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Code-based Cryptography

Take a linear code C C (Z/qZ)".

Message x E€C y € (Z/qZ)" decoded message
Encoder Channel Decoder

Introduce an error, i.e., we add to x

e=(e,...,en) € (Z/qZ)"
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Code-based Cryptography

Take a linear code C C (Z/qZ)".

Message x E€C y € (Z/qZ)" decoded message
— | Encoder Channel Decoder

Introduce an error, i.e., we add to x

e= (o1, en) € (2/q2)"

Generic Decoding

Given y = x + e, recover either the original message x or the error term e.

© NP-hard problem

© Has a unique solution for errors of relatively small “weight”

We consider a random error of fixed weight (Lee weight).
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Notation:
Z/qZ = {0,1,2,...,q — 1} integer residue ring
(z/qz.)* set of units (i.e. integers coprime to q)

Note: If g is prime, then Z/qZ = Fq is a finite field of g elements.
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Notation:
Z/qZ = {0,1,2,...,q — 1} integer residue ring
(z/qz.)* set of units (i.e. integers coprime to q)

Note: If g is prime, then Z/qZ = Fq is a finite field of g elements.

A linear code C C (Z/qZ)" is a Z/qZ-submodule of (Z/qZ)". The elements of C are
called codewords of length n.

Parameters:
© nis called the length of C
° k:=log, | C | is the Z/qZ-dimension of C
© R := k/n denotes the rate of C.

The Hamming weight of a codeword ¢ € C is the number of nonzero entries of c, i.e.,

wey(c) = | {i € {1,...,n} | # 0} |
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Example: Z/97Z

The Lee weight of an element a € Z/qZ defines the
0 minimum number of arcs separating a from the
origin 0.
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we(a) = we(q — a)

win(a) < we (3) < [9/2]
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Example: Z/97Z

The Lee weight of an element a € Z/qZ defines the
0 minimum number of arcs separating a from the
origin 0. Hence,

7 2 wty (a) = wt (g — a)

[e)]
w

win(a) < we (3) < [9/2]

5 | 4
[9/2]

For any integer a € Z/qZ and any vector x,y € (Z/qZ)" we define their Lee weight as

wty (a) := min(a, | qg—a |)
wiL(x) = > wti ()
i=1

The Lee distance between x and y is given by d| (x,y) := wt (x — y).
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Consider the n-dimensional Lee sphere of radius t in Z/qZ denoted by

S = {x € (Z/qZ)" | wiL(x) = t} .
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Size of n-Dimensional Lee Sphere

Consider the n-dimensional Lee sphere of radius t in Z/qZ denoted by
S = {x € (Z/qZ)" | wiy(x) = t} .
Example

Consider the 3-dimensional Lee sphere of radius t = 2 over Z/5Z.

S8) ={(1,1,0),...,(1,4,0),...,(4,4,0),...,(2,0,0),...,(3,0,0),....
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Consider the n-dimensional Lee sphere of radius t in Z/qZ denoted by

S = {x € (Z/qZ)" | wiL(x) = t} .
Example

Consider the 3-dimensional Lee sphere of radius t = 2 over Z/5Z.
8P ={(1,1,0),...,(1,4,0),...,(4,4,0),...,(2,0,0),...,(3,0,0),...}

For a € S,E:'q) denote by ws = (wa(0),...,wa(g — 1)) denote the Lee weight
decomposition of a, i.e.,

q—1
wo(i):= | {k=1,....n|ax =1} | and Zwa(i) wt (i) = t *)
i=0

The number of permutations of a is given by the multinomial coefficient

n!
(aO)rrn(a=1)) = w0 =T+ Henee,

w satisfying ()
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Typical Sequence in the Lee Sphere

Example

SS; = { (1,1,0),...,(1,4,0),....(440),.., (20,0),..,(300),... }

s

Draw a € 8531.3 uniformly at random, then
© smaller Lee weights are more likely to occur in the vector a.

© some sequences are more likely — typical sequence.
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Typical Sequence in the Lee Sphere ‘#7
DLR

Example

= { (1. 1,0) .., (1,4 0).. (4 4 0)... (20,0)...,(300)... }

Draw a € Sﬁg uniformly at random, then
O smaller Lee weights are more likely to occur in the vector a.

© some sequences are more likely — typical sequence.

