Information Set Decoding in the Lee Metric

Jessica Bariffi

Institute for Communications and Navigation German Aerospace Center, DLR

Motivation

- Code-based cryptography for quantum-secure cryptosystems

Motivation

- Code-based cryptography for quantum-secure cryptosystems
- The original McEliece cryptosystem suffers from large key sizes (even though unbroken) \longrightarrow Idea: What if we used alternative metrics?

Motivation

- Code-based cryptography for quantum-secure cryptosystems
- The original McEliece cryptosystem suffers from large key sizes (even though unbroken) \longrightarrow Idea: What if we used alternative metrics?
- The security relies on the hardness of the syndrome decoding problem
\longrightarrow Generic decoding in the Lee metric has a large cost
\longrightarrow NP-hard in different metrics (e.g. Hamming metric, Lee metric)

Outline

(1) The Lee Metric

2 The Syndrome Decoding Problem
(3) Information Set Decoding
(4) Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance
(5) Comparison

Outline

(1) The Lee Metric
(2) The Syndrome Decoding Problem
(3) Information Set Decoding
4. Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

5
 Comparison

Ring-Linear Codes

Let p a prime number and s and n two positive integers. We focus on the ring of integers
$\mathbb{Z} / p^{s} \mathbb{Z}=\left\{0,1, \ldots, p^{s}-1\right\}$.

Definition

A linear code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ is a $\mathbb{Z} / p^{s} \mathbb{Z}$-submodule of $\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$. The elements of \mathcal{C} are called codewords.

Ring-Linear Codes

Let p a prime number and s and n two positive integers. We focus on the ring of integers
$\mathbb{Z} / p^{s} \mathbb{Z}=\left\{0,1, \ldots, p^{s}-1\right\}$.

Definition

A linear code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ is a $\mathbb{Z} / p^{s} \mathbb{Z}$-submodule of $\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$. The elements of \mathcal{C} are called codewords.

Parameters:

- n is called the length of \mathcal{C}
- The $\mathbb{Z} / p^{s} \mathbb{Z}$-dimension of \mathcal{C} is $k:=\log _{p^{s}}|\mathcal{C}|$
- $R:=k / n$ denotes the rate of \mathcal{C}.

Example over $\mathbb{Z} / 2 \mathbb{Z}$

$$
\mathcal{C}=\{(0,0,0,0),(0,0,1,1),(1,1,0,0),(1,1,1,1)\}
$$

- length $n=4$
- dimension $k=2$
- rate $R=1 / 2$

Ring-Linear Codes

Let p a prime number and s and n two positive integers. We focus on the ring of integers
$\mathbb{Z} / p^{s} \mathbb{Z}=\left\{0,1, \ldots, p^{s}-1\right\}$.

Definition

A linear code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ is a $\mathbb{Z} / p^{s} \mathbb{Z}$-submodule of $\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$. The elements of \mathcal{C} are called codewords.

Parameters:

Example over $\mathbb{Z} / 2 \mathbb{Z}$

$$
\begin{aligned}
\mathcal{C}= & \{(0,0,0,0),(0,0,1,1),(1,1,0,0),(1,1,1,1)\} \\
& \bullet \text { length } n=4 \\
& \text { - dimension } k=2 \\
& \text { - } \text { rate } R=1 / 2
\end{aligned}
$$

The Hamming weight of a codeword $c \in \mathcal{C}, \mathrm{wt}_{\mathrm{H}}(c)$, is the number of nonzero elements in c.

- n is called the length of \mathcal{C}
- The $\mathbb{Z} / p^{s} \mathbb{Z}$-dimension of \mathcal{C} is $k:=\log _{p^{s}}|\mathcal{C}|$
- $R:=k / n$ denotes the rate of \mathcal{C}.

