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Channel Coding

Let X and Y the input and output alphabet of the channel, respectively.

Input data xexn yey" Output data
— | Encoder Channel Decoder

With a given channel law
Py x (i | xi) = P(Y = yj | X = x;)
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Channel Coding

Let X and Y the input and output alphabet of the channel, respectively.

Input data xexn yey" Output data
— | Encoder Channel Decoder

With a given channel law
Py x (i | xi) = P(Y = yj | X = x;)

Example: g-ary Symmetric Channel (gSC)

e Alphabets: Inpgt Ooutput
X=Y={01,...,g—1} 1 1
q-—1 q—1
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Channel Coding

Let X and Y the input and output alphabet of the channel, respectively.

Input data xexn yey" Output data
— | Encoder Channel Decoder

With a given channel law
Py x (i | xi) = P(Y = yj | X = x;)

Example: g-ary Symmetric Channel (gSC)

e Alphabets: lnpgt 1—¢ Ooutput
X::)/:{O,1,,q—1} 1 )
® Probability of correct transmission:
1—¢
q-—1 q—1
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Channel Coding

Let X and Y the input and output alphabet of the channel, respectively.

Input data xexn yey" Output data
— | Encoder Channel Decoder

With a given channel law
Py x (i | xi) = P(Y = yj | X = x;)

Example: g-ary Symmetric Channel (gSC)

® Alphabets: Ooutput
X=y={0,1,...,g—1} ]

® Probability of correct transmission:
1—¢

® Probability of error for every possible
outcome: ¢/(q — 1) q-1
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Channel Coding

Let X and Y the input and output alphabet of the channel, respectively.

Input data xexn yey" Output data
— | Encoder Channel Decoder

With a given channel law
Py x (i | xi) = P(Y = yj | X = x;)

Example: g-ary Symmetric Channel (gSC)

e Alphabets: Inpgt - Ooutput
X=y={0,1,...,9-1} ] / )

® Probability of correct transmission: 1-¢
1—¢ .

® Probability of error for every possible ’ 6/(9»\ 5
outcome: e/(q — 1) qg-1 ) qg-—1
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Linear Block Codes

Let 4 be a finite field of order g and let n be a positive integer.

Definition [Linear Code]

An [n, K]q-linear code C C Fg is a k-dimensional subspace of . The elements of C
are called codewords.
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Let 4 be a finite field of order g and let n be a positive integer.

Definition [Linear Code]

An [n, K]q-linear code C C Fg is a k-dimensional subspace of . The elements of C
are called codewords.

Example
¢ ={(0,0,0,0), (1,1,0,0), (0,0,1,1), (1,1,1,1)} is a [4, 2],-linear code.
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Linear Block Codes

Let 4 be a finite field of order g and let n be a positive integer.

Definition [Linear Code]

An [n, K]q-linear code C C Fg is a k-dimensional subspace of . The elements of C
are called codewords.

Example
¢ =1{(0,0,0,0), (1,1,0,0), (0,0,1,1), (1,1,1,1)} is a [4, 2]o-linear code.

Definition [Hamming Weight/Distance]

For any two codewords x, y € C we define
e the Hamming weight of x, wty(x) = [{i € {1,...,n}| x; # 0}]
® the Hamming distance between x and y, dy(x, y) := wty(x — y)
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The Lee Metric

We will denote by Zgq the ring of integers modulo q.

Definition [Lee weight]

For any integer a € Zq its Lee weight is defined as

wt; (&) := min(a,q — a)

16.09.21
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The Lee Metric

We will denote by Zgq the ring of integers modulo q.

Definition [Lee weight]

For any integer a € Zq its Lee weight is defined as

wt, (a) := min(a, g — a) (1)

Example: Consider Zs. The Lee weight of a = 3 is

wt; (8) = min(3,5-3) =2
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We will denote by Zgq the ring of integers modulo q.

Definition [Lee weight]

For any integer a € Zq its Lee weight is defined as

wt; (&) := min(a,q — a) (1)
0 Example: Consider Zs. The Lee weight of a = 3 is
4 1 wt/(3) = min(3,5-3) =2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.
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The Lee Metric

We will denote by Zgq the ring of integers modulo q.

