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1. MDPC Codes



Linear Codes

Consider a finite field F; of ¢ elements.

Linear code

A k-dimensional subspace C C Fy is called a g-ary linear code of length n and
dimension k. Its elements are called codewords.

Notation C is an [n, k]4-linear code.

Example of a 2-dimensional subspace of Fg

¢ :={(0,0,0,0),(0,0,1,1),(1,1,0,0),(1,1,1,1)} = ((0,0,1,1),(1,1,0,0))

J. Bariffi, 12.07.2023



Linear Codes

Consider a finite field F; of ¢ elements.

Linear code

A k-dimensional subspace C C Fy is called a g-ary linear code of length n and
dimension k. Its elements are called codewords.

Notation C is an [n, k]4-linear code.

Example of a 2-dimensional subspace of Fg

¢ :={(0,0,0,0),(0,0,1,1),(1,1,0,0),(1,1,1,1)} = ((0,0,1,1),(1,1,0,0))

Dual code

The dual code of an [n, k]4-linear code is given by

Cl:{xng\x'cTZO forallcEC}.

Example
€ =((0,0,1,1),(1,1,0,0)) =C*

J. Bariffi, 12.07.2023



Hamming Metric

Given two vectors z,y € Fp.

Hamming weight:
Hamming distance:

J. Bariffi, 12.07.2023
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Given two vectors z,y € Fp.

Hamming weight: wty(z) = ’ {i=1,...,n|z; #0} ‘
Hamming distance: dy(z,y) = wty(z —vy)

Minimum distance

The minimum Hamming distance dy(C) of an [n, k]g-linear code C is the minimal
Hamming weight of a nonzero codeword, i.e.,

dn(C) := min {wtn(c)

ceC\{0}}

J. Bariffi, 12.07.2023
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Given two vectors z,y € Fp.

Hamming weight: wty(z) = | {i=1,...,n|z; #0} ‘
Hamming distance: dy(z,y) = wty(z —vy)

Minimum distance

The minimum Hamming distance dy(C) of an [n, k]g-linear code C is the minimal
Hamming weight of a nonzero codeword, i.e.,

dn(C) := min {wtn(c)

ceC\{0}}

Properties of the minimum distance

© dy(C) = d means that | (d — 1)/2] errors can be corrected
© Singleton bound: d <n —k+1
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Code Representation ‘#7
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Parity-Check Matrix
A parity-check matriz of the code C C Fy is a matrix H € anfk)xn satisfying

C=ker(H)={z €F}|zH =0}.

4 J. Bariffi, 12.07.2023



4

Code Representation

Parity-Check Matrix

A parity-check matriz of the code C C Fy is a matrix H € anfk)xn satisfying

C=ker(H)={z €F}|zH =0}.

Example over ]F%

The code C = ((0,0,1,1),(1,1,0,0)) has a parity-check matrix of the form

00 1 1
H‘<1100>‘

J. Bariffi, 12.07.2023
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Code Representation

Parity-Check Matrix

A parity-check matriz of the code C C Fy is a matrix H € anfk)xn satisfying

C=ker(H)={z €F}|zH =0}.

Example over ]F%

The code C = ((0,0,1,1),(1,1,0,0)) has a parity-check matrix of the form
0O 0 1 1
= (1 10 o) ‘

Given a code C C Fy with parity-check matrix H. We say it has type (v, w), if
0 every column of H has a constant weight v,

o every row of H has a constant weight w.

J. Bariffi, 12.07.2023
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MDPC code

A moderate-density parity-check (MDPC) code is a binary linear code of length n
with a parity-check matrix whose row weight is O(y/n).

J. Bariffi, 12.07.2023




MDPC Codes 4#7
DLR

MDPC code

A moderate-density parity-check (MDPC) code is a binary linear code of length n
with a parity-check matrix whose row weight is O(y/n).