The Lee Metric

Definition

For $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ and $e=\left(e_{1}, \ldots, e_{n}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ we define their Lee weight, respectively, by

$$
w t_{\mathrm{L}}(a):=\min \left(a,\left|p^{s}-a\right|\right) \quad \text { and } \quad w t_{\mathrm{L}}(e):=\sum_{i=1}^{n} w t_{\mathrm{L}}\left(e_{i}\right)
$$

$+$

The Lee Metric

Definition

For $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ and $e=\left(e_{1}, \ldots, e_{n}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ we define their Lee weight, respectively, by

$$
\mathrm{wt}_{\mathrm{L}}(a):=\min \left(a,\left|p^{s}-a\right|\right) \quad \text { and } \quad \mathrm{wt}_{\mathrm{L}}(e):=\sum_{i=1}^{n} w \mathrm{t}_{\mathrm{L}}\left(e_{i}\right) .
$$

Example over $\mathbb{Z} / 5 \mathbb{Z}$

- 0: $w t_{L}(0)=0$
- $1: w_{L}(1)=1$
- $2: w_{L}(2)=2$
- $3: w_{L}(3)=2$
- 4: $w t_{L}(4)=1$
$\%$

The Lee Metric

Definition

For $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ and $e=\left(e_{1}, \ldots, e_{n}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ we define their Lee weight, respectively, by

$$
\mathrm{wt}_{\mathrm{L}}(a):=\min \left(a,\left|p^{s}-a\right|\right) \quad \text { and } \quad \mathrm{wt}_{\mathrm{L}}(e):=\sum_{i=1}^{n} w \mathrm{t}_{\mathrm{L}}\left(e_{i}\right) .
$$

Example over $\mathbb{Z} / 5 \mathbb{Z}$

- 0: $w t_{L}(0)=0$
- 1: $w t_{L}(1)=1$
- $2: w_{\mathrm{L}}(2)=2$
- 3: $w t_{L}(3)=2$
- 4: $w t_{L}(4)=1$

Properties:

For every $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ and $e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$

- $w t_{\mathrm{L}}(a)=w t_{\mathrm{L}}\left(p^{s}-a\right)$
- $w t_{H}(a) \leq w t_{\mathrm{L}}(a) \leq\left\lfloor p^{s} / 2\right\rfloor=: M$
- $w t_{H}(e) \leq w t_{L}(e) \leq n M$

The Expected Lee Weight

Let $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

$$
\delta_{p^{s}}:=\mathbb{E}\left(w t_{\mathrm{L}}(a)\right)= \begin{cases}\frac{\left(p^{s}\right)^{2}-1}{4 p^{s}} & \text { if } p^{s} \text { is odd } \\ \frac{p^{4}}{4} & \text { if } p^{s} \text { is even. }\end{cases}
$$

The Expected Lee Weight

Let $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

$$
\delta_{p^{s}}:=\mathbb{E}\left(w_{\mathrm{L}}(a)\right)= \begin{cases}\frac{\left(p^{s}\right)^{2}-1}{4 p^{s}} & \text { if } p^{s} \text { is odd } \\ \frac{p^{5}}{4} & \text { if } p^{s} \text { is even. } .\end{cases}
$$

Let $e \in \mathcal{S}_{t, p^{s}}^{n}:=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid w t_{\mathrm{L}}(x)=t\right\}$ be chosen uniformly at random.

The Expected Lee Weight

Let $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

$$
\delta_{p^{s}}:=\mathbb{E}\left(w t_{\mathrm{L}}(a)\right)= \begin{cases}\frac{\left(p^{s}\right)^{2}-1}{4 p^{s}} & \text { if } p^{s} \text { is odd } \\ \frac{p^{s}}{4} & \text { if } p^{s} \text { is even. } .\end{cases}
$$

Let $e \in \mathcal{S}_{t, p^{s}}^{n}:=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid w t_{\mathrm{L}}(x)=t\right\}$ be chosen uniformly at random.
How does the distribution for each entry e_{i} look like?

The Expected Lee Weight

Let $a \in \mathbb{Z} / p^{s} \mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

$$
\delta_{p^{s}}:=\mathbb{E}\left(w_{\mathrm{L}}(a)\right)= \begin{cases}\frac{\left(p^{s}\right)^{2}-1}{4 p^{s}} & \text { if } p^{s} \text { is odd } \\ \frac{p^{5}}{4} & \text { if } p^{s} \text { is even. } .\end{cases}
$$

Let $e \in \mathcal{S}_{t, p^{s}}^{n}:=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid w t_{\mathrm{L}}(x)=t\right\}$ be chosen uniformly at random.
How does the distribution for each entry e_{i} look like?
Let $T:=\lim _{n \longrightarrow \infty} t(n) / n$ be the asymptotic relative Lee weight of e.

