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Linear Codes

Consider a finite field Fq of q elements.

Linear code
A k-dimensional subspace C ⊂ Fn

q is called a q-ary linear code of length n and
dimension k. Its elements are called codewords.

Notation C is an [n, k]q-linear code.

Example of a 2-dimensional subspace of F4
2

C := {(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)} = ⟨(0, 0, 1, 1), (1, 1, 0, 0)⟩

Dual code
The dual code of an [n, k]q-linear code is given by

C⊥ =
{

x ∈ Fn
q | x · c⊤ = 0 for all c ∈ C

}
.

Example
C = ⟨(0, 0, 1, 1), (1, 1, 0, 0)⟩ = C⊥
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Hamming Metric

Given two vectors x, y ∈ Fn
q .

Hamming weight: wtH(x) :=
∣∣ {i = 1, . . . , n | xi ̸= 0}

∣∣
Hamming distance: dH(x, y) := wtH(x − y)

Minimum distance
The minimum Hamming distance dH(C) of an [n, k]q-linear code C is the minimal
Hamming weight of a nonzero codeword, i.e.,

dH(C) := min {wtH(c) | c ∈ C \ {0}}

Properties of the minimum distance

◦ dH(C) = d means that ⌊(d − 1)/2⌋ errors can be corrected
◦ Singleton bound: d ≤ n − k + 1
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Code Representation

Parity-Check Matrix
A parity-check matrix of the code C ⊂ Fn

q is a matrix H ∈ F(n−k)×n
q satisfying

C = ker(H) =
{

x ∈ Fn
q | xH⊤ = 0

}
.

Example over F4
2

The code C = ⟨(0, 0, 1, 1), (1, 1, 0, 0)⟩ has a parity-check matrix of the form

H =
(

0 0 1 1
1 1 0 0

)
.

Given a code C ⊆ Fn
q with parity-check matrix H. We say it has type (v, w), if

◦ every column of H has a constant weight v,
◦ every row of H has a constant weight w.
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MDPC Codes

MDPC code
A moderate-density parity-check (MDPC) code is a binary linear code of length n
with a parity-check matrix whose row weight is O(

√
n).

◦ Introduced as an extension to low-density parity-check codes [Gal62]
−→ especially interesting for code-based cryptography [MTSB13]

◦ Different constructions exist for MDPC codes
−→ random, cyclic, quasi-cyclic, . . .

◦ MDPC codes can be decoded with low complexity [MTSB13]
◦ Several decoding algorithms analysed for MDPC codes [BL18]

−→ Bit-Flipping Decoding [Gal63]
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Decoding Performance of MDPC Codes

Decoding performance result MDPC codes - Bit-flipping [Til18]
Given an MDPC code C ⊆ Fn

q with
◦ a parity-check matrix H of type (v, w), and
◦ a maximum column intersection number

sH := max
∣∣ {

i = 1, . . . , n | hij = hij′ = 1 and j ̸= j′
} ∣∣.

Then performing one round of bit-flipping allows to correct errors of
weight at most ⌊

v

2sH

⌋
.

Random construction: sH is O( log n
log log n

)

Construct codes with good performance.
Construct codes with small maximum column intersection s.
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Projective Planes

PG(2, q): projective plane in Fq consisting of
◦ q2 + q + 1 points
◦ q2 + q + 1 lines

Properties
1. Two points lie on exactly one

common line and vice versa.
2. Each point lies on q + 1 lines &

each line contains q + 1 points.
3. No three points among four

are collinear.

Fano Plane PG(2, 2)

p1

p2

p3

p4 p5

p6

p7

Representation through incidence matrix
PG(2, q) can be represented by a matrix A ∈ F(q2+q+1)×(q2+q+1)

2 defined as

Apℓ =
{

1 point p is incident to line ℓ

0 otherwise
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Projective Planes
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are collinear.

Fano Plane PG(2, 2)

p1

p2

p3

p4 p5

p6

p7

Representation through incidence matrix

AFano =


ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7

p1 1 0 0 1 0 0 1
p2 0 1 0 1 1 0 0
p3 0 0 1 1 0 1 0
p4 1 1 1 0 0 0 0
p5 0 1 0 0 0 1 1
p6 0 0 1 0 1 0 1
p7 1 0 0 0 1 1 0
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Codes from Planes

Given an incidence matrix H of Π = PG(2, q) over F2. Then we define the binary
code C2(Π)⊥ ⊂ (F2)q2+q+1 by

C2(Π)⊥ := ker(H).

Parameters of C2(Π)⊥ - [GM66,AJMJ70]
If q is odd:

◦ n = q2 + q + 1
◦ k = 1
◦ dH(C) = q2 + q + 1

If q = 2h:
◦ n = q2 + q + 1
◦ k = 22h − 3h + 2h

◦ dH(C) = 2h + 2 = q + 2

Bit-Flipping Error Correction
After performing one round of the bit-flipping algorithm on a parity-check matrix
H of C2(Π)⊥, errors of weight up to

⌊ dH(C)−1
2

⌋
can be corrected.

◦ Codes from planes are powerful and optimal w.r.t. bit-flipping decoding.
◦ Drawback: Only codes from planes of even order are interesting.

