Coding Theory and Cryptography: A Conference in Honor of Joachim Rosenthal's 60th Birthday

The Marginal Distribution of the Lee Channel and its Applications

Jessica Bariffi

joint work with Hannes Bartz and Gianluigi Liva and with Karan Khathuria (UT) and Violetta Weger (TUM)

> Institute of Communications and Navigation German Aerospace Center, DLR

> > Knowledge for Tomorrow

Outline

- 2 The Lee Channel and its Properties
- 3 Information Set Decoding

- Information Set Decoding using Restricted Spheres
 - Bounded Minimum Distance Decoding
 - Decoding Beyond the Minimum Distance

Outline

- 2 The Lee Channel and its Properties
- 3 Information Set Decoding

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Syndrome Decoding Problem

Assume we send a codeword $x \in C$ and receive a vector $y = x + e \in (\mathbb{Z}/p^s\mathbb{Z})^n$.

Syndrome Decoding Problem

Given an $(n - k) \times n$ parity-check matrix H of C and a syndrome $s = yH^{\top}$, find the length-n vector e such that

$$s = eH^{\top}$$
 and $wt(e) = t$.

Syndrome Decoding Problem

Assume we send a codeword $x \in C$ and receive a vector $y = x + e \in (\mathbb{Z}/p^s\mathbb{Z})^n$.

Syndrome Decoding Problem

Given an $(n - k) \times n$ parity-check matrix H of C and a syndrome $s = yH^{\top}$, find the length-n vector e such that

 $s = eH^{\top}$ and wt(e) = t.

- The security of the McEliece cryptosystem relies on the hardness of the syndrome decoding problem
 - Is an NP-hard problem (in the Hamming metric, Lee metric, ...)
 - o generic decoding has a large cost in the Lee metric

Syndrome Decoding Problem

Assume we send a codeword $x \in C$ and receive a vector $y = x + e \in (\mathbb{Z}/p^s\mathbb{Z})^n$.

Syndrome Decoding Problem

Given an $(n - k) \times n$ parity-check matrix H of C and a syndrome $s = yH^{\top}$, find the length-n vector e such that

 $s = eH^{\top}$ and wt(e) = t.

- The security of the McEliece cryptosystem relies on the hardness of the syndrome decoding problem
 - Is an NP-hard problem (in the Hamming metric, Lee metric, ...)
 - o generic decoding has a large cost in the Lee metric
- · Has a unique solution for a relatively small weight (w.r.t. the GV bound)

Ring-Linear Codes

Let *p* a prime number and *s* and *n* two positive integers.

Definition

A linear code $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ is a $\mathbb{Z}/p^s\mathbb{Z}$ -submodule of $(\mathbb{Z}/p^s\mathbb{Z})^n$.

Ring-Linear Codes

Let *p* a prime number and *s* and *n* two positive integers.

Definition

A linear code $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ is a $\mathbb{Z}/p^s\mathbb{Z}$ -submodule of $(\mathbb{Z}/p^s\mathbb{Z})^n$.

Parameters:

- *n* is called the *length* of *C*
- $k := \log_{p^s} |C|$ is the $\mathbb{Z}/p^s\mathbb{Z}$ -dimension of C
- R := k/n denotes the *rate* of C.

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \dots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by wt_L(a) := min(a, $|p^s - a|$),

$$\operatorname{wt}_{\mathsf{L}}(e) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(e_i).$$

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \dots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by

$$\operatorname{wt}_{\mathsf{L}}(a) := \min(a, |p^{\mathsf{s}} - a|),$$

 $\operatorname{wt}_{\mathsf{L}}(e) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(e_i).$

Example over $\mathbb{Z}/5\mathbb{Z}$

- 1: $wt_L(1) = 1$
- 2: $wt_L(2) = 2$
- 3: wt_L(3) = 2
- 4: wt_L(4) = 1

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \ldots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by

$$\operatorname{wt}_{\mathsf{L}}(a) := \min(a, |p^{\mathsf{s}} - a|),$$

 $\operatorname{wt}_{\mathsf{L}}(e) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(e_i).$