© Introduced as an extension to low-density parity-check codes [Gal62]
— especially interesting for code-based cryptography [MTSB13]

0 Different constructions exist for MDPC codes
— random, cyclic, quasi-cyclic, ...
© MDPC codes can be decoded with low complexity [MTSB13]

© Several decoding algorithms analysed for MDPC codes [BL18]
— Bit-Flipping Decoding [Gal63]

J. Bariffi, 12.07.2023




Decoding Performance of MDPC Codes

Decoding performance result MDPC codes - Bit-flipping [Til18]
Given an MDPC code C C Fy with
© a parity-check matrix H of type (v, w), and

° a mazimum column intersection number
SH ::max| {i:l,...,n|hi]~ =h;yy =1 and j;éj’} ’




Decoding Performance of MDPC Codes

Decoding performance result MDPC codes - Bit-flipping [Til18]
Given an MDPC code C C Fy with
© a parity-check matrix H of type (v,w), and
° a mazimum column intersection number
SH ::max| {i:l,...,n|hij =h;;7 =1 and j;éj’} ’
Example:

0o 0 1 1
H,( 1 0 O) — sgp=1




Decoding Performance of MDPC Codes

Decoding performance result MDPC codes - Bit-flipping [Til18]
Given an MDPC code C C Fy with

© a parity-check matrix H of type (v, w), and

0 a mazimum column intersection number

SH ::max| {i:l,...,n|hi]~ =h;yy =1 and j;éj’} ’
Then performing one round of bit-flipping allows to correct errors of
weight at most
|7
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Decoding Performance of MDPC Codes

Decoding performance result MDPC codes - Bit-flipping [Til18]
Given an MDPC code C C Fy with

© a parity-check matrix H of type (v, w), and

0 a mazimum column intersection number

SH ::max| {i:l,...,n|hi]~ =h;yy =1 and j;éj’} ’
Then performing one round of bit-flipping allows to correct errors of
weight at most
|7
2sp )

logn )

Random construction: sg is O(W

Construct codes with good performance.

Construct codes with small maximum column intersection s.

. Bariffi, 12.07.2023
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2. Projective Bundles



Projective Planes

PG(2, q): projective plane in F, consisting of
© ¢% 4 g+ 1 points
o q2+q—|—1 lines

Properties

1. Two points lie on exactly one
common line and vice versa.

2. Each point lies on g+ 1 lines &
each line contains ¢ + 1 points.

3. No three points among four
are collinear.

J. Bariffi, 12.07.2023
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PG(2, ¢q): projective plane in Fy consisting of Fano Plane PG(2,2)
© ¢% 4 g+ 1 points
© g2 + ¢+ 1 lines

X P1
Properties
1. Two points lie on exactly one
common line and vice versa.
P3 PG
2. Each point lies on g+ 1 lines &
each line contains ¢ + 1 points.
3. No three points among four
are collinear. P2 P4 ps

J. Bariffi, 12.07.2023



Projective Planes 4#7
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PG(2, ¢q): projective plane in Fy consisting of Fano Plane PG(2,2)
© ¢% 4 g+ 1 points
© g2 + ¢+ 1 lines

X P1
Properties
1. Two points lie on exactly one
common line and vice versa.
P3 PG
2. Each point lies on g+ 1 lines &
each line contains ¢ + 1 points.
3. No three points among four
are collinear. P2 P4 ps

Representation through incidence matrix

2 2
PG(2, q) can be represented by a matrix A € Féq +a+1)x (47494 gofined as

1 point p is incident to line £
Apﬁ - 9
0 otherwise

J. Bariffi, 12.07.2023



Projective Planes

PG(2, ¢q): projective plane in Fy consisting of Fano Plane PG(2,2)
© ¢% 4 g+ 1 points
© g2 + ¢+ 1 lines

X P1
Properties
1. Two points lie on exactly one
common line and vice versa.
P3
2. Each point lies on g+ 1 lines &
each line contains ¢ + 1 points.
3. No three points among four
are collinear. P2 P4

Representation through incidence matrix

21 o b3 Ly U5 le L7
p1 1 0 0 1 0 0 1
p2 | O 1 0 1 1 0 0
psl0 0o 1 1 0 1 0
AFano = pa | 1 1 1 0o 0 0 o0
psl0 1 0o o o 1 1
pe | O 0 1 0 1 0 1
prL1 0 0 0 1 1 0

J. Bariffi, 12.07.2023



Codes from Planes ‘#7
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Given an incidence matrix H of II = PG(2, ¢) over Fa. Then we define the binary
code Co(I)*+ C (]F2)q2+q+l by
Co () := ker(H).

