Channel Coding in the Lee Metric

Jessica Bariffi

German Aerospace Center (DLR) & University of Zurich

joint work with Hannes Bartz, Gianluigi Liva and Joachim Rosenthal

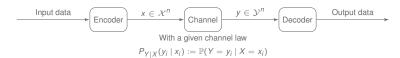
Outline

- 1 Introduction
- 2 The Lee Channel
- 3 Error Pattern Construction
- 4 Scalar Multiplication in the Lee Metric

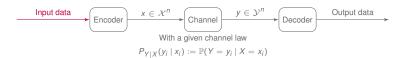
Outline

- 1 Introduction
- 2 The Lee Channel
- 3 Error Pattern Construction
- 4 Scalar Multiplication in the Lee Metric

Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.



Let $\mathcal X$ and $\mathcal Y$ the input and output alphabet of the channel, respectively.



Let $\mathcal X$ and $\mathcal Y$ the input and output alphabet of the channel, respectively.

Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.

Let $\mathcal X$ and $\mathcal Y$ the input and output alphabet of the channel, respectively.

Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.

Let $\mathcal X$ and $\mathcal Y$ the input and output alphabet of the channel, respectively.

• Alphabets: $\mathcal{X} = \mathcal{Y} = \{0, 1, \dots, q-1\}$	Input 0 1	Output 0 1
	: a − 1	: a − 1

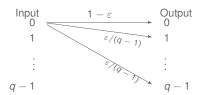
Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.

- Alphabets: $\mathcal{X} = \mathcal{Y} = \{0, 1, \dots, q-1\}$
- Probability of correct transmission: $1-\varepsilon$

Input
$$0 \longrightarrow 1 - \varepsilon \longrightarrow 0$$
 Output $0 \longrightarrow 1$ $0 \longrightarrow 0$ $0 \longrightarrow 1$ $0 \longrightarrow 1$

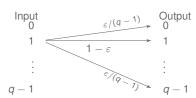
Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.

- Alphabets:
 X = Y = {0, 1, ..., q − 1}
- Probability of correct transmission: 1ε
- Probability of error for every possible outcome: $\varepsilon/(q-1)$



Let \mathcal{X} and \mathcal{Y} the input and output alphabet of the channel, respectively.

- Alphabets: $\mathcal{X} = \mathcal{Y} = \{0, 1, \dots, q-1\}$
- Probability of correct transmission: 1ε
- Probability of error for every possible outcome: $\varepsilon/(q-1)$



Linear Block Codes

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer.

Definition [Linear Code]

An $[n,k]_q$ -linear code $\mathcal{C}\subset \mathbb{F}_q^n$ is a k-dimensional subspace of \mathbb{F}_q^n . The elements of \mathcal{C} are called codewords.

Linear Block Codes

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer.

Definition [Linear Code]

An $[n,k]_q$ -linear $code\ \mathcal{C}\subset \mathbb{F}_q^n$ is a k-dimensional subspace of \mathbb{F}_q^n . The elements of \mathcal{C} are called codewords.

Example

 $C = \{(0,0,0,0), (1,1,0,0), (0,0,1,1), (1,1,1,1)\}$ is a $[4,2]_2$ -linear code.

Linear Block Codes

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer.

Definition [Linear Code]

An $[n,k]_q$ -linear code $\mathcal{C} \subset \mathbb{F}_q^n$ is a k-dimensional subspace of \mathbb{F}_q^n . The elements of \mathcal{C} are called *codewords*.

Example

 $\mathcal{C} = \{(0,0,0,0),\, (1,1,0,0),\, (0,0,1,1),\, (1,1,1,1)\} \text{ is a } [4,2]_2\text{-linear code}.$

Definition [Hamming Weight/Distance]

For any two codewords $x, y \in \mathcal{C}$ we define

- the Hamming weight of x, wt_H $(x) = |\{i \in \{1, ..., n\} | x_i \neq 0\}|$
- the Hamming distance between x and y, $d_H(x, y) := wt_H(x y)$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$\operatorname{wt}_{L}(a) := \min(a, q - a) \tag{1}$$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider \mathbb{Z}_5 . The Lee weight of a=3 is

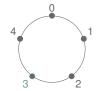
$$wt_L(3) = min(3, 5 - 3) = 2$$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$



Example: Consider \mathbb{Z}_5 . The Lee weight of a=3 is

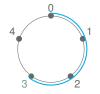
$$wt_L(3) = min(3, 5 - 3) = 2$$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$



Example: Consider \mathbb{Z}_5 . The Lee weight of a=3 is

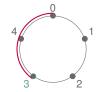
$$wt_L(3) = min(3, 5 - 3) = 2$$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$



Example: Consider \mathbb{Z}_5 . The Lee weight of a=3 is

$$wt_{I}(3) = min(3, 5 - 3) = 2$$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider \mathbb{Z}_5 . The Lee weight of a=3 is

$$wt_L(3) = min(3, 5 - 3) = 2$$

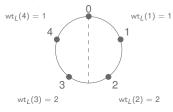
$$\Longrightarrow wt_L(3) = 2$$

Properties

For every $a \in \mathbb{Z}_q$ it holds:

•
$$\operatorname{wt}_L(a) = \operatorname{wt}_L(q - a)$$

Example

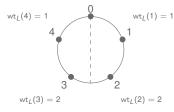


Properties

For every $a \in \mathbb{Z}_q$ it holds:

- $\operatorname{wt}_L(a) = \operatorname{wt}_L(q a)$
- $wt_L(a) \le |q/2|$

Example

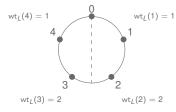


Properties

For every $a \in \mathbb{Z}_q$ it holds:

- $\operatorname{wt}_L(a) = \operatorname{wt}_L(q a)$
- $\operatorname{wt}_L(a) \leq \lfloor q/2 \rfloor$
- $\operatorname{wt}_H(a) \leq \operatorname{wt}_L(a)$ If $q \in \{2, 3\}$, the Lee weight is equivalent to the Hamming weight.

Example



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Definition [Lee weight]

Let $x=(x_1,\ldots,x_n)\in\mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The Lee distance between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = \operatorname{wt}_L(x - y)$.

