19.10.2021 Eindhoven University of Technology (TU/e)

Analysis and Properties of Error Patterns in the Lee Channel

Knowledge for Tomorrow

Jessica Bariffi

German Aerospace Center (DLR) & University of Zurich

joint work with Hannes Bartz, Gianluigi Liva and Joachim Rosenthal

Outline

Scalar Multiplication in the Lee Metric

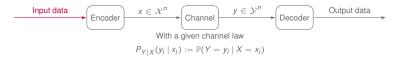
Outline

2 The Lee Channel

3 Error Pattern Construction

19.10.21

Channel Coding

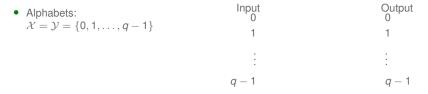


19.10.21

Channel Coding

Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.

Example: q-ary Symmetric Channel (qSC)



Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.

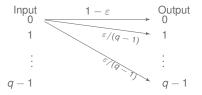
Example: q-ary Symmetric Channel (qSC)

• Alphabets: $\mathcal{X} = \mathcal{Y} = \{0, 1, \dots, q-1\}$ • Probability of correct transmission: $1 - \varepsilon$ q - 1 $1 - \varepsilon$ Output 0 1 $1 - \varepsilon$ q - 1

Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.

Example: q-ary Symmetric Channel (qSC)

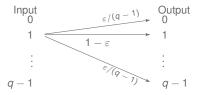
- Alphabets: $\mathcal{X} = \mathcal{Y} = \{0, 1, \dots, q-1\}$
- Probability of correct transmission: 1ε
- Probability of error for every possible outcome: ε/(q – 1)



Let ${\mathcal X}$ and ${\mathcal Y}$ the input and output alphabet of the channel, respectively.

Example: q-ary Symmetric Channel (qSC)

- Alphabets: $\mathcal{X} = \mathcal{Y} = \{0, 1, \dots, q-1\}$
- Probability of correct transmission: 1ε
- Probability of error for every possible outcome: ε/(q – 1)



Linear Block Codes

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer.

Definition [Linear Code]

An $[n, k]_q$ -linear code $C \subset \mathbb{F}_q^n$ is a k-dimensional subspace of \mathbb{F}_q^n . The elements of C are called *codewords*.

Linear Block Codes

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer.

Definition [Linear Code]

An $[n, k]_q$ -linear code $C \subset \mathbb{F}_q^n$ is a k-dimensional subspace of \mathbb{F}_q^n . The elements of C are called *codewords*.

Example

 $\mathcal{C} = \{(0,0,0,0),\,(1,1,0,0),\,(0,0,1,1),\,(1,1,1,1)\}$ is a $[4,2]_2\text{-linear code}.$

Linear Block Codes

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer.

Definition [Linear Code]

An $[n, k]_q$ -linear code $C \subset \mathbb{F}_q^n$ is a k-dimensional subspace of \mathbb{F}_q^n . The elements of C are called *codewords*.

Example

 $\mathcal{C} = \{(0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)\}$ is a $[4, 2]_2$ -linear code.

Definition [Hamming Weight/Distance]

For any two codewords $x, y \in C$ we define

- the Hamming weight of x, $wt_H(x) = |\{i \in \{1, ..., n\} | x_i \neq 0\}|$
- the Hamming distance between x and y, $d_H(x, y) := wt_H(x y)$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider \mathbb{Z}_5 . The Lee weight of a = 3 is wt₁(3) = min(3, 5 - 3) = 2

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider
$$\mathbb{Z}_5$$
. The Lee weight of $a = 3$ is
wt_L(3) = min(3, 5 - 3) = 2

The Lee weight of an element *a* describes also the minimal number of arcs separating *a* from 0.

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider
$$\mathbb{Z}_5$$
. The Lee weight of $a = 3$ is
wt_L(3) = min(3, 5 - 3) = 2

The Lee weight of an element *a* describes also the minimal number of arcs separating *a* from 0.

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider
$$\mathbb{Z}_5$$
. The Lee weight of $a = 3$ is
wt_L(3) = min(3, 5 - 3) = 2

The Lee weight of an element *a* describes also the minimal number of arcs separating *a* from 0.

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

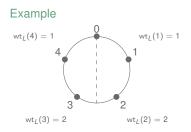
Example: Consider \mathbb{Z}_5 . The Lee weight of a = 3 is wt₁(3) = min(3, 5 - 3) = 2

The Lee weight of an element *a* describes also the minimal number of arcs separating *a* from 0. \implies wt_L(3) = 2

Properties

For every $a \in \mathbb{Z}_q$ it holds:

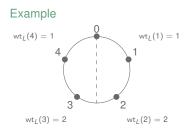
• $wt_L(a) = wt_L(q-a)$



Properties

For every $a \in \mathbb{Z}_q$ it holds:

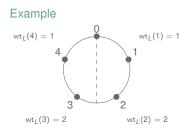
- $wt_L(a) = wt_L(q-a)$
- wt_L(a) $\leq \lfloor q/2 \rfloor$



Properties

For every $a \in \mathbb{Z}_q$ it holds:

- $wt_L(a) = wt_L(q-a)$
- $wt_L(a) \leq \lfloor q/2 \rfloor$
- wt_H(a) ≤ wt_L(a) If q ∈ {2,3}, the Lee weight is equivalent to the Hamming weight.



