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Channel Coding

Let X and Y the input and output alphabet of the channel, respectively.

Encoder Channel

With a given channel law

PY |X (yi | xi ) := P(Y = yi | X = xi )

Decoder
Input data x ∈ X n y ∈ Yn Output data

Example: q-ary Symmetric Channel (qSC)

• Alphabets:
X = Y = {0, 1, . . . , q − 1}

• Probability of correct transmission:
1− ε

• Probability of error for every possible
outcome: ε/(q − 1)
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Linear Block Codes

Let Fq be a finite field of order q and let n be a positive integer.

Definition [Linear Code]

An [n, k ]q-linear code C ⊂ Fn
q is a k -dimensional subspace of Fn

q . The elements of C
are called codewords.

Example

C = {(0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)} is a [4, 2]2-linear code.

Definition [Hamming Weight/Distance]

For any two codewords x , y ∈ C we define
• the Hamming weight of x , wtH (x) = |{i ∈ {1, . . . , n} | xi 6= 0}|
• the Hamming distance between x and y , dH (x , y) := wtH (x − y)
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The Lee Metric

We will denote by Zq the ring of integers modulo q.

Definition [Lee weight]

For any integer a ∈ Zq its Lee weight is defined as

wtL(a) := min(a, q − a) (1)

0

1

23

4

Example: Consider Z5. The Lee weight of a = 3 is

wtL(3) = min(3, 5− 3) = 2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.
=⇒ wtL(3) = 2
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The Lee Metric

Properties
For every a ∈ Zq it holds:
• wtL(a) = wtL(q − a)

• wtL(a) ≤ bq/2c
• wtH (a) ≤ wtL(a)

If q ∈ {2, 3}, the Lee weight is
equivalent to the Hamming weight.

Example
0

1

wtL(1) = 1

2
wtL(2) = 2

3
wtL(3) = 2

4

wtL(4) = 1
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The Lee Metric

Definition [Lee weight]

Let x = (x1, . . . , xn) ∈ Zn
q be a tuple of length n. The Lee weight of x is the sum of the

Lee weight of its entries, i.e.,

wtL(x) :=
n∑

i=1

wtL(xi ) (2)

The Lee distance between two tuples x , y ∈ Zn
q is the Lee weight of their difference,

dL(x , y) = wtL(x − y).

Example:

Take again the ring of integers Z5

x = (0, 2, 4, 3, 0, 3)

wtL(x) =

0 + 2 + 1 + 2 + 0 + 2 = 7

wtH (x) = 4

0

1

wtL(1) = 1

2
wtL(2) = 2

3
wtL(3) = 2

4

wtL(4) = 1
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Why Lee Metric?

• Transmitting symbols over a nonbinary noisy channel
−→ primarily those using phase-shift keying modulation

• Design code-based cryptosystems with reduced key sizes
• Used in magnetic and DNA storage systems.

• Recently: gained attention in cryptographic applications

I Generic decoding is NP-hard in the Lee Metric1

I Low-Lee-Density Parity-Check Codes were defined2

1Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE. 2020, pp. 1–6.



Page 6/22 J. Bariffi · Lee Channels · Introduction 16.09.21

Why Lee Metric?

• Transmitting symbols over a nonbinary noisy channel
−→ primarily those using phase-shift keying modulation

• Design code-based cryptosystems with reduced key sizes

• Used in magnetic and DNA storage systems.

• Recently: gained attention in cryptographic applications

I Generic decoding is NP-hard in the Lee Metric1

I Low-Lee-Density Parity-Check Codes were defined2

1Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE. 2020, pp. 1–6.



Page 6/22 J. Bariffi · Lee Channels · Introduction 16.09.21

Why Lee Metric?

• Transmitting symbols over a nonbinary noisy channel
−→ primarily those using phase-shift keying modulation

• Design code-based cryptosystems with reduced key sizes
• Used in magnetic and DNA storage systems.

• Recently: gained attention in cryptographic applications

I Generic decoding is NP-hard in the Lee Metric1

I Low-Lee-Density Parity-Check Codes were defined2

1Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE. 2020, pp. 1–6.



Page 6/22 J. Bariffi · Lee Channels · Introduction 16.09.21

Why Lee Metric?

