What is Lattice-Based Cryptography?

An Introduction to Lattice-Based Cryptography and the Connection to Coding Theory

Jessica Bariffi

Quantum-Resistant Cryptography Group

SAN-OSL PhD Seminar

September 12, 2022

Motivation - Cryptography

Childhood example

- Invent a secret language to communicate with your friends (e.g. shift the letters in the alphabet by n, use completely new alphabet, ...)
- In finite time (polynomial time) other class mates cracked the code and understood you.

Motivation - Cryptography

Childhood example

- Invent a secret language to communicate with your friends (e.g. shift the letters in the alphabet by n, use completely new alphabet, ...)
- In finite time (polynomial time) other class mates cracked the code and understood you.

Goal: Want a secret language which is "hard" to crack in finite time.

Motivation - Cryptography

Childhood example

- Invent a secret language to communicate with your friends (e.g. shift the letters in the alphabet by n, use completely new alphabet, ...)
- In finite time (polynomial time) other class mates cracked the code and understood you.

Goal: Want a secret language which is "hard" to crack in finite time.
In a more serious world:

- Many sensitive data is send via a computer (online banking, passport information, medical data)

Motivation - Cryptography

Childhood example

- Invent a secret language to communicate with your friends (e.g. shift the letters in the alphabet by n, use completely new alphabet, ...)
- In finite time (polynomial time) other class mates cracked the code and understood you.

Goal: Want a secret language which is "hard" to crack in finite time.
In a more serious world:

- Many sensitive data is send via a computer (online banking, passport information, medical data)
- We use a "secret language" also there (RSA, ...). We call this encryption.

Motivation - Cryptography

Childhood example

- Invent a secret language to communicate with your friends (e.g. shift the letters in the alphabet by n, use completely new alphabet, ...)
- In finite time (polynomial time) other class mates cracked the code and understood you.

Goal: Want a secret language which is "hard" to crack in finite time.
In a more serious world:

- Many sensitive data is send via a computer (online banking, passport information, medical data)
- We use a "secret language" also there (RSA, ...). We call this encryption.
- Unauthorized parties use more and more powerful tools (soon probably quantum computers) that crack our encrypted data \Longrightarrow decryption.

Motivation - Cryptography

- Current public key cryptosystems can be broken in polynomial time by a quantum computer \Longrightarrow Post-Quantum Cryptography

Motivation - Cryptography

- Current public key cryptosystems can be broken in polynomial time by a quantum computer \Longrightarrow Post-Quantum Cryptography

Motivation - Cryptography

- Current public key cryptosystems can be broken in polynomial time by a quantum computer \Longrightarrow Post-Quantum Cryptography

Motivation - Cryptography

- Current public key cryptosystems can be broken in polynomial time by a quantum computer \Longrightarrow Post-Quantum Cryptography

Motivation - Cryptography

- Current public key cryptosystems can be broken in polynomial time by a quantum computer \Longrightarrow Post-Quantum Cryptography

Outline

(1) Lattices
(2) Lattice Problems
(3) A Cryptographic Problem based on Lattices
(4) Conclusions

(1) Lattices

(2) Lattice Problems

(3) A Cryptographic Problem based on Lattices
(4) Conclusions

What is a lattice?

Let us consider the two-dimensional case

What is a lattice?

Let us consider the two-dimensional case

- Represent by basis vectors $\left\{b_{1}, b_{2}\right\}=: B \in \mathbb{Z}^{2 \times 2}$.

What is a lattice?

Let us consider the two-dimensional case

- Represent by basis vectors $\left\{b_{1}, b_{2}\right\}=: B \in \mathbb{Z}^{2 \times 2}$.

What is a lattice?

Let us consider the two-dimensional case

- Represent by basis vectors $\left\{b_{1}, b_{2}\right\}=: B \in \mathbb{Z}^{2 \times 2}$.
- The set $\mathcal{L}(B)=\left\{\sum_{i=1}^{2} b_{i} x_{i} \mid x_{i} \in \mathbb{Z}^{2}\right\}$ is called a lattice.

Example of a lattice

Assume we have the basis $\left\{\binom{1}{0},\binom{0}{1}\right\}$

The lattice generated by $B:=\left\{\binom{1}{0},\binom{0}{1}\right\}$ is

$$
\mathcal{L}(B)=\left\{\left.\binom{a_{1}}{a_{2}} \cdot\binom{1}{0}+\binom{b_{1}}{b_{2}} \cdot\binom{0}{1} \right\rvert\, a_{i}, b_{i} \in \mathbb{Z}\right\}=\left\{\left.\binom{a_{1}}{b_{2}} \right\rvert\, a_{1}, b_{2} \in \mathbb{Z}\right\}=\mathbb{Z} \times \mathbb{Z}
$$

Representation

We represent a lattice \mathcal{L} by a matrix $B \in \mathbb{Z}^{n \times n}$ and write $\mathcal{L}(B)$.