The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T:=\lim _{n \rightarrow \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z} / p^{s} \mathbb{Z}$ the marginal distribution of E is given by

$$
p_{i}:=\mathbb{P}(E=i)=\frac{1}{\sum_{j=0}^{p^{s}-1} \exp \left(-\beta w t_{\mathrm{L}}(j)\right)} \exp (-\beta i)
$$

where β is the solution to $T=\sum_{i=0}^{M} \mathrm{wt}_{\mathrm{L}}(i) p_{i}$.
1

[^0]
The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T:=\lim _{n \rightarrow \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z} / p^{s} \mathbb{Z}$ the marginal distribution of E is given by

$$
p_{i}:=\mathbb{P}(E=i)=\frac{1}{\sum_{j=0}^{p^{s}-1} \exp \left(-\beta w t_{\mathrm{L}}(j)\right)} \exp (-\beta i)
$$

where β is the solution to $T=\sum_{i=0}^{M} \mathrm{wt}_{\mathrm{L}}(i) p_{i}$.
${ }^{1}$ Note: $T<\delta_{p s} \Longleftrightarrow \beta>0$

[^1]The Marginal Distribution - Example over $\mathbb{Z} / 47 \mathbb{Z}$

Outline

(1) The Lee Metric
(2) The Syndrome Decoding Problem
(3) Information Set Decoding
4) Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Channel Coding

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Channel Coding

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Channel Coding

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Channel Coding

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Channel Coding

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.
troduce an error, i.e., we add to x

$$
e=\left(e_{1}, \ldots, e_{n}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}
$$

Channel Coding

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Generic Decoding

Given $y=x+e$, recover either the original message x or the error term e.

Channel Coding

Take a linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

Generic Decoding

Given $y=x+e$, recover either the original message x or the error term e.

- NP-hard problem
- Has a unique solution for errors of relatively small "weight"

Representation of Codes

An linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of dimension k can be represented by the kernel of a parity-check matrix H. That is an $(n-k) \times n$ matrix H over $\mathbb{Z} / p^{s} \mathbb{Z}$ satisfying

$$
\mathcal{C}=\operatorname{ker}(H)=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid x H^{\top}=0\right\}
$$

Representation of Codes

An linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of dimension k can be represented by the kernel of a parity-check matrix H. That is an $(n-k) \times n$ matrix H over $\mathbb{Z} / p^{s} \mathbb{Z}$ satisfying

$$
\mathcal{C}=\operatorname{ker}(H)=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid x H^{\top}=0\right\} .
$$

Transforming the generic decoding problem

$$
y=x+e
$$

Representation of Codes

An linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of dimension k can be represented by the kernel of a parity-check matrix H. That is an $(n-k) \times n$ matrix H over $\mathbb{Z} / p^{s} \mathbb{Z}$ satisfying

$$
\mathcal{C}=\operatorname{ker}(H)=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid x H^{\top}=0\right\} .
$$

Transforming the generic decoding problem

$$
\begin{aligned}
y & =x+e \\
y H^{\top} & =(x+e) H^{\top}
\end{aligned}
$$

5

Representation of Codes

An linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of dimension k can be represented by the kernel of a parity-check matrix H. That is an $(n-k) \times n$ matrix H over $\mathbb{Z} / p^{s} \mathbb{Z}$ satisfying

$$
\mathcal{C}=\operatorname{ker}(H)=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid x H^{\top}=0\right\} .
$$

Transforming the generic decoding problem

$$
\begin{aligned}
y & =x+e \\
y H^{\top} & =x H^{\top}+e H^{\top}
\end{aligned}
$$

7

Representation of Codes

An linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of dimension k can be represented by the kernel of a parity-check matrix H. That is an $(n-k) \times n$ matrix H over $\mathbb{Z} / p^{s} \mathbb{Z}$ satisfying

$$
\mathcal{C}=\operatorname{ker}(H)=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid x H^{\top}=0\right\} .
$$

Transforming the generic decoding problem

$$
\begin{aligned}
y & =x+e \\
y H^{\top} & =x H^{\top}+e H^{\top} \\
s & =e H^{\top}
\end{aligned}
$$

Representation of Codes

An linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of dimension k can be represented by the kernel of a parity-check matrix H. That is an $(n-k) \times n$ matrix H over $\mathbb{Z} / p^{s} \mathbb{Z}$ satisfying

$$
\mathcal{C}=\operatorname{ker}(H)=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid x H^{\top}=0\right\} .
$$