Example:

Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

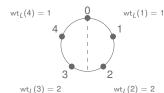
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) =



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

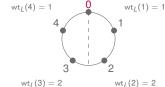
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_I(x) = 0



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

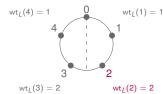
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

 $\text{wt}_{t}(x) = 0 + 2$



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

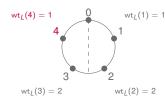
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt₁(x) = 0 + 2 + 1



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

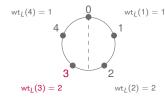
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

 $\text{wt}_L(x) = 0 + 2 + 1 + 2$



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

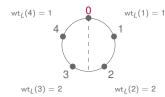
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x, y \in \mathbb{Z}_q^n$ is the Lee weight of their difference, $d_L(x, y) = \operatorname{wt}_L(x - y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_I(x) = 0 + 2 + 1 + 2 + 0



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

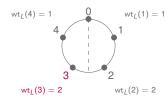
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt₁(x) = 0 + 2 + 1 + 2 + 0 + 2



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

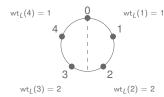
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt₁(x) = 0 + 2 + 1 + 2 + 0 + 2 = 7



Definition [Lee weight]

Let $x = (x_1, \dots, x_n) \in \mathbb{Z}_q^n$ be a tuple of length n. The *Lee weight* of x is the sum of the Lee weight of its entries, i.e.,

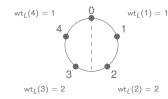
$$\operatorname{wt}_{L}(x) := \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i})$$
 (2)

The *Lee distance* between two tuples $x,y\in\mathbb{Z}_q^n$ is the Lee weight of their difference, $\mathrm{d}_L(x,y)=\mathrm{wt}_L(x-y)$.

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

 $wt_L(x) = 0 + 2 + 1 + 2 + 0 + 2 = 7$
 $wt_H(x) = 4$



Transmitting symbols over a nonbinary noisy channel
 — primarily those using phase-shift keying modulation

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: *ICC 2020-2020 IEEE International Conference on Communications (ICC)*. IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel
 primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: *ICC 2020-2020 IEEE International Conference on Communications (ICC)*. IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel
 primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: *ICC 2020-2020 IEEE International Conference on Communications (ICC)*. IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryotography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel
 primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- Recently: gained attention in cryptographic applications

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: *ICC 2020-2020 IEEE International Conference on Communications (ICC)*. IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryotography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel
 primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- Recently: gained attention in cryptographic applications
 - Generic decoding is NP-hard in the Lee Metric¹

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: *ICC 2020-2020 IEEE International Conference on Communications (ICC)*. IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryotography". In: *Applied and Computational Mathematics* (2019).

- Transmitting symbols over a nonbinary noisy channel
 — primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- Recently: gained attention in cryptographic applications
 - Generic decoding is NP-hard in the Lee Metric¹
 - ► Low-Lee-Density Parity-Check Codes were defined²

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: *ICC 2020-2020 IEEE International Conference on Communications (ICC)*. IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: *Applied and Computational Mathematics* (2019).

Outline

- 1 Introduction
- 2 The Lee Channel
- 3 Error Pattern Construction
- 4 Scalar Multiplication in the Lee Metric

The Lee Channel

Originally introduced by Chiang and Wolf³.

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

The Lee Channel

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i|j) = \mathbb{P}(i-j|0)$.

U

$$-\lfloor q/2 \rfloor$$

_

1

. [q/2]

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

-|q/2|

The Lee Channel

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i\,|\,j)=\mathbb{P}(i\,-\,j\,|\,0)$. Define for every $i=0,\ldots,\lfloor q/2\rfloor$

$$p_i := \mathbb{P}(i \mid 0) = \mathbb{P}(-i \mid 0)$$

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

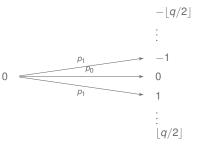
The Lee Channel

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i | j) = \mathbb{P}(i - j | 0)$.

Define for every i = 0, ..., |q/2|

$$p_i := \mathbb{P}(i \mid 0) = \mathbb{P}(-i \mid 0)$$



³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

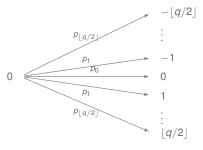
The Lee Channel

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i | j) = \mathbb{P}(i - j | 0)$.

Define for every $i = 0, \ldots, \lfloor q/2 \rfloor$

$$p_i := \mathbb{P}(i | 0) = \mathbb{P}(-i | 0)$$



³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: *Information and Control* 19.2 (1971), pp. 159–173.

The Lee Channel Law

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

$$y = x + e$$
channel output channel input additive error term (3)

The Lee Channel Law

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

$$y = x + e$$
channel output channel input + additive error term (3)

Restrict to: e a realization of a random variable E with

$$\mathbb{P}(E = e) \propto \exp(-\lambda \operatorname{wt}_{L}(e)), \qquad \lambda > 0,$$

$$P_{Y|X}(y|X) = \frac{1}{Z} \exp(-\lambda \operatorname{d}_{L}(X, y)), \qquad Z := \sum_{e=0}^{q-1} \exp(-\lambda \operatorname{wt}_{L}(e))$$

The Lee Channel Law

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

$$y = x + e$$
channel output channel input + additive error term (3)

Restrict to: e a realization of a random variable E with

$$\begin{split} \mathbb{P}(E = e) &\propto \exp(-\lambda \operatorname{wt}_L(e)), & \lambda > 0, \\ P_{Y|X}(y|x) &= \frac{1}{Z} \exp\left(-\lambda \operatorname{d}_L(x,y)\right), & Z := \sum_{e=0}^{q-1} \exp(-\lambda \operatorname{wt}_L(e)) \end{split}$$

Note

- The expectation of $\operatorname{wt}_L(E)$, δ , can be written as $\delta = \frac{\operatorname{d} \log Z(\lambda)}{\operatorname{d} \lambda}$.
- Defining $p_i := \mathbb{P}(\mathsf{wt}_L(e) = i) = \frac{1}{Z} \exp\left(-\lambda i\right)$ for $i \in \{0, 1, \dots, \lfloor q/2 \rfloor\}$, we easily see

$$p_0 > p_1$$
 and $p_i = \frac{p_1^i}{p_0^{i-1}}$ for all $i = 2, \dots, \lfloor q/2 \rfloor$.