Example over $\mathbb{Z}/5\mathbb{Z}$

- 0: wt_L(0) = 0
- 1: $wt_L(1) = 1$
- 2: wt_L(2) = 2
- 3: wt_L(3) = 2
- 4: wt_L(4) = 1

Properties:

For every $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$

- $wt_L(a) = wt_L(|p^s a|)$
- $\operatorname{wt}_{H}(a) \leq \operatorname{wt}_{L}(a) \leq \lfloor p^{s}/2 \rfloor =: M$
- $wt_H(e) \le wt_L(e) \le nM$

Outline

Preliminaries and Motivation

2 The Lee Channel and its Properties

3 Information Set Decoding

Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

The Constant-Weight Lee Channel

Take a linear code $\mathcal{C} \subset (\mathbb{Z}/p^s\mathbb{Z})^n$.

Here: Take *e* uniformly at random from $e \in S_{t,p^s}^{(n)} := \{z \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(z) = t\}.$

The Constant-Weight Lee Channel

Take a linear code $\mathcal{C} \subset (\mathbb{Z}/p^s\mathbb{Z})^n$.

Here: Take *e* uniformly at random from $e \in S_{t,p^s}^{(n)} := \{z \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(z) = t\}.$

Question: What can we say about the entries of the error term?

The Constant-Weight Lee Channel

Take a linear code $\mathcal{C} \subset (\mathbb{Z}/p^s\mathbb{Z})^n$.

Here: Take *e* uniformly at random from $e \in S_{t,p^s}^{(n)} := \{z \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(z) = t\}.$

Question: What can we say about the entries of the error term?

Lemma

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random. Then

$$\delta_{\rho^{s}} := \mathbb{E}(\mathsf{wt}_{\mathsf{L}}(a)) = \begin{cases} \frac{(p^{s})^{2} - 1}{4\rho^{s}} & \text{if } p^{s} \text{ is odd}, \\ \frac{p^{s}}{4} & \text{if } p^{s} \text{ is even}. \end{cases}$$

The Marginal Distribution

Let *E* be the random variable corresponding to the realization of a random entry of *e*.

The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T := \lim_{n \to \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z}/p^s\mathbb{Z}$ the marginal distribution of *E* is given by

$$p_i := \mathbb{P}(E = i) = \frac{1}{\sum_{j=0}^{p^s - 1} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(j))} \exp(-\beta i)$$

where β is the solution to $T = \sum_{i=0}^{M} \operatorname{wt}_{L}(i)p_{i}$.

¹ "On the Properties of Error Patterns in the Constant Lee Weight Channel". In: International Zurich Seminar on Information and Communication (IZS). 2022, pp. 44–48.

The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T := \lim_{n \to \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z}/p^s\mathbb{Z}$ the marginal distribution of *E* is given by

$$p_i := \mathbb{P}(E = i) = \frac{1}{\sum_{j=0}^{p^s - 1} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(j))} \exp(-\beta i)$$

where β is the solution to $T = \sum_{i=0}^{M} \operatorname{wt}_{L}(i)p_{i}$.

Note $T < \delta_{p^s} \iff \beta > 0$

The Marginal Distribution - Example over $\mathbb{Z}/47\mathbb{Z}$

Outline

Preliminaries and Motivation

2 The Lee Channel and its Properties

3 Information Set Decoding

Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L(e) = t and $s = eH^{\top}$.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

• Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
 → Originally introduced by Prange in 1961 using linear transformations

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
 Originally introduced by Prange in 1961 using linear transformations
 Recent improvements: using partial Gaussian elimination¹

¹Matthieu Finiasz and Nicolas Sendrier. "Security bounds for the design of code-based cryptosystems". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2009, pp. 88–105.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given $H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$, find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L(e) = t and $s = eH^{\top}$.

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
 - \longrightarrow Originally introduced by Prange in 1961 using linear transformations
 - \longrightarrow Recent improvements: using partial Gaussian elimination

... Representation technique¹ or Wagner's approach²

²Alexander May, Alexander Meurer, and Enrico Thomae. "Decoding Random Linear Codes in $\tilde{O}(2^{0.054n})$ ". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer, 2011

¹Anja Becker et al. "Decoding random binary linear codes in $2^{n/20}$: How 1+ 1= 0 improves information set decoding". In: Annual international conference on the theory and applications of cryptographic techniques. Springer. 2012, pp. 520–536.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given $H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$, find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L(e) = t and $s = eH^{\top}$.