8 J. Bariffi, 12.07.2023



Codes from Planes ‘#7
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Given an incidence matrix H of IT = PG(2, q) over F2. Then we define the binary
code Co(I)*+ C (]Fg)q2+’1+1 by
Co () := ker(H).

Parameters of Co(I1)+ - [GM66, AJMJ70]
If ¢ is odd: If ¢ = 2"
°n=¢g>+q+1 o n=q¢>+q+1
°© k=1 ° k=22 —3h 42k
°© du(C) =¢* +q+1 o dpy(C)=2"+2=¢q+2

8 J. Bariffi, 12.07.2023



Codes from Planes ‘#7
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Given an incidence matrix H of II = PG(2, ¢) over Fa. Then we define the binary
code Co(I)*+ C (]F2)q2+q+l by
Co () := ker(H).

Parameters of Co(I1)+ - [GM66, AJMJ70]
If ¢ is odd: If g = 2h:
°n=¢g>+q+1 o n=q¢>+q+1
° k=1 o k=22h _3h4oh
°© du(C) =¢* +q+1 o dpy(C)=2"+2=¢q+2

Bit-Flipping Error Correction

After performing one round of the bit-flipping algorithm on a parity-check matrix
H of Co(IT), errors of weight up to L&Q)AJ can be corrected.

8 J. Bariffi, 12.07.2023



Codes from Planes ‘#7
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Given an incidence matrix H of II = PG(2, ¢) over Fa. Then we define the binary
code Co(I)*+ C (]F2)q2+q+l by
Co () := ker(H).

Parameters of Co(I1)+ - [GM66, AJMJ70]
If ¢ is odd: If g = 2h:
°n=¢g>+q+1 o n=q¢>+q+1
°© k=1 o k=22h_3h42h
°© du(C) =¢* +q+1 o dpy(C)=2"+2=¢q+2

Bit-Flipping Error Correction

After performing one round of the bit-flipping algorithm on a parity-check matrix
H of Co(IT), errors of weight up to L&Q)AJ can be corrected.

0 Codes from planes are powerful and optimal w.r.t. bit-flipping decoding.

0 Drawback: Only codes from planes of even order are interesting.

J. Bariffi, 12.07.2023



Projective Bundles

Ovals in PG(2,q)
© set O of ¢ + 1 points of PG(2, q)

© every line of PG(2, q) intersects O in at
most 2 points

© exactly g + 1 tangents - one in every point

J. Bariffi, 12.07.2023
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Ovals in PG(2,q)

© set O of ¢ + 1 points of PG(2, q) ‘

© every line of PG(2, q) intersects O in at
most 2 points
o

exactly ¢ + 1 tangents - one in every point
Projective Bundle - [Gly78|

A projective bundle is a collection of g% + ¢ + 1 ovals of PG(2, ¢) mutually
intersecting in a unique point.
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Ovals in PG(2,q)

© set O of ¢ + 1 points of PG(2, q) ‘

© every line of PG(2, q) intersects O in at
most 2 points
o

exactly ¢ + 1 tangents - one in every point

Projective Bundle - [Gly78|

A projective bundle is a collection of g% + ¢ + 1 ovals of PG(2, ¢) mutually
intersecting in a unique point.

Existence - [Gly78|
0 Projective bundles exist for any q.

© For g odd, there are three distinct types of projective bundles.
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Projective Bundles 4#7
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Ovals in PG(2,q)

© set O of ¢ + 1 points of PG(2, q) ‘

© every line of PG(2, q) intersects O in at
most 2 points
o

exactly ¢ + 1 tangents - one in every point

Projective Bundle - [Gly78|

A projective bundle is a collection of g% + ¢ + 1 ovals of PG(2, ¢) mutually
intersecting in a unique point.

Existence - [Gly78|
0 Projective bundles exist for any q.

