The Marginal Distribution of the Lee Channel and its Applications

Jessica Bariffi

joint work with Hannes Bartz and Gianluigi Liva and with Karan Khathuria (UT) and Violetta Weger (TUM)
Institute of Communications and Navigation
German Aerospace Center, DLR

Outline

(1) Preliminaries and Motivation
(2) The Lee Channel and its Properties
(3) Information Set Decoding
(4) Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Outline

(1) Preliminaries and Motivation
(2) The Lee Channel and its Properties
(3) Information Set Decoding

4 Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Syndrome Decoding Problem

Assume we send a codeword $x \in \mathcal{C}$ and receive a vector $y=x+e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Syndrome Decoding Problem

Given an $(n-k) \times n$ parity-check matrix H of \mathcal{C} and a syndrome $s=y H^{\top}$, find the length- n vector e such that

$$
s=e H^{\top} \quad \text { and } \quad w t(e)=t
$$

Syndrome Decoding Problem

Assume we send a codeword $x \in \mathcal{C}$ and receive a vector $y=x+e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Syndrome Decoding Problem

Given an $(n-k) \times n$ parity-check matrix H of \mathcal{C} and a syndrome $s=y H^{\top}$, find the length- n vector e such that

$$
s=e H^{\top} \quad \text { and } \quad w t(e)=t
$$

- The security of the McEliece cryptosystem relies on the hardness of the syndrome decoding problem
- Is an NP-hard problem (in the Hamming metric, Lee metric, ...)
- generic decoding has a large cost in the Lee metric

Syndrome Decoding Problem

Assume we send a codeword $x \in \mathcal{C}$ and receive a vector $y=x+e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Syndrome Decoding Problem

Given an $(n-k) \times n$ parity-check matrix H of \mathcal{C} and a syndrome $s=y H^{\top}$, find the length- n vector e such that

$$
s=e H^{\top} \quad \text { and } \quad w t(e)=t
$$

- The security of the McEliece cryptosystem relies on the hardness of the syndrome decoding problem
- Is an NP-hard problem (in the Hamming metric, Lee metric, ...)
- generic decoding has a large cost in the Lee metric
- Has a unique solution for a relatively small weight (w.r.t. the GV bound)

Ring-Linear Codes

Let p a prime number and s and n two positive integers.
Definition
A linear code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ is a $\mathbb{Z} / p^{s} \mathbb{Z}$-submodule of $\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Ring-Linear Codes

Let p a prime number and s and n two positive integers.

Definition

A linear code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ is a $\mathbb{Z} / p^{s} \mathbb{Z}$-submodule of $\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Parameters:

- n is called the length of \mathcal{C}
- $k:=\log _{p^{s}}|\mathcal{C}|$ is the $\mathbb{Z} / p^{s} \mathbb{Z}$-dimension of \mathcal{C}
- $R:=k / n$ denotes the rate of \mathcal{C}.

The Lee Metric

Definition

For $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ and $e=\left(e_{1}, \ldots, e_{n}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ we define their Lee weight, respectively, by

$$
\begin{aligned}
w t_{\mathrm{L}}(a) & :=\min \left(a,\left|p^{s}-a\right|\right) \\
w t_{\mathrm{L}}(e) & :=\sum_{i=1}^{n} w t_{\mathrm{L}}\left(e_{i}\right)
\end{aligned}
$$

The Lee Metric

Definition

For $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ and $e=\left(e_{1}, \ldots, e_{n}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ we define their Lee weight, respectively, by

$$
\begin{aligned}
w t_{\mathrm{L}}(a) & :=\min \left(a,\left|p^{s}-a\right|\right) \\
\mathrm{wt}_{\mathrm{L}}(e) & :=\sum_{i=1}^{n} w t_{\mathrm{L}}\left(e_{i}\right)
\end{aligned}
$$

Example over $\mathbb{Z} / 5 \mathbb{Z}$

- $0: w_{L}(0)=0$
- $1: ~ w t_{L}(1)=1$
- $2: w_{\mathrm{L}}(2)=2$
- 3: $w t_{\mathrm{L}}(3)=2$
- 4: $w t_{L}(4)=1$