The Constant Lee Weight Channel

Consider now $y,x,e\in\mathbb{Z}_q^n$ and y=x+e, where e has a fixed Lee weight $t\in\mathbb{Z}$ and is drawn uniformly at random from $\mathcal{S}_{t,q}^n:=\left\{x\in\mathbb{Z}_q^n\,\middle|\,\operatorname{wt}_L(x)=t\right\}$.

The Constant Lee Weight Channel

Consider now $y,x,e\in\mathbb{Z}_q^n$ and y=x+e, where e has a fixed Lee weight $t\in\mathbb{Z}$ and is drawn uniformly at random from $\mathcal{S}_{t,a}^n:=\left\{x\in\mathbb{Z}_q^n\mid \operatorname{wt}_L(x)=t\right\}$.

Theorem

For every $j \in \{1, ..., n\}$ the marginal weight distribution of an entry e_i is given by

$$p_i := \mathbb{P}(\mathsf{wt}_L(e_j) = i) = \frac{1}{\sum_{j=0}^{q-1} \exp(-\beta \, \mathsf{wt}_L(j))} \exp(-\beta i), \forall i \in \{0, \dots, \lfloor q/2 \rfloor\}$$

where $\beta>0$ is the solution to $\frac{t}{n}=\frac{(r-1)\mathrm{e}^{(r+1)\beta}-r\mathrm{e}^{r\beta}+\mathrm{e}^{\beta}}{(\mathrm{e}^{\beta}r-1)(\mathrm{e}^{\beta}-1)}$ with $r=\lfloor q/2\rfloor+1$.

The Constant Lee Weight Channel

Consider now $y,x,e\in\mathbb{Z}_q^n$ and y=x+e, where e has a fixed Lee weight $t\in\mathbb{Z}$ and is drawn uniformly at random from $\mathcal{S}_{t,a}^n:=\left\{x\in\mathbb{Z}_q^n\mid \operatorname{wt}_L(x)=t\right\}$.

Theorem

For every $j \in \{1, ..., n\}$ the marginal weight distribution of an entry e_i is given by

$$p_i := \mathbb{P}(\mathsf{wt}_L(e_j) = i) = \frac{1}{\sum_{j=0}^{q-1} \exp(-\beta \, \mathsf{wt}_L(j))} \exp(-\beta i), \forall i \in \{0, \dots, \lfloor q/2 \rfloor\}$$

where $\beta>0$ is the solution to $\frac{t}{n}=\frac{(r-1)\mathrm{e}^{(r+1)\beta}-r\mathrm{e}^{r\beta}+\mathrm{e}^{\beta}}{(\mathrm{e}^{\beta}r-1)(\mathrm{e}^{\beta}-1)}$ with $r=\lfloor q/2\rfloor+1$.

Proof idea.

Solve an optimization problem to find a distribution $(p_0, p_1, \dots, p_{\lfloor q/2 \rfloor})$ that is

... maximizing
$$H(p_0, ..., p_{|q/2|}) := -\sum_{i=0}^{\lfloor q/2 \rfloor} p_i \cdot \log(p_i)$$
,

... subject to
$$\sum_{i=0}^{\lfloor q/2 \rfloor} p_i \cdot i = \frac{t}{n}$$
.

Outline

- Introduction
- 2 The Lee Channel
- 3 Error Pattern Construction
- 4 Scalar Multiplication in the Lee Metric

Definition [Integer Partition]

Let $n \in \mathbb{Z}$. An *(integer) partition* of n of length k is a k-tuple $\lambda = (\lambda_1, \dots, \lambda_k)$ satisfying

- 1. $\lambda_1 + \ldots + \lambda_k = n$,
- 2. $\lambda_1 > \ldots > \lambda_k$.

The elements λ_i are called *parts* and their corresponding values are the *part sizes*.

Definition [Integer Partition]

Let $n \in \mathbb{Z}$. An *(integer) partition* of n of length k is a k-tuple $\lambda = (\lambda_1, \dots, \lambda_k)$ satisfying

- 1. $\lambda_1 + \ldots + \lambda_k = n$,
- 2. $\lambda_1 > \ldots > \lambda_k$.

The elements λ_i are called *parts* and their corresponding values are the *part sizes*.

Example

The following are partitions of n = 4: (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)

Definition [Integer Partition]

Let $n \in \mathbb{Z}$. An (integer) partition of n of length k is a k-tuple $\lambda = (\lambda_1, \dots, \lambda_k)$ satisfying

- 1. $\lambda_1 + \ldots + \lambda_k = n$,
- 2. $\lambda_1 > \ldots > \lambda_k$.

The elements λ_i are called *parts* and their corresponding values are the *part sizes*.

Example

The following are partitions of n = 4: (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)

Definition [Type λ]

Let $t, n \in \mathbb{Z}$, and λ a partition of t. We say an n-tuple x is of $type \lambda$ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of x and the parts of λ .

Definition [Integer Partition]

Let $n \in \mathbb{Z}$. An *(integer) partition* of n of length k is a k-tuple $\lambda = (\lambda_1, \dots, \lambda_k)$ satisfying

- 1. $\lambda_1 + \ldots + \lambda_k = n$,
- 2. $\lambda_1 > \ldots > \lambda_k$.

The elements λ_i are called *parts* and their corresponding values are the *part sizes*.

Example

The following are partitions of n = 4: (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)

Definition [Type λ]

Let $t, n \in \mathbb{Z}$, and λ a partition of t. We say an n-tuple x is of $type \lambda$ over \mathbb{Z}_q if there is a one-to-one correspondence between the Lee weight of the nonzero entries of x and the parts of λ .

For a partition λ of t, we will denote the set of all n-tuples of type λ by $\mathcal{V}_{t,\lambda}^{(n)}$.