Definition [Lee weight]

For any integer a € Zq its Lee weight is defined as

wt; (&) := min(a,q — a) (1)
0 Example: Consider Zs. The Lee weight of a = 3 is
4 1 wt/(3) = min(3,5-3) =2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.
3 2 = wt;(3) =2
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The Lee Metric

Properties Example
For every a € Zq it holds: 0
wty(4) =1 wty (1) =1
o wt (a) = wi (q - a)
4 1
3 2
wt;(3) =2 wt;(2) =2
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The Lee Metric

Properties
For every a € Zq it holds:

* wt(a) = wt (g - a)
o wy(a) < lg/2)
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wty(4) =1 9 wty (1) =1
4 1
3 2
wt;(3) =2 wt;(2) =2
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The Lee Metric

Properties
For every a € Zq it holds:

* wt (a) =wt,(q - a)
* wti(a) < [q/2]
° wty(a) < wt.(a)
If g € {2,3}, the Lee weight is
equivalent to the Hamming weight.
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wty(4) =1 9 wty (1) =1
4 1
3 2
wty(3) =2 wt;(2) =2
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

n
wtr(x) := > we(x) @
i=1
The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,

di(x, y) = wty(x — y).

Example:
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

wty(4) = 1 0 wi (1) = 1

Take again the ring of integers Zs

x=(0,2,4,3,0,3)
wt(X) =
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

wty(4) = 1 0 wi (1) = 1

Take again the ring of integers Zs

x=(0,2,4,3,0,3)
wt () =0
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

wty(4) = 1 0 wi (1) = 1

Take again the ring of integers Zs

x = (0,2,4,3,0,3)
WtL(X) =0+2
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

Take again the ring of integers Zs

x=(0,2,4,3,0,3)
wt (x) =0+2+1
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

wty(4) = 1 0 wi (1) = 1

Take again the ring of integers Zs

x =(0,2,4,3,0,3)
wt (X)) =0+2+1+2
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

wty(4) = 1 0 wi (1) = 1

Take again the ring of integers Zs

x=(0,2,4,3,0,3)
wt (X)) =0+2+1+2+0
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

wty(4) = 1 0 wi (1) = 1

Take again the ring of integers Zs

x=(0,2,4,3,0,3)
wt (X)) =0+2+1+2+0+2
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

wty(4) = 1 0 wi (1) = 1

Take again the ring of integers Zs

x=(0,2,4,3,0,3)
wt (X)) =0+2+1+2+0+2=7
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The Lee Metric

Definition [Lee weight]

Let x = (x1,...,Xn) € Zg be a tuple of length n. The Lee weight of x is the sum of the
Lee weight of its entries, i.e.,

wip(x) == wt(x) (2)
i=1

The Lee distance between two tuples x, y € Zg is the Lee weight of their difference,
di(x,y) = wt (X = y).

Example:

wty(4) = 1 0 wi (1) = 1

Take again the ring of integers Zs

x=(0,2,4,3,0,3)
Wt (X)=0+2+14+2+0+2=7
WtH(X)=4
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Why Lee Metric?

® Transmitting symbols over a nonbinary noisy channel
— primarily those using phase-shift keying modulation

T Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference
on Communications (ICC). |EEE. 2020, pp. 1-6.
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® Design code-based cryptosystems with reduced key sizes
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Why Lee Metric?

® Transmitting symbols over a nonbinary noisy channel
— primarily those using phase-shift keying modulation

® Design code-based cryptosystems with reduced key sizes
® Used in magnetic and DNA storage systems.

" Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).
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Why Lee Metric?

® Transmitting symbols over a nonbinary noisy channel
— primarily those using phase-shift keying modulation

® Design code-based cryptosystems with reduced key sizes
® Used in magnetic and DNA storage systems.

® Recently: gained attention in cryptographic applications

T Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference
on Communications (ICC). |EEE. 2020, pp. 1-6.

i DLR




Page 6/22 J. Bariffi - Lee Channels - Introduction 16.09.21
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® Transmitting symbols over a nonbinary noisy channel
— primarily those using phase-shift keying modulation

® Design code-based cryptosystems with reduced key sizes
® Used in magnetic and DNA storage systems.

® Recently: gained attention in cryptographic applications
» Generic decoding is NP-hard in the Lee Metric'

T Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference
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Why Lee Metric?

® Transmitting symbols over a nonbinary noisy channel
— primarily those using phase-shift keying modulation

® Design code-based cryptosystems with reduced key sizes
® Used in magnetic and DNA storage systems.

® Recently: gained attention in cryptographic applications

» Generic decoding is NP-hard in the Lee Metric'
» Low-Lee-Density Parity-Check Codes were defined?

T Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with
applications to cryptography”. In: Applied and Computational Mathematics (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference
on Communications (ICC). |EEE. 2020, pp. 1-6.
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The Lee Channel

Originally introduced by Chiang and Wolf3.

3y Chung-Yaw Chiang and Jack K Wolf. “On channels and codes for the Lee metric”. In: Information and Control
19.2 (1971), pp. 159-173.
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The Lee Channel

Originally introduced by Chiang and Wolf3.