• Transmitting symbols over a nonbinary noisy channel
−→ primarily those using phase-shift keying modulation

• Design code-based cryptosystems with reduced key sizes
• Used in magnetic and DNA storage systems.

• Recently: gained attention in cryptographic applications

I Generic decoding is NP-hard in the Lee Metric1

I Low-Lee-Density Parity-Check Codes were defined2

1Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE. 2020, pp. 1–6.
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The Lee Channel

Originally introduced by Chiang and Wolf3.

Assume the alphabet is Zq .
Goal: Describe P(i | j) = P(i − j | 0).

Define for every i = 0, . . . , bq/2c

pi := P(i | 0) = P(−i | 0)

0

−1

0

1

...

...

−bq/2c

bq/2c

3J Chung-Yaw Chiang and Jack K Wolf. “On channels and codes for the Lee metric”. In: Information and Control
19.2 (1971), pp. 159–173.
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The Lee Channel Law

For y , x , e ∈ Zq , consider a discrete memoryless channel (DMC)

y
channel output

= x
channel input

+ e
additive error term

(3)

Restrict to: e a realization of a random variable E with

P(E = e) ∝ exp(−λwtL(e)), λ > 0,

PY |X (y |x) =
1
Z

exp (−λ dL(x , y)) , Z :=

q−1∑
e=0

exp(−λwtL(e))

Note

• The expectation of wtL(E), δ, can be written as δ = d log Z (λ)
dλ

.

• Defining pi := P(wtL(e) = i) = 1
Z exp (−λi) for i ∈ {0, 1, . . . , bq/2c}, we easily

see

p0 > p1 and pi =
pi

1

pi−1
0

for all i = 2, . . . , bq/2c.
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The Constant Lee Weight Channel

Consider now y , x , e ∈ Zn
q and y = x + e, where e has a fixed Lee weight t ∈ Z and is

drawn uniformly at random from Sn
t,q :=

{
x ∈ Zn

q
∣∣ wtL(x) = t

}
.

Theorem

For every j ∈ {1, . . . , n} the marginal weight distribution of an entry ej is given by

pi := P(wtL(ej ) = i) =
1∑q−1

j=0 exp(−β wtL(j))
exp (−βi) , ∀i ∈ {0, . . . , bq/2c}

where β > 0 is the solution to t
n = (r−1)e(r+1)β−rerβ+eβ

(eβr−1)(eβ−1)
with r = bq/2c+ 1.

Proof idea.
Solve an optimization problem to find a distribution (p0, p1, . . . , pbq/2c) that is

... maximizing H(p0, . . . , pbq/2c) := −
∑bq/2c

i=0 pi · log(pi ),

... subject to
∑bq/2c

i=0 pi · i = t
n .
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Integer Partitions

Definition [Integer Partition]

Let n ∈ Z. An (integer) partition of n of length k is a k -tuple λ = (λ1, . . . , λk ) satisfying

1. λ1 + . . .+ λk = n,

2. λ1 ≥ . . . ≥ λk .

The elements λi are called parts and their corresponding values are the part sizes.

Example

The following are partitions of n = 4: (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)

Definition [Type λ]

Let t , n ∈ Z, and λ a partition of t . We say an n-tuple x is of type λ over Zq if there is a
one-to-one correspondence between the Lee weight of the nonzero entries of x and
the parts of λ.

For a partition λ of t , we will denote the set of all n-tuples of type λ by V(n)
t,λ.
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Tuples of type λ over Zq

Note: Integer partitions of some type λ over Zq have part sizes not exceeding bq/2c.

Example

Consider Z5, t = n = 4 and λ = (2, 1, 1) a partition of t over Z5. Then:
V(4)

4,(2, 1, 1)
= {(2, 1, 1, 0), (2, 1, 0, 1), . . . , (1, 2, 1, 0), . . . , (3, 4, 1, 0), . . .}

Lemma

Let n, q and t be positive integers and consider the set of partitions Pbq/2c(t) of t with
part sizes not exceeding bq/2c. For any λ ∈ Pbq/2c(t) the number of vectors of length
n over Zq of type λ is given by

∣∣∣V(n)
t,λ

∣∣∣ =

{
2`λ |Πλ|

( n
`λ

)
if q is odd,

2`λ−cbq/2c,λ |Πλ|
( n
`λ

)
else

(4)

where cbq/2c,λ = |{i ∈ {1, . . . , `λ} |λi = bq/2c}|.
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Drawing Tuples of Fixed Lee Weight

Let Sn
q (t) the set of all tuples x ∈ Zn

q with wtL(x) = t .