8 J. Bariffi, 12.07.2023
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Projective Bundles

Ovals in PG(2, q)
◦ set O of q + 1 points of PG(2, q)
◦ every line of PG(2, q) intersects O in at

most 2 points
◦ exactly q + 1 tangents - one in every point

Projective Bundle - [Gly78]
A projective bundle is a collection of q2 + q + 1 ovals of PG(2, q) mutually
intersecting in a unique point.

Existence - [Gly78]
◦ Projective bundles exist for any q.
◦ For q odd, there are three distinct types of projective bundles.

Question: Why are they interesting to us?
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Projective Bundles vs. Projective Planes

Projective Plane PG(2, q)

With incidence matrix A
◦ q2 + q + 1 points mutually

intersecting in one line
◦ q2 + q + 1 lines mutually

intersecting in one point
◦ each point lies on q + 1 lines
◦ each line contains q + 1 points

Projective Bundle B in PG(2, q)

With incidence matrix B
◦ q2 + q + 1 ovals mutually

intersecting in one tangent line
◦ q2 + q + 1 lines in PG(2, q)

mutually tangent to one oval
◦ each oval has q + 1 tangent lines
◦ each line has q + 1 tangent ovals

Projective Plane from Ovals
Given a projective bundle B over PG(2, q). Identify the ovals of B and the lines of
PG(2, q) as the points and lines, respectively, of PG(2, q) with incidence defined by
tangency. Then this point-line geometry is a projective plane of order q.

In other words: A⊤B is an incidence matrix of a projective plane again.

10 J. Bariffi, 12.07.2023
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MDPC Codes from Projective Bundles
◦ A: incidence matrix of Π = PG(2, q)
◦ B: incidence matrix of the projective plane Γ induced by ovals of a

projective bundle and lines.
◦ Let H = (A | B) ∈ F(q2+q+1)×2(q2+q+1)

2 .

Code from projective bundles
A binary linear code with parity-check matrix H is called a projective bundle code
and we write

C2(Π ⊔ Γ)⊥ := ker(H).

Parameters

◦ block length: n = 2(q2 + q + 1)

◦ dimension: k =
{

q2 + q + 2 if q if odd,

22h+1 + 2h+1 − 2(3h) + 1 if q = 2h

◦ minimum distance: dH(C2(Π ⊔ Γ)⊥) = q + 2
◦ type: (v, w) = (q + 1, 2(q + 1))

C2(Π ⊔ Γ)⊥ is an MDPC code!

11 J. Bariffi, 12.07.2023
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◦ Let H = (A | B) ∈ F(q2+q+1)×2(q2+q+1)

2 .

Code from projective bundles
A binary linear code with parity-check matrix H is called a projective bundle code
and we write

C2(Π ⊔ Γ)⊥ := ker(H).

Parameters
◦ block length: n = 2(q2 + q + 1)

◦ dimension: k =
{
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Representation of this Code Family

Alternative way to represent PG(2, q):
◦ Points are identified with the integers modulo q2 + q + 1.
◦ How do to identify the lines?

By the cyclic shifts (mod q2 + q + 1) of a perfect difference set D.

Perfect Difference Set - [Hir98]
A set D = {d0, . . . , dq} ⊂ Z/(q2 + q + 1)Z is a perfect difference set if all
differences (di − dj) with i ̸= j are distinct modulo q2 + q + 1.

Examle Fano Plane PG(2, 2)◦ Set of points:
P = {0, 1, . . . , 6}

◦ Perfect difference set modulo q2 + q + 1 = 7:
D = {0, 1, 3}

◦ Set of lines:
L = {{0 + i, 1 + i, 3 + i} | i ∈ Z/7Z}

For q odd, the three types of projective bundles can be described via cyclic
shifts of −D, 2D and D/2.
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Example of a Projective Bundle Code for q = 3

◦ Points: P = {0, 1, . . . , 13}
◦ Perfect difference set modulo 13: D = {0, 1, 3, 9}
◦ Lines: L = {{0 + i, 1 + i, 3 + i, 9 + i} | i ∈ Z/13Z}
◦ Bundles: B = 2D = {{0 + i, 2 + i, 5 + i, 6 + i} | i ∈ Z/13Z}

The maximum column intersection is sH = 2. Hence, performing one round
of the bit-flipping decoder on H corrects errors of weight up to

⌊
q+1

4

⌋
.

! sH = 2 for a matrix H of size (q2 + q + 1) × c with c > q2 + q + 1 !
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Generalization

Consider the projective plane Π = PG(2, q)
◦ Take t > 1 many disjoint projective bundles in Π.

(Existence proven in [BBEF94])
◦ Denote the resulting projective planes by Γ1, . . . , Γt and the incidence

matrices by B1, . . . , Bt

◦ Define the binary linear code

C2(Π ⊔ Γ1 ⊔ . . . , ⊔Γt)⊥ := ker
(

(A | B1 | . . . | Bt)
)

Parameters
◦ block length: n = (t + 1)(q2 + q + 1)

◦ dimension: k =
{

t(q2 + q + 1) + 1 if q if odd,

(t + 1)(22h + 2h − (3h)) + t if q = 2h

◦ minimum distance: dH(C2(Π ⊔ Γ1 ⊔ . . . , ⊔Γt)⊥) ≥
⌈

q+2
2

⌉
◦ maximum column intersection number s = 4

Thank you for your attention!
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