Tuples of type λ over \mathbb{Z}_q

Note: Integer partitions of some type λ over \mathbb{Z}_q have part sizes not exceeding $\lfloor q/2 \rfloor$.

Example

Consider
$$\mathbb{Z}_5$$
, $t = n = 4$ and $\lambda = (2, 1, 1)$ a partition of t over \mathbb{Z}_5 . Then: $\mathcal{V}_{4,(2,1,1)}^{(4)} = \{(2, 1, 1, 0), (2, 1, 0, 1), \dots, (1, 2, 1, 0), \dots, (3, 4, 1, 0), \dots\}$

Tuples of type λ over \mathbb{Z}_q

Note: Integer partitions of some type λ over \mathbb{Z}_q have part sizes not exceeding $\lfloor q/2 \rfloor$.

Example

Consider
$$\mathbb{Z}_5$$
, $t = n = 4$ and $\lambda = (2, 1, 1)$ a partition of t over \mathbb{Z}_5 . Then: $\mathcal{V}_{4,(2,1,1)}^{(4)} = \{(2, 1, 1, 0), (2, 1, 0, 1), \dots, (1, 2, 1, 0), \dots, (3, 4, 1, 0), \dots\}$

Tuples of type λ over \mathbb{Z}_q

Note: Integer partitions of some type λ over \mathbb{Z}_q have part sizes not exceeding |q/2|.

Example

Consider \mathbb{Z}_5 , t = n = 4 and $\lambda = (2, 1, 1)$ a partition of t over \mathbb{Z}_5 . Then: $\mathcal{V}_{4,(2,1,1)}^{(4)} = \{(2, 1, 1, 0), (2, 1, 0, 1), \dots, (1, 2, 1, 0), \dots, (3, 4, 1, 0), \dots\}$

Lemma

Let n,q and t be positive integers and consider the set of partitions $\mathcal{P}_{\lfloor q/2 \rfloor}(t)$ of t with part sizes not exceeding $\lfloor q/2 \rfloor$. For any $\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor}(t)$ the number of vectors of length n over \mathbb{Z}_q of type λ is given by

$$\left| \mathcal{V}_{t,\lambda}^{(n)} \right| = \begin{cases} 2^{\ell_{\lambda}} \left| \Pi_{\lambda} \right| \binom{n}{\ell_{\lambda}} & \text{if } q \text{ is odd,} \\ 2^{\ell_{\lambda} - c_{\lfloor q/2 \rfloor, \lambda}} \left| \Pi_{\lambda} \right| \binom{n}{\ell_{\lambda}} & \text{else} \end{cases}$$
(4)

where $c_{\lfloor q/2 \rfloor,\lambda} = |\{i \in \{1,\ldots,\ell_{\lambda}\} \mid \lambda_i = \lfloor q/2 \rfloor\}|$.

Let $S_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with $\operatorname{wt}_L(x) = t$.

Let $\mathcal{S}_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with $\operatorname{wt}_L(x) = t$. **Goal:** We want to pick an *n*-tuple x uniformly at random from

$$\mathcal{S}_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{t,\lambda}^{(n)}.$$

Let $\mathcal{S}_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with $\operatorname{wt}_L(x) = t$. **Goal:** We want to pick an *n*-tuple x uniformly at random from

$$S_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{t,\lambda}^{(n)}.$$

Idea

1. Choose an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of t with probability $p_{\lambda} = \frac{\left|\mathcal{V}_{t,\lambda}^{(n)}\right|}{\sum_{\lambda \in \mathcal{P}_{1,q/2,|t|}}\left|\mathcal{V}_{t,\lambda}^{(n)}\right|} \text{ over } \mathbb{Z}_q.$

Let $\mathcal{S}_q^n(t)$ the set of all tuples $x \in \mathbb{Z}_q^n$ with $\operatorname{wt}_L(x) = t$. **Goal:** We want to pick an *n*-tuple x uniformly at random from

$$S_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{t,\lambda}^{(n)}.$$

Idea

- 1. Choose an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of t with probability $p_{\lambda} = \frac{\left|\mathcal{V}_{t,\lambda}^{(n)}\right|}{\sum_{\lambda \in \mathcal{P}_{1,q/2,|t|}}\left|\mathcal{V}_{t,\lambda}^{(n)}\right|} \text{ over } \mathbb{Z}_q.$
- 2. Assign to λ_i an element $a_i \in \mathbb{Z}_q$ with $\operatorname{wt}_L(a_i) = \lambda_i$.

Let $S_a^n(t)$ the set of all tuples $x \in \mathbb{Z}_a^n$ with $\operatorname{wt}_L(x) = t$.

Goal: We want to pick an *n*-tuple *x* uniformly at random from

$$S_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{t,\lambda}^{(n)}.$$

Idea

1. Choose an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of t with probability

$$p_{\lambda} = \frac{\left| \mathcal{V}_{t,\lambda}^{(n)} \right|}{\sum_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor}(t)} \left| \mathcal{V}_{t,\lambda}^{(n)} \right|} \text{ over } \mathbb{Z}_q.$$

- 2. Assign to λ_i an element $a_i \in \mathbb{Z}_q$ with $\operatorname{wt}_L(a_i) = \lambda_i$.
- 3. Choose randomly k positions of the tuple x and assign the values a_1, \ldots, a_k to them.

Let $S_a^n(t)$ the set of all tuples $x \in \mathbb{Z}_a^n$ with $\operatorname{wt}_L(x) = t$.

Goal: We want to pick an *n*-tuple *x* uniformly at random from

$$S_q^n(t) = \bigsqcup_{\lambda \in \mathcal{P}_{\lfloor q/2 \rfloor(t)}} \mathcal{V}_{t,\lambda}^{(n)}.$$

Idea

1. Choose an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of t with probability

$$p_{\lambda} = \frac{\left|\mathcal{V}_{t,\lambda}^{(n)}\right|}{\sum_{\lambda \in \mathcal{P}_{|q/2|(t)}} \left|\mathcal{V}_{t,\lambda}^{(n)}\right|} \text{ over } \mathbb{Z}_{q}.$$

- 2. Assign to λ_i an element $a_i \in \mathbb{Z}_q$ with $\operatorname{wt}_L(a_i) = \lambda_i$.
- 3. Choose randomly k positions of the tuple x and assign the values a_1, \ldots, a_k to them.
- 4. The remaining entries are zero.