Goal: We want to pick an n-tuple x uniformly at random from

Sn
q (t) =

⊔
λ∈Pbq/2c(t)

V(n)
t,λ.

Idea

1. Choose an integer partition λ = (λ1, . . . , λk ) of t with probability

pλ =

∣∣∣V(n)
t,λ

∣∣∣∑
λ∈Pbq/2c(t)

∣∣∣V(n)
t,λ

∣∣∣ over Zq .

2. Assign to λi an element ai ∈ Zq with wtL(ai ) = λi .

3. Choose randomly k positions of the tuple x and assign the values a1, . . . , ak to
them.

4. The remaining entries are zero.
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Drawing Tuples of Fixed Lee Weight

Example

Consider Z7 =⇒ b7/2c = 3 is the maximal Lee weight for an entry. Say we want a
tuple x = (_, _, _, _, _, _) of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:
(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1)

∣∣∣V(6)
4,(1,1,1,1)

∣∣∣ = 240
∣∣∣V(6)

4,(2,1,1)

∣∣∣ = 480
∣∣∣V(6)

4,(2,2)

∣∣∣ = 60
∣∣∣V(6)

4,(3,1)

∣∣∣ = 120
Say we pick (λ1, λ2, λ3) = (2, 1, 1).

2. Assign to each λi an element ai ∈ Z7 with wtL(ai ) = λi :

λ1 = 2 −→ 5, λ2 = 1 −→ 1, λ3 = 1 −→ 6

3. Choose randomly 3 positions of x and assign them to one of the above values

x = (_, 6, _, 5, 1, _)

4. x = (0, 6, 0, 5, 1, 0)
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λ1 = 2 −→ 5, λ2 = 1 −→ 1, λ3 = 1 −→ 6

3. Choose randomly 3 positions of x and assign them to one of the above values

x = (_, 6, _, 5, 1, _)

4. x = (0, 6, 0, 5, 1, 0)
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Distribution

Theorem

Let n, q and t be positive integers. The when sampling a sufficiently large number of
n-tuples using the before shown algorithm, we obtain a uniform distribution on Sn

q (t).
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Generic Decoding

Assume we receive a vector y = x
original message

+ e
error vector

.

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

• A unique solution exists if the weight of the error is relatively small.

• Information set decoding (ISD) is a method to find e.

I Is NP-hard for the Hamming- and the Lee metric.
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Introduction to the Problem

Example 1
Let x = (0, 2, 3, 1, 0, 3) ∈ Z6

5

Lee Hamming
wtL(x) = 7, wtH (x) = 4

2x = (0, 4, 1, 2, 0, 1) ∈ Z6
5 wtL(x) = 5, wtH (x) = 4

Example 2
Let x = (0, 1, 3, 4, 1, 1) ∈ Z6

5

Lee Hamming
wtL(x) = 5, wtH (x) = 5

2x = (0, 2, 1, 3, 2, 2) ∈ Z6
5 wtL(x) = 9, wtH (x) = 5

Why can decreasing the Lee weight be a problem?

Generic (or syndrome) decoding is based on the weight of the error term.
• The smaller this weight, the easier to find a solution.

Risk: From a cryptographic point of view, an attacker could decrease the weight and
retrieve the original message.
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Problem Statement

Problem

Consider the ring of integers Zq , with q > 3. Given a tuple x ∈ Zn
q of average Lee

weight δ = t/n per entry. Let a ∈ Zq be a nonzero element, find the probability that the
Lee weight of a · x is less than the Lee weight of x , i.e.

P (wtL(a · x) < wtL(x)) (5)

Note

To give an answer to that question we need to understand

1. the way x is generated,

2. the distribution of the entries of x .

Goal: We want this probability to be small!
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Preparation

Let us consider the following setup.
• x ∈ Zn

q with average Lee weight δ = t/n drawn as shown,
• Q the empirical distribution of the entries of x

• a ∈ Zq\{0} be chosen uniformly at random,
• F := {wtL(a · x) < wtL(x)}.
• B the marginal distribution of the constant Lee weight channel model

pi := P(wtL(xj ) = i) = κ exp (−βi) ,∀i ∈ {0, . . . , bq/2c}.