Lemma - Marginal Distribution in the Lee Sphere

Consider a random vector A € S,Sg)q and let P(a) be the marginal distribution of an

element of A. Then, for every a € Z/qZ we have

P(a) — Bs(a) := 2(5) exp (=B wtL(a)),

where [ is the unique real solution to the Lee weight constraint
§ = Z;:ol wt (/)P(X = i) and Z(B) denotes the normalization constant

J. Bariffi, 19.04.2023



The Marginal Distribution - Example over Z /477 4#7
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0.2 ‘
——T=3
——T=8
2
015 T= T~ n7aa7
’ —%— T =16

oMarginal Distrbution

Elements of Z /477
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Growth Rate of Lee Sphere Spectrum ‘#7
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Consider the surface spectrum, i.e., the sequence | Séng

(n) (n)
’ | Sl ’Sntq/%,q | and
define their normalized logarithmic surface spectrum and its asymptotic counterpart,
respectively, as

n 1 n . n
a((sn) = . log, (| Sié?q |) and o5 = nIme Ufsn).
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Consider the surface spectrum, i.e., the sequence | S(g"()’

[ SEale | Sileyay,q] a0

define their normalized logarithmic surface spectrum and its asymptotic counterpart,
respectively, as

(m._ 1 (n) o ()
Tgp =~ log, (’Sné,q D and o5 = nlmwaén.

For any positive integer 6n we can upper bound the surface spectrum by

O.((S’r") < H; o— H(B(S) 0< 0 < 5q i
logy(q) dq <0 < [q/2]

In particular, as n grows large it holds o5 = H(Bs)?.

1H(B(;) =— Zaeﬁ/q% Bs(a) logy(Bs(a)) denotes the binary entropy function.
7 J. Bariffi, 19.04.2023




Growth Rate of Lee Sphere Spectrum

Example

(n)

Convergence of o

to o5 = H; as a function of n for § = 0.2 over Z/7Z.
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3. Error Probability for the Constant Lee Channel



Constant Lee Weight Channel

Let C C (Z/qZ)" be a linear code.

xec y € (2/q2)"
——— | Channel
Error added has fixed Lee weight t, i.e.,

(n)

y=x+e, whereeGStq

Channel Transition probability

if di(y,x)=4én

PY=yIX=x)=14 |s& |
1 %en

otherwise.
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Constant Lee Weight Channel

Let C C (Z/qZ)" be a linear code.

xecC

y € (2/q2)"

Error added has fixed Lee weight t, i.e.,

y=x+e,

Channel Transition probability

P(Y=y|X=x)=

Maximum Likelihood Decoding

Given the channel output y € (Z/qZ)" decode to
the codeword Xy 11, maximizing the channel
probability, i.e.,

XM1, = argmax P(Y = y | X = x)
xeC

. Bariffi, 19.04.2023

o

where e € S; q

(n)

if di(y,x)=4én

otherwise.

Minimum Distance Decoding

Given the channel output y € (Z/qZ)" decode to
the codeword X\;p of smallest Lee distance from

y, e,

Syp = argmindy (x, y)
xecC
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Error Probability

Random Coding Union Bound, ML
decoding

The average ML decoding error
probability, Pg(C), of C used to
transmit over a constant Lee weight
channel satisfies

—n [Iog qfcr(n)fRQ:I -
E(Pg(C)) < 2 S :

Corollary

There average ML decoding error
probability of C used to transmit over
a constant Lee weight channel satisfies

E(Pg(C)) < o~ nllog, g—H —Ra] ™

J. Bariffi, 19.04.2023

Pg

10°

1071

102

U
,.&
=

i i i I I
03 032 034 036 038
Expected relative Lee weight &

o
~



10

Error Probability

Random Coding Union Bound, ML
decoding

The average ML decoding error
probability, Pg(C), of C used to
transmit over a constant Lee weight
channel satisfies

—n [Iog qfcr(n)fRQ:I -
E(Pg(C)) < 2 S :

Corollary

There average ML decoding error
probability of C used to transmit over
a constant Lee weight channel satisfies

E(Pg(C)) < o~ nllog, g—H —Ra] ™

J. Bariffi, 19.04.2023

Pg

10°

1071

102

U
,.&
=

i i i I I
03 032 034 036 038
Expected relative Lee weight &

o
~



	The Lee Metric
	The Boltzmann Distribution
	Error Probability for the Constant Lee Channel