Transforming the generic decoding problem

$$
\begin{aligned}
y & =x+e \\
y H^{\top} & =x H^{\top}+e H^{\top} \\
s & =e H^{\top}
\end{aligned}
$$

Syndrome decoding

Given a parity-check matrix H and a syndrome $s=y H^{\top}$, recover e from $s=e H^{\top}$

Representation of Codes

An linear code $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of dimension k can be represented by the kernel of a parity-check matrix H. That is an $(n-k) \times n$ matrix H over $\mathbb{Z} / p^{s} \mathbb{Z}$ satisfying

$$
\mathcal{C}=\operatorname{ker}(H)=\left\{x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \mid x H^{\top}=0\right\} .
$$

Transforming the generic decoding problem

$$
\begin{aligned}
y & =x+e \\
y H^{\top} & =x H^{\top}+e H^{\top} \\
s & =e H^{\top}
\end{aligned}
$$

Syndrome decoding

Given a parity-check matrix H and a syndrome $s=y H^{\top}$, recover e from $s=e H^{\top}$ with $w t_{H}(e)=t$.

Syndrome Decoding Problem

Given $H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k}$ and $t \in \mathbb{N}$, find $e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ s.t. $w t(e)=t$ and $s=e H^{\top}$.

Transforming the Syndrome Decoding Problem

Given $H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k}$ and $t \in \mathbb{N}$, find $e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ s.t. $w t(e)=t$ and $s=e H^{\top}$.

Transforming the Syndrome Decoding Problem

Given $H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k}$ and $t \in \mathbb{N}$, find $e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ s.t. wt $(e)=t$ and $s=e H^{\top}$.

1. Permute e and H with a permutation matrix P,

$$
e P \cdot(H P)^{\top}=s
$$

Transforming the Syndrome Decoding Problem

Given $H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k}$ and $t \in \mathbb{N}$, find $e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ s.t. wt $(e)=t$ and $s=e H^{\top}$

1. Permute e and H with a permutation matrix P,

$$
e P \cdot(H P)^{\top}=s
$$

Transforming the Syndrome Decoding Problem

Given $H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k}$ and $t \in \mathbb{N}$, find $e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ s.t. wt $(e)=t$ and $s=e H^{\top}$

1. Permute e and H with a permutation matrix P,

$$
e P \cdot(H P)^{\top}=s
$$

2. Diagonalize H by an invertible matrix U,

$$
e_{1}+e_{2}\left(H^{\prime}\right)^{\top}=s^{\prime}
$$

Outline

(1) The Lee Metric
2. The Syindrome Decoding Problem
(3) Information Set Decoding
4. Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Comparison

Information Set Decoding - Overview

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.

Information Set Decoding - Overview

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)

DLR

Information Set Decoding - Overview

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)
- Stern and Dumer: Extension of Prange's Algorithm using the Birthday Problem

Information Set Decoding - Overview

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)
- Stern and Dumer: Extension of Prange's Algorithm using the Birthday Problem

Information Set Decoding - Overview

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)
- Stern and Dumer: Extension of Prange's Algorithm using the Birthday Problem
- Series of improvements using "representation technique" or Wagner's algorithm

Information Set Decoding - Overview

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)
- Stern and Dumer: Extension of Prange's Algorithm using the Birthday Problem
- Series of improvements using "representation technique" or Wagner's algorithm
,

Prange

Given $H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k}$ and $t \in \mathbb{N}$, find $e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ s.t. wt $(e)=t$ and $s=e H^{\top}$.

- Assume that $w t\left(e_{2}\right)=v=0$.

That is:

$$
e_{2}=(0, \ldots, 0)
$$

- Then we get the equation

$$
e_{1}=s^{\prime}
$$

Stern / Dumer - Partial Gaussian Elimination

Goal: Given wt $\left(e_{1}\right)=t-v$ and $w t\left(e_{2}\right)=v$, solve $e_{1}+e_{2}\left(H^{\prime}\right)^{\top}=s^{\prime}$.
\cdots

Stern / Dumer - Partial Gaussian Elimination

Goal: Given wt $\left(e_{1}\right)=t-v$ and $w t\left(e_{2}\right)=v$, solve $e_{1}+e_{2}\left(H^{\prime}\right)^{\top}=s^{\prime}$.

