n
− s2 − 4φ+ 4φ2 − 2 s2φ

φ2 (−1 + φ)2 n

> log((1+2/n)/(1-s/(1-phi)/(sqrt(n))+2/(1-phi)/n));
> gdev(%,n=infinity,2):
> map(simplify,%):
> map(X -> factor(expand(radsimp(X,ratdenom))), %);
> collect(simplify(convert(%,polynom)*(n+2)),n,factor);

ln

((
1 + 2n−1

)(
1− s

(1− φ)
√
n

+ 2
1

(1− φ)n

)−1
)

− s√
n (−1 + φ)

+ 1/2
s2 − 4φ+ 4φ2

(−1 + φ)2 n
+O

(
n−3/2

)
− s
√
n

−1 + φ
+ 1/2

s2 − 4φ+ 4φ2

(−1 + φ)2 − 2
s√

n (−1 + φ)
+
s2 − 4φ+ 4φ2

(−1 + φ)2 n

> log((1+s/sqrt(n)/phi)/(1-(s/sqrt(n)/(1-phi))+2/(1-phi)/n));
> gdev(%,n=infinity,2):
> map(simplify,%):
> map(X -> factor(expand(radsimp(X,ratdenom))), %);
> collect(simplify(convert(%,polynom)*(n*phi+s*sqrt(n))),n,factor);

ln

((
1 +

s√
nφ

)(
1− s

(1− φ)
√
n

+ 2
1

(1− φ)n

)−1
)

− s

φ (−1 + φ)
√
n

+ 1/2
−s2 + 2 s2φ− 4φ2 + 4φ3

φ2 (−1 + φ)2 n
+O

(
n−3/2

)
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− s
√
n

−1 + φ
+ 1/2

s2 − 4φ2 + 4φ3

φ (−1 + φ)2 + 1/2
(−s2 + 2 s2φ− 4φ2 + 4φ3) s

φ2 (−1 + φ)2√n
> log((1+s/sqrt(n)/(1+phi)+2/(1+phi)/n)/(1+(s/sqrt(n)/phi)+1/phi/n));
> gdev(%,n=infinity,2):
> map(simplify,%):
> map(X -> factor(expand(radsimp(X,ratdenom))), %);
> collect(simplify(convert(%,polynom)*(n*phi+s*sqrt(n)+1)),n,factor);

ln

((
1 +

s√
n (1 + φ)

+ 2
1

(1 + φ)n

)(
1 +

s√
nφ

+
1

φn

)−1
)

− s

(1 + φ)φ
√
n

+ 1/2
s2 + 2φ3 + 2 s2φ− 2φ

(1 + φ)2 φ2n
+O

(
n−3/2

)
− s
√
n

1 + φ
+ 1/2

−s2 + 2φ3 − 2φ

φ (1 + φ)2 + 1/2
s (s2 + 2φ3 + 2 s2φ− 4φ− 2φ2)

(1 + φ)2 φ2
√
n

+ 1/2
s2 + 2φ3 + 2 s2φ− 2φ

(1 + φ)2 φ2n

> log((1+1/n)/(1+(s/sqrt(n)/(1+phi)+2/(1+phi)/n)));
> gdev(%,n=infinity,2):
> map(simplify,%):
> map(X -> factor(expand(radsimp(X,ratdenom))), %);
> collect(simplify(convert(%,polynom)*(n+1)),n,factor);

ln

((
1 + n−1

)(
1 +

s√
n (1 + φ)

+ 2
1

(1 + φ)n

)−1
)

− s√
n (1 + φ)

+ 1/2
s2 − 2 + 2φ2

(1 + φ)2 n
+O

(
n−3/2

)
− s
√
n

1 + φ
+ 1/2

s2 − 2 + 2φ2

(1 + φ)2 − s√
n (1 + φ)

+ 1/2
s2 − 2 + 2φ2

(1 + φ)2 n

> Digits := 20:
> phi := (sqrt(5)-1)/2:
> evalf(12/Pi*5^(-1/4)*phi^(-15/2));