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^{n} wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^{n} wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

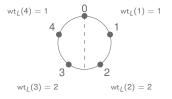
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) =



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

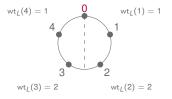
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

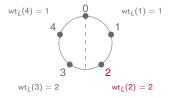
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

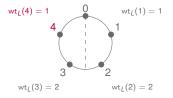
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2 + 1



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

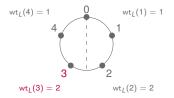
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

Take again the ring of integers \mathbb{Z}_5

x = (0, 2, 4, 3, 0, 3)wt_L(x) = 0 + 2 + 1 + 2



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

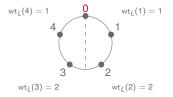
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

Take again the ring of integers \mathbb{Z}_5

x = (0, 2, 4, 3, 0, 3)wt_L(x) = 0 + 2 + 1 + 2 + 0



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

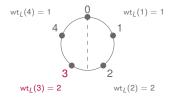
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

Take again the ring of integers \mathbb{Z}_5

x = (0, 2, 4, 3, 0, 3)wt_L(x) = 0 + 2 + 1 + 2 + 0 + 2



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

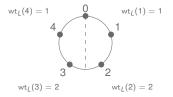
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2 + 1 + 2 + 0 + 2 = 7



Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a tuple of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

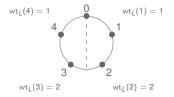
$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = wt_L(x - y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2 + 1 + 2 + 0 + 2 = 7
wt_H(x) = 4



 Transmitting symbols over a nonbinary noisy channel —> primarily those using phase-shift keying modulation

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel

 → primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel

 → primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel

 → primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- Recently: gained attention in cryptographic applications

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel

 → primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- · Recently: gained attention in cryptographic applications
 - Generic decoding is NP-hard in the Lee Metric¹

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

19.10.21

Why Lee Metric?

- Transmitting symbols over a nonbinary noisy channel

 → primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- · Recently: gained attention in cryptographic applications
 - Generic decoding is NP-hard in the Lee Metric¹
 - Low-Lee-Density Parity-Check Codes were defined²

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

Outline

3 Error Pattern Construction

Scalar Multiplication in the Lee Metric

The Lee Channel

Originally introduced by Chiang and Wolf³.

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

The Lee Channel

Originally introduced by Chiang and Wolf³.

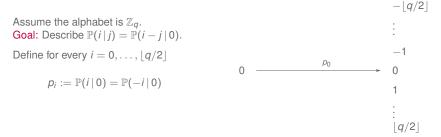
Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i|j) = \mathbb{P}(i-j|0)$. 0 1 |q/2|

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

19.10.21

The Lee Channel

Originally introduced by Chiang and Wolf³.

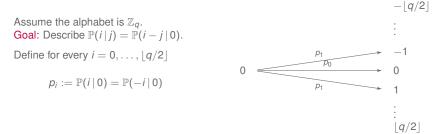


³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

19.10.21

The Lee Channel

Originally introduced by Chiang and Wolf³.



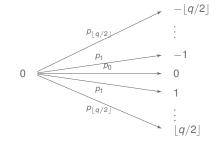
³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

The Lee Channel

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . **Goal:** Describe $\mathbb{P}(i | j) = \mathbb{P}(i - j | 0)$. Define for every $i = 0, \dots, \lfloor q/2 \rfloor$

$$p_i := \mathbb{P}(i \mid 0) = \mathbb{P}(-i \mid 0)$$



³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

The Lee Channel

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i | j) = \mathbb{P}(i - j | 0)$. Define for every $i = 0, \dots, \lfloor q/2 \rfloor$

 $p_i := \mathbb{P}(i \mid 0) = \mathbb{P}(-i \mid 0)$

Question: How is *p_i* defined?

 $p_{\lfloor q/2}$

*p*₁

*p*₁ *p*_{1,q/2}]

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

-|q/2|

(3)

The Lee Channel Law

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

y = x + echannel output channel input additive error term

The Lee Channel Law

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

y = x + echannel output channel input diditive error term

Restrict to: e a realization of a random variable E with

$$\mathbb{P}(E = e) \propto \exp(-\lambda \operatorname{wt}_{L}(e)), \qquad \lambda > 0,$$

$$P_{Y|X}(y|x) = \frac{1}{Z} \exp(-\lambda \operatorname{d}_{L}(x, y)), \qquad Z := \sum_{e=0}^{q-1} \exp(-\lambda \operatorname{wt}_{L}(e))$$

(3)

The Lee Channel Law

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

y = x + echannel output channel input additive error term

Restrict to: e a realization of a random variable E with

$$\mathbb{P}(E = e) \propto \exp(-\lambda \operatorname{wt}_{L}(e)), \qquad \lambda > 0,$$

$$P_{Y|X}(y|x) = \frac{1}{Z} \exp(-\lambda \operatorname{d}_{L}(x, y)), \qquad Z := \sum_{e=0}^{q-1} \exp(-\lambda \operatorname{wt}_{L}(e))$$

Note

- The expectation of wt_L(E) can be written as δ = − d log Z(λ)/d λ.
- Defining $p_i := \mathbb{P}(\mathsf{wt}_L(e) = i) = \frac{1}{\mathbb{Z}} \exp(-\lambda i)$ for $i \in \{0, 1, \dots, \lfloor q/2 \rfloor\}$, we easily see

$$p_0 > p_1$$
 and $p_i = \frac{p_1'}{p_0^{i-1}}$ for all $i = 2, \dots, \lfloor q/2 \rfloor$.

(3)

The Constant Lee Weight Channel

Consider now $y, x, e \in \mathbb{Z}_q^n$ and y = x + e, where e has a fixed Lee weight $t \in \mathbb{Z}$ and is drawn uniformly at random from $S_{t,q}^n := \{x \in \mathbb{Z}_q^n \mid \operatorname{wt}_L(x) = t\}$.

The Constant Lee Weight Channel

Consider now $y, x, e \in \mathbb{Z}_q^n$ and y = x + e, where e has a fixed Lee weight $t \in \mathbb{Z}$ and is drawn uniformly at random from $S_{t,q}^n := \{x \in \mathbb{Z}_q^n \mid \operatorname{wt}_L(x) = t\}$.

