
Coding Theory and Cryptography:
A Conference in Honor of Joachim Rosenthal’s 60th Birthday

The Marginal Distribution of the Lee Channel
and its Applications

Jessica Bariffi

joint work with Hannes Bartz and Gianluigi Liva
and with Karan Khathuria (UT) and Violetta Weger (TUM)

Institute of Communications and Navigation
German Aerospace Center, DLR



Outline

1 Preliminaries and Motivation

2 The Lee Channel and its Properties

3 Information Set Decoding

4 Information Set Decoding using Restricted Spheres
Bounded Minimum Distance Decoding
Decoding Beyond the Minimum Distance



Outline

1 Preliminaries and Motivation

2 The Lee Channel and its Properties

3 Information Set Decoding

4 Information Set Decoding using Restricted Spheres
Bounded Minimum Distance Decoding
Decoding Beyond the Minimum Distance



Page 1/15 Jessica Bariffi · Preliminaries and Motivation 14.06.22

Syndrome Decoding Problem

Assume we send a codeword x ∈ C and receive a vector y = x + e ∈ (Z/psZ)n.

Syndrome Decoding Problem

Given an (n − k)× n parity-check matrix H of C and a syndrome s = yH⊤, find the
length-n vector e such that

s = eH⊤ and wt(e) = t .

• The security of the McEliece cryptosystem relies on the hardness of the
syndrome decoding problem
◦ Is an NP-hard problem (in the Hamming metric, Lee metric, . . . )
◦ generic decoding has a large cost in the Lee metric

• Has a unique solution for a relatively small weight (w.r.t. the GV bound)
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Ring-Linear Codes

Let p a prime number and s and n two positive integers.

Definition

A linear code C ⊆ (Z/psZ)n is a Z/psZ-submodule of (Z/psZ)n.

Parameters:

• n is called the length of C
• k := logps | C | is the Z/psZ-dimension of C
• R := k/n denotes the rate of C.
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The Lee Metric

Definition

For a ∈ Z/psZ and e = (e1, . . . , en) ∈ (Z/psZ)n we define their Lee weight,
respectively, by

wtL(a) := min(a,
∣∣ ps − a

∣∣),
wtL(e) :=

n∑
i=1

wtL(ei ).

Example over Z/5Z
• 0 : wtL(0) = 0
• 1 : wtL(1) = 1
• 2 : wtL(2) = 2
• 3 : wtL(3) = 2
• 4 : wtL(4) = 1

Properties:

For every a ∈ Z/psZ and e ∈ (Z/psZ)n

• wtL(a) = wtL(| ps − a |)
• wtH(a) ≤ wtL(a) ≤ ⌊ps/2⌋ =: M
• wtH(e) ≤ wtL(e) ≤ nM
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The Constant-Weight Lee Channel

Take a linear code C ⊂ (Z/psZ)n.

Encoder Channel

Introduce an error, i.e., we add to x

e = (e1, . . . , en) ∈ (Z/psZ)n

Decoder
Message x ∈ C y ∈ (Z/psZ)n decoded message

Here: Take e uniformly at random from e ∈ S(n)
t,ps :=

{
z ∈ (Z/psZ)n

∣∣ wtL(z) = t
}

.

Question: What can we say about the entries of the error term?

Lemma

Let a ∈ Z/psZ be chosen uniformly at random. Then

δps := E(wtL(a)) =

 (ps)2−1
4ps if ps is odd,

ps

4 if ps is even.
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The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is T := limn→∞
t(n)

n . For every
i ∈ Z/psZ the marginal distribution of E is given by

pi := P(E = i) =
1∑ps−1

j=0 exp(−β wtL(j))
exp (−βi)

where β is the solution to T =
∑M

i=0 wtL(i)pi .

Note T < δps ⇐⇒ β > 0
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1“On the Properties of Error Patterns in the Constant Lee Weight Channel”. In: International Zurich Seminar on
Information and Communication (IZS). 2022, pp. 44–48.
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The Marginal Distribution - Example over Z/47Z
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Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given H ∈ (Z/psZ)(n−k)×n , s ∈ (Z/psZ)n−k and t ∈ N,
find e ∈ (Z/psZ)n s.t. wtL(e) = t and s = eH⊤.

• Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
−→ Originally introduced by Prange in 1961 using linear transformations
−→ Recent improvements: using partial Gaussian elimination

. . . Representation technique or Wagner’s approach

. . . BJMM on 2 Levels is fastest in the Lee metric (non-amortized)

. . . Wagner’s approach is fastest in the Lee metric (amortized)
• The cost of an ISD algorithm is given by

nr. of iterations︸ ︷︷ ︸
1

success probability per iter.

× cost per iteration
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https://doi.org/10.3934/amc.2022029


Page 7/15 Jessica Bariffi · Information Set Decoding 14.06.22

Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given H ∈ (Z/psZ)(n−k)×n , s ∈ (Z/psZ)n−k and t ∈ N,
find e ∈ (Z/psZ)n s.t. wtL(e) = t and s = eH⊤.

• Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
−→ Originally introduced by Prange in 1961 using linear transformations
−→ Recent improvements: using partial Gaussian elimination

. . . Representation technique or Wagner’s approach

. . . BJMM on 2 Levels is fastest in the Lee metric (non-amortized)

. . . Wagner’s approach is fastest in the Lee metric (amortized)
• The cost of an ISD algorithm is given by

nr. of iterations︸ ︷︷ ︸
1

success probability per iter.

× cost per iteration



Page 8/15 Jessica Bariffi · Information Set Decoding 14.06.22

General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find U ∈ GLn−k (Z/psZ) such that

UH⊤ =

(
In−k−ℓ 0

A⊤ B⊤

)

2. Transform the syndrome equation accordingly to(
e1 e2

)
UH⊤ =

(
s1 s2

)
= sU

3. Assume, wtL(e1) = t − v and wtL(e2) = v . Hence, we need to solve

e1 + e2A⊤= s1

e2B⊤= s2

4. Solve the smaller instance of the LSDP. Immediately check whether
e1 = s1 − e2A⊤ has Lee weight t − v .
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Solving the Smaller Instance - Finding e2

Focus on e2B⊤ = s2, with wtL(e2) = v

• Represent e2 as

e2 = y1 + y2,

where
wtL(y1) = wtL(y2) = v/2.

• Enumerate the following sets

L1 :=
{

y1B⊤
1 | wt(y1) = v/2

}
L2 :=

{
y2B⊤

2 | wt(y2) = v/2
}

e2

B⊤

B⊤
1

B⊤
2

︸ ︷︷ ︸
+

weight = v/2

weight = v/2

︸ ︷︷ ︸
+

y1

y2

Note: The two vectors y1 ∈ L1 and y2 ∈ L2 share ε nonzero positions. The expected
weight of y1 + y2 is still v .
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New Idea: Using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem.

Given B ∈ (Z/psZ)ℓ×(k+ℓ) , s2 ∈ (Z/psZ)ℓ and v , t ∈ N

find e2 ∈ (Z/psZ)k+ℓ s.t. wtL(e2) = v and s2 = e2B⊤.

Main Idea and Difference

• Use the marginal distribution, i.e.,

◦ for t/n < M/2, with high probability 0 is the most likely Lee weight in e,
followed by the Lee weight 1 until the least likely Lee weight M.

◦ for t/n > M/2 the contrary is true

• With high probability the least probable entries of e lie outside the information
set, hence are not in e2.

• We will restrict e2 to live either in {0,±1, . . . ,±r}k+ℓ or in {±r , . . . ,±M}k+ℓ,
respectively.
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Bounded Minimum Distance Decoding - Representation of e2

e2

k + ℓ

︸ ︷︷ ︸v

supp(e2) ∈ {±1, . . . ,±r}| supp(e2) |

=

y1

+

v/4

ε/2

︸ ︷︷ ︸
x (1)

1

v/4

ε/2

︸ ︷︷ ︸
x (1)

2

y2 v/4

ε/2

︸ ︷︷ ︸
x (2)

1

v/4

ε/2

︸ ︷︷ ︸
x (2)

2

Bi =

{
ν(x) | xEc

i
∈ {0, . . . ,±r}(k+ℓ−ε)/2

,wtL(xEc
i
) = v/4, xEi

∈
(
Z/psZ

)ε/2
, ν ∈ S(k+ℓ)/2

}



Page 11/15 Jessica Bariffi · Information Set Decoding using Restricted Spheres 14.06.22

Bounded Minimum Distance Decoding - Representation of e2

e2

k + ℓ

︸ ︷︷ ︸v

supp(e2) ∈ {±1, . . . ,±r}| supp(e2) |=

y1

+

v/4

ε/2

︸ ︷︷ ︸
x (1)