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are: (1,1,1,1) (2,1,1) (2,2) (3,1)

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

$$\begin{vmatrix} (1,1,1,1) & (2,1,1) & (2,2) & (3,1) \\ |\mathcal{V}_{4,(1,1,1,1)}^{(6)}| & = 240 & |\mathcal{V}_{4,(2,1,1)}^{(6)}| & = 480 & |\mathcal{V}_{4,(2,2)}^{(6)}| & = 60 & |\mathcal{V}_{4,(3,1)}^{(6)}| & = 120 \\ \end{vmatrix}$$

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

$$\begin{array}{c|cccc} (1,1,1,1) & (2,1,1) & (2,2) & (3,1) \\ \left|\mathcal{V}_{4,(1,1,1,1)}^{(6)}\right| = 240 & \left|\mathcal{V}_{4,(2,1,1)}^{(6)}\right| = 480 & \left|\mathcal{V}_{4,(2,2)}^{(6)}\right| = 60 & \left|\mathcal{V}_{4,(3,1)}^{(6)}\right| = 120 \\ \text{Say we pick } (\lambda_1,\lambda_2,\lambda_3) = (2,1,1). \end{array}$$

Drawing Tuples of Fixed Lee Weight

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

$$\begin{vmatrix} (1,1,1,1) & (2,1,1) \\ \left| \mathcal{V}_{4,(1,1,1,1)}^{(6)} \right| = 240 & \left| \mathcal{V}_{4,(2,1,1)}^{(6)} \right| = 480 & \left| \mathcal{V}_{4,(2,2)}^{(6)} \right| = 60 & \left| \mathcal{V}_{4,(3,1)}^{(6)} \right| = 120 \\ \text{Say we pick } (\lambda_1,\lambda_2,\lambda_3) = (2,1,1). \end{aligned}$$

2. Assign to each λ_i an element $a_i \in \mathbb{Z}_7$ with $\operatorname{wt}_L(a_i) = \lambda_i$:

$$\lambda_1 = 2 \longrightarrow 5$$
, $\lambda_2 = 1 \longrightarrow 1$, $\lambda_3 = 1 \longrightarrow 6$

Drawing Tuples of Fixed Lee Weight

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

$$\begin{vmatrix} (1,1,1,1) & (2,1,1) & (2,2) & (3,1) \\ \left| \mathcal{V}_{4,(1,1,1,1)}^{(6)} \right| = 240 & \left| \mathcal{V}_{4,(2,1,1)}^{(6)} \right| = 480 & \left| \mathcal{V}_{4,(2,2)}^{(6)} \right| = 60 & \left| \mathcal{V}_{4,(3,1)}^{(6)} \right| = 120 \\ \text{Say we pick } (\lambda_1,\lambda_2,\lambda_3) = (2,1,1).$$

2. Assign to each λ_i an element $a_i \in \mathbb{Z}_7$ with $\operatorname{wt}_L(a_i) = \lambda_i$:

$$\lambda_1 = 2 \longrightarrow 5$$
, $\lambda_2 = 1 \longrightarrow 1$, $\lambda_3 = 1 \longrightarrow 6$

3. Choose randomly 3 positions of x and assign them to one of the above values

$$x = (_, 6, _, 5, 1, _)$$

Drawing Tuples of Fixed Lee Weight

Example

Consider $\mathbb{Z}_7 \Longrightarrow \lfloor 7/2 \rfloor = 3$ is the maximal Lee weight for an entry. Say we want a tuple $x = (_,_,_,_,_)$ of length 6 with Lee weight t = 4.

1. The partitions of t = 4 with no part exceeding 3 are:

2. Assign to each λ_i an element $a_i \in \mathbb{Z}_7$ with $\operatorname{wt}_L(a_i) = \lambda_i$:

$$\lambda_1 = 2 \longrightarrow 5$$
, $\lambda_2 = 1 \longrightarrow 1$, $\lambda_3 = 1 \longrightarrow 6$

3. Choose randomly 3 positions of x and assign them to one of the above values

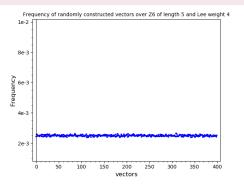
$$x = (_, 6, _, 5, 1, _)$$

4. x = (0, 6, 0, 5, 1, 0)

Distribution

Theorem

Let n, q and t be positive integers. The when sampling a sufficiently large number of n-tuples using the before shown algorithm, we obtain a uniform distribution on $S_n^n(t)$.



Outline

- 1 Introduction
- 2 The Lee Channel
- 3 Error Pattern Construction
- 4 Scalar Multiplication in the Lee Metric

Assume we receive a vector
$$y = x \operatorname{original\ message} + e \operatorname{rror\ vector}$$
.

Assume we receive a vector
$$\mathbf{y} = \mathbf{x}_{\text{original message}} + \mathbf{e}_{\text{error vector}}$$

Generic Decoding

An adversary wants to find either the message or the random error.

Assume we receive a vector
$$\mathbf{y} = \mathbf{x}_{\text{original message}} + \mathbf{e}_{\text{error vector}}$$

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

• A unique solution exists if the weight of the error is relatively small.

Assume we receive a vector $\mathbf{y} = \mathbf{x}_{\text{original message}} + \mathbf{e}_{\text{error vector}}$

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

- A unique solution exists if the weight of the error is relatively small.
- Information set decoding (ISD) is a method to find e.

Assume we receive a vector
$$y = \underset{\text{original message}}{x} + \underset{\text{error vector}}{e}.$$

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

- A unique solution exists if the weight of the error is relatively small.
- Information set decoding (ISD) is a method to find e.
 Is NP-hard for the Hamming- and the Lee metric.