Applying the union bound, we have

P(F ) = P (wtL(a · x) < wtL(x) |Q is "close" to B)P (Q is "close" to B)

+ P (wtL(a · x) < wtL(x) |Q is "not close" to B)P (Q is "not close" to B)

≤ P (wtL(a · x) < wtL(x) |Q is "close" to B) + P (Q is "not close" to B)
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"Close" Distributions

Definition [Kullback-Leibler divergence]

Let X be a random variable over an alphabet X with probability distribution P, where
P(x) := P(X = x). Furthermore, let us assume that X can approximated by another
distribution Q 6= P. We define the Kullback-Leibler divergence of Q and P by

D(Q ||P) :=
∑
x∈X

Q(x) log

(
Q(x)

P(x)

)
(6)

Note

• By convention: 0 log(0) = 0.
• An approximated distribution Q is close to the exact distribution P, if

D(Q ||P) ≤ ε, for some ε > 0.
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Conditional Limit Theorem

Theorem
Conditional Limit Theorem

Let E be a closed convex set of probability
distributions over an alphabet X and let Q be a
distribution over X but not in E . Let X1, . . . ,Xn
be discrete random variables drawn i.i.d. ∼ Q.
Define X n = (X1, . . . ,Xn) and let
P? = arg minP∈E D(P ||Q). Then

P (X1 = a |PXn ∈ E) −→ P?(a)

in probability as n grows large for any a ∈ X .
4

In our case:

Q ∼ U(Zq); E set of distributions of tuples in Sn
q (t). Then B = arg minP∈E D(P ||Q).

4
Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999
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Asymptotic Regime

Recall, F = {wtL(a · x) < wtL(x)} and

P(F ) ≤ P (wtL(a · x) < wtL(x) |Q is "close" to B) + P (Q is "not close" to B)

Theorem

Let x ∈ Zn
q , for some positive integer q > 3, of average Lee weight δ = t/n be drawn

randomly from Sn
q (t) with the shown algorithm. Let Q denote the empirical distribution

of the entries of x . For any nonzero a ∈ Zq it holds

P (Q not close to B) −→ 0 as n −→∞.

Hence

As n −→∞, P(F ) ≤ P (wtL(a · x) < wtL(x) |Q is "close" to B).

By CLT ≤ P (wtL(a · x) < wtL(x) |Q ∼ B)
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randomly from Sn
q (t) with the shown algorithm. Let Q denote the empirical distribution

of the entries of x . For any nonzero a ∈ Zq it holds

P (Q not close to B) −→ 0 as n −→∞.

Hence

As n −→∞, P(F ) ≤ P (wtL(a · x) < wtL(x) |Q is "close" to B).

By CLT ≤ P (wtL(a · x) < wtL(x) |Q ∼ B)
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Asymptotic Regime
P(F ) ≤ P (wtL(a · x) < wtL(x) |Q ∼ B)

= P

bq/2c∑
i=1

e−βi wtL([a · i]q) <

bq/2c∑
i=1

e−βi i


= P

0 <
bq/2c∑

i=1

e−βi (i − wtL([a · i]q))



Note

• Recall: β depends on t/n but stays invariant as n −→∞.

• The difference (i − wtL([a · i]q)) depends on q.

Question: What is the maximal value δ? of the average Lee weight per entry such that∑bq/2c
i=1 e−βi (i − wtL([a · i]q)) ≤ 0?

q 5 7 8 9 11 31 33 53
bq/2c 2 3 4 4 5 15 16 26
δ? 1 1.5 1.534 1.703 2.5 7.5 7.03 13

Thank you for your attention!



Page 22/22 J. Bariffi · Lee Channels · Scalar Multiplication in the Lee Metric 16.09.21

Asymptotic Regime
P(F ) ≤ P (wtL(a · x) < wtL(x) |Q ∼ B)

= P

bq/2c∑
i=1

e−βi wtL([a · i]q) <

bq/2c∑
i=1

e−βi i


= P

0 <
bq/2c∑

i=1

e−βi (i − wtL([a · i]q))


Note

• Recall: β depends on t/n but stays invariant as n −→∞.

• The difference (i − wtL([a · i]q)) depends on q.