Theorem

For every $j \in \{1, ..., n\}$ the marginal weight distribution of an entry e_j is given by

$$p_i := \mathbb{P}(\mathsf{wt}_L(e_j) = i) = \frac{1}{\sum_{j=0}^{q-1} \exp(-\beta \operatorname{wt}_L(j))} \exp(-\beta i), \forall i \in \{0, \dots, \lfloor q/2 \rfloor\}$$

where $\beta > 0$ is the solution to $\frac{t}{n} = \frac{(r-1)e^{(r+1)\beta} - re^{r\beta} + e^{\beta}}{(e^{\beta r}-1)(e^{\beta}-1)}$ with $r = \lfloor q/2 \rfloor + 1$.

The Constant Lee Weight Channel

Consider now $y, x, e \in \mathbb{Z}_q^n$ and y = x + e, where e has a fixed Lee weight $t \in \mathbb{Z}$ and is drawn uniformly at random from $S_{t,q}^n := \{x \in \mathbb{Z}_q^n \mid \operatorname{wt}_L(x) = t\}$.

Theorem

For every $j \in \{1, ..., n\}$ the marginal weight distribution of an entry e_j is given by

$$p_i := \mathbb{P}(\mathsf{wt}_L(e_j) = i) = \frac{1}{\sum_{j=0}^{q-1} \exp(-\beta \operatorname{wt}_L(j))} \exp(-\beta i), \forall i \in \{0, \dots, \lfloor q/2 \rfloor\}$$

where $\beta > 0$ is the solution to $\frac{t}{n} = \frac{(r-1)e^{(r+1)\beta} - re^{r\beta} + e^{\beta}}{(e^{\beta r} - 1)(e^{\beta} - 1)}$ with $r = \lfloor q/2 \rfloor + 1$.

Proof idea.

Solve an optimization problem to find a distribution $(p_0, p_1, \dots, p_{\lfloor q/2 \rfloor})$ that is

... maximizing $H(p_0, \ldots, p_{\lfloor q/2 \rfloor}) := -\sum_{i=0}^{\lfloor q/2 \rfloor} p_i \cdot \log(p_i),$

... subject to
$$\sum_{i=0}^{\lfloor q/2 \rfloor} p_i \cdot i = \frac{t}{n}$$
.

Outline

Integer Partitions

Definition [Integer Partition]

Let *t* be a positive integer. An *(integer) partition* of *t* of length *k* is a *k*-tuple $\lambda = (\lambda_1, \ldots, \lambda_k)$ satisfying

- $1. \ \lambda_1 + \ldots + \lambda_k = t,$
- $2. \ \lambda_1 \geq \ldots \geq \lambda_k > 0.$

The elements λ_i are called *parts* and their corresponding values are the *part sizes*.

Integer Partitions

Definition [Integer Partition]

Let *t* be a positive integer. An *(integer) partition* of *t* of length *k* is a *k*-tuple $\lambda = (\lambda_1, \ldots, \lambda_k)$ satisfying

- $1. \ \lambda_1 + \ldots + \lambda_k = t,$
- $2. \ \lambda_1 \geq \ldots \geq \lambda_k > 0.$

The elements λ_i are called *parts* and their corresponding values are the *part sizes*.

Notation:

 $\mathcal{P}(t)$: Set of integer partitions of a positive integer $t \in \mathbb{Z}$. $\mathcal{P}_{s}(t) := \{\lambda = (\lambda_{1}, \dots, \lambda_{k}) \in \mathcal{P}(t) \mid \lambda_{1} \leq s\}.$

Integer Partitions

Definition [Integer Partition]

Let *t* be a positive integer. An *(integer) partition* of *t* of length *k* is a *k*-tuple $\lambda = (\lambda_1, \ldots, \lambda_k)$ satisfying

- 1. $\lambda_1 + \ldots + \lambda_k = t$,
- $2. \quad \lambda_1 \geq \ldots \geq \lambda_k > 0.$

The elements λ_i are called *parts* and their corresponding values are the *part sizes*.

Notation:

 $\mathcal{P}(t)$: Set of integer partitions of a positive integer $t \in \mathbb{Z}$. $\mathcal{P}_{\mathcal{S}}(t) := \{\lambda = (\lambda_1, \dots, \lambda_k) \in \mathcal{P}(t) \mid \lambda_1 \leq s\}.$

Example

Let us consider t = 4.

$$\begin{aligned} \mathcal{P}(4) &= \{(3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)\} \\ \mathcal{P}_2(4) &= \{(2, 2), (2, 1, 1), (1, 1, 1, 1)\} \\ \mathcal{P}_1(4) &= \{(1, 1, 1, 1)\} \end{aligned}$$

Definition [Vectors of Weight Decomposition λ]

For a positive integer *n* and a given partition $\lambda \in tr$ of a positive integer *t*, we say that a length-*n* vector *x* has weight decomposition λ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of *x* and the parts of λ .

Definition [Vectors of Weight Decomposition λ]

For a positive integer *n* and a given partition $\lambda \in tr$ of a positive integer *t*, we say that a length-*n* vector *x* has weight decomposition λ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of *x* and the parts of λ .

Note: This definition makes only sense when considering an integer partition λ over \mathbb{Z}_q having part sizes not exceeding $\lfloor q/2 \rfloor$. \longrightarrow restrict to $\mathcal{P}_{\lfloor q/2 \rfloor}(t)$.

Definition [Vectors of Weight Decomposition λ]

For a positive integer *n* and a given partition $\lambda \in tr$ of a positive integer *t*, we say that a length-*n* vector *x* has weight decomposition λ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of *x* and the parts of λ .