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
 - \longrightarrow Originally introduced by Prange in 1961 using linear transformations
 - \longrightarrow Recent improvements: using partial Gaussian elimination
 - ... Representation technique or Wagner's approach
 - ... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)¹
 - \ldots Wagner's approach is fastest in the Lee metric (amortized)²

²André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Crundrargandue, Springer 2021 pp. 44–62

¹Violetta Weger et al. "On the hardness of the Lee syndrome decoding problem". In: Advances in Mathematics of Communications (2019). DOI: 10.3934/amc.2022029.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given $H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$, find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L(e) = t and $s = eH^{\top}$.

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
 - \longrightarrow Originally introduced by Prange in 1961 using linear transformations
 - \longrightarrow Recent improvements: using partial Gaussian elimination
 - ... Representation technique or Wagner's approach
 - ... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
 - ... Wagner's approach is fastest in the Lee metric (amortized)
- The cost of an ISD algorithm is given by

 $\underbrace{\text{nr. of iterations}}_{1 \atop \text{success probability per iter.}} \times \text{cost per iteration}$

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

2. Transform the syndrome equation accordingly to

$$\begin{pmatrix} e_1 & e_2 \end{pmatrix} U H^\top = \begin{pmatrix} s_1 & s_2 \end{pmatrix} = s U$$

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

2. Transform the syndrome equation accordingly to

$$\begin{pmatrix} e_1 & e_2 \end{pmatrix} U H^{ op} = \begin{pmatrix} s_1 & s_2 \end{pmatrix} = s U$$

3. Assume, $wt_L(e_1) = t - v$ and $wt_L(e_2) = v$. Hence, we need to solve

$$e_1 + e_2 A^\top = s_1$$
$$e_2 B^\top = s_2$$

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

2. Transform the syndrome equation accordingly to

$$\begin{pmatrix} e_1 & e_2 \end{pmatrix} U H^\top = \begin{pmatrix} s_1 & s_2 \end{pmatrix} = s U$$

3. Assume, $wt_L(e_1) = t - v$ and $wt_L(e_2) = v$. Hence, we need to solve

$$e_1 + e_2 A^\top = s_1$$

 $e_2 B^\top = s_2$

4. Solve the smaller instance of the LSDP. Immediately check whether $e_1 = s_1 - e_2 A^{\top}$ has Lee weight t - v.

14.06.22

Solving the Smaller Instance - Finding e2

Focus on $e_2 B^{\top} = s_2$, with wt_L(e_2) = v

14.06.22

Solving the Smaller Instance - Finding e2

Focus on $e_2 B^{\top} = s_2$, with wt_L $(e_2) = v$

Stern/Dumer

Represent e₂ as

$$e_2 = y_1 + y_2$$

where $wt_L(y_1) = wt_L(y_2) = v/2$.

Solving the Smaller Instance - Finding e2

Focus on $e_2 B^{\top} = s_2$, with wt_L(e_2) = v

Stern/Dumer

Represent e₂ as

$$e_2 = y_1 + y_2$$

where $wt_L(y_1) = wt_L(y_2) = v/2$.

• Enumerate the following sets

$$\begin{split} \mathcal{L}_1 &:= \left\{ y_1 B_1^\top \mid \operatorname{wt}(y_1) = v/2 \right\} \\ \mathcal{L}_2 &:= \left\{ y_2 B_2^\top \mid \operatorname{wt}(y_2) = v/2 \right\} \end{split}$$

14.06.22

14.06.22

Solving the Smaller Instance - Finding e2

Focus on $e_2 B^{\top} = s_2$, with wt_L $(e_2) = v$

BJMM

Represent e₂ as

 $e_2 = y_1 + y_2$,

where $\operatorname{wt}_{L}(y_{1}) = \operatorname{wt}_{L}(y_{2}) = v/2 + \varepsilon$.