- The matrix B is not unique.
- Some choices of B can make the algorithmic problems easier/harder.

Question: What is the "best" choice?

Representation

We represent a lattice \mathcal{L} by a matrix $B \in \mathbb{Z}^{n \times n}$ and write $\mathcal{L}(B)$.

- The matrix B is not unique.
- Some choices of B can make the algorithmic problems easier/harder.

Question: What is the "best" choice?
\Longrightarrow Hermite Normal Form of any B.
This normal form is...

- unique (i.e., $\operatorname{HNF}(B)=\operatorname{HNF}\left(B^{\prime}\right)$)
- efficiently computable

Properties

First minimum

$$
\lambda_{1}(\mathcal{L}):=\min _{x \in \mathcal{L} \backslash\{0\}}\|x\|_{2}
$$

minimum distance between any two distinct lattice points.

Properties

Properties

First minimum
$\lambda_{1}(\mathcal{L}):=\min _{x \in \mathcal{L} \backslash\{0\}}\|x\|_{2}$
minimum distance between any two distinct lattice points.
1
Determinant
$\operatorname{det}(\mathcal{L}):=\operatorname{vol}\left(\mathbb{R}^{n} / \mathcal{L}\right)=|\operatorname{det}(B)|$
Minkowski's Theorem
$\lambda_{1}(\mathcal{L}) \leq \sqrt{n} \operatorname{det}(\mathcal{L})^{1 / n}$

(1) Lattices

(2) Lattice Problems
(3) A Cryptographic Problem based on Lattices
(4) Conclusions

Some Algorithmic Problems on Lattices

1. Testing the equality (or inclusion) of lattices
2. Intersection of lattices
3. Computing a short vector of a lattice
4. Computing a lattice vector close to some target

Some Algorithmic Problems on Lattices

1. Testing the equality (or inclusion) of lattices

Equivalent lattices

For two matrices $B_{1}, B_{2} \in \mathbb{Z}^{n \times n}$ it holds $\mathcal{L}\left(B_{1}\right)=\mathcal{L}\left(B_{2}\right)$ if and only if there is a unitary matrix $U \in \operatorname{GL}_{n}(\mathbb{Z})$ (i.e. $\operatorname{det}(U)= \pm 1$) such that $B_{1}=B_{2} U$.

Example

The following matrices generate the same lattice:

$$
B_{1}=\left(\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right) \quad \text { and } \quad B_{2}=\left(\begin{array}{ll}
1 & -3 \\
1 & -4
\end{array}\right)
$$

because

$$
B_{1}=B_{2}\left(\begin{array}{cc}
11 & -9 \\
16 & -13
\end{array}\right) \quad \text { and } \quad \operatorname{det}\left(\left(\begin{array}{cc}
11 & -9 \\
16 & -13
\end{array}\right)\right)=11 \cdot(-13)-16 \cdot(-9)=1 \text {. }
$$

2. Intersection of lattices
3. Computing a short vector of a lattice
4. Computing a lattice vector close to some target

Some Algorithmic Problems on Lattices

1. Testing the equality (or inclusion) of lattices easy
2. Intersection of lattices easy
3. Computing a short vector of a lattice hard
4. Computing a lattice vector close to some target hard

(Hard) Lattice Problems

Shortest Vector Problem (SVP) Closest Vector Problem (CVP)

Input: HNF basis of \mathcal{L}
Input: HNF basis of \mathcal{L} and target t
Supposedly hard to solve when n is large (even with a quantum computer)

(Hard) Approximate Lattice Problems

Approximate SVP
Approximate CVP

Supposedly hard to solve when n is large and when the approximation factor is small.

