Page 1/21 Jessica Bariffi · LDPC in Lee Channel ·

July 12, 2021

July 12, 2021 Institutskolloquium, KN-IColl

Decoding Performance of LDPC Codes over the Lee Channel

Jessica Bariffi

Institute for Communications and Navigation German Aerospace Center, DLR

joint work with Hannes Bartz, Gianluigi Liva and Joachim Rosenthal

Knowledge for Tomorrow

Outline

3 LDPC Codes in the Lee Channel: Performance Analysis

Outline

3 LDPC Codes in the Lee Channel: Performance Analysis

Motivation

• Transmission of data over a noisy channel

Motivation

- Transmission of data over a noisy channel
- Error correction/detection

Motivation

- Transmission of data over a noisy channel
- Error correction/detection
- Fast encoding and decoding performance

Channel Coding

Let ${\mathcal X}$ and ${\mathcal Y}$ the input and output alphabet of the channel, respectively.

• Alphabets:
$$X = Y = \{0, 1, ..., q - 1\}$$

Channel Coding

Let ${\mathcal X}$ and ${\mathcal Y}$ the input and output alphabet of the channel, respectively.

- Alphabets: $X = Y = \{0, 1, ..., q 1\}$
- Probability of correct transmission: 1ε

Channel Coding

Let ${\mathcal X}$ and ${\mathcal Y}$ the input and output alphabet of the channel, respectively.

- Alphabets: $X = Y = \{0, 1, ..., q 1\}$
- Probability of correct transmission: 1ε
- Probability of error for every possible outcome: ε/(q 1)

Channel Coding

Let ${\mathcal X}$ and ${\mathcal Y}$ the input and output alphabet of the channel, respectively.

- Alphabets: $X = Y = \{0, 1, ..., q 1\}$
- Probability of correct transmission: 1ε
- Probability of error for every possible outcome: ε/(q 1)

The Hamming Weight

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer. We will denote by \mathbb{Z}_q the ring of integers modulo q.

The Hamming Weight

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer. We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Hamming weight/distance]

For any two vectors $x, y \in \mathbb{F}_q^n$ we define

- the Hamming weight of x, wt_H $(x) = |\{i \in \{1, ..., n\} | x_i \neq 0\}|$
- the Hamming distance between x and y, $d_H(x, y) := wt_H(x y)$

The Hamming Weight

Let \mathbb{F}_q be a finite field of order q and let n be a positive integer. We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Hamming weight/distance]

For any two vectors $x, y \in \mathbb{F}_q^n$ we define

- the Hamming weight of x, wt_H $(x) = |\{i \in \{1, ..., n\} | x_i \neq 0\}|$
- the Hamming distance between x and y, $d_H(x, y) := wt_H(x y)$

An $[n, k]_q$ -linear code C can be represented by an $(n - k) \times n$ matrix H satisfying

$$\mathcal{C} = \ker(H) = \{ x \in \mathbb{F}_q^n \,|\, Hx^\top = 0 \}.$$

We call H a *parity-check matrix* of C.

Assume we receive a vector $y = \frac{x}{\frac{1}{1} + \frac{e}{\frac{1}{1}}}$.

Assume we receive a vector y = x + e.

Generic Decoding

An adversary wants to find either the message or the random error.

Assume we receive a vector $y = \frac{x}{\text{original message}} + \frac{e}{\text{error vector}}$.

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

• A unique solution exists if the weight of the error is small.

Assume we receive a vector $y = \frac{x}{\text{original message}} + \frac{e}{\text{error vector}}$.

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

- A unique solution exists if the weight of the error is small.
- Information set decoding (ISD) is a method to find *e*.

Assume we receive a vector $y = \frac{x}{\text{original message}} + \frac{e}{\text{error vector}}$.

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

- A unique solution exists if the weight of the error is small.
- Information set decoding (ISD) is a method to find *e*. Is NP-hard for the Hamming- and the Lee metric.

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$\operatorname{wt}_L(a) := \min(a, q - a)$$
 (1)

Example: Consider
$$\mathbb{Z}_5$$
. The Lee weight of $a = 3$ is
wt_L(3) = min(3, 5 - 3) = 2

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider
$$\mathbb{Z}_5$$
. The Lee weight of $a = 3$ is
wt_L(3) = min(3, 5 - 3) = 2

The Lee weight of an element *a* describes also the minimal number of arcs separating *a* from 0.

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider
$$\mathbb{Z}_5$$
. The Lee weight of $a = 3$ is
wt_L(3) = min(3, 5 - 3) = 2

The Lee weight of an element *a* describes also the minimal number of arcs separating *a* from 0.

