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Motivation

• Transmission of data over a noisy channel

• Error correction/detection
• Fast encoding and decoding performance
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Channel Coding
Let X and Y the input and output alphabet of the channel, respectively.

Encoder Channel

With a given channel law

PY |X (y | x) := P(Y = y | X = x)

Decoder
Input data x ∈ X n y ∈ Yn Output data

Example: q-ary Symmetric Channel (qSC)

• Alphabets: X = Y = {0, 1, . . . , q − 1}
• Probability of correct transmission: 1− ε
• Probability of error for every possible

outcome: ε/(q − 1)
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The Hamming Weight

Let Fq be a finite field of order q and let n be a positive integer. We will denote by Zq the ring of
integers modulo q.

Definition [Hamming weight/distance]

For any two vectors x , y ∈ Fn
q we define

• the Hamming weight of x , wtH(x) = |{i ∈ {1, . . . , n} | xi 6= 0}|
• the Hamming distance between x and y , dH(x , y) := wtH(x − y)

An [n, k ]q-linear code C can be represented by an (n − k)× n matrix H satisfying

C = ker(H) = {x ∈ Fn
q |Hx> = 0}.

We call H a parity-check matrix of C.
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Generic Decoding

Assume we receive a vector y = x
original message

+ e
error vector

.

Generic Decoding

An adversary wants to find either the message or the random error.

Solutions to this problem

• A unique solution exists if the weight of the error is small.

• Information set decoding (ISD) is a method to find e.

I Is NP-hard for the Hamming- and the Lee metric.
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The Lee Metric

We will denote by Zq the ring of integers modulo q.

Definition [Lee weight]

For any integer a ∈ Zq its Lee weight is defined as

wtL(a) := min(a, q − a) (1)

0

1

23

4

Example: Consider Z5. The Lee weight of a = 3 is
wtL(3) = min(3, 5− 3) = 2

The Lee weight of an element a describes also the minimal number of
arcs separating a from 0.
=⇒ wtL(3) = 2
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The Lee Metric

Properties
For every a ∈ Zq it holds:
• wtL(a) = wtL(m − a)

• wtL(a) ≤ bq/2c
• wtH(a) ≤ wtL(a)

If q ∈ {2, 3}, the Lee weight is equivalent to the
Hamming weight.

Example
0

1

wtL(1) = 1

2
wtL(2) = 2

3
wtL(3) = 2

4

wtL(4) = 1
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The Lee Metric

Definition [Lee weight]

Let x = (x1, . . . , xn) ∈ Zn
q be a vector of length n. The Lee weight of x is the sum of the Lee weight

of its entries, i.e.,

wtL(x) :=
n∑

i=1

wtL(xi) (2)

Example:

Take again the ring of integers Z5

x = (0, 2, 4, 3, 0, 3)

wtL(x) =

0 + 2 + 1 + 2 + 0 + 2 = 7

wtH(x) = 4

0

1

wtL(1) = 1

2
wtL(2) = 2

3
wtL(3) = 2

4

wtL(4) = 1
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Interesting Problem

Consider the same example as before over Z5.

Lee Hamming

x = (0, 2, 4, 3, 0, 3)

wtL(x) = 7, wtH(x) = 4

2x = (0, 4, 3, 1, 0, 1)

wtL(x) = 5, wtH(x) = 4

Why can decreasing the Lee weight be a problem?

Complexity of generic (or information-set) decoding depends on the weight of the error vector.
• The smaller this weight, the easier to find a solution.

Risk: An attacker could decrease the weight and retrieve the original message.
Asymptotically: The probability of decreasing the weight is negligible as the length grows large.
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Asymptotically: The probability of decreasing the weight is negligible as the length grows large.
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Why Lee Metric?

• Transmitting symbols over a nonbinary noisy channel
−→ primarily those using phase-shift keying modulation

• Design code-based cryptosystems with reduced key sizes
• Used in magnetic and DNA storage systems.

• Recently: gained attention in cryptographic applications

I ISD is NP-hard in the Lee Metric1

I Low-Lee-Density Parity-Check Codes were defined2

1Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information set decoding in the Lee metric with applications to cryptography”. In: arXiv
preprint arXiv:1903.07692 (2019).

2Paolo Santini et al. “Low-Lee-Density Parity-Check Codes”. In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE.
2020, pp. 1–6.
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The Lee Channel

Originally introduced by Chiang and Wolf3.

Assume the alphabet is Zq .
Goal: Describe P(i | j) = P(i − j | 0).

Define for every i = 0, . . . , bq/2c

pi := P(i | 0) = P(−i | 0)

0

−1

0

1

...

...

−bq/2c

bq/2c

3J Chung-Yaw Chiang and Jack K Wolf. “On channels and codes for the Lee metric”. In: Information and Control 19.2 (1971), pp. 159–173.
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The Lee Channel

Theorem [Chiang and Wolf]

The channel described before is strictly matched to the Lee metric for maximum likelihood decoding
if and only if the following two properties hold.

p0 > p1 and pi =
pi

1

pi−1
0

for all i = 2, . . . , bq/2c.
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The Lee Channel

For y , x , e ∈ Zq , consider a discrete memoryless channel (DMC)
y

channel output
= x

channel input
+ e

additive error term
(3)

with channel law
P(Y = y |X = x) =: PY |X (y |x) =

1
Z

exp (−λ dL(x , y)) , (4)

where Z :=
∑q−1

e=0 exp(−λwtL(e)) and λ > 0.