(1) Lattices

(2) Lattice Problems

(3) A Cryptographic Problem based on Lattices

(4) Conclusions

Learning with Errors

- Parameters dimension $n, \mathbb{Z} / q \mathbb{Z}$ and error distribution χ_{α} (often Gaussian)
- Search Find a secret $s \in(\mathbb{Z} / q \mathbb{Z})^{n}$ given many "noisy inner products", i.e.

$$
\begin{aligned}
a_{1} \stackrel{\S}{\leftarrow}(\mathbb{Z} / q \mathbb{Z})^{n}, & b_{1}=\left\langle a_{1}, s\right\rangle+e_{1} \in \mathbb{Z} / q \mathbb{Z} \\
a_{2} \stackrel{\S}{\leftarrow}(\mathbb{Z} / q \mathbb{Z})^{n}, & b_{2}=\left\langle a_{2}, s\right\rangle+e_{2} \in \mathbb{Z} / q \mathbb{Z} \\
\vdots & \\
a_{m} \stackrel{\S}{\leftarrow}(\mathbb{Z} / q \mathbb{Z})^{n}, & b_{m}=\left\langle a_{m}, s\right\rangle+e_{m} \in \mathbb{Z} / q \mathbb{Z}
\end{aligned}
$$

Learning with Errors

- Parameters dimension $n, \mathbb{Z} / q \mathbb{Z}$ and error distribution χ_{α} (often Gaussian)
- Search Find a secret $s \in(\mathbb{Z} / q \mathbb{Z})^{n}$ given many "noisy inner products", i.e.

LWE as a Lattice Problem

LWE

Given a random matrix $A \in(\mathbb{Z} / q \mathbb{Z})^{m \times n}$ and the vector $b:=A s+e \in(\mathbb{Z} / q \mathbb{Z})^{m}$ where each coordinate e_{i} is chosen independently following a distribution χ_{α}, recover s or e.

LWE as a Lattice Problem

LWE

Given a random matrix $A \in(\mathbb{Z} / q \mathbb{Z})^{m \times n}$ and the vector $b:=A s+e \in(\mathbb{Z} / q \mathbb{Z})^{m}$ where each coordinate e_{i} is chosen independently following a distribution χ_{α}, recover s or e.

LWE as a Lattice Problem

LWE

Given a random matrix $A \in(\mathbb{Z} / q \mathbb{Z})^{m \times n}$ and the vector $b:=A s+e \in(\mathbb{Z} / q \mathbb{Z})^{m}$ where each coordinate e_{i} is chosen independently following a distribution χ_{α}, recover s or e.

(1) Lattices

(2) Lattice Problems

(3) A Cryptographic Problem based on Lattices

(4) Conclusions

Concluding Remarks

- The LWE problem can equivalently be presented as the problem of decoding random linear codes.

Concluding Remarks

- The LWE problem can equivalently be presented as the problem of decoding random linear codes.
- The Hamming metric of the error vector follows from $\chi_{\alpha}(0)$

Concluding Remarks

- The LWE problem can equivalently be presented as the problem of decoding random linear codes.
- The Hamming metric of the error vector follows from $\chi_{\alpha}(0)$
- Approximating nearest codeword problem is as hard as quantumly approximating worst-case lattice problems

Concluding Remarks

- The LWE problem can equivalently be presented as the problem of decoding random linear codes.
- The Hamming metric of the error vector follows from $\chi_{\alpha}(0)$
- Approximating nearest codeword problem is as hard as quantumly approximating worst-case lattice problems
- In lattices we use the euclidean distance (L^{2} norm)

Concluding Remarks

- The LWE problem can equivalently be presented as the problem of decoding random linear codes.
- The Hamming metric of the error vector follows from $\chi_{\alpha}(0)$
- Approximating nearest codeword problem is as hard as quantumly approximating worst-case lattice problems
- In lattices we use the euclidean distance (L^{2} norm)
- Reducing the LWE problem from L^{2} to L^{1} does not reduce the security (still NP hard).

Concluding Remarks

- The LWE problem can equivalently be presented as the problem of decoding random linear codes.
- The Hamming metric of the error vector follows from $\chi_{\alpha}(0)$
- Approximating nearest codeword problem is as hard as quantumly approximating worst-case lattice problems
- In lattices we use the euclidean distance (L^{2} norm)
- Reducing the LWE problem from L^{2} to L^{1} does not reduce the security (still NP hard).
- The Lee metric can be interpreted as the L^{1} norm modulo q

Concluding Remarks

- The LWE problem can equivalently be presented as the problem of decoding random linear codes.
- The Hamming metric of the error vector follows from $\chi_{\alpha}(0)$
- Approximating nearest codeword problem is as hard as quantumly approximating worst-case lattice problems
- In lattices we use the euclidean distance (L^{2} norm)
- Reducing the LWE problem from L^{2} to L^{1} does not reduce the security (still NP hard).
- The Lee metric can be interpreted as the L^{1} norm modulo q
- As n grows large, sampling an error term e of given Lee weight uniformly at random yields an exponential distribution for the entries of e.

Research Questions

- Defining codes over lattices what can we deduce from the Lee metric knowledge and LWE to coding theory?
- Does LWE in the Lee metric help to understand the limits of ISD?

Thank you for you attention.