Note: This definition makes only sense when considering an integer partition λ over \mathbb{Z}_q having part sizes not exceeding $\lfloor q/2 \rfloor$. \longrightarrow restrict to $\mathcal{P}_{\lfloor q/2 \rfloor}(t)$. Define $\mathcal{V}_{a,t,\lambda}^{(n)} := \{x \in \mathbb{Z}_a^n \mid \operatorname{wt}_L(x) = t \text{ and } x \text{ has weight decomp. } \lambda\}$.

Definition [Vectors of Weight Decomposition λ]

For a positive integer *n* and a given partition $\lambda \in tr$ of a positive integer *t*, we say that a length-*n* vector *x* has weight decomposition λ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of *x* and the parts of λ .

Note: This definition makes only sense when considering an integer partition λ over \mathbb{Z}_q having part sizes not exceeding $\lfloor q/2 \rfloor$. \longrightarrow restrict to $\mathcal{P}_{\lfloor q/2 \rfloor}(t)$. Define $\mathcal{V}_{q,t,\lambda}^{(n)} := \{x \in \mathbb{Z}_q^n \mid \operatorname{wt}_L(x) = t \text{ and } x \text{ has weight decomp. } \lambda\}$.

Example

Consider \mathbb{Z}_5 , t = n = 4 and $\lambda = (2, 1, 1)$ a partition of *t* over \mathbb{Z}_5 . Vectors of weight decomposition (2, 1, 1) over \mathbb{Z}_5 are all vectors over \mathbb{Z}_5^4 consisting of:

Definition [Vectors of Weight Decomposition λ]

For a positive integer *n* and a given partition $\lambda \in tr$ of a positive integer *t*, we say that a length-*n* vector *x* has weight decomposition λ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of *x* and the parts of λ .

Note: This definition makes only sense when considering an integer partition λ over \mathbb{Z}_q having part sizes not exceeding $\lfloor q/2 \rfloor$. \longrightarrow restrict to $\mathcal{P}_{\lfloor q/2 \rfloor}(t)$. Define $\mathcal{V}_{q,t,\lambda}^{(n)} := \{x \in \mathbb{Z}_q^n \mid \operatorname{wt}_L(x) = t \text{ and } x \text{ has weight decomp. } \lambda\}$.

Example

Consider \mathbb{Z}_5 , t = n = 4 and $\lambda = (2, 1, 1)$ a partition of t over \mathbb{Z}_5 . Vectors of weight decomposition (2, 1, 1) over \mathbb{Z}_5 are all vectors over \mathbb{Z}_5^4 consisting of:

• 1 element of Lee weight 2 (e.g. 2 or 3)

Definition [Vectors of Weight Decomposition λ]

For a positive integer *n* and a given partition $\lambda \in tr$ of a positive integer *t*, we say that a length-*n* vector *x* has weight decomposition λ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of *x* and the parts of λ .

Note: This definition makes only sense when considering an integer partition λ over \mathbb{Z}_q having part sizes not exceeding $\lfloor q/2 \rfloor$. \longrightarrow restrict to $\mathcal{P}_{\lfloor q/2 \rfloor}(t)$. Define $\mathcal{V}_{q,t,\lambda}^{(n)} := \{x \in \mathbb{Z}_q^n \mid \operatorname{wt}_L(x) = t \text{ and } x \text{ has weight decomp. } \lambda\}$.

Example

Consider \mathbb{Z}_5 , t = n = 4 and $\lambda = (2, 1, 1)$ a partition of *t* over \mathbb{Z}_5 . Vectors of weight decomposition (2, 1, 1) over \mathbb{Z}_5 are all vectors over \mathbb{Z}_5^4 consisting of:

- 1 element of Lee weight 2 (e.g. 2 or 3)
- 2 elements of Lee weight 1 (e.g. 1 and/or 4)

Definition [Vectors of Weight Decomposition λ]

For a positive integer *n* and a given partition $\lambda \in tr$ of a positive integer *t*, we say that a length-*n* vector *x* has weight decomposition λ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of *x* and the parts of λ .

Note: This definition makes only sense when considering an integer partition λ over \mathbb{Z}_q having part sizes not exceeding $\lfloor q/2 \rfloor$. \longrightarrow restrict to $\mathcal{P}_{\lfloor q/2 \rfloor}(t)$. Define $\mathcal{V}_{q,t,\lambda}^{(n)} := \{x \in \mathbb{Z}_q^n \mid \operatorname{wt}_L(x) = t \text{ and } x \text{ has weight decomp. } \lambda\}$.

Example

Consider \mathbb{Z}_5 , t = n = 4 and $\lambda = (2, 1, 1)$ a partition of *t* over \mathbb{Z}_5 . Vectors of weight decomposition (2, 1, 1) over \mathbb{Z}_5 are all vectors over \mathbb{Z}_5^4 consisting of:

- 1 element of Lee weight 2 (e.g. 2 or 3)
- 2 elements of Lee weight 1 (e.g. 1 and/or 4)

 $\mathcal{V}_{4,(2,\ 1,\ 1)}^{(4)} = \{(2,\ 1,\ 1,\ 0),\ (2,\ 1,\ 0,\ 1),\ldots,(1,\ 2,\ 1,\ 0),\ldots,(3,\ 4,\ 1,\ 0),\ldots\}$

Number of Tuples of weight decomposition λ over \mathbb{Z}_q

Lemma

Let *n*, *q* and *t* be positive integers and consider the set of partitions $\mathcal{P}_{\lfloor q/2 \rfloor}(t)$ of *t* with part sizes not exceeding $\lfloor q/2 \rfloor$. For any $\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor}(t)$ the number of vectors of length *n* over \mathbb{Z}_q of type λ is given by

$$\begin{vmatrix} \mathcal{V}_{q,t,\lambda}^{(n)} \end{vmatrix} = \begin{cases} 2^{\ell_{\lambda}} |\Pi_{\lambda}| \binom{n}{\ell_{\lambda}} & \text{if } q \text{ is odd,} \\ 2^{\ell_{\lambda} - c_{\lfloor q/2 \rfloor,\lambda}} |\Pi_{\lambda}| \binom{n}{\ell_{\lambda}} & \text{else} \end{cases}$$
(4)

where $c_{\lfloor q/2 \rfloor,\lambda} = |\{i \in \{1, \ldots, \ell_{\lambda}\} | \lambda_i = \lfloor q/2 \rfloor\}|.$

Let $\mathcal{S}_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with $wt_L(x) = t$.

