June 27, 2022 Institutskolloquium, KN-IColl

Information Set Decoding in the Lee Metric

Jessica Bariffi

Institute for Communications and Navigation German Aerospace Center, DLR

Knowledge for Tomorrow

Motivation

Code-based cryptography for quantum-secure cryptosystems

Motivation

- Code-based cryptography for quantum-secure cryptosystems
- The original McEliece cryptosystem suffers from large key sizes (even though unbroken)

 → Idea: What if we used alternative metrics?

Motivation

- Code-based cryptography for quantum-secure cryptosystems
- The original McEliece cryptosystem suffers from large key sizes (even though unbroken)

 → Idea: What if we used alternative metrics?
- The security relies on the hardness of the syndrome decoding problem
 - \longrightarrow Generic decoding in the Lee metric has a large cost

Outline

1 The Lee Metric

2 The Syndrome Decoding Problem

3 Information Set Decoding

Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

5 Comparison

Outline

1 The Lee Metric

2 The Syndrome Decoding Problem

3 Information Set Decoding

4 Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

5 Comparison

Ring-Linear Codes

Let p a prime number and s and n two positive integers. We focus on the ring of integers $\mathbb{Z}/p^s\mathbb{Z} = \{0, 1, \dots, p^s - 1\}.$

Definition

A linear code $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ is a $\mathbb{Z}/p^s\mathbb{Z}$ -submodule of $(\mathbb{Z}/p^s\mathbb{Z})^n$. The elements of C are called *codewords*.

Ring-Linear Codes

Let *p* a prime number and *s* and *n* two positive integers. We focus on the ring of integers $\mathbb{Z}/p^s\mathbb{Z} = \{0, 1, \dots, p^s - 1\}.$

Definition

A linear code $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ is a $\mathbb{Z}/p^s\mathbb{Z}$ -submodule of $(\mathbb{Z}/p^s\mathbb{Z})^n$. The elements of C are called *codewords*.

Parameters:

- *n* is called the *length* of *C*
- The $\mathbb{Z}/p^s\mathbb{Z}$ -dimension of \mathcal{C} is $k := \log_{p^s} |\mathcal{C}|$
- R := k/n denotes the *rate* of C.

Example over $\mathbb{Z}/2\mathbb{Z}$

 $\mathcal{C} = \{(0,0,0,0), (0,0,1,1), (1,1,0,0), (1,1,1,1)\}$

- length n = 4
- dimension k = 2
- rate *R* = 1/2

Ring-Linear Codes

Let *p* a prime number and *s* and *n* two positive integers. We focus on the ring of integers $\mathbb{Z}/p^s\mathbb{Z} = \{0, 1, \dots, p^s - 1\}.$

Definition

A linear code $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ is a $\mathbb{Z}/p^s\mathbb{Z}$ -submodule of $(\mathbb{Z}/p^s\mathbb{Z})^n$. The elements of C are called *codewords*.

Parameters:

- *n* is called the *length* of *C*
- The $\mathbb{Z}/p^s\mathbb{Z}$ -dimension of \mathcal{C} is $k := \log_{p^s} |\mathcal{C}|$
- R := k/n denotes the *rate* of C.

Example over $\mathbb{Z}/2\mathbb{Z}$

 $\mathcal{C} = \{(0,0,0,0), (0,0,1,1), (1,1,0,0), (1,1,1,1)\}$

- length n = 4
- dimension k = 2
- rate *R* = 1/2

The *Hamming weight* of a codeword $c \in C$, wt_H(c), is the number of nonzero elements in c.

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \dots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by

$$\operatorname{wt}_{\mathsf{L}}(a) := \min(a, |p^s - a|) \text{ and } \operatorname{wt}_{\mathsf{L}}(e) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(e_i).$$

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \ldots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by

$$\operatorname{wt}_{\mathsf{L}}(a) := \min(a, |p^s - a|) \text{ and } \operatorname{wt}_{\mathsf{L}}(e) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(e_i).$$

Example over $\mathbb{Z}/5\mathbb{Z}$

- $0: wt_L(0) = 0$
- 1: $wt_L(1) = 1$
- 2: $wt_L(2) = 2$
- 3: wt_L(3) = 2
- 4: $wt_L(4) = 1$

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \ldots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by

$$\operatorname{wt}_{\mathsf{L}}(a) := \min(a, |p^s - a|) \text{ and } \operatorname{wt}_{\mathsf{L}}(e) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(e_i).$$