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider
$$\mathbb{Z}_5$$
. The Lee weight of $a = 3$ is
wt_L(3) = min(3, 5 - 3) = 2

The Lee weight of an element *a* describes also the minimal number of arcs separating *a* from 0.

We will denote by \mathbb{Z}_q the ring of integers modulo q.

Definition [Lee weight]

For any integer $a \in \mathbb{Z}_q$ its *Lee weight* is defined as

$$wt_L(a) := \min(a, q - a) \tag{1}$$

Example: Consider
$$\mathbb{Z}_5$$
. The Lee weight of $a = 3$ is
wt_L(3) = min(3, 5 - 3) = 2

The Lee weight of an element *a* describes also the minimal number of arcs separating *a* from 0. $\Rightarrow wt_L(3) = 2$

Properties

For every $a \in \mathbb{Z}_q$ it holds:

• $wt_L(a) = wt_L(m-a)$

Properties

For every $a \in \mathbb{Z}_q$ it holds:

- $wt_L(a) = wt_L(m-a)$
- wt_L(a) $\leq \lfloor q/2 \rfloor$

Properties

For every $a \in \mathbb{Z}_q$ it holds:

- $wt_L(a) = wt_L(m-a)$
- wt_L(a) $\leq \lfloor q/2 \rfloor$
- wt_H(a) ≤ wt_L(a) If q ∈ {2,3}, the Lee weight is equivalent to the Hamming weight.

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

The Lee Metric

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

Take again the ring of integers \mathbb{Z}_5

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) =

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2 + 1

July 12, 2021

The Lee Metric

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2 + 1 + 2

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

Take again the ring of integers \mathbb{Z}_5

x = (0, 2, 4, 3, 0, 3)wt_L(x) = 0 + 2 + 1 + 2 + 0

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

Take again the ring of integers \mathbb{Z}_5

x = (0, 2, 4, 3, 0, 3)wt_L(x) = 0 + 2 + 1 + 2 + 0 + 2

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2 + 1 + 2 + 0 + 2 = 7

Definition [Lee weight]

Let $x = (x_1, ..., x_n) \in \mathbb{Z}_q^n$ be a vector of length *n*. The *Lee weight* of *x* is the sum of the Lee weight of its entries, i.e.,

$$wt_L(x) := \sum_{i=1}^n wt_L(x_i)$$
(2)

Example:

$$x = (0, 2, 4, 3, 0, 3)$$

wt_L(x) = 0 + 2 + 1 + 2 + 0 + 2 = 7
wt_H(x) = 4

Consider the same example as before over \mathbb{Z}_5 .

Lee Hamming

Consider the same example as before over \mathbb{Z}_5 .

x = (0, 2, 4, 3, 0, 3)

Lee Hamming $wt_L(x) = 7$, $wt_H(x) = 4$

Consider the same example as before over \mathbb{Z}_5 .

x = (0, 2, 4, 3, 0, 3)2x = (0, 4, 3, 1, 0, 1)

Lee	Hamming	
$\operatorname{wt}_L(x) = 7,$	$wt_H(x) = 4$	
$\operatorname{wt}_L(x) = 5,$	$wt_H(x) = 4$	

Consider the same example as before over \mathbb{Z}_5 .

	Lee	Hamming
x = (0, 2, 4, 3, 0, 3)	$\operatorname{wt}_L(x) = 7,$	$wt_H(x) = 4$
2x = (0, 4, 3, 1, 0, 1)	$\operatorname{wt}_L(x) = 5,$	$wt_H(x) = 4$

Why can decreasing the Lee weight be a problem?

Complexity of generic (or information-set) decoding depends on the weight of the error vector.

• The smaller this weight, the easier to find a solution.

Consider the same example as before over \mathbb{Z}_5 .

	Lee	Hamming
x = (0, 2, 4, 3, 0, 3)	$\operatorname{wt}_L(x) = 7,$	$wt_H(x) = 4$
2x = (0, 4, 3, 1, 0, 1)	$\operatorname{wt}_L(x) = 5,$	$wt_H(x) = 4$

Why can decreasing the Lee weight be a problem?

Complexity of generic (or information-set) decoding depends on the weight of the error vector.

• The smaller this weight, the easier to find a solution.

Risk: An attacker could decrease the weight and retrieve the original message.

Consider the same example as before over \mathbb{Z}_5 .

