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Motivation

• Code-based cryptography for quantum-secure cryptosystems

• The original McEliece cryptosystem suffers from large key sizes (even though unbroken)
−→ Idea: What if we used alternative metrics?

• The security relies on the hardness of the syndrome decoding problem
−→ Generic decoding in the Lee metric has a large cost
−→ NP-hard in different metrics (e.g. Hamming metric, Lee metric)
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Ring-Linear Codes

Let p a prime number and s and n two positive integers. We focus on the ring of integers
Z/psZ = {0, 1, . . . , ps − 1}.

Definition

A linear code C ⊆ (Z/psZ)n is a Z/psZ-submodule of (Z/psZ)n. The elements of C are called codewords.

Parameters:

• n is called the length of C
• The Z/psZ-dimension of C is k := logps | C |
• R := k/n denotes the rate of C.

Example over Z/2Z

C = {(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)}
• length n = 4
• dimension k = 2
• rate R = 1/2

The Hamming weight of a codeword c ∈ C, wtH(c), is the number of nonzero elements in c.
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The Lee Metric

Definition

For a ∈ Z/psZ and e = (e1, . . . , en) ∈ (Z/psZ)n we define their Lee weight, respectively, by

wtL(a) := min(a,
∣∣ ps − a

∣∣) and wtL(e) :=
n∑

i=1

wtL(ei ).

Example over Z/5Z
• 0 : wtL(0) = 0
• 1 : wtL(1) = 1
• 2 : wtL(2) = 2
• 3 : wtL(3) = 2
• 4 : wtL(4) = 1

Properties:

For every a ∈ Z/psZ and e ∈ (Z/psZ)n

• wtL(a) = wtL(ps − a)
• wtH(a) ≤ wtL(a) ≤ ⌊ps/2⌋ =: M
• wtH(e) ≤ wtL(e) ≤ nM



Page 2/21 Jessica Bariffi · ISD in the Lee Metric · The Lee Metric June 27, 2022

The Lee Metric

Definition

For a ∈ Z/psZ and e = (e1, . . . , en) ∈ (Z/psZ)n we define their Lee weight, respectively, by

wtL(a) := min(a,
∣∣ ps − a

∣∣) and wtL(e) :=
n∑

i=1

wtL(ei ).

Example over Z/5Z
• 0 : wtL(0) = 0
• 1 : wtL(1) = 1
• 2 : wtL(2) = 2
• 3 : wtL(3) = 2
• 4 : wtL(4) = 1

Properties:

For every a ∈ Z/psZ and e ∈ (Z/psZ)n

• wtL(a) = wtL(ps − a)
• wtH(a) ≤ wtL(a) ≤ ⌊ps/2⌋ =: M
• wtH(e) ≤ wtL(e) ≤ nM



Page 2/21 Jessica Bariffi · ISD in the Lee Metric · The Lee Metric June 27, 2022

The Lee Metric

Definition

For a ∈ Z/psZ and e = (e1, . . . , en) ∈ (Z/psZ)n we define their Lee weight, respectively, by

wtL(a) := min(a,
∣∣ ps − a

∣∣) and wtL(e) :=
n∑

i=1

wtL(ei ).

Example over Z/5Z
• 0 : wtL(0) = 0
• 1 : wtL(1) = 1
• 2 : wtL(2) = 2
• 3 : wtL(3) = 2
• 4 : wtL(4) = 1

Properties:

For every a ∈ Z/psZ and e ∈ (Z/psZ)n

• wtL(a) = wtL(ps − a)
• wtH(a) ≤ wtL(a) ≤ ⌊ps/2⌋ =: M
• wtH(e) ≤ wtL(e) ≤ nM



Page 3/21 Jessica Bariffi · ISD in the Lee Metric · The Lee Metric June 27, 2022

The Expected Lee Weight

Let a ∈ Z/psZ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

δps := E(wtL(a)) =

 (ps)2−1
4ps if ps is odd,

ps

4 if ps is even.