—la/2]
Assume the alphabet is Zg. :
Goal: Describe P(i | j) = P(i — j| 0).
—1
0 0
1
La/2]

3y Chung-Yaw Chiang and Jack K Wolf. “On channels and codes for the Lee metric”. In: Information and Control
19.2 (1971), pp. 159-173.
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The Lee Channel

Originally introduced by Chiang and Wolf3.

-lag/2]
Assume the alphabet is Zg. :
Goal: Describe P(i | j) = P(i — j| 0).
Define for every i =0,...,]q/2] . 1
0 0
p; :=P(i]0) = P(~i|0) .
la/2]

3y Chung-Yaw Chiang and Jack K Wolf. “On channels and codes for the Lee metric”. In: Information and Control
19.2 (1971), pp. 159-173.
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The Lee Channel

Originally introduced by Chiang and Wolf3.

—lqg/2]
Assume the alphabet is Zg. :
Goal: Describe P(i|j) = P(i — j| 0).
Define forevery i = 0,..., q/2] o o -
0 0
pi == B(i|0) = P(—i|0) e ]
lq/2]

3y Chung-Yaw Chiang and Jack K Wolf. “On channels and codes for the Lee metric”. In: Information and Control
19.2 (1971), pp. 159-173.
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The Lee Channel

Originally introduced by Chiang and Wolf3.

—la/2]
Assume the alphabet is Zg. Plaro :
Goal: Describe P(i|j) = P(i — j| 0). L
Define for every i = 0,...,|q/2] P . 1
0 0
pi == P(i|0) = P(—i|0) \1, 1
Play2] :
la/2]

3y Chung-Yaw Chiang and Jack K Wolf. “On channels and codes for the Lee metric”. In: Information and Control
19.2 (1971), pp. 159-173.
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The Lee Channel Law

For y, x, e € Zq, consider a discrete memoryless channel (DMC)

(©)

Y = X + e
channel output ~ channelinput  additive error term
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The Lee Channel Law
For y, x, e € Zq, consider a discrete memoryless channel (DMC)
y = X + e
channel output ~ channelinput  additive error term

Restrict to: e a realization of a random variable E with

P(E = e) x exp(—Awt.(e)), A >0,
qg—1

Prxy) = Zom(-Aduxy),  Z:= 3 ew(-Awi(e)
e=0
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The Lee Channel Law
For y, x, e € Zq, consider a discrete memoryless channel (DMC)
y = X + e
channel output ~ channelinput  additive error term

Restrict to: e a realization of a random variable E with

P(E = e) x exp(—Awt.(e)), A >0,
qg—1

Prxy) = Zom(-Aduxy),  Z:= 3 ew(-Awi(e)
e=0

Note
: : _ dlog Z(\)
® The expectation of wt; (E), d, can be written as § = =5~
* Defining pj := P(wt,(€) = i) = $ exp (—\i) fori € {0,1,..., |q/2]}, we easily
see )
P

po>pr and pj=—— foralli=2,...,[q/2].
Po
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The Constant Lee Weight Channel

Consider now y, x, e € Zg and y = x + e, where e has a fixed Lee weight ¢ € Z and is
drawn uniformly at random from 87 := {x € Z| wt.(x) = t} .
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The Constant Lee Weight Channel

Consider now y, x, e € Zg and y = x + e, where e has a fixed Lee weight ¢ € Z and is
drawn uniformly at random from 87 := {x € Z| wt.(x) = t} .

Theorem
For every j € {1, ..., n} the marginal weight distribution of an entry e; is given by

1

xp (=pi),Vi 0,..., 2
) R

pi :=P(wt () =) =

(r—1)c(’+1)ﬁ—rc'5+c

% with r = [g/2] + 1.

where 3 > 0 is the solution to £ = )
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The Constant Lee Weight Channel

Consider now y, x, e € Zg and y = x + e, where e has a fixed Lee weight ¢ € Z and is
drawn uniformly at random from 87 := {x € Z| wt.(x) = t} .

Theorem

For every j € {1, ..., n} the marginal weight distribution of an entry e; is given by

1
Zq o exp(=Bwt (/)

Ppi = P(WtL(ej) :/) eXp(_ﬁi)vvje {077l_q/2J}

(r—1)e(’+1)ﬁ—rerﬁ+eﬂ

where 3 > 0 is the solution to £ = TP T)

with r = |g/2] + 1.

Proof idea.
Solve an optimization problem to find a distribution (po, p1, - - ., P|q/2) thatis

. maximizing H(po, . .-, P|q/2)) = — 3152 pi - log(p).