The Lee Metric

Definition

For $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ and $e=\left(e_{1}, \ldots, e_{n}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ we define their Lee weight, respectively, by

$$
\begin{aligned}
\mathrm{wt}_{\mathrm{L}}(a) & :=\min \left(a,\left|p^{s}-a\right|\right) \\
\mathrm{wt}_{\mathrm{L}}(e) & :=\sum_{i=1}^{n} \mathrm{wt}_{\mathrm{L}}\left(e_{i}\right)
\end{aligned}
$$

Example over $\mathbb{Z} / 5 \mathbb{Z}$

- $0: w t_{L}(0)=0$
- 1: $w t_{L}(1)=1$
- $2: w t_{L}(2)=2$
- 3: $w t_{L}(3)=2$
- 4: $w t_{L}(4)=1$

Properties:

For every $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ and $e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$

- $w t_{\mathrm{L}}(a)=w t_{\mathrm{L}}\left(\left|p^{s}-a\right|\right)$
- $w t_{\mathrm{H}}(a) \leq w t_{\mathrm{L}}(a) \leq\left\lfloor p^{s} / 2\right\rfloor=: M$
- $w t_{H}(e) \leq w t_{\mathrm{L}}(e) \leq n M$

Outline

(1) Preliminaries and Motivation

2 The Lee Channel and its Properties
(3) Information Set Decoding

4 Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

The Constant-Weight Lee Channel

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Here: Take e uniformly at random from $e \in \mathcal{S}_{t, p^{s}}^{(n)}:=\left\{z \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid w_{\mathrm{L}}(z)=t\right\}$.

The Constant-Weight Lee Channel

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Here: Take e uniformly at random from $e \in \mathcal{S}_{t, p^{s}}^{(n)}:=\left\{z \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid w_{\mathrm{L}}(z)=t\right\}$.
Question: What can we say about the entries of the error term?

The Constant-Weight Lee Channel

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Here: Take e uniformly at random from $e \in \mathcal{S}_{t, p^{s}}^{(n)}:=\left\{z \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid w t_{L}(z)=t\right\}$.
Question: What can we say about the entries of the error term?

Lemma

Let $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ be chosen uniformly at random. Then

$$
\delta_{p^{s}}:=\mathbb{E}\left(w t_{\mathrm{L}}(a)\right)= \begin{cases}\frac{\left(p^{s}\right)^{2}-1}{4 p^{s}} & \text { if } p^{s} \text { is odd } \\ \frac{p^{s}}{4} & \text { if } p^{s} \text { is even. }\end{cases}
$$

The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T:=\lim _{n \rightarrow \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z} / p^{s} \mathbb{Z}$ the marginal distribution of E is given by

$$
p_{i}:=\mathbb{P}(E=i)=\frac{1}{\sum_{j=0}^{p^{s}-1} \exp \left(-\beta w t_{\mathrm{L}}(j)\right)} \exp (-\beta i)
$$

where β is the solution to $T=\sum_{i=0}^{M} w \mathrm{t}_{\mathrm{L}}(i) p_{i}$.
1

[^0]

The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T:=\lim _{n \rightarrow \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z} / p^{s} \mathbb{Z}$ the marginal distribution of E is given by

$$
p_{i}:=\mathbb{P}(E=i)=\frac{1}{\sum_{j=0}^{p^{s}-1} \exp \left(-\beta w t_{\mathrm{L}}(j)\right)} \exp (-\beta i)
$$

where β is the solution to $T=\sum_{i=0}^{M} w_{\mathrm{L}}(i) p_{i}$.
Note $T<\delta_{p s} \Longleftrightarrow \beta>0$

The Marginal Distribution - Example over $\mathbb{Z} / 47 \mathbb{Z}$

Outline

(1) Preliminaries and Motivation
(2) The Lee Channel and its Properties
(3) Information Set Decoding
(4) Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt }(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt }(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP

Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. } \mathrm{wt}_{\mathrm{L}}(e)=t \text { and } s=e H^{\top}
\end{aligned}
$$

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP \longrightarrow Originally introduced by Prange in 1961 using linear transformations

Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt }(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP \longrightarrow Originally introduced by Prange in 1961 using linear transformations
\longrightarrow Recent improvements: using partial Gaussian elimination ${ }^{1}$

[^1]

Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt } t_{\mathrm{L}}(e)=t \text { and } s=e H^{\top}
\end{aligned}
$$

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
\longrightarrow Originally introduced by Prange in 1961 using linear transformations
\longrightarrow Recent improvements: using partial Gaussian elimination
... Representation technique ${ }^{1}$ or Wagner's approach ${ }^{2}$

[^2]

Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt }(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP
\longrightarrow Originally introduced by Prange in 1961 using linear transformations
\longrightarrow Recent improvements: using partial Gaussian elimination
... Representation technique or Wagner's approach
... BJMM on 2 Levels is fastest in the Lee metric (non-amortized) ${ }^{1}$
... Wagner's approach is fastest in the Lee metric (amortized) ${ }^{2}$

[^3]

Information Set Decoding in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt }(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information Set Decoding (ISD) are the fastest yet known attacks to the LSDP \longrightarrow Originally introduced by Prange in 1961 using linear transformations
\longrightarrow Recent improvements: using partial Gaussian elimination
... Representation technique or Wagner's approach
... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
... Wagner's approach is fastest in the Lee metric (amortized)
- The cost of an ISD algorithm is given by

General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in G L_{n-k}\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)$ such that

$$
U H^{\top}=\left(\begin{array}{cc}
\mathbb{I}_{n-k-\ell} & 0 \\
A^{\top} & B^{\top}
\end{array}\right)
$$

General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in G L_{n-k}\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)$ such that

$$
U H^{\top}=\left(\begin{array}{cc}
\mathbb{I}_{n-k-\ell} & 0 \\
A^{\top} & B^{\top}
\end{array}\right)
$$

2. Transform the syndrome equation accordingly to

$$
\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right) U H^{\top}=\left(\begin{array}{ll}
s_{1} & s_{2}
\end{array}\right)=s U
$$

General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in G L_{n-k}\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)$ such that

$$
U H^{\top}=\left(\begin{array}{cc}
\mathbb{I}_{n-k-\ell} & 0 \\
A^{\top} & B^{\top}
\end{array}\right)
$$

2. Transform the syndrome equation accordingly to

$$
\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right) U H^{\top}=\left(\begin{array}{ll}
s_{1} & s_{2}
\end{array}\right)=s U
$$

3. Assume, $w t_{\mathrm{L}}\left(e_{1}\right)=t-v$ and $w t_{\mathrm{L}}\left(e_{2}\right)=v$. Hence, we need to solve

$$
\begin{aligned}
e_{1}+e_{2} A^{\top} & =s_{1} \\
e_{2} B^{\top} & =s_{2}
\end{aligned}
$$

General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \mathrm{GL}_{n-k}\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)$ such that

$$
U H^{\top}=\left(\begin{array}{cc}
\mathbb{I}_{n-k-\ell} & 0 \\
A^{\top} & B^{\top}
\end{array}\right)
$$

2. Transform the syndrome equation accordingly to

$$
\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right) U H^{\top}=\left(\begin{array}{ll}
s_{1} & s_{2}
\end{array}\right)=s U
$$

3. Assume, $w t_{\mathrm{L}}\left(e_{1}\right)=t-v$ and $w t_{\mathrm{L}}\left(e_{2}\right)=v$. Hence, we need to solve

$$
\begin{aligned}
e_{1}+e_{2} A^{\top} & =s_{1} \\
e_{2} B^{\top} & =s_{2}
\end{aligned}
$$

4. Solve the smaller instance of the LSDP. Immediately check whether $e_{1}=s_{1}-e_{2} A^{\top}$ has Lee weight $t-v$.

Solving the Smaller Instance - Finding e_{2}

Focus on $e_{2} B^{\top}=s_{2}$, with wt $t_{L}\left(e_{2}\right)=v$
\square

Solving the Smaller Instance - Finding e_{2}

Focus on $e_{2} B^{\top}=s_{2}$, with wt $\left(e_{2}\right)=v$
Stern/Dumer

- Represent e_{2} as

$$
e_{2}=y_{1}+y_{2},
$$

where
$w t_{L}\left(y_{1}\right)=w t_{L}\left(y_{2}\right)=v / 2$.