1

v/4

ε/2

︸ ︷︷ ︸
x (1)

2

y2 v/4

ε/2

︸ ︷︷ ︸
x (2)

1

v/4

ε/2

︸ ︷︷ ︸
x (2)

2

Bi =

{
ν(x) | xEc

i
∈ {0, . . . ,±r}(k+ℓ−ε)/2

,wtL(xEc
i
) = v/4, xEi

∈
(
Z/psZ

)ε/2
, ν ∈ S(k+ℓ)/2

}



Page 11/15 Jessica Bariffi · Information Set Decoding using Restricted Spheres 14.06.22

Bounded Minimum Distance Decoding - Representation of e2

e2

k + ℓ

︸ ︷︷ ︸v

supp(e2) ∈ {±1, . . . ,±r}| supp(e2) |=

y1

+

v/4

ε/2

︸ ︷︷ ︸
x (1)

1

v/4

ε/2

︸ ︷︷ ︸
x (1)

2

y2 v/4

ε/2

︸ ︷︷ ︸
x (2)

1

v/4

ε/2

︸ ︷︷ ︸
x (2)

2

Bi =

{
ν(x) | xEc

i
∈ {0, . . . ,±r}(k+ℓ−ε)/2

,wtL(xEc
i
) = v/4, xEi

∈
(
Z/psZ

)ε/2
, ν ∈ S(k+ℓ)/2

}



Page 11/15 Jessica Bariffi · Information Set Decoding using Restricted Spheres 14.06.22

Bounded Minimum Distance Decoding - Representation of e2

e2

k + ℓ

︸ ︷︷ ︸v

supp(e2) ∈ {±1, . . . ,±r}| supp(e2) |=

y1

+

v/4

ε/2

︸ ︷︷ ︸
x (1)

1

v/4

ε/2

︸ ︷︷ ︸
x (1)

2

y2 v/4

ε/2

︸ ︷︷ ︸
x (2)

1

v/4

ε/2

︸ ︷︷ ︸
x (2)

2

Bi =

{
ν(x) | xEc

i
∈ {0, . . . ,±r}(k+ℓ−ε)/2

,wtL(xEc
i
) = v/4, xEi

∈
(
Z/psZ

)ε/2
, ν ∈ S(k+ℓ)/2

}



Page 12/15 Jessica Bariffi · Information Set Decoding using Restricted Spheres 14.06.22

Decoding Beyond the Minimum Distance

e2

ε

(v − εM)/2︸ ︷︷ ︸
Lee weights in {r , . . . ,M}
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Bounded Minimum Distance Decoding - BJMM Approach

Recall, s2 = e2B⊤, where e2 = y1 + y2 = (x (1)
1 , x (1)

2 ) + (x (2)
1 , x (2)

2 ).

1. Splitting B = (B1 B2), for i = 1, 2 concatenate all x (i)
1 , x (i)

2 ∈ Bi satisfying

x (1)
1 B⊤

1 =u −x (1)
2 B⊤

2 ,

x (2)
1 B⊤

1 =u s2 − x (2)
2 B⊤

2 .

They imply the syndrome equations for y1 and y2, respectively.

y1B⊤ = 0 and y2B⊤ = s2

2. Store them in a list Li .

3. For each y1 ∈ L1 and y2 ∈ L2 check that

a) the smaller instance is solved
s2 = (y1 + y2)B⊤ and wtL(y1 + y2) = v ,

b) the original LSDP is fulfilled as well
wtL(s1 − (y1 + y2)A⊤) = t − v
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Comparison - Bounded Minimum Distance Decoding in Z/47Z

1

Algorithm e(R∗, ps) R∗

Lee-BJMM 0.1618 0.451
Restricted Lee-BJMM for r = 5 0.1539 0.408

Amortized Lee-BJMM 0.1205 0.396
Amortized Restricted Lee-BJMM 0.1189 0.406

Amortized Lee-Wagner 0.1441 0.445
Amortized Restricted Lee-Wagner 0.1441 0.445

Thank you for your attention!

1André Chailloux, Thomas Debris-Alazard, and Simona Etinski. “Classical and Quantum algorithms for generic
Syndrome Decoding problems and applications to the Lee metric”. In: International Conference on Post-Quantum
Cryptography. Springer. 2021, pp. 44–62.
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