Let e ∈ Sn
t,ps :=

{
x ∈ (Z/psZ)n

∣∣ wtL(x) = t
}

be chosen uniformly at random.

How does the distribution for each entry ei look like?

Let T := limn−→∞ t(n)/n be the asymptotic relative Lee weight of e.
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The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is T := limn→∞
t(n)

n . For every i ∈ Z/psZ the marginal
distribution of E is given by

pi := P(E = i) =
1∑ps−1

j=0 exp(−β wtL(j))
exp (−βi)

where β is the solution to T =
∑M

i=0 wtL(i)pi .

Note: T < δps ⇐⇒ β > 0
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1“On the Properties of Error Patterns in the Constant Lee Weight Channel”. In: International Zurich Seminar on Information and Communication
(IZS). 2022, pp. 44–48.
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The Marginal Distribution - Example over Z/47Z
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Channel Coding

Take a linear code C ⊂ (Z/psZ)n.

Encoder Channel

Introduce an error, i.e., we add to x

e = (e1, . . . , en) ∈ (Z/psZ)n

Decoder
Message

x = (x1, . . . , xn) ∈ C y ∈ (Z/psZ)n decoded message

Generic Decoding

Given y = x + e, recover either the original message x or the error term e.

• NP-hard problem
• Has a unique solution for errors of relatively small “weight”
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Representation of Codes

An linear code C ⊂ (Z/psZ)n of dimension k can be represented by the kernel of a parity-check matrix H. That
is an (n − k)× n matrix H over Z/psZ satisfying

C = ker(H) =
{

x ∈ (Z/psZ)n | xH⊤ = 0
}
.

Transforming the generic decoding problem

y = x + e

yH⊤ =

s = eH⊤

Syndrome decoding

Given a parity-check matrix H and a syndrome s = yH⊤, recover e from s = eH⊤

with wtH(e) = t

.
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Syndrome Decoding Problem

Given H ∈ (Z/psZ)(n−k)×n , s ∈ (Z/psZ)n−k and t ∈ N,
find e ∈ (Z/psZ)n s.t. wt(e) = t and s = eH⊤.

e

n

H⊤

n − k

n

= s

n − k
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Transforming the Syndrome Decoding Problem

Given H ∈ (Z/psZ)(n−k)×n , s ∈ (Z/psZ)n−k and t ∈ N, find e ∈ (Z/psZ)n s.t. wt(e) = t and s = eH⊤.

1. Permute e and H with a
permutation matrix P,

eP · (HP)⊤ = s

2. Diagonalize H by an
invertible matrix U,

e

. . . ei . . . ej . . .︸ ︷︷ ︸
eP

ePe1 e2︸ ︷︷ ︸
wt(e1) = t − v

︸ ︷︷ ︸
wt(e2) = v

H⊤

...
hi

...

hj

...︸ ︷︷ ︸
(HP)⊤

In−k

(H′)⊤

= s

sU⊤s′
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Information Set Decoding - Overview

1961 Present

Prange Stern / Dumer

McEliece
Implementation

MMT

BJMM

MO BM

• Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.

• Prange: First ISD algorithm (based only on the linear transformations)
• Stern and Dumer: Extension of Prange’s Algorithm using the Birthday Problem

• Series of improvements using “representation technique” or Wagner’s algorithm
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Prange

Given H ∈ (Z/psZ)(n−k)×n , s ∈ (Z/psZ)n−k and t ∈ N, find e ∈ (Z/psZ)n s.t. wt(e) = t and s = eH⊤.

• Assume that wt(e2) = v = 0.
That is:

e2 = (0, . . . , 0)

• Then we get the equation

e1 = s′

e1 0 . . . 0︸ ︷︷ ︸
wt(e1) = t

︸ ︷︷ ︸
wt(e2) = 0

In−k

(H′)⊤

= s′
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Stern / Dumer - Partial Gaussian Elimination

Goal: Given wt(e1) = t − v and wt(e2) = v , solve e1 + e2(H′)⊤ = s′.