Example 1 Let
$$x = (0, 2, 3, 1, 0, 3) \in \mathbb{Z}_5^6$$

Lee Hamming
$$wt_L(x) = 7$$
, $wt_H(x) = 4$

Example 1 Let
$$x=(0,2,3,1,0,3)\in\mathbb{Z}_5^6$$

 $2x = (0, 4, 1, 2, 0, 1) \in \mathbb{Z}_5^6$

Lee Hamming
$$\operatorname{wt}_L(x) = 7$$
, $\operatorname{wt}_H(x) = 4$ $\operatorname{wt}_L(x) = 5$, $\operatorname{wt}_H(x) = 4$

Example 1 Let $x=(0,2,3,1,0,3)\in\mathbb{Z}_5^6$

 $2x=(0,4,1,2,0,1)\in\mathbb{Z}_5^6$

Example 2 Let $x = (0, 1, 3, 4, 1, 1) \in \mathbb{Z}_5^6$

Lee Hamming $\operatorname{wt}_L(x) = 7$, $\operatorname{wt}_H(x) = 4$

 $\operatorname{wt}_L(x) = 5, \quad \operatorname{wt}_H(x) = 4$

Lee Hamming $\operatorname{wt}_L(x) = 5$, $\operatorname{wt}_H(x) = 5$

Example 1
Let
$$x = (0, 2, 3, 1, 0, 3) \in \mathbb{Z}_5^6$$

 $2x = (0, 4, 1, 2, 0, 1) \in \mathbb{Z}_5^6$

Example 2
Let
$$x = (0, 1, 3, 4, 1, 1) \in \mathbb{Z}_5^6$$

 $2x = (0, 2, 1, 3, 2, 2) \in \mathbb{Z}_6^6$

Lee Hamming
$$\operatorname{wt}_L(x) = 7$$
, $\operatorname{wt}_H(x) = 4$ $\operatorname{wt}_L(x) = 5$, $\operatorname{wt}_H(x) = 4$

Lee Hamming
$$\operatorname{wt}_L(x) = 5$$
, $\operatorname{wt}_H(x) = 5$ $\operatorname{wt}_L(x) = 9$, $\operatorname{wt}_H(x) = 5$

Example 1 Lee Hamming
$$\operatorname{wt}_L(x) = 7$$
, $\operatorname{wt}_H(x) = 4$ $2x = (0, 4, 1, 2, 0, 1) \in \mathbb{Z}_5^6$ $\operatorname{wt}_L(x) = 5$, $\operatorname{wt}_H(x) = 4$ Example 2 Lee Hamming $\operatorname{wt}_L(x) = 5$, $\operatorname{wt}_H(x) = 5$ $2x = (0, 2, 1, 3, 2, 2) \in \mathbb{Z}_5^6$ $\operatorname{wt}_L(x) = 5$, $\operatorname{wt}_H(x) = 5$ $\operatorname{wt}_H(x) = 5$

Why can decreasing the Lee weight be a problem?

Generic (or syndrome) decoding is based on the weight of the error term.

• The smaller this weight, the easier to find a solution.

$$\begin{array}{lll} \text{Example 1} & \text{Lee} & \text{Hamming} \\ \text{Let } x = (0,2,3,1,0,3) \in \mathbb{Z}_5^6 & \text{wt}_L(x) = 7, & \text{wt}_H(x) = 4 \\ & 2x = (0,4,1,2,0,1) \in \mathbb{Z}_5^6 & \text{wt}_L(x) = 5, & \text{wt}_H(x) = 4 \\ & \text{Example 2} & \text{Lee} & \text{Hamming} \\ \text{Let } x = (0,1,3,4,1,1) \in \mathbb{Z}_5^6 & \text{wt}_L(x) = 5, & \text{wt}_H(x) = 5 \\ & 2x = (0,2,1,3,2,2) \in \mathbb{Z}_5^6 & \text{wt}_L(x) = 9, & \text{wt}_H(x) = 5 \end{array}$$

Why can decreasing the Lee weight be a problem?

Generic (or syndrome) decoding is based on the weight of the error term.

• The smaller this weight, the easier to find a solution.

Risk: From a cryptographic point of view, an attacker could decrease the weight and retrieve the original message.

Problem

Consider the ring of integers \mathbb{Z}_q , with q>3. Given a tuple $x\in\mathbb{Z}_q^n$ of average Lee weight $\delta=t/n$ per entry. Let $a\in\mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a\cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\mathsf{wt}_L(a\cdot x)<\mathsf{wt}_L(x)\right)\tag{5}$$

Problem

Consider the ring of integers \mathbb{Z}_q , with q>3. Given a tuple $x\in\mathbb{Z}_q^n$ of average Lee weight $\delta=t/n$ per entry. Let $a\in\mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a\cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\operatorname{wt}_{L}(a\cdot x) < \operatorname{wt}_{L}(x)\right) \tag{5}$$

Note

To give an answer to that question we need to understand

Problem

Consider the ring of integers \mathbb{Z}_q , with q>3. Given a tuple $x\in\mathbb{Z}_q^n$ of average Lee weight $\delta=t/n$ per entry. Let $a\in\mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a\cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\operatorname{wt}_{L}(a\cdot x) < \operatorname{wt}_{L}(x)\right) \tag{5}$$

Note

To give an answer to that question we need to understand

1. the way x is generated,

Problem

Consider the ring of integers \mathbb{Z}_q , with q>3. Given a tuple $x\in\mathbb{Z}_q^n$ of average Lee weight $\delta=t/n$ per entry. Let $a\in\mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a\cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\operatorname{wt}_{L}(a\cdot x) < \operatorname{wt}_{L}(x)\right) \tag{5}$$

Note

To give an answer to that question we need to understand

- 1. the way x is generated,
- 2. the distribution of the entries of x.

Problem

Consider the ring of integers \mathbb{Z}_q , with q>3. Given a tuple $x\in\mathbb{Z}_q^n$ of average Lee weight $\delta=t/n$ per entry. Let $a\in\mathbb{Z}_q$ be a nonzero element, find the probability that the Lee weight of $a\cdot x$ is less than the Lee weight of x, i.e.

$$\mathbb{P}\left(\mathsf{wt}_L(a\cdot x)<\mathsf{wt}_L(x)\right)\tag{5}$$

Note

To give an answer to that question we need to understand

- 1. the way x is generated,
- 2. the distribution of the entries of x.