. subject to Z}jézj pi-i=1

n
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Integer Partitions

Definition [Integer Partition]

Let n € Z. An (integer) partition of n of length k is a k-tuple A = (A1, ..., \) satisfying
1. M+...4+X=n,
2. M > > A

The elements \; are called parts and their corresponding values are the part sizes.
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Integer Partitions

Definition [Integer Partition]
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Let n € Z. An (integer) partition of n of length k is a k-tuple A = (A1, ..., \) satisfying
1. M +...+ X =n,
2. M > > A

The elements \; are called parts and their corresponding values are the part sizes.

Example
The following are partitions of n = 4: (3, 1), (2, 2), (2,1, 1), (1, 1,1, 1)

Definition [Type A]

Let t,n € Z, and X\ a partition of t. We say an n-tuple x is of type X over Zq if there is a
one-to-one correspondence between the Lee weight of the nonzero entries of x and
the parts of \.
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Integer Partitions

Definition [Integer Partition]

Let n € Z. An (integer) partition of n of length k is a k-tuple A = (A1, ..., \) satisfying
1. M +...+ X =n,
2. M > > A

The elements \; are called parts and their corresponding values are the part sizes.

Example
The following are partitions of n = 4: (3, 1), (2, 2), (2,1, 1), (1, 1,1, 1)

Definition [Type A]

Let t,n € Z, and X\ a partition of t. We say an n-tuple x is of type X over Zq if there is a
one-to-one correspondence between the Lee weight of the nonzero entries of x and
the parts of \.

For a partition A of ¢, we will denote the set of all n-tuples of type A by Vt(")?
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Tuples of type X over Zq

Note: Integer partitions of some type A over Zq have part sizes not exceeding |q/2].

Example
Consider Zs, t = n=4and A = (2, 1, 1) a partition of t over Zs. Then:
4
vi,()271,1) - {(27 17 17 0)7 (27 1» Ov 1)7"'7(17 27 17 0)7"'7(37 47 17 0)7}
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Tuples of type X over Zq

Note: Integer partitions of some type A over Zq have part sizes not exceeding |q/2].

Example
Consider Zs, t = n=4and A = (2, 1, 1) a partition of t over Zs. Then:
4
Vé(l,()27111) - {(27 17 17 0)‘ (2 17 07 1)7"'7(17 27 17 0)7"'7(37 47 17 0)7}

Let n, g and ¢ be positive integers and consider the set of partitions P| 4,2 (1) of ¢ with
part sizes not exceeding | q/2|. For any A € P|4/2)(t) the number of vectors of length
nover Zq of type X is given by

(4)

)V(") B 2ZA|I'IA|(£”A) if g is odd,
EALT 29z ny | (1) else
A

where ¢ g/2), 2 = {F € {1,..., &5} | Ni = [g/2]}].
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Drawing Tuples of Fixed Lee Weight

Let Sg(t) the set of all tuples x € Zg with wt,(x) = t.
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Drawing Tuples of Fixed Lee Weight

Let Sg(t) the set of all tuples x € Zg with wt,(x) = t.
Goal: We want to pick an n-tuple x uniformly at random from

n
sin= || v;;.
AEPq/2)(1)
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Drawing Tuples of Fixed Lee Weight

Let Sg(t) the set of all tuples x € Zg with wt,(x) = t.
Goal: We want to pick an n-tuple x uniformly at random from

_ ()
sgn= || vi
AEPq/2)(1)
Idea
1. Choose an integer partition A = (X1, ..., Ax) of t with probability
vial
Py = : over Zgq.

- @)
Z*“’Lq/zm ‘Vf‘

3
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Drawing Tuples of Fixed Lee Weight

Let Sg(t) the set of all tuples x € Zg with wt,(x) = t.
Goal: We want to pick an n-tuple x uniformly at random from

ssm= |1 v}
AEPq/2)(1)
Idea
1. Choose an integer partition A = (X1, ..., Ax) of t with probability
vial
Px - ™

= —— 51— over Zg.
AP g2)(0) ‘VM)

2. Assignto \; an element a; € Zq with wty(a;) = A;.
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Drawing Tuples of Fixed Lee Weight

Let Sg(t) the set of all tuples x € Zg with wt,(x) = t.
Goal: We want to pick an n-tuple x uniformly at random from

sin= ] v
AEPq/2)(1)
Idea
1. Choose an integer partition A = (X1, ..., Ax) of t with probability
v
Px Q)

= —— 51— over Zg.
AP g2)(0) ‘VM)

2. Assignto \; an element a; € Zq with wty(a;) = A;.

3. Choose randomly k positions of the tuple x and assign the values ay, ..., a to
them.
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Drawing Tuples of Fixed Lee Weight

Idea

i DLR

Let Sg(t) the set of all tuples x € Zg with wt,(x) = t.
Goal: We want to pick an n-tuple x uniformly at random from

n
sin= || v;;.
AEPq/2)(1)

. Choose an integer partition A = (A1, ..., \¢) of t with probability

vial

Px @) ) over Zgq.