	Lee	Hamming
x = (0, 2, 4, 3, 0, 3)	$\operatorname{wt}_L(x) = 7,$	$wt_H(x) = 4$
2x = (0, 4, 3, 1, 0, 1)	$\operatorname{wt}_L(x) = 5,$	$wt_H(x) = 4$

Why can decreasing the Lee weight be a problem?

Complexity of generic (or information-set) decoding depends on the weight of the error vector.

• The smaller this weight, the easier to find a solution.

Risk: An attacker could decrease the weight and retrieve the original message. **Asymptotically:** The probability of decreasing the weight is negligible as the length grows large.

Transmitting symbols over a nonbinary noisy channel

 — primarily those using phase-shift keying modulation

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: arXiv preprint arXiv:1903.07692 (2019).

- Transmitting symbols over a nonbinary noisy channel
 → primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: arXiv preprint arXiv:1903.07692 (2019).

- Transmitting symbols over a nonbinary noisy channel

 — primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: arXiv preprint arXiv:1903.07692 (2019).

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1–6.

- Transmitting symbols over a nonbinary noisy channel

 —> primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- · Recently: gained attention in cryptographic applications

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: arXiv preprint arXiv:1903.07692 (2019).

- Transmitting symbols over a nonbinary noisy channel

 —> primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- · Recently: gained attention in cryptographic applications
 - ► ISD is NP-hard in the Lee Metric¹

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: arXiv preprint arXiv:1903.07692 (2019).

- Transmitting symbols over a nonbinary noisy channel

 —> primarily those using phase-shift keying modulation
- Design code-based cryptosystems with reduced key sizes
- Used in magnetic and DNA storage systems.
- · Recently: gained attention in cryptographic applications
 - ISD is NP-hard in the Lee Metric¹
 - Low-Lee-Density Parity-Check Codes were defined²

²Paolo Santini et al. "Low-Lee-Density Parity-Check Codes". In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1–6.

¹Anna-Lena Horlemann-Trautmann and Violetta Weger. "Information set decoding in the Lee metric with applications to cryptography". In: arXiv preprint arXiv:1903.07692 (2019).

Outline

3 LDPC Codes in the Lee Channel: Performance Analysis

Originally introduced by Chiang and Wolf³.

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: Information and Control 19.2 (1971), pp. 159–173.

-|q/2|

_1

q/2

The Lee Channel

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i | j) = \mathbb{P}(i - j | 0)$.

0

q/2

The Lee Channel

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i \mid j) = \mathbb{P}(i - j \mid 0)$. Define for every $i = 0, \dots, \lfloor q/2 \rfloor$ $p_i := \mathbb{P}(i \mid 0) = \mathbb{P}(-i \mid 0)$ $0 \longrightarrow 0$ 1 :

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: Information and Control 19.2 (1971), pp. 159–173.

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i | j) = \mathbb{P}(i - j | 0)$.

Define for every $i = 0, \ldots, \lfloor q/2 \rfloor$

 $p_i := \mathbb{P}(i \mid 0) = \mathbb{P}(-i \mid 0)$

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: Information and Control 19.2 (1971), pp. 159–173.

Originally introduced by Chiang and Wolf³.

Assume the alphabet is \mathbb{Z}_q . Goal: Describe $\mathbb{P}(i | j) = \mathbb{P}(i - j | 0)$.

Define for every $i = 0, \ldots, \lfloor q/2 \rfloor$

 $p_i := \mathbb{P}(i \mid 0) = \mathbb{P}(-i \mid 0)$

³J Chung-Yaw Chiang and Jack K Wolf. "On channels and codes for the Lee metric". In: Information and Control 19.2 (1971), pp. 159–173.

Theorem [Chiang and Wolf]

The channel described before is strictly matched to the Lee metric for maximum likelihood decoding if and only if the following two properties hold.

$$p_0 > p_1$$
 and $p_i = \frac{p'_1}{p_0^{i-1}}$ for all $i = 2, \dots, \lfloor q/2 \rfloor$.

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

$$y = x + e$$
channel output channel input additive error term (3)

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

$$y = x + e$$
channel output channel input additive error term (3)

with channel law

$$\mathbb{P}(Y = y \mid X = x) =: P_{Y|X}(y|x) = \frac{1}{Z} \exp(-\lambda \, d_L(x, y)),$$
(4)

where $Z := \sum_{e=0}^{q-1} \exp(-\lambda \operatorname{wt}_L(e))$ and $\lambda > 0$.