Question: What is the maximal value δ? of the average Lee weight per entry such that∑bq/2c
i=1 e−βi (i − wtL([a · i]q)) ≤ 0?

q 5 7 8 9 11 31 33 53
bq/2c 2 3 4 4 5 15 16 26
δ? 1 1.5 1.534 1.703 2.5 7.5 7.03 13

Thank you for your attention!



Page 22/22 J. Bariffi · Lee Channels · Scalar Multiplication in the Lee Metric 16.09.21

Asymptotic Regime
P(F ) ≤ P (wtL(a · x) < wtL(x) |Q ∼ B)

= P

bq/2c∑
i=1

e−βi wtL([a · i]q) <

bq/2c∑
i=1

e−βi i


= P

0 <
bq/2c∑

i=1

e−βi (i − wtL([a · i]q))


Note

• Recall: β depends on t/n but stays invariant as n −→∞.
• The difference (i − wtL([a · i]q)) depends on q.

Question: What is the maximal value δ? of the average Lee weight per entry such that∑bq/2c
i=1 e−βi (i − wtL([a · i]q)) ≤ 0?

q 5 7 8 9 11 31 33 53
bq/2c 2 3 4 4 5 15 16 26
δ? 1 1.5 1.534 1.703 2.5 7.5 7.03 13

Thank you for your attention!



Page 22/22 J. Bariffi · Lee Channels · Scalar Multiplication in the Lee Metric 16.09.21

Asymptotic Regime
P(F ) ≤ P (wtL(a · x) < wtL(x) |Q ∼ B)

= P

bq/2c∑
i=1

e−βi wtL([a · i]q) <

bq/2c∑
i=1

e−βi i


= P

0 <
bq/2c∑

i=1

e−βi (i − wtL([a · i]q))


Note

• Recall: β depends on t/n but stays invariant as n −→∞.
• The difference (i − wtL([a · i]q)) depends on q.

Question: What is the maximal value δ? of the average Lee weight per entry such that∑bq/2c
i=1 e−βi (i − wtL([a · i]q)) ≤ 0?

q 5 7 8 9 11 31 33 53
bq/2c 2 3 4 4 5 15 16 26
δ? 1 1.5 1.534 1.703 2.5 7.5 7.03 13

Thank you for your attention!



Page 22/22 J. Bariffi · Lee Channels · Scalar Multiplication in the Lee Metric 16.09.21

Asymptotic Regime
P(F ) ≤ P (wtL(a · x) < wtL(x) |Q ∼ B)

= P

bq/2c∑
i=1

e−βi wtL([a · i]q) <

bq/2c∑
i=1

e−βi i


= P

0 <
bq/2c∑

i=1

e−βi (i − wtL([a · i]q))


Note

• Recall: β depends on t/n but stays invariant as n −→∞.
• The difference (i − wtL([a · i]q)) depends on q.

Question: What is the maximal value δ? of the average Lee weight per entry such that∑bq/2c
i=1 e−βi (i − wtL([a · i]q)) ≤ 0?

q 5 7 8 9 11 31 33 53
bq/2c 2 3 4 4 5 15 16 26
δ? 1 1.5 1.534 1.703 2.5 7.5 7.03 13

Thank you for your attention!



Page 22/22 J. Bariffi · Lee Channels · Scalar Multiplication in the Lee Metric 16.09.21

Asymptotic Regime
P(F ) ≤ P (wtL(a · x) < wtL(x) |Q ∼ B)

= P

bq/2c∑
i=1

e−βi wtL([a · i]q) <

bq/2c∑
i=1

e−βi i


= P

0 <
bq/2c∑

i=1

e−βi (i − wtL([a · i]q))


Note

• Recall: β depends on t/n but stays invariant as n −→∞.
• The difference (i − wtL([a · i]q)) depends on q.

Question: What is the maximal value δ? of the average Lee weight per entry such that∑bq/2c
i=1 e−βi (i − wtL([a · i]q)) ≤ 0?

q 5 7 8 9 11 31 33 53
bq/2c 2 3 4 4 5 15 16 26
δ? 1 1.5 1.534 1.703 2.5 7.5 7.03 13

Thank you for your attention!


	Introduction
	The Lee Channel
	Error Pattern Construction
	Scalar Multiplication in the Lee Metric