AP g/2)0 ‘VM
Assign to \; an element a; € Zg with wt; (a;) = ;.

Choose randomly k positions of the tuple x and assign the values ay, ..., ax to
them.

The remaining entries are zero.
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Drawing Tuples of Fixed Lee Weight

Example
Consider Z7 = |7/2] = 3 is the maximal Lee weight for an entry. Say we want a
tuple x = (_, _,_,_,_,_) of length 6 with Lee weight t = 4.
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Drawing Tuples of Fixed Lee Weight

Example
Consider Z7 = |7/2] = 3 is the maximal Lee weight for an entry. Say we want a
tuple x = (_, _,_,_,_,_) of length 6 with Lee weight t = 4.
1. The partitions of t = 4 with no part exceeding 3 are:
(1,1,1,1) (2,1,1) (2,2) (3,1)
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Drawing Tuples of Fixed Lee Weight

Example
Consider Z7 = |7/2] = 3 is the maximal Lee weight for an entry. Say we want a
tuple x = (_, _,_,_,_,_) of length 6 with Lee weight t = 4.
1. The partitions of t = 4 with no part exceeding 3 are:
(1,1,1,1) (2,1,1) (2,2) (3,1)

}Vf()1,1,1,1)’_240 ‘V 211‘:480 ‘V4(22‘_60 ‘V‘(‘?()SJ)’:QO
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Drawing Tuples of Fixed Lee Weight

Example
Consider Z7 = |7/2] = 3 is the maximal Lee weight for an entry. Say we want a
tuple x = (_, _,_,_,_,_) of length 6 with Lee weight t = 4.
1. The partitions of t = 4 with no part exceeding 3 are:
(1,1,1,1) (271,1) (2,2) (3,1)
(6) (6) _ (6)
Vit =240 [V | =480 [V, =60 |V | =120
Say we pick (A1, A2, A3) = (2 1,1).
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Drawing Tuples of Fixed Lee Weight

Example
Consider Z7 = |7/2] = 3 is the maximal Lee weight for an entry. Say we want a
tuple x = (_, _,_,_,_,_) of length 6 with Lee weight t = 4.
1. The partitions of t = 4 with no part exceeding 3 are:
(1,1,1,1) (2,1,1) (2,2) (3,1)

(6) _ (6 o
V| =240 M, =480 VI, =60 [V =120
Say we pick (Ar. A2, ) = (21,1,
2. Assign to each \; an element a; € Z7 with wt;(a;) = A

M=2—75 Qdo=1—1, /\321—)6
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Drawing Tuples of Fixed Lee Weight

Example
Consider Z7 = |7/2] = 3 is the maximal Lee weight for an entry. Say we want a
tuple x = (_, _,_,_,_,_) of length 6 with Lee weight t = 4.
1. The partitions of t = 4 with no part exceeding 3 are:
(1,1,1,1) (2,1,1) (2,2) (3,1)

(6) _ (6 o
V| =240 M, =480 VI, =60 [V =120
Say we pick (Ar. A2, ) = (21,1,
2. Assign to each \; an element a; € Z7 with wt;(a;) = A

M=2—75 Qdo=1—1, /\321—)6

3. Choose randomly 3 positions of x and assign them to one of the above values

X: (_767_75717—)
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Drawing Tuples of Fixed Lee Weight

Example
Consider Z7 = |7/2] = 3 is the maximal Lee weight for an entry. Say we want a
tuple x = (_, _,_,_,_,_) of length 6 with Lee weight t = 4.
1. The partitions of t = 4 with no part exceeding 3 are:
(1,1,1,1) (2,1,1) (2,2) (3,1)

(6) _ (6 o
V| =240 M, =480 VI, =60 [V =120
Say we pick (Ar. A2, ) = (21,1,
2. Assign to each \; an element a; € Z7 with wt;(a;) = A

M=2—75 Qdo=1—1, /\321—)6

3. Choose randomly 3 positions of x and assign them to one of the above values

X: (_767_75717—)

4. x=(0,6,0,5,1,0)
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Distribution

Theorem

Let n, g and t be positive integers. The when sampling a sufficiently large number of
n-tuples using the before shown algorithm, we obtain a uniform distribution on S7(t).