Let $S_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with $wt_L(x) = t$. **Goal:** We want to pick an *n*-tuple *x* uniformly at random from

$$\mathcal{S}_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{q,t,\lambda}^{(n)}.$$

Let $S_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with wt_L(x) = t. **Goal:** We want to pick an *n*-tuple x uniformly at random from

$$\mathcal{S}_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{q,t,\lambda}^{(n)}.$$

Idea

1. Choose an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of *t* with probability $p_{\lambda} = \frac{|\mathcal{V}_{q,t,\lambda}^{(n)}|}{\sum_{\lambda \in \mathcal{P}_{|q/2|(t)}} |\mathcal{V}_{q,t,\lambda}^{(n)}|} \text{ over } \mathbb{Z}_q.$

Let $S_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with wt_L(x) = t. **Goal:** We want to pick an *n*-tuple x uniformly at random from

$$\mathcal{S}_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{q,t,\lambda}^{(n)}.$$

Idea

- 1. Choose an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of *t* with probability $p_{\lambda} = \frac{\left|\mathcal{V}_{q,t,\lambda}^{(n)}\right|}{\sum_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \left|\mathcal{V}_{q,t,\lambda}^{(n)}\right|} \text{ over } \mathbb{Z}_q.$
- **2**. Assign to λ_i an element $a_i \in \mathbb{Z}_q$ with $wt_L(a_i) = \lambda_i$.

Let $S_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with wt_L(x) = t.

Goal: We want to pick an *n*-tuple *x* uniformly at random from

$$\mathcal{S}_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{q,t,\lambda}^{(n)}.$$

Idea

- 1. Choose an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of t with probability $p_{\lambda} = \frac{|\mathcal{V}_{q,t,\lambda}^{(n)}|}{\sum_{\lambda \in \mathcal{P}\lfloor q/2 \rfloor(t)} |\mathcal{V}_{q,t,\lambda}^{(n)}|} \text{ over } \mathbb{Z}_q.$
- **2**. Assign to λ_i an element $a_i \in \mathbb{Z}_q$ with $wt_L(a_i) = \lambda_i$.
- Choose randomly k positions of the tuple x and assign the values a₁,..., a_k to them.

Let $S_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with wt_L(x) = t.

Goal: We want to pick an *n*-tuple *x* uniformly at random from

$$\mathcal{S}_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{q,t,\lambda}^{(n)}.$$

Idea

- 1. Choose an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of t with probability $p_{\lambda} = \frac{|\mathcal{V}_{q,t,\lambda}^{(n)}|}{\sum_{\lambda \in \mathcal{P}\lfloor q/2 \rfloor(t)} |\mathcal{V}_{q,t,\lambda}^{(n)}|} \text{ over } \mathbb{Z}_q.$
- **2**. Assign to λ_i an element $a_i \in \mathbb{Z}_q$ with $wt_L(a_i) = \lambda_i$.
- 3. Choose randomly *k* positions of the tuple *x* and assign the values a_1, \ldots, a_k to them.
- 4. The remaining entries are zero.

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

Example

Consider $\mathbb{Z}_7 \implies \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are: (1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1)

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

$$\begin{vmatrix} (1,1,1,1) & (2,1,1) & (2,2) & (3,1) \\ \left| \mathcal{V}_{4,(1,1,1,1)}^{(6)} \right| = 240 & \left| \mathcal{V}_{4,(2,1,1)}^{(6)} \right| = 480 & \left| \mathcal{V}_{4,(2,2)}^{(6)} \right| = 60 & \left| \mathcal{V}_{4,(3,1)}^{(6)} \right| = 120$$

Example

Consider $\mathbb{Z}_7 \implies \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

Example

Consider $\mathbb{Z}_7 \implies \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

2. Assign to each λ_i an element $a_i \in \mathbb{Z}_7$ with $wt_L(a_i) = \lambda_i$:

$$\lambda_1 = 2 \longrightarrow 5, \quad \lambda_2 = 1 \longrightarrow 1, \quad \lambda_3 = 1 \longrightarrow 6$$

Example

Consider $\mathbb{Z}_7 \implies \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

2. Assign to each λ_i an element $a_i \in \mathbb{Z}_7$ with $wt_L(a_i) = \lambda_i$:

$$\lambda_1 = 2 \longrightarrow 5, \quad \lambda_2 = 1 \longrightarrow 1, \quad \lambda_3 = 1 \longrightarrow 6$$

3. Choose randomly 3 positions of x and assign them to one of the above values

$$x = (_, 6, _, 5, 1, _)$$

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

- 1. The partitions of t = 4 with no part exceeding 3 are:
 - $\begin{array}{c} (1,1,1,1) & (2,1,1) & (2,2) & (3,1) \\ \left| \mathcal{V}_{4,(1,1,1,1)}^{(6)} \right| = 240 & \left| \mathcal{V}_{4,(2,1,1)}^{(6)} \right| = 480 & \left| \mathcal{V}_{4,(2,2)}^{(6)} \right| = 60 & \left| \mathcal{V}_{4,(3,1)}^{(6)} \right| = 120 \\ \text{Say we pick } (\lambda_1, \lambda_2, \lambda_3) = (2,1,1). \end{array}$

2. Assign to each λ_i an element $a_i \in \mathbb{Z}_7$ with $wt_L(a_i) = \lambda_i$:

$$\lambda_1 = 2 \longrightarrow 5, \quad \lambda_2 = 1 \longrightarrow 1, \quad \lambda_3 = 1 \longrightarrow 6$$

3. Choose randomly 3 positions of x and assign them to one of the above values

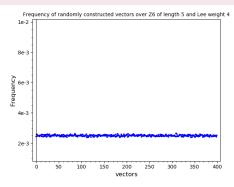
$$x = (_, 6, _, 5, 1, _)$$

4. x = (0, 6, 0, 5, 1, 0)

Distribution

Theorem

Let *n*, *q* and *t* be positive integers. The when sampling a sufficiently large number of *n*-tuples using the before shown algorithm, we obtain a uniform distribution on $S_a^n(t)$.