1. Bring H into partial systematic form

Stern / Dumer - Partial Gaussian Elimination

Goal: Given wt $\left(e_{1}\right)=t-v$ and $w t\left(e_{2}\right)=v$, solve $e_{1}+e_{2}\left(H^{\prime}\right)^{\top}=s^{\prime}$.

1. Bring H into partial systematic form
2. Solve two equations

$$
\begin{aligned}
e_{1}+e_{2} A^{\top} & =s_{1} \\
e_{2} B^{\top} & =s_{2}
\end{aligned}
$$

Stern / Dumer - Partial Gaussian Elimination

Goal: Given wt $\left(e_{1}\right)=t-v$ and $w t\left(e_{2}\right)=v$, solve $e_{1}+e_{2}\left(H^{\prime}\right)^{\top}=s^{\prime}$.

1. Bring H into partial systematic form
2. Solve two equations

$$
\begin{aligned}
e_{1}+e_{2} A^{\top} & =s_{1} \\
e_{2} B^{\top} & =s_{2}
\end{aligned}
$$

Note: Finding e_{2} directly yields e_{1}.

Stern / Dumer - Finding e_{2} by Birthday Decoding

Focus on $e_{2} B^{\top}=s_{2}$, with $w t\left(e_{2}\right)=v$
\square

Stern / Dumer - Finding e_{2} by Birthday Decoding

Focus on $e_{2} B^{\top}=s_{2}$, with $w t\left(e_{2}\right)=v$

- Represent e_{2} as

$$
e_{2}=y_{1}+y_{2},
$$

where $w t\left(y_{1}\right)=w t\left(y_{2}\right)=v / 2$.

Stern / Dumer - Finding e_{2} by Birthday Decoding

Focus on $e_{2} B^{\top}=s_{2}$, with $w t\left(e_{2}\right)=v$

- Represent e_{2} as

$$
e_{2}=y_{1}+y_{2},
$$

where $w t\left(y_{1}\right)=w t\left(y_{2}\right)=v / 2$.

- Enumerate the following sets

$$
\begin{aligned}
& \mathcal{L}_{1}:=\left\{y_{1} B_{1}^{\top} \mid w t\left(y_{1}\right)=v / 2\right\} \\
& \mathcal{L}_{2}:=\left\{y_{2} B_{2}^{\top} \mid w t\left(y_{2}\right)=v / 2\right\}
\end{aligned}
$$

Becker-Joux-May-Meurer (BJMM) Algorithm

Core idea is the same as in Stern/Dumer, including several levels.

Becker-Joux-May-Meurer (BJMM) Algorithm

Core idea is the same as in Stern/Dumer, including several levels.
Example-2 Levels
Write $e_{2}=x_{1}+x_{2}+x_{3}+x_{4}$.

1. successively merge $y_{1}=x_{1}+x_{2}$ and $y_{2}=x_{3}+x_{4}$ on some positions
2. Finally merge $y_{1}+y_{2}$

Becker-Joux-May-Meurer (BJMM) Algorithm

Core idea is the same as in Stern/Dumer, including several levels.
Example-2 Levels
Write $e_{2}=x_{1}+x_{2}+x_{3}+x_{4}$.

1. successively merge $y_{1}=x_{1}+x_{2}$ and $y_{2}=x_{3}+x_{4}$ on some positions
2. Finally merge $y_{1}+y_{2}$

Another difference: Allows some freedom in the representation of the vectors y_{i}, i.e., use the lists

$$
\begin{aligned}
\mathcal{L}_{1} & :=\left\{y_{1} B_{1}^{\top} \mid w t\left(y_{1}\right)=v / 2+\varepsilon\right\} \\
\mathcal{L}_{2} & :=\left\{y_{2} B_{2}^{\top} \mid w t\left(y_{2}\right)=v / 2+\varepsilon\right\},
\end{aligned}
$$

where two vectors $y_{1} \in \mathcal{L}_{1}$ and $y_{2} \in \mathcal{L}_{2}$ share ε nonzero positions. The expected weight of $y_{1}+y_{2}$ is still v.