94.340065653208596487



Appendix B

Inversion sequences I(≥,≥,≥)

B.1 Generating function of I(≥,≥,≥)
The functional equation associated with ΩI(≥,≥,≥):

> eqA:=-A+x*y*z+x*z/(1-y)*(A1-A)+x*y*z/(z-y)*(A-Ay);

eqA := −A+ xyz +
xz (A1 − A)

1− y
+
xyz (A− Ay)

z − y
> Aser:=proc(n)
> if n=0 then x*y*z
> else normal(series(subs(A=Aser(n-1),A1=subs(y=1,Aser(n-1)),Ay=subs(z=y,
Aser(n-1)),eqA+A),x,n+1)): fi: end:

> Aser(4);

xyz + z
(
z + y2

)
x2 + z

(
y3 + y2 + 2 yz + z

)
x3 + z(y4 + 3 y3 + y2 + 3 zy2 + 3 yz

+2 z2 + 2 z )x4 +O (x5)

> ser:=subs(y=1,z=1,Aser(14));

ser := x+ 2x2 + 5x3 + 15x4 + 51x5 + 191x6 + 772x7 + 3320x8 + 15032x9

+71084x10 + 348889x11 + 1768483x12 + 9220655x13 + 49286863x14 +O (x15)

The kernel and its symmetry transformations, setting y = 1 + a:

> coeff(eqA,A);
> Ker:=(subs(y=1+a,-%));
> simplify(factor(subs(z=Z,Ker))):
> solve(Ker/%=1,Z);
> simplify(factor(subs(a=A,Ker))):
> solve(Ker/%=1,A);

−1− xz

1− y
+

xyz

z − y
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Ker := 1− xz

a
− x (1 + a) z

z − 1− a

z, −−1 + a2 − a+ a3 + z + az

−z + 1 + a

a, −−z + 1 + a

1 + a

> [a,z];
> [factor(-(1+%[1]-%[2])/(1+%[1])),%[2]];
> [%[1],factor(-(-1+%[1]^2+%[1]^3+%[2]*%[1]-%[1]+%[2])/(1+%[1]-%[2]))];
> [factor(-(1+%[1]-%[2])/(1+%[1])),%[2]];
> [%[1],factor(-(-1+%[1]^2+%[1]^3+%[2]*%[1]-%[1]+%[2])/(1+%[1]-%[2]))];
> [factor(-(1+%[1]-%[2])/(1+%[1])),%[2]];
> [%[1],factor(-(-1+%[1]^2+%[1]^3+%[2]*%[1]-%[1]+%[2])/(1+%[1]-%[2]))];
> [factor(-(1+%[1]-%[2])/(1+%[1])),%[2]];
> [%[1],factor(-(-1+%[1]^2+%[1]^3+%[2]*%[1]-%[1]+%[2])/(1+%[1]-%[2]))];
> [factor(-(1+%[1]-%[2])/(1+%[1])),%[2]];
> [%[1],factor(-(-1+%[1]^2+%[1]^3+%[2]*%[1]-%[1]+%[2])/(1+%[1]-%[2]))];
> [factor(-(1+%[1]-%[2])/(1+%[1])),%[2]];
> [%[1],factor(-(-1+%[1]^2+%[1]^3+%[2]*%[1]-%[1]+%[2])/(1+%[1]-%[2]))];

[a, z][
−−z + 1 + a

1 + a
, z

]
[
−−z + 1 + a

1 + a
,
z (a2 − 1 + z)

a (1 + a)2

]
[
−−z + 1 + a

(1 + a) a
,
z (a2 − 1 + z)

a (1 + a)2

]
[
−−z + 1 + a

(1 + a) a
,
a2 − 1 + z

a2

]
[

1

a
,
a2 − 1 + z

a2

]
[

1

a
,− z (1 + a)

a (−z + 1 + a)

]
[
− 1 + a

−z + 1 + a
,− z (1 + a)

a (−z + 1 + a)

]
[
− 1 + a

−z + 1 + a
,
z (a2 − 1 + z)