© For g odd, there are three distinct types of projective bundles.

Question: Why are they interesting to us?

J. Bariffi, 12.07.2023



Projective Bundles vs. Projective Planes ‘#7
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Projective Plane PG(2, q) Projective Bundle B in PG(2, q)
With incidence matrix A With incidence matrix B
© ¢? + ¢ + 1 points mutually © ¢+ q + 1 ovals mutually
intersecting in one line intersecting in one tangent line
© g% 4 g+ 1 lines mutually © g2 4 g+ 1 lines in PG(2,q)
intersecting in one point mutually tangent to one oval
0 each point lies on g + 1 lines © each oval has g + 1 tangent lines
0 each line contains g + 1 points © each line has g + 1 tangent ovals

10 J. Bariffi, 12.07.2023
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Projective Bundles vs. Projective Planes ‘#7
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Projective Plane PG(2, q) Projective Bundle B in PG(2, q)
With incidence matrix A With incidence matrix B
© ¢? + ¢ + 1 points mutually © ¢+ q + 1 ovals mutually
intersecting in one line intersecting in one tangent line
© g% 4 g+ 1 lines mutually © g2 4 g+ 1 lines in PG(2,q)
intersecting in one point mutually tangent to one oval
0 each point lies on g + 1 lines © each oval has g + 1 tangent lines
0 each line contains g + 1 points © each line has g + 1 tangent ovals

Projective Plane from Ovals

Given a projective bundle B over PG(2, q). Identify the ovals of B and the lines of
PG(2, q) as the points and lines, respectively, of PG(2, ¢) with incidence defined by
tangency. Then this point-line geometry is a projective plane of order gq.

In other words: AT B is an incidence matrix of a projective plane again.

J. Bariffi, 12.07.2023
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MDPC Codes from Projective Bundles ‘#7
DLR

© A: incidence matrix of IT = PG(2, q)

0 B: incidence matrix of the projective plane I' induced by ovals of a
projective bundle and lines.

2 2
© Let H=(A|B) g Fyl Tatx2(a Fath),
Code from projective bundles

A binary linear code with parity-check matrix H is called a projective bundle code
and we write

Co(TTUT)L = ker(H).

11 J. Bariffi, 12.07.2023
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© A: incidence matrix of IT = PG(2, q)

© B: incidence matrix of the projective plane I" induced by ovals of a
projective bundle and lines.

2 2
© Let H=(A|B) g Fyl Tatx2(a Fath),

Code from projective bundles

A binary linear code with parity-check matrix H is called a projective bundle code
and we write

Co(TTUT)L = ker(H).

Parameters

© block length: n = 2(¢%> +q+1)
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© A: incidence matrix of IT = PG(2, q)

© B: incidence matrix of the projective plane I" induced by ovals of a
projective bundle and lines.

2 2
© Let H=(A|B) g Fyl Tatx2(a Fath),

Code from projective bundles

A binary linear code with parity-check matrix H is called a projective bundle code
and we write

Co(TTUT)L = ker(H).

Parameters
© block length: n = 2(¢%> +q+1)

° dimension: k = @ +q+2 if ¢ if odd,
B 22h+1 + 2h+1 _ 2(3h) +1 if q= 2h
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© A: incidence matrix of IT = PG(2, q)

© B: incidence matrix of the projective plane I" induced by ovals of a
projective bundle and lines.

2 2
© Let H=(A|B) g Fyl Tatx2(a Fath),

Code from projective bundles

A binary linear code with parity-check matrix H is called a projective bundle code
and we write

Co(TTUT)L = ker(H).

Parameters

© block length: n = 2(¢%> +q+1)

° dimension: k = @ +q+2 if ¢ if odd,
B 22h+1 + 2h+1 _ 2(3h) +1 if q= 2h

© minimum distance: dy(Co(ITUT)L) =g+ 2
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© A: incidence matrix of IT = PG(2, q)

© B: incidence matrix of the projective plane I" induced by ovals of a
projective bundle and lines.

2 2
© Let H=(A|B) g Fyl Tatx2(a Fath),

Code from projective bundles

A binary linear code with parity-check matrix H is called a projective bundle code
and we write

Co(TTUT)L = ker(H).