Frequency of randomly constructed vectors over Z6 of length 5 and Lee weight 4
le-2 ]

8e-3

Frequency
Y
®
W

#
b

2e-39

50 100 150 200 250 300 350 400

vectors




Outline

9 Scalar Multiplication in the Lee Metric
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Generic Decoding

Assume we receive a vector y =

X + e .
original message  error vector
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Generic Decoding

Assume we receive a vector y = X + .
original message  error vector

Generic Decoding
An adversary wants to find either the message or the random error.
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Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem
® A unique solution exists if the weight of the error is relatively small.
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original message  error vector

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem
® A unique solution exists if the weight of the error is relatively small.

® |nformation set decoding (ISD) is a method to find e.
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Generic Decoding

Assume we receive a vector y = X + e .
original message  error vector

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem
® A unique solution exists if the weight of the error is relatively small.

® |nformation set decoding (ISD) is a method to find e.
Is NP-hard for the Hamming- and the Lee metric.
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Introduction to the Problem

Example 1 Lee Hamming
Letx = (0,2,3,1,0,8) € Z& wt (X) =7, wiy(x) =4
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Introduction to the Problem

Example 1 Lee Hamming
Letx = (0,2,3,1,0,8) € Z& wt (X) =7, wiy(x) =4
2x =(0,4,1,2,0,1) € Z¢ wt (x) =5, wty(x) =4
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Introduction to the Problem

Example 1 Lee Hamming
Letx = (0,2,3,1,0,8) € Z& wtp(x) =7, wiy(x) =4
2x =(0,4,1,2,0,1) € Z¢ wt (x) =5, wty(x) =4
Example 2 Lee Hamming
Letx = (0,1,3,4,1,1) € Z& wt (X) =5, wty(x) =5
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Introduction to the Problem

Example 1 Lee Hamming
Letx = (0,2,3,1,0,8) € Z& wt (X) =7, wiy(x) =4
2x =(0,4,1,2,0,1) € Z¢ wt (x) =5, wty(x) =4
Example 2 Lee Hamming
Letx = (0,1,3,4,1,1) € Z& wt (X) =5, wty(x) =5
2x=(0,2,1,8,2,2) € 28 wt (x) =9, wty(x)=5
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Introduction to the Problem

Example 1 Lee Hamming
Letx = (0,2,3,1,0,8) € Z& wt (X) =7, wiy(x) =4
2x =(0,4,1,2,0,1) € Z¢ wt (x) =5, wty(x) =4
Example 2 Lee Hamming
Letx = (0,1,3,4,1,1) € Z& wt (X) =5, wty(x) =5
2x=(0,2,1,8,2,2) € 28 wt (x) =9, wty(x)=5

Why can decreasing the Lee weight be a problem?
Generic (or syndrome) decoding is based on the weight of the error term.
® The smaller this weight, the easier to find a solution.
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Introduction to the Problem

Example 1 Lee Hamming
Letx = (0,2,3,1,0,8) € Z& wt (X) =7, wiy(x) =4
2x =(0,4,1,2,0,1) € Z¢ wt (x) =5, wty(x) =4
Example 2 Lee Hamming
Letx = (0,1,3,4,1,1) € Z& wt (X) =5, wty(x) =5
2x=(0,2,1,8,2,2) € 28 wt (x) =9, wty(x)=5

Why can decreasing the Lee weight be a problem?

Generic (or syndrome) decoding is based on the weight of the error term.
® The smaller this weight, the easier to find a solution.

Risk: From a cryptographic point of view, an attacker could decrease the weight and
retrieve the original message.
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Problem Statement

Problem

Consider the ring of integers Zq, with g > 3. Given a tuple x Zg of average Lee
weight 6 = t/n per entry. Let a € Zq be a nonzero element, find the probability that the
Lee weight of a - x is less than the Lee weight of x, i.e.

P(wti(a- x) < wt(x)) (5)
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Problem Statement

Problem

Consider the ring of integers Zq, with g > 3. Given a tuple x Zg of average Lee
weight 6 = t/n per entry. Let a € Zq be a nonzero element, find the probability that the
Lee weight of a - x is less than the Lee weight of x, i.e.

P(wt(a-x) < wir(x)) (5)
Note
To give an answer to that question we need to understand
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Problem Statement

Problem

Consider the ring of integers Zq, with g > 3. Given a tuple x Zg of average Lee
weight 6 = t/n per entry. Let a € Zq be a nonzero element, find the probability that the
Lee weight of a - x is less than the Lee weight of x, i.e.

P (wty(a- x) < wty(x)) (5)
Note

To give an answer to that question we need to understand
1. the way x is generated,
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Problem Statement

Problem

Consider the ring of integers Zq, with g > 3. Given a tuple x ZQ of average Lee
weight 6 = t/n per entry. Let a € Zq be a nonzero element, find the probability that the
Lee weight of a - x is less than the Lee weight of x, i.e.