(−z + 1 + a)2

]
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[
− (1 + a) a

−z + 1 + a
,
z (a2 − 1 + z)

(−z + 1 + a)2

]
[
− (1 + a) a

−z + 1 + a
,−(a2 − 1 + z) (1 + a)

−z + 1 + a

]
[
a,−(a2 − 1 + z) (1 + a)

−z + 1 + a

]
[a, z]

The kernel root Z+:

> solve(Ker,z):
> map(factor,series(%[1],x,5) assuming a>0);
> map(factor,series(%%[2],x,5) assuming a>0);
> Sol:=%%%[2];
> series(subs(a=1,Sol),x,8);

a

x
− (1 + a) a− (1 + a)2 x− (1 + a)4 x2

a
− (a2 + 3 a+ 1) (1 + a)4 x3

a2
+O

(
x4
)

1 + a+ (1 + a)2 x+
(1 + a)4 x2

a
+

(a2 + 3 a+ 1) (1 + a)4 x3

a2
+O

(
x4
)

Sol := −1/2
−a− x+ xa2 +

√
a2 − 2xa− 2xa3 + x2 − 2x2a2 + x2a4 − 4xa2

x

2 + 4 x+ 16x2 + 80x3 + 448x4 + 2688x5 + 16896x6 +O
(
x7
)

Check which substitutions are well-defined power series in x if z = Z+:

> map(factor,series(subs( z=Sol, -(1+a-z)/(1+a)),x,5) assuming a>0);
> map(factor,series(subs( z=Sol, z*(-1+z+a^2)/((1+a)^2*a)),x,5) assuming
a>0);
> map(factor,series(subs( z=Sol, -(1+a-z)/(a*(1+a))),x,5) assuming a>0);
> map(factor,series(subs( z=Sol, (-1+z+a^2)/a^2),x,5) assuming a>0);
> map(factor,series(subs( z=Sol, -z*(1+a)/(a*(1+a-z)) ),x,5) assuming
a>0);
> map(factor,series(subs( z=Sol, -(1+a)/(1+a-z)),x,5) assuming a>0);
> map(factor,series(subs( z=Sol, z*(-1+z+a^2)/(1+a-z)^2),x,5) assuming
a>0);
> map(factor,series(subs( z=Sol, -a*(1+a)/(1+a-z)),x,5) assuming a>0);
> map(factor,series(subs( z=Sol, -(-1+z+a^2)*(1+a)/(1+a-z)),x,5) assuming
a>0);

x (1 + a) +
(1 + a)3 x2

a
+

(a2 + 3 a+ 1) (1 + a)3 x3

a2
+O

(
x4
)

1 +
(1 + a)2 x

a
+

(a2 + 3 a+ 1) (1 + a)2 x2

a2
+

(a2 + 5 a+ 1) (1 + a)4 x3

a3
+O

(
x4
)
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x (1 + a)

a
+

(1 + a)3 x2

a2
+

(a2 + 3 a+ 1) (1 + a)3 x3

a3
+O

(
x4
)

1 + a

a
+

(1 + a)2 x

a2
+

(1 + a)4 x2

a3
+

(a2 + 3 a+ 1) (1 + a)4 x3

a4
+O

(
x4
)

1

xa
− 1 + a

a2
− (1 + a)2 x

a2
+O

(
x2
)

1

x (1 + a)
− 1 + a

a
− x (1 + a)

a
+O

(
x2
)

a

(1 + a)2 x2
− x−1 − 1− (1 + a)2 x

a
+O

(
x2
)

a

x (1 + a)
− 1− a+ (−1− a)x+O

(
x2
)

a

x
− (1 + a) a− (1 + a)2 x+O

(
x2
)

System of 6 equations and 7 overlapping unknowns that results in a unique equation
Eq7 (Equation (5.5):

> eqA;
> eq1:= x*(1+a)*z + factor( subs(y=(1+a),coeff(eqA,Ay)) ) * A(1+a,1+a) +
factor( subs(y=1+a,coeff(eqA,A1)) ) * A(1,z);