Outline

2 The Lee Channel

3 Error Pattern Construction

Scalar Multiplication in the Lee Metric

Assume we receive a vector $y = \frac{x}{\text{original message}} + \frac{e}{\text{error vector}}$.

Assume we receive a vector $y = x_{\text{original message}} + e_{\text{error vector}}$.

Generic Decoding

An adversary wants to find either the message or the random error.

Assume we receive a vector $y = \frac{x}{\text{original message}} + \frac{e}{\text{error vector}}$.

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

• A unique solution exists if the weight of the error is relatively small.

Assume we receive a vector $y = \frac{x}{\text{original message}} + \frac{e}{\text{error vector}}$.

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

- A unique solution exists if the weight of the error is relatively small.
- Information set decoding (ISD) is a method to find *e*.

Assume we receive a vector
$$y = \frac{x}{\text{original message}} + \frac{e}{\text{error vector}}$$
.

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

- A unique solution exists if the weight of the error is relatively small.
- Information set decoding (ISD) is a method to find *e*. Is NP-hard for the Hamming- and the Lee metric.

Example 1 Let $x = (0, 2, 3, 1, 0, 3) \in \mathbb{Z}_5^6$ Lee Hamming $wt_L(x) = 7$, $wt_H(x) = 4$

Example 1 Let $x = (0, 2, 3, 1, 0, 3) \in \mathbb{Z}_5^6$

$$2x = (0, 4, 1, 2, 0, 1) \in \mathbb{Z}_5^6$$

Example 1 Let $x = (0, 2, 3, 1, 0, 3) \in \mathbb{Z}_5^6$ $2x = (0, 4, 1, 2, 0, 1) \in \mathbb{Z}_5^6$

Example 2 Let $x = (0, 1, 3, 4, 1, 1) \in \mathbb{Z}_5^6$

Lee Hamming $wt_L(x) = 5$, $wt_H(x) = 5$

 $\begin{array}{l} \text{Example 1}\\ \text{Let } x = (0,2,3,1,0,3) \in \mathbb{Z}_5^6\\ 2x = (0,4,1,2,0,1) \in \mathbb{Z}_5^6 \end{array}$

 $\begin{array}{l} \text{Example 2} \\ \text{Let } x = (0,1,3,4,1,1) \in \mathbb{Z}_5^6 \\ \\ 2x = (0,2,1,3,2,2) \in \mathbb{Z}_5^6 \end{array}$

Lee	Hamming
$wt_L(x) = 5,$	$wt_H(x) = 5$
$wt_L(x) = 9,$	$wt_H(x) = 5$

Example 1 Let $x = (0, 2, 3, 1, 0, 3) \in \mathbb{Z}_5^6$	Lee $wt_L(x) = 7$,	Hamming $wt_H(x) = 4$
$2x = (0,4,1,2,0,1) \in \mathbb{Z}_5^6$	$\operatorname{wt}_L(x) = 5,$	$wt_H(x) = 4$
Example 2 Let $x = (0, 1, 3, 4, 1, 1) \in \mathbb{Z}_5^6$	Lee $\operatorname{wt}_L(x) = 5$,	Hamming $wt_H(x) = 5$

Why can decreasing the Lee weight be a problem?

Generic (or syndrome) decoding is based on the weight of the error term.

• The smaller this weight, the easier to find a solution.

Example 1 Let $x = (0, 2, 3, 1, 0, 3) \in \mathbb{Z}_5^6$		Hamming $wt_H(x) = 4$
$2x = (0,4,1,2,0,1) \in \mathbb{Z}_5^6$	$\operatorname{wt}_L(x) = 5,$	$wt_H(x) = 4$
Example 2 Let $x = (0, 1, 3, 4, 1, 1) \in \mathbb{Z}_5^6$	Lee $\operatorname{wt}_L(x) = 5$,	Hamming $wt_H(x) = 5$

Why can decreasing the Lee weight be a problem?

Generic (or syndrome) decoding is based on the weight of the error term.

• The smaller this weight, the easier to find a solution.

Risk: From a cryptographic point of view, an attacker could decrease the weight and retrieve the original message.

Problem

Consider the ring of integers \mathbb{Z}_q , with q > 3. Given a tuple $x \in \mathbb{Z}_q^n$ of average Lee weight $\delta = t/n$ per entry. Let $a \in \mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a \cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x)\right) \tag{5}$$

Problem

Consider the ring of integers \mathbb{Z}_q , with q > 3. Given a tuple $x \in \mathbb{Z}_q^n$ of average Lee weight $\delta = t/n$ per entry. Let $a \in \mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a \cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x)\right) \tag{5}$$

Note

To give an answer to that question we need to understand

Problem

Consider the ring of integers \mathbb{Z}_q , with q > 3. Given a tuple $x \in \mathbb{Z}_q^n$ of average Lee weight $\delta = t/n$ per entry. Let $a \in \mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a \cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x)\right) \tag{5}$$

Note

To give an answer to that question we need to understand

1. the way x is generated,

Problem

Consider the ring of integers \mathbb{Z}_q , with q > 3. Given a tuple $x \in \mathbb{Z}_q^n$ of average Lee weight $\delta = t/n$ per entry. Let $a \in \mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a \cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x)\right) \tag{5}$$

Note

To give an answer to that question we need to understand

- 1. the way x is generated,
- 2. the distribution of the entries of x.