Note

• The channel defined in (4) is the DMC matched to the Lee metric.
• The conditional distribution (4) arises (in the limit of large n) as the marginal distribution of a

constant-weight Lee channel.
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The Constant-Weight Lee Channel

Let y , x , e ∈ Zn
q , where wtL(e) = t for some fixed positive integer t . Consider again

y = x + e.

Note

The error vector e is chosen uniformly at random from the set of all length-n vectors of Lee weight t :

Sn
t :=

{
x
∣∣ x ∈ Zn

q ,wtL(x) = t
}
.

Question

What would PY | X (y | x) look like?
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Channel Distribution

Theorem

Let e ∈ Zn
q with wtL(x) = t be the error term from

before. Then it holds

i. With our algorithm e is drawn uniformly from the
set of all length-n vectors of Lee weight t over Zq .

ii. Every entry ei has the following probability

P(ei = j) = κ exp(−λwtL(j)),

where κ =
∑m−1

k=0 exp(−λwtL(k)) and j ∈ Zq .
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LDPC Codes over Finite Integer Rings
According to Sridhara and Fuja

Definition [LDPC Code]

An [n, k ]q LDPC code over Zq is defined by a sparse parity-check matrix H, whose nonzero entries
lie in the set of units Z×q .

Can be described by a bipartite graph G consisting of
• variable nodes (VN) {v1, . . . , vn} −→ columns of H.
• check nodes (CN) {c1, . . . , cm} −→ rows of H.

VN vj is connected to CN ci if and only if hij 6= 0.
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LDPC Codes over Finite Integer Rings

Example

H =


0 1 0 2 4 0 0 1
1 2 1 0 0 4 0 0
0 0 2 0 0 1 3 1
1 0 0 1 4 0 1 0

 ∈ Z4×8
5

v1

v2

v3

v4

v5

v6

v7

v8

c1

c2

c3

c4

An LDPC code is (k , `)-regular, if every VN connects to k CNs and every CN connects to ` VNs, for
some fixed positive integer k and `.
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Symbol Message Passing

Consider a nonbinary LDPC code C with VNs {v1, . . . , vn} and CNs {c1, . . . , cm} and parity-check
matrix H. Denote by N (vj) and N (ci) the set of all connecting elements to VN vj and CN ci ,
respectively.

mch−→
mch−→

mch−→
mch−→

v1

v2

...

vn−1

vn

c1

c2

...

cm

v

c1

...

cd

mv−→
c1

mv−→cd

c

v1

...

vt

v

m
v1→c

mvt→cv

c1

...

cd−1

c

mc 1
→v

mcd−1→v
v

c1

...

cd−1

c

mc 1
→v

mcd−1→v

m
c→v

mch
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Consider a nonbinary LDPC code C with VNs {v1, . . . , vn} and CNs {c1, . . . , cm} and parity-check
matrix H. Denote by N (vj) and N (ci) the set of all connecting elements to VN vj and CN ci ,
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Every VN v receives the channel observation
mch :=

(
PY |X (y | 0), . . . ,PY |X (y | q − 1)

)
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mch−→

mch−→
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m
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Symbol Message Passing

Initialization.
Each VN v sends channel observation to the
neighboring CNs c ∈ N (v)

mv−→c = mch.

mch−→
mch−→
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c
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m
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Symbol Message Passing

CN-to-VN step.
Each CN computes for every v ∈ N (c)

mc→v = h−1
c,v

∑
v′∈N (c)\{v}

hc,v′mv′→c.

Note: h−1
c,v exists, since we said the nonzero entries of

H are units.
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Symbol Message Passing

VN-to-CN step.
Define the aggregated extrinsic L-vector

E = L(y) +
∑

c′∈N (v)\{c}

L (mc′→v) ,

where y is the channel output and
L(y) = (L0(y), . . . , Lq−1(y)) with
Lx(y) = log

(
PY |X (y | x)

)
.

Note: We assume the CN-to-VN messages are
modelled as a qSC.
Then the VN-to-CN messages are

mv→c = argmax
x∈Zq

Ex .
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Symbol Message Passing

Final decision.
The final decision at each VN v is

x̂ = argmax
x∈Zq

LFIN
x

where
LFIN = L(mch) +

∑
c∈N (v)

L (mc→v) .
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The qSC-Assumption for SMP

Motivation for the qSC assumption in the extrinsic channel
• Assumption is true for finite fields (i.e. Zq with q a prime)

• Argument is independent of the channel law and hence also valid for the Lee channel.

If q is not a prime:

• The approximation is especially accurate when Zq consists of many units.
• Decoding becomes particularly simple.
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Simulations

Decoding performance for both BP and SMP over both the Lee channel and the constant-weight Lee
channel using

• (3, 6) regular nonbinary LDPC codes of length 256 and 2048,
• For the constant-weight Lee channel, the error vectors are drawn uniformly at random from the

set of vectors with a given weight.
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Simulations
Block error rate vs. average Lee weight δ for regular (3, 6) nonbinary LDPC codes in the Lee channel for BP and SMP decoding.

Code length n = 256
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Simulations

Block error rate vs. average Lee weight δ for regular
(3, 6) nonbinary LDPC codes in the constant-weight Lee
channel for BP and SMP decoding.

Thank you very much for your attention!
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