Parameters
© block length: n = 2(¢%> +q+1)
© dimension: k = {q2 Tq+2 if ¢ if odd,
22h+1 + 2h+1 _ 2(3h) +1 if q= 2h
© minimum distance: dy(Co(ITUT)L) =g+ 2
° type: (v,w) =(q+1,2(¢+1))
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© A: incidence matrix of IT = PG(2, q)

© B: incidence matrix of the projective plane I" induced by ovals of a
projective bundle and lines.

2 2
© Let H=(A|B) g Fyl Tatx2(a Fath),

Code from projective bundles

A binary linear code with parity-check matrix H is called a projective bundle code
and we write

Co(TTUT)L = ker(H).

Parameters
© block length: n = 2(¢%> +q+1)
© dimension: k = {q2 Tq+2 if ¢ if odd,
22h+1 + 2h+1 _ 2(3h) +1 if q= 2h
© minimum distance: dy(Co(ITUT)L) =g+ 2
° type: (v,w) =(q+1,2(¢+1))

Co(ITUT)L is an MDPC code!
11 J. Bariffi, 12.07.2023




Representation of this Code Family

Alternative way to represent PG(2, q):
© Points are identified with the integers modulo ¢% + ¢ + 1.
© How do to identify the lines?
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Representation of this Code Family

Alternative way to represent PG(2, q):
© Points are identified with the integers modulo ¢% + ¢ + 1.

© How do to identify the lines?
By the cyclic shifts (mod g% 4 q + 1) of a perfect difference set D.

Perfect Difference Set - [Hir98]

A set D ={do,...,dq} C7Z/(q®>+ q+ 1)Z is a perfect difference set if all
differences (d; — d;) with i # j are distinct modulo ¢ + ¢ + 1.
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Representation of this Code Family

Alternative way to represent PG(2, q):
© Points are identified with the integers modulo ¢% + ¢ + 1.
© How do to identify the lines?
By the cyclic shifts (mod g% 4 q + 1) of a perfect difference set D.

Perfect Difference Set - [Hir98]

A set D ={do,...,dq} CZ/(q®> + q+ 1)Z is a perfect difference set if all
differences (d; — d;) with i # j are distinct modulo ¢ + g + 1.

Examle Fano Plane PG(2,2)

o Set of points:
P={0,1,...,6}

o Perfect difference set modulo 2 +q+1 = T7: .
D ={0,1,3}

0 Set of lines:
L={{0+i14i,3+i}|iecZ/TZ}

J. Bariffi, 12.07.2023



Representation of this Code Family

Alternative way to represent PG(2, q):
© Points are identified with the integers modulo ¢% + ¢ + 1.
© How do to identify the lines?
By the cyclic shifts (mod g% 4 q + 1) of a perfect difference set D.
Perfect Difference Set - [Hir98]

A set D = {do,...,dq} CZ/(¢* + q+ 1)Z is a perfect difference set if all
differences (d; — d;) with i # j are distinct modulo ¢ + g + 1.

Examle Fano Plane PG(2,2)

0 Set of points:

1. 1
P={0,1,...,6} TR B
o Perfect difference set modulo ¢? +¢+1 = T7: 1 1 1 1

D ={0,1,3} -1 - 11
O Set of lines: o
L={{0+i1+13+1i}|i€Z/TL}

J. Bariffi, 12.07.2023



Representation of this Code Family

Alternative way to represent PG(2, q):
© Points are identified with the integers modulo ¢% + ¢ + 1.
© How do to identify the lines?
By the cyclic shifts (mod g% 4 q + 1) of a perfect difference set D.
Perfect Difference Set - [Hir98]

A set D = {do,...,dq} CZ/(¢* + q+ 1)Z is a perfect difference set if all
differences (d; — d;) with i # j are distinct modulo ¢ + g + 1.

Examle Fano Plane PG(2,2)

0 Set of points:

1 . . . 1 .