P (wt (a- X) < wt () (5)
Note
To give an answer to that question we need to understand

1. the way x is generated,
2. the distribution of the entries of x.
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Problem Statement

Problem

Consider the ring of integers Zq, with g > 3. Given a tuple x ZQ of average Lee
weight 6 = t/n per entry. Let a € Zq be a nonzero element, find the probability that the
Lee weight of a - x is less than the Lee weight of x, i.e.

P(wt(a-x) < wt(x)) )

Note

To give an answer to that question we need to understand
1. the way x is generated,
2. the distribution of the entries of x.

Goal: We want this probability to be small!
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Preparation

Let us consider the following setup.
® x¢ Zg with average Lee weight § = t/n drawn as shown,
® (Q the empirical distribution of the entries of x
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Preparation
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® x¢ Zg with average Lee weight § = t/n drawn as shown,
® (Q the empirical distribution of the entries of x
® ac Zg\{0} be chosen uniformly at random,
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Preparation

Let us consider the following setup.
® x¢ Zg with average Lee weight § = t/n drawn as shown,
® (Q the empirical distribution of the entries of x
® ac Zg\{0} be chosen uniformly at random,
o F:={wt(a x) <wty(x)}.
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Preparation

Let us consider the following setup.
® x¢ Zg with average Lee weight § = t/n drawn as shown,
® (Q the empirical distribution of the entries of x
® ac Zg\{0} be chosen uniformly at random,
o F:={wt(a x) <wty(x)}.

® 3 the marginal distribution of the constant Lee weight channel model
pi == P(wt (%) = i) = nexp (—Bi) Vi € {0,..., |q/2]}.
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Preparation

Let us consider the following setup.
® x € Zg with average Lee weight § = t/n drawn as shown,
® (Q the empirical distribution of the entries of x
® ac Zg\{0} be chosen uniformly at random,
o F:={wt(a x) <wty(x)}.
® 3 the marginal distribution of the constant Lee weight channel model
pi = P(wt (X)) = i) = kexp (—3i),Vie {0,...,q/2]}.

Applying the union bound, we have

P(F) =P (wt.(a- x) < wt.(x)]| Qis "close" to B) P (Q s "close" to B)
+P(wtr(a-x) <wt,(x)|Qis "not close" to B) P (Q is "not close" to B)
< P(wt,(a-x) <wt,(x)]|Qis"close" to B) + P (Q is "not close" to B)
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"Close" Distributions

Definition [Kullback-Leibler divergence]

Let X be a random variable over an alphabet X" with probability distribution P, where
P(x) := P(X = x). Furthermore, let us assume that X can approximated by another
distribution Q # P. We define the Kullback-Leibler divergence of Q and P by

(6)

Q)
D(Q||P) := Q(x)1
X; ° < P(x) )

Note
® By convention: 0log(0) = 0.

® An approximated distribution Q is close to the exact distribution P, if
D(Q|| P) < e, forsome e > 0.
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Conditional Limit Theorem

Theorem
Conditional Limit Theorem

Let E be a closed convex set of probability
distributions over an alphabet X and let Q be a
distribution over X but notin E. Let Xq,..., X;
be discrete random variables drawn i.i.d. ~ Q.
Define X" = (X, ..., Xp) and let

P* = argminpcg D(P|| Q). Then

P(X; = a| Pxn € E) — P*(a)

in probability as n grows large for any a € X.
4

4Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999
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Conditional Limit Theorem

Theorem
Conditional Limit Theorem

Let E be a closed convex set of probability
distributions over an alphabet X and let Q be a
distribution over X but notin E. Let Xq,..., X;
be discrete random variables drawn i.i.d. ~ Q.
Define X" = (X, ..., Xp) and let

P* = argminpcg D(P|| Q). Then

P(X; = a| Pxn € E) — P*(a)

in probability as n grows large for any a € X.
4

In our case:
Q ~ U(Zq); E set of distributions of tuples in Sg(t). Then B = argminpce D(P|| Q).

