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Motivation
Code-based Cryptography

Take a linear code C ⊂ (Z/qZ)n.

Encoder Channel

Introduce an error, i.e., we add to x
e = (e1, . . . , en) ∈ (Z/qZ)n

Decoder
Message x ∈ C y ∈ (Z/qZ)n decoded message

Generic Decoding
Given y = x + e, recover either the original message x or the error term e.

◦ NP-hard problem
◦ Has a unique solution for errors of relatively small “weight”

We consider a random error of fixed weight (Lee weight).

1 J. Bariffi, 19.04.2023



Motivation
Code-based Cryptography

Take a linear code C ⊂ (Z/qZ)n.

Encoder Channel

Introduce an error, i.e., we add to x
e = (e1, . . . , en) ∈ (Z/qZ)n

Decoder
Message x ∈ C y ∈ (Z/qZ)n decoded message

Generic Decoding
Given y = x + e, recover either the original message x or the error term e.

◦ NP-hard problem
◦ Has a unique solution for errors of relatively small “weight”

We consider a random error of fixed weight (Lee weight).

1 J. Bariffi, 19.04.2023



Motivation
Code-based Cryptography

Take a linear code C ⊂ (Z/qZ)n.

Encoder Channel

Introduce an error, i.e., we add to x
e = (e1, . . . , en) ∈ (Z/qZ)n

Decoder
Message x ∈ C y ∈ (Z/qZ)n decoded message

Generic Decoding
Given y = x + e, recover either the original message x or the error term e.

◦ NP-hard problem
◦ Has a unique solution for errors of relatively small “weight”

We consider a random error of fixed weight (Lee weight).

1 J. Bariffi, 19.04.2023



Outline

1. The Lee Metric

2. The Boltzmann Distribution

3. Error Probability for the Constant Lee Channel

1 J. Bariffi, 19.04.2023



Outline

1. The Lee Metric

2. The Boltzmann Distribution

3. Error Probability for the Constant Lee Channel



Ring Linear Codes

Notation:

Z/qZ := {0, 1, 2, . . . , q − 1} integer residue ring

(Z/qZ)× set of units (i.e. integers coprime to q)

Note: If q is prime, then Z/qZ ∼= Fq is a finite field of q elements.

A linear code C ⊆ (Z/qZ)n is a Z/qZ-submodule of (Z/qZ)n. The elements of C are
called codewords of length n.

Parameters:
◦ n is called the length of C
◦ k := logq

∣∣ C
∣∣ is the Z/qZ-dimension of C

◦ R := k/n denotes the rate of C.

The Hamming weight of a codeword c ∈ C is the number of nonzero entries of c, i.e.,

wtH(c) :=
∣∣ {i ∈ {1, . . . , n} | ci ̸= 0}

∣∣
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The Lee Metric

Example: Z/9Z
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⌊9/2⌋

The Lee weight of an element a ∈ Z/qZ defines the
minimum number of arcs separating a from the
origin 0.

Hence,

wtL(a) = wtL(q − a)

wtH(a) ≤ wtL(a) ≤ ⌊q/2⌋

For any integer a ∈ Z/qZ and any vector x , y ∈ (Z/qZ)n we define their Lee weight as

wtL(a) := min(a,
∣∣ q − a

∣∣)
wtL(x) :=

n∑
i=1

wtL(xi )

The Lee distance between x and y is given by dL(x , y) := wtL(x − y).
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Size of n-Dimensional Lee Sphere

Consider the n-dimensional Lee sphere of radius t in Z/qZ denoted by

S(n)
t,q := {x ∈ (Z/qZ)n | wtL(x) = t} .

Example
Consider the 3-dimensional Lee sphere of radius t = 2 over Z/5Z.

S(3)
2,5 = {(1, 1, 0), . . . , (1, 4, 0), . . . , (4, 4, 0), . . . , (2, 0, 0), . . . , (3, 0, 0), . . .}

For a ∈ S(n)
t,q denote by ωa = (ωa(0), . . . , ωa(q − 1)) denote the Lee weight

decomposition of a, i.e.,

ωa(i) :=
∣∣ {k = 1, . . . , n | ak = i}

∣∣ and
q−1∑
i=0

ωa(i) wtL(i) = t (*)

The number of permutations of a is given by the multinomial coefficient( n
ωa(0),...,ωa(q−1)

)
= n!