Problem

Consider the ring of integers \mathbb{Z}_q , with q > 3. Given a tuple $x \in \mathbb{Z}_q^n$ of average Lee weight $\delta = t/n$ per entry. Let $a \in \mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a \cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x)\right) \tag{5}$$

Note

To give an answer to that question we need to understand

- 1. the way x is generated,
- 2. the distribution of the entries of *x*.

Goal: We want this probability to be small!

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- *Q* the empirical distribution of the entries of *x*

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- Q the empirical distribution of the entries of x
- $a \in \mathbb{Z}_q \setminus \{0\}$ be chosen uniformly at random,

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- Q the empirical distribution of the entries of x
- $a \in \mathbb{Z}_q \setminus \{0\}$ be chosen uniformly at random,
- $F := {\operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x)}.$

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- Q the empirical distribution of the entries of x
- $a \in \mathbb{Z}_q \setminus \{0\}$ be chosen uniformly at random,
- $F := {\operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x)}.$
- \mathcal{B} the marginal distribution of the constant Lee weight channel model $p_i := \mathbb{P}(\mathsf{wt}_L(x_j) = i) = \kappa \exp(-\beta i), \forall i \in \{0, \dots, \lfloor q/2 \rfloor\}.$

Let us consider the following setup.

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- *Q* the empirical distribution of the entries of *x*
- $a \in \mathbb{Z}_q \setminus \{0\}$ be chosen uniformly at random,
- $F := {\operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x)}.$
- \mathcal{B} the marginal distribution of the constant Lee weight channel model $p_i := \mathbb{P}(\mathsf{wt}_L(x_j) = i) = \kappa \exp(-\beta i), \forall i \in \{0, \dots, \lfloor q/2 \rfloor\}.$

Applying the union bound, we have

$$\begin{split} \mathbb{P}(F) &= \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \text{ is "close" to } \mathcal{B}\right) \mathbb{P}\left(Q \text{ is "close" to } \mathcal{B}\right) \\ &+ \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \text{ is "not close" to } \mathcal{B}\right) \mathbb{P}\left(Q \text{ is "not close" to } \mathcal{B}\right) \\ &\leq \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \text{ is "close" to } \mathcal{B}\right) + \mathbb{P}\left(Q \text{ is "not close" to } \mathcal{B}\right) \end{split}$$

"Close" Distributions

Definition [Kullback-Leibler divergence]

Let *X* be a random variable over an alphabet \mathcal{X} with probability distribution *P*, where $P(x) := \mathbb{P}(X = x)$. Furthermore, let us assume that *X* can approximated by another distribution $Q \neq P$. We define the *Kullback-Leibler divergence* of *Q* and *P* by

$$D(P || Q) := \sum_{x \in \mathcal{X}} P(x) \log\left(\frac{P(x)}{Q(x)}\right)$$
(6)

Note

- By convention: $0 \log(0) = 0$.
- The two distributions *Q* and *P* are *close* to each other if *D*(*Q* || *P*) ≤ ε, for some ε > 0.

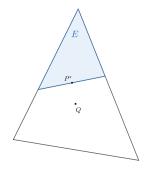
Conditional Limit Theorem

Theorem Conditional Limit Theorem

Let *E* be a closed convex set of probability distributions over an alphabet \mathcal{X} and let *Q* be a distribution over \mathcal{X} but not in *E*. Let X_1, \ldots, X_n be discrete random variables drawn i.i.d. $\sim Q$. Define $X^n = (X_1, \ldots, X_n)$ and let $P^* = \arg\min_{P \in E} D(P || Q)$. Then

$$\mathbb{P}(X_1 = a | P_{X^n} \in E) \longrightarrow P^*(a)$$

in probability as *n* grows large for any $a \in \mathcal{X}$.



⁴Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999

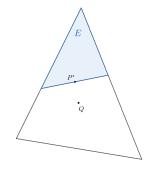
Conditional Limit Theorem

Theorem **Conditional Limit Theorem**

Let E be a closed convex set of probability distributions over an alphabet \mathcal{X} and let Q be a distribution over \mathcal{X} but not in *E*. Let X_1, \ldots, X_n be discrete random variables drawn i.i.d. $\sim Q$. Define $X^n = (X_1, \ldots, X_n)$ and let $P^{\star} = \arg \min_{P \in F} D(P \mid\mid Q)$. Then

$$\mathbb{P}(X_1 = a | P_{X^n} \in E) \longrightarrow P^*(a)$$

in probability as *n* grows large for any $a \in \mathcal{X}$.



In our case:

 $Q \sim \mathcal{U}(\mathbb{Z}_q)$; E set of distributions of tuples in $\mathcal{S}^n_a(t)$. Then $\mathcal{B} = \arg \min_{P \in E} D(P || Q)$.

