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Ring Linear Codes

Notation:

Z/qZ := {0, 1, 2, . . . , q − 1} integer residue ring

(Z/qZ)× set of units (i.e. integers coprime to q)

Note: If q is prime, then Z/qZ ∼= Fq is a finite field of q elements.

A linear code C ⊆ (Z/qZ)n is a Z/qZ-submodule of (Z/qZ)n. The elements of C are
called codewords of length n.

Parameters:

• n is called the length of C
• k := logq | C | is the Z/qZ-dimension of C
• R := k/n denotes the rate of C.

The Hamming weight of a codeword c ∈ C is the number of nonzero entries of c, i.e.,

wtH(c) := | {i ∈ {1, . . . , n} | ci ̸= 0} |
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The Lee Metric
We will denote by Z/qZ = {0, 1, . . . , q − 1} the ring of integers modulo q.

For any integer a ∈ Z/qZ and any vector x , y ∈ (Z/qZ)n we define their Lee weight as

wtL(a) := min(a, | q − a |) and wtL(x) :=
n∑

i=1

wtL(xi )

The Lee distance between x and y is given by dL(x , y) := wtL(x − y).

Example: Z/5Z
0

1

wtL(1) = 1

2

wtL(2) = 2wtL(3) = 2

4

wtL(4) = 1
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The Lee weight of a ∈ Z/qZ is the
minimal number of arcs separating a
from 0.
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Properties

For every a ∈ Z/qZ and x ∈ (Z/qZ)n

• wtL(a) = wtL(q − a)

• wtH(a) ≤ wtL(a) ≤ ⌊q/2⌋ =: M

• wtH(x) ≤ wtL(x) ≤ nM
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The Expected Lee Weight

Let a ∈ Z/qZ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

δq := E(wtL(a)) =

{
q2−1

4q if q is odd,
q
4 if q is even.

Let e ∈ Sn
t,q :=

{
x ∈ (Z/qZ)n

∣∣ wtL(x) = t
}

be chosen uniformly at random.

How does the distribution for each entry ei look like?
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The Marginal Distribution

Let T := limn−→∞ t(n)/n be the asymptotic relative Lee weight of e.
Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is T := limn→∞
t(n)

n . For every
i ∈ Z/qZ the marginal distribution of E is given by

pi := P(E = i) =
1∑q−1

j=0 exp(−β wtL(j))
exp (−βi)

where β is the solution to T =
∑M

i=0 wtL(i)pi .

Note T < δq ⇐⇒ β > 0
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The Marginal Distribution - Example over Z/47Z
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Channel Coding

Take a linear code C ⊂ (Z/qZ)n.

Encoder Channel

With given channel law

PY |X (y | x) := P(Y = y | X = x)

Decoder
Message x ∈ C y ∈ (Z/qZ)n decoded message

We consider here an additive channel, i.e., y = x + e.

Memoryless Lee Channel
Restrict, for every i = 1, . . . , n, to ei as a realization of a random variable Ei with

P(Ei = ei ) ∝ exp(−λwtL(ei )), λ > 0,

PYi |Xi
(yi |xi ) =

1
Z (λ)

exp (−λ dL(xi , yi )) , Z (λ) :=

q−1∑
ei=0

exp(−λwtL(ei ))

Constant Lee Weight Channel
The error e has fixed Lee weight t and is chosen uniformly at random from
{z ∈ (Z/qZ)n | wtL(z) = t}.
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Random Coding Union Bounds

C : best random (n, nR) code over Z/qZ
δ : normalized weight of error

PB(C) : Error probability

H+
δ :=

{
Hδ if δ ≤ δq
log q otherwise.

RCU bound
Constant Lee Weight Channel

E [PB(C)] < exp
(
−n

[
(1 − R) log q − H+

δ

]+)
Memoryless Channel

E [PB(C)] < E
[
exp

(
−n

[
(1 − R) log q − H+

D/n

]+)]
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LDPC Codes over Z/qZ

An [n, k ]q LDPC code over Z/qZ is defined by a sparse parity-check matrix H, whose
nonzero entries lie in the set of units (Z/qZ)×.

Can be described by a bipartite graph G consisting of
• variable nodes (VN) {v1, . . . , vn}
• check nodes (CN) {c1, . . . , cm}

VN vj is connected to CN ci if and only if hij ̸= 0.

H =


0 1 0 0 0 1
1 1 0 0 0 0
0 0 0 0 1 1
1 0 0 0 1 0

 ∈

v1

v2

v3

v4

v5

v6

v7

v8

c1

c2

c3

c4

An LDPC code is (k , ℓ)-regular, if every VN connects to k CNs and every CN connects
to ℓ VNs, for some fixed positive integer k and ℓ.
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Simulation Set-up

• Consider regular nonbinary LDPC codes obtained from Monte Carlo Simulations
• Parity-check matrices are designed via the progressive edge growth
• Belief Propagation Decoding
• Symbol Message Passing Decoding

◦ Assumption: The CN to VN messages are modelled as observations from
a q-ary symmetric channel.
−→ true (in limits of the block length) if q is prime.

−→ valid for q nonprime as the total variation distance tends to zero

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
·10−3

Iterations of SMP Decoder

T
ot
al

V
ar
ia
ti
on

D
is
ta
n
ce

Z/8Z with δ = 0.11, δ? = 0.1374

Z/8Z with δ = 0.15, δ? = 0.1374

Z/8Z with δ = 0.18, δ? = 0.1374

Z/9Z with δ = 0.11, δ? = 0.1491
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Z/9Z with δ = 0.18, δ? = 0.1491

Z/12Z with δ = 0.11, δ? = 0.1873

Z/12Z with δ = 0.15, δ? = 0.1873

Z/12Z with δ = 0.18, δ? = 0.1873
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Simulation - Memoryless Lee Channel
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BP Z/8Z
SMP Z/5Z
SMP Z/7Z
SMP Z/8Z
LSF Z/5Z
LSF Z/7Z
LSF Z/8Z

Parameters:
• length n = 256
• regular (3, 6) LDPC Codes
• Considered residue rings:

Z/5Z,Z/7Z and Z/8Z

• Decoders:
• Lee Symbol Flipping
• Message Passing
• Belief Propagation
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Simulation - Constant Lee Weight Channel
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• regular (3, 6) LDPC Codes
• Considered residue rings:

Z/5Z,Z/7Z and Z/8Z

• Decoders:
• Lee Symbol Flipping
• Message Passing
• Belief Propagation

Thank you for your attention!
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Parameters:
• length n = 256
• regular (3, 6) LDPC Codes
• Considered residue rings:

Z/5Z,Z/7Z and Z/8Z

• Decoders:
• Lee Symbol Flipping
• Message Passing
• Belief Propagation

Thank you for your attention!
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