−A+ xyz +
xz (A1 − A)

1− y
+
xyz (A− Ay)

z − y

eq1 := x (1 + a) z +
x (1 + a) zA (1 + a, 1 + a)

−z + 1 + a
− xzA (1, z)

a

> eq1:= collect( eq1, A, factor);
> eq2:= collect( subs(a=(z-1-a)/(1+a), eq1), A, factor);
> eq3:= collect( subs({a=(z-(1+a))/(1+a), z = z*(-1+z+a^2)/((1+a)^2*a) },
eq1), A,factor);
> eq4:= collect( subs({a=-(1+a-z)/(a*(1+a)), z=z*(-1+z+a^2)/((1+a)^2*a)},
eq1), A, factor);
> eq5:= collect( subs({a=-(1+a-z)/(a*(1+a)), z=(-1+z+a^2)/a^2}, eq1), A,
factor);
> eq6:= collect( subs({a=1/a,z=(-1+z+a^2)/a^2},eq1), A, factor);

eq1 := x (1 + a) z +
x (1 + a) zA (1 + a, 1 + a)

−z + 1 + a
− xzA (1, z)

a

eq2 :=
x (1 + a) zA (1, z)

−z + 1 + a
− xzA

(
1 +

z − 1− a
1 + a

, 1 +
z − 1− a

1 + a

)
a−1 +

xz2

1 + a
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eq3 := xz
(
a2 − 1 + z

)
A

(
1,
z (a2 − 1 + z)

a (1 + a)2

)
(−z + 1 + a)−1 a−1 (1 + a)−1 +

(
a2 − 1 + z

)
xz

A

(
1 +

z − 1− a
1 + a

, 1 +
z − 1− a

1 + a

)
(1 + a)−1 (−z + 1 + a)−1 +

(a2 − 1 + z)xz2

(1 + a)3 a

eq4 := xz
(
a2 − 1 + z

)
A

(
1,
z (a2 − 1 + z)

a (1 + a)2

)
(1 + a)−1 (−z + 1 + a)−1 + xz

(
a2 − 1 + z

)
A

(
1− −z + 1 + a

(1 + a) a
, 1− −z + 1 + a

(1 + a) a

)
(−z + 1 + a)−1 a−1 (1 + a)−1 +

z (a2 − 1 + z)
2
x

a2 (1 + a)3

eq5 := x
(
a2 − 1 + z

)
(1 + a)A

(
1,
a2 − 1 + z

a2

)
a−1 (−z + 1 + a)−1 − x

(
a2 − 1 + z

)
A

(
1− −z + 1 + a

(1 + a) a
, 1− −z + 1 + a

(1 + a) a

)
a−1 +

(a2 − 1 + z)
2
x

(1 + a) a3

eq6 := −x
(
a2 − 1 + z

)
A

(
1,
a2 − 1 + z

a2

)
a−1 +

x (a2 − 1 + z) (1 + a)

a (−z + 1 + a)
A

(
1 +

1

a
, 1 +

1

a

)
+
x (a2 − 1 + z) (1 + a)

a3

> collect(eq1-B*eq2-C*eq3-D*eq4-E*eq5-F*eq6,A,factor):
> { coeff( %,A(1,z)), coeff( %,A(1+(z-(1+a))/(1+a),1+(z-(1+a))/(1+a))),
coeff( %,A(1, z*(-1+z+a^2)/((1+a)^2*a))), coeff( %,A(1-(1+a-z)/(a*(1+a)),
1-(1+a-z)/(a*(1+a)))), coeff( %,A(1,(-1+z+a^2)/a^2))}:
> map(factor,subs(solve(%,{B,C,D,E,F}),%%)):
> Eq7:= collect(%*(-z+1+a)*a^6/x/z*(1+a)^2/a^6,A,factor);
> expand(coeff(%,A((1+a)/a, (1+a)/a)));
> P:= factor( -Eq7 + coeff(Eq7,A((1+a)/a,(1+a)/a)) * A((1+a)/a,(1+a)/a)
+ coeff(Eq7,A(1+a,1+a)) * A(1+a,1+a));