Example over $\mathbb{Z}/5\mathbb{Z}$

- $0: wt_L(0) = 0$
- 1: $wt_L(1) = 1$
- 2: wt_L(2) = 2
- 3: wt_L(3) = 2

• 4: $wt_L(4) = 1$

Properties:

For every $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$

- wt_L(a) = wt_L($p^s a$)
- $wt_H(a) \le wt_L(a) \le \lfloor p^s/2 \rfloor =: M$
- $wt_H(e) \le wt_L(e) \le nM$

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of *a* is then given by

$$\delta_{p^s} := \mathbb{E}(\mathsf{wt}_\mathsf{L}(a)) = \begin{cases} \frac{(p^s)^2 - 1}{4p^s} & \text{if } p^s \text{ is odd}, \\ \frac{p^s}{4} & \text{if } p^s \text{ is even}. \end{cases}$$

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of *a* is then given by

$$\delta_{p^s} := \mathbb{E}(\mathsf{wt}_\mathsf{L}(a)) = \begin{cases} \frac{(p^s)^2 - 1}{4p^s} & \text{if } p^s \text{ is odd,} \\ \frac{p^s}{4} & \text{if } p^s \text{ is even.} \end{cases}$$

Let $e \in S_{t,p^s}^n := \{x \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(x) = t\}$ be chosen uniformly at random.

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of *a* is then given by

$$\delta_{p^{\mathcal{S}}} := \mathbb{E}(\mathsf{wt}_{\mathsf{L}}(a)) = \begin{cases} \frac{(p^{\mathcal{S}})^2 - 1}{4p^{\mathcal{S}}} & \text{if } p^{\mathcal{S}} \text{ is odd,} \\ \frac{p^{\mathcal{S}}}{4} & \text{if } p^{\mathcal{S}} \text{ is even.} \end{cases}$$

Let $e \in S_{t,p^s}^n := \{x \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_L(x) = t\}$ be chosen uniformly at random.

How does the distribution for each entry e_i look like?

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of *a* is then given by

$$\delta_{p^{\mathcal{S}}} := \mathbb{E}(\mathsf{wt}_{\mathsf{L}}(a)) = \begin{cases} \frac{(p^{\mathcal{S}})^2 - 1}{4p^{\mathcal{S}}} & \text{if } p^{\mathcal{S}} \text{ is odd,} \\ \frac{p^{\mathcal{S}}}{4} & \text{if } p^{\mathcal{S}} \text{ is even.} \end{cases}$$

Let $e \in S_{t,p^s}^n := \{x \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(x) = t\}$ be chosen uniformly at random.

How does the distribution for each entry e_i look like?

Let $T := \lim_{n \to \infty} t(n)/n$ be the asymptotic relative Lee weight of *e*.

The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

The Marginal Distribution

Let *E* be the random variable corresponding to the realization of a random entry of *e*.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T := \lim_{n \to \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z}/p^s\mathbb{Z}$ the marginal distribution of *E* is given by

$$p_i := \mathbb{P}(E = i) = \frac{1}{\sum_{j=0}^{p^s - 1} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(j))} \exp(-\beta i)$$

where β is the solution to $T = \sum_{i=0}^{M} \operatorname{wt}_{L}(i)p_{i}$.

¹"On the Properties of Error Patterns in the Constant Lee Weight Channel". In: International Zurich Seminar on Information and Communication (IZS). 2022, pp. 44–48.

The Marginal Distribution

Let *E* be the random variable corresponding to the realization of a random entry of *e*.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T := \lim_{n \to \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z}/p^s\mathbb{Z}$ the marginal distribution of *E* is given by

$$p_i := \mathbb{P}(E = i) = \frac{1}{\sum_{j=0}^{p^s - 1} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(j))} \exp(-\beta i)$$

where β is the solution to $T = \sum_{i=0}^{M} \operatorname{wt}_{\mathsf{L}}(i)p_i$.

¹ Note: $T < \delta_{p^s} \iff \beta > 0$

¹"On the Properties of Error Patterns in the Constant Lee Weight Channel". In: International Zurich Seminar on Information and Communication (IZS). 2022, pp. 44–48.

The Marginal Distribution - Example over $\mathbb{Z}/47\mathbb{Z}$

Outline

1 The Lee Metric

2 The Syndrome Decoding Problem

3 Information Set Decoding

4 Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

5 Comparison

Take a linear code $\mathcal{C} \subset (\mathbb{Z}/p^s\mathbb{Z})^n$.

Generic Decoding

Given y = x + e, recover either the original message x or the error term e.