1. Bring H into partial systematic form

2. Solve two equations

e1 + e2A⊤ = s1

e2B⊤ = s2

In−k−ℓ 0

A⊤ B⊤

= s1 s2e1 e2

Note: Finding e2 directly yields e1.
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Stern / Dumer - Finding e2 by Birthday Decoding

Focus on e2B⊤ = s2, with wt(e2) = v

• Represent e2 as

e2 = y1 + y2,

where wt(y1) = wt(y2) = v/2.
• Enumerate the following sets

L1 :=
{

y1B⊤
1 | wt(y1) = v/2

}
L2 :=

{
y2B⊤

2 | wt(y2) = v/2
}

e2

B⊤

B⊤
1

B⊤
2

︸ ︷︷ ︸
+

weight = v/2

weight = v/2

︸ ︷︷ ︸
+

y1

y2
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Becker-Joux-May-Meurer (BJMM) Algorithm

Core idea is the same as in Stern/Dumer, including several levels.

Example - 2 Levels

Write e2 = x1 + x2 + x3 + x4.

1. successively merge y1 = x1 + x2 and y2 = x3 + x4 on some positions

2. Finally merge y1 + y2

Another difference: Allows some freedom in the representation of the vectors yi , i.e., use the lists

L1 :=
{

y1B⊤
1 | wt(y1) = v/2 + ε

}
L2 :=

{
y2B⊤

2 | wt(y2) = v/2 + ε
}
,

where two vectors y1 ∈ L1 and y2 ∈ L2 share ε nonzero positions. The expected weight of y1 + y2 is still v .
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ISD in the Lee Metric

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given H ∈ (Z/psZ)(n−k)×n , s ∈ (Z/psZ)n−k and t ∈ N,
find e ∈ (Z/psZ)n s.t. wtL(e) = t and s = eH⊤.

• Information set decoding (ISD) algorithms to solve the LSDP
−→ Recent improvements: using partial Gaussian elimination

. . . Representation technique or Wagner’s approach

. . . BJMM on 2 Levels is fastest in the Lee metric (non-amortized)

. . . Wagner’s approach is fastest in the Lee metric (amortized)

• The cost of an ISD algorithm is given by

nr. of iterations︸ ︷︷ ︸
1

success probability per iter.

× cost per iteration
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• The cost of an ISD algorithm is given by
nr. of iterations︸ ︷︷ ︸

1
success probability per iter.

× cost per iteration

2Matthieu Finiasz and Nicolas Sendrier. “Security bounds for the design of code-based cryptosystems”. In: International Conference on the Theory
and Application of Cryptology and Information Security. Springer. 2009, pp. 88–105.
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success probability per iter.
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2Anja Becker et al. “Decoding random binary linear codes in 2n/20: How 1+ 1= 0 improves information set decoding”. In: Annual international
conference on the theory and applications of cryptographic techniques. Springer. 2012, pp. 520–536.

3Alexander May, Alexander Meurer, and Enrico Thomae. “Decoding Random Linear Codes in Õ(20.054n)”. In: International Conference on the
Theory and Application of Cryptology and Information Security. Springer. 2011, pp. 107–124.
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https://doi.org/10.3934/amc.2022029
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Recap: General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find U ∈ GLn−k (Z/psZ) such that

UH⊤ =

(
In−k−ℓ 0

A⊤ B⊤

)
2. Transform the syndrome equation accordingly to(

e1 e2
)

UH⊤ =
(
s1 s2

)
= sU

3. Assume, wtL(e1) = t − v and wtL(e2) = v . Hence, we need to solve

e1 + e2A⊤= s1

e2B⊤= s2

4. Solve the smaller instance of the LSDP. Immediately check whether e1 = s1 − e2A⊤ has Lee weight t − v .
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New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

Given B ∈ (Z/psZ)ℓ×(k+ℓ) , s2 ∈ (Z/psZ)ℓ and v , t ∈ N

find e2 ∈ (Z/psZ)k+ℓ s.t. wtL(e2) = v and s2 = e2B⊤.

