The Geometry and Error Probability of the Lee Channel

Workshop on Combinatorics in Digital Communications Eindhoven University of Technology, April 19-21, 2023

Jessica Bariffi DLR, Institute for Communications and Navigation 19.04.2023

Motivation Code-based Cryptography

Take a linear code $\mathcal{C} \subset (\mathbb{Z}/q\mathbb{Z})^n$.

Motivation Code-based Cryptography

Take a linear code $\mathcal{C} \subset (\mathbb{Z}/q\mathbb{Z})^n$.

Generic Decoding

Given y = x + e, recover either the original message x or the error term e.

- NP-hard problem
- Has a unique solution for errors of relatively small "weight"

Motivation Code-based Cryptography

Take a linear code $\mathcal{C} \subset (\mathbb{Z}/q\mathbb{Z})^n$.

Generic Decoding

Given y = x + e, recover either the original message x or the error term e.

- NP-hard problem
- Has a unique solution for errors of relatively small "weight"

We consider a random error of fixed weight (Lee weight).

2. The Boltzmann Distribution

3. Error Probability for the Constant Lee Channel

Outline

1. The Lee Metric

2. The Boltzmann Distribution

3. Error Probability for the Constant Lee Channel

Ring Linear Codes

Notation:

$\mathbb{Z}/q\mathbb{Z}:=\{0,1,2,\ldots,q-1\}$	integer residue ring
$(\mathbb{Z}/q\mathbb{Z})^{ imes}$	set of units (i.e. integers coprime to q)

Note: If q is prime, then $\mathbb{Z}/q\mathbb{Z}\cong\mathbb{F}_q$ is a finite field of q elements.

Ring Linear Codes

Notation:

$$\begin{split} \mathbb{Z}/q\mathbb{Z} &:= \{0, 1, 2, \dots, q-1\} & \quad \text{integer residue ring} \\ (\mathbb{Z}/q\mathbb{Z})^{\times} & \quad \text{set of units (i.e. integers coprime to } q) \end{split}$$

Note: If q is prime, then $\mathbb{Z}/q\mathbb{Z} \cong \mathbb{F}_q$ is a finite field of q elements.

A linear code $C \subseteq (\mathbb{Z}/q\mathbb{Z})^n$ is a $\mathbb{Z}/q\mathbb{Z}$ -submodule of $(\mathbb{Z}/q\mathbb{Z})^n$. The elements of C are called *codewords* of length *n*.

Parameters:

- \circ *n* is called the *length* of *C*
- $k := \log_q |\mathcal{C}|$ is the $\mathbb{Z}/q\mathbb{Z}$ -dimension of \mathcal{C}
- R := k/n denotes the *rate* of C.

Ring Linear Codes

Notation:

$$\begin{split} \mathbb{Z}/q\mathbb{Z} &:= \{0, 1, 2, \dots, q-1\} & \quad \text{integer residue ring} \\ (\mathbb{Z}/q\mathbb{Z})^{\times} & \quad \text{set of units (i.e. integers coprime to } q) \end{split}$$

Note: If q is prime, then $\mathbb{Z}/q\mathbb{Z} \cong \mathbb{F}_q$ is a finite field of q elements.

A linear code $C \subseteq (\mathbb{Z}/q\mathbb{Z})^n$ is a $\mathbb{Z}/q\mathbb{Z}$ -submodule of $(\mathbb{Z}/q\mathbb{Z})^n$. The elements of C are called *codewords* of length *n*.

Parameters:

- \circ *n* is called the *length* of *C*
- $k := \log_q |\mathcal{C}|$ is the $\mathbb{Z}/q\mathbb{Z}$ -dimension of \mathcal{C}
- R := k/n denotes the *rate* of C.

The Hamming weight of a codeword $c \in C$ is the number of nonzero entries of c, i.e.,

$$wt_{H}(c) := | \{i \in \{1, ..., n\} | c_i \neq 0\}$$

Example: $\mathbb{Z}/9\mathbb{Z}$

The *Lee weight* of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the **minimum number of arcs** separating *a* from the origin 0.

Example: $\mathbb{Z}/9\mathbb{Z}$

The *Lee weight* of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the **minimum number of arcs** separating *a* from the origin 0.