ωa(0)!·...·ωa(q−1)! . Hence,∣∣ S(n)
t,q

∣∣ =
∑

ω satisfying (∗)

( n
ω(0), . . . , ω(q − 1)

)
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Typical Sequence in the Lee Sphere

Example

S(3)
2,5 =

{
(1, 1, 0),. . . , (1, 4, 0),. . . ,(4, 4, 0),. . . , (2, 0, 0),. . . , (3, 0, 0),. . .

}
Draw a ∈ S(3)

2,5 uniformly at random, then
◦ smaller Lee weights are more likely to occur in the vector a.
◦ some sequences are more likely −→ typical sequence.

Lemma - Marginal Distribution in the Lee Sphere
Consider a random vector A ∈ S(n)

nδ,q and let P(a) be the marginal distribution of an
element of A. Then, for every a ∈ Z/qZ we have

P(a) −→ Bδ(a) :=
1

Z(β)
exp (−β wtL(a)) ,

where β is the unique real solution to the Lee weight constraint
δ =

∑q−1
i=0 wtL(i)P(X = i) and Z(β) denotes the normalization constant

5 J. Bariffi, 19.04.2023
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The Marginal Distribution - Example over Z/47Z
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Growth Rate of Lee Sphere Spectrum

Consider the surface spectrum, i.e., the sequence
∣∣ S(n)

0,q

∣∣, ∣∣ S(n)
1,q

∣∣, . . . ,
∣∣ S(n)

n⌊q/2⌋,q

∣∣ and
define their normalized logarithmic surface spectrum and its asymptotic counterpart,
respectively, as

σ
(n)
δn :=

1
n

log2

(∣∣ S(n)
nδ,q

∣∣) and σδ := lim
n→∞

σ
(n)
δn .

Lemma
For any positive integer δn we can upper bound the surface spectrum by

σ
(n)
δn ≤ H+

δ
:=

{
H(Bδ) 0 ≤ δ ≤ δq
log2(q) δq < δ < ⌊q/2⌋

.

In particular, as n grows large it holds σδ = H(Bδ).
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log2(q) δq < δ < ⌊q/2⌋

.

In particular, as n grows large it holds σδ = H(Bδ)1.

1H(Bδ) = −
∑

a∈Z/qZ
Bδ(a) log2(Bδ(a)) denotes the binary entropy function.
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Growth Rate of Lee Sphere Spectrum

Example
Convergence of σ

(n)
δn to σδ = Hδ as a function of n for δ = 0.2 over Z/7Z.
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Constant Lee Weight Channel

Let C ⊂ (Z/qZ)n be a linear code.

Channel

Error added has fixed Lee weight t, i.e.,

y = x + e, where e ∈ S(n)
t,q

x ∈ C y ∈ (Z/qZ)n

Channel Transition probability

P(Y = y | X = x) =

{ 1∣∣ S(n)
δn,q

∣∣ if dL(y, x) = δn

0 otherwise.

Maximum Likelihood Decoding
Given the channel output y ∈ (Z/qZ)n decode to
the codeword x̂ML maximizing the channel
probability, i.e.,

x̂ML = argmax
x∈C

P(Y = y | X = x)

Minimum Distance Decoding
Given the channel output y ∈ (Z/qZ)n decode to
the codeword x̂MD of smallest Lee distance from
y , i.e.,

x̂MD = argmin
x∈C

dL(x, y)

9 J. Bariffi, 19.04.2023
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Error Probability

Random Coding Union Bound, ML
decoding
The average ML decoding error
probability, PB(C), of C used to
transmit over a constant Lee weight
channel satisfies

E(PB(C)) < 2−n
[

log2 q−σ
(n)
δn −R2

]+

.

Corollary
There average ML decoding error
probability of C used to transmit over
a constant Lee weight channel satisfies

E(PB(C)) < 2−n[log2 q−Hδ−R2]+

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.410−6

10−5

10−4

10−3

10−2

10−1

100

Expected relative Lee weight δ

P B
Bound
Corollary

Thank you for your attention!
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