P={0,1,...,6} 1.1

© Perfect difference set modulo g% +q+1=T7: 1 1 1 o
D ={0,1,3} 1 - 11

o111

O Set of lines: R T

L={{0+i1+143+i}|i€cZ/T7}

For q odd, the three types of projective bundles can be described via cyclic
shifts of —D,2D and D/2.

J. Bariffi, 12.07.2023



Example of a Projective Bundle Code for ¢ = 3 ‘#7
DLR

© Points: P ={0,1,...,13}

© Perfect difference set modulo 13: D = {0, 1, 3,9}

o Lines: £ ={{0+i,1+1,3+1%,9+1i} |i € Z/13Z}

© Bundles: B=2D = {{0+4,2+14,5+14,6+4} |i € Z/13Z}

13 J. Bariffi, 12.07.2023
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Example of a Projective Bundle Code for ¢ = 3

© Points: P ={0,1,...,13}
© Perfect difference set modulo 13: D = {0, 1, 3,9}
° Lines: £={{0+1,1+14,3+4,9+i} |i € Z/13Z}

© Bundles: B=2D = {{0+14,241,5+i,6+1} |i € Z/13Z}

J. Bariffi, 12.07.2023
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Example of a Projective Bundle Code for ¢ = 3

© Points: P ={0,1,...,13}
© Perfect difference set modulo 13: D = {0, 1, 3,9}

o Lines: £ ={{0+i,1+1,3+1%,9+1i} |i € Z/13Z}

© Bundles: B=2D = {{0+4,2+14,5+14,6+4} |i € Z/13Z}

The maximum column intersection is sy = 2. Hence, performing one round
of the bit-flipping decoder on H corrects errors of weight up to LEI—J .
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Example of a Projective Bundle Code for ¢ = 3

© Points: P ={0,1,...,13}
© Perfect difference set modulo 13: D = {0, 1, 3,9}

o Lines: £ ={{0+i,1+1,3+1%,9+1i} |i € Z/13Z}

© Bundles: B=2D = {{0+4,2+14,5+14,6+4} |i € Z/13Z}

The maximum column intersection is sy = 2. Hence, performing one round
of the bit-flipping decoder on H corrects errors of weight up to LEI—J .

| sy = 2 for a matrix H of size (¢> +q+ 1) X c with ¢ > g% + g+ 1!

J. Bariffi, 12.07.2023



Generalization ‘#7
DLR

Consider the projective plane IT = PG(2, q)
0 Take ¢t > 1 many disjoint projective bundles in II.
(Existence proven in [BBEF94])
© Denote the resulting projective planes by I'1,..., It and the incidence
matrices by Bi,..., Bt
0 Define the binary linear code

Co(TTUTy U, Ul i=ker ((A[B1] ... |By))
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Generalization

Consider the projective plane IT = PG(2, q)
0 Take ¢t > 1 many disjoint projective bundles in II.
(Existence proven in [BBEF94])

© Denote the resulting projective planes by I'1,..., It and the incidence
matrices by Bi,..., Bt
0 Define the binary linear code
Co(TTUTy U, Ul i=ker ((A[B1] ... |By))
Parameters
© block length: n = (¢t + 1)(q2 +qg+1)

@ +qg+1)+1 if ¢ if odd,
(t+1)(22" + 2" — (3M) +t if g=2"

© minimum distance: dy(Co(ITUTy ..., UT)L) > {%]

0 dimension: k = {

© maximum column intersection number s = 4
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Generalization ‘#7
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Consider the projective plane IT = PG(2, q)
0 Take ¢t > 1 many disjoint projective bundles in II.
(Existence proven in [BBEF94])

© Denote the resulting projective planes by I'1,..., It and the incidence
matrices by Bi,..., Bt
0 Define the binary linear code
Co(TTUTy U, Ul i=ker ((A[B1] ... |By))
Parameters
© block length: n = (¢t + 1)(q2 +qg+1)

@ +qg+1)+1 if ¢ if odd,
(t+1)(22" + 2" — (3M) +t if g=2"

© minimum distance: dy(Co(ITUTy ..., UT)L) > {%]

0 dimension: k = {

© maximum column intersection number s = 4

Thank you for your attention!
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