• Enumerate the following sets

$$\begin{split} \mathcal{L}_1 &:= \left\{ y_1 B_1^\top \mid \operatorname{wt}(y_1) = v/2 + \varepsilon \right\} \\ \mathcal{L}_2 &:= \left\{ y_2 B_2^\top \mid \operatorname{wt}(y_2) = v/2 + \varepsilon \right\} \end{split}$$

Note: The two vectors $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ share ε nonzero positions. The expected weight of $y_1 + y_2$ is still v.

Outline

Preliminaries and Motivation

- 2 The Lee Channel and its Properties
- 3 Information Set Decoding

Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Focus on the small instance of the Lee syndrome decoding problem.

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. $wt_L(e_2) = v$ and $s_2 = e_2B^{\top}$.

Focus on the small instance of the Lee syndrome decoding problem.

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

Main Idea and Difference

• Use the marginal distribution, i.e.,

Focus on the small instance of the Lee syndrome decoding problem.

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. $wt_L(e_2) = v$ and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.

Focus on the small instance of the Lee syndrome decoding problem.

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true

Focus on the small instance of the Lee syndrome decoding problem.

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. $wt_L(e_2) = v$ and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true
- With high probability the least probable entries of *e* lie **outside** the information set, hence are not in *e*₂.

Focus on the small instance of the Lee syndrome decoding problem.

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true
- With high probability the least probable entries of *e* lie **outside** the information set, hence are not in *e*₂.
- We will restrict e₂ to live either in {0, ±1,..., ±r}^{k+ℓ} or in {±r,..., ±M}^{k+ℓ}, respectively.

$$\mathcal{B}_{i} = \left\{ \nu(\mathbf{x}) \mid \mathbf{x}_{\mathcal{E}_{i}^{\mathcal{C}}} \in \{0, \dots, \pm r\}^{(k+\ell-\varepsilon)/2}, \operatorname{wt}_{\mathsf{L}}(\mathbf{x}_{\mathcal{E}_{i}^{\mathcal{C}}}) = \nu/4, \mathbf{x}_{\mathcal{E}_{i}} \in \left(\mathbb{Z}/\rho^{\mathsf{S}}\mathbb{Z}\right)^{\varepsilon/2}, \nu \in S_{(k+\ell)/2} \right\}$$

Decoding Beyond the Minimum Distance

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in \mathcal{B}_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{ op} = 0$$
 and $y_2 B^{ op} = s_2$

14.06.22

Bounded Minimum Distance Decoding - BJMM Approach

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in \mathcal{B}_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1B^{ op}=0 \mbox{ and } y_2B^{ op}=s_2$$

2. Store them in a list \mathcal{L}_i .

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in \mathcal{B}_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{ op} = 0$$
 and $y_2 B^{ op} = s_2$

- 2. Store them in a list \mathcal{L}_i .
- **3**. For each $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ check that

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in \mathcal{B}_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{\top} = 0$$
 and $y_2 B^{\top} = s_2$

- 2. Store them in a list \mathcal{L}_i .
- 3. For each $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ check that a) the smaller instance is solved

 $s_2 = (y_1 + y_2)B^{\top}$ and $wt_L(y_1 + y_2) = v$,

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in B_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{\top} = 0$$
 and $y_2 B^{\top} = s_2$

- 2. Store them in a list \mathcal{L}_i .
- For each y₁ ∈ L₁ and y₂ ∈ L₂ check that
 a) the smaller instance is solved

$$s_2 = (y_1 + y_2)B^{\top}$$
 and $\operatorname{wt}_L(y_1 + y_2) = v$,

b) the original LSDP is fulfilled as well

$$\mathsf{wt}_{\mathsf{L}}(s_1 - (y_1 + y_2)A^{\top}) = t - v$$

Comparison - Bounded Minimum Distance Decoding in $\mathbb{Z}/47\mathbb{Z}$

¹André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: *International Conference on Post-Quantum Cryptography*. Springer. 2021, pp. 44–62.

Comparison - Bounded Minimum Distance Decoding in $\mathbb{Z}/47\mathbb{Z}$

Thank you for your attention!

¹André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: *International Conference on Post-Quantum Cryptography*. Springer. 2021, pp. 44–62.

Frame Title