ISD in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt } \mathrm{L}(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

ISD in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt } \mathrm{L}(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information set decoding (ISD) algorithms to solve the LSDP

ISD in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt } t_{\mathrm{L}}(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information set decoding (ISD) algorithms to solve the LSDP
\longrightarrow Recent improvements: using partial Gaussian elimination ${ }^{2}$

[^2]
ISD in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt }(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information set decoding (ISD) algorithms to solve the LSDP
\longrightarrow Recent improvements: using partial Gaussian elimination . . . Representation technique ${ }^{2}$ or Wagner's approach ${ }^{3}$

[^3]
ISD in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt } t_{\mathrm{L}}(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information set decoding (ISD) algorithms to solve the LSDP
\longrightarrow Recent improvements: using partial Gaussian elimination
... Representation technique or Wagner's approach
... BJMM on 2 Levels is fastest in the Lee metric (non-amortized) ${ }^{2}$
... Wagner's approach is fastest in the Lee metric (amortized) ${ }^{3}$

[^4]
ISD in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

$$
\begin{aligned}
& \text { Given } H \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{(n-k) \times n}, s \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n-k} \text { and } t \in \mathbb{N} \text {, } \\
& \quad \text { find } e \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} \text { s.t. wt } \mathrm{L}(e)=t \text { and } s=e H^{\top} .
\end{aligned}
$$

- Information set decoding (ISD) algorithms to solve the LSDP
\longrightarrow Recent improvements: using partial Gaussian elimination
... Representation technique or Wagner's approach
... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
. . . Wagner's approach is fastest in the Lee metric (amortized)
- The cost of an ISD algorithm is given by

1

Outline

(1) The Lee Metric
(2) The Syndrome Decoding Problem
(3) Information Set Decoding

4 Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum DistanceComparison

Recap: General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in G L_{n-k}\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)$ such that

$$
U H^{\top}=\left(\begin{array}{cc}
\mathbb{I}_{n-k-\ell} & 0 \\
A^{\top} & B^{\top}
\end{array}\right)
$$

2. Transform the syndrome equation accordingly to

$$
\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right) U H^{\top}=\left(\begin{array}{ll}
s_{1} & s_{2}
\end{array}\right)=s U
$$

3. Assume, $w t_{\mathrm{L}}\left(e_{1}\right)=t-v$ and $w t_{\mathrm{L}}\left(e_{2}\right)=v$. Hence, we need to solve

$$
\begin{aligned}
e_{1}+e_{2} A^{\top} & =s_{1} \\
e_{2} B^{\top} & =s_{2}
\end{aligned}
$$

4. Solve the smaller instance of the LSDP. Immediately check whether $e_{1}=s_{1}-e_{2} A^{\top}$ has Lee weight $t-v$.

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } t_{\mathrm{L}}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top} .
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } t_{\mathrm{L}}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top}
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,
- for $t / n<M / 2$, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1 until the least likely Lee weight M.

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } t_{\mathrm{L}}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top}
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,
- for $t / n<M / 2$, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1 until the least likely Lee weight M.
- for $t / n>M / 2$ the contrary is true

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } t_{\mathrm{L}}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top}
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,
- for $t / n<M / 2$, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1 until the least likely Lee weight M.
- for $t / n>M / 2$ the contrary is true
- With high probability the least probable entries of e lie outside the information set, hence are not in e_{2}.

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

$$
\begin{aligned}
& \text { Given } B \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell \times(k+\ell)}, s_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{\ell} \text { and } v, t \in \mathbb{N} \\
& \text { find } e_{2} \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k+\ell} \text { s.t. wt } t_{\mathrm{L}}\left(e_{2}\right)=v \text { and } s_{2}=e_{2} B^{\top}
\end{aligned}
$$

Main Idea and Difference

- Use the marginal distribution, i.e.,
- for $t / n<M / 2$, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1 until the least likely Lee weight M.
- for $t / n>M / 2$ the contrary is true
- With high probability the least probable entries of e lie outside the information set, hence are not in e_{2}.
- We will restrict e_{2} to live either in $\{0, \pm 1, \ldots, \pm r\}^{k+\ell}$ or in $\{ \pm r, \ldots, \pm M\}^{k+\ell}$, respectively.