Example: $\mathbb{Z}/9\mathbb{Z}$

The *Lee weight* of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the **minimum number of arcs** separating *a* from the origin 0. Hence,

$$wt_L(a) = wt_L(q - a)$$

$$wt_H(a) \le wt_L(a) \le \lfloor q/2 \rfloor$$

Example: $\mathbb{Z}/9\mathbb{Z}$

The *Lee weight* of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the **minimum number of arcs** separating *a* from the origin 0. Hence,

$$wt_L(a) = wt_L(q - a)$$

$$\operatorname{wt}_{\mathsf{H}}(a) \leq \operatorname{wt}_{\mathsf{L}}(a) \leq \lfloor q/2 \rfloor$$

Example: $\mathbb{Z}/9\mathbb{Z}$

The *Lee weight* of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the **minimum number of arcs** separating *a* from the origin 0. Hence,

$$\operatorname{wt}_{\mathsf{L}}(a) = \operatorname{wt}_{\mathsf{L}}(q - a)$$

 $\operatorname{wt}_{\mathsf{H}}(a) \leq \operatorname{wt}_{\mathsf{L}}(a) \leq \lfloor q/2 \rfloor$

For any integer $a \in \mathbb{Z}/q\mathbb{Z}$ and any vector $x, y \in (\mathbb{Z}/q\mathbb{Z})^n$ we define their *Lee weight* as

$$wt_{L}(a) := \min(a, |q-a|)$$
$$wt_{L}(x) := \sum_{i=1}^{n} wt_{L}(x_{i})$$

The Lee distance between x and y is given by $d_L(x, y) := wt_L(x - y)$.

Consider the n-dimensional Lee sphere of radius t in $\mathbb{Z}/q\mathbb{Z}$ denoted by

$$\mathcal{S}_{t,q}^{(n)} := \left\{ x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \mathsf{wt}_\mathsf{L}(x) = t \right\}.$$

Consider the *n*-dimensional Lee sphere of radius *t* in $\mathbb{Z}/q\mathbb{Z}$ denoted by

$$\mathcal{S}_{t,q}^{(n)} := \left\{ x \in \left(\mathbb{Z}/q\mathbb{Z} \right)^n \mid \operatorname{wt}_{\mathsf{L}}(x) = t \right\}.$$

Example

Consider the 3-dimensional Lee sphere of radius t = 2 over $\mathbb{Z}/5\mathbb{Z}$.

$$\mathcal{S}_{2,5}^{(3)} = \{(1,1,0),\ldots,(1,4,0),\ldots,(4,4,0),\ldots,(2,0,0),\ldots,(3,0,0),\ldots\}$$

Consider the *n*-dimensional Lee sphere of radius *t* in $\mathbb{Z}/q\mathbb{Z}$ denoted by

$$\mathcal{S}_{t,q}^{(n)} := \left\{ x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(x) = t \right\}.$$

Example

Consider the 3-dimensional Lee sphere of radius t = 2 over $\mathbb{Z}/5\mathbb{Z}$.

$$\mathcal{S}_{2,5}^{(3)} = \{(1,1,0),\ldots,(1,4,0),\ldots,(4,4,0),\ldots,(2,0,0),\ldots,(3,0,0),\ldots\}$$

For $a \in S_{t,q}^{(n)}$ denote by $\omega_a = (\omega_a(0), \dots, \omega_a(q-1))$ denote the Lee weight decomposition of a, i.e.,

$$\omega_a(i) := \left| \{k = 1, \dots, n \mid a_k = i\} \right| \quad \text{and} \quad \sum_{i=0}^{n-1} \omega_a(i) \operatorname{wt}_{\mathsf{L}}(i) = t \tag{*}$$

Consider the *n*-dimensional Lee sphere of radius *t* in $\mathbb{Z}/q\mathbb{Z}$ denoted by

$$\mathcal{S}_{t,q}^{(n)} := \left\{ x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(x) = t \right\}.$$

Example

Consider the 3-dimensional Lee sphere of radius t = 2 over $\mathbb{Z}/5\mathbb{Z}$.

$$\mathcal{S}_{2,5}^{(3)} = \{(1,1,0),\ldots,(1,4,0),\ldots,(4,4,0),\ldots,(2,0,0),\ldots,(3,0,0),\ldots\}$$