Take a linear code $\mathcal{C} \subset (\mathbb{Z}/p^s\mathbb{Z})^n$.

Generic Decoding

Given y = x + e, recover either the original message x or the error term e.

- NP-hard problem
- Has a unique solution for errors of relatively small "weight"

An linear code $C \subset (\mathbb{Z}/p^s\mathbb{Z})^n$ of dimension k can be represented by the kernel of a *parity-check matrix* H. That is an $(n - k) \times n$ matrix H over $\mathbb{Z}/p^s\mathbb{Z}$ satisfying

$$\mathcal{C} = \ker(H) = \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \,|\, xH^{\top} = 0
ight\}.$$

An linear code $C \subset (\mathbb{Z}/p^s\mathbb{Z})^n$ of dimension k can be represented by the kernel of a *parity-check matrix* H. That is an $(n - k) \times n$ matrix H over $\mathbb{Z}/p^s\mathbb{Z}$ satisfying

$$\mathcal{C} = \ker(\mathcal{H}) = \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \,|\, x\mathcal{H}^\top = 0 \right\}.$$

Transforming the generic decoding problem

y = x + e

An linear code $C \subset (\mathbb{Z}/p^s\mathbb{Z})^n$ of dimension k can be represented by the kernel of a *parity-check matrix* H. That is an $(n - k) \times n$ matrix H over $\mathbb{Z}/p^s\mathbb{Z}$ satisfying

$$\mathcal{C} = \ker(H) = \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \,|\, xH^\top = 0 \right\}.$$

Transforming the generic decoding problem

y = x + e $yH^{ op} = (x + e)H^{ op}$

An linear code $C \subset (\mathbb{Z}/p^s\mathbb{Z})^n$ of dimension k can be represented by the kernel of a *parity-check matrix* H. That is an $(n - k) \times n$ matrix H over $\mathbb{Z}/p^s\mathbb{Z}$ satisfying

$$\mathcal{C} = \ker(H) = \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \,|\, xH^\top = 0 \right\}.$$

Transforming the generic decoding problem

y = x + e $yH^{\top} = xH^{\top} + eH^{\top}$

An linear code $C \subset (\mathbb{Z}/p^s\mathbb{Z})^n$ of dimension k can be represented by the kernel of a *parity-check matrix* H. That is an $(n - k) \times n$ matrix H over $\mathbb{Z}/p^s\mathbb{Z}$ satisfying

$$\mathcal{C} = \ker(H) = \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \,|\, xH^\top = 0 \right\}.$$

Transforming the generic decoding problem

$$y = x + e$$

 $yH^{\top} = xH^{\top} + eH^{\top}$
 $s = eH^{\top}$

An linear code $C \subset (\mathbb{Z}/p^s\mathbb{Z})^n$ of dimension k can be represented by the kernel of a *parity-check matrix* H. That is an $(n - k) \times n$ matrix H over $\mathbb{Z}/p^s\mathbb{Z}$ satisfying

$$\mathcal{C} = \ker(\mathcal{H}) = \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \,|\, x\mathcal{H}^\top = 0 \right\}.$$

Transforming the generic decoding problem

$$y = x + e$$

 $yH^{ op} = xH^{ op} + eH^{ op}$
 $s = eH^{ op}$

Syndrome decoding

Given a parity-check matrix H and a syndrome $s = yH^{\top}$, recover e from $s = eH^{\top}$

An linear code $C \subset (\mathbb{Z}/p^s\mathbb{Z})^n$ of dimension k can be represented by the kernel of a *parity-check matrix* H. That is an $(n - k) \times n$ matrix H over $\mathbb{Z}/p^s\mathbb{Z}$ satisfying

$$\mathcal{C} = \ker(\mathcal{H}) = \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \,|\, x\mathcal{H}^\top = 0 \right\}.$$

Transforming the generic decoding problem

$$y = x + e$$

 $yH^{ op} = xH^{ op} + eH^{ op}$
 $s = eH^{ op}$

Syndrome decoding

Given a parity-check matrix *H* and a syndrome $s = yH^{\top}$, recover *e* from $s = eH^{\top}$ with $wt_{H}(e) = t$.