Goal: We want this probability to be small!

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- Q the empirical distribution of the entries of x

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- Q the empirical distribution of the entries of x
- $a \in \mathbb{Z}_q \setminus \{0\}$ be chosen uniformly at random,

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- Q the empirical distribution of the entries of x
- $a \in \mathbb{Z}_q \setminus \{0\}$ be chosen uniformly at random,
- $F := \{ \operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x) \}.$

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- Q the empirical distribution of the entries of x
- $a \in \mathbb{Z}_q \setminus \{0\}$ be chosen uniformly at random,
- $F := \{ \operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x) \}.$
- \mathcal{B} the marginal distribution of the constant Lee weight channel model $p_i := \mathbb{P}(\mathsf{wt}_L(x_i) = i) = \kappa \exp(-\beta i), \forall i \in \{0, \dots, \lfloor q/2 \rfloor\}.$

Let us consider the following setup.

- $x \in \mathbb{Z}_q^n$ with average Lee weight $\delta = t/n$ drawn as shown,
- Q the empirical distribution of the entries of x
- $a \in \mathbb{Z}_q \setminus \{0\}$ be chosen uniformly at random,
- $F := \{ \operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x) \}.$
- \mathcal{B} the marginal distribution of the constant Lee weight channel model $p_i := \mathbb{P}(\mathsf{wt}_L(x_i) = i) = \kappa \exp(-\beta i), \forall i \in \{0, \dots, \lfloor q/2 \rfloor\}.$

Applying the union bound, we have

$$\begin{split} \mathbb{P}(F) &= \mathbb{P}\left(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) \,|\, Q \text{ is "close" to } \mathcal{B}\right) \mathbb{P}\left(Q \text{ is "close" to } \mathcal{B}\right) \\ &+ \mathbb{P}\left(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) \,|\, Q \text{ is "not close" to } \mathcal{B}\right) \mathbb{P}\left(Q \text{ is "not close" to } \mathcal{B}\right) \\ &\leq \mathbb{P}\left(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) \,|\, Q \text{ is "close" to } \mathcal{B}\right) + \mathbb{P}\left(Q \text{ is "not close" to } \mathcal{B}\right) \end{split}$$

"Close" Distributions

Definition [Kullback-Leibler divergence]

Let X be a random variable over an alphabet $\mathcal X$ with probability distribution P, where $P(x) := \mathbb P(X=x)$. Furthermore, let us assume that X can approximated by another distribution $Q \neq P$. We define the *Kullback-Leibler divergence* of Q and P by

$$D(Q || P) := \sum_{x \in \mathcal{X}} Q(x) \log \left(\frac{Q(x)}{P(x)} \right)$$
 (6)

Note

- By convention: $0 \log(0) = 0$.
- An approximated distribution Q is *close* to the exact distribution P, if $D(Q || P) \le \varepsilon$, for some $\varepsilon > 0$.

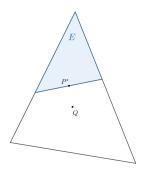
Conditional Limit Theorem

Theorem Conditional Limit Theorem

Let E be a closed convex set of probability distributions over an alphabet $\mathcal X$ and let Q be a distribution over $\mathcal X$ but not in E. Let X_1,\ldots,X_n be discrete random variables drawn i.i.d. $\sim Q$. Define $X^n=(X_1,\ldots,X_n)$ and let $P^*=\arg\min_{P\in E}D(P\,||\,Q)$. Then

$$\mathbb{P}(X_1 = a | P_{X^n} \in E) \longrightarrow P^*(a)$$

in probability as n grows large for any $a \in \mathcal{X}$.



⁴Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999

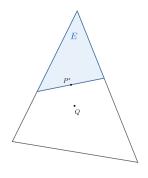
Conditional Limit Theorem

Theorem Conditional Limit Theorem

Let E be a closed convex set of probability distributions over an alphabet $\mathcal X$ and let Q be a distribution over $\mathcal X$ but not in E. Let X_1,\ldots,X_n be discrete random variables drawn i.i.d. $\sim Q$. Define $X^n=(X_1,\ldots,X_n)$ and let $P^*=\arg\min_{P\in E}D(P||Q)$. Then

$$\mathbb{P}(X_1 = a | P_{X^n} \in E) \longrightarrow P^*(a)$$

in probability as n grows large for any $a \in \mathcal{X}$.



In our case:

 $Q \sim \mathcal{U}(\mathbb{Z}_q)$; E set of distributions of tuples in $\mathcal{S}_{\sigma}^n(t)$. Then $\mathcal{B} = \arg\min_{P \in E} D(P || Q)$.

⁴Cover, Elements of information theory

Recall,
$$F = \{ wt_L(a \cdot x) < wt_L(x) \}$$
 and

$$\mathbb{P}(F) \leq \mathbb{P}\left(\operatorname{wt}_{L}(a \cdot x) < \operatorname{wt}_{L}(x) \mid Q \text{ is "close" to } \mathcal{B}\right) + \mathbb{P}\left(Q \text{ is "not close" to } \mathcal{B}\right)$$

Recall,
$$F = \{ \operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x) \}$$
 and

$$\mathbb{P}(F) < \mathbb{P}(\mathsf{wt}_l(a \cdot x) < \mathsf{wt}_l(x) \mid Q \text{ is "close" to } \mathcal{B}) + \mathbb{P}(Q \text{ is "not close" to } \mathcal{B})$$

Theorem

Let $x\in\mathbb{Z}_q^n$, for some positive integer q>3, of average Lee weight $\delta=t/n$ be drawn randomly from $\mathcal{S}_q^n(t)$ with the shown algorithm. Let Q denote the empirical distribution of the entries of x. For any nonzero $a\in\mathbb{Z}_q$ it holds

$$\mathbb{P}(Q \text{ not close to } \mathcal{B}) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Recall,
$$F = \{ wt_I(a \cdot x) < wt_I(x) \}$$
 and

$$\mathbb{P}(F) < \mathbb{P}(\mathsf{wt}_t(a \cdot x) < \mathsf{wt}_t(x) \mid Q \text{ is "close" to } \mathcal{B}) + \mathbb{P}(Q \text{ is "not close" to } \mathcal{B})$$

Theorem

Let $x\in\mathbb{Z}_q^n$, for some positive integer q>3, of average Lee weight $\delta=t/n$ be drawn randomly from $\mathcal{S}_q^n(t)$ with the shown algorithm. Let Q denote the empirical distribution of the entries of x. For any nonzero $a\in\mathbb{Z}_q$ it holds

$$\mathbb{P}\left(Q \text{ not close to } \mathcal{B}\right) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Hence

As
$$n \longrightarrow \infty$$
, $\mathbb{P}(F) \leq \mathbb{P}(\text{wt}_L(a \cdot x) < \text{wt}_L(x) \mid Q \text{ is "close" to } \mathcal{B})$.