4Cover, Elements of information theory
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Asymptotic Regime
Recall, F = {wt;(a- x) < wt;(x)} and

P(F) < P(wt (a-x) < wt,(x)|Qis "close" to B) + P (Q is "not close" to B)
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Asymptotic Regime

Recall, F = {wt;(a- x) < wt;(x)} and

P(F) < P(wt (a-x) < wt,(x)|Qis "close" to B) + P (Q is "not close" to B)

Theorem

Let x € Zg, for some positive integer g > 3, of average Lee weight 6 = t/n be drawn
randomly from Sg(t) with the shown algorithm. Let Q denote the empirical distribution
of the entries of x. For any nonzero a € Zg it holds

P(Qnotcloseto B) — 0as n — oo.
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Recall, F = {wt;(a- x) < wt;(x)} and

P(F) < P(wt (a-x) < wt,(x)|Qis "close" to B) + P (Q is "not close" to B)

Theorem

Let x € Zg, for some positive integer g > 3, of average Lee weight 6 = t/n be drawn
randomly from Sg(t) with the shown algorithm. Let Q denote the empirical distribution
of the entries of x. For any nonzero a € Zg it holds

P(Qnotcloseto B) — 0as n — oo.

Hence
As n — oo, P(F) < P(wt,(a-x) < wt,(x)| Qis "close" to B).
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Asymptotic Regime
Recall, F = {wt;(a- x) < wt;(x)} and

P(F) < P(wt (a-x) < wt,(x)|Qis "close" to B) + P (Q is "not close" to B)

Theorem

Let x € Zg, for some positive integer g > 3, of average Lee weight 6 = t/n be drawn
randomly from Sg(t) with the shown algorithm. Let Q denote the empirical distribution
of the entries of x. For any nonzero a € Zg it holds

P(Qnotcloseto B) — 0as n — oo.
Hence

As n — oo, P(F) < P(wt,(a-x) < wt,(x)| Qis "close" to B).
By CLT <P(wti(a-x) <wt(x)|Q~ B)
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Asymptotic Regime

P(F) <P(wty(a-x) <wt/(x)|Q~ B)

lg/2] ) lg/2] )
=P Z e Plwty([a-ilq) < Z e Pl
i=1 i=1

la/2] }
=P <0 < > e Pii—wy(la- qu)>>

i=1
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Asymptotic Regime

P(F) <P(wty(a-x) <wt/(x)|Q~ B)

lg/2] ) lg/2] )
=P Z e Plwty([a-ilq) < Z e Pl
i=1 i=1

i=1

la/2] }
=P <0 < > e Pii—wy(la- qu)>>

Note
® Recall: 8 depends on t/n but stays invariant as n — co.
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Asymptotic Regime

P(F) <P(wty(a-x) <wt/(x)|Q~ B)

lg/2] ) la/2] )
=P Z e Plwty([a-ilq) < Z e Pl
i=1 i=1

la/2] }
=P <0 < > e Pii—wy(la- qu)>>
i=1

Note

® Recall: 5 depends on t/n but stays invariant as n — oco.
® The difference (i — wt,([a- i]q)) depends on q.
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Asymptotic Regime

P(F) <P(wty(a-x) <wt/(x)|Q~ B)

lg/2] ) la/2] )
=P Z e Plwty([a-ilq) < Z e Pl
i=1 i=1

la/2] .
=Pl0< > e P(i—wtyla i)
i=1

Note

® Recall: 5 depends on t/n but stays invariant as n — oco.

® The difference (i — wt,([a- i]q)) depends on q.
Question: What is the maximal value §* of the average Lee weight per entry such that
SR =i —wty([a- ilq)) < 07
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Asymptotic Regime

P(F) <P(wty(a-x) <wt/(x)|Q~ B)

la2l lg/2
=P < Z e Pwty([a-ilq) < Z e_ﬁ”)
=1 =1
la/2] }
=P <0 < Y e Pi—wr(la- i]q)))

i=1
Note
® Recall: 5 depends on t/n but stays invariant as n — oco.
® The difference (i — wt,([a- i]q)) depends on q.

Question: What is the maximal value §* of the average Lee weight per entry such that
SHE e (i - wey([a- ilg)) < 07

q 5 7 8 9 11 31 33 53
[9/2] [[2 3 ] 7] 5 15 16 26
5 1 15 1534 1.703 25 75 7.03 13
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Asymptotic Regime

P(F) <P(wty(a-x) <wt/(x)|Q~ B)

la2l lg/2
=P < Z e Pwty([a-ilq) < Z e_ﬁ”)
=1 =1
la/2] }
=P <0 < Y e Pi—wr(la- i]q)))

i=1
Note
® Recall: 5 depends on t/n but stays invariant as n — oco.
® The difference (i — wt,([a- i]q)) depends on q.

Question: What is the maximal value §* of the average Lee weight per entry such that
SHE e (i - wey([a- ilg)) < 07

q 5 7 8 9 11 31 33 53
[9/2] [[2 3 ] 7] 5 15 16 26
5 1 15 1534 1.703 25 75 7.03 13

Thank you for your attention!
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