Solving the Smaller Instance - Finding e_{2}

Focus on $e_{2} B^{\top}=s_{2}$, with $w t_{L}\left(e_{2}\right)=v$
Stern/Dumer

- Represent e_{2} as

$$
e_{2}=y_{1}+y_{2},
$$

where
$w t_{\mathrm{L}}\left(y_{1}\right)=w \mathrm{t}_{\mathrm{L}}\left(y_{2}\right)=v / 2$.

- Enumerate the following sets

$$
\begin{aligned}
\mathcal{L}_{1} & :=\left\{y_{1} B_{1}^{\top} \mid \operatorname{wt}\left(y_{1}\right)=v / 2\right\} \\
\mathcal{L}_{2} & :=\left\{y_{2} B_{2}^{\top} \mid \operatorname{wt}\left(y_{2}\right)=v / 2\right\}
\end{aligned}
$$

Solving the Smaller Instance - Finding e_{2}

Focus on $e_{2} B^{\top}=s_{2}$, with $w t_{L}\left(e_{2}\right)=v$
BJMM

- Represent e_{2} as

$$
e_{2}=y_{1}+y_{2},
$$

where

$$
w t_{\mathrm{L}}\left(y_{1}\right)=w \mathrm{t}_{\mathrm{L}}\left(y_{2}\right)=v / 2+\varepsilon .
$$

- Enumerate the following sets

$$
\begin{aligned}
& \mathcal{L}_{1}:=\left\{y_{1} B_{1}^{\top} \mid \operatorname{wt}\left(y_{1}\right)=v / 2+\varepsilon\right\} \\
& \mathcal{L}_{2}:=\left\{y_{2} B_{2}^{\top} \mid \operatorname{wt}\left(y_{2}\right)=v / 2+\varepsilon\right\}
\end{aligned}
$$

Note: The two vectors $y_{1} \in \mathcal{L}_{1}$ and $y_{2} \in \mathcal{L}_{2}$ share ε nonzero positions. The expected weight of $y_{1}+y_{2}$ is still v.

Outline

(1) Preliminaries and Motivation

2 The Lee Channel and its Properties
(3) Information Set Decoding
(4) Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

New Idea: Using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem.

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt }\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top} .
\end{aligned}
$$

New Idea: Using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem.

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } \mathrm{L}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top} .
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,

New Idea: Using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem.

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } \mathrm{L}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top} .
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,
- for $t / n<M / 2$, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1 until the least likely Lee weight M.

New Idea: Using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem.

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } t_{L}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top} .
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,
- for $t / n<M / 2$, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1 until the least likely Lee weight M.
- for $t / n>M / 2$ the contrary is true

New Idea: Using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem.

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } \mathrm{L}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top} .
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,
- for $t / n<M / 2$, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1 until the least likely Lee weight M.
- for $t / n>M / 2$ the contrary is true
- With high probability the least probable entries of e lie outside the information set, hence are not in e_{2}.

New Idea: Using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem.

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } \mathrm{L}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top} .
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,
- for $t / n<M / 2$, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1 until the least likely Lee weight M.
- for $t / n>M / 2$ the contrary is true
- With high probability the least probable entries of e lie outside the information set, hence are not in e_{2}.
- We will restrict e_{2} to live either in $\{0, \pm 1, \ldots, \pm r\}^{k+\ell}$ or in $\{ \pm r, \ldots, \pm M\}^{k+\ell}$, respectively.