Syndrome Decoding Problem

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. $wt(e) = t$ and $s = eH^{\top}$.

$$e_1 + e_2(H')^+ = s$$

Outline

1 The Lee Metric

2 The Syndrome Decoding Problem

3 Information Set Decoding

4 Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

5 Comparison

• Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)
- Stern and Dumer: Extension of Prange's Algorithm using the Birthday Problem

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)
- Stern and Dumer: Extension of Prange's Algorithm using the Birthday Problem

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)
- Stern and Dumer: Extension of Prange's Algorithm using the Birthday Problem
- Series of improvements using "representation technique" or Wagner's algorithm

- Information Set Decoding (ISD) algorithms are the fastest attacks to the syndrome decoding problem.
- Prange: First ISD algorithm (based only on the linear transformations)
- Stern and Dumer: Extension of Prange's Algorithm using the Birthday Problem
- Series of improvements using "representation technique" or Wagner's algorithm

Prange

Goal: Given wt(e_1) = t - v and wt(e_2) = v, solve $e_1 + e_2(H')^\top = s'$.

Goal: Given wt(e_1) = t - v and wt(e_2) = v, solve $e_1 + e_2(H')^\top = s'$.

Goal: Given wt(e_1) = t - v and wt(e_2) = v, solve $e_1 + e_2(H')^\top = s'$.

Goal: Given wt(e_1) = t - v and wt(e_2) = v, solve $e_1 + e_2(H')^\top = s'$.

Note: Finding e_2 directly yields e_1 .

Stern / Dumer - Finding e2 by Birthday Decoding

Focus on $e_2B^{\top} = s_2$, with wt(e_2) = v

Stern / Dumer - Finding e₂ by Birthday Decoding

Focus on $e_2 B^{\top} = s_2$, with wt $(e_2) = v$

• Represent *e*₂ as

 $e_2 = y_1 + y_2,$

where
$$wt(y_1) = wt(y_2) = v/2$$
.

Stern / Dumer - Finding e₂ by Birthday Decoding

Focus on $e_2 B^{\top} = s_2$, with wt $(e_2) = v$

• Represent *e*₂ as

 $e_2 = y_1 + y_2,$

where
$$wt(y_1) = wt(y_2) = v/2$$
.

• Enumerate the following sets

$$\begin{split} \mathcal{L}_1 &:= \left\{ y_1 B_1^\top \mid \operatorname{wt}(y_1) = v/2 \right\} \\ \mathcal{L}_2 &:= \left\{ y_2 B_2^\top \mid \operatorname{wt}(y_2) = v/2 \right\} \end{split}$$

Becker-Joux-May-Meurer (BJMM) Algorithm

Core idea is the same as in Stern/Dumer, including several levels.

Becker-Joux-May-Meurer (BJMM) Algorithm

Core idea is the same as in Stern/Dumer, including several levels.

Example - 2 Levels

Write $e_2 = x_1 + x_2 + x_3 + x_4$.

- 1. successively merge $y_1 = x_1 + x_2$ and $y_2 = x_3 + x_4$ on some positions
- 2. Finally merge $y_1 + y_2$

Becker-Joux-May-Meurer (BJMM) Algorithm

Core idea is the same as in Stern/Dumer, including several levels.

Example - 2 Levels

Write $e_2 = x_1 + x_2 + x_3 + x_4$.

- 1. successively merge $y_1 = x_1 + x_2$ and $y_2 = x_3 + x_4$ on some positions
- 2. Finally merge $y_1 + y_2$

Another difference: Allows some freedom in the representation of the vectors y_i , i.e., use the lists

$$\begin{split} \mathcal{L}_1 &:= \left\{ y_1 B_1^\top \mid \operatorname{wt}(y_1) = v/2 + \varepsilon \right\} \\ \mathcal{L}_2 &:= \left\{ y_2 B_2^\top \mid \operatorname{wt}(y_2) = v/2 + \varepsilon \right\}, \end{split}$$

where two vectors $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ share ε nonzero positions. The expected weight of $y_1 + y_2$ is still v.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

• Information set decoding (ISD) algorithms to solve the LSDP

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

Information set decoding (ISD) algorithms to solve the LSDP

→ Recent improvements: using partial Gaussian elimination²

²Matthieu Finiasz and Nicolas Sendrier. "Security bounds for the design of code-based cryptosystems". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2009, pp. 88–105.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

- Information set decoding (ISD) algorithms to solve the LSDP
 - → Recent improvements: using partial Gaussian elimination
 - ... Representation technique² or Wagner's approach³

²Anja Becker et al. "Decoding random binary linear codes in $2^{n/20}$: How 1+ 1= 0 improves information set decoding". In: Annual international conference on the theory and applications of cryptographic techniques. Springer. 2012, pp. 520–536.