For $y, x, e \in \mathbb{Z}_q$, consider a discrete memoryless channel (DMC)

$$y = x + e$$
channel input - additive error term (3)

with channel law

$$\mathbb{P}(Y = y \mid X = x) =: P_{Y|X}(y|x) = \frac{1}{Z} \exp(-\lambda \, d_L(x, y)),$$
(4)

where $Z := \sum_{e=0}^{q-1} \exp(-\lambda \operatorname{wt}_L(e))$ and $\lambda > 0$.

Note

- The channel defined in (4) is the DMC matched to the Lee metric.
- The conditional distribution (4) arises (in the limit of large *n*) as the marginal distribution of a constant-weight Lee channel.

The Constant-Weight Lee Channel

Let $y, x, e \in \mathbb{Z}_q^n$, where wt_L(e) = t for some fixed positive integer t. Consider again

y = x + e.

The Constant-Weight Lee Channel

Let $y, x, e \in \mathbb{Z}_q^n$, where wt_{*L*}(*e*) = *t* for some fixed positive integer *t*. Consider again

y = x + e.

Note

The error vector *e* is chosen uniformly at random from the set of all length-*n* vectors of Lee weight *t*:

$$\mathcal{S}_t^n := \left\{ x \mid x \in \mathbb{Z}_q^n, \mathsf{wt}_L(x) = t \right\}.$$

The Constant-Weight Lee Channel

Let $y, x, e \in \mathbb{Z}_q^n$, where wt_{*L*}(*e*) = *t* for some fixed positive integer *t*. Consider again

y = x + e.

Note

The error vector e is chosen uniformly at random from the set of all length-n vectors of Lee weight t:

$$\mathcal{S}_t^n := \left\{ x \mid x \in \mathbb{Z}_q^n, \mathsf{wt}_L(x) = t \right\}.$$

Question

What would $P_{Y|X}(y|x)$ look like?

Channel Distribution

Theorem

Let $e \in \mathbb{Z}_q^n$ with $wt_L(x) = t$ be the error term from before. Then it holds

 With our algorithm *e* is drawn uniformly from the set of all length-*n* vectors of Lee weight *t* over Z_q.

Channel Distribution

Theorem

Let $e \in \mathbb{Z}_q^n$ with $wt_L(x) = t$ be the error term from before. Then it holds

- i. With our algorithm *e* is drawn uniformly from the set of all length-*n* vectors of Lee weight *t* over \mathbb{Z}_q .
- ii. Every entry *e_i* has the following probability

 $\mathbb{P}(\boldsymbol{e}_i = j) = \kappa \exp(-\lambda \operatorname{wt}_L(j)),$

where $\kappa = \sum_{k=0}^{m-1} \exp(-\lambda \operatorname{wt}_L(k))$ and $j \in \mathbb{Z}_q$.

Outline

3 LDPC Codes in the Lee Channel: Performance Analysis

According to Sridhara and Fuja

Definition [LDPC Code]

An $[n, k]_q$ LDPC code over \mathbb{Z}_q is defined by a sparse parity-check matrix H, whose nonzero entries lie in the set of units \mathbb{Z}_q^{\times} .

According to Sridhara and Fuja

Definition [LDPC Code]

An $[n, k]_q$ LDPC code over \mathbb{Z}_q is defined by a sparse parity-check matrix H, whose nonzero entries lie in the set of units \mathbb{Z}_q^{\times} .

Can be described by a bipartite graph ${\mathcal G}$ consisting of

- variable nodes (VN) $\{v_1, \ldots, v_n\} \longrightarrow$ columns of *H*.
- check nodes (CN) $\{c_1, \ldots, c_m\} \longrightarrow$ rows of *H*.

According to Sridhara and Fuja

Definition [LDPC Code]

An $[n, k]_q$ LDPC code over \mathbb{Z}_q is defined by a sparse parity-check matrix H, whose nonzero entries lie in the set of units \mathbb{Z}_q^{\times} .

Can be described by a bipartite graph ${\mathcal G}$ consisting of

- variable nodes (VN) $\{v_1, \ldots, v_n\} \longrightarrow$ columns of *H*.
- check nodes (CN) $\{c_1, \ldots, c_m\} \longrightarrow$ rows of *H*.

VN v_j is connected to CN c_i if and only if $h_{ij} \neq 0$.

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

$$H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$$

Example $H = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 4 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{Z}_5^{4 \times 8}$

An LDPC code is (k, ℓ) -regular, if every VN connects to k CNs and every CN connects to ℓ VNs, for some fixed positive integer k and ℓ .