Bounded Minimum Distance Decoding - Representation of e_{2}

Bounded Minimum Distance Decoding - Representation of e_{2}

Bounded Minimum Distance Decoding - Representation of e_{2}

Bounded Minimum Distance Decoding - Representation of e_{2}

Decoding Beyond the Minimum Distance

Bounded Minimum Distance Decoding - BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

Bounded Minimum Distance Decoding - BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

Bounded Minimum Distance Decoding - BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

2. Store them in a list \mathcal{L}_{i}.

Bounded Minimum Distance Decoding - BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

2. Store them in a list \mathcal{L}_{i}.
3. For each $y_{1} \in \mathcal{L}_{1}$ and $y_{2} \in \mathcal{L}_{2}$ check that

Bounded Minimum Distance Decoding - BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

2. Store them in a list \mathcal{L}_{i}.
3. For each $y_{1} \in \mathcal{L}_{1}$ and $y_{2} \in \mathcal{L}_{2}$ check that
a) the smaller instance is solved

$$
s_{2}=\left(y_{1}+y_{2}\right) B^{\top} \text { and } w t_{\mathrm{L}}\left(y_{1}+y_{2}\right)=v,
$$

Bounded Minimum Distance Decoding - BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

2. Store them in a list \mathcal{L}_{i}.
3. For each $y_{1} \in \mathcal{L}_{1}$ and $y_{2} \in \mathcal{L}_{2}$ check that
a) the smaller instance is solved

$$
s_{2}=\left(y_{1}+y_{2}\right) B^{\top} \text { and } w t_{\mathrm{L}}\left(y_{1}+y_{2}\right)=v,
$$

b) the original LSDP is fulfilled as well

$$
\mathrm{wt}_{\mathrm{L}}\left(s_{1}-\left(y_{1}+y_{2}\right) A^{\top}\right)=t-v
$$

Comparison - Bounded Minimum Distance Decoding in $\mathbb{Z} / 47 \mathbb{Z}$

[^4]

Comparison - Bounded Minimum Distance Decoding in $\mathbb{Z} / 47 \mathbb{Z}$

Algorithm	$e\left(R^{*}, p^{s}\right)$	R^{*}
Lee-BJMM	0.1618	0.451
Restricted Lee-BJMM for $r=5$	0.1539	0.408
Amortized Lee-BJMM	0.1205	0.396
Amortized Restricted Lee-BJMM	0.1189	0.406
Amortized Lee-Wagner	0.1441	0.445
Amortized Restricted Lee-Wagner	0.1441	0.445

Thank you for your attention!

[^5]

Frame Title

[^0]: 1 "On the Properties of Error Patterns in the Constant Lee Weight Channel". In: International Zurich Seminar on Information and Communication (IZS). 2022, pp. 44-48.

[^1]: ${ }^{1}$ Matthieu Finiasz and Nicolas Sendrier. "Security bounds for the design of code-based cryptosystems". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2009, pp. 88-105.

[^2]: ${ }^{1}$ Anja Becker et al. "Decoding random binary linear codes in $2^{n / 20}$: How 1+1=0 improves information set decoding". In: Annual international conference on the theory and applications of cryptographic techniques. Springer. 2012, pp. 520-536.
 ${ }^{2}$ Alexander May, Alexander Meurer, and Enrico Thomae. "Decoding Random Linear Codes in $\tilde{\mathcal{O}}\left(2^{0.054 n}\right)$ ". In: Internatinnal Conference on the Thenrv and Annlication of Crvntnlncv and Information Securitv Snrinner 2011

[^3]: ${ }^{1}$ Violetta Weger et al. "On the hardness of the Lee syndrome decoding problem". In: Advances in Mathematics of Communications (2019). DOI: 10.3934 /amc. 2022029.
 ${ }^{2}$ André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Crvntonranhv Snrincer 2021 nn 44-6?

[^4]: ${ }^{1}$ André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44-62.

[^5]: ${ }^{1}$ André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44-62.