³Alexander May, Alexander Meurer, and Enrico Thomae. "Decoding Random Linear Codes in $\tilde{O}(2^{0.054n})$ ". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2011, pp. 107–124.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

- Information set decoding (ISD) algorithms to solve the LSDP
 - \longrightarrow Recent improvements: using partial Gaussian elimination
 - ... Representation technique or Wagner's approach
 - ... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)²
 - ... Wagner's approach is fastest in the Lee metric (amortized)³

³André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44–62.

²Violetta Weger et al. "On the hardness of the Lee syndrome decoding problem". In: Advances in Mathematics of Communications (2019). DOI: 10.3934/amc.2022029.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

Information set decoding (ISD) algorithms to solve the LSDP

 \longrightarrow Recent improvements: using partial Gaussian elimination

- ... Representation technique or Wagner's approach
- ... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
- ... Wagner's approach is fastest in the Lee metric (amortized)
- The cost of an ISD algorithm is given by

nr. of iterations \times cost per iteration success probability per iter.

Outline

1 The Lee Metric

2 The Syndrome Decoding Problem

3 Information Set Decoding

4 Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

5 Comparison

Recap: General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

2. Transform the syndrome equation accordingly to

$$\begin{pmatrix} e_1 & e_2 \end{pmatrix} U H^{ op} = \begin{pmatrix} s_1 & s_2 \end{pmatrix} = s U$$

3. Assume, $wt_L(e_1) = t - v$ and $wt_L(e_2) = v$. Hence, we need to solve

$$e_1 + e_2 A^\top = s_1$$

 $e_2 B^\top = s_2$

4. Solve the smaller instance of the LSDP. Immediately check whether $e_1 = s_1 - e_2 A^{\top}$ has Lee weight t - v.

Focus on the small instance of the Lee syndrome decoding problem

Given $B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$ find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L(e_2) = v and $s_2 = e_2B^{\top}$.

Main Idea and Difference

• Use the marginal distribution, i.e.,

Focus on the small instance of the Lee syndrome decoding problem

Given $B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$ find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L(e_2) = v and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.

Focus on the small instance of the Lee syndrome decoding problem

Given $B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$ find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L(e_2) = v and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true

Focus on the small instance of the Lee syndrome decoding problem

Given $B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$ find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L(e_2) = v and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true
- With high probability the least probable entries of *e* lie **outside** the information set, hence are not in *e*₂.

Focus on the small instance of the Lee syndrome decoding problem

Given $B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$ find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L(e_2) = v and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true
- With high probability the least probable entries of e lie outside the information set, hence are not in e2.
- We will restrict e_2 to live either in $\{0, \pm 1, \dots, \pm r\}^{k+\ell}$ or in $\{\pm r, \dots, \pm M\}^{k+\ell}$, respectively.

Up to Minimum Distance Decoding - The BJMM Approach

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$. 1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in B_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{ op} = 0$$
 and $y_2 B^{ op} = s_2$

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$. 1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in B_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{ op} = 0$$
 and $y_2 B^{ op} = s_2$

2. Store them in a list \mathcal{L}_i .

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$. 1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in B_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{ op} = 0$$
 and $y_2 B^{ op} = s_2$

2. Store them in a list \mathcal{L}_i .

3. For each $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ check that

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$. 1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in B_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{ op} = 0$$
 and $y_2 B^{ op} = s_2$

- **2**. Store them in a list \mathcal{L}_i .
- 3. For each $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ check that
 - a) the smaller instance is solved

$$s_2 = (y_1 + y_2)B^{\top}$$
 and $wt_L(y_1 + y_2) = v$,

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$. 1. Splitting $B = (B_1 B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in \mathcal{B}_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{ op} = 0$$
 and $y_2 B^{ op} = s_2$

- **2**. Store them in a list \mathcal{L}_i .
- 3. For each $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ check that
 - a) the smaller instance is solved

$$s_2 = (y_1 + y_2)B^{\top}$$
 and $wt_L(y_1 + y_2) = v$,

b) the original LSDP is fulfilled as well

$$wt_L(s_1 - (y_1 + y_2)A^{\top}) = t - v$$

Decoding Beyond the Minimum Distance

di.

100

Outline

1 The Lee Metric

2 The Syndrome Decoding Problem

3 Information Set Decoding

4 Information Set Decoding using Restricted Spheres

- Bounded Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

5 Comparison

Up to Minimum Distance Decoding - $\mathbb{Z}/47\mathbb{Z}$

²André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44–62.

Up to Minimum Distance Decoding - $\mathbb{Z}/47\mathbb{Z}$

Thank you for your attention

²André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44–62.