Consider a nonbinary LDPC code C with VNs $\{v_1, \ldots, v_n\}$ and CNs $\{c_1, \ldots, c_m\}$ and parity-check matrix H. Denote by $\mathcal{N}(v_j)$ and $\mathcal{N}(c_i)$ the set of all connecting elements to VN v_j and CN c_i , respectively.

Consider a nonbinary LDPC code C with VNs $\{v_1, \ldots, v_n\}$ and CNs $\{c_1, \ldots, c_m\}$ and parity-check matrix H. Denote by $\mathcal{N}(v_j)$ and $\mathcal{N}(c_i)$ the set of all connecting elements to VN v_j and CN c_i , respectively.

Consider a nonbinary LDPC code C with VNs $\{v_1, \ldots, v_n\}$ and CNs $\{c_1, \ldots, c_m\}$ and parity-check matrix H. Denote by $\mathcal{N}(v_j)$ and $\mathcal{N}(c_i)$ the set of all connecting elements to VN v_j and CN c_i , respectively.

Every VN v receives the channel observation $\mathbf{m}_{ch} := (P_{Y|X}(y \mid 0), \dots, P_{Y|X}(y \mid q-1))$

Initialization.

Each VN v sends channel observation to the neighboring CNs $c \in \mathcal{N}(v)$

 $m_{v \longrightarrow c} = \mathbf{m_{ch}}.$

CN-to-VN step. Each CN computes for every $v \in \mathcal{N}(c)$

$$\textbf{\textit{m}}_{c \rightarrow v} = h_{c,v}^{-1} \sum_{v' \in \mathcal{N}(c) \setminus \{v\}} h_{c,v'} \textbf{\textit{m}}_{v' \rightarrow c}.$$

Note: $h_{c,v}^{-1}$ exists, since we said the nonzero entries of *H* are units.

VN-to-CN step. Define the aggregated extrinsic *L*-vector

$$E = L(y) + \sum_{c' \in \mathcal{N}(v) \setminus \{c\}} L(m_{c' \to v}),$$

where *y* is the channel output and $L(y) = (L_0(y), \dots, L_{q-1}(y))$ with $L_x(y) = \log (P_{Y|X}(y \mid x)).$ Note: We assume the CN-to-VN messages are modelled as a *q*SC. Then the VN-to-CN messages are

$$m_{\mathbf{v} \to \mathbf{c}} = \operatorname*{arg\,max}_{x \in \mathbb{Z}_q} E_x.$$

Final decision.

The final decision at each VN v is

$$\hat{X} = rg\max_{x \in \mathbb{Z}_q} L_x^{\text{FIN}}$$

where

$$L^{\text{FIN}} = L(m_{ ext{ch}}) + \sum_{ ext{c} \in \mathcal{N}(ext{v})} L(m_{ ext{c}
ightarrow ext{v}}) \, .$$

Motivation for the qSC assumption in the extrinsic channel

• Assumption is true for finite fields (i.e. \mathbb{Z}_q with q a prime)

- Assumption is true for finite fields (i.e. \mathbb{Z}_q with q a prime)
- Argument is *independent* of the channel law and hence also valid for the Lee channel.

- Assumption is true for finite fields (i.e. \mathbb{Z}_q with q a prime)
- Argument is *independent* of the channel law and hence also valid for the Lee channel.

- Assumption is true for finite fields (i.e. \mathbb{Z}_q with q a prime)
- Argument is *independent* of the channel law and hence also valid for the Lee channel. If *q* is not a prime:
 - The approximation is especially accurate when \mathbb{Z}_q consists of many units.

- Assumption is true for finite fields (i.e. \mathbb{Z}_q with q a prime)
- Argument is *independent* of the channel law and hence also valid for the Lee channel. If *q* is not a prime:
 - The approximation is especially accurate when \mathbb{Z}_q consists of many units.
 - Decoding becomes particularly simple.

Simulations

Decoding performance for both BP and SMP over both the Lee channel and the constant-weight Lee channel using

- (3,6) regular nonbinary LDPC codes of length 256 and 2048,
- For the constant-weight Lee channel, the error vectors are drawn uniformly at random from the set of vectors with a given weight.

July 12, 2021

Simulations

Block error rate vs. average Lee weight δ for regular (3, 6) nonbinary LDPC codes in the Lee channel for BP and SMP decoding.

Code length n = 2048

Simulations

Block error rate vs. average Lee weight δ for regular (3, 6) nonbinary LDPC codes in the constant-weight Lee channel for BP and SMP decoding.

Simulations

Block error rate vs. average Lee weight δ for regular (3, 6) nonbinary LDPC codes in the constant-weight Lee channel for BP and SMP decoding.

Thank you very much for your attention!