⁴Cover, *Elements of information theory*

Recall, $F = \{ wt_L(a \cdot x) < wt_L(x) \}$ and

 $\mathbb{P}(F) \leq \mathbb{P}(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) | Q \text{ is "close" to } B) + \mathbb{P}(Q \text{ is "not close" to } B)$

Recall, $F = \{ wt_L(a \cdot x) < wt_L(x) \}$ and

 $\mathbb{P}(F) \leq \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \text{ is "close" to } \mathcal{B}\right) + \mathbb{P}\left(Q \text{ is "not close" to } \mathcal{B}\right)$

Theorem

Let $x \in \mathbb{Z}_q^n$, for some positive integer q > 3, of average Lee weight $\delta = t/n$ be drawn randomly from $S_q^n(t)$ with the shown algorithm. Let Q denote the empirical distribution of the entries of x. For any nonzero $a \in \mathbb{Z}_q$ it holds

 $\mathbb{P}(Q \text{ not close to } \mathcal{B}) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$

Recall, $F = \{ wt_L(a \cdot x) < wt_L(x) \}$ and

 $\mathbb{P}(F) \leq \mathbb{P}(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) | Q \text{ is "close" to } B) + \mathbb{P}(Q \text{ is "not close" to } B)$

Theorem

Let $x \in \mathbb{Z}_q^n$, for some positive integer q > 3, of average Lee weight $\delta = t/n$ be drawn randomly from $S_q^n(t)$ with the shown algorithm. Let Q denote the empirical distribution of the entries of x. For any nonzero $a \in \mathbb{Z}_q$ it holds

 $\mathbb{P}(Q \text{ not close to } \mathcal{B}) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$

Hence

As $n \to \infty$, $\mathbb{P}(F) \leq \mathbb{P}(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) \mid Q \text{ is "close" to } \mathcal{B}).$

Recall, $F = \{ wt_L(a \cdot x) < wt_L(x) \}$ and

 $\mathbb{P}(F) \leq \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \text{ is "close" to } \mathcal{B}\right) + \mathbb{P}\left(Q \text{ is "not close" to } \mathcal{B}\right)$

Theorem

Let $x \in \mathbb{Z}_q^n$, for some positive integer q > 3, of average Lee weight $\delta = t/n$ be drawn randomly from $S_q^n(t)$ with the shown algorithm. Let Q denote the empirical distribution of the entries of x. For any nonzero $a \in \mathbb{Z}_q$ it holds

 $\mathbb{P}(Q \text{ not close to } \mathcal{B}) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$

Hence

As $n \to \infty$, $\mathbb{P}(F) \leq \mathbb{P}(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) | Q \text{ is "close" to } B)$. By CLT $\leq \mathbb{P}(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) | Q \sim B)$

Page 23/24

Asymptotic Regime

$$\mathbb{P}(F) \leq \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \sim \mathcal{B}\right)$$
$$= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} \operatorname{wt}_{L}([a \cdot i]_{q}) < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} i\right)$$
$$= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} (i - \operatorname{wt}_{L}([a \cdot i]_{q}))\right)$$

Page 23/24

Asymptotic Regime

$$\mathbb{P}(F) \leq \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \sim \mathcal{B}\right)$$
$$= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} \operatorname{wt}_{L}([a \cdot i]_{q}) < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} i\right)$$
$$= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} (i - \operatorname{wt}_{L}([a \cdot i]_{q}))\right)$$

Note

• Recall: β depends on t/n but stays invariant as $n \longrightarrow \infty$.

$$\mathbb{P}(F) \leq \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \sim \mathcal{B}\right)$$
$$= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} \operatorname{wt}_{L}([a \cdot i]_{q}) < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} i\right)$$
$$= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} (i - \operatorname{wt}_{L}([a \cdot i]_{q}))\right)$$

Note

- Recall: β depends on t/n but stays invariant as $n \longrightarrow \infty$.
- The difference $(i wt_L([a \cdot i]_q))$ depends on q.

 \mathbb{P}

$$\mathbb{P}(F) \leq \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \sim \mathcal{B}\right)$$
$$= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} \mathsf{wt}_{L}([a \cdot i]q) < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} i\right)$$
$$= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i}(i - \mathsf{wt}_{L}([a \cdot i]q))\right)$$

Note

- Recall: β depends on t/n but stays invariant as $n \longrightarrow \infty$.
- The difference $(i wt_L([a \cdot i]_q))$ depends on q.

Question: What is the maximal value δ^* of the average Lee weight per entry such that $\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} (i - wt_L([a \cdot i]_q)) \leq 0$?

$$\mathbb{P}(F) \leq \mathbb{P}\left(\mathsf{wt}_{L}(a \cdot x) < \mathsf{wt}_{L}(x) \mid Q \sim \mathcal{B}\right)$$
$$= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} \mathsf{wt}_{L}([a \cdot i]q) < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} i\right)$$
$$= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i}(i - \mathsf{wt}_{L}([a \cdot i]q))\right)$$

Note

- Recall: β depends on t/n but stays invariant as $n \longrightarrow \infty$.
- The difference $(i wt_L([a \cdot i]_q))$ depends on q.

Question: What is the maximal value δ^* of the average Lee weight per entry such that $\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} (i - wt_L([a \cdot i]_q)) \leq 0$?

q	5	7	8	9	11	31	33	53
$\lfloor q/2 \rfloor$	2	3	4	4	5	15	16	26
δ^{\star}	1	1.5	1.534	1.703	2.5	7.5	7.03	13

 What is the probability that the average weight decomposition of an *n*-tuple drawn uniformly at random from Sⁿ_q(t) is less than Lq/4J?

- What is the probability that the average weight decomposition of an *n*-tuple drawn uniformly at random from Sⁿ_a(t) is less than [q/4]?
- 2. Can we estimate $\mathbb{P}(F)$ in the finite regime? If yes, how?

- What is the probability that the average weight decomposition of an *n*-tuple drawn uniformly at random from Sⁿ_q(t) is less than Lq/4J?
- 2. Can we estimate $\mathbb{P}(F)$ in the finite regime? If yes, how?
- 3. Can we improve ISD by multiplying the received word with a "suitable" nontrivial scalar?

- What is the probability that the average weight decomposition of an *n*-tuple drawn uniformly at random from Sⁿ_a(t) is less than [q/4]?
- 2. Can we estimate $\mathbb{P}(F)$ in the finite regime? If yes, how?
- 3. Can we improve ISD by multiplying the received word with a "suitable" nontrivial scalar?

Thank you for your attention!

