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Motivation - Cryptography

Childhood example

® Invent a secret language to communicate with your friends (e.g. shift the letters
in the alphabet by n, use completely new alphabet, ...)

® |n finite time (polynomial time) other class mates cracked the code and
understood you.

Goal: Want a secret language which is “hard” to crack in finite time.

In a more serious world:

® Many sensitive data is send via a computer
(online banking, passport information, medical data)

* We use a “secret language” also there (RSA, ...). We call this encryption.

e Unauthorized parties use more and more powerful tools (soon probably quantum
computers) that crack our encrypted data = decryption.
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e Current public key cryptosystems can be broken in polynomial time by a
quantum computer = Post-Quantum Cryptography

Error-correcting codes Code-based Lattice-based Integer lattices

NP-hard problem(s):
generic/syndrome decoding

NP-hard problem(s):
??

Post-Quantum
Cryptography

Polynomials Multivariate Isogeny-based Elliptic curves
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What is a lattice?

Let us consider the two-dimensional case

* Represent by basis vectors {by, b} =: B € 72*2,

e The set £(B) = {ZL bixi | xi € Zz} is called a /attice.



Example of a lattice

Assume we have the basis { (8) , <?> }

The lattice generated by B := { (8) , (?) } is
0={(2)-()+ (3) Qleneh={(@) e -2




Representation

We represent a lattice £ by a matrix B € Z"*" and write £(B).

® The matrix B is not unique. ° ° °

e Some choices of B can make the
algorithmic problems easier/harder.

Question: What is the “best” choice?




Representation

We represent a lattice £ by a matrix B € Z"*" and write £(B).

® The matrix B is not unique. ° ° °

e Some choices of B can make the
algorithmic problems easier/harder.

Question: What is the “best” choice?
= Hermite Normal Form of any B.

This normal form is...
¢ unique (i.e., HNF(B) = HNF(B"))
e efficiently computable ) ° ° °
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Properties

First minimum
M (L) == minye oy |1X]]2

minimum distance between any
two distinct lattice points.

Determinant
det(L) := vol(R"/L) = | det(B) |

Minkowski’s Theorem
M (L) < /ndet(£)'/"
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Some Algorithmic Problems on Lattices

1. Testing the equality (or inclusion) of lattices

Equivalent lattices

For two matrices By, B, € Z™" it holds £(B;) = £(B>) if and only if there is a unitary
matrix U € GL,(Z) (i.e. det(U) = £1) such that By = B U.

Example

The following matrices generate the same lattice:

2 3 1 -3
By = <3 4) and B, = (1 74>
because

B1=32<1; :193) and det((}é :193>>:11~(—13)—16~(—9):1.

2. Intersection of lattices
3. Computing a short vector of a lattice
4. Computing a lattice vector close to some target



Some Algorithmic Problems on Lattices

Testing the equality (or inclusion) of lattices easy
Intersection of lattices easy
Computing a short vector of a lattice hard

A 0D~

Computing a lattice vector close to some target hard



(Hard) Lattice Problems

Shortest Vector Problem (SVP) Closest Vector Problem (CVP)
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Supposedly hard to solve when n is large (even with a quantum computer)



(Hard) Approximate Lattice Problems

Approximate SVP Approximate CVP
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Supposedly hard to solve when n is large and when the approximation factor is small.
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Learning with Errors

® Parameters dimension n, Z/qgZ and error distribution . (often Gaussian)
e Search Find a secret s € (Z/qZ)" given many “noisy inner products”, i.e.

a < (Z/qZ)", by =(ar,s)+e €L/qL
a < (Z/qL)",  b2=(a,s)+ e €L/qL

an < (Z/qZ)",  bm = (am,S) + ém € Z/qZ



Learning with Errors

® Parameters dimension n, Z/qgZ and error distribution x. (often Gaussian)
e Search Find a secret s € (Z/qZ)" given many “noisy inner products”, i.e.

b|= A ‘1s|+]e mod q




LWE as a Lattice Problem

LWE

Given a random matrix A € (Z/qZ)™ " and the vector b := As + e € (Z/qZ)™ where
each coordinate e; is chosen independently following a distribution x ., recover s or e.
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LWE
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LWE as a Lattice Problem

LWE

Given a random matrix A € (Z/qZ)™ " and the vector b := As + e € (Z/qZ)™ where
each coordinate e; is chosen independently following a distribution x ., recover s or e.

[ J [ ] [ ] [ ]
v=As L:={xeZ"|seZ", As=x mod q}
1 [} [ ] [ ]
[ ]
b
® ® ® ¢ b=v+e,
where v € £ and e small.
[ ] 6 [} [ ]

) . . . LWE ~ CVP in £
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Concluding Remarks

® The LWE problem can equivalently be presented as the problem of decoding
random linear codes.

» The Hamming metric of the error vector follows from . (0)
» Approximating nearest codeword problem is as hard as quantumly
approximating worst-case lattice problems

e |n lattices we use the euclidean distance (L2 norm)

» Reducing the LWE problem from L2 to L' does not reduce the security (still
NP hard).
» The Lee metric can be interpreted as the L' norm modulo g
® As ngrows large, sampling an error term e of given Lee weight uniformly at
random yields an exponential distribution for the entries of e.



Research Questions

® Defining codes over lattices what can we deduce from the Lee metric knowledge
and LWE to coding theory?

® Does LWE in the Lee metric help to understand the limits of ISD?

Thank you for you attention.
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