Up to Minimum Distance Decoding - The BJMM Approach

Up to Minimum Distance Decoding - The BJMM Approach

Up to Minimum Distance Decoding - The BJMM Approach

Up to Minimum Distance Decoding - The BJMM Approach

Minimum Distance Decoding - The BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

Minimum Distance Decoding - The BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

DLR

Minimum Distance Decoding - The BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

2. Store them in a list \mathcal{L}_{i}.

DLR

Minimum Distance Decoding - The BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

2. Store them in a list \mathcal{L}_{i}.
3. For each $y_{1} \in \mathcal{L}_{1}$ and $y_{2} \in \mathcal{L}_{2}$ check that

DLR

Minimum Distance Decoding - The BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

2. Store them in a list \mathcal{L}_{i}.
3. For each $y_{1} \in \mathcal{L}_{1}$ and $y_{2} \in \mathcal{L}_{2}$ check that
a) the smaller instance is solved

$$
s_{2}=\left(y_{1}+y_{2}\right) B^{\top} \text { and } w t_{\mathrm{L}}\left(y_{1}+y_{2}\right)=v,
$$

Minimum Distance Decoding - The BJMM Approach

Recall, $s_{2}=e_{2} B^{\top}$, where $e_{2}=y_{1}+y_{2}=\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left(x_{1}^{(2)}, x_{2}^{(2)}\right)$.

1. Splitting $B=\left(B_{1} B_{2}\right)$, for $i=1,2$ concatenate all $x_{1}^{(i)}, x_{2}^{(i)} \in \mathcal{B}_{i}$ satisfying

$$
\begin{aligned}
& x_{1}^{(1)} B_{1}^{\top}=u-x_{2}^{(1)} B_{2}^{\top}, \\
& x_{1}^{(2)} B_{1}^{\top}=u s_{2}-x_{2}^{(2)} B_{2}^{\top} .
\end{aligned}
$$

They imply the syndrome equations for y_{1} and y_{2}, respectively.

$$
y_{1} B^{\top}=0 \text { and } y_{2} B^{\top}=s_{2}
$$

2. Store them in a list \mathcal{L}_{i}.
3. For each $y_{1} \in \mathcal{L}_{1}$ and $y_{2} \in \mathcal{L}_{2}$ check that
a) the smaller instance is solved

$$
s_{2}=\left(y_{1}+y_{2}\right) B^{\top} \text { and } w t_{L}\left(y_{1}+y_{2}\right)=v,
$$

b) the original LSDP is fulfilled as well

$$
w t_{\mathrm{L}}\left(s_{1}-\left(y_{1}+y_{2}\right) A^{\top}\right)=t-v
$$

Decoding Beyond the Minimum Distance

Outline

(1) The Lee Metric
(2) The Syndrome Decoding Problem
(3) Information Set Decoding
(4) Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance
(5) Comparison

Up to Minimum Distance Decoding - $\mathbb{Z} / 47 \mathbb{Z}$

[^5]
Up to Minimum Distance Decoding - $\mathbb{Z} / 47 \mathbb{Z}$

Thank you for your attention

[^6]
[^0]: 1 "On the Properties of Error Patterns in the Constant Lee Weight Channel". In: International Zurich Seminar on Information and Communication (IZS). 2022, pp. 44-48.

[^1]: 1 "On the Properties of Error Patterns in the Constant Lee Weight Channel". In: International Zurich Seminar on Information and Communication (IZS). 2022, pp. 44-48.

[^2]: ${ }^{2}$ Matthieu Finiasz and Nicolas Sendrier. "Security bounds for the design of code-based cryptosystems". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2009, pp. 88-105.

[^3]: ${ }^{2}$ Anja Becker et al. "Decoding random binary linear codes in $2^{n / 20}$: How $1+1=0$ improves information set decoding". In: Annual international conference on the theory and applications of cryptographic techniques. Springer. 2012, pp. 520-536.
 ${ }^{3}$ Alexander May, Alexander Meurer, and Enrico Thomae. "Decoding Random Linear Codes in $\tilde{\mathcal{O}}\left(2^{0.054 n}\right)$ ". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2011, pp. 107-124.

[^4]: ${ }^{2}$ Violetta Weger et al. "On the hardness of the Lee syndrome decoding problem". In: Advances in Mathematics of Communications (2019). DoI: 10.3934 /amc. 2022029.
 ${ }^{3}$ André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44-62.

[^5]: ${ }^{2}$ André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44-62.

[^6]: ${ }^{2}$ André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44-62.