Eq7 := − (1 + a)3A

(
1 + a

a
,
1 + a

a

)
a−4 + (1 + a)3A (1 + a, 1 + a) +

(a− 1) (−z + 1 + a)

a6(
a8 + 4 a7 + 7 a6 + a5z + 8 a5 − z2a4 + 2 za4 + 8 a4 + 3 za3 + 7 a3 − a3z2 + 4 a2

+6 a2z − 3 z2a2 + a+ az3 − 4 z2a+ 6 az + 2 z − z2
)

− 1

a4
− 3

1

a3
− 3

1

a2
− 1

a1

P := −(a− 1) (−z + 1 + a)

a6

(
a8 + 4 a7 + 7 a6 + a5z + 8 a5 − z2a4 + 2 za4 + 8 a4 + 3 za3

+7 a3 − a3z2 + 4 a2 + 6 a2z − 3 z2a2 + a+ az3 − 4 z2a+ 6 az + 2 z − z2)

Substitution z = Z+:

> factor(series(subs(z=Sol,P),x,18)) assuming a>0:
> map(coeff,%,a,0);
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x+ 2x2 + 5x3 + 15x4 + 51x5 + 191x6 + 772x7 + 3320x8 + 15032x9 + 71084x10

+348889x11 + 1768483x12 + 9220655x13 + 49286863x14 +O (x15)

Further substitution to apply Lagrange inversion:

> Ker;
> KerW:=collect(subs({z=W+(1+a)},%),x,factor);

1− xz

a
− x (1 + a) z

z − 1− a

KerW := 1− (W + 1 + a) (W + a+ a2)x

aW
> Q:=collect(simplify(subs(z=W+(1+a),P)),W,factor);
> factor(subs(W=Sol-(1+a),%)):
> factor(series(%, x, 14)) assuming a > 0:
> map(coeff,%, a, 0);
> a1:=expand(coeff(Q,W));
> a2:=expand(coeff(Q,W^2));
> a3:=expand(coeff(Q,W^3));
> a4:=expand(coeff(Q,W^4));

Q :=
(a− 1)W 4

a5
− (a− 1) (a2 − a+ 1) (1 + a)2W 3

a6
− (a− 1) (a2 + 1) (1 + a)2W 2

a5

+
(a− 1) (a2 + a+ 1) (a2 − a+ 1) (1 + a)4W

a6

x+ 2x2 + 5x3 + 15x4 + 51x5 + 191x6 + 772x7 + 3320x8 + 15032x9 +O
(
x10
)

a1 := − 1

a6
− 3

1

a5
+ a3 − 3

1

a4
− 1

a3
+ 1 + 3 a2 + 3 a

a2 := −1

a
− 1 +

1

a4
+

1

a5

a3 :=
1

a3
− 1

a
− 1

a4
+

1

a6

a4 :=
1

a4
− 1

a5

B.2 Formulas

Applying Lagrange inversion formula:

> a1:= binomial(n,k+1)*(-binomial(n+1,k-4)-3*binomial(n+2,k-2)-binomial(
n+1,k-1)+binomial(n+1,k+2)+3*binomial(n+2,k+4)+binomial(n+1,k+5));
> a2:= binomial(n,k+2)*(binomial(n+3,k)-binomial(n+3,k+4));
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> a3:= binomial(n,k+3)*(binomial(n+3,k)-binomial(n+3,k+2)+binomial(n+3,
k+3)-binomial(n+3,k+5));
> a4:= binomial(n,k+4)*(-binomial(n+4,k+3)+binomial(n+4,k+4));
> aa:= a1+2*a2+3*a3+4*a4:

a1 :=

(
n

k + 1

)(
−
(
n+ 1

k − 4

)
− 3

(
n+ 2

k − 2

)
−
(
n+ 1

k − 1

)
+

(
n+ 1

k + 2

)
+ 3

(
n+ 2

k + 4

)
+

(
n+ 1

k + 5

))
a2 :=

(
n

k + 2

)((
n+ 3

k

)
−
(
n+ 3

k + 4

))
a3 :=

(
n

k + 3

)((
n+ 3

k

)
−
(
n+ 3

k + 2

)
+

(
n+ 3

k + 3

)
−
(
n+ 3

k + 5

))
a4 :=

(
n

k + 4

)(
−
(
n+ 4

k + 3

)
+

(
n+ 4

k + 4

))
> an:= binomial(n,k)*aa/n;
> seq(sum(an,k=0..n),n=1..29);

an :=
1

n

(
n

k

)(
n

k + 1

)(
−
(
n+ 1

k − 4

)
− 3

(
n+ 2

k − 2

)
−
(
n+ 1

k − 1

)
+

(
n+ 1

k + 2

)
+ 3

(
n+ 2

k + 4

)
+(

n+ 1

k + 5

))
+ 2

(
n

k + 2

)((
n+ 3

k

)
−
(
n+ 3

k + 4

))
+ 3

(
n

k + 3

)((
n+ 3

k

)
−(

n+ 3

k + 2

)
+

(
n+ 3

k + 3

)
−
(
n+ 3

k + 5

))
+ 4

(
n

k + 4

)(
−
(
n+ 4

k + 3

)
+

(
n+ 4

k + 4

))
1, 2, 5, 15, 51, 191, 772, 3320, 15032, 71084, 348889, 1768483, 9220655,
49286863, 269346822, 1501400222, 8519796094, 49133373040, 287544553912,
1705548000296, 10241669069576, 62201517142632, 381749896129920,
2365758616886432, 14793705539872672, 93289069357036472,
592912570551842369, 3796109485501600235, 24472444947142838215

Applying the method of creative telescoping:

> with(SumTools[Hypergeometric]):
> In:= unapply(an,n,k):
> collect(Zeilberger(In(n,k),n,k,En)[1],En,factor);
> recA:=add( factor(coeff(%,En,k))*c(n+k),k=0..4);
> cert:=Zeilberger(In(n,k),n,k,En)[2]:

− (n+ 9) (n+ 8) (n+ 6) En3 +
(
6n3 + 464n+ 776 + 92n2

)
En2

+ (n+ 2) (15n2 + 133n+ 280) En + 8 (n+ 3) (n+ 2) (n+ 1)

recA := 8 (n+ 3) (n+ 2) (n+ 1) c (n) + (n+ 2)
(
15n2 + 133n+ 280

)
c (n+ 1)

+ (6n3 + 464n+ 776 + 92n2) c (n+ 2)− (n+ 9) (n+ 8) (n+ 6) c (n+ 3)
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Check Equation (5.9):

> factor(expand( subs( c(n)=In(n,k), c(n+1)=In(n+1,k), c(n+2)=In(n+2,k),

c(n+3)=In(n+3,k), recA) )):
> factor(expand( subs(k=k+1,cert)-cert ) ):
> factor(%%-%);
> factor(expand(subs(k=0,cert)));
> factor(expand(subs(k=n+9,cert)));

0

0

0

Proof of Proposition 5.1.15:

> cros:=8*(n+3)*(n+1)*a(n)+(7*n^2+53*n+88)*a(n+1)-(n+8)*(n+7)*a(n+2);
> collect(cros*(n+2),a,factor):
> collect(subs(n=n+1,cros)*(n+6),a,factor):
> collect(%+%%,a,factor);
> subs(a=c,%)-recA;

cros := 8 (n+ 3) (n+ 1) a (n) +
(
7n2 + 53n+ 88

)
a (n+ 1)− (n+ 8) (n+ 7) a (n+ 2)

8 (n+ 3) (n+ 1) (n+ 2) a (n) + (n+ 2)
(
15n2 + 133n+ 280

)
a (n+ 1)

+ (6n3 + 464n+ 776 + 92n2) a (n+ 2)− (n+ 9) (n+ 8) a (n+ 3) (n+ 6)

0
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