Recall,
$$F = \{ wt_L(a \cdot x) < wt_L(x) \}$$
 and

$$\mathbb{P}(F) < \mathbb{P}(\mathsf{wt}_t(a \cdot x) < \mathsf{wt}_t(x) \mid Q \text{ is "close" to } \mathcal{B}) + \mathbb{P}(Q \text{ is "not close" to } \mathcal{B})$$

Theorem

Let $x\in\mathbb{Z}_q^n$, for some positive integer q>3, of average Lee weight $\delta=t/n$ be drawn randomly from $\mathcal{S}_q^n(t)$ with the shown algorithm. Let Q denote the empirical distribution of the entries of x. For any nonzero $a\in\mathbb{Z}_q$ it holds

$$\mathbb{P}(Q \text{ not close to } \mathcal{B}) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Hence

As
$$n \longrightarrow \infty$$
, $\mathbb{P}(F) \le \mathbb{P} (\operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x) \mid Q \text{ is "close" to } \mathcal{B})$.
By CLT $\le \mathbb{P} (\operatorname{wt}_L(a \cdot x) < \operatorname{wt}_L(x) \mid Q \sim \mathcal{B})$

$$\begin{split} \mathbb{P}(F) &\leq \mathbb{P}\left(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) \mid Q \sim \mathcal{B}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} \, \mathsf{wt}_L([a \cdot i]_q) < \sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} i\right) \\ &= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} (i - \mathsf{wt}_L([a \cdot i]_q))\right) \end{split}$$

$$\begin{split} \mathbb{P}(F) &\leq \mathbb{P}\left(\operatorname{wt}_{L}(a \cdot x) < \operatorname{wt}_{L}(x) \mid Q \sim \mathcal{B}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} \operatorname{wt}_{L}([a \cdot i]_{q}) < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} i\right) \\ &= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} (i - \operatorname{wt}_{L}([a \cdot i]_{q}))\right) \end{split}$$

Note

• Recall: β depends on t/n but stays invariant as $n \to \infty$.

$$\begin{split} \mathbb{P}(F) &\leq \mathbb{P}\left(\operatorname{wt}_{L}(a \cdot x) < \operatorname{wt}_{L}(x) \mid Q \sim \mathcal{B}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} \operatorname{wt}_{L}([a \cdot i]_{q}) < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} i\right) \\ &= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} (i - \operatorname{wt}_{L}([a \cdot i]_{q}))\right) \end{split}$$

Note

- Recall: β depends on t/n but stays invariant as $n \longrightarrow \infty$.
- The difference $(i \operatorname{wt}_{L}([a \cdot i]_{q}))$ depends on q.

$$\begin{split} \mathbb{P}(F) &\leq \mathbb{P}\left(\operatorname{wt}_{L}(a \cdot x) < \operatorname{wt}_{L}(x) \mid Q \sim \mathcal{B}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} \operatorname{wt}_{L}([a \cdot i]_{q}) < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} i\right) \\ &= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} e^{-\beta i} (i - \operatorname{wt}_{L}([a \cdot i]_{q}))\right) \end{split}$$

Note

- Recall: β depends on t/n but stays invariant as $n \longrightarrow \infty$.
- The difference $(i wt_L([a \cdot i]_q))$ depends on q.

Question: What is the maximal value δ^* of the average Lee weight per entry such that $\sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} (i - \mathrm{wt}_L([a \cdot i]_q)) \leq 0$?

$$\begin{split} \mathbb{P}(F) &\leq \mathbb{P}\left(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) \mid Q \sim \mathcal{B}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} \, \mathsf{wt}_L([a \cdot i]_q) < \sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} i\right) \\ &= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} (i - \mathsf{wt}_L([a \cdot i]_q))\right) \end{split}$$

Note

- Recall: β depends on t/n but stays invariant as $n \longrightarrow \infty$.
- The difference $(i wt_L([a \cdot i]_q))$ depends on q.

Question: What is the maximal value δ^* of the average Lee weight per entry such that $\sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} (i - \mathrm{wt}_L([a \cdot i]_q)) \leq 0$?

q	5	7	8	9	11	31	33	53
$\lfloor q/2 \rfloor$	2	3	4	4	5	15	16	26
δ*	1	1.5	1.534	1.703	2.5	7.5	7.03	13

$$\begin{split} \mathbb{P}(F) &\leq \mathbb{P}\left(\mathsf{wt}_L(a \cdot x) < \mathsf{wt}_L(x) \mid Q \sim \mathcal{B}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} \, \mathsf{wt}_L([a \cdot i]_q) < \sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} i\right) \\ &= \mathbb{P}\left(0 < \sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} (i - \mathsf{wt}_L([a \cdot i]_q))\right) \end{split}$$

Note

- Recall: β depends on t/n but stays invariant as $n \longrightarrow \infty$.
- The difference (i − wt_L([a · i]_q)) depends on q.

Question: What is the maximal value δ^* of the average Lee weight per entry such that $\sum_{i=1}^{\lfloor q/2 \rfloor} \mathrm{e}^{-\beta i} (i - \mathrm{wt}_L([a \cdot i]_q)) \leq 0$?

q	5	7	8	9	11	31	33	53
[q/2]	2	3	4	4	5	15	16	26
δ*	1	1.5	1.534	1.703	2.5	7.5	7.03	13

Thank you for your attention!

