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Motivation - Cryptography

Childhood example

• Invent a secret language to communicate with your friends (e.g. shift the letters
in the alphabet by n, use completely new alphabet, ...)

• In finite time (polynomial time) other class mates cracked the code and
understood you.

Goal: Want a secret language which is “hard” to crack in finite time.

In a more serious world:

• Many sensitive data is send via a computer
(online banking, passport information, medical data)

• We use a “secret language” also there (RSA, ...). We call this encryption.
• Unauthorized parties use more and more powerful tools (soon probably quantum

computers) that crack our encrypted data =⇒ decryption.
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Motivation - Cryptography

• Current public key cryptosystems can be broken in polynomial time by a
quantum computer =⇒ Post-Quantum Cryptography

Post-Quantum
Cryptography
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NP-hard problem(s):
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Elliptic curves

Multivariate
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Code-based

Error-correcting codes

NP-hard problem(s):
generic/syndrome decoding
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What is a lattice?

Let us consider the two-dimensional case

b1

b2

b1

b2

• Represent by basis vectors {b1, b2} =: B ∈ Z2×2.

• The set L(B) =
{∑2

i=1 bixi | xi ∈ Z2
}

is called a lattice.
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Example of a lattice

Assume we have the basis
{(

1
0

)
,

(
0
1

)}

1 2 3 4−1−2−3−4

1

2

−1

−2

b1

b2

The lattice generated by B :=

{(
1
0

)
,

(
0
1

)}
is

L(B) =

{(
a1

a2

)
·
(

1
0

)
+

(
b1

b2

)
·
(

0
1

) ∣∣∣ai , bi ∈ Z
}

=

{(
a1

b2

) ∣∣∣a1, b2 ∈ Z
}

= Z× Z



Representation

We represent a lattice L by a matrix B ∈ Zn×n and write L(B).

• The matrix B is not unique.
• Some choices of B can make the

algorithmic problems easier/harder.

Question: What is the “best” choice?

=⇒ Hermite Normal Form of any B.

This normal form is...
• unique (i.e., HNF(B) = HNF(B′))
• efficiently computable

0
B

B′

H
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Properties

0

v

b1

b2

First minimum
λ1(L) := minx∈L\{0} ||x ||2

minimum distance between any
two distinct lattice points.

Determinant
det(L) := vol(Rn/L) = | det(B) |

Minkowski’s Theorem
λ1(L) ≤

√
n det(L)1/n
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Some Algorithmic Problems on Lattices

1. Testing the equality (or inclusion) of lattices

2. Intersection of lattices

3. Computing a short vector of a lattice

4. Computing a lattice vector close to some target



Some Algorithmic Problems on Lattices

1. Testing the equality (or inclusion) of lattices

Equivalent lattices

For two matrices B1,B2 ∈ Zn×n it holds L(B1) = L(B2) if and only if there is a unitary
matrix U ∈ GLn(Z) (i.e. det(U) = ±1) such that B1 = B2U.

Example

The following matrices generate the same lattice:

B1 =

(
2 3
3 4

)
and B2 =

(
1 −3
1 −4

)
because

B1 = B2

(
11 −9
16 −13

)
and det

((
11 −9
16 −13

))
= 11 · (−13)− 16 · (−9) = 1.

2. Intersection of lattices

3. Computing a short vector of a lattice

4. Computing a lattice vector close to some target



Some Algorithmic Problems on Lattices

1. Testing the equality (or inclusion) of lattices easy

2. Intersection of lattices easy

3. Computing a short vector of a lattice hard

4. Computing a lattice vector close to some target hard



(Hard) Lattice Problems

Shortest Vector Problem (SVP) Closest Vector Problem (CVP)

0

λ1

t

Input: HNF basis of L Input: HNF basis of L and target t

Supposedly hard to solve when n is large (even with a quantum computer)



(Hard) Approximate Lattice Problems
Approximate SVP Approximate CVP

0

≤ γλ1
t

Supposedly hard to solve when n is large and when the approximation factor is small.
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Learning with Errors

• Parameters dimension n, Z/qZ and error distribution χα (often Gaussian)
• Search Find a secret s ∈ (Z/qZ)n given many “noisy inner products”, i.e.

a1
$←− (Z/qZ)n , b1 = ⟨a1, s⟩+ e1 ∈ Z/qZ

a2
$←− (Z/qZ)n , b2 = ⟨a2, s⟩+ e2 ∈ Z/qZ

...

am
$←− (Z/qZ)n , bm = ⟨am, s⟩+ em ∈ Z/qZ



Learning with Errors

• Parameters dimension n, Z/qZ and error distribution χα (often Gaussian)
• Search Find a secret s ∈ (Z/qZ)n given many “noisy inner products”, i.e.

b = A · s + e mod q



LWE as a Lattice Problem

LWE

Given a random matrix A ∈ (Z/qZ)m×n and the vector b := As + e ∈ (Z/qZ)m where
each coordinate ei is chosen independently following a distribution χα, recover s or e.

0

v = As

b

L :=
{

x ∈ Zn | s ∈ Zn, As = x mod q
}

b = v + e,

where v ∈ L and e small.

LWE ≈ CVP in L
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Concluding Remarks

• The LWE problem can equivalently be presented as the problem of decoding
random linear codes.

▶ The Hamming metric of the error vector follows from χα(0)
▶ Approximating nearest codeword problem is as hard as quantumly

approximating worst-case lattice problems

• In lattices we use the euclidean distance (L2 norm)

▶ Reducing the LWE problem from L2 to L1 does not reduce the security (still
NP hard).

▶ The Lee metric can be interpreted as the L1 norm modulo q

• As n grows large, sampling an error term e of given Lee weight uniformly at
random yields an exponential distribution for the entries of e.
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Research Questions

• Defining codes over lattices what can we deduce from the Lee metric knowledge
and LWE to coding theory?

• Does LWE in the Lee metric help to understand the limits of ISD?

Thank you for you attention.
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