Main Idea and Difference

• Use the marginal distribution, i.e.,

◦ for t/n < M/2, with high probability 0 is the most likely Lee weight in e, followed by the Lee weight 1
until the least likely Lee weight M.

◦ for t/n > M/2 the contrary is true
• With high probability the least probable entries of e lie outside the information set, hence are not in e2.
• We will restrict e2 to live either in {0,±1, . . . ,±r}k+ℓ or in {±r , . . . ,±M}k+ℓ, respectively.
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Up to Minimum Distance Decoding - The BJMM Approach

e2

k + ℓ

︸ ︷︷ ︸v

supp(e2) ∈ {±1, . . . ,±r}| supp(e2) |

=

y1

+

v/4

ε/2

︸ ︷︷ ︸
x (1)

1

v/4

ε/2

︸ ︷︷ ︸
x (1)

2

y2 v/4

ε/2

︸ ︷︷ ︸
x (2)

1

v/4

ε/2

︸ ︷︷ ︸
x (2)

2

Bi =
{
ν(x) | xEc

i
∈ {0, . . . ,±r}(k+ℓ−ε)/2,wtL(xEc

i
) = v/4, xEi ∈

(
Z/psZ

)ε/2
, ν ∈ S(k+ℓ)/2

}
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Minimum Distance Decoding - The BJMM Approach

Recall, s2 = e2B⊤, where e2 = y1 + y2 = (x (1)
1 , x (1)

2 ) + (x (2)
1 , x (2)

2 ).

1. Splitting B = (B1 B2), for i = 1, 2 concatenate all x (i)
1 , x (i)

2 ∈ Bi satisfying

x (1)
1 B⊤

1 =u −x (1)
2 B⊤

2 ,

x (2)
1 B⊤

1 =u s2 − x (2)
2 B⊤

2 .

They imply the syndrome equations for y1 and y2, respectively.

y1B⊤ = 0 and y2B⊤ = s2

2. Store them in a list Li .
3. For each y1 ∈ L1 and y2 ∈ L2 check that

a) the smaller instance is solved
s2 = (y1 + y2)B⊤ and wtL(y1 + y2) = v ,

b) the original LSDP is fulfilled as well
wtL(s1 − (y1 + y2)A⊤) = t − v
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Decoding Beyond the Minimum Distance

e2

ε

(v − εM)/2︸ ︷︷ ︸
Lee weights in {r , . . . ,M}

(v − εM)/2︸ ︷︷ ︸
Lee weights in {r , . . . ,M}

εM

=

+

y1 (v − εM)/4︸ ︷︷ ︸
x (1)

1

(v − εM)/4︸ ︷︷ ︸
x (1)

2

y2 (v − εM)/4︸ ︷︷ ︸
x (2)

1

(v − εM)/4︸ ︷︷ ︸
x (2)

2
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Up to Minimum Distance Decoding - Z/47Z
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Amortized BJMM

Amortized Restricted BJMM

Amortized Wagner

Amortized Restricted Wagner

Algorithm e(R∗, ps) R∗

BJMM 0.1618 0.451
Restricted BJMM for r = 5 0.1539 0.408

Amortized BJMM 0.1205 0.396
Amortized Restricted BJMM 0.1189 0.406

Amortized Wagner 0.1441 0.445
Amortized Restricted Wagner 0.1441 0.445

2

Thank you for your attention

2André Chailloux, Thomas Debris-Alazard, and Simona Etinski. “Classical and Quantum algorithms for generic Syndrome Decoding problems and
applications to the Lee metric”. In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44–62.
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