For $a \in S_{t,q}^{(n)}$ denote by $\omega_a = (\omega_a(0), \dots, \omega_a(q-1))$ denote the Lee weight decomposition of a, i.e.,

$$\omega_a(i) := \left| \{k = 1, \dots, n \mid a_k = i\} \right| \quad \text{and} \quad \sum_{i=0}^{n-1} \omega_a(i) \operatorname{wt}_{\mathsf{L}}(i) = t \tag{*}$$

The number of permutations of *a* is given by the multinomial coefficient $\binom{n}{\omega_a(0),\ldots,\omega_a(q-1)} = \frac{n!}{\omega_a(0)!\cdots \omega_a(q-1)!}$. Hence,

$$\left| S_{t,q}^{(n)} \right| = \sum_{\omega \text{ satisfying } (*)} {n \choose \omega(0), \dots, \omega(q-1)}$$

Outline

1. The Lee Metric

2. The Boltzmann Distribution

3. Error Probability for the Constant Lee Channel

Typical Sequence in the Lee Sphere

Example

$$S_{2,5}^{(3)} = \left\{ (1, 1, 0), \dots, (1, 4, 0), \dots, (4, 4, 0), \dots, (2, 0, 0), \dots, (3, 0, 0), \dots \right\}$$

Draw $a \in \mathcal{S}_{2,5}^{(3)}$ uniformly at random, then

- smaller Lee weights are more likely to occur in the vector *a*.
- $^{\circ}~$ some sequences are more likely \longrightarrow typical sequence.

Typical Sequence in the Lee Sphere

Example

$$\mathcal{S}_{2,5}^{(3)} = \left\{ (1, 1, 0), \dots, (1, 4, 0), \dots, (4, 4, 0), \dots, (2, 0, 0), \dots, (3, 0, 0), \dots \right.$$

Draw $a \in \mathcal{S}_{2,5}^{(3)}$ uniformly at random, then

- smaller Lee weights are more likely to occur in the vector *a*.
- $^{\circ}~$ some sequences are more likely \longrightarrow typical sequence.

Lemma - Marginal Distribution in the Lee Sphere

Consider a random vector $A \in S_{n\delta,q}^{(n)}$ and let P(a) be the marginal distribution of an element of A. Then, for every $a \in \mathbb{Z}/q\mathbb{Z}$ we have

$$P(a) \longrightarrow B_{\delta}(a) := rac{1}{Z(eta)} \exp\left(-eta \operatorname{wt}_{\mathsf{L}}(a)
ight),$$

where β is the unique real solution to the Lee weight constraint $\delta = \sum_{i=0}^{q-1} \operatorname{wt}_{L}(i) \mathbb{P}(X = i)$ and $Z(\beta)$ denotes the normalization constant

Growth Rate of Lee Sphere Spectrum

Consider the *surface spectrum*, i.e., the sequence $\left|S_{0,q}^{(n)}\right|, \left|S_{1,q}^{(n)}\right|, \ldots, \left|S_{n\lfloor q/2 \rfloor,q}^{(n)}\right|$ and define their normalized logarithmic surface spectrum and its asymptotic counterpart, respectively, as

$$\sigma_{\delta n}^{(n)} := \frac{1}{n} \log_2 \left(\left| \left. \mathcal{S}_{n\delta,q}^{(n)} \right| \right) \quad \text{and} \quad \sigma_{\delta} := \lim_{n \to \infty} \sigma_{\delta n}^{(n)}.$$

Growth Rate of Lee Sphere Spectrum

Consider the *surface spectrum*, i.e., the sequence $\left|S_{0,q}^{(n)}\right|, \left|S_{1,q}^{(n)}\right|, \ldots, \left|S_{n\lfloor q/2 \rfloor,q}^{(n)}\right|$ and define their normalized logarithmic surface spectrum and its asymptotic counterpart, respectively, as

$$\sigma_{\delta n}^{(n)} := \frac{1}{n} \log_2 \left(\left| \left| \mathcal{S}_{n\delta,q}^{(n)} \right| \right) \quad \text{and} \quad \sigma_{\delta} := \lim_{n \to \infty} \sigma_{\delta n}^{(n)}.$$

Lemma

For any positive integer δn we can upper bound the surface spectrum by

$$\sigma^{(n)}_{\delta n} \leq H^+_{\delta} := egin{cases} H(B_{\delta}) & 0 \leq \delta \leq \delta_q \ \log_2(q) & \delta_q < \delta < \lfloor q/2
floor \ .$$

In particular, as *n* grows large it holds $\sigma_{\delta} = H(B_{\delta})^1$.

 $^{-1}H(B_{\delta}) = -\sum_{a \in \mathbb{Z}/q\mathbb{Z}} B_{\delta}(a) \log_2(B_{\delta}(a))$ denotes the binary entropy function.

J. Bariffi, 19.04.2023

Growth Rate of Lee Sphere Spectrum

Example

Convergence of $\sigma_{\delta n}^{(n)}$ to $\sigma_{\delta} = H_{\delta}$ as a function of n for $\delta = 0.2$ over $\mathbb{Z}/7\mathbb{Z}$.

Outline

1. The Lee Metric

2. The Boltzmann Distribution

3. Error Probability for the Constant Lee Channel

Constant Lee Weight Channel

Let $\mathcal{C} \subset (\mathbb{Z}/q\mathbb{Z})^n$ be a linear code.

$$y = x + e$$
, where $e \in \mathcal{S}_{t,q}^{(n)}$

Channel Transition probability

$$P(Y = y \mid X = x) = \begin{cases} \frac{1}{\left| \begin{array}{c} S_{\delta n,q}^{(n)} \right|} & \text{if } \mathsf{d}_{\mathsf{L}}(y, x) = \delta n \\ 0 & \text{otherwise.} \end{cases}$$

Constant Lee Weight Channel

Let $\mathcal{C} \subset (\mathbb{Z}/q\mathbb{Z})^n$ be a linear code.

$$y = x + e$$
, where $e \in \mathcal{S}_{t,q}^{(n)}$

Channel Transition probability

$$P(Y = y \mid X = x) = \begin{cases} \frac{1}{\mid S_{\delta n, q}^{(n)} \mid} & \text{if } d_{\mathsf{L}}(y, x) = \delta n \\ 0 & \text{otherwise.} \end{cases}$$

Maximum Likelihood Decoding

Given the channel output $y\in (\mathbb{Z}/q\mathbb{Z})^n$ decode to the codeword $\hat{x}_{\rm ML}$ maximizing the channel probability, i.e.,

$$\hat{x}_{\text{ML}} = \underset{x \in \mathcal{C}}{\operatorname{argmax}} P(Y = y \mid X = x)$$

Minimum Distance Decoding

Given the channel output $y\in (\mathbb{Z}/q\mathbb{Z})^n$ decode to the codeword $\hat{x}_{\rm MD}$ of smallest Lee distance from y, i.e.,

$$\hat{x}_{\text{MD}} = \underset{x \in \mathcal{C}}{\operatorname{argmin}} d_{\mathsf{L}}(x, y)$$

Error Probability

Random Coding Union Bound, ML decoding

The average ML decoding error probability, $P_{\rm B}(\mathcal{C})$, of \mathcal{C} used to transmit over a constant Lee weight channel satisfies

$$\mathbb{E}(P_{\mathrm{B}}(\mathcal{C})) < 2^{-n \left[\log_2 q - \sigma_{\delta n}^{(n)} - R_2\right]^+}.$$

Corollary

There average ML decoding error probability of $\mathcal C$ used to transmit over a constant Lee weight channel satisfies

$$\mathbb{E}(P_{\mathrm{B}}(\mathcal{C})) < 2^{-n[\log_2 q - H_{\delta} - R_2]^+}$$

Error Probability

Random Coding Union Bound, ML decoding

The average ML decoding error probability, $P_{\rm B}(\mathcal{C})$, of \mathcal{C} used to transmit over a constant Lee weight channel satisfies

$$\mathbb{E}(P_{\mathrm{B}}(\mathcal{C})) < 2^{-n \left[\log_2 q - \sigma_{\delta n}^{(n)} - R_2\right]^+}.$$

Corollary

There average ML decoding error probability of $\mathcal C$ used to transmit over a constant Lee weight channel satisfies

$$\mathbb{E}(P_{\mathrm{B}}(\mathcal{C})) < 2^{-n[\log_2 q - H_{\delta} - R_2]^+}$$

Thank you for your attention!